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Abstract

constructing a highly available service for use in a distributed system. The service presents its clients

This paper describes two techniques that are only loosely related. The first is a method for

with a consistent view of its state, but the view may contain old information. Clients can indicate how
recent the information must be. The method can be used in any application in which the property of
interest is stable: once the property becomes true, it remains true forever. - .
e T i’

The paper also describes a fault-tolerant garbage collection method for a distributed-heap. The
method is practical and efficient. Each computer that contains part of the heap does local garbage
collection independently, using whatever algorithm it chooses, and without need.ing to communicate
with the other computers that contain parts of the heap. ;he highly available central service is used
to store information about inter-computer references. \/ _’ -

P

1. !Introduction -
This paper describes two techniques that are only loosely related. The first is a method for

constructing a highly available service for use in a distributed system. The service presents its clients
with a consistent view of its state, but the view may contain old information. Clients can indicate how
recent the information must be. The method was invented as a way of optimizing the orphan
detection strategy developed tor the Argus language and system [16], [17]. However, the technique
oppedrs to be applicable to a wide range of applications. “We have found three cthers 50 far—
garbage collection of objects in a distributed heap, locating movable objects in a distributed system,
and deletion of unused versions in a hybrid concurrency control scheme [21]. The method rerjuires
that the property of interest to the application is stable [4], i.e., once the property becomes lrue, it

remains true forever. For example, ance an object in a heap becomes inaccessible, it will always be

inaccessible.

The second contribution of th: paper is a fauit-tolerant garbage collection me:thod for a distributed
hoay.. The method is practical and efficient. Each computer that contains part of the heap does local
garbage collection independently, using whatever algorithm it chooses, and without needing to
communicate with the other compiuters that contain other parts of the heap. The highly available
central service i used to store mnformation about inter-computer references. The computers
containing the heup communicate with the central service periodically, to inform it about their
reforences to objects at other sitss, wend to inquire about the accessibility of any local objects that

might te referred to at other w5 o e e ropagates intorimation about accessibiiity quickly




and mmakes that information highly available. In addition, it off-loads the work of distributed garbage
collection from the computers storing the heap, and does not delay them in carrying out user

computations.

The methods are intended to run in an environment in which individual computers, or nodes, are
connected by a communications network. Both the nodes and the network may fail; the methods
tolerate these failures. The nodes are failstop processors[18]; we assume they can crash, but
Byzantine failures are not expected. We assume that nodes do eventually recover from crashes, and
that each node has access to a stable storage device that (with very high probability) preserves the
information entrusted to it[11]. After a crash, a node can recover the portion of its state that was

written to its stable storage device before the crash.

The network connecting the nodes can have an arbitrary topology. For example. it might concist of
a number of local area nets connected via gateways to a long-haul network. Again we rule out
Byzantine failures, but otherwise the network can behave arbitrarily badly. For example, it can

partition. Therefore messages can be lost, delayed, duplicated, and delivered out of order.

We assume that the nodes are loosely synchronized: each node has a local clock, and the skew of
these clocks is bounded by some ¢. Since our algorithms do not rcquire a small value for ¢, this
assuinption is reasonable [14], [13]. This assumption pormits us to discard delayed messages and

thus treat them like lost messages.

We begin in section 2 by describing our method for constructing highly available distributed
services. Then, in section 3, we describe our garbage collection technique. We conclude with a

summary of what we have accomplished.

2. The Highly-Available Service

We are concerned here with a distributed implementation of a logically centralized service.
Information stored by the service is replicated at diffcrent nodes of the network.  Reasons for
implementing a service in this way are improved availability and response time. However, in spite of
its distributed implementation, the service is logically contralized in the sense that it appears as a

single entity to clients. The fact that its implementation is distributed is not visible at the chient level,

When data ~f a scervice is replicated at several nodes in this way, the information at the different
replicas may not be identical,  Clients can observe the information at the replicaes only by making

operation calls. A useful distinction among replication sehemes is whoethor opet tion calls expose
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inconsistent information to clients.

A good way to keep inconsistencies hidden trom clients is to use a voting scheme as described in
[6]. In such a scheme, the nodes visited by operations that rcad the service state must intersect
those visited by operations that modify the state. There is sume freedom in choosing how to
implement the operations; for example, if there are three nodes, information could be written to three
nodes and read from only one, or information could be both read and written at two nodes. The
former choice enhances the availability and response time of reading at the expense of writing; the
availability of writing is a problem since all three nodes need to be up and accessible, although this
problem can be mitigated to some extent by using the technique described in [19]. Any choice made
for reading and writing resuits either in some operations having availability problems (the write
operations in the first choice) or in all operations requiring more message passing than is needed if

the service is not replicated.

An attractive alternative to voting schemes is to have both reading and writing take place at only one
of the replicas., and have the replicas communicate new information among themseclves in
background mode by exchanging "gossip" messages. Such a scheme is described in [5]. Aslong as
things are runnirg well, the information will propagate quickly, so the amount of time the rcplicaé
coniain inconsisient information will be small. It there are crashes and partitions, however,
inconsistencies can persist for long periods of time, and thera is no quarantee that information
aobtained from the service is accurate. Inaccurate information is not a problem in some cases. fFor
example, in a mail system (e.g., [7]), a request to read mail need not produce all messages that nave
been sent; a promise of timely delivery is sutficient. Other applications require accurate information.
For example, a service that could only tell you that an object might be inaccessible would te useless

for garbage collection.

The scheme to be described bclow performs operations at a single replica and propagates
infcrmation in background mode. It retains the availability and response time advantages of the
gossip scheme, but can e used by clients, such as a garbage collector, that require accurate

information.

The remainder of this section presents our approach. We begin by describing a particular service to
be implemented by the technique. Then we describe the processing that takes place at the replicas.
Next we discuss the performance of our method. We conclude by discussing the general properties

of applications that can use the method.




2.1. Our Approach

This section describes our approach in detail. To make the discussion concrete, we descibe a
particular service, which allows clients to map unique names (uids) to integers. This map service
stores part of the information needed for orphan detection; in particular, it is used to detect orphans
that are caused by crashes (see [20] for a discussion of orphan detection). The uids are the names of
guardians. which are the entities that can crash in Argus. Associated with each guardian name is its

crash count, which records the number of times the guardian has recovered from crashes.

Since we intend to execute operations at just one replica, and to propagate the new information
{c g.. increased crash counts) in background made, it is possible that the replica consulted by an
operation to look up a crash count may contain out-of-date information. To allow chients to make
sense of a response based on partial information, we mark each response with a timestamp [10]. The
timestamp identifies a particular state of the service, and the response is guaranteed to be accurate
for that state. The timestamps are partially ordered; larger timestamps are associated with more
recent states. It is up to the client to determine how recent a state is of interest to it; the client can
request information that is at least as recent as a given limestamp. Timestamps can be merged;
merging t, and t, produces a timestamp t, that is > both t, and t, Clients merge timestamps to

request information that is at least as recent as the states associated with the two merged timestamps.

A specification of the service is shown in figure 1. In this speciticaticn, the service 1s modelled as a
set of states, each one marked with a timestamp, and all operaticns return the timestamp of some
state. Later states (those with larger timestamps) map uids to larger integers. Operations enter and
delete cause new states to be added to the set, while lookup observes existing states. (See [12] for a

discussion of such specifications.)

Whenever information about an association is entered (by calling the enter operation), the scrver
returns the timestamp of a state that resuits from entering the new association. This state associates
the uid with a value at least as large as the one passed as an argument to enter. The enter operation
can be used to chunge the associated value many times. At association can be deleled by calling the
delele operation; this associates the uid with a value larger than any integer (0C). The lookup
operation takes a timestamp as an argument; it returns information based on a state with a timestamp
at least as large as that timestamp. Lookup must wait until a state with a large enough timestamp
exists; in practice, however, clients of the map service make calls with timestamps for which states

Mready exist.

Note that all the operations are non-deterministic.  For each call there are many states whose




map = data type is enter, delete, lookup

Overview

The map service associates inds with integors. it consists of a set o of states, each marked with
a unique timestamp. Fach state maps uwids to integers. Enter and delete may cause new

states to be added to a. States with larger timestaimps associate larger values with the uids:

H tl and 12 are timestamps and S, and s, are their associated states, 1espectively, then

<, = VY uwd [s](u) < s,(u) \Y2
(s (u)1s undetined & sz(u) is defined)]

Operations

enter = proc {u: uid, x: integer) returns (timestamp)
modifies ¢
effects May rclurn the timestamp of a state s such that s(u) > x. In this case. 8 is alrcady in o.
Otherwise, returns the timestamp of state s such that s(u) = x. Inthis case, 38’ € o such
that s(v) = s'(v)forallv # u & (s'(u) < x V s 15 not defined on u) Adds s to ot itisn't already
there; many such slates may be crealed and added lo o. For each state added, the
associaled imestamp is created in a way that satisties the invariant.

delete = proc (u: uid) returns (timestamp)
modifies o
effects Returns the imestamp of a state s such that s(u) = 00 and 38’ € ¢ «uch that s(v) = s'(v)
for all v # u Adds s to a ifatisn't alrendy there; many such states may be created and added
to g. For each state added, the associated fimestamp s created in a way that salisfies the
invariant.

lockup = proc (u: uid, t: timestamp) returns (integer, timestamp)
signals (not_known{timestiinp))
effects Heturns a imestamp 2> tand information obtained from the state s' associated with t'. If
u maps 1o X in s’ or us notdefined in g, signals not_known; otherwise returns s'(u).
end map
Figure 1: The service operations.
timestamp could be returned; the operation simply returns one of these timestamps, possibly with

some associated information. However, we guarantee that the state corresponding to the returned

timestamp contains the specificd information.

The service is modeled as an abstract data type. The idea is that chients call operations of the type.
The called operation then sends an appropriate message to a replica; there is a message lype
corresponding to each operation. The replica responds by sending back a reply message. If the
response is slow, the operation may send the message to a different replica. Therefore a single
operation call may result in nicssages being sent to several different replicas. As mentioned above,

we assume messages can be lost, deloycd, duplicated, and deliverad out of order.




2.2. Processing at the Replicas
The next two sections describe the processing at the replicas. In what lollows we describe the

processing and the stored information in a general way, without considering possible optimizations.

Each replica maintains a state and the timestamp of that state. The state maps uids either to
integers or to a special value representing 0. Replicas respond to messages sent by operations by
either looking up information in the state, or by generating a new local state and timestamp. They

communicate with one another periodically by exchanging gossip messages.

The main problem that must be solved to make this work efficiently is the generation of the
timestamps. Replicas must be able to generate new timestamps independently, or this service will be
dependent on a timestamp service posing exactly the same problems we are tryiny to solve.
Furthermore, we must preserve the invariant mentioned above, namely, that later timestarmps must

not be associated with states containing older information. -

We solve this problem by using multipart timestamps, where there is one part for each replica. Thus
if there are n replicas. a timestamp tis
t=<t, .,
n
wk re each part is a positive integer. Since there will typically be a small number of replicas {e.g., 3to

7), using such a timestamp is practical.

A replica generates a new timestamp by incrementing its part of its timestamp by one, while leaving
ail other parts unchanged. Since each part can be advanced by only a single replica, we guarantee
that the resulting timestamps are unique. Some timestamps can be compared: For two timestamps t1
and t2, 1 < 12 provided t1, < t2, for each part i of the timestamp. Other timestamps are
incomparable. Two timestamps t1 and {2 are marged by retaining the larger value for each part; as

required, the result of the merge is > t1 and t2.

The messages are processed at the replicas as follows: !f the replica receives an enter(u, x)
message, it looks in its local state to see if there is an association for u. If there is no association, or if
u is mapped to a value less than x, then it associates x with u in its local state, advances its timestamp,

and returns the new timestamp in a reply message. Otherwise it simply returns its current timestamp.

When a replica receives a defete(u) message, it looks up u in its local stide. I u alrea ly miaps to 90
it returns its current timestamp; otherwise it associates 0 with u in the local stute, advances its

timestamp and returns the new timestamp.




A lookup(u, 1) message causes the replica to compare t with its timestamp, t'. ift> t'. then the
replica neads more information. It either waits for gossinp messages from the other replicas or sends a
query to another replica to elicit the information.  Communication between replicas is discussed
below. As soon ast <t it looks up v in its state. If uis mapped to an integer < %0, it returns the
assou: ited integer and i otherwise it returns t_with the information that there is no association for u

in the ’cr state.

Periodically, a replica sends a gossip message containing its timestamp and its state tc other
replicas. When a replica receives a gossip message, it proceeds as iollows: If the timestamp in the
message is less than or equal to its timestamp, it discards the message since it is old. Otherwise it
merges the timestamp of the message with its timestump. The merged timestamp becomes the new
timestamp of the replica. Then it merges the state of the message with its own by rctaining the larger
value for cach association that is present in both states, and by retaining all associations that are

present in only one state.

Replicas produce new states in response to gossip messages. The specification of the map service
says nothing about gossip messages; instead, it indicates that states are created only when enter and
delete operations are executed. However, clients cannot tell when the state associated with the
timestamp roturned by a call of lookup was created. Therefore, creating states late (in response to

gossip messages) causes no harm,

Note that our timestamps do satisty the required invariant that larger timestamps are not associated
with older information:

1. The condition holds initially.

2. Each individual replica preserves the invariant whenever it receives an update message.
A replica advances its timestamp only when it receives new information, and the new
timestamp it generates is larger than its old one. Therefore it preserves the invariant
locally. Italso preserves it globully. Its new limestamp is either larger than that at another
rephica or incomparable with it. In the former case, its information was no ofder than that
at the other replica before the update, so its information is still no older. in the latter case
the invariant is satisfied trivially,

3. The exchange of a single gossip meusage preserves the invatiant. The replica receiving
the message produces a new timestamp that is larger than its previous timestamp, and a
new state contaming information no older than its previous state.  Thus the invariant
holds locally. The new timestamp is either greater than the timestamps of other replicas
or incomparable with them: in cither case the invariant holds.




2.3. Eliminating Deleted Entries

The implementation described above requires that entries mapping uids to 00 be retaincd forever
for the following reason. Suppose we discarded information about deleted uids. Then an association
that has not yet been entered is identical to one that has been deleted. Therefore, when we perform

an enter operation, we would not know whether to associate the uid with the integer argument or not

Note that we would have no problem if clients never entered new information about a uid after it has
been deleted. This constraint holds for the map service as used for orphan detection; here a single
client is responsible for updating information about a particular uid, and once it has deleted the uid
(meaning that the guardian named by the uid has been destroyed), it never updates information about
that uid again. Therefore we will make this assumption about the clients. Other applications of the
highly available service impase similar constrainls on clients, and in all cases the clients saisty these
in a natural manner since the stored information typically involves unique names that ara managed by

a single client.

Even if clients never call enter after deleting an entry, there is still a problem with late messages. If
an enter message is delivered late, it may arrive after the deleted entry has been discarded. To solve
this problem, we have each message contain the time 7 at which it was sent and we impose an upper
bound § on message delay. 7 is the time of the local clock at the sending node; it should not be
confused with the timestamps discussed above. Recall that we assume the clocks of all the nedes are
synchronized with a maximum skew of ¢ [13], [14]. When a messaqge arrives whose time -+ is older
than the time of the clock of the receiving replica by § + ¢, it is discarded. To handle late enter
messages that are not discarded but arrive aftcr the delete message, we rctain information about

deletes at least § + ¢ more than the time in the delete message.

Waiting 6 + ¢ is not sufficient however. Suppose replica r waited this long and then discarded an
association for uid u. Then it sent a gossip message to replica s, which still had an association stored

for u. There would be no way at s to decide whether the association for u should be retained or not.

To solve this problem, we proceed as follows. We continue to store information about deleted
entries in the state. However, in such an entry, ¢, we store two additional picces of information:
e.time, the time of the delete message, and c.ts, the multipart timestamp generated when the celete
message was processed. In addition, we maatain a replica table, ts tabli:, containing a multipart
timestamp for each replica. When a gossin niessage is processed, its timesiamp is stored in ts table
in the entry for the replica that sent the messarge. Notice that the reol vmestamp of the sending

replica must be at lcast as large as the one stored for it in ts table.
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it is safe to remcve the entry e for a uid when:

1.its time e.time + & + ¢ isless than than the time of the local clock of the replica, and

2. its timestamp e.ts is less than or equal to all the timestamps stored in the replica’s ts-
table.

The first condition takes care of late enter messages. The second guarantees that the entry is
retained until we can be sure that a state mapping the uid to a normal value will never be received in a
gossip message. Since the timestamps stored in ts-tahle are less the timestamps of their associated
replicas, each replica has a timestamp > e.ts, and therefore it has heard about the delete, and has
stored this information in its state. Therefore any new gossip messages it generates will contain
either information about the delete or no information for the entry at all. lts old. delayed gossip
messages (containing a timestamp less than that of the receiving replica) might contain bad

information, but they will be discarded.

One final point concerns duplicate delete messages processed at different replicas. In this case the
slates at the two replicas will contain slightly different information for the deleted uid. When such
states are merged, the timestamp e.ts stored for the uid will be the merge of the two stared
timestamps, and the time etime will be the time of the later delete message. This ensures that the

delete information remains long enough to eliminate any problems.

2.4. Performance

When this method can be used by an application, it has better response time and availability than a
voting scheme. When the system is working well, i.e., replicas are up and accessible, then clients
need to wait for a response from just one replica in carrying out any operation. In a vecting scheme, at
least some operations require responses from several replicas. Since in general not all replicas are

equally close, this will slow down the clients.

When the system is not working well because of crashes and partitions, the performance of any
replication scheme degrades. Our method alfows updates to proceed but slows down queries; voting
schemes typically do the opposite. However, the effect on clients is really the same. assuming that
updates must happen. For example, for orphan detection to work the quardian must record its new
crash count at the service; not allowing the update means the guardian cannot cecover from the

crash.

Our scheme provides better availability than a voting scheme because clients can cpecrdy that old

information is acceptable. This increases the probability that the replica procecsing a query has the




.

it

needed information.

It is important that the probability of loss of information by the service due to a crash of one of the
replicas be acceptably low. An obvious way to achieve this is to have the replicas log new information
on stable storage. Information received in both update and gossip messages must be logged; the
stored information must include the replica’s timestamp and the changes to its state. After a crash, a
replica would restore its state from the log and then communicate with other replicas to get up to

date.

One problem with this scheme is that there is a period of time during which just one replica knows a
new piece of information. if the replica crashes during this period, the new information becomes
inaccessible to other replicas until it recovers. The longer this period, the higher the probability of the
inf‘ormation being inaccessible when needed by a client. To reduce this period. gossip about new
information should be sent out frequently. For example, a replica might gossip about the new
information to another replica at the same time that it replies to the client. Another poscsibility is for
the client to send an update message simultanecusly to several replicas; this would not stow the client

down since it need wait tor only one response.

Since replicas contain copies of one another's information, it is tempting to consider eliminating
stable storage. Instead, before responding to an update message, a replica would communicate the
new information to one or more other replicas and wait for them to respond. Then it could send the
reply back to the client. The number of replicas involved would depend on the acceptable probability
of information loss. Although this approach avoids the use of stable storage, #t is likely to degrade

system performance; it is similar to a voting scheme in which updates must happen at two copies.

2.5. Discussion
This section has described a method for constructing highly-available central scrvices for use in a
distributed system. The method was discussed with respect to a particular example, the map service.

Below we describe the service in a more abstract way.

The service provides its clients with update and query operations. Update operations modify the
service state; they return a timestamp of a state guaranteed to contain the new information or later
information. Fnter and delete are the update operations for the map service. Query operations take a
timestamp as an argument and return some information and a timestamp as a result. The returned
information is guaranteed to come from the state associated with the returned limestamp, and the

returned timestarp is 2> the argument timestamp. { ookup is the (only) query operiation for the map
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service.

The implementation of the service must guarantee the invariant that new timestamps do not
correspond to older information. This implies that there must be a way for the scrvice 10 distinguish
newer from older information. In the case of the map service, larger crash counts were more recent

than smaller ones.

The method of distinguishing information comes from the application domain. and limits the set of
applications that can use the technique. For example, consider a naming system in which chents
generate user-friendly names that may conflict. Suppose two clients enter the same name at
approximately the same time. To make use of the service for storing the names, these enters must be
ordered: the higher ordered one is the one that will persist.  Although the naming syctem could
impose some ordering, €.g., based on a ranking of the person entering the name, this is probably not

a good idea.

Query operations do not return until they have recent enough information. Clients must define what
is recent enough; there must be something in the application that makes this possible. In addition,
clients must be able to act safely on information that is out of date, which is true if the property of
interest to chients is stable.  The stable property for the map sarvice is that crash counts never
decrease; the meaning of "recent enough” is difficult to explain without going into thoe details of

orphan detection. We will exainine these proserties for garbage collection lister in the paper.

3. Garbage Collection

Programming fanguages such as Lisp, SmallTalk and CLU use a model of computation in which
objects reside in a heap and storage management is automatic. In particular. objects are not
deallocated explicitly. Instead, they are garbage collected at some convenient time after they become
inaccessible. An intcresting way to use a disiributed system is to provide direct support for this
model. An implication of such an approach is that the heap now has parts residing at all the different

nodes.

This section describes a way of doing garbage collection of a distributed heap in an efficient
manner. Our method is independent of the particular garbage collection technigue in use at the
nodes. and in fact different nodes can use different techniques. Nodoes do not commumicate with one
anothar. Instead information about inter-node references is stored at a highly available logically
contraflized roforence servico, nodes communicate with the serace: penodically s with a resuit that

fower messages nead be communicated. The referance servica is conslouctod v the iechmque
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described in the preceding section. Finally, the technique is tolerant ot all the faults discussed carlier:

node crashes, and lost, duplicated, delayed and out-of order messages.

Several papers on distributed garbage collection [1], [15]. [9]. [8] have been published. Our method
is an improvement on these techniques; none of them is fault tolerant, and all involve more message

passing than ours.

The algorithm preserves the same correctness condition as in a non-distributed heap, namely an
objec: remains in existence until all references to it are gone. This requirement must be satisfied even
if the node that contains the only reference to an object is down or inaccessible. The requirement is

sensible since we assume a stable heap in which all objects are persistent, i.e., survive crashes.

Our approach uses the fact that an inaccessible object stays inaccessible, and so it is not necessary

to recognize the inaccessibility of an object immediately. .Our algorithm is "lazy” about reclaiming
objects that were referred to at other nodes, but we guarantee that all inaccessible objects are

reclaimed eventually.

We assume objects can be referred to uniformly regardless of their location by using a unique
name, and that there exists a method for locating objects efficiently given their names. The node at
which an object is located is called the owner of the object; the object is local to that node. We
assume that objects do not move; only slight extensions to our alygorithm are necded to handle
objects that move, but we do not discuss them in this paper. An object is public i its owner has sent
its name to some other node; once an object is public, it continues to be public even though other

nodes no longer refer to it.

A distributed heap can be viewed as a heap whose root is distributed and congists of the union of
the roots at all nodes. In such an environment, an object is acces:ible if it 1s accessible from one of
the roots. In addit.~ ., however. we must consider the special problem of objects that are "in tranait.”
For example, suppose object x is owned by node B. and that node A has areferenca to x. Suppose A
sends the reference to node C, deletes its own reference {(perhaps after having recewved an
acknowledgement from C), and performs a garbage collection. If a garbage collection were done at B
using information from A after its garbage collection an-{ informa..on from C hefure it received the
reference to x, x could be destroyed by nustake. This example reflects a case in which x s not
accessible from any other object in the heap but areforence to itis in i message ihabcm tansit. To
handle in-transit references correctly, we define accersibility as toliows. An object is aecessibie if

either it is accessible from one of the local 1oots or aeference to itis n transit,




As was the case in the preceding section, we assume a bound 8 on message delay. Messages
containing external references also contain the time at which they were sent. If a message arrives at
a node when its time + & + ¢ is lcss than the time of the node's local clock, it is discarded. This

assumption allows us to bound the time the references remain in transit.

The remainder of this section describes our garbage collection method. In the presontation, we
descibe the processing and stored information without considering the many optimizations that would
be done in a real implementation. We begin by describing the processing at the nodes. Then we
describe the interface to the highly-available service, and how the nodes interact with the service.
Next, we give an implementation of the service using the replication technique discussed in the

preceding section. We conclude with a discussic i of the performance cf our aigorithm.

3.1. Information at nodes

Our strategy for garbage collection 1s to have the nodes do as much work as possible. Nodes are
responsible for doing local garbaye collection and managing the storage for local objects that are not
public. The reference service is responsible for determining the accessibility of public objects.
Nodes must provide it with enough information so that it can do this correctly. Nodes must ask the
service about the accessibility of their focal objects that are public and must not destroy th .m until

informed by the sarvice that they aire inaccessible.

Fach node maintains a list, called the iniist, of its public, local objects. The inhist is kept on stable
storage so that it is recoverable should the node crash. An entry is added to the list the first time 1
reference to a local object is sent to another node. The objects listed in the inlist vaay be a superset of
those actually used by other nodes. For example, suppose that object x in node B contains the only
reference to object y in node A, and that x is deleted at B. Object y is now inaccessible, yet it has an

entry in A's inlist.

A node also maintaing trans, i list of the references it has sent 'in messages. This list enables us to
avard the mistake of regarding an object as inaccessible while a reference to it in ransit. An entry
15 added to the hst whenever a reference is sent in a message. The list must be recoverable and
thorefore each enlry is written to stable storage before the message contaming the refercnce is sent.
Each eniry in hansis atriple

<oby-ref, target node, timed
whaore e ig the local ime stored in the message containing obj-ref. For example, f trans contains

SGCACH) (y B0 )Y then a referance to object x was sent to node A at time t,and a reference to
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object y was sent to node B at time t2.

To determine accessibility of public objects correctly, the reference service needs to know trans for
each node. It also needs to know which public objects are accessible from each node. Cbjects are
accessible if there is a path to them from the root of some node. Each node knows about the objects
accessible from its root, but not about objects accessible from other nodes' roots. However, it does
know about its inlist and this is a superset of its local objects that may be accessible from some other

root. Thus a node treats objects as accessible if they are accessible cither from its root or its iniist.

An example is given in figure 2. Here x, y, z and w are public objects belonging to node A and u and
v are public objects belonging to node B. Objects x and u are accessible from A's root; y, z. w. and v
are accessible from its inlist. No objects are accessible from B’s root, but u and v are accessible from
its inlist. The only inaccessible object in the figure is w; objects y, z. u, and v are globally accessible

even though they are not accessible from the roots of their o nars.

node A node B
root root
x\—*ua
inlist inlist
y—>z— Vs u—y,
w v

Figure 2: An example of giohal acces«ibility.

To inform the service about local accessibility, a node sends two lists, ace and paths. Acc lists all
objects accessible from its root. We omit local public objects (such as x) from ace; these are not
needed since their owner will not inquire about their accessibility. Paths contains information about
what public objects are accessible from locally inaccessible objects in the inlist. Itis a list of pairs <o,
p>, where o i5 in the inlist and is not accessible from the local root, and p is a public objoct accessible
from 0. We omit pairs whose second element is local and accessible from the root; these are not
needed, again, because their owner will not inquire about their accessibility. Thus the information for

node A is:
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acc = {u}
paths = {<y, z>,<z, v}

Note that we do not include pairs in paths where the accessibility can be deduced from inforination

already in paths; e.g., <y, v> is not included.

The node computes acc and paths during garbage collection. The lists need not be remembered

between consecutive rounds of garbage collection.

The node also maintains a multipart timestamp, which it uses to communicate with the reference
service. The timestamp is used to guarantee that the service bases its decision about accessibility of
the node’s objects on information that is recent enough, as discussed further below. The timestamp

is kept on stable storage, so it is remembered when the node recovers from a crash.

Each node does garbage collection independently of the rest of the nodes, using an algorithm of its
choice. The algorithm must be extended slightly to take account of the infist and to compute the acc
and paths. It must ulso construct the glist. the list of objects whose accessibility is questionable. This
contains all public, local objects that are not accessible from the node's root, e.g., y. z and w for node

Aip figure 2.

As an example, we will show the extension of the real-time garbage collector proposed by Baicer [2].
This is a real-time copying garbage collector that moves some objects from old space to new space
each time it does a COMS (thus creating a new object). When ail objects have been copies, it flips the

spaces.

The extended version of the algorithm is:

1. Construct an empty acc, paths and glist.

2. Add to acc all references to public, nonlocal objects found in variables or in objects that
are moved to new space. This includes both objects that are copied from old space and
newly created objects, such as those created when a message is processed.

3. When all accessible objects have been moved to new space, scan the infist. For each
object x in the infist that was not moved, do the tollowing:

a. Add x to the glist.

b. Move x to new space, and also move to ncw space all objects reachable from x that
are not already in new space and are not i the inlist.

¢. For each reference to a public object y found in step b, add <x. y> 1o the paths if
eithar y is nonlocal or y is local but is not accessible from the root.
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4. Record local time. This is the gc time.

5. Flip the spaces.
Note that the acc and paths contain a superset of the external references that exist in new space just

before the space flip.

The only non-real time processing is due to the scan of the iniist in step 3 of the algorithm. If the
inlist is long and we want to maintain a constant bound on the time for CONS we must allow
incremental scanning of the inlist. In this case we must add to acc any references to public, nonlocal

objects found in objects created in new space while the inlist is being processed.

The information obtained from running the garbage collector is then conveyed to the relerence

service as discussed below.

3.2. The Reference Service

The reference service provides two operations, info and query; a specitication is given in figure 3. A
node calls info when garbage collection is complete to inform the service about its external
references and also about objects that are in transit from it to other nodes. One of the arguments to
info is the gc-time; this informs the service about the local time ot which acc and paths were
computed, and is used to discard old information about objects in transit to the node. The service
records the information in the arguments and responds with the imestamp of a state that contains the
nformation. When the operation returns, the node replaces its timestemp with the rcturnoed
timestamp and records the result on stable storage. Then it discards acc and paths. and also the part
of trans that was passed to the call. (Additional messages may have been recorded in trans since the

cail was made; these new entries are retained.)

Later, the node can call the guery operation to inquire about which objects in the glist are not
accessible elsewhere. When the call returns, the node deletes any inaccessible objects from the
infist, this will cause their storage to be reclaimed at the next local garbage collection. The names of
these inaccessible objects are recorded on stable storage so that after a crash the inlist is recovered
accurately. The node can either discard the glist, or retain it {(minus the objects known to be

inaccessible) for use in further calls of query done before the next garbage collection.

One of the arguments to the call of gquery is the timestamp of the node. This argument is used to
ensure that the most recent cail of info is used in processing the query. This is necessary because

the glist is defined in conjunction with paths of that call of 1n/o and could be misinterpited otherwise.
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reference = data type is info, query
Overview

The reference service maintains a global picture of the inter-node by caiting references. Nodes
inform it about accessibility penodicall; the into operation. Nodes request information about
which local objects can be deleted by calling the query operation. Fhe service consists of a set
of states ¢. Each state records information about the accessibility of public objects and m-transit
references for cach node. I ach state has an associated (multipart) timestamp, and states having
larger imestamps record information at least as recent as that in states with smaller timestameps.

Operations

info = proc (o: ace, n: paths, t: trans, gc-time: time, ts: timestamp) returns (imestamp)
modifies o
effects Returns a timestamp 2 ts of a state s that records the acc. paths. trans and go-time for the
node. Adds s and its associated tmestamp to o if they are not already there. NMay create
several such states s: their tmestamps are generated se as to salisty the mvariant.

;

Information about other nodes 1s taken from some other state ' ¢ .

query = proc (g ghst. ts: timestamp) returns (list)
effects Computes the accessibiity of objects in g based on a state whore tmestamp 1s 2> 1s.
Returns the list ot objects in g tound to be inaccessible.

end

Figure 3: Specitication of reference service.

The retecence service could provide additional opetations. Since very often a call of 11/o iy followed
by a call of query, a combined apzration would be convenient. An operation that would inform the
service Just about trans would permit the node to discard this information more frequently. in what

follows, however, we ignore such additional operations.

3.3. Implementation of the Reference Service
This section describes the implementation of the reference service using the replication technique
of section 2. Our discussion ignores the processing of cycles; cycle detection is discussed in section

3.4.

The reference service should be highly avaiiable so that inaccessible public objects can be
collected in a timely fashion. Therefore, ts implementation must consists of several rephcas. Smce
each node communicates with the reference service only in background mode, fast response time 1
not a strong requirement, and a voting scheme could be used to interpret the replicas consistently.
However. the nodes can easily satisfy the constraints on clients imposed by the rephlication scheme
described in the preceding section. Each query operation executed by a node must have access to

information provided by all previous info operations of the node; this requirement Jdotines the nolion
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of "recent enough” mentioned in section 2.5. Also, the property needed by the nodes is stable: once
an object becomes inaccessible, it will continue to be inaccessible forever. Since cur i1eplication
scheme performs better than voting, in this section we will describe how to use it to implement the

reference service.

Each replica maintains a multipart timestamp and the state that corresponds to that timestamp. The
state consists of a complete description of all the inter-node references, including references that are
in transit. The state maps each node k to a tuple

{gc-time, acc, paths, to-list>
where gc-time is the time of k's garbage collection, acc and paths are its acc and paths computed at
that time, and the to-list is a list of reterences that were sent to k and may still be in transit. The to list
is the list of pairs <x, >, where tis the time at which a reference to x was sent to k. nitially the ge-time

is zero and the other parts of stdte(k) are empty.

Each replica also maintains a second multipart timestamp. max ts, which reflects the latest
timestamp produced as a result of processing an info message. Max ts is needed to detect that

information at the replica is incomplete.

The execution at the replica is presented by describing the processing of the info and query
messages it receives and the gossip messages exchanged. As was the case earlier, the calls of
service operations cause corresponding messages to be sent to one or more replicas. The
arguments in these messages are those of the associated operations plus one additional one, the
identity of the nude that made the call. To clarify the presentation, we will prefix the names of the

arguments with "msg", e.g., msg.acc.

The processing of an info(acc, paths, trans, gc time, Is, i) proceeds as follows:

1. Discard an old message:
{If msg.gc-time <state(r).gc-time then go to 5.

2. Replace state(i).acc, state(i).paths and state(i).gc-time by msug.acc, msg.paths and
msg.gc-timoe, respectively.

3. Find all the objects in the node's trans that should have arrived at the node and delete the
entries for which time is up.

for all <x, t> & state(i).to-list
ift+ e+ 8 < msg.gc-time
then delete <x, t> from state(i).to-list
else do nothing
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4. Update the replica’s database to reflect all the references that are in transit from i. For
each object in transit, keep the latest sending time.

tor all «<x, j, (>~ C musy. trans
if t+ ¢+ > state{f.gc-time
then if 3 <, ('> € state(j).to-list
then if t' <t
then replace <x, t'> by <x, t>
else do nothing
else add «x, (> to state(j).to-list
else do nothing
5. end
Note in steps 3 and 4 that we make use of the bound on message delay. Since a node is guaranteed
to discard messages that come in too late, it is safe to discard information about in-transit references

if the node’s g¢ time is later than the bound + €.

When processing is complete. a new multipart timestamp is generated for the repiica (untess the
message was rejected in step 1). Then the replica’s imestamp is merged with the caller's timestamp,

the result of the merge is sent back to the caller in the reply message and also is merged into max ts.

To handle a querylglist, timestamp, 1) message the replica checks each object in the gliist to see if
the object ic accessible from any ncde. An object x is accessible if a reference to it evists in acc,

paths or to-list for some node j,

To process a query, a replica need not have the most recent info information for euch node but it
must have access to a complete sequence of info operations for each node. This requirement
prevents in-buncit objects being treated as inaccessible by ensuring that the replica has information
about all objects in transit from a node as of the gc-time stored for it. We fulfil this requirement by
waiting until the replica’s hmestamp is equal to its max ts; the replica gossips with other replicas to

obtain more information if necessary.

In addition. a query cannot be processed until the replica’s timestamp is grecter than or equal to the
timestamp in the message. This condition guarantees that the replica has recent enough information

for the node doing the query. Once the condition is satisfied, processing proceeds as follows:
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create empty alist
for each x in the msg.qlist
for each node j
if x ¢ state(j).acc
V 3 <«x, t> € state(j).to-list
V 3 <y. x> € state(j).paths
then % x is accessible
add object x to the alist
exit inner loop
end
end

When processing is complete, the list of inaccessible objects, glist — alist, is computed and sent back

to the caller in a reply message.

In addition to info and query messages. the replicas must also send and process gossip niessages.
The sending replica’s timestamp and its max-ts are included in the gossip message; they are merged
with the receiver's corresponding timestamps as part of processing the message. Gossip messages
could either contain the entire state of the replica or a sequence of info messages. In the latter case,
which we assume in the paper, the sequence must include all info messages known Lo the sender that
may not be known to the receiver. To bound the sequence, we can associate with each info message
the timestamp generated when it was first processed. A tinestamp table Iike that in section 2.3 can
then be used to decide when an info message is known at another replica. Recall that this table
stores for each replica the largest titnestamp received in a gossip meésugo from it, and that at any
time, the timestamp of a replica is larger than that stored tor it in the table. Thus a replica nmust know
about an info message when its timestamp in the table is liarger than the info message’s timestamp.

An info message can be discarded when all replicas know about it.

Processing a gossip message consists of processing tiie sequence of info messages. Some of
these messages imay be old, i.e., msg.gc time < state(1).gc-time, where i is the sender of the message.
The only interesting part of an old info message is trans; all other information in the message has
already been superceded by more recent info messages. Therefore, only trans is processed for old

info messages, i.e.. only step 4 of the info processing algorithm is executed for them.

3.4. Multiple Node Cycles

if the inaccessible inter-node references forim a tree, then when the node containing the root of the
tree is garbage collected, the rest of the tree will eventually be deleted. But if the inaccessible
inter-node references form a cycle, inaccessible objects will never be deleted in our scheme. For
example, suppose object x at node A has a reference to object y at B and y has a reference to object

x. Theinter-node references for x and y form a cycle that spans node boundarics. Cven it x and y are
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both locally inaccessible, they appear to be globally accessible and therefore are not reclaimed by the
local garbage ccllectors at their nodes. They are also not recognized as inaccessible by the

algorithm presented in the preceding section.

One way of deleting cyclic objects is to follow the idea suggested in [3] of moving an object that is
inaccessible locally to one of the nodes that has a reference to it. Moving the objact converts a
inter-node cycle to a intra-node cycle whose storage is reclaimed as soon as the node is garbage
collected. However, this approach may not be suitable for a distributed system. Moving an object can
be expensive. In addition the code that manipulates the object (e.g., the code implementing the
operations of its data type) may not be present at the new node. and we may not wish to place the
code there. either because the nodes are not homogeneous, or because having all ¢ode at all nodes

consumes too much space.

Therefore we will use another method in which the central service detects inaccessible cyclic
objects using its global view of the external references. Each replica runs a cycle-deteclion algorithm
periodically. The replica does this somewhat independently of other replicas. When cycle detection
is finished, the replica conveys the information about inaccessible objects to other replicas by gossip

messages.

As was the case with queries, to run cycle detection a replica need not have the most recent inifo
information for each node, but it must have access to a complete sequence of info operations for
each node. Again we fulfil this requirement by waiting until the replic.t’s timestamp is equal to its

max ts; the replica gossips with other replicas to obtain more information if necessary.

The algorithm consists of a mark phase in which all objects that are definitely accessible are
marked, and a sweop phase in which inaccessible objects are identified. The mark phase consists of
the following:

1. Mark all the objects that occurin acc or to list of some node.

2. Mark x if there exists an object y such that y is marked and <y, x> € paths of some node.
The sweep phase then identifics the inaccessible objects as follows:

for each node i
tor each <x, y> (¢ state(i).paths
if x is unmarked Lhen flag the pair
end
end

In processing a query. we ignore tagged pairs. The rcason we flivg the pair in paths instead of
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deleting it is to insure that the results of the cycle reclamation algorithm persist.  We retain
information about inaccessible objects gained in this fashion until the owners of the inaccessible
objects are known to know about them. Until that time, the owner of an object may send an :nfo
message that contains intormation about the object in paths, and we must avoid reintroducing that
information into the replica's state. As soon as an info message arrives that does not contained the
flagged pair, we know the owner knows about the inaccessibility. At this point we remove the pair

from paths.

4. Discussion

The distributed garbage collection algorithm discussed above allows garbage to be collected in a
timely and efficient manner. It has several performance advantages. First, it propagates information
quickly and with few messages. A node merely informs a single replica; the replica then informs all
the others. Assuming that info messages are propagated as gossip as soon as they arrive, this implies
2 + n messages are sent, where n is the number of replicas. Once these messages are sent, all
nodes’ queries can be processed using the new information. Thus the information from one node is
available to any other node in 4 + n messages. Such propagation is better than what could be done
in a system where nodes communicate directly, assuming the number of nodes is larger than the

number of replicas.

The result of fast propagation of information is timely deletion of inaccessible objects. In systems
where nodes communicate directly (e.g., [1], [8]. [9), [15]), either all nodes must communicate to
decide about inaccessibility, or a node must communicate with those other nodes that have
references to its objects. In either case, if any of these nodes in down or inaccessible, garbage
coilection cannot proceed. In our scheme, progress can be made as long as the replicas are
available. At worst, this means a smaller number of sites need be up. More likely, however, progress

can be made even when some replicas are down because information is replicated.

Another advantage is that the method off-loads the work of garbage collection from the nodes.
Even though most of the work of garbage collection is done in background, the amount of work is
substantial. By having this work done at the replicas, we free the norles to dc their real job, the

processing of user computations.

Finally, the method has the merit that it usually does not cause delays in user computation. The one
exception is that nodes must log information about an in-transit reference on stable storage before
the message containing the reference can be sent. Writing to stable storage 1s not really nccessary,

but it greatly speeds up global garbage collection after a crash. Not doing such logyging results in the
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lass of the inlist and trans after a crash. Loss of the inlist means that all the node’s objects must be
considered to be public. Loss of trans means that we must assume the node has sent messages
containing reterences to all objects it knows about to all other nodes. The service must make worst
case assumptions about the objects the node might know: It is assumed to know about all public
objects it knew about at its last garbage collection plus any objects sent to it that might have arrived

after that. In addition it knows about all (local) objects it ever created.

Utltimately, the truth of all these assumptions will be known, but we must wait until every other node
has communicated with the central server with a gc-time >t + § + ¢, where t is the time of the
crashed node's local clock just after it recovers from the crash. (This condition assumes the crash is
instantaneous and that the node sent a reference in a message to some other node just before it
crashed.) This wait can be long. A special problem is crashes of other nodes. since that prevents
them from communicating with the rcference service. | there are a large number of nodes, the

probability of a crash of one of them during this period can be non-negligible.

There are two ways of avoiding this wait without incurring the real-time delay of loyging entries in
trans. The firstis to log the identities of other nodes that a node communicates with. This information
limits the number of nodes that must be heard from after a crash before an accurate assessment of
the crashed node's trans ard mist can be made. The approach is helpful only when comimunication
patterns are fairly static and when nodes communicate with just a smalt number of cther nodes. It is

nol clear now inany applications will exhibit such a pattern.

The secend approach is more generally promising and will work in any system in which
computations are carried out as atomic transactions. in such a case, logging of trans need not be
completed until the transaction that caused the messages to be sent prepares in the first phase of
two-phase commit. Therefore, trans can be logged in background mode between the time the
message is sent and the prepare; at worst, it can be written to stable storage as part of the prepare

record.

The reason transactions allow this optimization is the following. We assume that the crash of any
node visited by a transaction causes the transaction to abort. When a transaction aborts, it is as if it
never ran, and therctore we noed not be concerned about messages it sent. Theretore, we need not

iog these messages.

In a distributcd system with resilient objects, trans.actions are needed to make sense of
Y

computations in the presence of concurrency and failures. 1t is likely that the distnbuted garbage
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collector will be running in a system with transactions.

5. Summary

This paper has described two techniques for use in a distributed system. The first is a way to
implement a highly-available service. The technique guarantees that clients sce consistent views of
the service's database, but requires that they communicate with only one of the replicas implementing
the service. It is appropriate for use in applications in which clients can proceed correctly on the
basis of information that is out-of-date. Such clients are typically interested in stable properties,

properties that once true are always true.

The second technique is a fault-tolerant, distributed garbage collection algoritiym. The algorithm is
both efficient and fault-tolerant. It allows the nodes containing the distributed heap to do locu!
garbage collection independently, each using an algorithm of its choice. Information about inter-
node references is maintained at a highly-available central service. We described an implementation

of this central service based on the technique developed in the first part of the paper.

in the preceding section we argued that the garbage collection method had a number of desirable
properties: it propagates information quickly, it detects inaccessible objects quickly, it off-loads work.
from the nodes. and it avoids delaying user computations. These properiies are rcally due to our use
of a central service as opposed to having nodes communicate directly. The central service could
have been implemented using a different technique such as voting. Our implementation technique,
however, has better performance than voting for applications that can use it; as was argued in section
2.4, both response time and availability are improved through its use. Gaibage collection is an

example of an application that can benefit from the technique.
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