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ESTIMATION OF TIME-OF-ARRIVAL
OF UNDERWATER ACOUSTIC SIGNALS

BY SPLINE FUNCTIONS

INTRODUCTION

In the study of underwater acoustic signals, one of the most important problems is
to determine the time-of-arrival (or signal onset) from the given data. Fr instance, the
transducer andt panel transfer function identification techniques all depend ol an accu-
rate estimate of this value. In this report, the underwater acoustic signal will be repre-
sented by a spline curve whose initial knot lies in the interior of the time interval so that
the spline function is identically zero to the left of this knot and "takes off' to the right
at this knot. Hence, the initial knot clearly defines the time-of-arrival of tile acoustic sig-
nal. The objectives of this research are to study a mathematical model in the form of an
extremal problem whose solution yields an accurate estimate of the time-of-arrival and
to develop an algorithm for solving this extremal problem.

The first section will be devoted to the study of spline functions with special em-
phasis on the computational procedure of each polynomial piece exactly and determining
the coefficient matrix in a modified (or "penalized") least-squares problem. Both the
treatment and results here are different from those in the literature. When the discrete
least-squares problem is solved, the coefficient matrix is usually singular. We will choose
the solution whose least-squares measurement is minimized. This minimum solution is
achieved by taking the so-called Moore-Penrose pseudoinverse of the coefficient matrix, a
topic that will be discussed in the section entitled The Minimum-Normed Leas, Squares
Solution. This presentation is intended to be complete so that both known an( new re-
suilts are included. The mathematical model that determines the initial knot, or equiva-
lently the time-of-arrival of the acoustic signal, will be posed and studied in the section
entitled Estimation of Time-of-Arrival. An algorithm to determine the solution of the
corresponding extremal problem is described. A computer program with numerical ex-
amples will also be included.

FITTING OF UNDERWATER ACOUSTIC SIGNALS BY SPLINE CURVES

Underwater acoustic signals, noisy or not, can best be fitted by using spline curves.
In addition to the usual benefits from spline representation such as efficiency in compu-
tation, flexibility in choosing the order of smoothness vs minimizing the possibility of
oscillatory behaviour, the variation diminishing property, etc., the main reason in us-
ing spline curves to fit underwater acoustic signals is that the initial knot of the knot
sequence of the approximating spline function clearly defines the time-of-arrival (or sig-
nal onset). This section is devoted to the study of spline functions. Although there is a
vast literature on this subject, we will introduce a new approach which cannot be found
in any published paper or book, except partially in Refs. 3 and 5. in order to facilitate
oiur self-contained discussion and to improve the computational procedure to suit our
purposes. In particular, since the initial knot is going to be an interior knot. the resultsin this section are somewhat different from those in the spline literature. This section
is divided into five subsections. Since a spline function is a piecewise polynomial fullc-
tion, the first subsection contains a short discussion of representation of a polynoimial by
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"Bernstein coefficients." One advantage is, of course, that a Bernstein polynonial de-
fined by using the more general formulation here, is coordinate independent. so that it
provides an ideal representation of any polynomial piece of a spline function between two
consecutive knots. Spline functions are defined in the second subsection with empiha-
sis on the ones with uniform knot sequences, and a computational method introdi,',(,(
in Ref. 5 using the Bernstein coefficients directly is included in the subsection entitled
Computation of B-Splines. The last two subsections are important for the remaining
material of this report. The new idea of representing an underwater acoustic signal by
a spline curve with the first initial knot defining the time-of-arrival is introduce d in tdie
subsection entitled Spline Representation of Underwater Acoustic Signals. A modified
(or penalized) least-squares procedure is used where the modification is achieved by in-
troducing a parameter that governs the noise level. The final subsection includes a com-
putational method of the coefficient matrices. This information is especially important
for our computational task.

Representation of Polynomials

Let k be a non-negative integer and 7rk denote the vector space of all real polynoni-
als of degree at most k. That is., each p E 7rk is of the form

k

p(x) E aix (1)
j=o

where a0 ,..., ak are real numbers. Of course, the collection {1, x,... , x k } of monomials
provides a basis for 7rk. However, for both theoretical and computational purposes, it is
usually necessary to focus our attention on a certain interval [a, b], and in doing so, the
basis {1, x, ... . x} is no longer useful, since it does not reflect upon this interval. For
this reason, we will use the so-called barycentric coordinate of the interval [a, b] defined
as follows. Let u and v be two linear polynomials defined by

b-x s-a
u(s) b V := v(.r)- (2)L:=uz)-b - a a,-,

Note that the pair (u, v) of "variables" identify the interval [a, b] in the sense that a rep-
resents the initial end-point, a, relative to the interval [a. b], and u, the final end-point, b.
relative to this interval, namely:

{u(a) = 1 and r(a) =0

it(b) = 0 {(b) = 1.

This pair of variables can be used in place of the variable . since

x = ia + cb. (3)

Of course, we must remind ourselves that u and r are related )y the identity. u + , = 1
for all x. Now, it follows that the collection of k + 1 polynomials

where 0 < i.j < A and + j K, is also a )asis of wIk: that is. (kt'r lviomiial J) C .
can be uniquely represented as
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p(U, v)= p(I(x), v(x)) = a p,(, (,) (5)
i+j=k

for all x, where the summation is taken over all i and j with the restrictions:
0 < ij < kandi+j = k. In other words, the coefficients {a ,},ij + k. called
the Bernstein coefficients of p(u, v) uniquely determine the polynomial. In Fig. 1, we
display the Bernstein coefficients of three cubic polynomials on [a, b], which are

( -x 3 + (xa)3,

b-a) b- a

and

3(b-X)2 3(b-x x -a) 2

respectively. It is important to remark that not only the collection {aij}, i + j =k,

uniquely determines p(u, v), but it also gives a geometric description of the curve traced
by the polynomial p(u, v). Indeed, since k. > 0 for all x E [a, b] (or equivalently, 0 <
u, v < 1) and V -o 1, p(u, v) is a convex combination of its Bernstein coefficients a j

and hence, lies in the "convex hull" of the set

{(a± +kb) ai}.j (6)

This two-dimensional set is called the Bernstein net of p(u, v). By joining this net by
straight line segments, we note that the graph of p(u, v)lies in the "convex hull" as
shown in Fig. 2, where both the Bernstein nets and the polynomial curves of the exam-
ples given in Fig. 1 are shown.

1 0 0 1 0 0 i 0 0 1 -1 0
I I I I I I I I
a b a b a b

Fig. 1 - B-Coefficients of cubic polynomials

a b a b a . ..

Fig. 2 - Graphs of cubic polynomials
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Spline Functions

Let k be a non-negative integer and

t: ..-< t-j < -"< t' < ...

be a bi-infinite sequence with ti --+ o and ft-i --* -c as I -* c. Suppose that c t.
and d = t,, when n is a positive integer. Then a function f C C -> [. d] (i.e., f ham
continuous derivatives up to order k-1 on the interval [c. d]) is called a .,pline function of
order (k + 1) on [c, d] with knot sequence t, if the restriction of f on each interval [t,. t,+ '
is a polynomial of degree at most k, -1. 0. 1... We will denote the space of

spline functions of order (k + 1) on [c,d] with knot sequence t by Sk,t(c,d).
It is well known that a basis of the space Sk.t(c. d) is given by the collection of so-

called B-splines Bk,t,,. where i = -k,... n - 1, a totality of n + k functions. Each B-
spline Bkt,, is in Skt(c,d) and vanishes identically outside the interval (ti, ti+k+l ). The
interval [ti, ti+k+ I is called the support of the B-spiine Bk,t,,. It is also well known that
the support [ti,ti+k+l] is minimal in the sense that any function f in Skt(c, d) whose
support is a proper subset of [ti,ti+k+l] Imust be the zero function [2]. In Fig. 3, we give
the graphs of B-splines of order 1, 2, 3, and 4.

Bo, t,i jB 1 ,t,i B,2,t,i B3,t

0 0

ti tI+ ti ti+ 1 ti+2
ti ti+1 ti+2 ti+3 ti ta+i

Fig. 3 - B-Splines of order 1 - 4

In this report, we are only concerned with spline spaces having uniform knot se-
quences t: that is, we only consider t~i - ti = ti - t,- 1 for all i. The construction of
B-splines with uniform knot sequences is particularly easy. We start with the special
case where ti = i.

Let N0 (x) be the characteristic function of the interval (0.1); that is,

1 if 0 < x < (

N0 .) 0 otherwise

We define. inductively,

NAt(.r) j N ,Y-(, - t)dt. (Tinp

" 1. 2..... The graphs of No. N1, .V2 and jN.:; are shown in Fig. -.

4
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No N1  N2  N 3

1 1

0 1 0 1 2 ---
0 1 2 3 0 4

Fig. 4 - B-Splines at integer knots

It is easy to show that Nk E C k - I (_oo, oc), and since each integration increases the
degree of the polynomial pieces by one, we see that Nk is in Sk,Z, where Z is the set of
all integers. The B-splines in Sk,Z are given by

Bk,z,,(x) = Nk(x - i). (8)

Now suppose that ti+j -tj = h > 0 for all i. Then the B-splines in Sk.t (c, d), where
the knot sequence is

th: ... < t-i < ... < ti < "' - tj+j -tj h,

with to = c and t, = d, are clearly given by

Bk,th,i(x) = Nk(x- c ). (9)

These are the B-splines that will be used in this report.

Computation of B-Splines

Let ti+i - ti = h > 0 for all i and

th . ... < ti < ... < ti < ...

with to = c and t,, = d. In view of the formula in Eq. (9), to obtain the B-spline basis
{Bk,t , = -k,. . , n - 1, of the spline space Sk,th(c, d), it is sufficient to determine
Nk(X). Although Nk(x) can be computed by using the definition in Eqs. (7a) and (7b),
it is more efficient to compute the Bernstein coefficients of each polynomial piece by fol-
lowing the method described in Ref. 3. Since NI (x) is piecewise linear with values

1 if i=(10)NI~i)= 0 if i : 1 (0

where i E Z (Fig. 4), its Bernstein coefficients are {0, 1} and {1, 0} on the intervals [0.1]
and [1.2], respectively, as shown in Fig. 5.

0 1 0
I I1I N (.r)
0 1

Fig. 5 - B-Spline N, (x)
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To determine the Bernstein coefficients of AN2 ( ). we neC(l an interIndiate -;te')
where the Bernstein coefficients of (1/2)[N1 (x) - -1 (x - 1)] are recorded. Now along the
interval [0,1], first input the zero initial condition. Then add this zero value to the first
value of (1/2)[NI(x) - Ni(.r - 1)], namely zero, to get the second zero vahe. Next add
this zero value to the second Bernstein coefficient of (1/2)[. 1 (ar)-N,(.r-1)]. naiiiely 1/2.
to get the 1/2 as the third Bernstein coefficient of _N(x) on [0.1]. For the interval [1.2].
we perform the same operation: add the initial value of 1/2 to the first value. namely
1/2, for (1/2)[Nl(x)- JN1 (a' - 1)], to get the second Bernstein coefficient of N2 (.r) on [1.2
which is (1/2) + (1/2) - 1. and next, add this vah 1 to the second value. nainely -1/2
for (1/2)[ 1 (.r)-N(ar- 1)], to get the third Bernstein coefficient of N ,(x) on [1.2] which
is 1 - (1/2) = 1/2. For the interval [2.3]. we repeat the same prced,,re. (Se Fig. 6).

o 1 _± 0
2 2

I I (NI(.') - NI(x - 1))

! !

0- 0--+ 2- 1- - 0-- 0
I I -N2(r)

Fig. 6 - Construction of X 2 (.r)

To compute N3 (x), we again need the intermediate step of (1/3)[N 2 (a') - N2(x - 1)].
We then follow the same procedure as above in the comlutation of N2(x), but this til1e
the support of Na(x) is [0,4], one unit longer. (See Fig. 7).

(N2(x)- N2 (Xr - 1))

0 0 1 2 0 _2 _ 0 0
6 6 6 6

I I I

I 2 4 4 1 2 1
0--- + 0 -+ 0-* -+-- - -* ;-; -. j-- --- 0 -* 0- --+ 0

[ I II I

0 1 2 3 4

N 3 (X)

Fig. 7 - Construction of N 3(.r)

In Fig. 8, we show the computational proced(hre for the quartic amd qiiintic "'plil,('S
.V1I(x) and N.-(x'), and for simplicity, we have omitted the arrows and write down the
Bernstein liets for N:,(.r ) - NV3(X - 1) and N1 (. ) - .VI(x - 1 ). instead of ( 1/4 )[..(.) -
N 3 (. - 1 )] and (1/3)[N4(.') - N.1(. - 1)], respectively.

6)
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0 0 0 2 4 4 1 4 2 2 4 1 4 -4 -2 -Ir - - - - TT6 000 N()-N,(x- 1)
11 2 4 1 11 4 16 14 II Z 4 2 - 0 0 0 0

24 24 14 T4 T 4 " 44 , 24 7 44 14 o - o9T4

0.6 0 ,I , 1 1 2 T 1 Z 7 -1 -i

- 40 w , i 1~ I~i T T~~h3U~uuT 7 NS

Fig. 8 - Construction of N 4 (x) and Ns(x)

Spline Representation of Underwater Acoustic Signals

The spline model will be used in this report to represent underwater acoustic sig-
nals. Let the time interval in signal measurement be [0, d]. If to > 0 is the time-of-arrival
of an acoustic signal, then the spline curve that represents this signal must be identically
zero for t < to and "takes off" at t = to. Hence, the spline curve is given by the spline
function

n-1

Sk(t) = E cBkthj(t) (11)
j=O

where the knot sequence is

th: to <t < < tn-.i < ." < t+k

with 0 _< to = c, tn = d, and

d-c
tj =t.i+h , h- , (12)

j=1,2,...,n+ k. (See Fig. 9.)
Here, due to the nature of the spline series Sk(t) in Eq. (11), this spline model as-

sumes zero values of Sk(to),. , S k (to) at the time-ot arrival t0 .. Hence, if the acoustic
signal should have nonzero slope at the time-of-arrival, only the linear splixne model (k =
1) can be used. In the forth coming report, we will allow stacked knots of spline func-
tions of degree k at to in order to make use of higher degree spline models even thouigh
the slope at the time-of-arrival may not be zero. III doing so, the procedure becomes
adaptive in nature but involves more complicated compltations.

7
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S1 (t)

S0
0 to=C d

Sk(t), k > 1

0 to d

Fig. 9 - Spline model of signal

Let us assume that the measurement is taken at {r}, where 0 < 71 < ... < KrN d.

arid the signal measurement is

f(7)= fi , .. N.

In practice, we have N >> n. The coefficients {c 1 } in the spline series Sk(t) in Eq. (11)
must be so chosen that the quantity

IIf- Sk112 + A c (13)
\.=0

is minimized, where 11 11 is a norm to be specified, and A a non-negative paraimieter that
is selected to adjust the '*smoothness" of the acoustic spline curve K(t). For noise-free
signal {.f, }, A should be chosen to be zero. but a positive A value is requied if the signal
is contaminated with noise. In other words, the vahu of .\ nuist be adjusted a(laptivelv
according to the noise level. A detailed study will be given in tHie next report [4].

Two practical nornis -are the L2 and (2(w) norms, defiled resIect 'ively by:

i -1 g( t)l(! jtdt) (14)

and

1/2

where w = i', } is a giv u ."ceqnelce (,f pwsitive iiiiL,'s. 'all,,d w1,ei If tlhe sj~l( al is
niose-fre,, or if tile varniiee of the noise proce's tii'I invarian1t. we n11;v take ', 1 1.
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Oi the other hand, for noisy data with time-varying variance, { Wij should be chosen
according to the standard deviation of the noise. When the L 2 norm is used. the signal
function f(t) must be measured for all values of t E [0. d]. This is usually not feasible.

and one way to get around it is to define f(t) ,s a piecewise linear function such that

f(r,) = f,, i = 1 .... ,N, and that the restriction of f(t) to each interval [Ti, r,+l] is a
linear function. 1 < I < N.

Let
d -1

F(c) := Fh(C)= (t)- C cjBkt,,j(t) 2dt
1=0 

(16)

j=0

For the time being let us assume that h is fixed (which is equivalent to saying that the

time-of-arrival is assumed to be known). Here,

co

C = (17)
Cn -

To determine

71-1
Sk(t) =E jBk,tj(t) (18)

j=0

which minimizes the quantity in Eq. (13), or equivalently F(c) in Eq. (16), we simply
determine the following "normal equations" by differentiating F(c) with respect to c:

S(Id Bkth,j(t)Bk,t,,i(t)dt )j + Aci = f(t)Bk,t,,i(t) dt, (19)

j=0

1 0. n - 1. Hence, by setting

Ak,h [ Bk,th,j(t) Bk,th,i(t)dt] (20)
L J o<,,j <n-I

and

0f fd f(t)Bk.th,.o(f)citf f
f 1•(21)

-fo f(i)Bh.t,.n-,(t)df-

the system of normal equations Eq. (19) can be written iii tli matrix foriii:

(Ak,h + AI,), = f . (22)

where I,, is the Wh order identity matrix and

9
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(23)

One advantage of this approach is that since Ak,h is the Gramian matrix of the
B-splines and A > 0, the coefficient matrix (Akh + AI,) is nonsingular. so that . and
hence the solution Sk(t), can be uniquely determined.

A more standard approach is to use the J2(w) norm, so that the discrete data
{ (Tt , f)},I = 1 ... , N. can be input directly without introducing f. The main advai-
tage of this approach is that noisy data can be treated much more easily especially in
the case when N > n. Let

N n-I 2 n-I

G(c) := Gh(c) E fi - E cjBk,th,j(Ti) Wi + A E c. (24)
i=1 j=O 3=0

Again, for the time being let us assume that h is fixed. Then, to determine

n-I

S* (t) - * ~ Bk,thj M) (2-5)
j=0

which miniimizes the quantity in Eq. (13), or equ ently G(c) in Eq. (24). we follow

the same procedure as above to derive the following normal equations:

Bk,t,,j(7-)Bkth ,(Te)W c i + Ac = ffBkt ,,T) wc , (26)

J=0 (f=l l

z 0. , n - 1; or in matrix form:

[Akh + AI]C* fh, (27)

where Ak,h is the n x n matrix whose (Ij)th entry is given by

N

E Bk,t ,,z(-r)Bk,t, ,j(-r1)wf,

t=l

and the vectors c* and fh are

c I (28)

cI 11(1

I ff Bk.tho( 7"t )",' ]
1(290

107 )W
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respectively. The disadvantage of this approach is that the coefficient matrix (Ak.h +AI")
is frequently singular so that the normal equation Eq. (27) might not have a unique so-
lution. The standard approach to determine a solution c* of Eq. (27) is to consider an-
other least-squares problem:

min II(Ak,h + AI )c - fh11 2.
C

However, even this problem usually does not have a unique solution. Hence. we will con-
sider another extremal problem, by choosing c* to be the solution of the above least-
squares problem with the minimum 11 JIl value. It turns out that this "minimal so-
lution" is now unique mad can be determined by finding the so-called Moore-Penrose
pseudoinverse of (Ak h + AI,). This topic will be discussed in the section entitled The
Minimum- Normed Least Squares Solution.

Computation of the Coefficient Matrices

To solve the normal equations, Eqs. (22) and (27), it is necessary to determine the
corresponding coefficient matrices. Hence, the quantities

dj= j i(t)Bkth,,(t)dt (30)

and

N
"bj = 3 Bk,t,,i(rt)Bk,t,,(r,)we (31)

t=1

must be computed. In this report, to produce a computational efficient algorithm, we
have chosen the knot sequence t to satisfy Eq. (12), so that the material presented in
the subsection entitled Computation of B-Splines can be applied. In particular. by Eq.
(26) we have

Bk,th,i(t) = Nk ((t-c)- (2h (32)

= Nk(n - - (d- t)),

so that
f n - i

b j h Nk(t)Nk(t+i -j)dt; i,j = 0,...,n- 1. (33)

where we have used the property that Nk(t) 0 for t < 0. Now the restriction of .(t)
on each interval [r, r + 1], where r = 0, 1..., is a polynomial of degree k whose Bcrnstein
coefficients can be computed by using the procedure outlined in the same su!rectiron.
Hence. to determine by,, we are led to compute

Jr+fr+1 PkQk,

where

11
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Pk(uv)= cin. 0 ,,(?I,,) (34)
f+rm=k

and

Qk(U,) 0 (1 d t q (,9 kq( u '  (35)
p+q=k

are two (Bernstein) poynomrnials of degree < k ol [r, r + 1]. The computation is straight-
forward, since Irr+l  kk' ol

k k k! t(+p)( t)tmL~pq ('-D!rnpT.q! J1- +

k! k! F([+p+l)F(,m +q+l)
!in! p!q! F(C + p + m + q + 2) (36)
k! k! (' + p)!(n + q)!

(!n! p!q!(C + m + p + q + 1)!

(k!)2  (( + p)!(m + q)!

(2k + 1)! (!rn!p!q!

Therefore, we have

j+PkQk (k!)2  z (+p)!(m + q)! k ,(

P k (2k + 1)! t+yn=k p+q=k !m !P!qm

where Cfm and dk are the Bernstein coefficients of Pk- and( (2 k reslectively.pq
For example, if a linear spline curve is used, then by using the Bernstein coefficientsof N (x) in Fig. 5 and formulas in Eqs. (33) and (37), we have

-h for 1j=n-1
3
b h for i=ji=0.....n 

. . .b~i = 3 (38)
I1 for Ii-JK=
6

0 otherwise.

If a cubic spline curve is used to fit the underwater acoustic signal. then the Bernstein
coefficients of N3 (.x) in Fig. 7 and formulas in Ens. (33) and .37) can be used to com-
pute 1 . 0 < ?..I < I?. as follows:
(a) For ij and i 0 .... .- 4, we have

- (3.) + +))'(6 - {-I)!
! =O =o ((3 - ()!p!(3 - p)! -,d

Whe.. ) =(0,0,0.1/6) and((I". . ) (116. 2116. 46. 4/6). o

12
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b 3 2 (3!)2{ 6! [ 6! 2!4! 4!2! 6!
- -62 (7!) ((2))2 +  ([!)2)2 (16+3!16

5! 92!4! 9(3!)2 .

+ 2 !9+9 2-4 + 2- 4
2!3! - -!2! (3!)2

(3!)2+ 4!2! 8 5! 16] 2416h.

(2!)2 2W-32!3! 7!

(b) For =j = - 3, we have

b (3! )2-3 ( ( p)!(6 - -p)

7! £.SZ.J[CfCp + 2dfdp11hn-3,e-3 ! EE f!(3 - {)!p!(3 - p)!
f=0 p=0

23961h.
7!

(c) Forij = n - 2, we have

-2-2 _ (3!)2 E E (' +p)!(6 - e - P)'
-= !(3 - e)!p!(3 -pp)!01 [ dldpjh

1208 h.7!

(d) For ij= n - 1, we have

b-- (3!)2 A + p)!(6_fp)!

- 7! 2- f e!(3 - e)!p! [c p ]h

t=O p=O

20
7!

(e) For i = 0,...,n - 4 andj = i+ 1, we have

b3  _ (3!)2 3 3 ( +p)!(6 -f p)[ +
7! = =.' 1 e!(3 - e)!p!(3 - p)! [2cjd+ (pj.

7! =0 p=O

where (do,di,d 2 ,d 3 ) = (4/6,4/6,2/6,1/6); or

i 1 (3!)2  (3!) 2  4!2! 5! 6!
P (-24 +42 - 4]

6! 2!4! !2! (3 !)2

(3!) 2 + (2!) (2! (3!)2

+ 5! 24!

717

3!'21 3!2! (3!)2

+(3!)go2 4!211! 5! 1)/
2! 3! 2!3!J

_991h.

13
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(f) Fori =n-3 andj =71-2, wehave

3 (3)23 l p( !6--P)!' "+('(I]h

1=0 P=o (!(3 - I)p!(3 - p)[
1062
7!

(g) For i n -2 andlj n - 1, we have

b3  (31)2 3
=o 03= - ()!p(3 - [1)!

f=O p=O

129

7!

(h) Fori=0 .1' . , r)- 4 andj i + 2. we have

b3 (3T)2 3 3 + +p),( 6 -, _p)!

7! - 0(3 - [ )!p!1(3 - p)! [2cfdpjh
f=0 p=O

1) 2  4!2!j5! 6!, 7-2[ 4 + ! 4 + !3 91 + 6! 1,
7! (3!)2 2!3! 2!3!- (31)2

120
7!

(i) For = - 3 andj t- 1. we have

(T' (3) 2 + 1( t

7 - ! _ +p!(G- p  11

-=- , = , ( 1( 3 - I ' !p ! ( 3  - ) )

60
- -h.
7T!

(j) Fori =0- ......- 4andj =i+3, we have

f 3 )2 3 3 +

, ,,=o = !( - - )).

(3!)2 (3!)(3!) 1 1
7! (3!)(3!) , 2 V

where (cj..... c-1) = (1/6. 0.0. 0).
(k ) For I - J > 4. 'i = 0: aniv 1,), = , v t1, (lfiniti(m il Ef t. 3(1 .

Slimillarizinig the a;bove rewlits. we ixmv write ,tw-i the Iliatri,',, .44,1 fo A.
3 ;is follows:

14
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4 1
1 4

-I.h = h o (39)

4 1
1 2

and

A 3 h - [63 DI (40)

where C, 3 is an (n - 3) x (n - 3) banded Toeplitz symmetric matrix, D an (n - 3) x 3
matrix with transpose DT. and E3 a 3 x 3 matrix given by:

2416 991 120 1
991 2416 991 0
120 991

1 . (41120

.• 991

0
1 120 991 2416

D = 1 0 (42)
120 1 0

991 120 1

2396 1062 60 1
E3 = 1062 1208 129 (43)

60 129 20

To compute bk, we note that again 6k, = bk for all i,j = 0,..., - 1 ind
N11

(44)
t=1k

where again NVk(X) can be computed by using the procedure outlined in the o ubsction
entitled Computation of B-Splines. Note that Vk(X) vanishes outside the interval
[0, k + 1]. so that most of the terms in the summation in Eq. (44) are zero. In partic-
ular, we again give the Bernstein coefficients of the linear B-spline A 1V(.r and(l the clibic
B-spline N 3 (X) in the following:

0 1 0

0 1 2 N1 (x)

0 0 0 2 1 I 2 1 0 06 f 6 t; . ;

0 4

15
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THE MINIMUM-NORMED LEAST SQUARES SOLUTION

When (liscrete data information is given, a standard norm to u.se for tlie (uan tity
lescribed in Eq. (13) to be inininized is the 2(w) norin. For w = il,, } with it-, = 1. w,,

'ly write 1 = 12(w). Hence, for any sequence c {c -}, wc h1ave

As shown in the siibsection entitled Spline Rp'lresent atitm (f nidhrwat ,r Ac(ii,,sti," Sig-
nals, the corresponling extrenal problem then rethces to a linear systeii (escrilbe(d bv
Eq. ( 2 7). where the coefficient Inatrix ( Ak,h + Al7, ) is frequently singular. Ienc,(. the liii-
ear system, Eq. (27), does not have i onique so)liti{}i and is 'ven "nuimerically irico'sis-
tent". To ove'rcome this, the usual miethod is to 1ini iz, tile t2 norm of the diffr cice

(A.h + AI, )c - fh. For convenience, we will simplify the hot ation by setting

A = A-k},, + AI, b = fl,. (46)

Hence, we will consi(ler the extreimal probl'm:

iun JjAc - bjj,2. (47)
C

Of course, if the original system Ac = b is consistent, then the riniimun value in Eq.
(47) is zero, and a solution to the extremal problem in Eq. (47) also solves the linear
svstem Ac = b as required. III any case, whet her the linear svsteln Ac = b is consistent
or not, there is no guarantee of a unique solution to the Iprobivir in Eq. (47). For vari-
ous reasons such as stability (when ?i is very large). the desirable solution to Eq. (47) is
on(e whose [2 norm is also minimized. That is. we will consider the problem:

IniIII{IH ,2: JIAc - bIF2 rin j4c - bj }. 48)
C

\We will the'n choose the solution o)f Eq. (48) to be the solution c" iII Eq. (27).
Il this section, we will see that

c* = A+b or C (Akh + AI,, )+h 49)

where, A+ is the so-called Moore-Penrose lpsuloinv(rse' of .4.

Singular Value Decomposition and Moore-Penrose Pseudoinverse

The singular value decomipositioll of an arbitrary Inatrix is studied in 0hiP. ).' i.
W'e will take a soimrewhat ,nusual route iII introducing tihis faririliar coInet so, that th,
lefirlition of the l Moor--Pexiro se i.si'uhoouiixt.r... Iiecorres v(rv I rItII';,. WC' will aIs, tr,,vx
that this definitim is iri(lelenlilit of the (noni-uu11(ue) singular valuec decoti positioi.

Let .4 be an ii x it matrix which may riot even be a s'qlare, Iniatrix alt h,,,u]l in
our application, it is ;ilways sqiare and syncntric}. Spio Ith.. ta rank .1 A- vi,..
k < rin(rm. ,i). Then A'A and AA are it x it and i, x i I ru..peci'ilv) non nu' ;.-,

(efinite syvili'tric iatri,'o , tif rank A- and hlxe' tir, samie eiviixal's

2.(7 (71 (1 o 0.

16
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which we arrange in non-increasing order. Let

f,,,,...,,,,,}
be the eigenvectors of ATA corresponding to the eigenvalues {a,.. 0... So

chosen that they foirm an orthonorinal set. In other words, the ri x r niatrix

V =[Vl ... v,]

is unitarv. and

2

* 0
ATAV V. (50)

0

0

Next. let aj be the positive square root of a2 and set

ui = Avi , I =1.. k.(5
01i

Then we have

ATu, = 1(ATAvi) _ 1 2Or AAv)=Oit Vi, (52)

or equivalently,

vi A AT u i ,i= 1,... , k. (53)

0 i

In addition, we have

AATu, = oriAv i = or2 u i, (54)

so that ui is an eigenvector of AAT corresponding to the eigenvalue 0'?, where
i= 1,..., k. Let Uk+l,. , Urn be orthonormal eigenvectors corresponding to the zero

eigenvalues of AAT; that is,

AA u 1 =0, i=k +,...,,

and uZ U, = , i.j k + 1,.. m. Here. d is the Kronecker delta:

I for i=j

0 fori j.

Now. since AA T is symmetric, eigenvectors belonging to distinct eigenwivlues are o)rtlior,-
nal. so that

11,'u, =0 for i= 1-.k aid j k + .....

17
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Next, for i,j 1 ...... we also have

=T -v, AT( .vj)aa

- - v[((TAv,

= ,6i

since {v1 .  vk} is an orthonormal set. Siunniarizing the above prperties of {ul .....
urn , we see that the in x in matrix

U = [ul ... u"1] (55)

is unitary and

2

"" 0
AATuT 2 U. (36)

0

0

We also have the following.

Len-na 1. The matrix A has the following "singular value decomposition"-:

= = UNV T  (57)

wh lcre

(38)

o 01 nXn
Proof. Since V is unitary, Eq. (57) is equivalent to AV = U. or eqtuivalentlv:

Avl = 71 u1. . . . . 4V k = (7kU k  0-9)

since Avk+l . . 4v,, = 0 and

U = [O-IUl. ..- kUk 0.. .0].

This completes the proof of the lemima since Eq. (59) is the s; .i ;, Eq. (51).
In view of the result in Eq. (57) and the fact that U.' V"'-i,1" = ", 1 - w

fire now ready to give a definition of the "inverse" of tle iatrix .4 xl ch is I l(,t li,'cc,-
smrily square and not necessarily of full rnnk).

18
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Definition. The Moore-Penrose pseudoinverse of an in x n matrix A is given by-

A+ = VE+UT (60)

where

orf 0

+ 0_.(61)S- 0 °rk 0

L0 " 0 ,-,,:-,

Since the unitary matices U and V are not unique, we must prove that the defini-
tion in Eq. (60) is independent of the choices of U and V. We have the following.

Theorem 1. Let A = UVET ' = ()ZIVT be two singular value decompositions of A: that
Is,

AATu = ru2V, AT -i = U2- i, I = ,.,

ATAvi rv, , A , i1..,n

and 1
v v = T = , i,j 1,..., ,

where U [ui ... u,,], N = i ... frm], V = [Vi ... v,], and 1> [ir... ]. Then

A+ - V+U T =

where E+ is defined in Eq. (61).

Proof. Writea,...,ak = Al,...,A ,...,,At,....At, whereA, > ... > A eand

+ .+ it = k. For each j=1. , let Pj be an ij x ij unitary matrix such that

I il +...+ij -I+, . i , .. i = [ i .. , _ +,... u1,+ 4-1, 1Pj

In addition, let P(+ I be another (n - k) x ( n - k) unitary matrix such that

[fIk+t ... rm] = [Uk+I ... U,]P,+I.

Then we have

0 9 f+,

19
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Since by Eq. (53), wve have:

1

where j . .it thenl follows that

+- 4-'u 1 ± -1+ 1 
.. +

- [v i. + I* . . ti v

agi by Eq. (53).

Let Q be an (i k A) x (it - k) unitary matrix such that

[- k+ I - [V+ ... v111Q.

Hence, wve have

P1  0-

This i

+j +

('IliC th, pro ofFetl~(fl

orelli sn Eq.'I (a1) Ieirc hefoloi. we gave ale h cliarc tatlh of)" =0 I,, Telis
completes uith proo ofl lthe jeM.cil

Chaactriztio oftheMooe-Pnroe Peudin20s
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Theorem 2. A+ is the Aioore-Penrose psled-)hIWerse of A if and only if 4+ satishfies the
following properties:

(i) A44A A,
(11) (AA+) = AA + ,

(iii) .4+ A A + = A + , and
(iv) ( 4 +A)T = A+A.

Proof. It is clear forn definition that A+ satisfies the four properties listed. Now slip-pose that B satisfies (i) through (iv), and we have to prove that B A+. To (o so.
recall that

A U [Z 1  0] 17Tr
A=U[ 0 0 T

where

WVe define

B 9  
B 12 1 T

B 21  B 22  - VTBU

Then by using the property (i) for B, we have

ABA = A,

so that

(UT AV)(VT BU)(UT AV) = UTAI

or
[E1 0 ) B12 I[oo] [9h][o

or

EIB2 =0

Therefore, B9  ,I and B 12  0.
By ising the property (ii) for B. namely: (AB .4/) =B or (U'ABU) - - .ABU

so that

or

21
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UE10 0

B21 B2,2 @ 0 B21 B21"([0 S] 0~'13]) [i: 0][ 1 '
' hive

020 01[N 0 1 - B21I 0]

so that B21 0. Similarly, by using property (iii) for B. we also have B2 0. Hence,
we conclude that

B = V7 B9 B12 L-,7'.= 1 U7-4 +.
B B2V 1 B22jO '0

Note that property (iv) has not been used since it is a consequence of (i)-(iii).

Application to Least-Squares Estimation

Let its now return to the linear system of Eq. (27) and using the notation defined
inI Eq. (46), we are lead to the system Ac = b where A is usually singular. Hence. the
system may be inconsistent, at least iuinerically. and even if it is consistent, there are
infinitely many solutions. As suggested in the beginning of this section, we will look for
the (uni'que) least-sojlares solution with minimm norm: and by this, we mean the solu-
tion of the extretnal probleib in Eq. (48). The following result gives the solution.

Theorem 3. Let A* be the NIoore-Pnrr.-,,.mtc&,verse of.4 id set c* = A+b.
Then

A.* - b = 11n1 m -IAc - bjl.

and lc*112 = miln{~lJ(2: IA - bjjf 2  nhi,.-:c - b!!t2 }.

Proof Let A =UZI be a singular value decompositoin of .4 as described in the sub-
section entitled Singular Value Decomposition aid the Moore-Penrose Pseudoinverse.
Then

1!Ac - bl 2, 1 Il1U, 'c - bii(
- IIr - Urblt,

since t is unitary, so that ILUaII2 = ljl (2 for ;ait- vector a. \,-ite

c (,. . )T U b .. .. 1 . .I,, b

Then

-3 + A I-- J

Hence. tw mininiiuji of l[Ac - bilo is attained at w..............whlr
I"

I";? ( 7Jd,. . Y J ;41, .. ,k) with art~itralv ",. .. . " . Ina i ti. i,,,

9,)
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2 (1 ~j2 712 1 + + 22k k'
- ~ I +0 1k ) 't~

the solution " with minimum (2 norm is attained when k+ . 0. or at
= c*, where

1,TC 31,..., 1 A ,O,1....,0
(7k

~a
k 0

0 0

or equivalently,

C= VE+uT b =A+b.

This completes the proof of the theorem.
Algorithms for determining singular value decompositions, and hence Moore-Penrose

pseudoinverses A+, are available in the literature [6 - 12], for example.

ESTIMATION OF TIME-OF-ARRIVAL

As discussed in the subsection entitled Spline Representation of Underwater Acous-
tic Signals, the spline functions of degree k defined on the time interval [0. d] with knot
sequence

th: to i < ... < n-t 1 < K.. < t+k,

where 0< t0j < d,t, =d, and tj = ti + h forj = 1.,. .. ,n + k, with

h = d -- to(62)
n

will be used to re)resent underwater acoustic signals. As in that subsection, the least-
squares fit is used to determine the spline curve. Since a spline function is given by the
spline series in Eq. (11), it vanishes identically on [0, to] and "takes off' at to (see Fig.
9). It is clear from this model that the initial knot to represents the time-of-arrival.
ttence, this knot must also be determined. While both n and d are fixed. with d de-
rioting the length of the time interval and 71 the number of interior knots in the tilme
interval. the relationship shown in Eq. (62) implies that determining t, is equivalent to
deternining h. Since the larger the value n is used the better the estimation becomes.
it is advisable to choose a relatively large value of n, provided that the cotmlitational
tile is reasonable. Hence, in the mathenatical model in Eq. (13). t.c miliniizati(
tin ist be taken riot onlY over the spline coefficients (). . , but alO (,ver the non-
linear paralmeter h. Furtheriaore, there are at least two reasons that w,- :l hl cho,,ose,
the ininmmin value (of those h that solve the optinizationI problem. Fir-!. if the "data
fiuction" happens to be piecewvise linear with equally spaceI kii)ts. tci ,ii tl niilii mu in
It. (or naximi un to. is the exact time-of arrival, while certain smaller ii.:a t(s )f to still
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reproduce the signal (see Example 1 in Appendix II). In addition. since h is the dist ance
between two consecutive knots, the smaller the value of /h. th lbetter the approxiiat ion
of Sk = Skh [given by Eq. (11 )] to t lie measured signal f is obt ained. More I)rec(i-el ". we
will study the following extremal problem. Let

A'k(h.c) If- c iBk.tjI'+ A (63)
J=O J=O

where c = (co ..... C ,,- I) and A > 0 is fixed. Determine the set H h } of values 1, such
that

Kk(t .E) = iLf Kk (hc) (64)
h,c

for some sequences g = (so......, where inf denotes the infinium or "niniiiiitm"
and is taken over all possible h > 0 and all c = (C()..... C,- I ). It should be eIipliasizedt
that the mininmization is taken independent of the order of h and c.Let

h* = h() = inf H

be the greatest lower bound of the set H = { }. Then by Eq. (62). the time-of-arrival of
the acoustic signal with measurement f is given by

to = d- ut* (63)

Existence, Uniqueness, and Characterization

As discussed in the sul)section entitled Spline Representat ion of Underwater Acoils-
tic Signals, both the L 2 and 2 (w) norms will be used. Given any > 0. by the c-fini-
tion of infinum, there exists a pair (ho, Co) where h0 > 0. such that

K0,.(hcO) < inf A7k(h.c) +. (66)
h,c

Since

Kk(ho. Co) > inf Kk(ho. c)
C

h >0 c

we ha 1 lve

ilif inf l'k(h.c)} < Iif Kk(h. + . t7I? >0! IJ h I fi

Since this inequality holds for ay _- > 0. we iiay coiclide that

inf {infAx.(th.c} }_nA~h).Ch> f ill Ik 1-C) < iIld Ik(h '. II-3

However. since it is clear from definition that the qualitity ,i thf,' I'i"hIt -ha id -d,, - 110
greater than that on the left-hand side, it follows that the extreiiial iproble w:, %lit,1t
to solve becomes an iterated extremal problem, Inamely:
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infKk(h,c)= inf inf Kk(h, )"(69
h,c h>O f c I

Now, for each fixed h > 0, since the extremal problem of finding a '(h) such that

Ek(h) := Kk(h,Z(h)) = inf Kk(hc) (70)
C

is the (linear) least-squares problem discussed in the subsection entitled Spline Repre-
sentation of Underwater Acoustic Signals, which, as we have seen, always has a solution
by solving a system of linear equations, and in fact, this solution is always unique for
L2 , and also unique for C2(w) if the minimum norm (or Moore-Penrose pseudoinverse)
solution is used, we see that the original extremal problem in Eq. (64) will also have a
solution provided that there exists an h > 0 such that

Ek(h) = inf Ek(h). (71)
h>O

But the existence of h is clear, since Ek(h) is a continuous function on [0, d/n] and

Ek(0) f= f112

cannot be a minimum. Let H be the non-empty set of it > 0 that satisfies Eq. (71). The
greatest lower bound of H, which is clearly a positive number denoted by h*, is unique.
Summarizing the above argument, we have the following.
Theorem 4. There exist a unique h* > 0 and a sequence c* = (c*,..., c* 1 ) such that

Kk(h*, c*) = irf Kk(h, c),
h,c

provided that the minimum-normed least-squares solution is used when the ( 2 (w) norm
is considered, where the quanity Kk(h, c) is defined as in Eq. (63), and h* is the greatest
lower bound of all h > 0 that satisfies Eq. (64). Furthermore, (h*, c*) can be achieved
as follows. For each h > 0, let E(h) be the unique (minimum-normed) least-squares solu-
tion of Eq. (70). Find the set H of absolute minima of the continuous function Ek(h) on
10, d/n]. (An absolute minimum must also be a relative minimum here.) Then

h* = infH,

and c* = c*(h*) is the (minimum-normed) least-squares solution of Eq. (70) for h = h*.

Recall that the time-of-arrival is given by to = d - nh* in Eq. (65). The main dif-
fiCtIltv in he procedure outlined above is solving the nonlinear problem of finding the
absolute minima of Ek(h): namely, the extrernal problemn in Eq. (71). For the continu-
ous setting (or L' norm), this procedure will be greatly simplified by giving an explicit
formulation of thw error functional Ek(h).

Estimation for the Continuous Setting

For any discrete da ta (r,. f,),I = 1 ...... and 0 71 < "" < 7 .,. lt f t
be the piecewise linear furction on [0, d]. linear oni ecrh su)ilnt.rval 17,. 7, + . 1tich thbat
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fi () Re m n

{ 4 B [It Nk(t Xk (t J Wtt]Oi~~ (74)

i e 0,le.ia nia 1at Thix of h eeiiv s ofe B whqee souto .f th syA el _f h. )anoitiar cmia

Sloll)is:

(,4 A, It + A I E~ -(73)

osuyti sse e

PU,~O A 'JJj'! , (77)
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Note that both b =b(h) and E (h) are functions; of h. The function Ek( 11) in Eq.
(70) to be minimized now becomes:

EWOh = h&TB + A&E - 2h Tb +jI If (t)I12d(t. S0

'To simplify the computational procedure, it is recommendled to set

6 =pTb (i

where b is defined in Eq. ( 74). Then Eq. (80) can be sinmplified to be

Ek (h) Ift~dt ~'__ _(82)

0 z=1 /IA, 1

where b =( bo..,b,,-,). It is now clear that Ek( h ) is differentiable .vlthi coxiti:1iiioil

derivative E'( h) given by

Ek 12 A + 2hA 2 b9/ 2h2 (83)
(hA + A) 2 l1ZAi + Ai

It is also interesting to note that E'(0) :7-0. Indeed. h =0 gives a relative inlaxi-
mumi Ek(h). To determine the objective function Ek(h) in Eq. (82), we must Compute
the eigenvalues JAI, I.. . , A,, I of B =B , and the unitary miatrix P formed by the cor-
resp~onding (orthionormial) cigenvectors {0I1,. - Un}1, namely: P = .it . zi,1. In the
following, we give thle example where k 1.

Linear Spline Estimate

From Eq. (37), wve see that for k 1

B B2  [jn- NI (t)NI (t + I -J )dt] jn

1 4 1 (84)

6
1 4 1

From Gershigorin's theoremn, there is one eigenvalue in the interval [3.3]. o - 2 eigenval-
ties in the interval [2,6], anid one eigenvalue in the interval [1,3]. We can be much more
p~recise 1y determining the eigetivalue and eigenvector pairs ( A, u, ). i =1 .. o more
exp~licit ly. To (10 so. let us consider the homogeneous linear systexi. where we have nxiul-
tiplie. the matrix B by 6:

(4 -1/) 1 -

1 ( 4 - /1) 1 IY I[U

1 (2 /

2)7



Chlui

By setting . - - 2, Eq. (85) can be reformulated as:
- 2 ,ryl + Y2 = 0

Yi - 2.ry 2 + y3 0

,q,,-2 - 2-rYn-I + Yn = 0

Yn-I - 2(x + l)y,, = 0.

It is well known that the two linear in(lepend(et solitions of tihe ,ccoii(l order (liffrulice
(quations 1k+2 - 2. /,+ Y = 0 are the Chebvshev polyioiials of the first and 5('(I

kinds. Tk(.r) and Uk( .r ). rcslpctivAv where

{ Tk(x) cosk 0

U,.(X) - sin(k + 1)0 S7
sin 6)

with 0 c cos - x, 0 < 6 < r,. Since U0)(.1) 1 and UI(ar) = 2x we have Uk - Uk .
k 1 ... .?. so that all except the last eqmtion in Eq. (SC) ar satisfied. To ,t isfv the
last equation in Eq. (S6). we must lia(v':

sin~n 1 )0sin n 6
s (n )0 - (2x + 1) 19 = (88)

sin60 sin 0

or e(quivalently,

sin(n + 1)0 + 2sinnO 0 0< 19 < =. (89)

This conclusion implies that I.es < 1 or 2 < p < 6. However. as p)ointed out above, it
follows from Gershgorin's theorem that there is an eigenvahe in Refs.1 and 3 and hnce.
it is possible that I < p < 2. To determine p with 1 < p < 2. P may be considered to he
colit)hex. This is valid since' k = 'k- (,') where .r = cos. f mplex. still satisfie's Eq.
(S6). A careful in-estigation reveals that a complex 0. which giv(es a real .r < -1. is the
Only root other than the ( Y - 1) real roots of Eq. (89) in (0.-).

Case 1. Real Solutions 6) That Give the First (n - 1) Positive Eigenvalues:

Let
f()) - .sin(n + 1)6) + 2 sinll i. 90)

Then we have
( i

( si

- 21 -1) j+i sin 1
1,

SO that for j 1.
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f(j : sin17(1 + I/n)
(-1 )-sin jr

U

so that for j 1-.- - 1.

sgnl f (1i 92)1

Now, since j n U + 1, we see that j - 1/n < j/n + 1; and therefore the intervals

n+l

12 = 2 7 27-,
+2 1 (93)

In- (( - 1)i (n-1)r)
n+ n

do not overlap. Note also that these intervals all lie in (0, w), and in view of Eqs. (91)
and (92), there is one root Q1 of Eq. (89) in each Ii, I = 1,.. n - 1.

Case 2. Complex Solution 0 That Gives the nth Positive Eigenvalue:

Let
g(t) -- sinh(n + 1)t -2 sinh nt. (94)

Observe that since there must be an eigenvahle y in (0,2), or x < -1. we set 9 7r + ji

where j = \/--. This gives

f(7r + it)= (-1) " +1 sin (j(n + 1)t) + 2(-1)- sin(Jnt)

= (-1)'+l/ sinh(n + 1)t - 2sinhntl

=(-1)n~ljg(t).

That is, we must solve for the real t in

q(t) = sinh(n + 1)t - 2sinh nt = 0.0 < t < x (95)

and the (unique) root tn [or complex root On 1- + jt,, of Eq. (S9 ' give.s:

X n cos(7, +j9) - cosht,, < -1 (96,

01*

A,, := 4 + 2r,, < 2. (971

We can nov make the following conclusion. Let 19, C Lj. 1 I1....- 1. be .-ol'10i1,
of Eq. (89) and t,, be the solution of Eq. (95). Then for I =. - l. reCallinu- the

factor 1/6 in Eq. (8.4). the eigemivahlie ('igenvector pairs of t I' notI i:, 13 ;11e.
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( A~ (4 2 cos 0)/G

I [ sil 01

u 1 -- 7jili 2t,,

( Izt, i- 1,'"."n fi,
Ilejice. for A- 1 (the liiiear sp~line ). thle fooII wiiW' alff( (ii t li ("(Ill p'c used to estimiate thle
iie-of-arrival. hii all thle a igorit linis Immimle in t lii report it tt slhoud b le rcuiarkc I thlat
lie original ext rniil r I )leii cani w mrit ten am a IWOM V '11 ( MX reliapr)L as VC6rHieI

in thli siih sect ion (eitit led Existenice. Uiquene~i(ss. and~ (liarat t erizat i o. That is, a lica r
rgressioni is first p)erformiedl 1) simiiple linear algebra to d et ermiine thle 51)111W (' oeictcit s.

;inid thien a iiouiihiiar op~timiz'iation proce(ltirf' followvs.

Algorithm I (Linear Spline Estimation of Time-of-Arrival Under Low
Noise Condition).

(10) C'onijplite A1 .  ll-I Ar, and U1 .  U7,- 1.U,, in Eqs. (98) and (99).
(20 Let P = [U1  U,, an comil(ipult e b - Pb wl e b i,- given I V Eq. (74).
30) For exact dat a, * se A =0. while the noisier thle (lat a. th liarger posit ive A\ is, re-

quiired. Fix a A > 0 and deterinnec the set of h s icli thI at
El (If = Iliiih >() El (If). where El (hIi) is given by Eq. ( 82) wvithI h e ing t ie(

ihentry of b (Which oep n oi1).

(40) Deterliine thle smallest value h * > 0 ainlong all values

The timie-ofarrival is given by to d - f h * . [See Eqj. (65)]. The choice of A ia
futnction of the noise of the signal will he stutdid in the f rt licovnig report [41.

I conlipit ing A,, . A . the Ah-sectionm et ni( )(ml miay be used to dlet ermline 19,E
I, sinlce thle valuies of .f( 9) have opposite signs at thle twvo eiid- p( inlt of I'. To compiu~lte

A,.Newton's iiithodl mxia he usedo to seach for the unique root t,, > 0 of Eq. (9-5).
Iii coinpiit ing thle dat a vec tor W. and heane b6(6 Pb) . noteI tha t it (1(1 )eid , on b.

I ii a't, A-icv 1. thle (i + 1 )" comp~onent of b) is given byv

b, tfib(t - 71 + i) + d1)dt / l 2 - I )f) 1(t -1?f + i) + (/),It (1001

for I 0. t 1. Where

11 fo r 0 ......- 2

301fr
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The integrals in Eq. (100) can also be written as

b, =t +d-
dL1 7ih ( + td(101)

1 d-(n--2)h f()dt
-'+ z h id-(n-i-I)h - +

Here. the factor 1/h which gives a factor of 1/h 2 for b2 should not be evaluated siice it

cancels with h2 in E (h). [See Eq. (82)]. Recall that f(t) is the piecewise linear function

determined by the interpolation condition f(rj) f= .f. where ( . f3 ) is the data set.

In determining h in (30 ) , instead of minimizing the qualtitv E (h), it is equivaleit
to maximizing the quantity

F 1 .

T(h) V (102)
hA, + A

and as pointed out above, the numerator h2 is cancelled out with the factor 1/h from
b,-I. Recall that b, depends on h. To facilitate the optimization process, the derivative

of T(h) may be used. Let c = [C0 ... C- 1 ] r and Z [-. -] pTc where

fd-(n-i-1)h d-t

C, j d (t)dt
Jd-(n-i)h h

(f d 2)h d- t - (103)- i f---i  f(t )dt

- (1 - 6j)(n - i- 1)f(d- (n - I1)h.

Then we have

TI(h) = E h!i_,

(hA + A)2  (104)

+ h,\, + A I

Estimation with Splines of Arbitrary Degree

To estimate with spline functions of higher degree, the ineth, derived in the ,',ub-
section entitled Linear Spline Estimate canmot be applied: and hen''ce, we must det )nd

on imnerical estimates of eigenvahpm-eigenvector )airs 1tire'ctly. L.t

B,= [.10 ." (,).,&(f *+ ;- .J ,(IIJ ,I0
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where the ut egrals are coniputed using thc p~roceduire, dlerivedl In t he subs ;eri( )l cut it if(l
Conlipit at ion of the Coefficint MatiWes. For inst aiic. when ii l)iline are (1d Nv

where C(7,3. D . a11(l £3j are givenl In Eqs. (41 ), (42), anld (43). respect ivelv. Let

b~e tilie eigeuva- lue-eigeflve-Ctor pairs of B~ whvlere A~ k A k > .. > A\k > () aII(l acli.1 r, I,

II( )rmalizedl to( have unlit Ieiugthi. The algorit bin to (leterinjllie th~e t ii(l-( f-;ta ival I)% -lii
at k" (' egree iline (CI'rVe Call be d(lscrl ed aS follows.

Algorithm 11 (Estimationx of Time-of-Arrival by Splines of Arbitrary
Degrree k tunder Low Noise Coniditioni).

10) Choose k ( depenidiiig onl thle dIesirab~le siiiOot 1ii(-.,,) anid eoinpu te t he B crii-tcIII
coefficienits of tihe B-splirie N'k as III the suilsect ioul en1titled Comlpuita~t Loll of B-
Sphlines. (See Figs. 6 and 7).

(20) B,, usinig thle forinruLo iii Eq. ( 37) anld follow~ig the proe i re(ls(rilbd( inl tihe
suhs)ert 1013 enititle. _oinlut at loll of the Coefficienit Matr(cs coILpII~lte tile ma ;-
rix .4k,, . [14' t-)I( spline curive is ised. skip tieetwo steps a id ise tlic for-
wila inI F ~

3' Coiniput, t he e1geivaille auldl (i'ci evec'tor I)airs" ( .U~) k . and A(
A k~ > 0, of the niatrix Ak~h . (E.g. the r'out iues iII Ref. 13 miay- be iv-((l.)

(40) Lo' 7

P~uk...ukJ

anid coliltiute b-P'b wh-lere b is given by Eq. (74).
Y)For exact dat a. usec A =:0, while a positive A miar be uisedl for iaos d1V(at a. FixY

A > 0. ajId (leteruinie the set of b such that

h >o

Where Ek ( h) is given hy Eq. (8S2) wvithi 1),_ being the I f henitry, of b wvhli h
pl~el(ls Oil h ).

60) Dcr erilinie t he siiia Ilest valu It* > 0 ainong all values it.
Againi a iiiet hod to (ct eriiuie the valu e of A as a funict i of thle n ise,( will h, !I--

ClClIin the fort hcoinig rep~ort (4]. For the tlime( being. ii>( A .01 or e)-ven a ;t
valuei if the nioise level Is ver lowv

Estimation for the Discrete Setting

If lhee noise; level is fail I uigh. algorltithm I all1d II a1re hlot applicalde 5'IJjc !I' I

IP 1 C1(1 a1ohl)l' (crit('1iohi to deteiiiiiiiec the (data fulnction j". Iti aete/i')

uIa t ivc% 'lv i rgcr value of A should he uised. The value of A\ -v Is ye iihi I
it varies with the nloise. See the fort h,(Icouiig report I'll for a LeftterI Cho(ice' (f V.
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Let (r, fe). f = 1,..., N, be a set of data information. Set
k,h bk (107)

where is given by Eq. (31) with

Bk,th,i(t)= Nk -i- -(d -t)) (108)

Define fo fjL- , t, I '

fh f"k= (109)

tz= I ftBk,t,n(ewJ

and let
A Ak,h + AI (110)

as in Eq. (46). Then we have the folowing algorithm to determine the time-of-arrival by
using a k1h degree spline curve and the P(w) norm.

Algorithm III (Estimation of Time-of-Arrival with the 2 Norm for Noisy
Data).

(10) Choose k (depending on the desirable smoothness) and compute the Bernstein
coefficients of the B-spline Nk as in the subsection entitled Computation of B-
Splines. (See Figs. 6 and 7).

(20) Compute the polynomial pieces of Nk by using the formula in Eq. (5) with as,
being the Bernstein coefficients and Vk(u, v) defined by Eq. (4), where u, , are
given in Eq. (2) with [a, b] being the corresponding interval of the polynomial
piece. Set

Bk,t,i(t) = Nk In - i - 1- t 11

(30) Compute bi in Eq. (31) and fi by using wt = 1. 1,..., N, and 0 < iJ <

n-.
(40) Fix a positive value A, say A = 1 in Eq. (110). (The noisier the data, the larger

the value of A is recommended.) Determine an SVD (singular value decomposi-
tion) A = UvVT of A, where U and V are unitary and

O71

a (7.(112)

0

where a I > ... > ,, > 0.
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(5) Let u, be the I'h colullli of [U and V, the 1"h colllumn of 1'. Coll]ijlte C*

0 . ] by using the formula

c* -uti f, v. (113)
2=1

where ,= O ... f,-ii has b~eenl comnpuited fli (30).

(6 ) Compute

K(h) f, (Yk ,,-j- }(d - J i) + ( (114)
=I j=o j=0

Here, we have used wi = 1. The value of A must be the same as the A In (40).
(A smaller or larger value of A is used deI)ending on the noise level of the data.

70) Determine the set of 1i such that

IK () = minK(h). (115)
/2 > 0

(8°) Determine the smallest value h * > 0 among all values T.
(90) Compute to = d - nh*.

Then t0 is the time-of-arrival. Note that algorithms from Refs. 6 to 9 can be used
in step (40),
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