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ESTIMATION OF TIME-OF-ARRIVAL
OF UNDERWATER ACOUSTIC SIGNALS
BY SPLINE FUNCTIONS

INTRODUCTION

In the study of underwater acoustic signals, one of the most important problems is
to determine the time-of-arrival (or signal onset) from the given data. For instance, the
transducer ard panel transfer function identification techniques all depend on an accu-
rate estimate of this value. In this report, the underwater acoustic signal will be repre-
sented by a spline curve whose initial knot lies in the interior of the time interval so that
the spline function is identically zero to the left of this knot and “takes off” to the right
at this knot. Hence, the initial knot clearly defines the time-of-arrival of the acoustic sig-
nal. The objectives of this research are to study a mathematical model in the form of an
extremal problem whose solution yields an accurate estimate of the time-of-arrival and
to develop an algorithm for solving this extremal problem.

The first section will be devoted to the study of spline functions with special em-
phasis on the computational procedure of each polynomial piece exactly and determining
the coefficient matrix in a modified (or “penalized”) least-squares problem. Both the
treatment and results here are different from those in the literature. When the discrete
least-squares problem is solved, the coeflicient matrix is usually singular. We will choose
the solution whose least-squares measurement is minimized. This minimum solution is
achieved by taking the so-called Moore-Penrose pseudoinverse of the coeflicient matrix, a
topic that will be discussed in the section entitled The Minimum-Normed Leas. Squares
Solution. This presentation is intended to be complete so that both known anc new re-
sults are included. The mathematical model that determines the initial knot, or equiva-
lently the time-of-arrival of the acoustic signal, will be posed and studied in the section
entitled Estimation of Time-of-Arrival. An algorithm to determine the solution of the
corresponding extremal problem is described. A computer program with numerical ex-
amples will also be included.

FITTING OF UNDERWATER ACOUSTIC SIGNALS BY SPLINE CURVES

Underwater acoustic signals, noisy or not, can best be fitted by using spline curves.
In addition to the usual benefits from spline representation such as efficiency in compu-
tation, flexibility in choosing the order of smoothness vs minimizing the possibility of
oscillatory behaviour, the variation diminishing property, etc., the main reason in us-
ing spline curves to fit underwater acoustic signals is that the initial knot of the knot
sequence of the approximating spline function clearly defines the time-of-arrival (or sig-
nal onset). This section is devoted to the study of spline functions. Although there is a
vast literature on this subject, we will introduce a new approach which cannot be found
in any published paper or book, except partially in Refs. 3 and 5. in order to facilitate
our self-contained discussion and to improve the computational procedure to suit our
purposes. In particular, since the initial knot is going to be an interior knot. the results
in this section are somewhat different from those in the spline literature. This section
is divided into five subsections. Since a spline function is a piecewise polynomial func-
tion, the first subsection contains a short discussion of representation of a polyuomial by
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“Bernstein coeficients.” One advantage is, of course, that a Bernstein polynomial de-
fined by using the more general formulation here, is coordinate independent. so that it
provides an ideal representation of any polynomial piece of a spline function between two
consecutive knots. Spline functions are defined in the second subsection with empha-

sis on the ones with uniform knot sequences, and a computational method introduced
in Ref. 5 using the Bernstein coeflicients directly is included in the subsection entitled
Compnutation of B-Splines. The last two subsections are important for the remaining
material of this report. The new idea of representing an underwater acoustic signal by
a spline curve with the first initial knot defining the time-of-arrival is introduced in the
subsection entitled Spline Representation of Underwater Acoustic Signals. A modified
(or penalized) least-squares procedure is used where the modification is achieved by 1n-
troducing a parameter that governs the noise level. The final subsection includes a com-
putational method of the coefficient matrices. This information is especially iinportant
for our computational task.

Representation of Polynomials

Let & be a non-negative integer and 7 denote the vector space of all real polynomi-
als of degree at most k. That is, each p € m; 1s of the form

k

p(I)ZZajIJ (1)

j=0

where ag,...,a are real numbers. Of course, the collection {1,z,... ,1"? of monomials
provides a basis for mx. However, for both theoretical and computational purposes, it is
usually necessary to focus our attention on a certain interval [a, b], and in doing so, the

basis {1,z,...,2*} is no longer useful, since it does not reflect upon this interval. For
this reason, we will use the so-called barycentric coordinate of the interval [a, b] defined
as follows. Let u and v be two linear polynomials defined by

b—=z r—a
2 v a(a) = (2)

Note that the pair (u,v) of “variables” identify the interval [a, b} in the sense that u rep-
resents the initial end-point, a, relative to the interval [a.b], and v the final end-point. b.
relative to this interval, namely:

wi=u(r) =

u(a) =1 v(a) =0
and

u(b) =0 v(h) =1
This pair of variables can be used in place of the variable r, since

T = ua+ vh. (3)

Of course, we must remind ourselves that v and ¢ are related by the identity. v + ¢ = 1
for all ». Now, it follows that the collection of & + 1 polynomials

‘ A'!
oy lue) = Suted, (4
!
where 0 < 7.7 < kand 7 4+ j = k, is also a basis of 74 that 15, every polvnomial p € =
can be uniquely represented as
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p(u,v) = p(u(z),v(z)) = Y afpli(u,v) (5)
i+j=k
for all z, where the summation is taken over all 7 and j with the restrictions:
0 <i.j £kand: + ) = k. In other words, the coefficients {afj},i + 7 = k. called

the Bernstein coefficients of p(u,v) uniquely determine the polynomial. In Fig. 1, we
display the Bernstein coefficients of three cubic polynomials on [a, b}, which are

(=) + (=)
(=) (5=2)"

b—z\2/2—a b—z\/x—a\2
(=) G=2)
3(b—a) (b—a) b—a/\b—a
respectively. It is important to remark that not only the collection {afj},i + 7 = k,
uniquely determines p(u,v), but it also gives a geometric description of the curve traced
by the polynomial p(u,v). Indeed, since <pf]- > Ofor all z € {a,b] (or equivalently, 0 <

u,v < 1) and Ecpfj =1, p(u,v) is a convez combination of its Bernstein coefficients afj,
and hence, lies in the “convex hull” of the set

{ (fa+ %b),afj} . (6)

i+j=k

and

This two-dimensional set is called the Bernstein net of pﬂu,v). By joining this net by
straight line segments, we note that the graph of p(u,v) lies in the “convex hull” as
shown in Fig. 2, where both the Bernstein nets and the polynomial curves of the exam-
ples given in Fig. 1 are shown.

1 0 0 1 0 0 1 0 0 1 -1 0
[ | J L | | | | ] | )
a b a b a b

Fig. 1 - B-Coefficients of cubic polynomials

a b a b a .\ \/h

Fig. 2 - Graphs of cubic polynomials

3




Chui

Spline Functions

Let k be a non-negative integer and

t: "'<t_i<"'<t,<"'

be a bi-infinite sequence with t; — oc and f_; — —2c as 1 — oc. Suppose that ¢ = #
and d = t, when n is a positive integer. Then a function f € C*7'e,d] (i.c.. f has
continuous derivatives up to order k—1 on the interval [c. d]) is called a spline function of
order (k+1) on [c,d] with knot sequence t, if the restriction of f on cach interval [t,.#,,,]
is a polynomial of degree at most k,¢ = ---,—=1.0.1,---. We will denote the space of
spline functions of order (k + 1) on [¢, d] with knot sequence t by Sy .(c.d).

It is well known that a basis of the space S ¢(c.d) is given by the collection of so-
called B-splines By ,. where 2 = —k ..., n — 1, a totality of n + k functions. Each B-
spline By ¢ ; 1s in Sk ¢(¢, d) and vanishes identically outside the interval (¢;,f;4x41). The
interval [t;, tiyx41] is called the support of the B-spiine Byt ;. It is also well known that
the support [t;,t;4x+1] is minimal in the sense that any function f in Si¢(c, d) whose
support is a proper subset of [t;,ti+x+1] must be the zero function [2]. In Fig. 3. we give
the graphs of B-splines of order 1, 2, 3, and 4.

B;
Bt B¢ B¢ 3.t
1 1
/\ & /\
0 0 % I\I I R
i tiya i tipr lige '
ti  tiy1 tigo tiyz 1 tiya

Fig. 3 - B-Splines of order 1 - 4

In this report, we are only concerned with spline spaces having uniform knot se-
quences t: that is, we only consider t;4; — t; = t; — t,_; for all :. The construction of
B-splines with uniform knot sequences is particularly easy. We start with the special
case where t; = 1.

Let Ny(x) be the characteristic function of the interval (0.1); that is,

NO(I):{I if Q<r<1 (Ta)
0 otherwise
We define. inductively,
1
Ni(r) = / N (o — f’)(lf. (7h)
0

k=1.2..... The graphs of Ny. Ny. ¥, and Ny are shown in Fig. 4.

4
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N N, N, N3

. — 1 T T T ]
0 1 2 30 4

0 1 0 1 2

Fig. 4 - B-Splines at integer knots

It is easy to show that Ny € C*~!(—~o00,00), and since each integration increases the
degree of the polynomial pieces by one, we see that Ny is in Sk z, where Z is the set of
all integers. The B-splines in Si 7z are given by
Bk’z,,'(lf) = Nk(x-i). (8)

Now suppose that t;y; —t; = h > 0 for all 7. Then the B-splines in Sk ¢, (¢, d). where

the knot sequence is
th: o<t <<t <os ) bty —ti=h,

with tg = ¢ and t,, = d, are clearly given by

1 :
By s i(2) = Ne(3(a = ¢) = ). (9)
These are the B-splines that will be used in this report.

Computation of B-Splines
Let t;41 —t; = h > 0 for all : and

tp: - <t < <<
with tg = c and t, = d. In view of the formula in Eq. (9), to obtain the B-spline basis
{Bit,.i}.t = —k,...,n — 1, of the spline space Sk,th(c,dg, it is sufficient to determine
Nilz). Although Ni(z) can be computed by using the definition in Eqs. (7a) and (7b),
it 1s more efficient to compute the Bernstein coeflicients of each polynomial piece by fol-
lowing the method described in Ref. 3. Since N;(z) is piecewise linear with values

o1 i =1 »

"\‘(l)‘{o i1 (10)
where : € Z (Fig. 4), its Bernstein coefficients are {0,1} and {1,0} on the intervals [0.1]
and [1.2]. respectively. as shown in Fig. 5.

0 1 0
L { J N
0 ] 9 (1)

Fig. 5- B-Spline N (r)

(611
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To determine the Bernstein coefficients of Na(.r). we need an intermediate step
where the Bernstein cocfficients of (1/2)[Ny(z) — N (r — 1)} are recorded. Now aloug the
interval {0,1], first input the zero mx*‘al (ondm(m Th( ‘n add this zero value to the first
value of (1/2)[Ny(z) — Ni(x — 1)], namely zero. to get the second zero value. Next add
this zero value to the second Bernstein coefficient of (1/2)[Ny(x)=Ny(r=1)]. namely 1/2.
to get the 1/2 as the third Bernstein coefficient of N,(r) on [0.1]. For the interval [1.2{.
we perform the same operation add the initial value of 1/2 to the first value. namely
1/2, for (1/2) [Nl r) — Ni(r —1)], to get the second Bernstein coefficient of Nyfr) on [1.2.
which 1s (1/2) + 1/‘) = 1, and next, add this value 1 to the second value. namely —1/2
for (1/2)} Ni(r)=Ni(r—1)]. to get the third Bernstein coefficient of . 2(xr) on [1. 7} which

i1s 1 — (1/2) = 1/2. For the interval [2.3]. we repeat the same proce ‘dure. (See Fig. 6).
1 1
0 3 -3 0 1 ’
L | | 5(Ni(x) =Nz — 1))
N\ l

0— 0— 3—— 1— 3— 0— 0

|
\ 1N !

1

I —T T el

Fig. 6 - Construction of Ny(r)
To compute N3(r), we again need the intermediate step of (1/3)[.Ny(r) — Ny(r — 1]
)

We then follow the same procedure as above in the computation of Ny(x), but th)s time
the support of N3(r) is [0.4], one unit longer. (See Fig. 7).

3(Nao(z) = No(zr = 1))

0 0 ! 2 o - -5 0 0
L | | | | ] [ ]
: N N\ I\ N N h LN N !
| ! T K
0 1 2 3 4
N3(r)

Fig. 7 - Construction of N3(r)

In Fig. 8, we show the computational procedure for the guartic and quintic splines
Ny(x) and N5(r), and for simplicity, we have omitted the arrows and write down the
Bernstein nets for Ny(r) - Vy(or — 1) and Vi(r) — Ny(r — 1). instead of (1/4)[ V(o) —
Ny = 1)) and (1/5)[N4(a) = Ny(a = 1)], respectively.
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1 2 4 4 1 4 2 2 41 & —~4 -2 -|

°°°% % T ¥ FETEEIERT T T © 00  Ny(g)-Ny(z-1)
1 2 4 8 11 14 16 14 11 & & 2 1

0 T N W W W uWW T W W w00 Ny(=)

1 PR T . - -1 -12 -0 -3 —~4 -1 o
*°**yw gwgwwW WO W @W W W WETE woeoo o N(z)— Ny(z-1)

. e

1 2 4 M B 4 W0 s ow U 0 M M M M s s 1
WX IBIBIBEI BB BN TIBIDRIE *®° %o NS(:)

Fig. 8 - Construction of Ny(z) and Ns(z)
Spline Representation of Underwater Acoustic Signals

The spline model will be used in this report to represent underwater acoustic sig-
nals. Let the time interval in signal measurement be [0,d]. If ¢4 > 0 is the time-of-arrival
of an acoustic signal, then the spline curve that represents this signal must be identically
zero for t < ¢y and “takes off” at t = ¢;. Hence, the spline curve is given by the spline
function

Se(t) = Y ¢iBrens(t) (1)
7=0

where the knot sequence is

th: o<t <" <tpoy < < tpyk

with0 <ty =¢, t, =d, and

ti=t,i+h , h= , (12)

7=12,...,n+ k. (See Fig. 9.)
Here, due to the nature of the spline series Si(t) in Eq. (11), this spline model as-
sumes zero values of Si(to),... ,S,f_l(to) at the time-ot arrival ty.. Hence, if the acoustic

signal should have nonzero slope at the time-of-arrival. only the linear spline model (k =
1) can be used. In the forth coming report, we will allow stacked knots of spline func-
tions of degree k at ty in order to make use of higher degree spline models even though
the slope at the time-of-arrival may not be zero. In doing so, the procedure becomes
adaptive in nature but involves more complicated computations.

7




Chui

Fig. 9 - Spline model of signal

Let us assume that the measurement 1s taken at {7;}, where 0 < 1y < -+ <71y < d.
and the signal measurement is

ftriy=fi ., i1=1,...,N.

In practice. we have N > n. The coefficients {¢;} in the spline series Sg(#) in Eq. (11)
must be so chosen that the quantity

n—1

If = Sel?+ 21" (13)

)=0

is minimized, where || || is a norm to be specified, and A a non-negative parameter that
is selected to adjust the “smoothness™ of the acoustic spline curve Si(t). For noise-free
signal {f;}. A should be chosen to be zero, but a positive A value is requied if the signal
is contaminated with noise. In other words, the value of A must be adjusted adaptively
according to the noise level. A detailed study will be given in the next report [4].

Two practical norms || || are the L* and (*(w) norms. detined respectively by:

b
d 1/2
2
llgllrz = / lg(r)]"dt (14)
0
and
N 1/2
U > -
allziwy i D tatm ) . (15]
=1
where w = {w,} is a given sequence of positive numbers: called werghe~ If the signal s
noise-free, or if the varience of the noise process is time invariant. we iy take e, = 1

N
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On the other hand, for noisy data with time- \ar}ing variance, {w;} should be chosen

according to the standard deviation of the noise. When the L? norm is used. the signal
function f(t) must be measured for all values of t € [0.d]. This is usually not feasible.

and one way to get around it is to define f(¢) ns a piecewise linear function such that

f(r,) = fi, i = 1...., N, and that the restriction of f(¢) to each interval [r;, 7;41] 1s a
linear function. 1 <1 < N.
Let
d n—1
F(C) = Fh(C): / |f(t)—ZCjBk,th,j(t)|2dt
Jo -
=0 (16)

n—1
+ /\(Z c?)
7=0

For the time being let us assume that & is fixed (which 1s equivalent to saying that the
time-of-arrival is assumed to be known). Here,

Co
c= . (17)
Cn—1
To determine
n—1
Sk(t) = ZéjBk,th‘j(t) (18)

which minimizes the quantxty in Eq. (13), or equivalently F(c) in Eq. (16), we simply
determine the following “normal equations” by differentiating F(c) with respect to c:

n—1

d d
Z (A Bk,thlj(t)Bk'th,,'(t)dt>6]' + Aé; :/(; f(t)Bk,t,h,’(t)dt, (19)

j=0

:=0,....,n— 1. Hence, by setting

)lk'h =

d
/ Bk,th,j(t)Bk,th,imdt} (20)
0

0<1,j<n—~1
and

fO BL th. 0 *)(I'f

fi = : : (21)
d ;. \
f() f(l)Bh.t;,.n—l(f dt

the system of normal equations Eq. (19) can be written in the matrix form:
(Akn + AL)E = ). (22)

th

where I, is the n'" order identity matrix and

9
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Cy

(o}
]

o

w

Cn—1

One advantage of this approach is that since Ay p is the Gramian matrix of the
B-splines and A > 0, the coeflicient matrix (A s + Al,) is nonsingular. so that €. and
hence the solution Si(t). can be uniquely determined.

A more standard approach is to use the £2(w) norm, so that the discrete data
{(ri, fi)}, i = 1...., N, can be input directly without introducing f. The main advan-

tage of this approach is that noisy data can be treated much more easily especially
the case when N > n. Let

N n—1 2 n—1
G(e):=Gnle) =Y |fi= Y ¢;Bre (r)| wi+ A . (24)
1=1 1=0 7=0

Again, for the time being let us assume that h is fixed. Then, to determine

n—1
Si(t) =Y € Bity (1) (25)
j=0
which minimizes the quantity in Eq. (13), or equ  ently G(c) in Eq. (24). we follow
the same procedure as above to derive the following normal equations:
n—1 N N
Z Z B¢, j(Te)Bi, (Te)we | ¢ + Ae] = Z feBrk v, (T )we, (26)
1=0 \f£=1 =1
1=0,...,n—1; or in matrix form:
[Ak‘h + /\In]C‘ = £, (27)
where /’ik‘h is the n x n matrix whose (7,j)'" entry is given by
N
Z Bi ¢, 1(7e)Br s, j(Te)we,
=1
and the vectors ¢* and f'h are
€
C‘ = : (28)

and

Z}\;l feBi s, 0lTe)ws

fr = : - (20)
N

Yoty feBry m-1l1e)y

10
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respectively. The disadvantage of this approach is that the coetlicient matrix (44 +AI5)
is frequently singular so that the normal equation Eq. (27) might not have a unique so-
lution. The standard approach to determine a solution ¢* of Eq. (27) is to consider an-
other least-squares problem:

min [|(Axs + Mn)e ~ fallez.

However, even this problem usually does not have a unique solution. Hence. we will con-
sider another extremal problem, by choosing ¢* to be the solution of the above least-
squares problem with the minimum || [z value. It turns out that this “minimal so-
lution” is now unique and can be determined by finding the so-called Moore-Penrose
pseudoinverse of (Aj & + Aly). This topic will be discussed in the section entitled The
Minimum-Normed Least Squares Solution.

Computation of the Coefficient Matrices

To solve the normal equations, Eqs. (22) and (27), 1t is necessary to determine the
corresponding coefficient matrices. Hence, the quantities

d
bfj :/ Bk,th,i(t)Bk,t,,,j(t)(lt (30)
0
and
N
= Z Bk,t;.,i(Tl)Bk,th'j(T()‘w[ (31)
=1

must be computed. In this report, to produce a computational efficient algorithm, we
have chosen the knot sequence t to satisfy Eq. (12), so that the material presented in
the subsection entitled Computation of B-Splines can be applied. In particular. by Eq.
(26) we have

Brana(t) = Ny (%(t_c)“i) (32)
=Nk(n—i—%(d—t)), )

so that

b,ﬁ:h/ NuONe(t +i—j)dt; i.j=0,...,n—1. (33)
0

where we have used the property that Vk(t) = 0fort < 0. Now the restriction of N;(?)
on each interval [r,r + 1], where r = 0,1..., is a polynomial of degree k whose Bernstein
coefficients can be computed by using the I‘O(‘( *dure outlined in the same subsection.

Hence. to determine bfj, we are led to compute

r+1

PQx.
where

11
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Pi(u,v) = Y chppbm(u,v) (34)
(+m=k
and
Qrlu,v) = Z d;qcpﬁq(u,v) (35)
ptq=k

are two (Bernstein) polynomials of degree < k on [r,r + 1]. The computation is straight-
forward, since

r+1 lx' k' 1
/ PlmPpy = HOPU L — )it

'm! plg!
kR F(€+1)+1)F(rrz+q+1)
Cmplg! T(C+p+m+gq+2) (36)

kR (4 p)(m 4 g)!
© ! plg! (+m+p+q+1)!
(kD% e+ p)(m+q)
(2k+ 1) dmlplyt

Therefore, we have

r+1
(+p m+q)!k X N
POy (i 3
[ cQr = 2k + 1)! Z Z {'m'ply! “tmpq (31)

+m=k p+q=k

where (’f and d;‘,'q are the Bernstein coeflicients of Py and Qj respectively.
For example, if a linear spline curve is used, then by using the Bernstein coefficients

of Ni(r)in Fig. 5 and formulas in Eqs. (33) and (37), we have

(1
-3—h for 1=j=n-1

4)
Zh for i=j.i=0..... -2
b,]-]-=J 3 or 1=7,1=0 n (38)

1
-6-/z for |i—j]=1

L 0 otherwise.

If a cubic spline curve is used to fit the underwater acoustic signal. then the Bernstein
coefficients of N3(r) in Fig. 7 and formulas in Eas. (33) and (37 j can be used to com-

pute bU.O < 1.7 < n. as follows:
(a) Forr=jand i =0...., ,n — 4, we have

o837 ¢ Z‘ ()6~ ~p), :
3 i
b = 2— E 3= O3 — )] [(11 —dgdih

where (¢g. . ... cy) = ((),(), 0. 1/6) and (dy.... . dy) = (1/6. 2/6.4/6. 4/6). or

12




NRL Memorandum Report 6572

2 (3)2( 6 6 ol 412 6!
3 _ 2
%= T {(3')2 + [(3!)2 ottt Ee e
5! o4l (3)?
+°W°+9§@4+~(3')24
l)2 4191 5! 1 2416
+2( 2y +‘>0,3, +257160] [ h = ==h.

(b) For : = j = n — 3, we have

2
B g = zz(“”,

I))))' [cecp +2ded, |

¢=0 p=0 i
= ———~39611.
T
(c) For 1 = j = n — 2, we have
w3 g (N6 p)! i
n—-2n—2 7 7! ZZ €|( ) '(3__ [C£CP+ ¢ ]
=0 p=0 P
9
_ 1208,

£+ p)(6—¢—p)!
e A CRadl A C Rl O

7lcecp]h

o

3w
I

[

1

1

nN

1t
—

~| R

il g
nN

B

1]«

NA

(¢) Fori=0,...,n—4and j =7+ 1, we have

° (f+p)‘6 £ — p)

e, + ddy
where (do, dy,dy,dy) = (4/6 4/6,2/6, 1/6)
1392 r(3)2 4120, 5! 6!
. S —
b= @ {2[(3!)2 R TR
6 24l 420 ¢
* [(3!)24 ettt Eet t gy
~ 14! 112
b e 2hye B s

31 T 3mt T (3n)e

(3!)2 4!‘)! O'
S 20+ 5 18 + 12 b

13
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(f) Fori=n—3 and j = n — 2, we have

£+ )6 —(—p)
"3 —=)pi3 - p)!

o
3w

|

[

!

[ %]

|
—_
- %
'—v
[ %]
]~
[M]-
!..\A

' [eed, + dedy|h

(g) Fori=n —2and j = n —1, we have

3

R G (€ +p)(6—€—p)
bn—2,n~—] - 7| ; Z [y 3 — [)|p|( ]))‘ [('[(l ],I
= ,)

(h)Fori=0,....,n —4 and J =1+ 2, we have

12 3 —_ ¢ —p\ )

i f:opz()[(3_[) P(3—p)!
1_1(39)2 420 3 6!
:?ﬂ&my4+2w o3 T anz)/

120

(1) For t =n ~ 3 and j = n — 1. we have

3
(3")?2 (f+p)(6——(—p
b} = 1
n—3,n—1 7! Z [(3 — /)[)'(3 '[(I( ]}
£=0 p=0
60
= :—'h.
(!
(3) For1 =0...., n—4and j =i+ 3, we have
: ’3' (+p)! 6 —-(—p)
3
b” “3—[ _1) [([l/}
[—()p 0
(32 (313" 1 ] 1
= —_— = — .
(3N(3Y) R 7!
where (g0 0q) = (1/6.().().0).
(k) For i — ji > 4. l)" = 0: and b' = ‘ by the defimtion in Eeq. 130).
Summarizing f}u above nxult\ \w may write down the matrices A, for & = 1 ol

3 as follows:

14
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-4 1 -
1 4
h 20
Ay == . . 39
1.h 6 O . . 3 ( )
41
- 1 2_
and
) h C'n——.'} D )
Asp = = [ DT Ea] (40)

where C,,_3 1s an (n — 3) x (n — 3) banded Toeplitz symmetric matrix, D an (n — 3) x 3
matrix with transpose D7, and E3 a 3 x 3 matrix given by:

2416 991 120 1 1
991 2416 991 . O

120 991 - L.
R |
Cnoz = T © 7 190 (41)
991
O . . .
L 1 120 991 2416
O
0
D=1 0 (42)
120 1 0
991 120 1
2396 1062 60
E; = | 1062 1208 129 . (43)
60 129 20
To compute i)fj, we note that again I;f. = l.)fj forallz,; =0,...,n —1 «nd
al 1 1
1k _ T .= _ g _
b;; _Z‘\lk(n 0 h(d T,))Nk(n J h(d Tt)) (44)

=1
where again Ni(r) can be computed by using the procedure outlined in the subsection
entitled Computation of B-Splines. Note that N,(z) vanishes outside the interval
[0,k + 1], so that most of the terms in the summation in Eq. (44) are zero. In partic-
ular, we again give the Bernstein coefficients of the linear B-spline Nj(r} and the cubic
B-spline N3(z) in the following:

0

1 0 .
0 i 5 ()

1 2 { 4 1
000 3 £ 2 ¢ 5 2 42000 N
0 4 s
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THE MINIMUM-NORMED LEAST SQUARES SOLUTION

When discrete data information is given. a standard norm to use for the quantity
described in Eq. (13) to be minimized is the (4(w) norm. For w = {w,} with w, = 1. we
simply write 12 = [*(w). Hence, for any sequence ¢ = {eg}, we have

n 1/2

leflez s= <Y "y (43)

=1

As shown in the subsection entitled Spline Representation of Underwater Aconstie Sig-
nals, the corresponding extremal problem then reduces to a linear system desceribed by
Eq. (27). where the cocfficient matrix (Ag , + AL, ) is frequently singular. Henee, the lin-
car system, Eq. (27), does not have a unique solution and is even “numerically inconsis-
tent”. To overcome this, the usual method is to minimize the % norm of the difference
(.ik'h + A, )c — f,. For convenience, we will stuplify the notation by setting

A= :ik‘;, + N, . b= ?/,. (46)

Hence, we will consider the extremal problem:
min ||dc — bjs2. (47)
C

Of course, if the original system Ac = b is consistent, then the minimumn value in Eq.
(47) is zero, and a solution to the extremal problem in Eq. (47) also solves the hinear
system Ac = b as required. In any case, whether the linear system 4c = b 1s consistent
or not, there is no guarantee of a unique solution to the problem in Eq. (47). For vari-
ous reasons such as stability (when n is very large). the desirable solution to Eq. (47) is
one whose 2 norm is also minimized. That is. we will consider the problem:

min{||€]|¢2: || A€ — b|l¢z = min || Ac — b]|}. (48)

We will then choose the solution of Eq. (48) to be the solution ¢* in Eq. (27).
In this section, we will see that

c*=A*b  or ¢ = (Axn + M) (49)

where A% is the so-called Moore-Penrose pseudoinverse of A.

Singular Value Decomposition and Moore-Penrose Pseudoinverse

The singular value decomposition of an arbitrary matrix is studied 1o this seetion.
We will take a somewhat unisual ronte inintrodueing this familiar concept so that rhe
definition of the Moore-Penrose psendoinverse hecomes very natural. We will also prove
that this defimtion s independent of the (non-unique) singular value decomposition.

Let 4 be an o x pomatrix which may not even be a square matrix (althoneh 1
our application, it is always square and symmetric). Suppose that rank A kowhere
k< mintm.n). Then AT A and AAT are n > o and 1w x o (vespeetively ) nou neeatie
definite symmetric matrices of rank A and have the same eigenvalues

rrz;f-n,}’ni,.() e | )
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which we arrange in non-increasing order. Let

{Vi, ... Vn}

be the eigenvectors of AT 4 corresponding to the eigenvalues {02,...,0%.0,....0}. 50
chosen that they form an orthonormal set. In other words, the n x n matrix

V= [Vl . Vn]

is unitary. and

-2
oq W

AT AV = Tk V. (50)

! 0]

Next. let o, be the positive square root of o7 and set

u,-:—l-Avi . 1=1,... k. (51)
gy
Then we have
T 1.7 1,
Aty = —(A" Av;) = —ojv;, (52)
g g;
or equivalently,
1 .
vi=—ATw; ., i=1,...,k (53)
0y
In addition, we have
AATU,‘ =0gidv, = a?u,-, {54)

so that u; is an eigenvector of AAT corresponding to the eigenvalue o7, where
i = 1,...,k Let ugyq,...,un be orthonormal eigenvectors corresponding to the zero

eigenvalues of AAT; that is,
AATu, =0, i=k+1,...,m,

and u;ru, =é; . t.j=k+1,....m. Here. &, is the Kronecker delta:

6= 1 for i=j
Y10 foriz#).

Now. since AAT is symmetric, eigenvectors belonging to distinet eigenvalues are orthogo-
nal, so that

ll;l‘U]:() for i=1,....k and j=~F+1...., m.

17
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Next, for 2,7 = 1..... k. we also have

,Tuj = (iAv,) T(i‘-'lvj)

u
g, g
1 o 1
= v! (.»17 Avj) = ——v?(o;v])
0:0; 0,05
since {vy,.... vk} is an orthonormal set. Swnmarizing the above properties of {u;.....
u,, }, we see that the m x m matrix
U= [U] ...llm] (:):))

is unitary and

44Ty = Tk L. (56)

We also have the following.

Lemma 1. The matrix A has the following “singular value decomposition™:

A=UzvVT (57)
where
- -
(o] O
= : - (98)
- O : O- mxn
Proof. Since V is unitary, Eq. (57) is equivalent to 41 = US| or equivalently:
Avi =ouy., ... Avy =0y 09)
since Aviy, = - = Av, =0 and

LYS:[Ulul...UkUk ()0]

This completes the proof of the lemma since Eq. (59) is the same as Eq. (51).

In view of the result in Eq. (57) and the fact that U7 = 17" and V7 = V7 we
are now ready to give a definition of the “inverse™ of the matrix 4 » which is not neces-
sarily square and not necessarily of full rank).

18
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Definition. The Moore-Penrose pseudoinverse of an m x n matrix A is given by
At =vztu’ (60)

where

L O E O-‘ nxm

Since the unitary matices " and ¥ are not unique, we must prove that the defini-
tion in Eq. (60) is independent of the choices of U and V. We have the following.

Theorem 1. Let A = USVT = USVT be two singular value decompositions of A: that

is,
AATw; = ofu; , AATa; =00 |, i=1,....m
ATAv, = olv; | ATAV; =0}, | i=1,....n
and
wiu; =0Ty =65 , 4,j=1,...,m
V;FV]' = {’;I‘\?J = 61] y Z,] = 1, y 1,

where U = [u; ... u,n],U = [Q;...14,,],V = [v1...V,], and V = [V, ... V,]. Then
At =vetyT = vstpT

where £t is defined in Eq. (61).

Proof. Writeo;,...,00 = A1,...,A1,..., e,-.., A¢, where Ay > -+ > JAgand

[N

il x.l
11 +---+2¢ =k Foreachj=1,....¢ let P; be an i; x 7; unitary matrix such that

11 . 11 . — . 1
[u,,+..‘+,1_1+1 Ce u'l+"'+l,] = [ll,l+...+,,_l+1 Ce U,‘+...+,1J|PJ

In addition, let P¢yy be another (n — k) x (n — &) unitary matrix such that

[flk+1 ce flm] = [Uk+] Ca llm]P[+].

Then we have

19
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Since by Eq. (53). we have:

N L. : : :
vp = T-'lrup . p:7] +"'+2]—] +1 ..... A% +""+‘IJ_
v

where j = 1,....(. it then follows that

1 .
N - T'r ~ .
[v11+"'+11—1+1 e V,l+...+,)] = Tx{ [U,l+.,4+11_1+| RN R ..,+1)]
J
1 ..
1
= '/r:l [ui1+"‘+',—l+1 AN u,l+4..+,1]PJ
J

= [Vi1+~--+i,_1+l -~-Vz,+-~~+;,]P)
again by Eq. (53).
Let Q be an (n — k) x (n — k) unitary matrix such that

[{,k+l . .\7"] = [Vk+1 .. .Vn](z.

Hence, we have

P, O

V=V
Py
O Q
This vields
(f,’gfl"]')’l' — U S—%—f I
[ P] ,\L]Iil P]T
=0 ",
Py %I( PII
L Py ' O Q'
- .;\l—‘—Ill
1
= U 1 v =usteT = (vereT)
vRl
i O
or VST = VSHUT as required. Here, we have used the fact that PJPJT = I, . This

completes the proof of the theorem.

Characterization of the Moore-Penrose Pseudoinverse

The Moore-Penrose pseudoinverse AT of anm x nmatrix 4 can be computed by

finding the eigenvalues of AT AL the corresponding orthogonal cigenvectors {e... .. v}
and the mll space of 44T since the other cigenvee s {uy. .. v of A4 can be come

puted by using Eq. (31). In the following, we give a characterization of A1 in terms of
some matrix identities.

20
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Theorem 2. A% is the Moore-Penrose psuedninverse of A if and only if A% satisfies the
following properties:

(1) A4T A =

(i) (AATT = 44+,
(i) AT 4AY = A+ and
(iv) (AT )T = 4+ 4,

Proof. It is clear from definition that A% satisfies the four properties listed. Now sup-
pose that B satisfies (i) through (iv), and we have to prove that B = A1, To do so.
recall that

0 0
where
(o8] O
Sl =
O Ok
We define
By BIZJ T
=V*'BU.
[le Byg

Then by using the property (i) for B, we have

ABA = 4,
so that
(UTAVYVTBUYUTAVY = UT AV
S8 5] (38 -5
O O By By O O O O

Therefore, By = Sr] and By, = 0. ,
By using the property (ii) for B. namely: (ABY = AB or (UTABUY = U7 ABL

<o that
(CTAVYVTBUYT = (U v v B

or
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(3 8115 &) -18 85 &)

R -]

so that Byy = 0. Similarly, by using property (iii) for B, we also have By = (). Henee,
we conclude that

we have

[ Bs Bial,r_ (S O, - 4+
B-—\[ ;‘]( —‘{O O][, = 47,

Note that property (iv) has not been used since it is a consequence of (1)-(1i1).
Application to Least-Squares Estimation

Let us now return to the linear system of Eq. (27) and using the notation defined
in Eq. (46). we are lead to the systemr dc = b where 4 is usually singular. Hence. the
system may be inconsistent, at least numerically. and even if it 1s consistent. there are
infinitely many solutions. As suggested in the beginning of this section, we will look for
the (umquo) least- squares solution w nh minimum norm: and by this, we mean the solu-
tion of the extremal problen: in Eq. (48). The following result gives the solution.

Theorem 3. Let A* be the Moore-Penro-.- ssacdomverse of A and set ¢* = A*b.
Then
Wic® — bl = mcin [l 4c — bljs

and ||[c*|lp2 = min{}ic]le2: ||AC — b|lpz = 1w i — blie2 }.
<

Proof Let 4 = USVT be a singular value decompositoin of A ax described in the sub-
section entitled Singular Value Decomposition and the Moore-Penrose Pseudoinverse.

Then
lAc = bjle = JUSV ¢ = bjj,
= ISV e — UTb||

since U7 1s unitary, so that {[Ual|,

any vector a. Wrire

Vie=(4..... +n)7 and UTb=(4,.... . L
Then
Tyu2 2 , : 2 2
l‘V( "[, b”u? :(nl’.,’l = 3] ) %‘""T—(ﬂ;\"-k — .fk' ~ T i‘""%—.i”.
Henee, the minimun of ||de — bl is atrtained at ¢ = ¢ 0 where
T ! ! ol arhit e - ) B ron e
Ve = (;]-.fl ..... ;—k‘)’k.‘;1+1 ..... ‘;k) with arbitrary -~ ... -4 Inaddition, sine

-‘) ‘)

-
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I I 1, :
1801 = V7@t = (38 + 4 —588) + (Gl + -+,
ay Tk

the solution € with minimum ¢? norm is attained when 44,4, = --- = +; = 0. or at
¢ = c*, where

1 1
vTer = (—5,,...,~5k,0,...,o)
a4 Ok

L ]

L 0

or equivalently,
*=vStuTh = A*h.

This completes the proof of the theorem.
Algorithms for determining singular value decompositions, and hence Moore-Penrose
pseudoinverses At are available in the literature [6 - 12], for example.

ESTIMATION OF TIME-OF-ARRIVAL

As discussed in the subsection entitled Spline Representation of Underwater Acous-
tic Signals, the spline functions of degree k defined on the time interval [0.d] with knot
sequence

th: to <t] < <tnor < -or < triks
where 0 <ty < d,t, =d, and t; =tj_y + hforj=1,...,n+k, with

hedto (62)
n

will be used to represent underwater acoustic signals. As in that subsection, the least-
squares fit is used to determine the spline curve. Since a spline function is given by the
spline series in Eq. (11), it vanishes identically on [0, %] and “takes off * at to (see Fig.
9). It is clear from this model that the initial knot ty represents the time-of-arrival.
Hence, this knot must also be determined. While both n and d are fixed. with d de-
noting the length of the time interval and »n the number of interior knots in the time
interval, the relationship shown in Eq. (62) implies that determining ¢, is equivalent to
determining h. Since the larger the value n is used the better the estimation becomes,
it is advisable to choose a relatively large value of n, provided that the computational
time is reasonable. Hence, in the mathematical model in Eq. (13). the minimization
must be taken not only over the spline coefficients ¢y, ..., Cn—1. but also over the non-
linear parameter h. Furtheriaore, there are at least two reasons that we should choose
the minimum value of those h that solve the optimization problem. Firer if the “data
function™ happens to be piecewise linear with equally spaced knots, then the mimmum
h. or maximum #g. is the exact tine-of arrival. while certain smaller e<timates of #) still
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reproduce the sipnal (see Example 1 in Appendix II). In addition. since h 1s the distance
between two consecutive l\ll()tQ the smialler the value of 4. the better the approximation

of S¢ = Sk [given by Eq. (11)] to the measured signal f is obtained. More precisely, we
will study the follo\\mg extremal problem. Let

n-—1 n—1
Rithoe) = [If =Y e;Beo ,IP +A DY ¢ ] (63)
J=0 J=0
where ¢ = (¢g..... cn—1) and A > 0 is fixed. Determine the set H = {i)} of values b such
that
I\'k(h.é):ihllfl\'k(h.c) (64\!
C
for some sequences ¢ = (ég,....¢,-1). where inf denotes the infimum (or “minimum™)
and 1s taken over all pmsﬂne h >0 and all ¢ = (.. ... cn—1). It should be emphasized

that the minimization is taken independent of the order of h and c.Let
R =hik)=mfH

be the greatest lower bound of the set H = {h} Then by Eq. (62). the time-of-arrival of
the acoustic signal with measurement f is given by

to =d—nh* (65)

Existence, Uniqueness, and Characterization

As discussed in the subsection entitled Spline Representation of Underwater Acous-
tic Signals, both the L? and (3(w) norms will be used. Given any = > 0, by the ¢ fini-
tion of infinum, there exists a pair (hy, cg) where iy > 0. such that

]\’k(}l().C()) <i’Ilf[\'k(}).C)+5. (66)

Since

Ki(hg.co) > inf Ky (hg.c)

> inf {inf Ky (h.c)}.

h>0 ¢

we have

inf {iuf I\'k(h.c)} < 1’11f KNi(h o) + =, 167

h>0 c

Since this inequality holds for any ¢ > 0. we may conclude that

inf {iuf I\’k(lz.c)} < inf Kah o) (681

h>0 c

However, since it 15 clear from definition that the quantity on the right-hand <ide i< no
greater than that on the left-hand side, it follows that the extremal problem we wanted
to solve becomes an iterated extremal problem, namely:
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inf Kx(h,c) = inf {inf Ix’k(h.c)}. (69)
h,c h>0 c

Now, for each fixed h > 0, since the extremal problem of finding a €(h) such that
Ei(h):= K¢(h,e(h)) =inf Ky (h,c) (70)

1s the (linear) least-squares problem discussed in the subsection entitled Spline Repre-
sentation of Underwater Acoustic Signals, which. as we have seen. always has a solution
by solving a system of linear equations, and in fact, this solution is always unique for

L?, and also unique for £2(w) if the minimum norm (or Moore-Penrose pseudoinverse)
solution is used, we see that the original extremal problem in Eq. (64) will also have a

solution provided that there exists an A > 0 such that

Ew(h) = inf Ei(h). (71)

But the existence of h is clear, since Ex(h) is a continuous function on [O,d/n] and
Ex(0) = ||f|I?

cannot be a minimum. Let H be the non-empty set of h > 0 that satisfies Eq. (71). The
greatest lower bound of H, which is clearly a positive number denoted by A*, is unique.
Summarizing the above argument, we have the following.

Theorem 4. There exist a unique h* > 0 and a sequence ¢* = (cj,...,ch_,) such that

Ki(h*,c*) = inf K(h,c),

provided that the minitnum-normed least-squares solution is used when the ¢2(w) norm
is considered. where the quanity Ki(h,c) is defined as in Eq. (63), and h* is the greatest

lower bound of all h > 0 that satisfies Eq. (64). Furthermore, (h*,c*) can be achieved
as follows. For each h > 0, let ¢(h) be the unique (minimum-normed) least-squares solu-
tion of Eq. (70). Find the set H of absolute minima of the continuous function Ei(h) on
[0,d/n). (An absolute minimum must also be a relative minimum here.) Then

h* =inf H,

and c¢* = c¢*(h*) is the (minimum-normed) least-squares solution of Eq. (70) for h = h*.

Recall that the time-of-arrival is given by to = d — nkh* in Eq. (65). The main dif-
ficrlty in *he procedure outlined above is solving the nonlinear problem of finding the
absolute minina of Fx(h); namely, the extremal problem in Eq. (71). For the continu-

ous setting (or L? norm), this procedure will be greatly simplified by giving an explicit
formulation of the error functional Ei(h).

Estimation for the Continuous Setting

For any discrete data (7. f,)), e = 1,... . Nand 0 = 7 < -+ < v = d. let f(t)
be the piecewise hinear funection on [0, d). linear on cach subinterval {7,074 1. sueh that
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f(r,) = fi. Let f) be the n-vector as defined in Eq. (21). By using the same change of
variables as in the subsection entitled Computation of the Coetlicient Matrices, we have

f;')-” n—1i
f) = : . fh= /,/ fohit —n+ )+ d).Ng(t)dt,
0
fl?‘n—l

for 7 = 0,....1 — 1. Returning to Eqs. (20), (30) and (33). let Ay = [bf]]. where

n--1
blkj = /1/ NNt + 10— J)dt, (72)
0
1.j = 0,....,n~ 1. Then ¢ = ¢(h) is the (nmque) solution of the system of inear eqna-

tions:

(4‘1k,h + /\111)6 - f;l,)- (13)

To study this system, set

B = [/ Nel(t N (t + —‘,')m}
0 0<ty<n—1

b= [/ ) f(h(t—n+i)+(l).\'k(f)(h‘]
0

N<i<n—-1
It 15 clear that B is a positive definite symietric n x n matnx. Let

F/\] O

A= (
O An

-1
(B3}

be the diagonal matrix of eigenvectors of B where Ap > 0.0 > A, > 0 and form a unitary
matrix P from the corresponding eigenvectors. Thew B = P A PT. Hence, Eq. (73)

hecomes:

(hP AP" 4+ M)E =1Ib (76)
or
Pih A +7L)PTE = hb, (77)
so that
¢=Prr'hb (789
where
WI"J )
r- . RE
‘/) h A h‘ A
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Note that both b = b(k) and € = ¢(h) are functions of h. The function Ex(/r) i Eq.

(70) to be minimized now becomes:

d
Ex(h) = heTBe + A&Te —2héTb + 2 (80)
(
0

To simplify the computational procedure, it is recommended to set

b=PTb (81)
where b is defined in Eq. (74). Then Eq. (80) can be simplified to be

h)_/[f dt—zl/\. v, (82)

bo.. ... byp—1). It is now clear that E¢(h) is differentiable with continuous
(h) given by

where b =

derivative E}

"L RZA; 2R Y XA
E'(hy= -y —t1 _— "2 _ — b, b, 8
i(h) ; ST DLl (83)

It is also interesting to note that E(0) = 0. Indeed. & = 0 gives a relative maxi-
mum Et(h). To determine the objective function Ei(h) in Eq. (82), we must compute
the eigenvalues {A;,...,A,} of B = B, and the unitary matrix P formed by the cor-
responding (orthonormal) eigenvectors {u;,...,u,}, namely: P = [u;...un|. In the
following, we give the example where k = 1.

Linear Spline Estimate

From Eq. (37), we see that for k =1,

n—1
B=B,= [/ Ny(N(t+ 1 — j)dt
0

4 1

0<i,j<n—1

From Gershgorin's theorem, there is one eigenvalue in the interval [3.5], n — 2 eigenval-
ues in the interval [2,6], and one eigenvalue in the interval (1,3]. We can be much more
precise by determining the eigenvalue and eigenvector pairs (A, u,). 1 = 1..... n. more
explicitly. To do so. let us consider the homogeneous linear system. where we have mul-
tiplied the matrix B by 6:

(4= p) 1
1 (4~ ) 1 1 07

7
[}

oy
—
e
~—
~
~—
p—
| W

Un
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By setting v = & — 2, Eq. (83) can be reformulated as:

—2ry1+y2 =0
y1 — 20y +y3 =0

Yn-2 — 21‘1/!1—1 + Yn = 0
Yn—-1 — 2(r + Dy, =0.

It is well known that the two linear independent solutions of the second order ditference
equations Yr4r — 20k + ¥k = 0 are the Chebyshev polynomials of the first and second
kinds. Tp(.r) and Ug(.r). respectively, where
Te(x) = cosh #
sin(k 4+ 1)6 {
sin é

(0 2]

-1

Uilr) =

with @ = cos™ .0 < 8 < = Since Uy(r) = 1 and U () = 20 we have yp = U ().
B=1..... n. so that all except the last equation in Eq. (86) are satisfied. To sanisfy the
last equation in Eq. (86). we must have:
sin{n — 1)8
sin 8

P LA (88)
sin 6

or equivalently,
sin(n+ 1) +2sinnf=0 . 0<fA<r. (S9)

This conclusion implies that |¢] €< 1or 2 € y < 6. However. as pointed out above, 1t
follows from Gershgorin's theorem that there is an eigenvalue in Refs.1 and 3 and hence,
it is possible that 1 <y < 2. To determine p with 1 <y < 2. 8 may be considered to be
complex. This is valid since yx = Uk—1 (@) where ¥ = cos A6 complex. still satisfies Eq.
(S6). A careful investigation reveals that a complex 6. which gives a real r < —1.is the
only root other than the (n — 1) real roots of Eq. (83) in (0. 7).

Case 1. Real Solutions # That Give the First (n — 1) Positive Eigenvalues:

Let
f(8) =sin(n + 18 + 2«innf. 190)

Then we have :
(1)

f( — > = 2qin L2

n+1 n+1
=20-1yV"" s i
1~ 1

<o that for j = 1..... .

sgn f(/ il ) A(-—l)"l. D1

n 41

R}
o 2]
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(1)
F(3%) = sinjr(1+1/m)
7
:(~1)jsin!—7r,
n
so that for j = 1,.... n—1.
sgn f(j—z) =(-1). (92)
n

Now, since j < n + 1, we see that j — 1/n < j/n + 1; and therefore the intervals

L= ()

12:( 2 :.2_7r_)
n+1 n

_fn=Dr (n-1)m
In_l—( n+1 "’ n )

do not overlap. Note also that these intervals all lie in (0, ), and in view of Eqs. (91)
and (92), there is one root §; of Eq. (89)in each I;,I=1,....n - 1.

Case 2. Complex Solution § That Gives the nth Positive Eigenvalue:

Let
g(t) = sinh(n + 1)t — 2sinh nt. (94)

Observe that since there must be an eigenvalue g in (0,2), or r < —1. we set 8 = 7 + jt

where j = /=1. This gives
fim+t) = (=)™ sin(j(n + 1)t) +2(=1)" sin(jn)
= (—-1)"*y [sinh(n + 1)t — QSinhm‘}
= (=1)"jg(t).
That is, we must solve for the real t in
g(t) =sinh(n + 1)t = 2sinhnt =00 <t < x (99)

and the (unique) root t,, Jor complex root §,, = 7 + jt, of Eq. (39) gives:

Iy = cos(7+ j0) = —cosht, < -1 (96}
or
Ap =4+ 2r, <2 (97)
We can now make the following conclusion. Let 8, € [0 = 1. .. .n — 1. be solntions
of Eq. (89) and t,, be the solution of Eq. (95). Thenforl = 1... .. n — 1. recalling the

factor 1/6 in Eq. (84). the eigenvalue-cigenvector pairs of the macin B arve.
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Al =144 2cos8))/6
S11i 9[
1 sin 26, {08

U, = —7
43 AR :
{ <Z::1 i IHI) i nfy

and for I = n. the eigenvalue-cigenvector pair is

(Ap, = (4 —2cosht,)/6
—simht,
£ U 1 sinh 2¢,, (99,
n— 1/2 :
Z” S }: 1t .
p=1 ST, i —1;"smhnt,
Henee, for & = 1 (the linear sphne). the following algorithim can be used to estimate the

time-of-arrival. In all the algorithms presented in this report. it should be remarked that
the original extremal problem can be written as a nested extremal problem. as verified
in the subsection entitled Existence. Unigueness, and Characterization. That 1s, a linear
regression 1s first performed by simple linear algebra to determine the spline coefficients,
and then a nonlinear optimization procedure follows.

Algorithm I (Linear Spline Estimation of Time-of-Arrival Under Low
Noise Condition).

(1°) Compute Ay,.... A1 A, and Uy U, _,.U, in Eqs. (98) and (99).

(2°) Let P ={U,...U,] and compute b= P"b where b is gsiven by Eq. (7T4).

(3°) For exact data, use A = 0. while the noisier the data. the larger positive \ 1s re-
quired. Fix a A > 0 and determine the set of I such that
E,(?)) = mingso £, (h). where E\(h) 1s given by Eq. (82) with 7),_, bemg the

1" entry of b (which depends on h).

(4°) Determine the smallest value h* > 0 among all values 7

The time-of-arrival is given by ty = d — nh*. [See Eq. (65)]. The choice of X as a
function of the noise of the signal will be studied in the fortheoming report [4].

I computing Ay, ..., An—1. the “bi-section” method may be used to determine 6, €
I, since the values of f(6) have opposite signs at the two end-points of I,. To compute
An. Newton's method may be used to search for the unique root 1, > 0 of Eq. (93).

In computing the data vector b, and hence b(b = P b). note that it depends on k.
In fact, since A = 1. the (7 + 1)™ component of b is given by

2

1
b,.—:/ if(h(f—n—}-i)-l»(i)rlf%—h,/(‘2~f)_f(h(f——n + 1)+ dydt (100
Jo J1

for r =0..... n — 1. where

O—

1

{ 1 for:=0.... . 1o 2
0 for/ =1 -1
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The integrals in Eq. (100) can also be written as

1 d—(n—1—1})h t—d .
b, = ——/ (———+n—i> f(t)dt
h Ja—(n-in h

1 d—(n—1—2)h t— R
Y el / (2— d-n+i> Ftydt.

h Jd—(n—i—1}h h

(101)

. . ~2 . .
Here, the factor 1/h which gives a factor of 1/h* for b, should not be evaluated since it
cancels with h? in E;(h). [See Eq. (82)]. Recall that f(t) is the piecewise lincar function
determined by the interpolation condition f(7;) = f;. where (7;. f;) is the data set.

I determining & in (3°), instead of minimizing the quantity E(h), it 1s equivalent
to maximizing the quantity

n }'2 ~
T(h)=Y" ﬁ;ﬁbf“’ (102)
=1 !

and as pointed out above, the numerator h? is cancelled out with the factor 1/h* from
h?_,. Recall that b, depends on h. To facilitate the optimization process, the derivative

of T(h) may be used. Let ¢ = [co .. .c,,_l]T and € =[¢p .. .?n_l]T = PT¢ where

d—-(n~i~1)h N
, ;=/ d—t 2yt
d

—(n-i)h h?

B (103)
—b,-/t; A % f(t)dt
—(n—1—-1)h

-~

~(1=é&)n—i-1)f(d=(n—i-1h)

Then we have

(104)

Estimation with Splines of Arbitrary Degree

To estimate with spline functions of higher degree. the method derived in the sub-
section entitled Linear Spline Estimate cannot be applied: and henee. we nimst depend
on numerical estimates of eigenvaluc-ecigenvector pairs direerly. Let

B = [/ Ne()Ng(t 40— )t i105)
JO

<y gy -1
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where the integrals are computed using the procedure derived in the subsection eutirled
Computation of the Coefficient Matrices. For instance. when cubie splines are nsed we
have

: Cnoy D
3 3 ,
B,=|"pr g 1106
where C,_4. D, and Ej are given in Eqs. (41). (42), and (43). respectively. Let
(NN UMy i=1. .
be the eigenvalue-eigenvector pairs of BX where M > A8 > 0> M S g and each T} s

normalized to have unit length. The aleorithin to deternine the time-of-arrival by n<ing
a k™ degree spline eurve can be deseribed as follows.

Algorithm II (Estimation of Time-of-Arrival by Splines of Arbitrary
Degree k under Low Noise Condition).

({1°) Choose k (depending on the desirable smoothness) and compute the Bernstemn
coetlicients of the B-spline V. as in the subsection entitled Computation of B-
Splines. (See Figs. 6 and 7).

(2°) By using the formnle in Eq. (37) and following the procedure deseribed in the
subsection entitle:” Computation of the Coeflicient Matrices compute the ma-
trix Agp. [If ¢ ubie spline curve is used. skip these two steps and wse the for-
mulam F . )]

(3°) Comput. rthe eigenvalue and eigenvector pairs (/\f. Uf).i =1..... n.and Af >

... > A¥ > 0. of the matrix A, ;. (E.g. the routines in Ref. 13 may be used.

(4°) Le*

P=[U}... U]

and compute b = PTb where b is given by Eq. (74).
For exact data. use A = 0, while a positive A may be used for noisy data. Fix a

A > 0. and determine the set of P such that

Ek(?;) = mn Ex(h).

h>0

where Ei(h) is giveu by Eq. (82) with b, being the yth entry of b (whicl de-

pends on h).
(6°) Determine the smallest value 7* > 0 among all values £,
Again a method to determine the value of N as a function of the noise will he di--
cns=ed in the fortheoming report {4]. For the time being, use A = .01 or even a ~mialle:
value if the noise level is very low,

Estimation for the Discrete Setting

If the noise level is fairly high. algorithms T and IT are not appheable sinee there -
1o reasonable eriterion to determine the data function f. In this case the 77 nom: wrrh g
relatively larger value of A should be used. The value of N = 1 s reconnnedned, alrlioneh
it varies with the noise. See the fortheoming report 4] for o hetter choiee of 1\
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Let (7¢, fe). £ = 1,..., N, be a set of data information. Set

An = [ij] (107)
where ij is given by Eq. (31) with
1 ‘
B¢, i(t) = Ni (71—1—;;((1—-2‘)) . (108)
Define - n
fo Y= feBre, o Te)we
fr = = (109)
fn—] Z?:l lek,th,n—l(Tt’)wt’
and let ~
A=Ay + AL, (110)

as in Eq. (46). Then we have the foliowing algorithm to determine the time-of-arrival by
using a k** degree spline curve and the ¢2(w) norm.

Algorithm III (Estimation of Time-of-Arrival with the ¢ Norm for Noisy
Data). :

(1°) Choose k (depending on the desirable smoothness) and compute the Bernstein
coefficients of the B-spline Ny as in the subsection entitled Computation of B-
Splines. (See Figs. 6 and 7).

(2°) Compute the polynomial pieces of Ny by using the formula in Eq. (5) with a.,'»‘j
being the Bernstein coefficients and @fj(u, v) defined by Eq. (4), where u,v are
given in Eq. (2) with [a, b] being the corresponding interval of the polynomial
piece. Set

Bk,th,,-(t):Nk (Tl—i-—%(d—t)). (111)

(3°) Compute Zf] in Eq. (31) and f, by using wg = 1.£ = 1,...,N,and 0 € ¢, <
n—1.

(4°) Fix a positive value A, say A = 1 in Eq. (110). (The noisier the data, the larger
the value of A is recommended.) Determine an SVD (singular value decomposi-
tion) A = USVT of A, where U and V' are unitary and

[0} 1

Z: Tm 0 . (112)

where oy > ... > 7,, > 0.
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h

(5°) Let u, be the /™" column of U and v, the /" column of V. Compute ¢* =

*

T .
[c(, e (,*,_1] by using the formula

m

. 1=
c _er_,u’ f,v,. (113)

1=1

where ?h = {fo o f,,_l
(6°) Compute

has been computed i (3°).

2
N n—1 n—1
. . o1 o2
K(h) = E fi— g ¢; Nk (n—]—]—l((l—r,v)> + A E ()" (114)
i=1 j=0 7=0

Here. we have used w; = 1. The value of A must be the same as the \ in (4°).
(A smaller or larger value of A is used depending on the noise level of the data.)

(7°) Determine the set of h such that

K (71) = min i'(h). (115)

h>0

(8°) Determine the smallest value h* > 0 among all values h.
(9°) Compute ty = d — nh*.

Then #4 is the time-of-arrival. Note that algorithms from Refs. 6 to 9 can be used

in step (4°).
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