
Massachusetts Institute of Technology

Laboratory for Computer Science
Cambridge, Ma. 02139

AD-A229 264

D T IC Programming Methodology Group Memo 48 U

S ELECTE
~ D

Highly-Available Distributed Services and
Fault-Tolerant Distributed Garbage Collection

Barbara Liskov
Rivka Ladin

(Note: To appear in the Proceedings of the 5th ACM Symposium on Principles

of Distributed Computing, Calgary, Alberta, Canada, August 1986)

This research was supported in part by the Advanced Research Projects

Agency of the Department of Defense, monitored by the Office of Naval
Research under contract N00014-83-K-0125 and in part by the National

Science Foundation under grant DCR-85-03662.

M 1L98AS

May 1985 A

U Pto~ ~W v 07677



I. ,.

2

Abstract

This paper describes two techniques that are only loosely related. The first is a method for

constructing a highly available service for use in a distributed system. The service presents its clients

with a consistent view of its state, but the view may contain old information. Clients can indicate how

recent the information must be. The method can be used in any application in which the property of

interest is stable: once the property becomes true, it remains true forever.

The paper also describes a fault-tolerant garbage collection method for a distributed heap. The

fnethod is practical and efficient. Each computer that contains part of the hezip does local garbage

collection independently, using whatever algorithm it chooses, and without needing to communicate

with the other computers that contain parts of the heap. Tie highly available central service is used

to store information about inter-computer references. . .

1. introduction
This paper describes two techniques that are only loosely related. The first is a method for

constructing a highly available service for use in a distributed system. The service presents its clients

with a consiStent view of its state, but the view may contain old information. Clients can indicate how

recent the information must be. The method was invented as a way of optimizing the orphan

detection strategy developed for the Argus language and system [16], [17]. However, the technique

appears to be applicable to a wide range of applications. We have found three others oo far-

garbage collection of objects in a distributed heap, locating movable objects in a distributed system,

and deletion of unused versions in a hybrid concurrency control scheme (211. The method requires

that the property of interest to ihe application is stable [4], i.e., once the property become3 true, it

remains true forever. For example, once an object in a heap becomes inaccessible, it will always be

inaccessible.

The second contributioii of th,? paper is a fault-tolerant garbage collection m-dhod for a distributed

hoal,. The method is practical and efficient. Each computer that contais part of the heap does local

garbag, collection independently, using whatever algorithm it chooses, and without needing to

communicate with the other comr.Juters that contain other parts of the heap. The highly available

central service is used to store information about inter-computer references. The computers

containing the heap communii', with the central service periodically, to inform it about their

rt.f,,rences to objtcts at other sit,-ts, nd 1o MnLfire about the accessibility of any local objects that

miglht bc referred to ,at uthor , c th,,u propagate3 information about accessibility quickly



3

and makes that information highly available. In addition, it off-loads the work of distributed garbage

collection from the computers storing the heap, and does not delay them in carrying out user

computations.

The methods are intended to run in an environment in which individual computers, or nodes, are

connected by a communications network. Both the nodes and the network may fail; the methods

tolerate these failures. The nodes are failstop processors [18]; we assume they can crash, but

Byzantine failures are not expected. We assume that nodes do eventually recover from crashes, and

that each node has access to a stable storage device that (with very high probability) preserves the

information entrusted to it [1 ]. After a crash, a node can recover the portion of its state that was

written to its stable storage device before the crash.

The network connecting the nodes can have an arbitrary topology. For example, it mnight consist of

a number of local area nets connected via gateways to a long-haul network. Again we rule out

Byzantine failures, but otherwise the network can behave arbitrarily badly. For example, it can

partition. Therefore messages can be lost, delayed, duplicated, and delivered out of order.

We assume that the nodes ate loosely synchronized: each node has a local clock, and the skew of

these clocks is bounded by some -. Since our algorithms do not rcqUire a small value for r, this

assumption is reasonable [141, [13]. This as3umption prmnits us to (liscarcl delayed messages and

thus treat them like lost messages.

We begin in section 2 by describing our method for constructing highly available distributed

services. Then, in section 3, we describe our garbage collection technique. We conclude with a

summary of what we have accomplished.

2. The Highly-Available Service
We are concerned here with a distributed implementation of a logically centralized service.

Information stored by the seivice is replicated at differemt nodes of the network. leatsons for

implementing a service in this way are improved availability and respons'.e time. However, iin spite of

its distributed implementation, the service is logically ct ntralized in the :;cinsv that it appears as a r-

single entity to clients. The fact that its implementation is di:;tributed i , not visible at the (.lient level.

When data f a !, urvic.e is replicated at several no( ,:, il this way, th, itiformation Mt the diffe;ient ..................

replicas may not be identical. Clients can ob)siv, iht- in formatio I Ihe: q !icXi:; o ily by making

operation calls. A useful disnicltion among replication -;rllht'ln s is v.w t l opct 1lion ( als oxpos;e



4

inconsistent information to clients.

A good way to keel) inconsistencies hidden from clients is to use a voting scheme as described in

[6]. In such a scheme, the nodes v'sited by operations that read the service state must intersect

those visited by operations that modify the state. There is some freedom in choosing how to

implement the operations; for example, if there are three nodes, information could be written to three

nodes and read fr)m only one, or information could be both read and written at two nodes. The

former choice enhances the availability and response time of reading at the expense of writing; the

availability of writing is a problem since all three nodes need to be up and accessible, although this

problem can be mitigated to some extent by using the technique described in [19]. Any choice made

for reading and writing results either in some operations having availability problems (the write

operations in the iirst choice) or in all operations requiring more message passing than is needed if

the service is not replicated.

An attractive alternative to voting schemes is to have both reading arid writing take plac(c at only one

of the replicas, and have the replicas communicate new information among themselves in

background mode by exchanging "gossip" messages. Such a scheme is described in [5]. As long as

things are r0finirfg well, the information will propagate quickly, so the amount of time the replicas

contain inconsistent information will be small. If there are crashes and partitions, however,

inconsistencies can persist for long periods of time, and there is no guarantee that information

obtaine.d from the service is accurate. Inaccurate information is not a problem in some casc3. For

example, in a mail system (e.g., [7]), a request to read mail need not produce all messages that have

been sent; a promise of timely delivery is sufficient. Other applications require accurate information.

For example, a service that could only tell you that an object might be inaccessible would be useless

for garbage collection.

The scheme to be described below performs operations at a single replica and propagates

infurmnatioi in I)ac,(;round mode. It retains the availability and response time advantages of the

gossip scheme, hut can be used by clie-nts, such as a garbage collector, that require accurate

info mwtion.

I he remainder of thi-. sec.tion presents our approach. We begin by describinj a particular service to

be implemented by the technique. Then we describe the processing that takes place at the replicas.

Next we liscLIss the Jl:rforIMance nf our method. We conclude by discussing the (general properties

of applicalions that c;An use the method.



5

2.1. Our Approach

This section describes our approach in detail. To make the discussion concrete, we descibe a

particular service, which allows clients to map unique names (uids) to integers. This map service

stores part of the information needed for orphan detection; in particular, it is used to detect orphans

that are caused by crashes (see [201 for a discussion of orphan detection). The uids are the names of

guardians. which are the entities that can crash in Argus. Associated with each guardian name is its

crash count, which records the number of times the guardian has recovered from crashes.

Since we intend to execute operations at just one replica, and to propagate the new information

(e g., increased crash counts) in background mode, it is possible that the replica consulted by an

operation to look up a crash count may contain out-of-date information. Io allow clients to make

sense of a response based on partial information, we mark each response with a timestamp [101. The

timestamp identifies a particular state of the service, and the response is guaranteed to be accutirate

for that state. The timestamps are partially ordered; larger timestanip,; are associated with more

recent states. It is up to the client to determine how recent a state is of interest to it; the client can

request information that is at least as recent as a given timestamp. Timestamps can be merged;

merging t1 and t2 produces a timestamp t3 that is > both t, and t2. Clients merge timestamps to

request information that is at least as recent as the states associated with the two merged timestamps.

A specification of the service is shown in figure 1. In this specification, the service is modelled as a

set of states, each one marked with a timestamp, and all operations rrturn the timestamp of some

state. Later states (those with larger timestamps) map uids to larger integers. Operations enter and

delete cause new states to be added to the set, while lookup observes existing states. (See [ 12] for a

discussion of such specifications.)

Whenever information about an association is entered (by calling the ewter operation), the server

returns the timestamp of a state that results from entering the new association. This state associates

the uid with a value at least as large as the one passed as an argument to enter. rhe enter operation

can be used to change the associated value many times. An association ci'in be deleted by calling the

delete operation; this associates the uid with a value larger than any integer (00). The lookup

operation takes a timestamp as an argument; it returns information based on a state with a time-:tamp

at least as large as that timestamp. Loollp must wait until a state with a large enough timestamp

exists; in practice, however, clients of the niap service make calls with timestanps for which states

.already exist.

Note that all the operation:; are non-deterministic. For each call there are many states whose



6

map = data type is enter, delete, lookup

Ove rview

The map servicenassociates aids with inte(lors. It cons:sts of a set a of state,,,, uach marked with
a unique tirrestamp. Fach state mnaps uids to integers. Filter and delete mnay cause new
states to be added to aT. Stat-, with laiger finestatups asisociate larger values with the uids:
it t Ianrdt 2 are tiiestarnps and sIar id s2are their associated states, respectively, then

t I2 ='V LI: Uld [S I(u) :K s2(u) V
(s,(u) is- undefined & s2 (u) is defined)]

Ope rations

enter - proc (it: uid, x: integer) returns (tirnestamp)
modifies or
effects May retuirn the Limestainp of a State s such that S(U) > x. In this case. s is already in a.

Otherwise, returns tlie tinirestamnp of slate s such that s(u) = x. In W's case, I s' C a such
that s(v) = S'(v) tfor all V. # LI & (s'(U) < x V s' i not (detined Onl u) Adds s to aT itit isn't already
the~re; many such slates may be created and added to u. For each slate added, thie
a-sociatud timesfainp is created in a way that satisfies the invariant.

delete = proc (LI: Uid) returns (tilnestamnp)
modifies a
effects Returns the timiestamip of a state sSuLCh1 that s(u) =-00and 3 s'C a s'ich that s(v) = s'(v)

for all v ;f ti Adds 3 to (T if it isn't alr.eady there; many .sich stalesi may be created arid added
to aY. [ or each state added, the associated timlest amp is created in a way that satisfies the
nvari- ant.

lookiP - proc (u: Luid, t: timestamnp) retu rns (iritecjcr, tirneustamrp)
sign al s (not _kni wn(tiiesarnp))

'ffCCtS Rot Urnis at timestiinp t' > t and intortliatiori obtained from the state s' aSsociated with tV. If
u inaps to 00 in s' 0r Li Ii ot defined in zi, signals not _knowti; otherwise returns s'(uO.

end map

Figure 1: The service operations.

timestarnp could be returned-, the operation simply letUrns one of these timestarnps, possibly with

some associated information. However, we guarantee that the state corresponding to the retuirnedi

timestamf) contains the slpecifik-,d iniformnation.

rhe service is mnodeled as an abstract datta type. The idea is that clients call operaitions of the type.

The called operation then sends Lin appropriate miessage to a replica; there is a miessaqe type

correspotiifing to exth opfeettion. Tite replica responds by sending hack a reply message. If the

response is slow, the operation may senrd the mess !aqe to a different replica. Therefore a single

operation call ma~y rf.:;ult ill~S~(e being sent to sevcral different replicas. As mentioned above,

we assume(, mressages, can be lost, delay'd,(, duplicate-d, and (leliverc: out (3f order.



7

2.2. Processing at the Replicas

The next two sections describe the processing at the replicas. Ii what follows we describe the

processing and the stored information in a general way, without considering possible optimizations.

Each replica maintains a state and the times t amp of that state. The state maps uids either to

integers or to a special value representing 00. Replicas respond to messages sent by operations by

either looking up information in the state, or by generating a new local state and timestamp. They

communicate with one another periodically by exchanging gossip messages.

The main problem that must be solved to make this work efficiently is the generation of the

timestamps. Replicas must be able to generate new timestamps independently, or this service will be

dependent on a timestamp service posing exactly the same problems we are trying to solve.

Furthermore, we must preserve the invariant mentioned above, namely, that later timest:arps must

not be associated with states containing older information. -

We solve this problem by using multipart timestamps, whore there is one part for each replica. Thus

if there are n replicas, a tilnestamp t is

t = Qt1 ..... tn>

wt, re each part is a positive integer. Since there will typically be a small number ol replica.-; (e.g., 3 to

7), u 3ing such a timuzstamp is practical.

A replica generates a new timestamp by incrementing its part of its timestamp by one, while leaving

ail other parts unchanged. Since each part can be advanced by only a single rc;piica, we ,Larantee

that the resulting timestamps are unique. Some timestamps can be comparcd: For two timestamps t1

and t2, t1 < t2 provided tli < t2 for each part i of the timestamp. Other timestamps are

incomparable. Two timestamps tl and t2 are merged by retaining the larger value for each part; as

required, the result of the merge is > tl and t2.

The messages are processed at the replicas as follows: !f the replica receives an enter(u, x)

message, it looks in its local state to see if there is an association for u. If thur o is no association, nr if

u is mapped to a value less than x, then it associates x with u in its local state, advances its timestamp,

and returns the new timestamp in a reply message. Otherwise it simply retm ns its current timestamp.

When a replica receives a delete(u) message, it looks up u in its local st;te. If u arlte ly n-aps to 00

it returns its current timestamp; otherwise it associates 00 with u in tho local sltite, advailces its

timestamp and returns the new timestamp.



8

A lookuiJ)(u, I) meSSage caISOs the replica to compare t with its timestamp, t. If t > t,, then the

replica needs more information. It either waits for gossip messages from the other replicas or sends a

query to another replica to eicit the information. Communication between replicas is discussed

below. As soon as t < tr, it looks up u in its state. If u is mapped to an integer < c'), it returns the

assou, ited intger and , otherwise it returns t, with the information that there is no association for u

in the t state.r

Periodically, a replica sends a gossip message containing its timestamp and its state to other

replicas. When a replica receives a gossip message, it proceeds as 'ollows: If the timestamp in the

message is less than or equal to its timestamp, it discards the message since it is old. Otherwise it

merges the timestamp of the message with its timestamp. The merged timestamp becomes the new

timestamp of the replica. Then it merges the state of the message with its own by retaining the larger

value for each association that is present in both states, and by retaining all associations that are

present in only one state.

Replicas produce new states in response to gossip messages. The specification of the map service

says nothing about gossip messages; instead, it indicates that states are created only when enter ind

delete operationis are executed. However, clients cannot tell when the state associated with the

timestamp r.-iurned by a call of lookup was created. Therefore. creating states late (in response to

gossip messages) causes no harm.

Note that our timestamps do satisfy the required invariant that larger timestamps are not associated

with older information:

1. I he condition holds initially.

2, Each individual replica preserves the invariant whenever it receives an update message.
A replica advances its timestamp only when it receives new information, and the new
timestamp it generates is larger than its old one. Therefore it preserves the invariant
locally. It also preserves it globally. Its new timestamnp is either larger than that at another
replica or incomparable with it. In the former case, its information was no older than that
at the other replica before the update, so its information is still no older. In the latter case
the invariant is satisfied trivially.

3. The exchange of a singth, gossip mene;atJe preserves the invat iant. The replica receiving
the mess:age produce:, a new timestanp that is larger than its previous timestarip, and a
new st;ite containiing inforiation no older than its previous state. Thus the invariant
holds locally. The new timetamp is either gieatl r than the tirnestamps of other replicas
or incumparable with them; in either case the invariant holds.



9

2.3. Eliminating Deleted Entries

The implementation described above requires that entries mapping uids to 00 be retained forever

for the following reason. Suppose we discarded information about deleted uids. Then an "issociation

that has not yet been entered is identical to one that has been deleted. 1 herefore, when we perform

an enter operation, we would not know whether to associate the uid with the integer argumeit or not

Note that we would have no problem if clients never entered new information about a uid after it has

been deleted. This constraint holds for the map service as used for orphan detection; here a single

client is responsible for updating information about a particular uid, and once it has deleted the nid

(meaning that the guardian named by the uid has been destroyed), it never updates information about

that uid again. Therefore we will make this assumption about the clients. Other applications of the

highly available service impose similar constraints on clients, and in all cases the clients si-dsfy these

in a natural manner since the stored information typically involves unique names that are managed by

a single client.

Even if clients never call enter after deleting an entry, there is still a problem with late messages. If

an enter message is delivered late, it may arrive after the deleted entry has been discarded. ro solve

this problem, we have each message contain the time T at which it was sent and we impose an upper

bound 8 on message delay. T is the time of the local clock at the serwi i.i no(,): it should not be

confused with the timestamps discussed above. Recall that we assume thc clocks of all the nodes are

synchronized with a maximum skew of e [13], [141. When a message airives whose time -r is older

than the time of the clock of the receiving replica by 8 + c, it is discarded. To handle late outer

messages that are not discarded but arrive aft(.r the delete message, we retain information about

deletes at least S + r more than the time in the delete message.

Waiting 8 + c is not sufficient however. Suppose replica r waited this long and then discarded an

association for uid u. Then it sent a gossip message to replica s, which still had an association stored

for u. There would be no way at s to decide whether the association for u should be retained or not.

To solve this problem, we proceed as follows. We continue to store information about deleted

entries in the state. However, in such an entry, o, we store two additional pieces of information:

e.tinie, the time of the delete message, and e.ts, the multipart timestamp gunerated when the r(elete

message was processed. In addition, we m,ntain a replica table, ts tabhfi, comitaining a multipart

timestamp for each replica. When a gossip rne:sage is processed, its timucs;lup :s stored in ts table

in the entry for the replica that semit the messal p . Notice that the r,'l Ilinef;amp of the sen(liou

replica must be at least as large as the one stored for it in ts table.



10

It is safe to remove the entry e for a uid when:

1. its time e.lime + 6 4 u is less than than the time of the locail clock of the replica, and

2. its timestamp e.ts is less than or equal to all the timestamps stored in the replica's ts-
table.

The first condition takes care of late enter messages. The second guarantees that the entry is

retained until we can be sure that a state mapping the uid to a normal value will never be received in a

gossip message. Since the timestamps stored in ts-table are less the timestamps of their associated

replicas, each replica has a timestamp > e.ts, and therefore it has heard about the delete, and has

stored this information in its state. Therefore any new gossip messages it generates will contain

either information about the delete or no information for the entry at all. Its old. delayed gossip

messages (containing a timestamp less than that of the receiving replica) might contain bad

information, but they will be discarded.

One final point concerns duplicate delete messages processed at different replicas. In this case the

states at the two replicas will contain slightly different information for the deleted uid. When such

states are merged, the timestamp e.ts stored for the Uid will be the merge of the two stored

timestamps, and the time e.time will be the time of the later delete message. This ensUres that tho

delete information remains long enough to eliminate any problems.

2.4. Performance

When this method can be used by an application, it has better icsponse time and availability than a

voting scherme. When the system is working well, i.e., replicas are up and accessible, then clients

need to wait for a response from just one replica in carrying out any operation. In a voting scheme, at

least some operations require responses from several replicas. Since in general not all replicas are

equally close, this will slow down the clients.

When the system is not working well because of crashes and partitions, the performance of any

replication scheme degrades. Our method allows updates; to proceed but slows down queries: votinq

schemes typically do the opposite. However, the effect oii clients is really the same. as.numing that

updates must happen. For example, for orphan detection to work the guardian must record its new

crash count at the service not allowing the update means the guan;ian cannot uecover from the

crash.

Our schti.,e provides better availability than a voting scheme because clientfs a :;p -w,+y t1t1 old

information is acceptable. This increases the probability that the replica proce'.:u j, i qti'ry hw'; the



il

needed information.

It is important that the probability of loss of information by the service due to a crash of onie of the

replicas be acceptably low. An obvious way to achieve this is to have the replicas log new information

on stable storage. Information received in both update and gossip messages must be logged; the

stored information must include the replica's timestamp and the changes to its state. After a crash, a

replica would restore its state from the log and then communicate with other replicas to get up to

date.

One problem with this scheme is that there is a period of time during which just one replica knows a

new piece of information. If the replica crashes during this period, the new information becomes

inaccessible to other replicas until it recovers. The longer this period, the higher the probability of the

information being inaccessible when needed by a client. To reduce this period, gossip about new

information should be sent out frequently. For example, a replica might gossip about the new

information to another replica at the same time that it replies to the client. Another possibility is for

the client to send an update message simultaneously to several replicas: this would not slow the client

down since it need wait for only one response.

Since replicas contain copies of one another's information, it is tempting to consider eliminating

stable storage. Instead, before responding to an update message, a replica would communicate the

new information to one or more other replicas and wait for them to respond. Then it could send the

reply back to the client. The number of replicas involved would depend on the z.cceptable probability

of information loss. Although this approach avoids the use of stable storage, it is likely to degrade

system performance; it is similar to a voting scheme in which updates must happen at two copies.

2.5. Discussion

This section has described a method for constructing highly-available central services for use in a

distributed system. The method was discussed with respect to a pzrticular example, the map service.

Below we describe the service in a more abstract way.

The service provides its clients with update and query operations. Update operations modify the

service state; they return a timestamp of a state guaranteed to contain the new information or later

information. Enter and de/ete are the update operations for the map service. Qury operations, taike a

timestamp as an argument and return somo information and a tim-stamp as a re';lt. 1 he r,1.urned

information is guaranteed to come from the state associated with the returned timi-itmp, and the

returned timestamp is > the argument timestamp. I ookup is the (only) query opertion for the map



12

service.

The implementation of the service must guarantee the invariant that new fimestamps do not

correspond to older information. 1 his implies that there must be a way for the service to distinguish

newer from older information. In the case of the map service, larger crash counts were more recent

than smaller ones.

The method of distinguishing information comes from the application domain, and limits the set of

applications that can use the technique. For example, consider a naming system in which clients

generate user-friendly names that may conflict. Suppose two clients enler the same name at

approximately the same time. To make use of the service for storing the names, these enteis must be

ordered: the higher ordered one is the one that will persist. Although the nanin, ,-tem could

impose some ordering, e.g., based on a ranking of the person entering the uname, this is probably not

a good idea.

Quc;ry operations do not return until they have recent enough information. Clients must define what

is recent enough; there must be something in the application that makes this possible. In addition,

clients most be able to act safely on information that is out of date, which is true if the property of

interest to chints is stable. The stable property for the map srvice is th-it crash counts never

decrease; the meaning of "recent enough" is difficult to explain wiihout going into thi details of

ophan detection. We will cxa.inine these propcrties for garbaqle collection later in the paper.

3. Garbage Collection
Programming laguages such as Lisp, SmallTalk and CLIJ use a model of computation in which

objects reside in a heap and storage management is automatic. In particular. objects are not

deallocated explicitly. Instead, they are garbage collected at some convenient time after they become

inaccessible. An interesting way to use a disiributed system is to provide direct support for this

model. An implication of such an approach i.; that the heap now has parts residing at all the different

no d(e-.

This section describes a way of doing g:lrbage collection of a distribuled heap in an efficient

manner. Our nothodt is indelenlent of thj; particular garbage collection t(eCdniqte in use a1t the

node;. and in fac.t different nodh.s can uIse dilfcrent tecliniIluCs. Nude; (o 1rt COm unILliCate with one

anorlher. Instld inform atiol abhout inter-node ref,.'rncr' ; is stored at ai higly availahlo loi)ically

ceiitillized rfe o on , :;ervice; nod!s comomuni(:ate with thr:; s evrc( p10 tafl icalt, . with a t, il that

fe~wer message ned be COmmuImidcat . -1 I! ref rnce servir>) is oi:i:'i ri Ited ; the 4(linique



13

described in the preceding section. Finally, the technique is tolerant of all the faults discussed ear I ier:

node crashes, a,-d lost, duplicated, delayed and out-of, order messages.

Several papers on distributed garbage collection [11, [151, [9], [8] have been published. Our method

is an improvement on these techniques; none of them is fault tolerant, and all involve more message

passing than ours.

The algorithm preserves the same correctness condition as in a non-distributed heap, namely an

object remains in existence until all references to it are gone. This requirement must be satisfied even

if the node that contains the only reference to an object is down or inaccessible. The requirement is

sensible since we assume a stable heap in which all objects are persistent, i.e., survive crashes.

Our approach uses the fact that an inaccessible object stays inaccessible, and so it is not necessary

to recognize the inaccessibility of an object immediately. .Our algorithm is "lazy" about reclaiming

objects that were referred to at other nodes, but we guarantee that all inaccessible objects are

reclaimed eventually.

We assume objects can be referred to uniformly regardless of their location by using a unique

name, and that there exisrts a method for locating objects efficiently given their names. The node at

which an object is located is called the owner of the object; the object is locail to that node. We

assume that objects do not move; only slight extensions to our algorithm are feeded to handle

objects that move, but we do not discuss them in this paper. An object is public if its owier has sent

its name to some other node; once an object is public, it continues to be public even though other

nodes no longer refer to it.

A distributed heap can be viewed as a heap whose root is distribulted and consists of the union of

the roots at all nodes. In such an environment, an object is acces;:ble if it is accessible from one of

the roots. In addit'V , however, we must consider the special problem of objecL that are "in tralsit."

For example, suppose object x is owned by node B. indi th-t node A has a referenc; to x. SL)pPOse A

sends the reference to node C, deletes its own reference (perf)ips after having received an

acknowledgement from C), and performs a garbage collection. If a (;rrbage collection ,,ere done at R

using information from A after its garbage collection an I informna,on from C !wfoie it rec'ived the

reference to x, x could be destroyed by mistake. Thi-, example rfilects it ca:;, in v,hi(cti x is not

accessible from any other object in the heap but a r.f,rt.nco to it i:, in ,a nre;slgt,, ihbi i_-" in P ansot. To

handle in-transit references correctly, we lefflne ar' brlity lkI hl _vs, s An o0 ,jt ,c is: , '2,4L): if

either it is accessible from one of (fie local iouws or a i ,['ru nic' to it i in (lmisit.



14

As was the case in the preceding section, we assume a bound 8 on messagc delay. Messages

containing external references also contain the time at which they were sent. If a messaq.e arrives at

a node when its tine -1 4 + i is less than the time of the node's local clock, it is discarded. This

assumption allows us to bound the timl the references remain in transit.

The remainder of this section describes our garbage collection method. lit the presentation, we

descibe the processing and stored information without considering the many optimizations that would

be done in a real implementation. We begin by describing the processing at the nodes. Then we

describe the interface to the highly-available service, and how the nodes interact with the service.

Next, we give an implementation of the service using the replication technique discussed in the

preceding section. We conclude with a discussic:, of the performance of our algorithm.

3.1. Information at nodes

Our strategy for garbage collection is to have the nodes do as much work as possible. Nodes ace

responsible for doing local garbage collection and managing the storage for local objucts that are not

public. The reference service is responsible for determining the accessibility of public objects.

Nodes must provide it with enough information so that it can do this correctly. Nodes mu:;t ask the

-l;-- vice about the accessibility of their local objects that are public and must not destroy t :m until

iroi ired '.y ithe SLlei"ce that they a1e inaccessible.

Each node maintains a list, called the in/ist, of its public, local objects. The itll/t is <ept on stable

:3jorage so that it is recoverable should the node crash. An entry is added to the list the first time I

reference to a local object is sent to another node. The objects listed in the in/ist ,.ay be a superset of

those actual!y used by other nodes. For example, suppose that object x in node B contains the only

reference to object y in node A. and that x is deleted at B. Object y is now inaccessible, yet it has an

entry in A's in/ist.

A node also maintains tran , it list of the references it has sent ;n messages. 1his list enables us to

avU itd the mistake of r.gardinq an object as inacce:.;sible while a reference to it r-, in titansit. An entry

is a' Itled to the IltsI whenevtvr a reference is sent i11 a message. The list nlu:,t he acv le and

threlore each ert fty i.; written to .;table storage before the message coritainisntj the referenice is sent.

Each eniry in r, n.; i a triple

<obj-ref, targt noJe, time>

wv r,, Itfl, is thl? local time stort:tI in the message containing Ohj ro 4. For example, if ft-n:, contains

< (x, A, t), (y. 13, ) then a rufc (cice to object x was sent to no a t line' ti andI t e2f .re ice to



15

object y was sent to node B at time t2.

To determine accessibility of public objects correctly, the reference service needs to know irans for

each node. It also needs to know which public objects are accessible from each node. Objects are

accessible if there is a path to them from the root of some node. Each node knows about the objects

accessible from its root, but not about objects accessible from other nodes' roots. However, it does

know about its inlist and this is a superset of its local objects that may be accessible from some other

root. Thus a node treats objects as accessible if they are accessible either from its root or its 'inist.

An example is given in figure 2. Here x, y, z and w are public objects belonging to node A and u and

v are public objects belonging to node B. Objects x and u are accessible from A's root; y, z. w. and v

are accessible from its miust. No objects are accessible from B's root, but U and v are accessible from

its inlist. The only inaccessible object in the figure is w; objects y, z. U. and v are globally accessible

even though they are not accessible from the roots of their o,"ers.

node A node B

root root

x P U1

inlist inlist

y -- z--- va U -- y
w v

Figure 2: An example 2f gobal accesc:ihility.

To inform the service about local accessibility, a node sends two Ists, ac- and paths. Acc lists all

objects accessible from its root. We omit local public objects (such as x) from acc; these are not

needed since their owner will not inquire about their accessibility. Paths contains information about

what public objects are accessible from locally inaccessible objects in the inlist. It is a list of pairs <o,

p>, where o is in the miust and is not accessible from the local root, and p is a public object accessible

from o. We omit pairs whose second element is local ard accessible from the root; these are not

needed, again, because their owner will not inquire about their accossil)ility. Thi:ri tho information for

node A is:



16

acc = ( u }
paths { <y, z>, <z, v)

Note that we do not include pairs in paths where the accessibility can be deduced from inforination

already in paths; e.g., <y, v) is not included.

The node computes acc and paths during garbage collection. The lists need not be remembered

between consecutive rounds of garbage collection.

The node also maintains a multipart timestamp, which it uses to communicate with the reference

service. The timestamp is used to guarantee that the service bases its decision about accessibility of

the node's objects on information that is recent enough, as discussed further below. The timestamp

is kept on stable storage, so it is remembered when the node recovers from a crash.

Each node does garbage collection independently of the rest of the nodes, using an algorithm of its

choice. The algorithm must be extended slightly to take account of the iflist arid to compute the Jcc

and paths. It must also construct the qhst. the list of objects whose accessibility is questionable. This

contains all public, local objects that are not accessible from the node's root, e.g., y, z and w for node

A in figure 2.

As an example, v,'e will show the extension of the real-time garbage collectnr proposed by Baker [2].

This is a real-time copying garbage colleclor that moves some objects from old space to new space

each time it does a CONS (thus cieating a new object). When ail objects have been copies, it flips the

spaces.

The extended version of the algorithm is:

1. Construct an empty acc, paths and qlist.

2. Add to acc all references to public, nonlocal objects found in variables or in objects that
are moved to new space. This includes both objects that are copied from old space and
newly created objects, such as those created when a message is processed.

3. When all accessible objects have been moved to new space, scan the i/if;t. For each
object x in thf,. ini.'t that was not moved, do the following:

a. Add x to the c;ist.

b. Mov., x to new space, and also move to ni w space all objects reachable from x that
are not already in new space and are not in the inlist.

c. For each ruference to i public object y found in stcp b, add <x, y> to the piths, if
either y is nonlocal or y is local but is not acce:;iblc lhoi the root.



17

4. Record local time. This is the gc time.

5. Flip the spaces.

Note that the acc and paths contain a superset of the external references that exist in new space just

before the space flip.

The only non-real time processing is daie to the scan of the mlist in step 3 of the aljorithm. If the

inlist is long and we want to maintain a constant bound on the time for CONS we must allow

incremental scanning of the inlist. In this case we must add to acc any references to public, nonlocal

objects found in objects created in new space while the inlist is being processed.

The information obtained from running the garbage collector is then conveyed to the reference

service as discussed below.

3.2. The Reference Service

Tile reference service provides two operations, info and query; a specification is given in figure 3. A

node calls info when garbage collection is complete to inform the service about its external

references and also about ohjects that are in transit from it to other nodes. One of the arguments to

info is the gc-time; this informs the service about the local time at which ace and paths were

computed, and is used to discard old information about objects in tran-sit to the nod e. -he servrca

records the information in the arguments and responds with the timestanip of a state that contains the

information. When the operation returns, the node replaces its timostamp with tho returned

timestamp and records the result on stable storage. Then it discards arc and piths. and also the part

of trauns that was passed to the call. (Additional messages may have been recorded in trans since the

call was made; these new entries are retained.)

Later, the node can call the query operation to inquire about which objects in the qhst are not

accessible elsewhere. When the call returns, the node deletes any inaccessible objects from the

imlist; this will cause their storage to be reclaimed at the next local garbage collection. The names of

these inaccessible objects are recorded on stable storage so that after a crash the inlit is recovered

accurately. The node can either discard the qlist, or retain it (mintis the objects known to be

inaccessible) for use in further calls of query done before the next garbage collection.

One of the arguments to the call of query is the timestamp of the nnde. 7his argument is used to

enbure that the most recent call of info is used in processing the query, This is necessary because

the qlist is defined in conjunction with paths of that call of info and could bc misinterpreted otherwise.



18

reference = data type is info, query

Overview

I-he reference service maintains a (1iobof l)cture Of the inter-niode by calling references. Nodes
informn it about accessibility per iodically the into' oper atiori. Nodes reque0st informnation about
v.hi ch local obtcts ca n he deleted by cal ling the query operatbii. f heservice consists of aset
of states a.Each sI~tterecoi ds infor naition aibout theaccoss -ibifity of piiblic obje~cts and rii-tranIfsit
references for eacti node Inchi state has an associated (m ultipart) tirnesfaiup, arid states hiavinig
larger timnestamnps record iriforinafiori af feast as recent as that in statos with simaller tillesfarnps.

Ope rations

into =proc (o: acc, n: paths, t: hans, gc-timne: tinie. Is: tiinestamrp) returns (timiestanip)
modifies ar
effects Returnis a tinestamnp > Is of a state s that records the acc. paths. trans arid qc- time for thle

nlode. Adds s and its associated1 fillroo1t p to G it they are nuot afreaidy tire:e May create
several suich States S: thecir firnestarrps wre generated so as to n ~ ftie invaniant.
Inforimation aboult other, nodes is taken fromn sameT other st ate e&a.

qulery = proc (q: qfmist. ts: tiruostir of) returns (list)
effects Compu)Ltes tire accessibility of objects in (I based on a state who:'o triiestarop is > ts.

Re~tuirns the fist ot objects in q found to be inaccessible.

end

Figure 3: Specificationi of reference service.

The refeirence service, Could provide additional oper Ations. Since very often a call of 1-1fo i foflowed

by a call of qacery, a combined opJratiorl Woufld be convenient. An operation tha't woul,1d inform the

Service just about tranis would permit the node to ciiscard this information more freqUently. in what

fofllows, however, we ignore su~ch additional operations.

3.3. Implementation of the Reference Service

This section describes the imnplementation of the reference Service using thle repiltionl technique

of scction 2. Our discussion ignores the processing of cycles;, cycle detection is discuISSed in Section

3.4.

The reference s-ervice Shul d be I hi(ihly ZlVZialhito SO that 111M.-rr 'il itol puliNc objets'tl (-M tie

collected in a timely fa-,hion. rhier~fore. its imphi nn ntat ionl must cot oasts of 1severv iirn ics nrce

each node communicates with the reference service only in back(Ironind mode, fast response time is

niot a strong requiirement, anrl a votiiig schemie could be used to interpret the replicas consislonrtly.

However. the nodes can easily satisfy the constraints on clients imposed by the rephition chiemne

described in the preceding section. Each query operation executed by a node inust have accti es to

infornmation provided] ny all previous irifo operations of thme node; thiis reqjuirumi tt I ins i notAionl



19

of "recent enough" mentioned in section 2.5. Also, the property needed by the nodes is stable: once

an object becomes inaccessible, it will continue to be inaccessible forever. Since our ieplication

scheme performs better than voting, in this section we will describe how to use it to implement the

reference service.

Each replica maintains a multipart timestamp and the state that corresponds to that timestamp. The

state consists of a complete description of all the inter-node references, including references that are

in transit. The state maps each node k to a tuple

<gc-time, acc, paths, to-list>

where gc-tme is the time of k's garbage collection, acc and paths are its acc and paths computed at

that time, and the to-list is a list of references that were sent to k and may still be in transit. The to list

is the list of pairs <x, t>, where t is the time at which a reference to x was ent to k. Initially the gc-time

is zero and the other parts of stdte(k) are empty.

Each replica also maintains a second multipart timestamp, max ts, which reflects the latest

timestamp produced as a result of processing an info message. Max ts is needed to detect that

information at the replica is incomplete.

The execution at the rcplica is presented by describing ,he processing of the info and query

messages it receives and the gossip messages exchanged. As was the case earlier, the calls of

service operations cause corresponding messages to be sent to one or more replicas. The

arguments in these messages are those of the associated operation:; plus one additional one, the

identity of the nude that made the call. To clarify the presentation, we will prefix the names of the

arguments with "msg", e.g., msg.acc.

The processing of an inf(acc, paths, trans, gc time, is, i) proceeds as follows:

1. Discard an old message:
(If msg.gc time < state(i).gc -time then go to 5.

2. Replace state(i).acc, stale(i).paths and state(i).gcc-time by /mi;q.acc, ml.g.paths and
msg .gc -tin io, respectively.

3. Find all the objects in the node's trans that should have arrived at the node and delete the
entries for which time is up.

for all <x, t> (- state(i).to-list
if t + F + 8 < msq.qc-time

then delete <x, t> from state(i) .to-list
else; do nothing



20

4. Update the replica's database to reflect all the references that are in transit from i. For
each object in transit, keep the latest sending time.

or '111 I .x, J, I>' ( III: , 9 .tw ou s

if t + r 1 8 > state(j.gc-time
then if 3 <x, t> C state(j) .to list

then if t' < t

then replace <x, C> by <x, t>
else do nothing

else add x, I> to state(j),to-list
else do nothilng

5. end

Note in steps 3 and 4 that we make use of the bound on message delay. Since a node is guaranteed

to discard messages that come in too late, it is safe to discard information about in-transit references

if the node's gc time is later than the bound + c.

When processing is complete. a nOev multipart timestamp is generated for the repliia (unless the

message was rejected in step 1). Then the replica's timestamp is mergJed with the caller's timestamp;

the result of the merge is sent back to the caller in the reply message and also is merged into max ts.

To handfle a quey(list, timestanip, I) message the replica checks each object in the qhst to see if

the object is accessible from any node. An object x is accessible if a reference to it exists in acc,

pnthl or to-Ist for some node j.

To process a query, a replica need not have the most recent info information for e.tch node but it

mus t have access to a complete sequence of info operations for cacti node. This requirement

pmeients in mowiz- ubjucutL being treated as inaccessible by ensuring that the replica has information

about all objects in transit from a node as of the gc-time stored for it. We fulfil this requirement by

waiting until the replica's timestamp is equal to its max Is; the replica gossips with other replicas to

obtain more information if necessary.

In addition, a query cannot be processed until the replica*s timestamp is greater than or equal to the

timestamp in the message. This condition guarantees that the replica has recent enough information

for the node doing the query. Once the condition is satisfied, processing proceeds as follows:



21

create empty alist
for each x in the nisg.qlist

for each node j
if x C state(j).acc

V 3 <x. t> E- -tate(j).to-list
V 3 <y. x> C state(i).paths

then %, x is accessible
add object x to the alist
exit inner loop

end
end

When processing is complete, the list of inaccessible objects, qlist - alist, is computed and sent back

to the caller in a reply message.

In addition to info and query messages, the replicas must also send and process gossip messages.

The sending replica's timestamp and its max-ts are included in the gossip message; they are merged

with the receiver's corresponding timestamps as part of processing the message. Gossip messages

could either contain the entire state of the replica or a sequence of into messages. In the latter case,

which we assume in the paper, the sequence must include all info messages known to the sender that

may not be known to the receiver. To bound the sequence, we can associate with each info message

the timestamp generated when it was first processed. A timestamp table like that in section 2.3 can

then be used to decide when an info message is known at another replica. Recall that this table

stores for each replica the largest timestamp received in a gossip message from it, and that at any

time, the tirnestamp of a replica is larger than that stoied for it in the table. Thus a replica must know

about an into message when its timestamp in the table is larger than the info messages timestamp.

An info message can be discarded when all replicas know about it.

Processing a gossip message consists of processing the sequence of info messages. Some of

these messages may be old, i.e., msg.gc time < state().cjc-tine, where i is the sender of the message.

The only interesting part of an old info message is trans; all other information in the message has

already been superceded by more recent info messages. Therefore, only trans is processed for old

info messages, i.e.. only step 4 of the info processing algorithm is executed for them.

3.4. Multiple Node Cycles

If the inaccessible inter-node references form a tree, then when the node containing the root of the

tree is garbage collected, the rest of the tree will eventually be deleted. But if the inaccessible

inter-node references form a cycle, inaccessible objects will never be deleted in our scheme. For

example, suppose object x at node A has a relerence to object y at B and y has a reference to object

x. The inter-node references for x and y form a cycle that spans node boundaric,,. [yen it x and y are



22

both locally inaccessible, they appear to be globally accessible and therefore are not reclaimed by the

local garbage collectors at their nodes. They are also not recognized as inaccessible by the

algorithm presented in the preceding section.

One way of deleting cyclic objects is to follow the idea suggested in [3] of moving ao object that is

inaccessible locally to one of the nodes that has a reference to it. Moving the object converts a

inter-node cycle to a intra-node cycle whose storage is reclaimed as soon as the node is garbage

collected. However, this approach may not be suitable for a distributed system. Moving an object can

be expensive. In addition the code that manipulates the object (e.g., the code implementing the

operations of its data type) may not be present at the new node. and we may not wish to place the

code there. either because the nodes are not homogeneous. or because having all code at all nodes

consuImes too much space.

Therefore we will use another method in which the central service detects inaccessible cyclic

objects using its global view of the external references. Each replica runs a cycle-detection algoiithm

periodically. The replica does this somewhat independently of other replicas. When cycle detection

is finished, the replica conveys the information about inaccessible objects to other replicas by gossip

messages.

As "ias the case with queries, to run cycle detection a replica need not have tile most recent info

information for each node, but it must have access to a complete sequence of info operations for

each node. Again we fulfil this requirement by waiting until the replic is timestamp is equal to its

max ts: the replica gossips with other replicas to obtain more information if necessary.

The algorithm consists of a mark phase in which all objects that are definitely accessible are

marked, and a sweep phase in which inaccessible objects are identified. The mclk phase, consists of

the following:

1. Mark all the objects that occur in ace or to list of some node.

2. Mark x if there exists an object y such that y is marked and <y, x 7 path,, of some node.

1 lie sweep phase then identifies the inaccessible objects as follows:

for each node i
or' each <X, y> (- state(i).pfths

if x is ummriiked then fl ag the pair
oend

Inprcssn aqer, eig oe aged pairs. Tihe reison we fla,.1 the Pair in iaths in. tAead of



23

deleting it is to insure that the results of the cycle reclamation algorithm persist. We retain

information about inaccessible objects gained in this fashion until the owners of the inaccessible

objects are known to know about them. Until that time, the owner of an object may send an info

message that contains information about the object in paths, and we must avoid reintroducing that

information into the replica's state. As soon as an into message arrives that does not contained the

flagged pair, we know the owner knows about the inaccessibility. At this point we remove the pair

from paths.

4. Discussion
The distributed garbage collection algorithm discussed above allows garbage to be collected in a

timely and efficient manner. It has several performance advantages. First, it propagates information

quickly and with few messages. A node merely informs a single replica; the replica then informs all

the others. Assuming that info messages are propagated as gossip as soon as they arrive, this implies

2 + n messages are sent, where n is the number of replicas. Once these messages are sent, all

nodes' queries can be processed using the new information. Thus the information from one node is

available to any other node in 4 + n messages. Such propagation is better than what could be done

in a system where nodes communicate directly, assuming the number of nodes is larger than the

number of replicas.

The result of fast propagation of information is timely deletion of inaccessible objects. In systems

where nodes communicate directly (e.g., [1], [81, [9], [15]), either all nodes must communicate to

decide about inaccessibility, or a node must communicate with those other nodes that have

references to its objects. In either case, if any of these nodes in down or inaccessible, garbage

collection cannot proceed. In our scheme, progress can be made as long as the replicas are

available. At worst, this means a smaller number of sites need be up. More likely, however, progress

can be made even when some replicas are down because information is replicated.

Another advantage is that the method off-loads the work of garbage collection from tho nodes.

Even though most of the work of garbage collection is done in background, the amount of work is

substantial. By having this work done at the replicas, we free the nodes to do their [eal lob, the

processing of user computations.

Finally, the method has the merit that it usually does not cause delays in user computation. The one

exception is that nodes must log information about an in-transit reference on stable storag before

the message containing the reference can be sent. Writing to stable storage is not really neceossary,

but it greatly speeds up global garbage collection after a crash. Not doing such logginq results in the



24

loss of tile ailist and trans after a crash. Loss of the mlust means that all the node's objects must be

considered to be public. Loss of trans means that we must assume the node has sent messages

containing references to all objects it knows about to all other nodes. The service must make worst

case assumptions about the objects tre node might know: It is assumed to know about all public

objects it knew about at its last garbage collection plus any objects sent to it that might have arrived

after that. In addition it knows about all (local) objects it ever created.

Ultimately, the truth of all these assumptions will be known, but we must wait until every other node

has communicated with the central server with a gc time ) t + 6 + c, where t is the time of the

crashed node's local clock just after it recovers from the crash. (This condition assumes the crash is

instantaneous and that the node sent a reference in a message to some other node just before it

crashed.) This wait can be long. A special problem is crashes of other nodes. since that prevents

them from communicating with the reference service. If there are a large number of nodes, the

probability of a crash of one of them (luring this period can be non-negligible.

There are two ways of avoiding this wait without incurring the real-time d'lay of logging entries in

trans. The first is to log the identities of other nodes that a node communicates with. This information

limits the n umber of nodes that must b he ard from after a crash before an accurate assessment of

tile cras;hed oiode's trans aid johst can be made. The approach is helpful only when communication

patterns are lairly .tatic and when nodes communicate with just a small number of olher nodes. It is

not clear how many applications wil! exhibit such a pattern.

The second approach is more generally promising and will work in any system in which

computations Lre carried out as atomic transactions. In such a case, logging of trans need not be

completed until the transaction that caused the messages to be sent prepares in the first phase of

two-phase commit. Therefore, trans can be logged in background mode between the time the

message is sent and the prepare; at worst, it can be written to stable storage as part of the prepare

record.

The rea;on transactions allow this optimization is the following. We assume that the crash of any

node visited by a transaction causes the transaction to ;ihort. When a transaction aborts, it is as if it

never ran, and therefore we need not be concerned about messages it sent. Therefore, we need not

log these messages.

In a distrihutcd system with resilient objects, transa,,ctions are needed to make sense of

computations in the presence of concurrency and failures. It is likely that 110 distributed garb"Age



25

collector will be running in a system with transactions.

5. Summary
This paper has described two techniques for use in a distributed system. The first is a way to

implement a highly-available service. The technique guarantees that clients see consistent views of

the service's database, but requires that they communicate with only one of the replicas implementing

the service. It is appropriate for use in applications in which clients can proceed correctly on the

basis of information that is out-of-date. Such clients are typically interested in stable properties,

properties that once true are always true.

The second technique is a fault-tolerant, distributed garbage collection algorilhrm. The algorithm is

both efficient and fault-tolerant. It allows the nodes containing the distributed (,p to do loc :;

garbage collection independently, each using an algorithm of its choice. Information about inter-

node references is maintained at a highly-available central service. We described an implementation

of this central service based on the technique developed in the first part of the paper.

In the preceding section we argued that the garbage collection method had a nimber of desirable

properties: it propagates information quickly, it detects inaccessible objects quickly, it off-loads work

from the nodes. and it avoids delaying user computations. rhese prope iies are rWally due to our use

of a central service as opposed to having nodes communicate directl,. The contral service could

have been implemented using a different technique such as voting. Our implementation technique.

however, has better performance than voting for applications that can use it; as was argued in section

2.4, both response time and availability are improved through its use. Gaibage collection is an

example of an application that can benefit from the technique.

Acknowledgment

The authors gratefully acknowledge the many helpful comments and sugqcestion-; provided by Toby

Bloom and Bill Weihl. Numerous other people, includinq Brian Coan and f-!!iot Kolodner, also

provided critical comments that greatly improved the cumitent and presentation of the p:per.



26

References

[1] Ali, K. A. M. Object Oriented Storage f.anaq ryment and Gartage Collection in Distributed

Processing Systems. PhD thesis. Royal Institute of Technology, Stockolm, December, 1984.

[2] Baker, H. G. List Processing in Real Time on a Serial Computer. Comm. of the ACM
2(4):280-294. April, 1978.

[31 Bishop, P. B. Computer Systems with a Very Large Address Space) ard Gart.age Collection.
Technical Report MIT/LCS/ I H 178, MIT Laboratory for Computer Science. Cambridge. Md.. May,
1977.

[4] Chandy, K. M., and Lamport. L. Distributed Snapshots: Determining Global States of
Distributed Systems. ACM Trans. on Computer Systems 3(1):63-75. February. 1965.

[5] Fischer. M. J., and Michael, A. Sacrificing Serializability to Attain High Availability of Data in
an Unreliable Network. In Proc. of the Symposium on Principles of Database Systems. ACM, March,
1982.

[6] Gifford, D.K. Weighted Votino for Replicated Data. In Proc. of the Seventh Symposium on
Operating Systems Principles, pages 150-162. ACM, Decermber, 1979.

[7] Birrell, A. D.. et al. Grapevine: An Exercise in Distributed Computing. Comm of the ACM

25(4):260-274, April, 1982.

[81 Hudak, P.. Keller, R.M. Garbage Collection and Task Deletion in Distributed Applicative
Processing Systems. In Proceeding of the ACM Symposium on Lisp and Fonctonal -l.,guaijcs. pages

168-178. August, 1982.

[9] Hughes, J. A Distributed Garbage Collection Algorthm. In Functional Languages and

CornpWer Architectures Confrenc, at Nancy France, pages 256-271. 1985.

[10] Lamport, L. Time, Clocks, and the Ordering of Events in a Distributed Systrn. Comm )f the
ACM 21(7):558-565, July, 1978.

[11] Lampson, B. W., and Sturgis, H. E. Crash Recovery in a Distributed Data Storage System.

Technical Report. Xerox Research Center, Palo Alto, Ca., 1979.

[12] Liskov, B., and Weihl, W. Specifications of Distributed Programs. Jourfal of Di.st-ibuted

Computing , to appear.

[13] Lundelius, J. Synchronizing Clocks in a Distributed System. Technical Rtport MlT,'LCS/TR

335. M.I.T. Laboratory for Computer Science, Cambridge, Ma., 1984.

[14] Marzullo, K. Loosely-Coupled Distributed Services: A Disttibuted Tine S,,,.,ce. PhD thesis,
Stanford University, Stanford, Ca., 1983.

[15] Nori. A. K. A Storage Reclamation Scheme for Applicative Multiprocessor Systems. Master's

thesis, University of Utah, December, 1979.

[16] Iilkov. B. Overview of the Argus -anquace anld System. Projramming MI ;thomIology Group
Memo 40, M.I.T. Laboratory for Computer Science, Cambridge, Ma., 1984.

[171 Lisgkov, B., ct al. Pre,';minary Argus Reference Manual. Programming Methodology Group;
Memo 39, M.I.T. Laboratory for Computer Science. Cambridge, Ma., October. 1983.



27

[181 Schlichting, R. D., and Schneider, F. B. Fail-Stop Processors: An i.pproach to Designing
Fault-Tolerant Computing Systems. ACM Trans. on Computing Systems 1(3):222-238, 1983.

[19] Skeen, D., and Wright, D. D. Increasing Availability in Partitioned Database Systems.
Technical Report 83-581, Dept. of Computer Science, Cornell University, Ithaca, N. Y., 1984.

[20] Walker, E. W. Orphan Detection in the Argus System. Technical Report MIT/LCS/TR 326,
M.I.T. Laboratory for Computer Science, Cambridge, Ma., June, 1984.

[21] Weihl, W. Distributed Version Management for Read only Actions. Programming
Methodology Group Memo 47, M.I.T Laboratory for Computer Science, Cambridge. Ma., 1986.
Submitted for publication.


