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ABSTRACT

Chuang, Jung-Hong. Ph.D., Purdue University, August 1990. Surface Approxi-
mations in Geometric Modeling. Major Professor: Christoph M. Hoffmann.

-~ One of the major research efforts in the field of solid modeling focuses on ex-
tending the geometric coverage of modeling systems and on incorporating complex
free-form surfaces. Some major obstacles to this goal include computing and rep-
resenting intersection curves of two general surfaces, and computing and rendering
very complex surfaces. including offset, Voronoi. and blending surfaces. We present
local and global approximation schemes that are expected to be of practical value
in overcoming the above problems. For parametric curves and surfaces, we present
a method for computing an implicit approximant of low degree that approximates
the curves or surface locally and achieves an order of contact that can be prescribed
in advance. In principle, the method is capable of exact implicitization.’ 'Sé?érzal
surfaces. including offsets. blends, and Voronoi surfaces can be defined as the nat-
ural projections to R? of 2-surfaces in R™. n > 3. The 2-surface in R" is the zero
set of a systemn of nonlinear equations in n variables. We present algorithms that
compute the normal, tangent vectors, and normal curvatures of the projected sur-
face directly from the nonlinear system without variable eliminatior. Methods are
presented as well that compute the explicit and parametric approximations of the
projected surface locally. Finally, for a given 2-surface in R™, n > 3, an algorithm
is given that computes the piecewise linear approximation of the projected surface
globally with all major computations performed in 3-space.

’ ‘_N:l -
S




1. INTRODUCTION

Solid modeling has received much attention throughout the academic and in-
dustrial communities for nearly three decades. Even though significant progress
has been made in basic research and in the capabilities of commercially available
solid modelers, many current solid modeling systems allow only severely geomet-
ric primitives. For example PADL, a solid modeler developed at the University
of Rochester by Requicha and Voelcker. only allows planar. spherical. cylindrical.
conical, and toroidal faces [53].

Recent solid modeling research efforts are being directed at extending the ge-
ometric coverage of solid modelers and incorporating complex free-form surfaces.
Some major obstacles to this goal have been computing and representing intersec-
tion curves of two general surfaces. and computing and rendering very complex
surfaces, including offset, Voronoi, and blending surfaces. In this thesis, local and
global approximation schemes are presented that are expected to be of practical
value in overcoming the problems of geometric coverage.

An algebraic surface in three dimensional space can be given by an impiicit
representation as the polynomial equation g(z,y,z) = 0. Some algebraic surfaces
can also be given parametrically as z = hy(s,t), y = ho(s,t), z = hs(s,t), where
the h; are polynomials or ratios of polynomials. Since both representations have
their own strengths and weaknesses. many geometric computations could become
simpler or practical if both representations were available and their complemen-
tary strengths could be utilized. Thus. the problem of how to convert from one
representation to the other is of great practical importance. However. conversions

between them are not always possible. \While general techniques exist for con-

verting from parametric to implicit form. by a process called implicitization based
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on classical elimination theory, e.g., [46. 47, 49, 58, 65}, only a subset of implicit
curves and surfaces have a parametric representation. Moreover. the techniques
for implicitization are extremely expensive and hence their practical use is quite
limited. Since exact conversions between representations might be impossible or
impractical, local approximations in terms of parametric or implicit forms should
be valuable. We have derived several local approximation techniques for curves
and surfaces that are defined parametrically or implicitly, and expect that these
techniques will be of practical interest when they are incorporated into algorithms
for surface interrogation such as computing surface intersections {23, 24].

Offset. Voronoi, and blending surfaces can be constructed, with an algebraic for-
mulation. as the natural projection to R of 2-dimensional manifolds (2-surfaces) in
a higher-dimensional space. For visualization purposes, a piecewise linear approx-
imation (PLA) of these surfaces is desirable. As a global approximation, the PLA
of parametric surfaces has been extensively studied and is a widely used tool for
rendering surfaces, as well as for evaluating surface intersections. Comparatively,
much less attention has been paid in the literature to piecewise approximations of
implicitly defined surfaces (7, 17, 57]. We present new algorithms for computing
PLAs of surfaces defined implicitly by sets of equations. including offset surfaces.

Voronoi surfaces. and spherical blending surfaces.

1.1 Surface Representations in Solid Modeling

2-surfaces can be represented either in parametric or in implicit form. The
implicit representation is a‘ .active for determining directly whether a point is on
the surface by checking whether or not it satisfies the implicit equation. For the
parametric representation. on the other hand. it is much easier to generate points
on the surface. Major parameiric surfaces. includin, Bézier surfaces. and nonuni-

forrn rational B-splines. are attractive in interactive design because the manner




in which coefficient changes alter the surface shape qualitatively can be grasped

intuitively. However, this is presently not the case for implicit surfaces.

1.1.1 Parametric Surfaces

The parametric representation of a 2-surface in R3 is
p

r = r(u,v)
y = ylu,v) (1.1)
= = z(u.v)

and is the range of a map from R? to R3, where u and v are usually restricted
to a standard domain. say to the unit square [0,1] x [0.1]. These parameter
limits define a bounded rectangular piece of surface, or a surface patch. The
functions r(u.v), y(u,v), and z(u,v) customarily are polynomials or ratios of
polynomials in u and v. For the major parametric surfaces used in Computer
Aided Geometric Design (CAGD). the polynomials are represented in a particular
basis, for instance. in the Bernstein-Bézier basis. This allows us to relate the
coefficients of the coordinate functions of the surface to the geometric properties
and shape of the surface. and this relationship makes parametric surfaces well-
suited to interactive design. Also, many useful techniques. including subdivision
and local shape control. have been developed and extensively applied in surface

interrogations; see, e.g., [26]. The parametric representation can be generalized to

define a 2-surface in R™. forn > 3.

1.1.2 Implicit Surfaces

An algebraic surface in R? is defined as the zero set of an implicit equation

h(r.y.z)=0 (1.2)

whe:2 h is a polynomial in z.y.:. .\s mentioned before, efficient conversion be-

tween parametric and implicit representations would be of critical importance in




geometric computations. Sederberg [61. 63] demonstrated that it is always possi-
ble to implicitize a parametric curve or surface using elimination techniques such
as resultant methods [46, 47, 49, 58]. The implicitization can also be based on
Grobner Basis techniques {18, 31, 33]. Both methods are fairly expensive and
hence their practical application is currently quite iimited.

Parameterization or converting an implicit representation to an equivalent
parametric representation is not always possible since not all implicit surfaces can
be expressed as rational parametric surfaces. In fact. only implicit curves of genus

zero possess a rational parameterization: see (1, 2, 3, 4, 33, 64].

1.1.3 Implicit Surfaces in High-Dimensional Space

While many surfaces can be formulated quite easily in three dimensional space,
as parametric or implicit surfaces, certain surfaces including offsets, Voronoi sur-
faces{equidistance surfaces), and spherical ble ;5 can not. Due to the possibility
of high algebraic degrees, many geometric operations on such surfaces can lead
to high computational complexity and numerical instability, and may require ex-
pensive symbolic manipulations. As an alternative, Hoffmann proposed in [30. 31]
a surface representation that is defined in a higher dimensional space, with more
variables but simpler equations. With this representation. complex symbolic com-
putations and numerically delicate operations can often be avoided. and hence
practical implementations can be realized.

In the following, we give the formulation of offset and Voronoi surfaces in high

dimensional space.

Offset Surfaces As described in [30], the r-offset of the surface g{(z,y,z) = 0 is
the set of points

Offset(g,r) = { p| d(g,p) = r}
where d(g, p) is the Euclidean distance of the point p from the surface ¢ = 0. The

offset surface in general has two sheets in real affine space and can be defined




mathematically applying the envelope theorem as follows:

(z—u)l+(y—v)i+(z—w)?-r* =

9w, v w) = (1.3)

(z —u,y—v,z2—w)-t; =

o O o O

(z—-v,y—v,2—w) -t =
where (u, v, w) is the footpoint, and t, and t; are two linearly independent tangent
directions of ¢ = 0 to which the direction vector (z ~ u,y — v,z — w) must be
perpendicular. For example, with t; = (¢4,0,—g,) and t; = (0, g, —9g.), we

obtain
gulz = u) = gulz —w) = 0

Ju(y —v)—g(z—w) = 0
[ts closed-form can be obtained in principle by eliminating u,v, and w using re-
sultant techniques [13, 46, 61] or Grobner basis methods (18, 19]. When g, = 0.
(9w, 0,—¢y) and (0, gy, —g,) become linearly dependent and hence there will be
an extraneous factor representing spheres on ¢ = 0N g, = 0 in its closed-form

representation. To eliminate this extraneous factor, we may adjoin
guly —v)—gu(z—u)=0

to system (1.3). Moreover, the presence of singularities also introduces additional
extraneous factors. Thus. the formulation in (1.3) is not faithful in the sense that
the natural projection of the solution set of the system contains points that are
not on the offset surface: see {32]. The offset formulation (1.3) is a system of four
equations with degrees as high as g¢’s while its closed-form in (z, y, z)-space has a
much higher degree. For example, when g is a quadric. the closed-form of its offset
may have degree 8. The computation of the intersection of the offset with other
surfaces is reported in {31, 30]. Below. we define the offset of an ellipsoid as an

example.

Example 1.1 Consider an ellipsoid g(z.y,z) = 42? + y? + 2* — 4 = 0 which is

centered at the origin and has semiaxes 1.2, and 2. respectively. The offset of




g = 0 by the distance 2 is formulated as

(T—u)+(y—v)?+(z—wi—4 = 0
dul +viP+wi-4 = 0
w(iz—u)—du(z-w) = 0
wly—v)—v(z—=w) = 0
When w = 0, (w,0, —4u) and (0,w, —v) become linearly dependent. Hence the
closed-form of the offset of ¢ in (z,y, z)-space reveals an extraneous factor z and

has degree 9. -

Voronoi Surfaces The Voronoi surface of two given surfaces g(z,y,z) = 0 and
h(z,y,z) = 0, denoted as Vor(g, ), is the locus of points equidistant from ¢ and
h. It is formally defined by

Vor(g,h) = { p€ R | d(g,p) = d(h, p)}

The Voronoi surface proves useful in defining constant-radius blends {32], variable-
radius blends [21, 30], and skeletons (medial-axis surfaces) of an object [25]. As
shown in [30], we define the Vor(g,h) as the common points of the offsets from
both g and & by an identical but unspecified distance r. Thus, Vor(g, &) can be

formulated as eight equations in ten variables

(z—u)+(y—-v)+(z~w)l-r* = 0
g(u,v,w) = 0
(z—-uy—v.z—w)-t;, = 0
(r—u,y—v,z2—w)-t, = 0 (15)
(z—a)l+(y=-0)P+(z—-w0)-r> = 0
Q& o,w) = 0
(z—d,y—0.z—w)-t;, = 0
(z—d,y—t.z—w) -t = 0

where (u.v.w) and (&,?.w) are footpoints on g and h respectively, and (t,,t;,)

and (t;.t,) are two linearly independent tangent directions to g and A respectively.
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By eliminating the variables u, v, w, 4.7, @, and r, the closed-form of the Voronoi
surface Vor(g, h) can be obtained in principle.

The closed-form of Vor(g, h) consists of two components, one is called the even
Voronoi surface of g and 4 and the other is the odd Voronoi surface of g and A. The
even Voronoi surface is the points that are either inside both g and A or outside
both of them. The odd Voronoi surface consists of points that are inside one and
outside the other basis surface. Both components arise when we cannot distinguish
positive and negative offests. Notice that the elimination methods used to compute
the closed-form of (1.5) cannot distinguish between even and odd Voronoi surfaces
and hence the closed-form must be the union of two surfaces. Since Vor(g, k) is
defined based on offset formulations, its closed-form may reveal extraneous factors
which may be eliminated by adding additional equations: see {32]. To illustrate

the above formulation, we give the following example.

Example 1.2 Let ¢ = 2 +(z—2)2~1and h = y*>+(2+2)?—1 be two cylinders of
unit radius. Let r be the common radius of the spheres centering on g and A, and
(z,¥,2) be a point equidistant from g and k at (u,v,w) and (&, D, @) respectively.
At (u,v,w)on g =0, t; = (0,1,0) and t; = (—(w — 2),0,u) are two linearly
independent tangent vectors. At (&.0.w) on A = 0, two linearly independent
tangents are t, = (1,0,0) and t, = (0. —(@ + 2),5). We then have the following

system of eight equations representing Vor(g, h)

(c—uf (g =)+ (s =)= r? =
w4 (w=-22-1 =
u(z—w)+ (2 —-wi(r—u) =

y—v =

(z=-—al+(y—ri=iz==-r* =

o O O O OO o o o©o




After eliminating u, v, w, &, 9, w.r from (1.6), we obtain
(22 — y? = 82)(482% + 16y°z — 162%z + y* — 227y — 3y + z* — 82% — 48)

where the first factor is the even Voronoi surface of ¢ and h and the second one
is the odd Voronoi surface. Note that the extraneous factors do not appear in the
closed-form of Vor(g, k) due to the existence of two linearly independent tangents

at every point of the cylinders. N

Blending Surfaces Given two surfaces g(z,y, z) = 0 and A(z.y,z) = 0. a blend-
ing surface is a surface that intersects both surfaces tangentially along two curves.
A constant-radius blend is a blending surface that has circular cross-sections of
fixed radius. A variable-radius blend is a blend whose circular cross-sections are
of variable radius. A constant-radius blend of ¢ and h can be formulated as the
envelope of the family of spheres of constant radius r whose centers are constrained
to lie on Offset(g,r) N Offset(h, r). Formalized in algebraic terms, it is the zero set
of ten equations in twelve variables; see [30]. A variable-radius blend of g and A
is the envelope of the family of spheres that have centers lying on Vor(g, ) N p,
where p is a reference surface, and have radii such that each sphere touches both
g and h: see also (21, 30].

When the basis surface of the offset is in parametric form
z = z(u,v), y=ylu,v), z=z(u,v)
the algebraic formulation results in 3 equations in 3 variabies as follows

(z —z(u,v))t + (y — yluv))2 +(z = z(u.v))=r? = 0
(£ —z(u.v),y —y(u,v),z — 2(u,v)) - (r (u.v).yu(u.v). 2o(u,v)) = 0 (L.7)

(r = r(u.v),y — y(u.v),z = z(u.v)) - (ru.v) y(uv). sy (u.v)) = 0

where the subscripts denote partial differentiation. For Voronoi surfaces and blends

involving parametric basis surfaces. the formulation is closely analogous to offsets.




This algebraic formulation of offsets, Voronoi surfaces and blends results in 2-
surfaces in R™. n > 3, which are generally defined as the zero sct of the following

system of polynomial equations:

fl(IlsIZa---‘xn) = 0
T13L2y..-Tq = 0
fa(z1, 2, ) (1.8)

fm(z1,22,....24) = 0

where f; € K{z,,2z2,...,24] and m (> n — 2) is normally n — 2. We denote
system (1.8) in matrix form as F(x) =0 and the zero set of F(x) = 0 as Sp.
Recall that extra equations are sometimes required in order to eliminate extraneous
factors introduced by linearly dependent tangent vectors in the offset formulation
as shown, e.g., in (1.3). In the rest of the thesis, we assume m = n — 2. For the
cases of m > n — 2 the modifications needed in the proposed computations are
routine. It is worth remarking that the algebraic formulation of offsets, blends,
and Voronoi surfaces given here all have the property that a 2-surface is defined
in R™, where n > 3, but its projection into a certain subspace is wanted. In this
thesis, we assume that the (z,,z2, z3)-space is this subspace.

In principle, from system (1.8), the last n — 3 variables of x can be eliminated.

This computation reduces F(x) = 0 to a single equation

f(zl,l‘z,l's):O (1.9)

n (zy,2,Z3)-space with its zero set denoted as S;. However, the elimination
process is not practical. Hence the closed-form representation of F(x) =0 in
{Z1, T2, 23)-space, f(z1,Z2,73) =0, is often unobtainable in practice. In general
Sy is the natural projection of Sg. Note that S; might contain more points than
the natural projection of Sg since the projection of Sr need not be an algebraic

variety: see [69].
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1.2 Implicit Approximations of Parametric Curves and Surfaces

A recurring operation in solid modeling is the evaluation of surface intersections
[55]. If both surfaces are given parametricaily, the two major approaches given the
greatest prominence in the literature are subdivision and substitution methods.

In the subdivision method, e.g., [38. 40. 41. 42, 53], both surfaces are recursively
subdivided in the vicinity of their intersection. The subdivision results in an
adaptive piecewise linear approximation of both surfaces and their intersection.
Among the advantages of the method we mention its robustness and its potential
for locating all intersection branches. A major drawback of the subdivision method
is the large volume of data it creates. which slows it down in areas of high surface
curvature.

In the substitution method, e.g, [27. 44, 59. 67. 68], one of the surfaces, 5, is
converted to implicit form F', and the parametric form of S, is substituted into F
resulting in an implicit algebraic curve f in the parameter space of S;. This curve
f is in birational correspondence with the intersection of S; and S, in zyz-space,
and thus serves as an accurate representation of the intersection. Major difficul-
ties of the substitution method limit its utility in practice. There are two general
methods for implicitizing a parametric surface. The first method is based on elim-
ination theory [61] and does resultant computations. It is expensive and generates
extraneous factors whose detection is a delicate problem, see also Section 2.3. The
second method for implicitization is based on Grdbner basis techniques [18]. It is

‘so fairly expensive and requires, moreover. rational coefficients in the description
of S;. Another difficulty with the substitution method. less prominently pointed
out but well-known [51], is that the substitution itself can be numerically unstable.
and is a nontrivial algorithmic task when desiring efficiency and accuracy. Some
authors have suggested the use of rational arithmetic for this reason 28], thus

further adding to the computational load of 'he approach.
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In Chapter 2, we provide a middle ground by deriving a local implicit approx-
imation of rational or polynomial parametric curves and surfaces with low-degree
implicit forms. In the context of subdivision techniques, such approximations have
the potential of reducing the number of generated surface approximants, because
we are not restricted to linear approximants only. In the context of substitution
methods, the approximations avoid the high cost of implicitizing a parametric
curve or surface, and provide, moreover. irreducible approximants.

Since the distribution of a preliminary version of (23], a number of related
investigations have been developing and applying similar ideas. Bajaj and Ihm [15]
apply a technique that is analogous to ours to the problem of designing blending
surfaces and prove results on minimum degree blends satisfying certain constraints.

Previously, local ezplicit approximations to integral parametric curves and sur-

faces have been proposed in [4§8]. An approximant of the form

z=f(z,y) =D ayz'y’ or y=f(z)=) asz'

is constructed, for surfaces and curves. Recurrence formulas were also derived for
the coefficients of f. Bajaj [11] extends this method using power series compo-
sition and inversion techniques together with rational Padé approximations. In
our experience, a local explicit approximation is less favorable than a local im-
plicit approximation. In fact, while a quadratic explicit approximation to a curve
achieves second order contact at the point at which it is constructed. a quadratic
implicit approximation achieves fourth order contact. For curves, the order of
contact grows linearly with the degree of the explicit approximation, whereas the
order of contact of the implicit approximation has a quadratic growth in the de-
gree. Thus, much lower degree approximations suffice. Note, however. that for an
implicit approximation of degree n. O(n) coefficients can be chosen. whereas for a
degree n explicit approximation only O(n) coefficient are available.

In general. local explicit approximation can only approximate curves or sur-

faces locally no matter how high a degree of approximant is used. This is due
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to the asymmetry introduced by making one variable an explicit function of the
other(s). For instance, a circle cannot be completely approximated with a single
explicit approximant. In contrast, our approximants are capable of approximating
curves or surfaces not only locally but also globally in the sense that the radius of
convergence increases when the degree of approximation increases, and the exact
implicitization can be finally derived when the degree of approximation is equal to
the degree of the given parametric curve or surface.

For a properly parameterized rational curve r(t), e.g., [60, 62], of degree m
containing the origin, we seek an implicit curve g(z,y) = 0 of degree n < m that
approximates r(t) at the origin. The idea is to set up the polynomial g(z,y) with
symbolic coefficients e;; and substitute r(t) into g(x,y) with result

nm
g(r(t)) = Z;Qiti
where the a; are linear combinations of the e;;. We require that a certain number

of the a; vanish. With one of the coefficients being set to one and
ar=0, a;=0, ..., a, =0

for some s the e;; are determined and an implicit approximation is obtained that
has contact of order s with r(t) at the origin.
We have derived a recurrence for computing the a; directly from r(¢) without

explicit substitutions and shown that, when n < m,

e the coefficient matrix of oy, az, ..., a,m has rank that is equal to the number

of unknown coefficients in g(zx,y).

o the degree n local implicit approximation g(z,y) of r(¢) at the origin is irre-

ducible when the origin is a regular curve point.

The method derived here has the following merits compared to local explicit

approximations proposed in [438, 11}]:
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[t works for polynomially and rationally parameterized curves and surfaces.

It yields meaningful results for many types of singularity.

The order of contact grows quadratically for curves and faster than linear for

surfaces.

L g

The implicit approximants approximate curves and surfaces not only locally

but also globally.

The algorithm for computing the implicit approximation of a properly parameter-
ized rational surface is basically similar to the one for the curve case except that

in the surface case additional safeguards are incorporated to ensure irreducibility.

1.3 Local Approximations of 2-D Surfaces

As described in Section 1.1.3, certain surfaces, including offset, blending and
Voronoi surfaces, cannot be easily defined in the conventional 3-D space. In con-
trast, these surfaces can be formulated mathematically, with the theory of en-
velopes, in higher dimensional space in a straightforward manner. As the result.
such surfaces are generally 2-dimensional surfaces in R®, n > 3, and are defined
by (1.8) or in a matrix form F(x) = 0. Although the exact closed-form representa-
tion of such a surface f(z,,z;,z3) = 0 could be derived in principle by elimination
methods such as Gobner basis (18, 19] or resultant techniques [46, 61, 13], it is
often not feasible to do so due to the high complexity of these methods. Thus.
as mentioned in [32], the viable approaches to interrogating such surfaces seem to
pe {a) approximate the surface locally and interrogate the approximant. or (b) in-
terrogate the higher-dimensional representation. In Chapter 3, we have developed
computational schemes for the local geometry of f(z,, z;,z3) = 0 and have investi-
gated techniques that construct implicit approximants. explicit approximants. and

parametric approximants to the surface in (ry, r;, r3)-space described by a system
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of algebraic equations (1.8). These approximants have the forms z3 = w(z,.z;),
and (z; = ¢1(3,t), 22 = ?2(s,t), 23 = 03(s,t)), respectively.

Since f is unknown and its derivation is often impractical. methods of comput-
ing the normal, tangent, and normal curvatures of f = 0 at a surface point in R3
from the information depending only on system (1.8) have been developed. More-
over, using a variant of the Three Tangent Theorem given by Pegna and Wolter
[52], a method has been developed for computing a degree two local implicit ap-
proximant of f = 0.

The implicit function theorem ensures that system (1.8) determines m = n — 2
components of x = (zi,...,Z,) as functions of the remaining 2 components in a
neighborhood of any surface point x° on which the differential DF(x°) has rank
n — 2. The unknown coefficients of explicit functions can be calculated by means
of the chain rule and a linear system solver; however. it is algebraically tedious to
do so. When we assume that x° is the origin, a recursive formula has been derived
which presents the computation in a more convenient manner. Thus, the recursive
formula computes, without loss of generality, z; = wi(zy,1;), i = 3,....n. It is
clear that r3 = ¥3(zy, z2) is a local explicit approximation of f = 0.

For a given system (1.§) and a regular point x° on it. there exists a neighbor-

can be found such that x° = (¢,(0.0),....0,(0,0)). The first three coordi-
nate functions (¢,(u,v), ¢2(u,v), #3(u, v)) so computed constitute therefore a local
parametrization of f = 0. To compute the parametric solution, we substitute
symbolically z; with ¢;(u,v), : = 1,...,n, in all polynomials f;,i = 1...., n—2.
Then we compute the Taylor expansion of the resulting polynomials in u and v.
By requiring that the coefficient of u/v* is identically zero for 1 < j+ k < [, a
series of linear systems are obtained. The solutions of the linear systems define

a degree | approximation of the parametrically defined solution. The first three
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component functions r, = oy(u,v).z7 = 0(u.v),z3 = @3(u,v) so obtained com-
prise the degree [ parametric approximant of f = 0. This derivation is analogous

to the derivation of approximants of space curve proposed in [14].

1.4 Piecewise Linear Approximations of 2-D Surfaces

With the availability of piecewise linear approximations of surfaces, certain
computations become practical: in particular. surface rendering can take advantage
of hardware capabilities and we do not have to resort to expensive ray casting
for visualization purposes. Based on subdivision. the PLA of major parametric
surfaces in CAGD. including Bernstein-Bézier surface and B-spline surfaces. have
been extensively studied and used with great success in surface interrogations
[10, 16, 38, 41, 42]. However, it seems that much less research has been done in
the literature to the PLA of implicitly defined surfaces {17, 9, 7, 8, 56, 57, 12].

Bloomenthal [17] has proposed an algorithm for computing PLA of an implicit
surface g(z,y,z) = 0 based on space subdivision using octrees. The algorithm
starts with an octree that bounds the surface portion of interest, and then decom-
poses recursively those octrees that intersects the surface until the surface portion
inside the octree is sufficiently close to a plane. The surface function is evaluated
at the corners of an octree cube. and from these values is determined the point
at which the surface intersects an edge of the cube. by linear interpolation. The
surface points on the edges of each cube are ordered to form a convex polygon
each of whose edges lies in a cube face. One disadvantage of the vertex evaluation
strategy is that the negatively signed corners of a cube cannot be separated from
the positively signed corners by a single plane in all cases. Thus. vertex evaluation
on a cube may result in ambiguities that could produce more than one pclygo-
nal approximation. In this case. further subdivision is usually required but does

not necessarily resolve the ambiguity. Due to the nature of space decomposition.
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this approach is capable of approximating all the surface components provided the
initial cube has been properly situated.

In [9. 7, 8. 6], a simplicial continuation algorithm is presented for obtaining a
PLA to a component of an implicitly defined 2-surface in R®. The algorithm starts
at a regular surface point x° and generates n-simplices in a sequential ordering
which spiral outward from x°. The approximate zero points on the (n — 2)-faces
of each n-simplex are computed by an affine map and can be further refined using
Newton iteration. Note that a n-simplex ¢ = [vo,Vy,....V,] is the set of points
in R"™ that is the convex combination of vo.Vvi,.... V.. A n-simplex o is said to
be transversal if, roughly speaking, there exists an (n — 2)-face with which the
2-surface intersects transversely. The standard vector labeling of v € R™ induced

by F

1
Ip(v) =
F(v)
is used to formally define transversality as { livws. An (n—2)-face [vq, vy, ....Va_g]

is said to be completely labeled with respect to the vector labeling I if the labeling

matriz

-

1 1
F(vo) F(v._,)
has a lexicographically positive inverse. i.e.. the first nonzero element in each row
of \7! is positive. An n-simplex o is transversal if there exists an (n — 2)-face
7 C ¢ which is completely labeled with respect to the vector labeling lF.

For a n-simplex. the affine map H, : R®* — R""? is a linear map which
interpolates F(x) on the vertices of o, i.e.. Hy(v,) = F(v,) for: = 0.1..... n.
When o is transversal ¢ N H;'(0) serves as an approximation to the 2-surface
inside o.

Let T represent the collection of .ll transversal simplices in a compact domain

and the ptecewise linear approximation Ht of F(x) relative to T be defined as H.,

L.
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when restricted to o for every o € T. Then,
H7'(0) = { H;'(0) | o € T}

is the PLA of the surface component that contains x°. Newton iteration can be
used to refine points on HZ'(0) to surface points. An error bound for ||F(x)j|,
where x € H3'(0), in terms of the mesh size is provided and it is shown that
H7'(0) approximates F~1(0) quadratically in the mesh size (5].

While Bloomenthal’s method is more suited to implicit surfaces in R3, the
simplicial continuation method is designed for general 2-surfaces in R™. However,
the direct application of these methods to computing PLA of offsets, Voronoi
surfaces. and blends will have a space and time complexity that is exponential in
the dimensionality of the space.

Rheinboldt [36, 57] has presented a continuation method that maps a ref-rence
triangulation £ on R” to a p-manifold M in R", n > p > 1, and hence produces a
triangulation on M. The method consists of two major computation schemes. A
moving frame algorithm is given to derive orthonormal bases, i.e. local coordinate
systems of the tangent space I(M), that vary continuously with their point of
contact z on M. A triangulation algorithm uses the orthonormal bases produced
by the moving frame algorithm to map the vertices of the reference triangulation
onto the tangent space z + T(M) corresponding to appropriate points £ on M.
Thereafter, Gauss-Newton iteration is applied to project these triangulations from
z+ T.(M) onto M. At each step of the triangulation algorithm, a reference vertex
£ of the reference triangulation £ and the corresponding point z € M are selected.
The center € is associated with a set T'(€) of vertices of T that can be mapped
onto M. Then the reference vertices in [(¢) that have not been processed are
mapped onto z + T;(M) and projected onto M by the Gauss-Newton iteration. To
proceed, a reference vertex in I'(£) that has been processed is selected as the next
£ and the same computation is appiied. [ie points computed on M inherit the

connectivity structure of & which in rura induces a triangulation on M. Note that
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the triangulations induced by two overlapped ['(£;) and I'({;) are made compatible
by demanding that the reference vertices in I'(£,) N T'(&;) are processed only once.
In Chapter 4, we propose an algorithm that is capable of computing PLA for

2-surfaces projected into R® but defined algebraically in R™, n > 3.

1.5 Some Preliminaries

A rational plane curve r(t) can be given as the pair (z(t), y(t)), where z(t) and
y(t) are rational functions of t. The curve points are all points (z(t).y(t)) on the
plane. The curve is properly parameterized if for all but finitely many curve points
p we have p = (z(t),y(t)) with a unique value of t. When a parametric curve is
not properly parameterized. there exists a rational nonlinear function s(t) such
that z(t) = z*(s(t)) and y(t) = y*(s(t)) for some rational functions z* and y*. We
assume in this thesis that all parametric curves are properly parameterized and
note that a parametric curve is always irreducible. For methods to detect improper
parameterization, see Sederberg (62].

The degree of a rational parametric curve is the highest degree of the numerator
or the denominator polynomial, assuming both z(t) and y(t) have been written
with a common denominator. The implicit equation f(z,y) of the rational curve
r(t) is a lowest degree polynomial in z and y satisfving f(z(t),y(t)) = 0. It is
unique up to a multiplicative constant. If r(¢) has degree m, then so does f(r.y);
see, e.g., (46, 49].

As with parametric curves, a parametric surface
P(s.t) = (z(s.t), yl{s. t), z(s. 1))

can be improperly parameterized if there are nonlinear rational functions u(s.t)

and v(s.t) such that

P(s.t) = (r{u(s.t),v(s. ).y {uls. . v(s. ). = (uls. t), v(s. t)))
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for some z*,y* and 2*. In that case, there is a many-to-one correspondence be-
tween the parameter values and the surface points. P(s,t) is properly parame-
terized if this correspondence is one-to-one except, possibly, on a one dimensional
set of points. We also assume that all parametric surfaces are properly parame-
terized. For a parametric surface described by rational functions of total degrees
m, there always exists an irreducible implicit equation f(z,y,z) = 0 satisfying
flz(s,t),y(s,t),2(s,t)) = 0, and f is unique within a constant factor, see, e.g.,
[22]. Moreover, f has degree at most m?.

A polyromial of degree k in the variables z,, z,, ..., z, is denoted f*(z,,...,z,)
whenever we wish to stress the degree. The gradient of f = 0 at the point
X = (1,Z2,...,Zn) Is the vector Vf = (f.,, fzsy---, fz.), where the partials are

evaluated at x. The Hessian of f is the symmetric matrix

frnz'l fx;z:; f::::..
fzztn frzzz frz:n

_f::n.n f.r.‘:r:; f:nznj

where subscripts denote partial differential.
A point X° = (29,---,29) is said to be non-singular or regular on f if the
gradient of f at x° is not null; otherwise the point is singular.

Given a system of algebraic equations (1.8), the m x n matrix

B
8:::,- x=x9

is called the differential of F at x° = (£2,--.,2%2). A point x° is said to be non-

DF(x°)

singular or regular on the 2-surface F if DF(x°) has rank n — 2. That is. the

gradients Vf,, ..., Vf, form a normal space of dimension n —2. When m = n - 2,
this is equivalent to saying that x° is non-singular on all f;, :=1.2,....n =2,
and the gradients Vf,,....Vf, are linearly independent. x° is singuiar if it is not

a non-singular point.




1.6 Thesis Organization

In this first chapter., various types of surface encountered in CAGD and solid
modeling, including parametric surfaces. implicit surfaces, and 2-surfaces in high-
dimensional space, have been presented. and the problems of approximating curves
and surfaces and their applications to surface interrogations have been discussed.
Moreover, several local and global approximation techniques that will be proposed
in this thesis have been sketched.

In Chapter 2, a method for computing implicit approximations to parametric
curves or surfaces is proposed that might circumvent the difficulty of globally im-
plicitizing parametric curves or surfaces. Chapter 3 deals with the local geometry
and local approximations of 2-surface in high-dimensional space. In Chapter 4, an
algorithm is developed for computing the piecewise linear approximation of offsets.
Voronoi surfaces, and blends. Chapter 5 provides a summary of this research and

comments on some future research directions.




2. IMPLICIT APPROXIMATION OF CURVES AND SURFACES

A method is described for finding an implicit approximant to a parametric
curve or surface in a neighborhood of a point. The method works for both poly-
nomially and rationally parameterized curves and surfaces, and achieves an order
of contact that can be prescribed. In the case of nonsingular curve points, the ap-
proximant must be irreducible, but in the surface case additional safeguards have
been incorporated into the algorithm to ensure irreducibility. The method also
yields meaningful results for many types of singularity. The chapter is organized
as follows. In Section 2.1, we describe the method for polynomially and rationally
parameterized curves. Section 2.2 presents the surface case. In Section 2.3. we
comment briefly on some theoretical connections between the method we propose

here and several resultant formulations found in the literature.

2.1 Local Implicit Approximation of Parametric Plane Curves

We seek an implicit curve g(z,y) = 0 that approximates the parametric curve
r(t) = (z(t),y(t)) at the origin subject to a prescribed order of contact. The idea is
to set up a polynomial g(z,y) of sufficiently high degree with symbolic coeflicients
e;;. Then, a system of linear equations with unknowns e;; is formulated and solved.

The linear system is obtained by substituting r(¢) into g(z, y). The result is

glz(t). y(t)) =3 ot

where the aj are linear combinations of the e,;. We require that a certain number

of the a; vanish. With

ar=0. a2 =0. .... a, =0
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for some s, an implicit approximation is obtained that has contact of order s with

r(t) at the origin. The approach depends on the following details:

1. There is a recurrence for deriving the linear system directly from r(t) without

explicit substitutions. This recurrence is derived in Section 2.1.1.

o

Assume that the degree n of the approximation is smaller than m, the degree
of r(t). There is a function ¢(n) that determines the order of contact that
g(z,y) can achieve. This function is obtained by analyzing the rank of the

linear system in Section 2.1.2.

In Section 2.1.3 we discuss the error behavior of the impiicit approximation. and.

in Section 2.1.4, we present several experiments.

Let

r(t) = (z(t),y(¢)) = (Z_((tt_))., %)

be a properly parameterized rational curve of degree m containing the origin, where
p(t) = at',  q(t) =D bit',  w(t)=Y_
=1 1=1 =0
We assume that a, and b, are not both zero, and that co # 0. From [61, 63], we
xnow that there exists an irreducible polynomial f™(z.y) = 0 of degree m such

that

fM(x(t).y(8)) =0

Let g™(z.y) = 04,1 ei;z'y’ = 0 be a degree n implicit curve containing the
origin. Since g*(z,y) = 0 and vg™(z,y) = 0, where v # 0. are the same curve.
7*z.y) = 0 has p(n) = (n? + 3n — 2)/2 coefficients on which the curve depends.

Let G™(r.y.z) be the homogeneous form of g"(z,y). Substitution vields

() gt GMp(t)-q(t) w(t) _ Tt

g (w(t)’w(t) (w(t))” T o(w(t)n

where the a, are linear combinations of the e,,.
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We look for an implicit form ¢*(z,y) = 0 of degree n < m approximating r(t)
at the origin, and the method of deriving should work whether w(¢) = 1 or not. i.e..
irrespective whether the curve is parameterized polynomially or rationally. The

following simple example demonstrates the approach.

Example 2.1 Consider co(t) = (z(t),y(t)) = (p(t)/w(t), ¢(t)/w(t)), where p(t) =
213 + 12 — 3t, q(t) = t2 — t* = 2t, and w(t) = t* + 4t + 5. co(t) is a properly
parameterized plane curve containing the origin. Let g?(z,y) = ejoz+eqy+e20z° +
en1Ty + enzy® be a degree 2 curve containing the origin with symbolic coefficients.

Substituting z(t) and y(t) into ¢? yields g?(z(t),y(t)) = (L5, ait*)/(w(t))? where

=1

ay = —15610 - 10801

ay = —Te1g — 13eq + 9ey0 + 617 + dege
a3z = llejg — eg1 — Bezo + €11 + deg

ag = 9e10+ 3egr — lleao — Seqnn — 3en
as = 2e19 + eo1 + 4e20 — €11 — 2eqe

ag = dey0 + 2e11 + €n2

By requiring ;o — 1 = 0.y = 0,a7 = 0,3 = 0, and a4 = 0, we can solve for
the unknown coefficients e;;. The resulting g* approximates cg at the origin with

contact of order four. ’ u

2.1.1 A Recurrence for a;

Since g™(z,y) = g"~H(z,y) + Ti4,=n €i;T'y’, the homogeneous form of g"(z.y)

can be written as

G™(z.y,z) = z:G™ Yz.y,2) + Z e;; 'y’ (2.1)

i+)=n

In the following, let ap~!

and af denote the coefficient of t* in G™1(p(t), g(t). wit))
and G™(p(t).q(t). w(t)), respectively. [t is clear that a} can be derived from the

Al i=1.2,.... k. because of (2.1).




We define (a{z)); and (b(j)); as in [48], setting

(p(t))" (Za,t)' = aliut

=1

and similarly,

) = sz ”'Z It

I=;
A recurrence to compute the (a(¢)); and (b(j)); is derived as follows. see also [48].

By definition of (a(z + 1)), it follows that

(s+1)m im _ m
3 (ai+ D)t = (Z(a(i))jtf) (Zakt)‘)
k=1

=i+l i=i
im m
= 3 (i) et
1=% k=1

Settingl=j7+kandp=jyieldsi<p<imandl <l-p=k<m,and

(i+1)m {(i+1)m [l
Z (a(z + 1)) Z (Z(a(i))pa,_p) ¢

=141 =341 \p=s3

Thus, equating coeflicients yields the recurrence

-1
(a(i + 1) = Y_(a(i))paip

p=1
Recurrence for (b(7); is analogous.
From (2.1), we therefore obtain

m({n~1)

ap = coefficient of t* in (w(t) Z gy E ei; (p(t)) (g(t))?)
1=1 t+)=n
N
= Zaﬁ -yt D, 2 eilali))p(b(4))q
=1 i4)=0 p4q=k

In particular, a} = ejoar + eg1bx.
For an integral parametric curve r(t), a straightforward computation shows
that the a} specialize to

ap™! 1<k<n-1

al’: = a:—l -+ z::-q—]:n Zp+q=k el](a(l))p(b(.}))q n S k S. (n - l)m

ZH-J:n Zp+q=k e!)(a(z))p(b(.j))q (n - l)m < ; S nm




2.1.2 Derivation of the Method
2.1.2.1 Rank of the Linear System

Having explained how to obtain the a}, we now show that the coefficient matrix
of the linear system defined by setting af = 0,k = 1,2,...,nm, has rank at least
@(n). We are able to determine a nontrivial solution to unknown coefficients by
setting one of the coefficient to 1 and solving thesystemal = 0,2} =0,...,a? =0
for s > ©(n) chosen such that the rank is ¢(n).

Let e, = (e10,€01,€20, €11, €02+ - - + €n0s E(n=1) 15 - - - , €1 (n=1), €on) be the vector
of unknowns, and write the system of equations of = 0,af = 0.....a?, =0 in
matrix form:

Amnen =0 (22)

Note that A, is a nm by ©(n) + 1 matrix. Furthermore, the maximum rank of
Anmnis (n) + 1 sincem > n and nm > o(n) + 1. Example 3.2 shows matrix Aj,

symbolically.

Example 2.2 Form =3 and n =2, Aj; is

a1Co b160 0 0 0
ajcy + a2co biey + baco a} aby b3
a1Cy +a@sC) +azcq  byca + bacy + bacy 2aya, arba + arby 2b, b4

aica+axca +azcy brea+ baca +bacy 2aya3+ a3  aybs + azba + azby 2b1b3 + 63

32C3 + a3C2 bacy + baco 2aqa;3 @263 + azby 2b2b3

bed el
L ascy baca - a3 aszb; b3

When computing the local implicit approximation g"*(z,y) of r(t), if the rank
of Amn is at least ©(n) then we can select one coefficient of ¢"(z.y) to be 1 and
determine the others by selecting the first s rows of (2.2) and choosing s such that

the system has rank p(n)
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Let f™(z,y) = 0 be the exact irreducible implicit form of r(t) with F™(z,y, =)
as its corresponding homogeneous form. and let f*, n < m, be the degree n ini-
tial segment of f™ with its corresponding homogeneous form F™(z,y, z), that is,
f™(z,y) = f*(z.y)+terms with degree > n. Also, let 07 b,t' = F™(p(t), q(t), w(t))
and bma = (b1,02,. .., bmn)7.

Lemma 2.1

1. f*(z,y) is the zero polynomial if and only if b, = 0.

2. If f~(z,y) is a nonzero polynomial then b, = by = --- = b, = 0 and

[ex}
k|
3
-
o

Proof: part 1: “=" trivial. “«<” Suppose f"(z,y) is a nonzero polynomial. since
bn = 0.

FM v q(b), —0= npeng PUE)  q(2)
*g(t),w(t) Iy w(t))

for all ¢t and then , (p(t)/w(t),q(t)/w(t)) = 0. for all ¢ with possibly finitely many
exceptions. where w(t) = 0. Thus f*(z,y) with n < m also represents r(t) which
contracicts the irreducibility of f™(z,y).

part 2: Since f™(z,y) = 0 is the implicit form of r(t),

) (t)
for all ¢ except finitely many t where w(t) = 0. Thus
- OO
(p(t),a(t). w(®) = (w( )" (B Loy =0
for all ¢t. From
Fr(p(t), q(t),w(t) + 22 eis(p(t)'(q(6)) (w(t))™*77 =0
1+1=n+1
for every t. we have

Sohtt=— 3 en(p(O) )P i)™ = Y b

=1 14+)=n+1 i=n+l




(3]
-

for every t. By comparison. we have b, = b, = --- = b, = 0. The rest of part 2
follows from part 1. N

Since f™(z,y) is an initial segment of f™(z,y), it could be either a zero polyno-
mial or a nonzero polynomial with zero or nonzero b, vectors respectively. If b,,,
is known beforehand, the coefficient vector e, of f"(z,y) is uniquely determined
by Amn€n = bmn which is an overdetermined linear svstem. Note that, for a fixed
n, the elements of the matrix A ., depend only on the coefficients of p(t), ¢(t), and

w(t). The following results characterize the rank of A ..

Lemma 2.2 Ifr(t) is a properly parameterized rational plane curve of degree m

then for n < m, we have

rank(Am,) = ¢(n) +1

Proof: Suppose, knowing b, we want to determine the coefficients of fMz.y) by
solving the overdetermined linear system A e, = b.nn, where e, is the coefficient
vector of the general degree n polynomial. Since A,,, depends on the coefficients
of r(t), we consider the following two cases.

First, if r(t) is a curve such that the corresponding f™(z,y) is the zero poly-
nomial, then by,, = 0 and A..e, =0 is a homogeneous system. If rank(A ..) <
£(n) + 1, there will be infinitely many nontrivial solutions as well as the triv-
ial solution for this linear system. This cannot be true by Lemma 2.1. Thus
rank(Amn) = @(n) + 1.

Second. if r(t) is a curve such that the corresponding f™(z.y) is a nonzero
polynomial, then b,,, # 0 and A, ,e, = b, is a consistent non-homogeneous
system since there is always a solution. that is with e;; the coefficients of f™(z,y).
Suppose rank(Ama) < ¢(n)+1. this system will have infinitely many solutions. Let
e, be one of the infinitely many solutions and e} # e,, where e, is the coefficient

vector of f*(z.y). Let also A™(r.y) be the corresponding polvnomial of e and

h™(r.y) = R (x.y) = ' rmsof f7 r.y) with degree > n
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Let H™(r.,y,z) and H*(z,y,2) be the homogeneous polynomials of 2™(z.y) and

h™(z,y) respectively. Since Amnen = Apne; = bomn,

H™(p(t), q(t), w(t)) = F(p(t), q(t), w(t))

for every t. and thus

H™(p(t),q(t), w(t)) = F™(p(t),q(t),w(t)) =0
for all t. We then have
m () q(t) . . p(t) qlt)
ey wiey) =¥ e ey =0
for all but finitely many t. Hence f™(r.y) and A™(z,y) represent the same alge-
braic curve. Since f*(z.,y) # h"(z,y), f™(z.y) and A™(z,y) differ by more than

a constant factor which contradicts that the equation of an irreducible curve is

unique to within a constant factor. Therefore rank(A,,) must be p(n) +1. =

Lemma 2.3 Ifr(t) is a properly parameterized rational plane curve of degree m
then for n = m. we have

rank(Amm) = w(m)

Proof: lf n = m, f™(p(t)/w(t),q(t)/w(t)) =0 for all t except finitely many t where
w(t) = 0. and then F™(p(t), q(t),wit)) = 0 for all t. we thus have A, e,y = O
which is an overdetermined linear homogeneous system. Since we will have only
trivial solution if rank(A.m) = ¢(m) + 1. rank(A,,,n) must be less than or equal
to p(m).

Suppose r = rank(Amm) < p(m), then the solution space of the overdeter-
mined homogeneous system has as basis p = 2(m) + | — r linearly independent
vectors and every solution of this system is the linear combination of these p solu-
tions. Now suppose that r < 2(m), then the svstem has a solution space spanned

bv p > 2 linearly independent vectors. sayv el el , --.e?. Let f™(r.y) be the
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corresponding polynomial with coefficient vector e}, and F™(z,y,z) be the homo-
geneous form of f™(z,y),:=1.2....,p. Since
p(t) q(1)
T(p(t t),w(t)) =0 = NP — L
EP(pl1),a(0) w(8) = 0 = (w(n)™ (B, L)
forallt, 1 < < p, wehave f(p(t)/w(t),q(t)/w(t)) = 0 for all t with finitely many

exceptions where w(t) = 0, 1 < ¢ < p. Thus the irreducible curve f™(z.y) = 0

can be represented by f™(z,y),t = 1,2,...,p, which are not different within only
a constant factor because el , e ,---,e? are linearly independent. By the above
arguments, we can conclude that rank(An,,) = p(m). u

By assigning one variable to be 1, the existence of a nontrivial solution of
Ammemn = 0 is guaranteed by Lemma 2.3, and it is the coefficient vector of the
exact implicitization of r(t).

Observe that Lemmas 2.2 and 2.3 are not valid for improperly parameterized

rational plane curves, as shown in the following example:

Example 2.3 Let ¢ (t) = (z(t),y(t)) = (£* + 2¢,¢* + 443 + 6¢ + 4t). Since z(t) =
s(t) and y(t) = (s(t))?, where s(t) = t* +2, c,(t) is improperly parameterized. For

n = 2 the rank of Ay, is 4 whereas ¢(2) + 1 is 5. )
We summarize the lemmas above in the following

Theorem 2.1 [fr(t) is a properly parameterized rational plane curve of degree m
then

n)+1 ifn<
rank(Ap,) = { TN T fn<m
w(n) fn=m
where n is the degree of the approzimant. ¢(n) = (n? +3n — 2)/2 is the number of

coefficients on which the approrimant depends.

2.1.2.2 The Algorithm

Because of Theorem 2.1, we may compute the degree n local implicit approxi-

mation as follows:
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Let

Be, =0 (2.3)

be the subsystem of (2.2) consisting of the first s equations of A,,,e, = 0 such
that B has rank @(n). If the origin is not a singular curve point, then augment the
system (2.3) with an equation eg; = 1 or €10 = 1 according to whether z(0) # 0
or y'(0) # 0. If the origin is a singular curve point, on the other hand. then (2.3)
is augmented by the equation e;; = 1 where the indices i and j are selected by

inspecting the system. In this way, a linear system
Ce,=b (2.4)

is obtained that has a nontrivial solution for e,. Since af = 0,a3 =0..... ay =0,
the curve g" so defined must have contact of degree at least s to r(t) at the origin.

There may be cases in which thesystem (2.4) is inconsistent, i.e., the augmented
matrix [C, b] is of rank ¢(n) +2 while C has rank ¢(n) + 1. In this case, the linear
system can be modified to ensure consistency. For instance, when computing g*
of c2(t) = (¢,?), ad should be removed from, and a?; = 0 should be added to the
system (2.4), resulting in ey — 1 =0,a} = 0,0 =0,...,al =0.0%, = 0.a%, = 0.
In this way a g*(z.y) = y is obtained. an approximation that has eighth order of

contact and is irreducible.

2.1.2.3 Irreducibility of Implicit Approximations

When the origin is a regular curve point we show that the implicit approxima-
tion g™(z.y) of r(t) at the origin is irreducible whenever the linear system (2.4) is
consistent. Note that the local implicit approximations of different degrees derived
have the same linear terms if the equations augmented to (2.3) are the same. In
the following lemmas. we assume that (2.1} is a consistent system. Also. let s(n)

be the order of contact made by the degree » :upiicit approximation ¢*(z.y).
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Lemma 2.4 If g"(z,y) and g"~'(z,y) of r(t) at the nonsingular point (0,0) are
computed by augmenting the system (2.3) the same a = 0, where a = 0 is either

eto— 1 =0 oreqn — 1 =0, then we have s(n — 1) < s(n).

Proof: Let g*(z.y) = 3(¢™(z,¥)+¢" ' (z,y)). Suppose s(n—1) > s(n), the g*(z,y)
so defined has the following four properties: (1) g" is of degree n. (2) g* # g". (3)
g™ has the same linear terms as g™ since g™ and ¢"~! have the identical linear terms.
(4) " has the order of contact larger than or equal to s(n) since s(n — 1) > s(n)
is assumed. From properties 1, 3, and 4, the coefficients of g* satisfy the linear
system that is used to compute the coefficients of ¢g™; but property 2 contradicts
the uniqueness of solution of a nonsingular linear system. Thus s(n—1) < s(n). m

By induction and Lemma 2.4, we can show that s(n) is strictly monotone.

Lemma 2.5 At the nonsingular point (0.0), the degree n local implicit approz-
imation ¢g"(z,y) of the degree m > n properly parameterized parametric curve

r(t) = (z(t), y(t)) is irreducible.

Proof: Suppose g*(z,y) is reducible, and g* = g*¢', wheren = k +{ and &.1 >
0. Since g" contains linear terms. one of the ¢* and ¢' must have a constant
term. Let ¢*(z,y) = Zfﬂ:l pi;T'y’, where pio and po; are not both zero, and
Jz,y) = Zﬁﬂ___oqi,—z"yl, where qo0 # 0. Let also that g*(z(t), y(1)) = L721 at',
g (z(t). y(t)) = =7k B,t', and ¢'(z(t),y(2)) = Y, yit', where vo = goo. We thus

have

mn mk ml
Z a;t' = (E ﬁit')(z +it')
=1 =1 1=0

The coefficients of g™(z.y) are computed by solving the nonsingular system as (2.4)
for some s > @(n). Moreover, s(n), the order of contact of g, is greater than or
equal to s. Thus the coefficients of " satisfy the linear system a = 0,a} = 0.a} =

0..... aj,, = 0. where. without loss of generality, we assume that a = o~ 1 = 0.




The above linear system can be represented in terms of .3; and v, as follows:

' qoopro =1

qoosh =0

qoo2 + 311 =0

goods + B2 + B2 =0

.

. QOOﬂa(n) + Bs(n)-l71 + -+ %3173(11)-1 =0

which implies goop1o = 1 and 8; = 3, = - -+ = 34(n) = 0. Thus ¢* has either order
of contact larger than or equal to s(n) if s(n) < km, or g*(z(t),y(t)) = 0 for all ¢
if s(n) > km. The first result contradicts the fact that s(n) is strictly monotone.
and the second contradicts the irreducibility of the exact implicitization of r(t).
Thus g" is irreducible. u

When the origin is a singular curve point, the implicit approximation is not
always irreducible. For example, the degree n implicit approximation of c3(t) =
(3, %), with implicit form z° — y?> = 0. is y™ = 0. Note that y = 0 is the curve

tangent at the origin.

2.1.3 Error Analysis
2.1.3.1 Quality of the Approximation

Givene, let T(e, n) > 0 be such that for all |t| < T(e, n) the orthogonal distance
d(t,n) between point (z(¢), y(t)) and the degree n approximation ¢"(z,y) = 0 is less
than e. assuming that (z(t),y(t)) is a regular curve point for all |t| < T(e,n). The
distance d(ty,n) from a point P = (z,,y,) = (z(t,),y(t,)) on the curve r(t) to the
degree n approximation g"(z,y) = 0 is the solution of a difficult nonlinear system.
A reasonable estimate of d(t,,n) would be the distance to the ¢g"(z.y) = 0 in a
direction orthogonal to the level curve g*(zr.y) = c. where ¢ = g"(z,,y,), denoted
bv d'(tp, n). Note that d'(t.n) > d(t.n) since d(t.n) is the shortest distance from

the point to the curve. Let P’ = (x;,.y;,) be the point on ¢g"(z.y) = 0 on which
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g"(z.y) = O intersects the line orthogonal to level curve g*(z.y) = ¢ at P. see

Figure 2.1. The value of g™ at P’ expressed as its Taylor series about P is
g"(x;, y'p) = g"(zp,Yp) + dl(tp, n)-Vg'(z,, yp,) + higher order terms

Taking the linear term, since g"(a:;,,y;,) = 0. d'(t,,n) can be approximated by

d'(t,,n) where

&t n) = 9 (Zpyp)  _ 9" (z(tp), y(t5))
7 Vg™ (zp, yp)l| [(g;(r(tp), y(tp)))? + (9,’,‘(1(%)» y(tp)))?}L/?

Note that d"(t,n) may be less than, greater than, or equal to d(t,n) although
d'(t,n) is always greater or equal to d(¢,n).

We have found no method for computing T'(e¢,n) analytically. However, in
practice we only need a method of obtaining a reasonably good estimate of T'(¢, n).
Thus it is desirable to determine T (e.n), for given € and n, such that d'(t,n) < e
for |t| < T'(e,n).

Since 2ab < a? +b? for any positive a and b, we have \/Im < M;’lbl < \/."22v
so that

V2™ (2(t), y(t))
lg2(z(8), y(8))] + lgn(z(2), y(2))]
When tracing r(t), we can detect the first value of t such that (f(t,n) < € and

d'(t,n) < d(t.n)

d(t + At.n) > e. where At is the step distance tor t.

2.1.3.2 Curve Translation to the Origin

In the derivation of the approximant we assume that r{0) = (0,0), i.e. we
require that r(t) be translated to the origin and reparameterized. Since this may
incur additional inaccuracies we comment on it now.

Translation of r(t) to the origin is a simple operation that incurs only small
errors. For, with p = (u,v) as the curve point to be brought to the origin. the

translated curve is simply
L(t) = 2(t) —uw=1(p(t) — uw(t))/w(t)
yilt) = y(t) — v = (q(t) — vw(t))/w(t)
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Figure 2.1 Error estimate

So, we have to subtract two polynomials in order to bring p to the origin.
Now assume that r{ty) = p, and consider reparameterization such that p not
only is moved to the origin but that also to = 0, for the reparameterized curve.

Here we need to substitute t + to for t, i.e.

-

z2(?) = 1(T + to)
y2(t) = (T + to)
is the final curve. As observed in the introduction, although substitution is con-
ceptually simple. it nonetheless may introduce numerical errors that could be sig-
nificant. According to experiments by Prakash and Patrikalakis [54], Kahan's
method described in [39] exhibits good numerical stability. and offers one method
of implementing the needed reparameterization.
A second method would be to avoid reparameterization altogether by reformu-
lating the derivation of the approximant given before. That is. we consider rit)
containing the origin at which ¢ is not necessarily 0. seeking again an implicit ap-

proximant at the origin. Clearly this is possible and requires only straightforward
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modifications of our method. In fact, even translation of the point to the origin

can be avoided by such modifications. The details are routine.

2.1.4 Experiments

A good local approximation of a curve will provide a more accurate local
approximation and larger interval T'(¢,n) of approximation. for a given ¢, when
the degree n of the approximation increases. The local implicit approximation
g™*(z.,y) = 0 of r(t) is determined by ¢(n) linear conditions imposed on its coeffi-
cients, where ¢(n) is the degree of freedom of ¢g™(z,y). Thus, as n increases, more
conditions can be satisfied and finally the exact implicitization is obtained when
n = m. Hence our local implicit approximation is capable of approximating a given
curve not only locally but also globally in the sense that T'(¢,n), for a given ¢, will
be larger when n increases. On the other hand, a local explicit approximation is
limited due to the asymmetry introduced by making one variable an explicit func-
tion of the other. Thus, an local explicit approximation can only approximates the
given curve locally for |z| < R, where R is its radius of convergence, no matter
how high the degree of approximant is.

We give as example the approximation of several parametric curves that are

not singular at the origin, showing both implicit and explicit approximations.

Example 2.4 Four curve examples are shown below.
calt) = (L8 + 65 — 283 + 342 + 128,18 — £ + ¢ — 43 = 2¢2 + 241)

cs(t) = {

col(t) = (38 + 5 — 2t4 + 3883 — 5¢2 — 148,48 — 1285 — 2t + 2¢3 — Tt? + 13¢)

cr(t) = (84385 —6t1+4t3-36¢% +36¢)/w(t), (38415 -2t +39t3 - 69> +33t)/ w(t))
where w(t) = Tt® + 1065 + 9t* + 642 + 3t + 7.

(388 — 4> — 883 + 612 4 3¢, —3¢8 + 4¢° + 5t1 — 63 — St2 + 3¢t)

The curves of c4(t). cs(t), cs(t) and cz(t) with ¢ in [-1,1], and their lo-
cal implicit approximations and local explicit approximation are shown in Fig-

nres 2.2. 2.3, 2.4 and 2.53. Note the good quality of local implicit approximation.
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Tables 2.1 2.2 and 2.3, for c4(t),c5(t) and cs(t) respectively, list the y-values of a
sequence of z-values to quantify how accurately the low degree local implicit forms
approximate the original curves. The corresponding values of local explicit forms
are also listed for comparison. For such examples. we observe that

(a) For local implicit approximation. d(t.n+A) < d(t.n) for tin [—1.1] and k > 1.
In addition, T(¢,n) < T(e,n + k) for k > 1.

(b) T(e,2) of local implicit approximation is greater than T'(¢,6) of local explicit
approximation.

(c) Degree 2 and 3 local implicit approximations give very accurate approximations
on a reasonable range of t.

(d) Degree 5 local implicit approximation approximates the original curve very

precisely at least for —1 < ¢ < 1. ]

When computing an explicit approximation y = h(z) directly from the curve r(t),
we first compute the degree n power series t = L., d;z' from z = z(t), and then
substitute it for ¢t in ¥y = y(t). As a result. only the first n coefficients of A(z)
are exact and the remaining coefficients obtained in the computation shouid be
discarded. Moreover. substituting ¢t = 3.1, d,z' for ¢t in y = y(t) is not a cheap
computation, especially for high degree local explicit approximations. Hence. the
computation of a local explicit approximatioﬁs of a parametric curve directly from
r(t) is more costly than the implicit form. In general. the computation of local
implicit approximation involves generating the ol and solving the linear system.
which is fairly efficient for low-degree approximation.

The local explicit approximation is an analytic function that does not exist at

a curve singularity. In contrast. a local implicit approximation always exists.

Example 2.5 Local implicit approximations can be derived at singularities. in-
cluding cusps. where local explicit approximation fails. Let cs(t) = (3¢3 +2t*.t% -
3¢3 4 2¢t#) with the implicit form fYz.y) = —r'+3327 +6332°y + 1325zy° +625y° —

336z% + 672ry — 336y°. The origin is a cusp of cs(¢) with tangent £ —y = 0. The
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degree 2 local implicit approximation is a double line (z — y)?, which is the best
degree 2 approximation one can derive at cusp. The degree 3 local implicit approx-
imation is % —2zy+y* —0.162597662> — 2.0356445z%y — 3.940918zy? — 1.8608398y3
which shows very nice approximation to the cg(t) with t in [—1, 1], see Figure 2.6.
As a next example, we consider cg(t) = ((5t° — 16¢* + 1083+ 4t2) /w(t), (5 + 4423 —
16t)/w(t)), where w(t) = 0.12> + 0.1¢* — 2t + 12.5. The co(t) is a singular curve
with a cusp at the origin and a self-intersection as well, as showu in Figure 2.7.
Figure 2.8 shows the degree 3 and degree 4 local implicit approximations of colt).

The degree 4 local implicit approximation shows remarkable performance. n

2.2 Local Implicit Approximation of Parametric Surfaces

We derive an implicit surface g(z,y,z) = 0 that approximates the parametric

surface P(s,t) = (z(s,t),y(s,t),2(s,t)) at the origin to a specified order of contact.

using the method of Section 2.1. Let

P(S,t) = (.‘C(S,t), y(s, t)vz(s’t)) = (

be a rationai parametric surface of total degree m containing the origin, where

p(s,t) = Z a;js't?, q(s, t) = Z biys't!,
1

)= =1
m m
r(s,t) = Z c,-js‘tj, w(s,t) = Z d;,-sitj
i+7=1 i+5=0
with aij, bij, ¢, i+j = m, not all zeros and dgo # 0. It has been shown by Macaulay
[46] that a parametric surface of the above form has an irreducible implicit iorm
fi(z.y.z) = 0 of degree d < m?2.
Let g™(z.y,2) = Z74 4x= eixT'y?z¥, n < m?, with symbolic coefficients €ijk
be a general implicit form of degree n surface that contains the origin. Since
g*(z.y,z) = 0 is unique up to a constant factor. it has degrees of freedom p(n) =

((n+1)(n+2)(n+3))/6 =2.
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When substituting z(s, t),y(s,t) and z(s,t) into g*(z,y, z), we obtain

G™(p(s,t).q(s,t),r(s.t), w(s, L agsit)
g"(z(s,1),y(s,t), 2(s,t)) = - q((ui(s?t)gz el N (w(; c:))i

where G"(r,y, z,w) is the homogeneous form of g*(z,y, z), and the o;; are linear
combinations of e;;z. The local implicit approximation ¢g™(z,y, z) of the parametric
surface P(s, t) is computed as in the case of the curve approximation. The following
section shows a recursive derivation of a;; that obviates the need to explicitly

substitute.

2.2.1 A Recurrence for a;;

Let G*(z,y, z,w) and G*"!(z,y, z, w) denote the homogeneous polynomials of
g*(z,y,z) and g"}(z,y, z), respectively. Since
gM(2.y.2) =g 2y, 2) + D eguz'ylZ
i+)+k=n
we have

G*(z.y,z,w) = wG™" Y z,y, z,w) + Z eipz'y’ 2" (2.5)
i+j+k=n

We define (a(k))i;, (8(k))i; and (c(k));; by setting

m ) km ‘
(P(s, ) = (Y ays't)* = X (a(k));,s't?
t+1=1 )=k
and similarly for
km .
(q(svt))k = Z (b(k)),‘jstt"
+1=k
and k
(r(s,t)* = D (c(k))ys't!
1+)=k
Since

14 )=k
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as shown in (48], the (a(k)),; is recursively defined as

1 fk=1=j3=0
0 ifk=0andi+j2>1
(a(k))i; = ¢ , o
a;; 1fk=1a.ndz+]21
L Zk—l$p+q$i+j-l(a(k - 1)),,qa(,~_p)(j_q) lf k 2 2 and 1+J 2 k

(b(k))i; and (c(k))i; are defined analogously.
Recursive derivations for (a(k)),;, (b(k));; and (c(k));; can be found in [48].
Let af; and o' be the coefficient of s't’ in G™(p(s, t), ¢(s,t),r(s. t), w(s,t)) and

G™Y(p(s,t),q(s,t),r(s.t), w(s,t)), respectively. From (2.5), a® can be derived

)

from the o', where 1 <k <iand 1 << j, as shown in the following formula:

m(n—1)
af, = coefficient of s't’ in (w(s,t) Z a:x]_-ls.tj
1+3=1
T ehrm(p(s )5 (gls, )2 (r(s, 1))

ki+ka+ki=n

] J
-1
Y 2 ot dimt -t

Iy =1 =1

+ 2 D etk (@(K1))pygy (B(F2))pags (€(K3)) psgs

ky+ka+ks=n p1+pa+pr=s
q1+92+93=2

Note that a}] = €yp0di; + Cmob,'j + €001Ci;-
For an integral parametric surface P(s. t), since (a(k));; = 0.(b(k));; = 0 and

(c(k))ij=0fori+j<kandal =0fori+ ;> (n—1)m. we have

forl<i+j<n-—1,
n _ -1

1] = Ay

forn<i+ )< (n-1)m.

-1 , 3 .
a?] = a?] + Z Z ehkzks(a(kl ))qu(b(k2))pzq2(c(k3))p3q3
ky+ko+ki=n py+pr+p3=t
N +q92+93=J




for(n—1m <14+ ) < nm,

a:-‘j = Z Z Ck,k:k;(a(kl))qu(b(k2))mq:(c(k3))mqs

ky+ka+ka=n m+pr+pa=2
n+q2+q3=)

2.2.2 Derivation of the Method

2.2.2.1 Rank of the Linear System

Having derived o}, t+7 = 1,2,...,nm. for the degree n implicit approximation
9*(z,y,z), we write the system of linear equations afy = 0, o, = 0, o, =
0, af; = 0. ag, = 0. ..., a(nnm)O = 0. a(nnm—l)l =0, .... a?(nm—l) =0, ag(nm) =

0 in matrix form
An.e, =0 (2.6)

T is the vector of

where e, = (€100, €010, €001 €200, €110+ €101+ €020+ €011, €002+ - - - + €00n )
unknowns. A, so defined is of dimension ((nm+1)(nm+2))/2~1 by p(n)+1, and
has rank at most p(n) + 1. As in the curve case, the rank of A,,, is critical when
solving for the unknown coefficients e;;;. The following theorem characterizes the

rank of A .

Theorem 2.2 [fP(s,t) is a properly parameterized rational surface of total degree
m. then
N pin)y+1 ifn<d
p(n) ifn=d
where d (< m?) is the degree of the implicit form of P(s,t), n is the degree of the

rank(Am,) =

approzimant, and p(n) is the degree of freedom of the approrimant.

Proof: Similar to proofs of Lemma 2.2 and Lemma 2.3. n
As a result of Theorem 2.2, it is clear that the exact implicitization of P(s.t)

is the solution of A,men = 0. with one variable set to a tixed value.




2.2.2.2 The Algorithm

We compute the degree n implicit approximation g"(z,y, z) as follows: Let

Be, =0 (

®
=)
Nt

be the subsystem of (2.6) that consists of the first s equation of (2.6) such that B
has rank p(n). Augment the system (2.7) with a = 0, where a is determined as
follows: if the origin is a regular surface point, a is ejp0 — 1. €010 — 1. or ooz — 1
depending on the gradient of the surface at the origin. If the origin is a singular
surface point, then a = e;;; — 1 where the indices ¢,j, and k are selected by

inspection. Thus, a linear system

Ce,=b (:

o
o
_

is obtained. System (2.8) may be an inconsistent system. If this happens, some
equations must be removed from (2.8) to ensure the consistency.

One alternative for handling inconsistencies is that we replace a = 0 in (2.8)
with engo—1 = 0, egno—1 = 0, or €gon — 1 = 0 and then solve it as usual. Examples
show that ¢"(z,y, z) computed by this method can be of the form (ax +by+cz)" for
some a. b. c. that is, it degenerates to the tangent plane. To remove this degeneracy,

we do the following:

1. Solve for ¢!(r,y,z), and compute

S Bs't = (g'(z(s. 1) y(s, 1), (s, 1))

i+1=n

2. Consider the linear system that consists of the first s equations of (2.6) and
a=0.wherea=01se,0—1=0.¢€pm0—1=0, or egon — ! =0 and s is

chosen such that the coefficient matrix of the system has rank p(n).

3. Find a J3,, which is nonzero and augment the corresponding a,; = 0 to the

above system. then solve it.




(o]
[3%)

This computation of the local implicit approximation results in an approximant

that has roughly n*2-th order of contact. Thus, when raising the degree of the

approximant, the order of contact with the surface P(s, t) grows subquadratically.

Example 2.6 Consider

P(s,t) = (z(s,t)/w(s, t),y(s.t)/w(s, t), z(s, t)/w(s, t))

where

z(s,t) = —200¢* + 12st + 400t — 200s% — 10s
y(s,t) = 158 — 14st + 10t — 115 + 400s
z(s,t) = 200t* + 1lst —t + 200s% + 2s

w(s,t) = 100t* — 200t + 100s% + 200
We compute degree 2 and degree 3 local implicit approximations

g (r,y,z) =
—108.44294z% — 10.264638yz — 13.162097xz + 381.19047z

— 95.092836y% — 5.241114zy — 1.8509524y — 94.854762% + =

and

Plzy,z) =
1.30121262° + 5.16125y2% — 46.69081z2% — 103.818164 22
— 1.1158845y%z + 15.622598xy = + 4.518084yz
+ 1.267575z%z + 180.40466x= + 381.19047z — 3.6884814y3
— 48.00386zy® — 95.16589y% + 5.5613696z%y — 6.1573525zy
— 1.8809524y — 44.977395z° — 94.34699z% + ¢

Note that the normal of f*(r.y.z). the exact implicit form of P(s.t), at the

origin is almost parallel to z-axis. Thus. to show the performance of the local




Table 2.4 Maximal deviations between the intersection curves

li n : local implicit form of degree n. le n

: local explicit form of degree n.

degree | r=0.25 r=0.50 r=0.75 r=1.25 r=1.50 r=1.75
li 3 0.000000 | 0.000004 { 0.000035 | 0.000837 | 0.004964 | 0.019612
li 2 0.000289 | 0.002531 | 0.009630 | 0.066627

implicit approximation, we intersect the cylinder A(z,y,z) =

2+ yt-r? =90

with the surfaces f*, g%, and g°, and plot the intersection curves of f* = 0N h =
0,¢°=0Nh=0,and ¢ =0Nh =0 in one figure. Figures 2.9 and 2.10, show the
intersection curves in cylindrical coordinates. for r = 0.25,0.5,0.75,1.00, 1.25, 1.50.
and 1.75. Table 2.4 lists the maximal deviations between the intersection curves

ff=0Nh=0and¢g®=0Nh=0,and ff=0Nh=0and g>=0Nh=0. u

2.3 Remarks on Resultants

Different resultants are formulated in the classical literature for the purpose
of eliminating variables from systems of algebraic equations. Early expositions of
several formulations are found in Netto's book cited in the references. In essence.
resultants constitute a projection. A well-known problem of elimination based on
resultants is the possibility of obtaining extraneous factors. For example, when

implicitizing the parametric sphere

z(s,t) = (1=35=t))/(1 +s2+ %)

y(s,t) = 2t/(1 +s%+ %)

(s, t) = 2s/(1+s*+¢%)




Ny
in

evw

e 2

Figure2.9 f*=0NAhA=0and ¢ =0Nh =0




(r=1.75)

"
(]
(2
tn
(31

Figure 2.10 f*=0Nh=0and ¢>=0Nh =0

o
(1%




the Sylvester resultant yields

256(z + 1)*(z? + y* + 22 = 1)?
and the Dixon’s resultant yields

—64(z + 1) (22 + P + 22 = 1)

In each case, an extraneous factor z + 1, to some power, is present.

Technically, a resultant is based on formulating a system of linear equations
with symbolic coefficients. This is especially apparent in the derivation of Sylvesters
resultant. Macaulay recognized that extraneous factors technically are related to
dependent equations, and that they can be eliminated by division by a suitable
minor [47]. Modern work on the multivariate resultant tries to find this minor algo-
rithmically, i.e., to recognize and eliminate extraneous factors. See, e.g., (20, 13].
In our approach, a linear system is formulated numerically, hence dependencies
among the equations are easy to recognize. If the approximant is formulated with
the exact degree of the implicit form, then our approach determines the implicit
form without extraneous factors. If an approximant of higher degree is determined

with our approach, then a reducible implicit form with extraneous factors could

be generated.




3. LOCAL APPROXIMATIONS OF 2-D SURFACES

In solid modeling with curved surfaces. a number of desirable surface opera-
tions, including offsetting, spherical blending and the formation of Voronoi sur-
faces, raise difficult mathematical problems that must be solved in order to repre-
sent and interrogate the resulting surfaces. Such surfaces cannot be easily defined
in the conventional 3-D space. In contrast. they can be formulated mathemati-
cally, with the theory of envelopes, in higher dimensional space in a straightforward
manner. For example, given the surface iA(z,y,z) = 0. we formulate the r-offset
of h as the envelope of a family of spheres with radius » whose centers lie on the
surface A = 0. This formulation results in a system of four polynomial equations

in 6-D space. Such surfaces are generally 2-surfaces in R™, n > 3, and are defined

by

fl(l‘l,;rz,....ln) = 0

fg(l'l,l'z,.. . ,.I,‘,,) = O

fac2{21, 220 2) = 0
where the f; are polynomials or in matrix form as F(x) = 0. Although the exact

closed-form representation of such a surface

flz1,22,23) =0 (3.2)

could be derived in principle by elimination methods such as Grobner basis or
resultant techniques, it is often not feasible to do so in practice due to the high
complexity of these methods.

For surface representations in hizh-iimensional space to be practical. good

algorithms for some basic operatiuns have ro Le developed. Among them. as
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mentioned in [32], are locating points on surface intersections, tracing surface in-
tersections, and local surface approximations. It is our objective here, for a given
surface representation F(x) = O and a regular point x° = (29, 12,...,2%) on it. to
develop computational schemes for the local geometry of f(z,,z,,z3) =0 and to
investigate approximation schemes which derive a surface of lower degree that ap-
proximates the given surface locally at X° = (2,22, 29) in (z,, 22, z3)-space. These
techniques will be of practical interest if they are efficient and can be incorporated
into algorithms for surface interrogation such as computing surface intersections.

In this chapter, we proceed as follows: Section 1 presents techniques that de-
scribe the local geometry of f(z1,z2,z3) = 0. Section 2 presents an algorithm that
computes degree two implicit approximants of f(z,,z;,z3) = 0 without actually
computing f. Section 3 describes the computations for local explicit approximants
to f(z,,z2,z3) = 0. In section 4, we derive a procedure for computing parametric

approximants.

3.1 Local Geometry of tlhie Projected Surface

For a given 2-surface S¢ in R™ and a regular surface point x°. we first derive
some schemes that determine the normal vector and tangent vectors of S; at a
regular projected point X° from the normals and tangen:s of 5¢ at x°. We then
derive an algorithm to compute the normal curvature of surface Sy at X° in a
tangent direction Vv, which requires only the information provided by F(x) = 0 at
x°.

In the following, we assume that the surface point x° and its projection x° are
nonsingular. Let Ty (SF) denote the affine tangent space to Sg at x°, that is, the
set of all tangent vectors to surface S at x°. It is evident that Txo(SF) is the null

space of DF(x%) h = 0. and that Tyxo(SF) is a vector space of dimension 2 since

DF(x°) has rank n — 2. Note that at nonsingular surface points the tangent space
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of the surface S, at X°, denoted as Txo(Sy), has the same dimension as Tyo(SF) .
That is, the dimensionality of the tangent space is then invariant under projection.

A vector n is a normal to surface Sr at X% if n- h = 0 for every h € Tyo(Sr).
The normal vectors form a vector space of dimension n — 2. Since DF(x°) has
maximal rank n — 2, the gradient vectors V£, (x%),..., Vfa-2(x°) form a basis for
the normal vector space of surface S at x°. Thus any linear combination of the
gradients vectors is a vector in the normal space. Note that the normal space of

surface S at a nonsingular surface point is of dimension 1.

3.1.1 Normal Vector

One may expect that computing the normal vector of the projected surface 5,
at point X° = (z9, 2, z3) from the DF(x°) is as complex as the elimination process
from F(x) =0 to f(z;,z2,z3) = 0. Indeed, it is true unless we approach the
computation differently. Instead of considering the global surface Sg, we consider
its tangent space at x° and the tangent plane of S; at X°. The tangent space of

Sr at x° is the null space of
DF(x°) (x-x°) =0 (3.3)
from which the equation of the tangent plane of Sy at X°
Az, + Bz, +Cz3+ D =0 (3.4)

can be obtained by linear algebra techniques such as Gaussian elimination [43].
Considering the elimination process, we obtain the following algorithm for com-

puting the normal vector of S; at point X%
Algorithm 3.1

1. Consider C = :1___—12 a,Vf,(x°). where component C, of C is a the linear

combination of the unknowns a;. : =1, ....n - 2.
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2. Solve the linear system
Ca=0, Cs=0, ..., Cn=0

which is of dimension (n — 3) x (n — 2) and has one degree of freedom.

3. Let (G4, aa,...,&n-2) be a solution of the above system and C be the corre-
sponding C in step 1. Then the first three components of C are the normal

vector of Sy at the regular point X°.

Theorem 3.1 Algorithm 3.1 computes the normal vector of the projected surface

Sy at X° = (29,29, 23) if X° is a nonsingular point on S;.

Proof: Let [ be the ideal generated by the system (3.3). Then

n—-2

C(x) = Z a; Vfi(x%)(x - x°)

lies in the ideal /. Since (3.3) is a linear system, and the tangent plane (3.4) of
Sy at X° can be obtained by eliminating the variables z,, zs, ..., z,, step 2 of the
algorithm is the elimination of the variables z4,zs,...,z,. Therefore, the C(x)
with the computed coefficients (&1, &z, ..., &n-2) is in I N K{zy, 2, z3). Hence the
vector consisting of the first three components of C is the gradient of C(x) which
is the normal vector of S; at X° corresponding to the normal space of Sp at x°. @

Note that this computation is valid only when X° is nonsingular. Suppose the
computation is valid at the singular point X°. Then the matrix after applying
Gaussian elimination to DF(x°) will not have maximal rank. which contradicts to

the nonsingularity assumption of x°.

3.1.2 Tangent Vectors

Since the affine tangent space Txo(SF) of N¢ at a nonsingular surface point x°
has dimension two and is the null space of ['Fix’s h = 0. we let h, and h, be

a basis of Txs(SF). The following theorem -nows thiat the corresponding basis of
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Txo(S}) are the natural projections of h, and h,, denoted as h, and h, respectively,

provided that h, and h; are linearly irdependent.

Theorem 3.2 If h; and h, are the natural projections of hy and h,, respectively,

into (T, Ty, Z3)-space and are linearly independent, then h, and h, form a basis of

Tyo(S)).

Proof: Since DF(x°) has maximal rank n — 2, its row-echelon normal form is

A B CO0O0O©O0 ---0
x X x = 0 0 --- 0
X X X x = 0 -+ 0
| X X X X X X - %

where A, B, and C are coefficients of linear terms in (3.4), *’s are nonzero numbers
and the x’s represent numbers that may or may not be zero. Since h; and h, form

a basis of Tyxo(SF) h; and h, are linearly independent and satisfy
(4,B,C,0,0,0,---.0h=0

Thus ﬁl and l:lz satisfy
[A.B.C]h=0
Furthermore, h; and h; are linearly independent. Hence h; and h, form a basis

of Tgo(S,). B

For a given tangent h to Sr at a nonsingular surface point x° the tangent to

St at X° is the natural projection of h assuming x° is nonsingular.
Example 3.1 Consider the general parametric surface

I = hl(s,t)
y = hafs.t)

o= hy(s.t)
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and a surface point (2% 3% 2%) = (A(s% %), hy(s°, 2°), h3(s%,%)). In five dimen-

sional space, we write the surface as

fl(-":»y»Z,S,t) = J:-—hl(s,t) = 0
fa(z,y,2,8,t) = y—has,t) = 0
f3(z, Y, 2, S, t) = Z- h3(3, t) = 0

with surface point x° = (2% y°, 2% 3%, t°). The gradients of the f; are
Vfl(Iov yO’ 20’ 307 to) = (lv 0’ 0~ hl.sa hl.t)

vf2(zo» yO’ ZO’ 30’ to) = (0» 19 Ov h2..n h’Z,t)
Vf3(x°, yov :O~ 30~ to) = (07 0‘ 1, h3..n h3.t)

where h;, and h,, are partial derivatives of h; with respect to s and ¢ respectively
and evaluated at (s°,¢%).

The linear system

C4 = alhl.a+02h2.s+a3h3.a = 0
Cs = ohig+ahyi+azhs, = 0

has a solution
(&, G, ds) = (hhhat - h2:h3u hlth&s - huh:u. huhzt - hlth2s)

which is (hy,, hos, h3s) X (R1e, A2y hae). Thus, the corresponding C as defined in the

algorithm is (&, a3, G3,0,0) and (&, &,, &3) is the normal vector of the surface at
(£%.9°, =9).

The DF(x°) h = 0 has the general solution
At( gy hasy 3y =1.0) + A(hyy, by, h3y, 0, —1)
Thus the basis vectors of the affine tangent space are

hl = (hls‘h’l!\h.'}a' —10) and h2 = (hltv /)"Zt\ h3t~0- —1)
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and their projections into (zy, z2, z3)-space
By = (his, hagy hay) and hy = (hus, Aoty hai)
form the basis of the corresponding tangent space in (z.y, z)-space. =

Example 3.2 Consider the implicit surface g(z,y,z) = 0 and its offset given
in Example 1.1. DF(x°) of (1.4) at surface point x° = (z°y°, 2% u® % w°) =

(0,0,4,0,0,2) is

004 0 0 —4]
000 0 0 4
200 —-10 0 0
(020 0 -4 0

The linear system with oy, a3, a3, a4 as unknowns is

C4 = —1003 = 0
Cs = —404 =0
Cs = 4aq — 401 = 0

and has a solution (&, &2, &3, &4) = (1,1,0,0). Hence the corresponding C in the
algorithm is (0,0, 4,0,0,0) in which (0,0, 4) is the normal vector at (r°,y°, z9).
The general solution of DF(x°) h = 0 is A,h; + A;h, where

h, = (1.0.0.1/5.0.0)

and

h, =(0,2,0.0,1,0)
serve as the basis of the affine tangent space. By natura! projection.
h, = (1.0,0)

and
h, = (0.2.0)

are the basis vectors of the corresponding tangent space in (z.y. z)-space. ]
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3.1.3 Normal Curvature

For a 2-surface in R3, formulae for computing the normal curvature of the sur-
face along a tangent direction at a surface point can be found in most differential
geometry books. However, we wish to compute the normal curvature of the pro-
jected surface Sy, in (z, 22, z3)-space, from a given 2-surface F(x) = 0 in R". [t
is clear that one could first determine the local explicitization or local parameter-
ization (both are in (z,, 23, z3)-space), discussed later in subsequent sections, and
then apply the standard formulae. In this section, we describe a method that di-
rectly computes the normal curvature of the surface Sy from the high-dimensional

surface representation F(x) = 0. without constructing a local approximant first.

3.1.3.1 The Normal Curvature of Hypersurface in R*

Let g(zy,22,...,Zn) = 0 be a hypersurface in R and let S, represent the zero
set of ¢ = 0. For p € S, and v € T(S,), and a normal vector field N on §,, we
defi. e the linear map L : T,(S,) — Tp(S,) as

L,(v) = =V,.N = —(N 0 3)"(0)

whced: [ — 5, is any parametrized curve on S, with 3(0) = p and 3(0) = v. and
(.V e 3)(t) = V(B(t)). The definition makes sense since the directional derivative
VvV is tangent to S,. L, is usually called the Weingarten map or shape operator
of -, at p, see, e.g., {50, 66]. The generalization of Meusnier’s theorem to high
dime~nsions states that 3(0) - V(p) is invariant for all parameterized curves 3 on

S, -ith 3(0) = p and 3(0) = v.

Lemma 3.1 (Meusnier) Let 3 be a parameterized curve on the hypersurface g

in R™ with 3(0) = p and 3(0) = v. Then
Ly(v) v = 3(0)- N(p)

where N is a normal vector field on S,.
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If N is the unit normal vector field on 5, and v is a unit tangent vector of S,

at p, the normal curvature k,(v) of 5, at p in the direction v is defined as
ko(v) = Lp(v) - v

The computation of Ly(v) - v can be conducted according to the following

lemma:

Lemma 3.2 Let N = Vg, H, be the Hessian matriz of g at p, and v be a tangent
vector of g at p. Then

L,(v)-v=—-vIHyv

Moreover, when v is a unit tangent

1
k = ——UL (v) v
) = gt )
Proof:
Ly(v)-v = =V ,N.v

= =V ,Vg-v

_ dg dg dg

= —(vVgx—l,var—z....,vVaxn \"2

-

= -[V(%)(p)-qu(%)(p)-v : V(%)(p)-\f]-v

n 82 . n 82 n 82
= - {Z 3—.—9—(11)11;,2 g-a‘%(p)v,-,.... g (p)v‘} Cv

o O0r,0z,

According to Meusnier's Theorem. when v is a unit tangent we have

: N(p)
k,(v) = 3(0) rm——
o Vet
where 3 is a parameterized curve on S, with J(0) = p and 3(0) = v. Thus
1
k,(v) = ——L,(v) Vv
) = =)
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3.1.3.2 The Normal Curvature of Projected 2-D Surface in R?

For a 2-surface Sr in R™ and its projected 2-surface Sy in (z1, 23, 3)-space, we
intend to compute the normal curvature of Sy in a given tangent direction directly
from F(x) = 0 without computing f.

Let X° € S; and v € Txo(Sy) be the projections of x° € Sg and v € Txo(SF),
respectively, into (z1, z;, z3)-space. In addition, let /V; be the normal vector field
on f; = 0. Since x® € Sg and v is a tangent to S¢ at x% x° is a surface point of
fi =0 and v is a tangent vector to f; = 0 at x® fori =1,2,...,n — 2.

Let ay, ..., an_; be real numbers such that 322 a,.V;(x°) = (4, B,C,0,....0),
where Az+ By+Cz+D = 0is the tangent plane of f = 0 at X%, i.e., (A, B.C) is the
normal vector of S; at X°. In the following, we will show that the Lio(v)-v. where
Lio(v) = =Vy.V,, fori = 1,....n—2, and the linear combination 37 ai( Lia(V)-
v) play an important role in computing the normal curvature of f(z;,z;,z3) = 0.

Consider any curve 3(t) = (3y(t),....3a(t)) on S¢ with 3(0) = x° and 3(0) =
v. Then 3 is a surface curveon f; = 0 as well, for: = 1.2.....n—2. By Meusnier’s

theorem we have

wo(Vv) - v =<3(0), Vi (x%)> (3.5)

Hence

n—-2 n=2 .
Y a(Lin(v)-v) = 3 a; <3(0). V,(x%)>
1=1 =1
n_z =
= 3 <3(0).aiV(x%)>

=1

n-2
= <3(0), Z at"vl(xo)>

=1

= <3(0).(4.B.C.0,....0)>
= <(3,(0). 32(0), 33(0)),(A. B.C)> (3.6)

where ( 3,(t), 3;(t)..33(¢)) is the projected curve of J on 5y with
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and (A, B,C) is a normal vector of Sy at X°. Notice that (A4, B,C) and v may
not be a unit normal and a unit tangent, respectively, to Sy at X°. For the right
hand side of (3.6) to represent the normal curvature of Sy, both the normal vector
(A,B,C) of Sy at x° and (5,(0), 32(0), B3(0)) must be unit vectors. Thus. when 3
is a curve such that (/31(0), BQ(O),B:}(O)) 15 a unit vector, according to Meusnier’s
theorem. the right hand side of (3.6) divided by the length of (A, B,C) is the
normal curvature of S; at X° in the direction (/91(0), 32(0),ﬁ3(0)). Hence, the left
hand side of (3.6) divided by [|(A4, B,C)|| is the normal curvature of S; at X° in
the direction of ¥, provided that V is a unit tangent. Notice that the equality in
(3.5) is valid for a non-unit normal vector field N; and any tangent vector v. We

summarize this fact as follows:

Theorem 3.3 Let N, = Vf, 1 =1,2,....n -2 and let a;,...,an_, be numbers
such that 75 a,N(x°) = (A, B,C.0,....0), where (4, B,C) is the normal of S;
at X°. Also let v be a tangent vector of Sr at X° such that v is a unit tangent to

Sy at X°. Then
1 n—2

(A B.CY| > ai(Lyo(v) - v)

=1

is the normal curvature of Sy at X° in the ¥ direction.
The theorem and its proof suggest to us two computation schemes:
Algorithm 3.2

1. Determine v such that v is unit.

[ S

Derive 3(t) = (F,(t),....3.(t)) on SF such that 3(0) = x° and 3(0) = V.
3. Compute (3,(0), 3,(0), 33(0)).

4. Compute (4,B.C.0...., 0) = ¥ a,.V,(x%) for some ay,. .., a,_; and nor-

etz ]

malize (A. B.C) to (A, B.C) with unit length.

Compute <(3;(0). 32(0). 30 LB

()
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Algorithm 3.2 is conceptually very simple, however, the computation of the 3 on
a 2-surface S is nontrivial.

Note that, as shown in Lemma 3.2, Lis(v) - v = —vTH; v, where H; is the
Hessian of the hypersurface f; at x°. Moreover, because of the bilinearity of the
form vI H; v, we have

n—=2 n=2 n=2
3 ai(Lio(v) - v) = 3 ai(=vTHiv) = =vI(3 aiHi)v
=1 i=1 i=1
In the following, we state an algorithm that is well suited to computing the normal

curvature of Sy at X° in different tangent directions.
Algorithm 3.3

1. Compute V; = Vf;,for1=1,2,....,n - 2.

2. Compute ay, ..., an-2 such that 372 a; V,(x°) = (A4, B.C.0....,0), where

=1

(A, B,C) is the normal of Sy at X°.
3. Compute Hy = L0122 o H;, where H; is the Hessian of f; at x°.
4. Adjust v such that Vv is a unit tangent to Sy at x°.

The normal curvature of Sy at X° in the v direction is

[$}]

-1

—  vTy
AB.oy. oV

Let L;o be the shape operator of the closed form f(z,,z;,z3) =0 at X°. Due

to Meusnier’s theorem, from (3.6) we obtain a formula for computing L;.(o(\‘/) V.

Theorem 3.4 Let N; = Vf,, 1 =1.2,....n —2 and let a,,....an_; be numbers
such that 3722 a;Ni(x°) = (A, B,C,0.....0), where (A, B.C) is the normal of S,
at X°. Also let v be a tangent vector of S at x°. Then

n—=2

L‘{.(o(f/) v =3 aaLis(v)-v)

=1
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Example 3.3 Consider the implicit surface g(z,y,z) = 0 and its offset given
in Example 1.1. Let N; be the gradient for the :-th polynomial f;, 1 = 1,2.3,4,
x° = (29,99, 2%, u%, v°, w®) = (0,0,4,0,0,2), and v = (0,1,0,0,1/2,0) be a tangent
vector at x°. In Example 3.2, we have computed (ay, as, a3, as) = (1,1,0,0) such
that )
(0,0,4,0,0,0) = >_ aVi(x%)
i=1

Now, we compute Hy = ¥i_, a;H; and obtain

2 0 0 -2 0 0
0 2 0 0 =2 0
0 0 2 0 0 =2
Ho=
-2 0 0 10 0 O
0o -2 0 0 4+ 0
0 0 -2 0 0 4 |
Thus,
-1

—  vTH . v=-1/4
ORI /

which is expected to be the normal curvature of Sy at {0,0,4) in the direction
of (0,1,0). Intersecting the projected surface with the plane that goes through
(0,0.4) and is spanned by the normal (0.0, 4) and tangent (0.1.0), we find that
the normal section is a circle of radius 4 and has normal curvature —1/4 at (0.0, 4)

in the direction of (0, 1,0), which verifies the result. u

Example 3.4 Consider the Voronoi surface of g and ~ in Example 1.2. Let .V, be

the gradient for ¢-th polynomial f;, t = 1,2....,8, and let
x® = (z°% y°, 2% u® 0 w®, @l #°, w°,r% = (0,0.0.0.0,1,0.0,-1.1)
and v ={0,1.0,0.1.0.0.1/2.0.0) be a tangent vector at x°. We find

(CX].QQ ..... a,;)=(1.1.0.0.—1.—1.0.0)




such that

(0 0 0 -2 0 0 2 0 0 0]
0 0 0 0 -2 0 0 2 0 0
0 0 0 0 0 -2 0 0 2 0
2 0 0 4 0 0 0 0 0 0
go] 0 20 0 2 0 0 0 00
0 0 -2 0 0 4+ 0 0 0 0
2 0 0 0 0 0 -2 0 0 0
0 2 0 0 0 0 0 -4 0 0
5 0 2 0 0 0 0 0 —40
0 0 0 0 0 0 0 0 0 0]
Thus,
-1
mVTHQV =1/4

which is expected to be the normal curvature of Sy at (0,0,0) in the direction
of (0,1,0). As shown in Example 1.2, the even Voronoi surface of g and A is
® — y* — 8z which does have normal curvature 1/4 at (0,0,0) in the direction

i0.1.0). n

3.2 Degree Two Implicit Approximation

Our task here is to derive a degree tv-o implicit approximant of Sy in (zy, z,, T3)-
space for the given F(x) = 0 and a surface point x°. \We require that the approx-
imant has the same normal direction as 5, at X" and that its normal curvatures
agree with those of S; in all tangent directious at X”. The constraint on curvature
agreement in all directions is difficuit to reaiuize straightforwardly. However. using
rhe following Three Tungents Theorem (32", e are aiie to formulate the constraint

easily.
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Theorem 3.5 (Three Tangents Theorem) Two surfaces with common normal
direction at a surface point have the same normal curvatures in every tangent di-
rection if and only if their normal curvatures agree in three tangent directions of

which any two are linearly independent.

Applying this theorem, the constraints above can be translated into a system
of seven equations, some linear and some nonlinear. The nonlinear equations stem
from the normalization of the normal vector of the approximan.i in the normal cur-
vature computation. Using Lemma 3.2 to rephrase the Three Tangents Theorem.

however, results in a system of linear equations which enforce the constraints.

Corollary 3.1 Two surfaces with identical normal vector at a surface point p have
the same normal curvatures in every tangent direction if and only if values of their

L,(v)-v agree in three tangent directions of which any two are linearly independent.

Let ¢%(zy,z2,23) = Z?+j+k=0 a;jxTi 252X be a generic degree two polynomial
with the symbolic coefficients a;;x. Suppose v, v2 and v3 are tangents to Sg at x°
with the property that any pair of their projections, ¥;, ¥, and V3 respectively, in
(zy, 2, 3)-space is linearly independent. We translate the constraints to a linear

system as follows:

2. Vg*(x°) = (A, B,C), where (A, B.C) is the normal vector of S; at X° com-
puted using Algorithm 3.1.

3. For:=1,2,3,

({,l) -V

LY, (v,) v, =L/
XO( x) xO
where L:.(o(\A’,') v = ——\“QTH:,\?,- and Li.c (v,) - v; is computed according to

Theorem 3.4.

This formulation results in 7 linear equations in 10 variables. Since g°(ry.r;.13) =

0 and vg%1z,.2,,23) = 0. where ~ = 0. represent the same surface, g*(z;.z,, ;)




has 9 coefficients on which the surface depends. Thus. we can adjoin to the linear

system the additional equation

a,-jk—1=0

for some 0 < i+ j; + k < 2, and obtain a 8 x 10 linear system from which the

coeficients of ¢g* can be computed with two degrees of freedom. We give the

algorithm as follows:

Algorithm 3.4

L.

o

. . 2
Form a generic polynomial ¢*(z,.z;,13) = Litjek=0 kL 2325, where the

a;; are symbolic coeflicients.

Compute aq,...,a@,_; such that ::12 a; Vi(x%) = (A, B,C.0..... 0), where
(A.B.C) is the normal of S; at Xx°.

n-2
=1

Compute Ho = a,H;, where H, is the Hessian of f; at x°.

Derive three tangent vectors vy, v, and V3 to Sr at x° such that any pair of
their projections. vy, Vv, and V; respectively, in (zy, z,, z3)-space is linearly

independent.

Let V(X% = (g2, (X%). g2,(X%), g7, (%))

. Form the following linear system:

a;x—1 = 0, forsome 0 < i+ j+ k<2




‘A/‘ZTHQ\./g - VgHo Vq, = 0

{/g-Hgi’g - VgHo V3 = 0
8. Solve the above system for the coefficients of g°.

Example 3.5 Consider the implicit surface g(zr,y,z) = 0 and its offset given
in Example 1.1. Let x° = (z° 3%, 2% u% v° w%) = (0,0,4,0,0,2), and let v, =
(1,2,0,1/5,1,0), v» = (1,1,0,1/5,1/2,0), v3 = (2,3,0,2/5.3/2,0) be three tan-
gents at x°. Note that any pair of their projections is linearly independent. Let
3 (z1,72,73) = Thj4k=0 aijxziTiz% be a generic degree two polynomial with the

symbolic coeflicients a;;,. We form the following linear system:

16agoz + 4aoo1 +ao0 = 0

da100 + @10 = 0

4ao11 + doro = 0

Sapez +agm —4 = 0

—2a200 — 2a110 — 3020 — 2a110+28/5 = 0
—2a,00 — 2ay10 — 2a020 + 13/5 = 0

—8aq00 — 6a;10 — 6a110 — 18ag + 77/5 = 0

When aggp — | = 0 is added to the system, for the unknown coefficients
(@000, @100, @010, G001, 2200, @110, G101, G020, G011, G002)
we obtain the general solution
(1, —da, —43.-9/2,4/5,0. . 1/2,3,17/16)
With a = 3 =1, we have

)
M

) (I.y.2)=l—43_4!/_




3.3 Local Explicit Approximation

The implicit function theorem ensures that system (3.1) d=termines n — 2 com-
ponents of x as functions of the remaining 2 components in a neighborhood of any
surface point x° at which DF(x°) has rank n — 2. Since DF(x°) has maximal
rank n — 2, some set of n — 2 columns of its matrix is linearly independent. In
the following, without loss of generality, we assume that the last n - 2 columns
are linearly independent, and hence the determinant of the Jacobian matrix of
f1, f2y -+ fa—2 With respect to z3,z4,..., I,, denoted as |JF{x®)|, is nonzero. The
implicit function theorem guarantees that there exists a neighborhood V of x°. an
open set U C E? containing (z9,z3), and a mapping ¥ = (13, ¥4, ....w,) defined
on U such that [JF(x)|#0forall xe V,and for1 <i <n -2,

fl(Ile2vw3(219I2)a"'*wn(xlv-rZ))=0 (3.7)

for all (z,,z2) € U. Let y; be defined as

vilz1.z2) = 3. b)zizh (3.8)

J+%520

and f,(z,,z,) denote f,(ry, T2, ws(Z1, Z2),. ... wa(Z1, T2)).

[t is clear that. in (z,, 7, z3)-space. 3 = w3(z,, I2) represents the local explicit
approximation of the projected surface (3.2) at (z7, 29, z3), and might be called a
local ezplicitization of the surface. The local explicitization of an implicit surface
g(z1,z2.z3) = 0 has been considered in [43].

The unknown coefficients of ¥; can be calculated from the chain rule with a

witu respect to r, and r, are identically zero, a linear system with unknown
coeflicients of degree k terms is obtained. It is structurally very simple. However.
the direct application of the chain rule resuits in a formula which is algebraically
tedious. In the following. we develop a recursive formulation which presents the

computation in a more suitable manner.



ot

When we assume that x® = {0,0,....0) is the origin, the constant terms of

. . Fldh
fis ag}) _____ o, and the constant term of ¥, bgg, are both zero and the partials —_;1{, P
1 2

evaluated at (0,0) and divided by i! and j! are the coefficients of I{x’z‘ in fi(z1, I3).
With this property, a recursive formula is derived as follows.
Let matrix A be the Jacobian matrix of fi,,..., fa_; with respect to zs, ..., z,

evaluated at x°, i.e.

(1) 1)
20010..0 " " * a(()o...ox

A =JF(°) =

(n-2)  (n=2)
20010...0 * * * 200...01

We also define (di(j))w as in [43], which is the coefficient of 5z}, in (¥i(z1, 12))7,

that is,

(wi(ry, 22)) = Z (di(j)) i)

k4i>5
Analogous to the recursive derivation for (a(k));; in Section 2.2.1, the (di(j))u can

be recursively defined as

1 fj=k=10=0
, 0 if j=0and k+1>1
(di(7))kt = 0
bkl 1f]=1andk+121
T o1gpragiri=i(dili = 1)pabipy_g 17 22 and k+12

The formula for computing bg'k), where j+ A >1and i =3.4,....n, is:

Forj+ k=1 i ]
8] | —altho
A _ )
| | e |
and - 5
F 'I’:):) -’ —‘lvl)l&)...u

Al =

=2}

L Ty




Forj+k2>2
(3) (1)
ka Tk
A = :
(n) (n=2)
b]: er
where
() _ (1
Jk = JkO .0
j+k-1 ka+ls ka+in ‘)
+ Z Z Z Z Qji52.0n d3(]3))k313 e (dn(.]n))k..l,.
71422=0k3+ - +knsj~y J3=0 n=0

3+ dinmh—)y

B+t In22-n-n

Example 3.6 Consider the surface ¢ = 0 and its offset given in Example 1.1 and

0 w% =(0,0,4,0,0,2). First of all. we have

the surface point x° = (2% 3%, 2% 4% v

to translate x° to the origin, and as the result, system (1.4) becomes

A A

2 _2r 4+ — vy 4+t —ur+ WP+ P+ Ui+ 4z -4 = 0
w+vi+dui+dw = 0
—duz+wr+3uw+2r—-10u = 0
—vz+wy 2y—4v = 0
which has the Jacobian matrix A with respect to z,u,v,w and evaluated at

(0,0,0.0.0,0),

- -

10 0 -4
0 0 0 4
A=
0 -10 0 0
(0 0 -4 0 |

Solving two linear systems. we have coefficients for linear terms
(6,689 81D 6%y = (0,1/5.0,0)
(65, 650 b b)) = (0,0.1/2,0)

For j + k = 2, we have

(=rlD _pB A 0 o (21,0,0.0)

1 (2 1 i N
(= "(u)s—'rn)'-'"n)-""n' = (0,0.0.0)

1 P2 ) :
(=it = =l —r V0 = (=1.0..0.0)




and have coefficients

(630 859, b3 bi0) = (=1/4,0,0.0)

(b1, 617, 617, 87) = (0,0,0,0)

(652 86,862, 063 ) = (—1/4.0.0.0)
Thus, z = —(z? + y?)/4 and after the reverse translation z = 4 ~ (% 4+ y?)/4 is the
degree 2 local explicitization of the surface at (0,0, 4,0,0, 2). ]

3.4 Local Parametric Approximation

[n (14], a Taylor approximant of the intersection curve of two implicit surfaces
is constructed which serves as the local parametrization of the intersection curve.
We generalize this method to our problem domain.

For a given system of equations (3.1) and a point X° on it, we seek a paramet-

rically described solution
O(u,v) = (d1(u,v), $2(u,v),. .., 0a(u,v)) with $(0,0) = x° (3.9)

in the neighborhood V of x°. Solution (3.9) is basically a local parametrization of

the surface represented by (3.1) at point x°. The three coordinate functions
= o(u.v). I = o2(u.v), I3 = o3(u,v)

define a local parametrization of the projected surface (3.2) in (z,, I;,x3)-space.
When the hypersurfaces f; intersect transversally and are not singular in the
vicinity of x° such a parametrically defined solution exists. In the neighborhood

of x°. V. the surfaces are hence defined as the solution of
filu.v) = flor(u.v). o2(u.v).. ... Onlu.v)) =0, i=1.2,....n=2. (3.10)

The Taylor expansion of f,(u. v) in power of u and v is

: o Of,  Af _uwl@f, Df. oS,
flu.vy = f,(0.0)-o-u{—);;——- P f-uL()l_dv*?_alT.,....




af; 0o; df: 00,
f,(2(0.0) +“(Zaz,au) (Zax,av)
u 0% 06;)\ 0ok af; %o
?g{[(g Oz;0z, t)u) au} + Oz, Ju? }+

= f(®(0.0)) + uVfi(x°) - $,(0,0) + vVf,(x°) - ,(0.0)

+ E.,i[fo(X°) - Puu(0,0) + 24(0,0) - Hy, - $,(0,0)]
+ U.‘U[Vf,-(xo) : ®uv(0»0) + ‘DU(O,O) : Hf' . (DH(O.O)]

2
+ Z{TA(x) - 0,0(0,0) + 8,(0,0) - H, - 6,(0.0)]

b (3.11)

where Hy,, the Hessian of f,, and all the derivatives of f, are evaluated at x°. and
all the derivatives of f} and ¢, are evaluated at (0, 0).

In equation (3.10). the coefficient of each monomial u/v* must vanish. so by
requiring the coefficient of u’v* be zero for 1 < j + k& < m. a truncated local
parametrization of degree m can be derived. This amounts to solving the following

series of linear systems
V(X% @,,(0,0) = B, i=1.2..... n—2 (3.12)

where 1 < j +k < m. €,,,(0.0) = (Z55%(0, 0))

SWET . and the B(k are

=1.2.....n
expressions of partial derivatives of f, and lower degree partial derivatives of o,.

for example.

Bl =0 (3.13)
BY = o0 (3.14)
BlY = —=®,(0.0)- H,  $.(0.0) (3.15)
By = —®,0.01- ., $,0.0) (3.16)
BlY = —&.0.0 . b (0.0 (3.17)
Note that the B“:L" can be recursively defined 0 x7 o~ “he onain 0., ... 0). in analogy

to Section 3.3.
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The system (3.12) is a (n — 2) x n system. Since we assume that DF(x°) has
rank n — 2, the solution of this system can be written as the linear combination
of ty,ty, VA(X®),..., Vfao2(x?), where t; and t, form a unit vector base of the

tangent space at x°, that is,
®,,,4(0,0) = &'ty + Pty + BRVARD) + -+ + 857IVfa(x%)  (3.18)

Substituting into (3.12) yields

Zﬂ“) (x°) - VA(x°) =By, i=1,2,....n-2. (3.19)

from which the unique solution, B},t), ,3("-2)

, can be derived. Hence, the ex-
pression (3.18) with ag}c) and agi) arbitrarily selected is the general solution of the

system (3.12). The suitable values for aﬁ) and 0‘5? are chosen as follows:
1. For systems (3.13) and (3.14), we have
I Y
We assign a( ) = 1 and a( ) = 0 for (3.13) and a“) = 0 and a( ) =1

for (3.14) so that the isoparametric curves ®((u,0)) and ®((0,v)) iutersect

transversally at point x°.
2. For systems (3.13), (3.16) and (3.17), we assign af,}‘) = af.i) =0.
Note that the three coordinate functions
r; = o (u,v), T2 = 0x(u,v). 3= 03(u,v)

obtained in this way define a local parametrization of the surface (3.2) in (z,.r,. r3)-
space.

To compute the solution of system (3.12) with a numerically stable method.
we consider singular value decomposition. see e.g., [29]. The matrix (DF(x°))T
factored as

(DF(x°NT = 'Syt
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where U = [uy,...,u,] € R*™*" and V = [vq,..., Va_g] € R("=I%(n=2) 3re orthog-
onal matrices, and £ € R™ ("2 is a diagonal matrix. With direct substitution of

the factorization, system (3.12) becomes
vETUT®,,+(0,0) = B
where B = [B;:), cees B("—z)]T Its solution can be generally written as
D, (0,0) = mus + 2u2 + -+ + Ynln

and because the rank of the differential matrixis n—2, £;; # 0for: = 1,2,...,n=2

and thus the 7;,...,vn—2 are uniquely determined by
v = (vIB)/Z.

and vn_; anc v, are arbitrary. Here u;, us,....u._; span the range of ( DF(x°))7,
hence span the same space as the gradients. Note also that the null space of DF(x°)
spanned by u,_, and u,. Thus we obtain ¢,(0,0) = u,_; and ¢,(0,0) = u,. For
®,2(0,0),9,,(0,0), and ,2(0,0), we let v,y = v, = 0.

Example 3.7 Consider the surface ¢ = 0 and its offset given in Example 1.1

and the surface point x° = (z° y% 2% u® v% w®) = (0.0,4.0.0.2). It is clear that

$(0.0) = (0.0.4.0,0,2), ¢,(0,0) = t; and $,(0,0) = t,, wheret, = (3/v26.0.0.1/v26.0.0.
and t, = (0.2/v3,0.0,1/v/3,0). By applying formula (3.19), we have

(B, 342, 30, 3%9) = (—5/52,-3/26.0,0)
(3D 39 3% 3y = (0,0,0,0)
(3, 32 33 339y = (~1/20.-3/40.0.0)
Thus. from formula (3.18). it follows that
®,2(0.0) = (0.0.-5/13.0.0.—~1/13)

$,.(0.0) (0.0.0.0.0.0)
$,2(0.0) (0.0.-1/5.0.0.-1/10)




Consequently, we have

(Dl(s’t) = m‘s
¢2(S,t) = 723t

o3(s, t) = 4-— ;‘—652 - st?

as the local parametric approximant of degree 2 in (z,, z,, z3)-space.




4. PIECEWISE APPROXIMATIONS OF 2-D SURFACES

Implicit surfaces have recently become more important in CAGD and solid
modeling. In part, implicit surfaces have specific advantages over the traditional
parametric surfaces. For example, many complex objects can be modeled more
easily using implicit surfaces, and certain geometric operations, e.g., membership
classification problem, can be handled straightforwardly when implicit surface rep-
resentations are available. Moreover. using implicit surfaces. a number of sophis-
ticated techniques have been proposed, e.g., the substitution blending surfaces of
[34, 35.°36, 37].

As the role of implicit surfaces increases in importance in solid modeling and
CAGD, rendering implicit surfaces efficiently becomes a crucial support in surface
design. In computer graphics, many surface rendering algorithms rely on piece-
wise linear approximations (PLAs) of a surface since a PLA allows one to take
advantage of hardware capabilities and reduces the cost of expensive ray casting
in the rendering process. However, while the PLA of parametric surfaces has been
extensively studied and utilized as a tool for the evaluation of surface intersections
(10, 16, 38, 41, 42] and for rendering, it seems that much less attention has been
paid in the literature to the PLA of implicitly defined surfaces. Recently, Bloomen-
thal [17] has proposed an algorithm for computing the PLA of an implicit surface
based on space subdivision using octrees. In [9, 7. 8, 6], a simplicial continuation
algorithm is presented for obtaining a PLA to a component of an implicit surface.
Both methods fundamentally rely on vertex evaluation. Rheinboldt [56. 57] has
presented an algorithm that maps a triangulation of R? to a p-manifold, where

p > 1, and hence induces a triangulation on the p-manifold.
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Offset and Voronoi surfaces of implicit surfaces can be formulated as the projec-
tion to R3 of 2-surfaces that are implicitly defined in six and ten dimensional spaces
respectively. Algorithms using space subdivision or simplicial continuation can be
generalized to compute the PLA of the 2-surface in high-dimensional space. Thus.
to compute the PLA of the offset of an implicit surface, we could compute the PLA
of the 2-surface in 6-space, and then project it into 3-D subspaces. However, as the
formulation dimension increases, the complexity of computing the PLA increases
exponentially. To reduce the complexity, we propose an algorithm that determines
the PLA of the projection to R" of the 2-surface defined in high-dimensional space.
with all major computations performed in 3-space.

In Section 1 we briefly describe a method based on the simplicial continuation
method due to Allgower and Gnutzmann (7], and explain some difficulties when ap-
plied to offset, Voronoi and blending surfaces. In Section 2 we sketch the proposed
algorithm in pseudo code, and then in Section 3 we describe the computations in

detail.

4.1 The PLA of Offset, Voronoi and Blending Surfaces

As described in Section 1.1.3, the offset of an implicit surface can be viewed as
the projection to R? of a 2-surface in R, a.x'ld the Voronoi surface of two implicit
surfaces as the projection to R3 of a 2-surface in R!® as shown in (1.3) and (1.3)
respectively. The 2-surfaces are represented by the following system of n — 2

equations in n variables,

filzi,z2y....2n) = 0

I1,T2,....In = 0
fa(zy, 22 ) )

fac2(Z1y T2, ... Za) = 0

abbreviated in matrix form as F(x) = 0. We suppose that the target surface we are

interested in is in (x,, I3, 23)-space. A closed-form f(z,.r;,r3) = 0 can beobtained
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in principle by eliminating the last n — 3 variables, but this is often not possible
in practice. It is also impractical to compute the PLA of the surface in n-space.
using generalizations of space decomposition or simplicial continuation, because
the complexity of the computation increases exponentially with the dimension oi
the space. One way to reduce the complexity might be by computing the PLAs
of the desired surface, e.g., offset, and its basis surface in parallel in such a wvay
that the major computation is performed in the orthogonal 3-D subspaces. We
have looked into such an approach for computing the PLA of an offset surface. Let
system (1.3) define the offset in R®. For a pair of corresponding points x, and x,
on the offset and its basis surface respectively, we determine two 3-simplices. one
containing X; in (z, y, z)-space and the other containing x; in (u.v, w)-space. Then
two sequences of transversal simplices are constructed in parallel. Two sequences
of simplices are constructed that are coordinated by the following computations
and considerations:

Let oy and o, be two simplices that we are currently processing, X, € o, be a

point on the offset surface and x; € ¢, be the footpoint of x; on the basis surface.

1. Determine the simplex & C R® such that (x;,X2) € ¢ and o projects to o,

and T9.

(V]

Compute the affine map H that iuterpolates F(x) at all the vertices of o.
3. Project the affine map H to H, and H; in the two orthogonal subspaces.
4. Compute the intersections of H; with edges of oy, for: = 1,2.

5. Pair the intersections with &, and o, to obtain points in 6-space and refine

them iteratively back to zeros of F(x) = 0. The points will be the new
(X1, X2).
6. Based on x; and x;. we deterninie how to pivot the current pair of simplices.

The resulting simplices are e new 7y and 7).




7. Go back to Step 1.

We have investigated such an approach and found it unattractive for the following

reasons:

e For given o1 containing x, in (z, y, z)-space and o, containing x; in (%, v, w)-
space, there are 4!4! possible simplices o in 6-space that project to the same
pair o, and o2. Hence Step 1 requires considerable computation for generat-

ing ¢ and checking if (x,x;) € 0.

e For two transversal simplices o, and o3, the simplex ¢ fo'.nd in Step 1 might
not be transversal. Suppose (&, ;) is the pair of simplices in the previous
step, corresponding to the simplex & in 6-space. That is. o; and o, are
the result of pivoting &, and &, in 3-space, respectively, with respect ‘o
shared transversal faces. Note that the pivoting of &, and &, corresponds
to a sequence of pivotings of & which is not necessarily done with respect to
transversal faces. Therefore, o might be not transversal. Now (x;,x;) € o,
and so it is easily seen that in such a case the surface penetrates o although
all vertices of o have the same signs on vertex evaluation. In this case. the

computed affine map H is useless for continuing the computation.

e The two projected affine maps H; and H, are generally not the affine maps
of o; and o, respectively. Hence the projected affine maps for adjacent 3-

simplices are often not continuous at the shared face.

e The intersections of H; with o;, for = 1,2, are often not in correspondence.

and then it is not possible to define a meaningful point pairing.

e When applied to offsets of parametric surfaces, Steps 4. 3. and 6 require

substantial modifications.

Using 3-simplices is attractive because with it vertex evaluation is unambiguous

and there is a simple pivoting scheme. However. adaptive subdivision resulting
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again in 3-simplices is more complicated. So, if vertex evaluation is not necessary,
using cubes to subdivide space might be a better choice since adaptive subdivision
is very simple.

The parametric approximant ®(s,t), discussed in Section 3.4 could be used
in place of an affine map. However, the coordination of the sequences of cubes
is complicated, especially when computing Voronoi and blending surfaces where

more than two sequences of cubes have to be put into correspondence.

4.2 Proposed Approach

Instead of computing a PLA of the 2-surface in n-space, or its projection into
several subspaces. we will compute the PLA of one projection only. In the case
of offset surfaces, this means that we approximate the offset in 3-space without
explicitly approximating the basis surface as well, or the 2-surface in 6-space corre-
sponding to both the offset and its basis surface. We will use a method similar to
simplicial continuation in [8], but based on local parametric approximation. The
approach is well suited to those 2-surfaces that have been defined in R™, but whose
projection to 3-space is ultimately of interest.

Let F(x) = 0 be the surface definition in R, S its projection into (zy, z,, z3)-
space. Given a regular surface point X = (x;,Xx;) € R", where x;, € R® and x; €
R"-3, and a cube in R® containing X, a sequence of consecutive cubes intersecting
the surface Sy is generated in a fashion that spirals outward from x,. For each
cube, a degree two parametric approximant ®(s, t) = (#1(s,t), d2(s,t),....0a(s, 1))
of F(x) = 0 is derived. and ®:(s,t) = (&1(s,t), d2(s.t), Pa(s,t)) serves as the
surface approximation of the target surface in (z,, z,, z3)-space. The parametric
approximant ®(s,¢) plays an essential role in this approach. First of all. the
intersections of ®,(s,t) with the edges of the cube are used as estimates that are
refined to surface intersections along edges of the cube. Secondly, the parametric

approximant provides a way of recovering a point in R" while doing computations
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in R3. Thirdly, when extending the surface approximation into a neighboring
cube, ®(s,t) provides a mechanism for obtaining an estimate to a surface point
X = (X;,X;) € R" such that x; lies in the neighboring cube. With this parametric
approximant, we are able to march on the surface in (zy, z;, z3)-space although
the surface is formally defined in R®, n > 3. This approach is of course also
applicable to offsets, Voronoi surfaces and blends where some of the basis surfaces
are in parametric form. For the computation of parametric approximation, see

Section 3.4. We give a high-level description of the approximation algorithm.

Algorithm 4.1

Input
F(x)=0
X = (X1, X2) € R™ a regular surface point where x; € (z,, r;,z3)-space
B: a cube with edge size § containing x,
D: a compact domain (a; : az,b, : by, ¢, : ¢;) in (24, 25, 23)-space
Output
L: List of transversal cubes and their surface intersections where
the cubes are contained in D or intersect the boundary of D.
begin
(1) W=0 L=0
repeat
(2) Compute the degree 2 parametric approximant &(s,t) of
F(x) = 0 at x;
(3) Compute the intersections of ®,(s.¢) with edges of B;

(4) Refine the intersections back to the projected surface Sy along the

edges of B;
(3) face(B) = { [F.‘.< (€1, Pir )y (Eira (5.0 ) >0 < (€. P2)s (Ei2y (Si24 ti2)) >] |
F, is a face of B. e;; ani - _ are edges of face F..
Sy intersects e, at p,. e p, s the point refined




from @,(si;,ti;), and 4(sj,ti;) is on &;, j = 1,2 };
6 L=LU{< B,d(s,t), face(B) >};

(6)
(7)  Remove those faces in face(B) that are outside D;
(8)  for B € W begin
(8-1) if B and B have a common face F

and commor surface intersections p; and p,

then begin

(8-2) face(B) = face(B) — {{F.< (e1,p;), (€1, (51, 1)) >
< (€2, p2), (€2, (52, t2)) >1};
(3-3) face(B) = face(B) — {[F.< (e1,p), (&1, (51, F1)) >.
< (e, p2), (&2, (32, 12)) >]};
(8-4) if face(B) = 0 then W = W — {B};
end /* if */

end /* for */
(9)  if face(B) # 0 then begin

(10) W =Wu{B};
(11) B =B
end
(12) else Select a cube B from IV:

(13)  Select [F, < (e1, p1), (&1, (51, 11)) >, < (€2, p2), (82, (32, t2)) >] € face(B);
(14) Determine (uq, vo) from (s1,¢) and (s2, t2) such that ®(ue, ve) can be
refined to a surface point X = (x,,X;) where X, is in the cube B
that shares F with B;
until W =0

end




4.3 Detailed Computations

4.3.1 Intersecting A Parametric Approximant with Edges of a Cube

A crucial step in the Algorithm 4.1 is the computation of points at which the
parametric approximant intersects the cube’s edges. This computation is more
complicated than intersection with an implicit approximant. With an implicit
surface approximant, vertex evaluation can be used to determine which edges in-
tersect the surface and then the intersection point on each edge can be estimated
by subdivision or interpolation {17, 43, 8]. '

When tracing the intersections of ®(s,¢) with B, at least one closed loop of
curve segments will be formed and each such loop corresponds to a closed loop in
the (s,t) parameter space. Since ®,(s,?) approximates the surface locally within
a cube B and the intersection points along the edges of B are only used as ap-
proximates to surface intersections of S; with edges of B, only the “nearest” in-
tersections with ®,(s,t) are of interést. More precisely, only those intersections
whose parameter values lie on the innermost loop containing (0,0) are considered.
In the following, when we mention surface intersections with edges of a cube. only
surface-edge intersections of this kind are referred to. It is easy to see that ¢(s. t)
may intersect the edges of B in 3,4.5, or 5 points, as shown in Figure 4.1. As
degenerate cases, ®,(s,t) can penetrate a face of B without intersecting any edge
or intersect only one edge of B in two points, see Figure 4.2. We formulate the

problem of finding the intersections as follows:

Problem 4.1 For given ®,(s,t) = (¢1(s,t), #2(s,t), #3(s,t)) of degree 2 and a
cube B containing ®,(0,0), compute the edge intersection points of ®,(s.t) with
B.

As a subproblem of (4.1), we explain how to compute the intersection of ®,(s.¢)
with an edge of B. The line L containing an edge @7 of the cube B is the intersec-

tion of two face planes P,(r,,r,,z3) =0 and P,(r,.r, zr3) = 0. Thus. substitution
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Figure 4.1 Intersecting ®,(s.t) with a cube F (Regular cases)
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(a): no intersection (b): 2 points
Figure 4.2 Intersecting ¢:(s,t) with a cube B (Degenerate cases)
of ®,(s,t) into P, and P, yields the two equations
s,t) = 0
pi(s,t) (4.9)
pa(s,t) = 0

which represent the intersections of ®,(s,t) with L in parameter space. For
quadratic approximants, py(s,t) and pq(s,t) are of degree 2. System (4.2) can
be solved either algebraically or numerically.

Using a resultant method, we obtain the resultant of p; and p; as a degree 4
polynomial in, e.g., s. This univariate polynomial is then solved by a root finding
algorithm. Substituting each root 3 into p,(s,t) = 0 and p,(s,t) = 0 results in a
polynomial in ¢ which yields solutions ¢. The computed solutions (3, ) are checked
to see if ®1(3,¢) is on TT. Since there might be more than one such (3, 1), it is not
trivial to determine which (3, ) is nearest. The computation has to be done for all
edges of B in order to find the desired intersections of ®,(s,t) along edges.

To apply Newton iteration to system (4.2). an initial point is needed. Possible

initial points would be (¢, to) values arising as the intersection of the tangent plane




(a)

a :intersections of tangent plane with edges
e . intersections of approximant with edges

Figure 4.3 Intersecting a tangent plane with the cube B

of ®,(0,0) with the edges. However, these initial points represented as (sq, to) in
the parameter space might not be close enough to the true intersections if the cube
is large compared to the radius of curvature of ®,. See Figure 4.3(a). Moreover.
we might have fewer initial points than the number of intersections with ®,. and
it is unclear how to ascertain that all intersections have been found. See also

Figure 4.3(b). Notice that

1. If the isoparametric curves ®,(s,0) or ®,(0,¢) intersect a face F' of cube B

then ®,(s,t) intersects edges of F' at least at 2 points.
2. All intersections of ®,(s,t) to edges of B form a closed loop.

With the above observations. we derive the following algorithm. which is reliable

and fairly efficient.
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Algorithm 4.2 (For Problem 4.1)

Input

B: a cube

®,(s,t)" a degree 2 parametric surface with ®,(0,0) inside B.
begin

() C=40

(2) Find an intersection ®,(3;,¢;) with an edge e; of B,

where e; = Fo N Fy, Fo and F) are faces of B:

3) LF = Fy; Le = ey; Ls = sy; Lt = ty;

(1) repeat

(3) Find the second intersection ,(s2,¢;) on an edge e; of Fy,
where e; = F1 N F,, F is a face of B;

(6) C =CU{< ({(Fo, F1),e1,(51: 1)), ((F1, F2), €2, (82, t2)) >}

(7) Fo=Fi: Fy=Fy 60 =eg; 81 = 895 ), = ty;

until Fy = LF and (s1,t) = (Ls. Lt);
end

For step (2) of Algorithm 4.2, we do the following:
Algorithm 4.3

1. Find a face Fy of B that ®,(s,0) intersects, say at (3.0):

(a) Substitute ®,(s,0) into the equation of plane Fy and solve the resulting

degree 2 univariate polynomial in s.

(b) Take the real root 3. if there is one, that is closest to zero and determine

if ®,(5,0) is inside Fy. If so. we have found the intersection.

2. (a) Substitute ®,(s.t) into the equation of plane £, obtaining a plane curve

p(s.t) =0.

(b) Trace p(s.t) = 0 starting at (5.0) until one edge e; = TT of Fy is crossed

over at (3.¢).
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(c) Apply Newton iteration to System (4.2) and refine (3,?) to a solution

(s1,t1) of (4.2). ®1(s1,t,) is the surface point on e;.

For step (4) of Algorithm 4.2, a computation similar to step (2) of Algorithm 4.2
can be used. Note that the initial tracing direction can be determined easily,
namely the one that is pointing to the inside of the face F}. For tracing plane

curves, the algorithm and implementation of [14] is used.

4.3.2 Intersecting A Projected Surface with Edges of a Cube

The intersections of the projected surface S; with the edges of a cube B not
only determine the faces that are transversal to Sy but also provide a PLA of §;
within the cube. Let Pi(zy,z;,z3) = 0 and P,(z;,z;,23) = 0 be the two face
planes whose intersection contains an edge e of B. A surface point (zr,,z;,z3) on
e, if there is one, together with its footpoint (z,,...,z,) on the basis surface(s)

satisfies the following system of n equations in n variables

Hlz,z2,0000z0) = 0

falz1,22,....2,) = 0

fﬂ-—z(‘rlsl‘Zﬂ----xn) = O
Pl(Ii.l"z,I;;) = 0

Py(z1.22,23) = 0

We compute the surface points of 5y on edges of B by applying Newton iteration
to (4.3) using the intersections of @,(s.t) with edges of B as initial points. That
is, when ®;(s;.t;) is a point on an edge &, of B. ®(s;,t;) € R™ serves as an
approximation of a zero of (4.3) whose natural projection to (z,, z2, T3)-space. say

p. 1s the refined point on an edge e, i B. In short. we say ®,(s1, ¢;) on &, is refined

to pon e;. An approximation ¢, ~,.7; can be refined to a surface point on the
same edge or to a surface point on . witacent edge. Thus. the approximation can
be refined to one point or two point~ «~ -.ownn Fizures 4.4 and 4.3 respectively. In
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Figure 4.4 An approximate point is refined to a surface point

the latter case. an additional transversal face F' to Sy is introduced. Moreover. two
approximates ®,(s;,t,) and ®,(s,, ;) might be refined to the same surface point;
see Figure 4.6. In this case, the face F' is not transversal to S;. We describe later
how to predict to which edge an approximant is refined. Nevertheles:. when an
approximant is refined to an edge e using (4.3), P, and P, are the plane equations
for two faces whose intersection is e.

When an approximate point ®,(s;,¢1) is on an edge ¢; of B, it is assumed that
the projected surface S; will intersect e; or its adjacent edges e,,e3, ¢4, €5, and
further subdivision is necessary if this is not the case. When Newton iteration fails
to refine ®;(s,,¢;) to a pointone;, i = 1,....5, wesubdivide the cube B into eight
equal-sized cubes in order to acquire better approximations. The subdivision will
be discussed in Section 4.3.6.

Algorithm 4.4 accepts as input a cube B. its list of k transversal faces to ®,(s. t).

and the associated intersection points on each face. The list of transversal faces is
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Figure 4.5 An approximate point is refined to two surface points
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Figure 4.6 Two approximate points are refined to one surface point
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in the form

{ [Fi, < & (i1, ta) >, < &, (Sian ti2) > i =1,... Kk}

where F; is a transversal face, and é;; is the edge of B on which ®,(s,;, ¢,;) lies. for
j = 1,2. The algorithm considers each transversal face F;, refines ®,(s;;,t,,) and
®,(s:2, tiz) and determines if F; is transversal to Sy. When the two approximates
are refined to two different surface points on edges of F;, the face F; ‘s transversal
to Sy. If the two approximates are refined to the same surface point then F;
is not transversal to Sy and should be exciuded. Finally, if the refined point of
®1(si1, ti1) is different from that of ®,(s(i=1)2, {(i-1)2) then the face containing the
two refined points is transversal to Sy and should be added to the transversal-face
list of Sy. Note that $,(si1, ti;) does not have to be refined if, on the previous face.
P1(S(i-1)2, t(i-1)2) is refined to a point lying on éi—1j;. If this is not the case. we
see if ®y(si1, i) can be refined to the edge e of F; that is perpendicular to é; and
ei-1)2- lf so, the face F' containing e and e(;_;)z, rather than Fi, is transversal to
Sy; otherwise ®,(siy, t;;) must be refined to e(;_j)z; see Figure 4.7. Moreover. once
®,(si1, t,1) is refined to a surface point on an edge of a face F, ®;(s,3, t,2) can only
be refined to a point on an edge of F.

We describe the algorithm in pseudo code as follows.
Algorithm 4.4

Input

B: a cube

{[Fis < &1,(Si1, ti1) >. < &2, (Sizy tiz) >] | i = 1...., &}: list of transversal faces
to ®,(s.t) and intersections on edges.

Output

face( B): list of transversal faces to Sy ind intersectiors in the form of

{ [Fis < (e pin) (€, (Si1a t)) > < (€2, P2 vz by D)= L. I
begin

(1) facelB) = §:
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Figure 4.7 The refinement of ®,(s;, ¢;;)
(2) 1 =0;
repeat
(3) i=i+1:
(4) refine ®1(s1,%i1) to a point p;; on an edge e, of B:
(3) refine ®4(si2,ti2) to 2 point p;; on an edge e;; of B;
until p;; # pi
Let F be the face containing e;; and e;;
(6)  face(B) = face(B)U {[F, < (ei1, pi1), (&, (i1, tiy)) >,
< (€iz, piz),(€iz, (802, ti2)) > }5
(7) do while i + 1 < k begin
{8) t=1+1;
(9) if e(i1)2 = E(im1)2 OF (S(icq)2 # S and (i gy # ty)
then begin /* ®1(si1,ti) is refined to p_y); */
110) refine ®,(s2,t,2) to a point p;; on an edge e;; of B:
(11) face(B) = face( B) U { [F\.< (€(1-1y2. Pa=1y2)- (8it s (Si1e tar)) >.

< (612-p12)~(élZv(5|‘2'tl2)) >] }:
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(12)

(13)
(14)

(15)

(16)
(17)

(18)
(19)
(20)
(20)

end
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end

else begin

refine ®1(s;1, 1) to a point p;; on an edge e;; of B;
ifeg =F;NF,, where F,.N F;_; = €(i-1)2>
then begin /* ®,(s;1,t) is refined to 2 different points */
face(B) = face(B)U
{ [Fes< ((im1)2s P(i=1)2)s (E(i=1)25 (8(i=1)2s L(i=1)2)) >\
< (e, pin)s (&, (s, ta)) >
refine ®1(3i2,ti2) to a point p;2 on an edge e;; of B:
face(B) = face(B) U { [Fi,< (ei, pi1), (&1, (801, ti1)) >,
< (ei2,Pia), (€2, (802, ti2)) >] };
end
else begin
refine ®,(32,%i2) to a point p;2 on an edge e,; of B;
if p;1 # pi2 then begin
let F' be the face containing e;; and e;s;
face(B) = face(B) U { [F,< (i1, pi1), (&1, (si1,ti1)) >,
< (€i2,pi2),(&i2, (832, ti2)) >] |5
end /*then*/
end /*else*/
end /*else*/

end /*do*/

4.3.3 Strategies for Stepping

After transversal faces of a cube B have been found, we track the surface S ¢ by

propagating cubes along transversal edges, taking care that no cube is processed

twice. When considering an adjacent transversal cube B. a surface point (X;.X;)

such that x, € B is required for computing the local approximant &(s.t) from

which ®,(s,t) serves as the approximation of S, inside B. To find such a surface
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point (x;,X;), one possibility is to extend the surface approximant ®,(s,t) of S
in B to B and locate an appropriate (uo, vo) such that & (uo, vp) can be refined to
the desired surface point. Since the local shape of Sy within a cube B is approx-
imated by ®,(s,t), it is clear that the location of x; closely influences the overall
performance of the approximation. Ideally, we expect that x, is approximately
at the center of all surface intersections on edges of B. The approach we take is
to choose (ug, vg) so that (ug,vg) is the barycenter of (uy,v1),..., (uk, vx) where
@l(ul, 1779 VU @l(uk, vx) are intersections of ®,(s,t) with edges of B.

Recall that with each transversal face F of B there is an associated record
[F’ < (61, pl)’ (Eh (511 tl)) >. < (6‘27F :627 (321 t2)) >]

where, for i = 1,2, p; is the intersection of S; on edge e; of F', p; is refined from
@1(3,-, t;), and é&; is the edge of B with which &)I(s, t) intersects at @l(sh t;). When
€, or & is not on F, it is clear that ®, is no longer appropriate for the above
computation. In this case, we first compute sq = %(sl + 352) and to = 3ty + t,)
and refine ®,(so, to) to a surface point p of Sy on face F and then on p we derive
a new approximant ®,(s,t); see Figure 4.8(a). This computation is also applied
to the case in which (s, ¢1) = (s2, t2); see also Figure 4.8(b). Moreover. for better
approximation of ®,(s,t) within B. this computation can generally be applied
when both &, and &, are edges of the face F'. Hence, as an uniform approach for
all cases. we compute such a new approximant ®,(s, t) for the transversal face F.
Nevertheless, Newton iteration may fail to refine the computed &(uq, vg) to a
surface point (X, X;) or the iteration succeeds but x; is outside B. When this

happens. the following heuristic approach can be applied:

1. compute so = 3(s0 + uo) and to = ;(to + vo).

o

refine ®,(sq. %) to a surface point on which a new approximant ®,(s.t) is

derived.

3. compute (ug, ).
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Figure 4.8 Special cases for stepping
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4. refine ®;(uo, vo) to a surface point.

5. go to step 1 if the step 4 fails.

4.3.4 Newton Iteration

Newton iteration has been used in this chapter to refine an approximate zero
Po to a true zero p of the system of equations by generating a sequence of points
P1,Pz2,..-»— P. Systems (4.2) and (4.3) are a 0-dimensional nonlinear systems
G(x) = 0. where G : R™ — R™ for some m. The Newton iteration for solving

such systems is given by

DG(pi)(Pr+1 — Pr) = —G(px)

This is a linear system of equations for px4;, and if DG(py) is nonsingular, it can
be solved by general linear solvers.
When refining an approximate to a surface point of F(x) = 0 by Newton

iteration. we solve the following underdetermined linear system
Viipe) - e = —=fi(Pe)y, 1=12,...,n=2 (4.4)

where A¢ = pry1 — pr and DF(py) is of dimension (n — 2) x n. Equation (4.4) is

the same as equation (3.12). When DF(p,) has rank n — 2. the general solution is
A = arty + agty + A Vfi(pe) + - - + Gn-2Vifa-a(ps) (4.3)

where t, and t; form a unit vector base of the tangent space of F(x) = 0 at p,.

[f it is wished to make the computation more numerically stable, one mav
use singular value decomposition as we have done in Section 3.4. The matrix
(DF(pk))T is factored as (DF(pi))T = UZV7, where U = [u,....,u,] € R™*"
and V = [vy,...,Va_y] € RI*9x(n=2) are orthogonal matrices. and ¥ € R"*("=2)
is a diagonal matrix. Directly substituting the factorization to system (4.4) we
obtain

Vel TN, = —Fipy)
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whose solution can be generally written as
Ag = MU + 72Uz + -+ + Yalg
where 71,...,v,-2 are uniquely determined by v; = (=vIF(pi))/Zi and .-,

and v, are arbitrary. For Ak, we assign 4,-1 = 9, = 0 so that A, is in the
normal space of Sr at pi since uy,...,u,_, span the same space as the gradients
VfiPk)s-«-s Vino2(pi). Alternatively, we can compute the QR-factorization of

(DF(pk))T as
R

(DF(p:))T = Q
where Q is a n x n orthogonal matrix and R is a (n ~ 2) x (n — 2) nonsingular.

upper triangular matrix. To compute A, we
1. solve RTy = —F(ps) fory € R*~2,
2. solve QTA, = (y,0)7, ie., Ax = Q(y,0)7.

Notice that the last 2 columns of Q forms an orthogonal basis of the tangent space

of S at pr. Thus A so computed is a linear combination of the gradients.

4.3.5 Some Error Analyses

A problem of practical and theoretical interest is to estimate the error bound
between the projected surface and its local parametric approximant within a cube
or on cube’s edges. The computation of this estimate would depend on error
analyses of both the projection and the approximation. It is not clear now how
to approach the above problem. Instead. we consider the estimation of the error
bound between the local parameterization of the projected surface and the local
parametric approximant within a cube. under the assumption that the neighbor-
hood of convergence of the local parameterization covers the parametric points

inside the cube.
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Recall that the local parametric approximant ®,(s, t) of S consists of the initial
terms of the Taylor series of the local parameterization up to degree 2. Let ¥,(s,t)
denote the local parameterization of Sy. Consider the coordinate functions o(s. t)

and w;(s,t) of ®,(s,t) and ¥,(s,t) respectively. From the differential calculus.
wi(s,t) = oils,t) + RO(r;, 5,1)

for some 0 < r; < 1, where Rfj)(fns't) = Jl!((sv t) - (38-,» %))Jw‘-(r,-(s,t)). Thus

" _ ) =| (3) ) (3) )
lwi(s,t) — 0i(s.t)] = |R; (r,,s.t)lsorsnr?%cll& (T, s.t)]

However, v;(s,t) is unknown and hence the above bound cannot be computed.

Consider one exact representation of the error
wils,t) = oils, ) = TV (s.t) + R(riy 5, 0)

for 0 < 7, < 1. where TV (s,t) = L((s,t) - (&, &) ¥i(s,t). With & = ||(s, 1)]l.
T,-(s)(s, t) is an O(h*) accurate approximation of the error (s, t)—o;(s,t). Thus the
vector (Tl(s)(s. t), 2(3)(3, t), 3(3)(s,t))T estimates W,(s,t)—®,(s,t), componentwise.

to within O(h*) accuracy, and hence
10 (s.t) — B (s, ) = T (s.0). TE (5, 8). TS (5, ) 7)) + O(RY)

Notice that the coeflicients of T,-(S)(s. t) can be computed using equation (3.12).

4.3.6 Adaptive Subdivision

The cube size § is an input to the PLA algorithm. To determine an appropriate
4 for a given problem a-priori is nontrivial. In practice. we would expect a large
4 initially, and perform adaptive subdivision whenever necessary. There are cases
in which a cube must be subdivided in order to continue the computation. The

cases are as follows.

1. When a parametric approxinant nenetrates a face without intersecting any

edge of the face as shown in e 12
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O: edge intersections of the approximant.
o : edge intersections of 5.

p1 and pp are refined to p

71 and ¢ are refined to g

Figure 4.9 An invalid polygon

When Newton iteration fails to refine the intersections of the parametric

approximant with edges of the cube to surface points on edges.

When an approximate point is refined to an unexpected surface point and

hence an invalid polygon is produced. e.g., see Figure 4.9.

Like PLA methods that use vertex evaluation. some portions of the surface might

be truncated if we do not subdivide. Two typical examples are

L.

o

The projected surface S; penetrates a face in a closed curve without inter-
secting the boundary edges; see Figure 4.2(a). In this case. both neighboring
cubes sharing that face should be subdivided. This is difficult to detect in

general.

S, intersects only one edge of a face: i.e., S; intersects an edge of a face
ot two points and has no intersections with others: e.g., see Figure 4.2(b).
Thus all four neighboring cubes along that edge are subdivided for a reliable

polygonization.
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Figure 4.10 A crack on the shared face

Subdivision is performed by calling Algorithm 4.1 recursively, with the parent
cube as the domain of interest and with the subcube containing the regular surface
point as the starting cube. Because of size differences, cracks may occur along the
transversal faces of the parent cube. See also Figure 4.10. In order to close such
cracks, a data structure is needed that records topological adjacencies of cubes.

We modify the data structures of Algorithm 4.1 by associating with each parent
cube a list of transversal subcubes, and pointers to neighboring transversal cubes

at the same level. Thus for each cube B we have

< Bv Q(ss t)* face(B), (ptlv pt21 pt3s Pt4» ptSv ptG)v ptps LB > (46)

where pt, is a pointer to the parent cube, Lpg, a list of elements in the form (4.6).
is the list of transversal subcubes of B, and pt; is a pointer to the adjacent cube
sharing face F; with B. The list Lg is assigned to the parent cube on the return
from subdivision. The pointers pt, to neighboring transversal cubes are assigned
when such adjacencies are confirmed in step 3 of Algorithm 4.1. The face(B) is

derived from Lg if B is subdivided.
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4.3.7 Polygonization and Local Refinement

The PLA of Sy is a polygonal representation given as a list of polygons derived
from those cubes that intersect S;. A list of transversal cubes lying in a given
domain D is produced by Algorithm 4.1. For each transversal cube, say B. there
is an associated list of transversal faces and surface intersections from which the
polygon approximating Sy within B is formed.

When adaptive subdivision is incorporated into Algorithm 4.1. a transversal
cube B might be recursively subdivided and hence the polygonization processing
is confined to terminal transversal subcubes. As mentioned in Section 4.3.6. the
polygonization scheme must close cracks along the shared face of two transversal
cubes.

Recall that we associated with a face F of a cube C a record of intersection

information in the following form

[F, < (e1,p1), (&1, (51, t1)) >. < (€2, p2), (€2, (52, 12)) >]

When tracing the transversal faces of a cube C in order to form a polygon over
C. we check on each transversal face F to see if the adjacent cube C has been
subdivided. If C is subdivided, possibly more than once, we trace the surface-edge
intersections on face F of C starting from p, on e,. If the faces of a cube are
numbered consistently, this computation can be achieved efficiently by processing
the faces of the same number on the subcubes of Lz that share F with C. Note
that when C is a subcube of B while C is not. C can be located by following the
parent pointers and the pointers to the neighboring cubes.

Once a polygon is formed, it is desirable to refine locally the polygon according

to some criterion provided by the user. e.z.. the maximum deviation of vertex

normals from the normal of p = ©,(0.0). Lt the polvegon P be the list of vertices
(p1yP2e-- - Pk}, for some k. and let :V, be tie nuit normal of Sy at p;, i = 1..... k.
Also let .V be the unit normal at p. As ~liwn 0 (7' the maximum deviation of
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vertex normals from the normal of the p can be estimated by

max (V; - V)
1<i<k

When the maximum deviation exceeds some tolerance. polygon P is replaced by
triangles {p,pi, pi41] for ¢ = 1....,k — 1. and each of the triangles is refined ac-
cordingly. Note that on the refinement of triangles, the midpoint of the triangle is
refined to a surface point by Newton iteration.

Surface normal computations are also needed when shading the surface to pro-
duce an image. For computing the normals of the projected surface 5, directly

from F(x) = 0. see Section 3.1.1. Notice that the coordinates of the polygon ver-

tices in R™ are stored in order to do the refinement and compute surface normals.
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5. CONCLUSIONS AND FUTURE WORK

5.1 Local Implicit Approximations of Curves and Surfaces

We have presented a method for computing a local implicit approximation
of parametric curves and surfaces. The method works for both polynomially and
rationally parameterized curves and surfaces, and achieves an order of contact that
can be prescribed. In the case of nonsingular curve points, the approximant must
be irreduciblé. but in the surface case additional safeguards have been incorporated
into the algorithm to ensure irreducibility. The method also yields meaningful
results for many types of singularity. The algorithm is capable of determining the
exact implicit form without extraneous factors when the approximant is formulated
with the exact degree of the implicit form.

The method provides a middle ground between two major approaches for eval-
uating the intersection curve of two parametric surfaces. that is, subdivision and
substitution methods. It is well known that subdivision methods are robust and
can locate all intersection branches. but at the expense of creating a large vol-
ume of data, while the substitution method provides an exact representation of
the intersection with the help of often expensive implicitization techniques. In
the context of subdivision methods. our implicit approximations have the poten-
tial of reducing the number of generated surface approximants since we are not
restricted to only planar approximants. In the context of substitution methods.
the approximations avoid the high cost of implicitization. In both cases a number
of practical issues remain open for exploration, including the trade-off between
the degree of the approximant and the accuracy with which the curve or surface

has been approximated. In particular. a comparative evaluation of our method is
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desirable that contrasts its performance with other surface intersection methods,

such as the one based on subdivision.

5.2 Local Approximations of 2-Surfaces

We have demonstrated that certain surfaces, including offsets, blends and
Voronoi surfaces, can be formulated as the projection. into 3-space, of 2-surfaces
F(x) = 0 in R". For such surfaces, we have proposed several computation schemes
that (1) describe the local geometry, including computations of normal vectors.
tangent vectors, and normal curvatures, of the projected surface, and (2) derive
degree two local implicit, local explicit and local parametric approximations of
the projected surface. We believe that these methods will be of practical interest
in rendering 2-surfaces in high-dimensional space and computing surface/surface
intersection.

In computing the degree two implicit approximation of the projected surface. an
8 x 10 linear system is obtained, which leaves us two degrees of freedom. Problems
of practical and theoretical interest include describing the set of approximants
parameterized by the two degrees of freedom and deriving criteria from which to
determine a member of the family of approximants to select.

Several other problems are of interest, for example. computing the Gaussian
and mean curvatures of the projected surface at a point directly from F(x) = 0
without variable elimination, and computing parametric approximations of the

projected surface at singular surface points.

3.3 Piecewise Approximations of 2-Surfaces

The ability to derive a piecewise linear approximation (PLA) of a 2-surface
defined implicitly in R™ should be essential in the interactive design environment
since the PLA allows one to take advantage of hardware capabilities and reduces

the cost of expensive ray tracing in the rendering process.
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We have presented an algorithm that computes the PLA of a 2-surface defined
by a svstem of nonlinear equations in n variables, where n > 3, but whose natural
projection to 3-space is the surface of interest. This is an algorithm that deals
with a 2-surface in R", but performs all major computations in 3-space. Hence its
performance on computing the PLA of complex surfaces, including offsets, blends.
and Voronoi surfaces, is much more efficient than methods that work in n-space.

A number of issues await future research. Our algorithm takes as input a cube
of a prescribed size containing a given point on the (projected) surface. One might
ask how one should determine the cube size. In the process of the algorithm. a
degree two parametric approximant is derived to approximate the projected surface
within the cube and its intersections with the cube’s edges serve as initial points
to be refined to the intersections of the projected surface with edges of the cube.
Moreover, cube subdivision can be easily applied when necessary and due to the
availability of the parametric approximant the local refinement within a polygon
can be efficiently performed. Thus, we would expect a large cube size initially,
followed by adaptive subdivision. An ideal cube size would balance local geometry
and global geometry such that only a small number of cube subdivisions are needed.
Such trade-offs remain an important problem to be explored in greater depth.

Locating a seed point on the projected surface is in general difficult especially
for blends and Voronoi surfaces. Space decomposition is useful for surfaces in R3.
but seems expensive for 2-surfaces in R"™ where n is large. It remains an urgent
challenge for PLA algorithm based on continuation methods.

An efficient and reliable way to estimate stepping into an adjacent transversal
cube is crucial to the performance of our algorithm. Although we have given
a heuristic approach that is based on the local parametric approximant. a more
quantitative method would be desirable that accounts for the local geometry of

the projected surface.
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