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ABSTRACT

Rosenau [Phys. Rev. A, 40 (1989), pp. 7193-6] has recently proposed a regularized

version of the Chapman-Enskog expansion of hydrodynamics. This regularized expansion

resembles the usual Navier-Stokes viscosity terms at law wave-numbers, but unlike the latter,

it has the advantage of being a bounded macroscopic approximation to the linearized collision

operator. , .

this paper the behavior of Rosenau regularization of e Chapman-Enskog

expansion (R-C-E) in the context of scalar conservation laws. Wthat this R-C-E

model retains the essential properties of the usual viscosity approximation, e.g., existence

of travelling waves, monotonicity, upper-Lipschitz continuity etc., and at the same time, it

sharpens the standard viscous shock layers. We prove that the regularized R-C-E approx-

imation converges to the underlying inviscid entropy solution as its mean-free-path d .0,

and we estimate the convergence rate. j,. /
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1. Introduction

Rosenau [R] has recently proposed the scalar equation

ek 2 (k)
ut + f(u). = [ + 2 k 2

= e'l~rnae2k2u(k) V

as a model for his regularized version of the Chapman-Enskog expansion for hydrodynamics.

The operator on the right side looks like the usual viscosity term cu.. at low wave-numbers

k, while for higher wave numbers it is intended to model a bounded approximation of a

linearized collision operator, thereby avoiding the artificial instabilities that occur when the

Chapman-Enskog expansion for such an operator is truncated after a finite number of terms

[R].

In this article we will compare the behavior of solutions of Rosenau regularization for the

Chapman-Enskog expansion, abbreviated hereafter as the R-C-E equation, (1.1), with those
of the viscous conservation law

(1.2) Ut + f(u)X =

towards which (1.1) tends as m -- 0, and with the conservation law with absorption

(1.3) ut+ f =(U). = "

Since the right side of (1.1) tends to that of (1.3) in the limit of large k, it is not surprising
that the smoothness properties of solutions of the former resemble those of the latter. In

particular, the R-C-E equation does not smooth out initial discontinuities, but as shown

in §2, it does preserve the smoothness of initially smooth small initial data. On the other

hand, the right side of (1.1) also resembles that of (1.2) in that both are second derivatives.

Consequently, it is plausible that the regularized R-C-E equation (1.1), like the ordinary
viscosity equation (1.2), should have travelling wave solutions connecting shock states of the

underlying conservation law

(1.4) ut + f(u). = 0 . 0

In §3 we show that when f"> 0 such solutions exist iff m is sufficiently small.

At the same time, solutions of the R-C-E equation (1.1) also resemble those of the

inviscid conservation law (1.4) in that both admit unique entropy solutions which share

similar properties. In §4 we show that the R-C-E solution operator associated with (1.1),
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like the entropy solution operator of (1.4), is L-contractive, monotone, and BV-bounded.

Furthermore, the R-C-E solution of (1.1) tends to the inviscid entropy solution of (1.4) as

the 'mean-free-path' e 1 0. Finally, if f" > 0, the R-C-E entropy solution of (!.1) is also

upper-Lipschitz continuous, in agreement with Oleinik's E-condition which characterizes the

entropy solution of (1.4), and in §5 we estimate the convergence rate of the former to the

latter as e 1 0.

2. Smoothness

It is well known that solutions of (1.2) are smooth for t > 0; i.e. initial discontinuities are

smoothed out at positive times. In contrast, by looking at piece-wise constant initial data

or at the linear case f(u) = u, one sees that initial discontinuities of solutions of (1.3) are

merely attenuated, not smoothed out, at positive times. Since the damping of (1.1) is less

than that of (1.3), it is clear that (1.1) also does not smooth out initial discontinuities. On

the other hand, if the (c-independent) initial data for (1.3) is smooth then it will remain so

provided that m is sufficiently small (see below). The next Theorem tells us that the same

holds for the R-C-E equation (1.1).

Theorem 2.1. The solution of the R-C-E equation (1.1) remains as smooth as its initial

data,

(2.1) u(x,0) = Uo(X),

provided the initial data uo are sufficiently small so that

(2.2) 2{mluoILoo*If"(uo)lL-} 1/2 + m2eJlf"(0)LlIu0IIL < 1.

Remark. Since we can ensure that (2.2) will be satisfied for any fixed initial data by

making m sufficiently small, Theorem 2.1 can also be viewed as showing how the smoothness

properties of the R-C-E equation (1.1) approach those of the viscosity equation (1.2) as

M --+ 0.

Proof. We will show formally that (2.2) implies a bound on the L' norms of u and u,.

Estimates for higher derivatives then follow in standard fashion; see [M]. Furthermore, this

fact ensures that the formal estimates can be justified either by smoothing the initial data

or by applying a further vanishing viscosity regularization.
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The first step towards obtaining the desired bounds is to note that the right side of (1.1)

can be written as
-ek2  (k -1 J 1 ( \

-) -- u- k (k)][1 +m 2 e2 k2 ukj m~e 1 1+m~~2k

(2.3)
-1

= {U-- QMC* U }

where * denotes convolution, and

(2.4) Q.(X) - e- 1XI/C

satis'Ies

(2.5) IIQgL = 1.

To obtain a uniform bound on u, multiply (1.1) by Iup-2Iu and integrate over x; since

JuP-12 uf(u),, is an exact derivative its integral vanishes, while the contribution of the right

hand-side (2.3) is nonpositive, for by (2.5),

J- I;;27uj - Qrne * uldx < L'-{uI, - 111PII,, * uIILP}

(2.6)

< -lulljL{1 - IIQ.IIL' } =0

Dividing the remaining inequality by (p - 1)lUHL, and integrating over t from 0 to T, we

obtain

(2.7) Ilu(T)IILP _< II01ILP,

and the boundedness of IIu(T)IILo follows by letting p T oo.

In order to estimate in similar fashion the L' norm of u,, we differentiate (1.1), obtaining
-1_ - Q', },

(2.8) uxt + f(u) .= -,2, {UX u

and as before, we multiply (2.8) by JuX P-2 ux and integrate over x. Ir egrating by parts

where necessary in the term containing f, and noting that by (2.4)
1

(2.9) IIQkMJLc =-m ,

we obtain after factoring out (p - 1)IIIIULP,

d -t- LIL{1 - mHellf"()LUo(I +IIZIIL(,.)}lu.IL

(2.10)

< m 3e2IIUILP m3,211UOLLP
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Next we denote

(2.11) Y(T) m 2 CLjf"(Uo)lLo Iu.(T)ILae.

Applying Gronwall's lemma to (2.10) and letting p T oo, we obtain that Y SUPT Y(T)

does not exceed

Y(T) < Y < e[-]"1Y(0) + i-{1 - e-1- -}IjuoI0IL 1f"(u0)L-
(2.12)

<_ Y(o) + j-U-joL-jf(Uo)jjL,

as long as Y < 1. Estimate (2.12) is a quadratic inequality for Y for which the roots of the
corresponding equation are

(2.13) Y= 1{1 + Y(O) ± V/(1 - Y(0)) 2 - 4mIjuojjL-f"(Uo)jL-}
2

Our assumption (2.2) tells us that the expression under the square root on the right is
positive. Since Y(O) is bounded by the smaller root in (2.13), it follows from (2.12) plus

the continuity of Y(T) that Y(T) remains bounded by this root. This in turn confirms that

indeed Y < 1, and the uniform bound of jjux(T)jLo follows. 0

Remark. Arguing along the above lines for the conservation law with absorption (1.3),

one arrives at the inequality, analogous to (2.12), Y(T) < e-T(1-Y)/m"Y(O). This shows
that if Y(O) < 1 then Y(T) remains < 1. Consequently, if Y(0) < 1, then Y(T) -,d hence

[[u,(T)[IL-, satisfy a maximum principle in this case.

3. Shock Profiles

Lax's generalized entropy conditions [L] for "legitimate" shock-wave solutions of the
conservation law (1.4) can be interpreted as the requirement that these shocks can be realized
as the limit of travelling wave solutions of the viscosity equation (1.2). If the flux function

f is convex, these conditions reduce to the shock inequalities [L]

(3.1) f'(u_) > s > f'(u+),

where a is the speed of the shock joining u- on the left to u+ on the right. In this section
we show the analogous result for the (convex) R-C-E equation (1.1): It admits travelling

wave solutions whose limit as e 1 0 are shock wave solutions of (1.4), iff (3.1) holds and m

is sufficiently small.

Theorem 3.1. Assume f" > 0. Then (3.1) and the Rankine-Hugoniot shock condition

(3.2) H(u+) = 0, H(u) =-sfu - u-} + {f (u) -f(u)},
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are necessary conditions for the existence of a travelling wave solution

S- st

u(z =),-3 lim '.± "'u(Z) = ±

for (1.1).

Conversely, if (3.1),(3.2) hold, then a sufficient condition on m for the existence of such a

travelling wave is

(3.3) 4m 2  sup {-f"(u)H(u)} < 1,
U+ <U<U_

and a necessary condition is

(3.4) 4m 2 {-f"(u.)H(u.)} < 1

Here u. is defined by

(3.-5) '(U.) = .

Proof. Define z - - and let' denote A. Using (2.4) we find that a solution of (1.1) of
e 

dz~

the form u = u(z) satisfies

(3.6) -su' + f(u)' = {Q, * u}"

where the convolution is now taken w.r.t. the variable z. The condition lim,_,±.u - u±

implies that also Q, * u --* u± as z --# ±oo, so there exist a sequence of values * tending

to ±oo on which (Qn * u)' tends to zero. Hence, integrating (3.6) from z- to z and letting

j -* oo we obtain

(3.7) H(u) = -s{u - u-} + {f(u) - f(u_)} = {Q. * u}.

Now letting z tend to +oo along the sequence z+ we find from (3.7) that H(u+) = 0, i.e.

(3.2) holds.

Noting that H" = f" > 0, we see that H(u-) = 0 = H(u+) implies H' = f' - s < 0 at

the lessor of u±, and H' > 0 at the greater of the two. Hence, if u+ < u- then (3.1) holds,

while if this inequality is reversed then so are those of (3.1), i.e., we can replace (3.1) by the

condition

(3.8) u_ > U+



Next, we apply to (3.7) the operator 1 _M2 (the in-verse of the operator of convolution

with Qm), to obtain

(3.9) u= {1 - m2 }H(u) = H(u) - m 2 {H'(u)u' + H"(u)(u')2 }

We note that sinct; all nonzero solutions g of {1 - 2 Ig = 0 are unbounded on R, the
solution of (3.9) with bounded u and u' which we construct below, also satisfies (3.7). To

construct such a solution we introduce the auxiliary variable

(3.10) V=u/

which enables us to rewrite (3.9) as the 2 x 2 system

(3.11) u'=V

(3.12) m 2H'(u)v' = H(u) - v - m2 H"(u)v2

The convexity of H(u) together with the Rankine-Hugoniot condition (3.2) imply that the

only critical points of system (3.11-12) are (u-, 0) and (u+, 0).

We remark that the linearization of (3.11-12) near the critical points (u_, 0) and (u+, 0)
shows that they are both saddles, so that topological methods (see e.g. [S]) cannot be
applied; one might even tempted to conclude that the existence of a trajectory joining these

saddle points is unlikely. What saves the day, however, is the fact that the system is singular

on the line u = u,, i.e., that the coefficient H'(u) on the left of (3.12) vanishes at u., which

by (3.1) lies between u- and u+.

The key to finding a trajectory joining the two critical points is to note that solutions of
(3.11-12) can cross the line u = u. only at points (u.,v.) which make the right side of

(3.12) vanish: Equation (3.11) implies thit H'(u(z)) is O(z - z.) near the value z. for which

u(z.) = u., and hence (3.12) shows that vI -- oo as z --+ z., unless the right side of (3.12)

tends to zero. Also, since the right side of (3.12) is quadratic in v, a comparison of (3.12)

with the equations zv' = ±v2 shows that in fact Jvi reaches infinity before u reaches u,.

In order to obtain a trajectory joining u- at z = -oo to u+ at z = +oo it is therefore

necessary and sufficient to find trajectories joining (u-, 0) (respectively, (u+, 0)) at z = -oo

(respectively, z = +oo) to (u., v.) (with the same value of v. for both cases) at some finite

values of z; we can always arrange for the two values of z to coincide because the system is

autonomous. Since trajectories through (u., v.) are not unique, the existence of our desired

trajectories, which when put together join u- to u+, no longer seems so unlikely.
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Now the right side of (3.12) is a quadratic expression in v, whose roots are

-1 + /1 + 4m 2H"(u)H(u)

(3.13) v(u) =2m 2H,,(u)

If the argument under the square root is negative at u = u. then clearly no such v. exists;
this gives the necessity of (3.4) for the existence of travelling wave solutions. We now turn

to discuss the sufficiency of condition (3.3): it says that vi exist for all u between u- and
u+, and we want to show that when this happens, then the trajectories mentioned above
exist iff (3.8) holds. Namely, that these trajectories exist if we replace u- and u+ by

(3.14) u- = max{u-,u+} and u+ = min{u_,u+} 

but not with these latter two interchanged.

The linearized system around the two critical points has the form

-" 1 - 1•(3.15) 
H_±U

Since the determinant of the matrix on the right of (3.15) is negative, both critical points

are saddles, as claimed. Now, it is not hard to calculate directly the asymptotic directions

of the solutions that approach each critical point as z tends to ±00, as these are simply

the eigenvectors of the matrix in (3.15), but in any case we will have to determine from
(2.11-12) the signs of u' and v' in various regions, and this information suffices to determine
which region the various asymptotic directions lie in. In this way we obtain Diagram 1, the

phase-plane diagram for the case when m satisfies (3.3).
Based on Diagram 1, the existence of a travelling wave solution is argued as follows. There

is a Lrajectory that leaves the critical point (u, 0) and enters region I. If this trajectory

remains in region I until u reaches the value u., then by the above analysis it reaches the
point (u., v.); in this case, u' - v as well as u are monotonic on this semi-trajectory. The only
way that the trajectory can leave region I before reaching the line u = u., is by entering

region II; but v' > 0 in this region, so "clearly" the trajectory still reaches (u.,v.). A

similar analysis backwards in the "time" z shows that there is a semi-trajectory from (u., v.)

to (U+, 0). By checking the other trajectories leaving and entering each critical point we see

that no trajectory joins u+ to u- or either point to itself.

Although the above argument is sound provided that Diagram 1 is accurate, we have yet

to verify one crucial feature of that diagram. Specifically, the argument assumed that if we

enter region II at the point P and travel within this region keeping v' > 0 and u' < 0, then
we cannot reach region III. (Clearly, no problem arises from the possibility of re-entering

region I.). Thus we have to show that the situation shown in Diagram 2 is impossible.
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Analytically, we must show that

v_(ui) _ v+(u 2 ) for u. < U1 < I,2 .Jeqno(3.16)

Defining Hi = -H(ui) and A, = -4m 2 H"(ui)H(ui), then (3.16) boils down to

(3.17) -2H 1 {1 + 1 - A 1}/A < -2H 2 (1 - 1 -

Now, the convexity of f (and hence of H) together with the fact that 11 vanishes at u± imply

that H1 > H2 > 0; these facts together with our assumption (3.3) impiy that

(3.18) 1 > Ai > 0.

Therefore, a sufficient condition for (3.17) to hold is that

(3.19) {1 + V1 - A}/A1 > {1 - V/1 - A 2}/A 2

for all A, satisfying (3.18). A little algebraic manipulation shows that this is indeed the case.

Consequently, (3.16) holds, i.e., no point such as the point Q in Diagram 2 can exist, and so

the argument based on Diagram 1 is valid.

As m increases past the value that makes equality hold in (3.3), we obtain the situation

shown in Diagram 3.

Namely, a gap appears in region II, through which our trajectory might possibly plunge

into the abyss of region III. Hence we cannot say whether a trajectory joining u- to u+

exists or not. Finally, when m increases past the value that makes equality hold in (3.4),

then the phase-plane looks like Diagram 4, and the descent of our trajectory to -oo becomes

a certainty.0

We close this section by quantifying Rosenau's statement [R] that the travelling-wave

solutions of the R-C-E equation (1.1) give narrower shock layers than those of the viscosity

equation (1.4). We will adopt as our measure of shock width, w =_ (u- - u+)/u' with u'o

evaluated at the point u. at which H'(u) = 0. (It should be ioted, however, that although

this value of u. is always maximum for (1.4), it will be maximum for (1.1) only if the

trajectory does not enter region II of Diagram 1, which in turn is guaranteed by our analysis

only when the curve v = v+ (u) has its unique local minimum it u..) Since the relevant value

of u' for (1.4) is given by u. = -H(u.), while the value of u. for (1.1) is v+(u.), the estimate

(3.20) 1 < WChapman-Enskog < 1
2- wiscous

follows from the simple lemma: If a quadratic equation has real roots, then the root closer

to zero lies between r and 2r, where r is the root of its linear part.
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4. Entropy Solutions and the Zero Mean-Free-Path Limit

The parameter m does not play a role in our analysis in this section, and so will be set
equal to 1 for convenience.

Since solutions of the R-C-E equation (1.1) may contain singularities weak solutions must
be admitted. Since the latter need not be unique, we single out an "entropy" solution of the

R-C-E equation (1.1) as the one satisfying the Krushkov-like [K] inequality

at I u.- cI + i,[sgn(u - c){f(u,) - f(c)}]
(4.1)

< -!{lu, - cl - sgn(u, - c)Qe * (u, - c)}

for all real c's. In particular, by choosing c = + sup juI (respectively, c = -sup Iu,1), we

obtain from (4.1) that uc is a supersolution (respectively, a subsolution) of (1.1), and hence
(1.1) is satisfied in the sense of distributions. We turn to show that (4.1) admits a unique

solution u,, and that this solution converges to the vi '"ue entropy solution of (1.4) as e goes

to zero.

Theorem 4.1. For any uo in BV there exists a unique solution u, of the R-C-E equa-

tion (4.1), and as e J0, u. converges in L' to the unique entropy solution of the inviscid

conservation law (1.4).

Proof.

Add the artificial viscosity term 6u.. to the right side of (1.1); the resulting equation has
a unique smooth solution u'. By a straightforward adaptation of Krushkov's [K, section 4]
proof for the artificial viscosity method for (1.4), we obtain that the set {u6}6 >o is bounded

in BV (uniformly in c and 6) and precompact in L1, and hence that a subsequence converges

as 6 -* 0 to a solution u. of (4.1). Similarly, by the argument on pages 224-5 of [K] we

obtain from (4.1) the consequence

jT 0ooILiu, - V, 4it + sgn(u, - v.) [f (u.) - f (v,)] 4',}dxdt

(4.2)

j T ool110o lue - v2l - sgn(u - v.)Q. * (u. - v,)}4'dxdt

where 4' is an arbitrary nonnegative test function.

Next, we remark that the expression inside the curly brackets on the right of (4.2) need

not be positive, but in view of (2.5), its spatial integral is. Therefore, by choosing (D(t, x) =

't1(t)-' 2(x), and letting (D2 tend to the function that is identically one, we obtain

(4.3) lu. - V.I,it > 0

13



Continuing as in [K], we let @1 approach the indicator function of the interval [0, t] to

conclude

(4.4) 1Iu,(t) - vg(t)HL < 1IU.(0) - v.(0)HL.

In particular, this shows that the solution of (4.1) is unique.

The solutions {u,} of (4.1) inherit the BV bound of the {u6}, and the argument of section

4 of [K] shows that this bound implies precompactness in L1 . Hence as e -+ 0 a subsequence

converges to a weak solution u of (1.4). Because the right side of (4.2) is known to be positive

only when : has no dependence on x, we cannot use the entropies of (1.4) (as in [Ta]) to

conclude that u is the entropy solution of (1.4). However, (4.4) implies the corresponding

estimate for the weak solutions u and v obtained in the limit as e goes to zero, and by an

argument of Lax [L] this suffices to show that we obtain the entropy solution: It is not hard

to see that when (1.4) has a smooth solution then our scheme must converge to that solution.

Hence by the corollary to theorem (3.5) of [L], any solution u of (1.4) obtained in the limit

e --* 0 from (4.1) has the property that all of its discontinuities satisfy the generalized Lax

shock inequalities. By theorem (3.5) of [L], this implies that u is the unique entropy solution

of (1.4). Finally, since any sequence of es tending to zero has a convergent subsequence, the

uniqueness of the limit shows that convergence holds without passing to a sequence. 0

5. The Convergence Rate of the Zero Mean-Free-Path Limit

Theorem 4.1 shows that the R-C-E equation (1.1) retains several properties of the viscous

conservation law (1.2). In particular, (4.4) asserts that the solution operator is an L'-

contraction, and hence by conservation plus translation invariance it is monotone [CM,

Lemma 3.2], and by translation invariance it is BV-bounded:

(5.1) [[,,(t)IIBv _ IIU.(0)(IBV.

Next we show that the nonlinear R-C-E equation (1.1) also satisfies Oleinik's E-entropy

condition, e.g., [Sm],[T].

THEOREM 5.1. Assume f" a > 0. Then the following a priori estimate holds2

1

(5.2) IIu.(hL+ < , t > 0.
- Iue(0)IE-i'P+ +[at

2We let II[1ILip, II0IILip+ and II1IILip' denote respectively esssup 1, 4CsssupJ
4  +

and su -

14



Remark. The inequality (5.2) implies that the positive-variation and hence the total-
variation of u,(t) decays in time. Furthermore, this gives us another proof of the zero

mean-free-path convergence to the entropy solution of (1.4) for any L' -initial data u0 (cf.

Corollary 5.2).

Proof. We add the artificial viscosity term 6u., to regularize (1.1), obtaining

(5.3) a,9t, + adf(u:) - 1 { , _ Q .*u'} + 6a''U.m e

Differentiation of (5.3) yields for w -8u,

(5.4) atw + f'(u,)a,w + f"(u6)w2 .{w Qmc•w}+6@2w.

Hence, since f" > a > 0, it follows that W(t) = max,,w(t) is governed by the differential

inequality

(5.5) W(t) + aW2 (t)

and (5.2) follows by letting 8 ,1 0.0

Theorem 5.1 shows that solutions of the R-C-E equation (1.1) are Lip+-stable. Moreover,

(5.1) implies that the Lip'-size of their truncation if of order O(e), for

(5.6) II0,u. + O~f(u)IIL, CIIQ=C ,m * U, IL -- IQ,., IIL IIu,(t)I IBV <_ CIlU(O)IIBV.

Using the result of [T] we conclude that the Lip'- convergence rate of the R-C-E solutions

to the corresponding entropy solution is also of order .(e).

Corollary 5.2. Assume that f" > a > 0, and let u, be the unique R-C-E solution of (4.1)

subject to C' initial conditions u,(O) - ui,  . then u, converges to the unique entropy solution

of (1.4) and the following error estimates hold

11u.(t) - u(t)lw-., < Const - , < p< o, s=0,1.

Remark. The choice (s, p) = (1, 1) corresponds to Lip'-convergence rate of order 0(c). The

choice (s,p) = (0, 1) corresponds to the usual viscous Ll-convergence rate of order O(CI).

Acknowledgment. We are grateful to Philip Rosenau for several stimulating discussions

which motivate the present study.
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