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I. INTRODUCTION

Currently, the most widely utilized design for kinetic energy, antitank applications is
the gun-launched, fin-stabilized, long-rod projectile (Figure 1). The cross-sectional diam-
eter of the rod is smaller than the diameter of the gun bore. Fins span the area between
the rod and the gun tube. Therefore. a properly designed sabot (or carrier) is required
to reduce in-bore balloting of the projectile. Once free of the gun tube the sabot must be
discarded in order to permit unconstrained, low-drag flight to the target. Figures 2 and
3 show a typical sabot discard. The sabot is divided into three or four components along
axial planes. For smooth bore gun tubes. these components separate from the projectile
under the action of elastic and aerodynamic loads. During separation both mechanical
interference and gasdynamic forces can result in significant alteration of the projectile's
trajectory and may lead to unacceptable loss of accuracy at the target.

Schmidt and Shear",2 have demonstrated that aerodynamic interference generated by
the sabot components, or petals, can be a significant source of projectile launch distur-
bance. Perturbations to the projectile's trajectory are magnified by geometric asymmetry
in the discard pattern and by extended periods during launch when the sabot components
are in close proximity to the projectile. A detailed understanding of the three-dimensional
shock/boundary-layer interference flowfield between the sabot and the projectile is not
available.

Schmidt and Plostins3,4 have conducted an extensive experimental program to inves-
tigate the aerodynamics of sabot discard. During these tests a projectile and three sabot
components were sting-mounted in the NASA Langley Unitary Plan wind tunnel facility 4
x 4 ft test section. The model configuration included a stationary cone-cylinder projectile
(without fins) at zero angle-of-attack and three 1200 included-angle sabot components.
The sabot components were located symmetrically around the projectile. Figures 4 thru
6 show photographs and a schematic of the wind tunnel model and associated nomencla-
ture. The cylinder section of the projectile was 50.8mm in diameter- the projectile had a
length-to-diameter ratio of 10.5 and a 300 included-angle conical nose. Fifty static pressure
taps were positioned on the surface between the 1200 planes of symmetry, with four taps
on the conical section. The sabot had cylindrical inner and outer surfaces of r: 1ii 25.4
and 76.2mm, respectively, with the a leading edge chamfer of 40'. Fifty static - 'ssure
taps were located on the inner and outer surfaces. In order to test sabot petals at various
positions near the projectile a single petal was mounted on a moveable sting. Since it
was not practical to mount multiple actuated sabots splitter plates were attached to the
projectile 120' apart as reflecting planes of symmetry (Figure 5). The splitter plates were
6.35mm thick and had a 150 leading edge chamfer. No pressure taps were used on the
plates. The test Mach number and Reynolds number were 4.5 and 6.6 million per meter,

'Schmidt, E.M., and Shear, D.D., "Aerodynamic Interference During Sabot Discard.'" AIAA Journal of Spacecraft and

Rorkets Vol. 15, No. 3, May-June 1978, pp. 162-167.
2 Schmidt, E.M., and Shear, D.D., "Launch Dynamics ofa Single Flechette Round," US Army Ballistic Research Laboratory,

Aberdeen Proving Ground, AID. BRL Report No. 1810, Aug. 1975.
3
Schmidt, E.M.. "Wind-Tunnel Measurements of Sabot-Discard Aerodynamics." A.4 Journal of Spacecraft and Rockets.

Vol. 16, No. 3, May-Jun- 1981, pp. 235-240.
4Schmidt, E.M., and Ploutins, P.,"Aerodynamics of Asymmetric Sabot Discard," US Army Ballistic Research Laboratory,

Aberdeen Proving Ground, MD, ARBRL-AMR-OJgo, June 1983.



respectively. A typical flight Reynolds number of about 89 million per meter could not be
reproduced in the tunnel; unfortunately, test results showed regions of shock/boundary-
layer interaction, separated flow and other viscous phenomena. Figure 7 is a sLhcmatic of
a portion of the test series. This "simulated sabot discard" sequf nce was executed for a
single sabot petal and splitter plates on the projectile. It provides a reasonable basis for
comparison of computed and measured surface pressures during discard.

Initial analytical work for sabot discard aerodynamics relied on the Newtonian flow
approximation and empirical aerodynamic interaction analyses; for example the AVCO
code. 5,6 These assumptions make discard computations tractable and in some cases rep-
resent accurate approximations. However, it is apparent that the multiple shock/expansion
interaction flowfield between the projectile and sabot petals is an essential part of the anal-
ysis. The initial version of the AVCO code5 evaluated the aerodynamic loadings on the
sabot segments using Newtonian theory and a subsonic/supersonic inlet model: pressu.
forces on each surface of the segments, including sabot sides, were obtained separately
and summed to provide results for total force and moments (excluding shear stress com-
ponents). The code assumed that the aerodynamic coefficients for the projectile were
known. Although the sabot separation process is initially dominated by aerodynamic in-
teraction, the code assumed one-dimensional flow between the bodies. Recent versions 6

include an integrated flow element approach utilizing local shock/expansion procedures
based on sabot surface pressures measured during wind tunnel tests.3 ,4 These test data are
used to determine pressure levels on certain sabot locations with linear variations assumed
between these points. As a result, the code includes the effects of pressure puls2s on the
bodies caused by impinging and reflecting shock waves. When the sabot petals are not in
close proximity to the projectile, Newtonian flow theory is used. In some cases, however,
the code improvements produced overestimates of the discard process in contrast to ini-
tial code predictions. Consideration is limited to a general sabot configuration which is
bounded radially by two cylindrical surfaces and axially by two conical surfaces.

This report describes computational fluid dynamics (CFD) solutions applied to the
three-dimensional (3D) Navier-Stokes equations for symmetric sabot discard. During sym-
metric discard multiple sabot components are assumed to follow the same trajectory away
from the projectile and the projectile is assumed to be at zero angle-of-attack. Figure 8 is
an illustration of this configuration for three sabot petals. The computational domain for
symmetric discard can be limited to a smaller portion of the entire flowfield around the
configuration. Thus, requirements for three-dimensional sinmulations such as computational
grid size, computer memory. and computer run time are reduced. For asymmetric discard
the computational domain would be greatly expanded with a corresponding increase in
computer requirements. The portion of the launch cycle which involves strong aerody-
namic interference between the projectile and the sabot components is examined. Thus,
simulations are performed for small vertical separation of the sabot petals and sabot angle
of attack a < 180. Numerical simulations reported were performed for the wind tunnel
model configuration illustrated in Figures 4 thru 6.

C'rti. P., and Siege(man, D., "Analysis of Meehanical and Gasdynamic Loadings During Sabot Discard from Gun-
Launched Projectiles," US Army Ballistic Research Laboratory, Aberdeen Proving Ground, All), ARBRL.CR-341, June 1977.

b Sieqelman. D., Wang, J., and Crtmi, P., "Computation of Sabot Discard," US Army Ballistic Research Laborator,,,

Aberdeen Proving Ground, AID, ARBRL.CR-505, Feb. 1963.
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II. COMPUTATIONAL APPROACH

The CFD approach described in this section can be used to predict the compressible
flowfield around single and multiple component non-axisymmetric projectiles by solving
the Reynolds-averaged 3D Navier-Stokes equations. The USA-PG3 code was developed
by Chakravarthy.7 ,8 The Navier-Stokes equations are written using the perfect gas as-
sumption, however versions of the code for a real gas (e.g. equilibrium air, non-equilibrium
gas and reacting flow) have been documented as well.9 ,10  Both laminar and turbulent
flows can be investigated, thus, a turbulence model'" is required for closure. In addition,
backflow regions can be present, thus, a backflow turbulence model12 is included. The
equations are transformed into conservation law form and discretized using finite volume
approximations. The USA-PG3 code uses a class of numerical algorithms termed total
variational diminishing ('1VD) which do not require the inclusion of explicit smoothing
or global dissipation functions to achieve numerical stability. The resulting set of equa-
tions is solved using an implicit, factored, time-stepping algorithm. The solution takes
place on a computational grid that is generated around the projectile and sabot petals in
zones. The zonal boundaries can be made transparent to the flowfield calculation. This
code has been previously employed in the solution of subsonic, transonic, supersonic and
mixed flow problems including complex three-dimensional and multi-body configurations
by Chakravarthy et.al. 7.8,13-16

1. EQUATIONS OF MOTION

The compressible, Reynolds-averaged Navier-Stokes (RANS) equations for 3D flow
are written in the following conservation form. The dependent variables u, v, w and e are

7 Chakravarthy S.R., Szema K.Y., Goldberg U.C., Gorski J.J., and Osher S., "Application of a New Class of High Accuracy

TVD Schemes to the Navier-Stokes Equations," AIAA-85-0165, Proceedings of the 23rd AIAA Aerospace Sciences Meeting,
Reno NV., January 14-17, 1985.

8 Chakravarthy S.R., Szema K.Y., and Haney, J.W., "Unified Nose-to-Tail Computational Method for Hypersonic Vehicle
Applications," AIAA-88-2564, Proceedings of the 6th AIAA Applied Aerodynamics Conference, Williamsburg, VA, June 6-8,
1988.

'Ota, D.K., Chakravarthy S.R., and Darling, J.C., "An Equilibrium Air Navier-Stokes Code for Hypersonic Flows," AIAA-

86-0419, Proceedings of the 26th AIAA Aerospace Sciences Meeting, Reno NV., January 11-14, 1988.
'°Palaniswamy, S., and Chakravarthy, S.R., "Finite Rate Chemistry for USA Series Codes: Formulation and Applications,"

AIAA-89-0200, Proceedings of the 27th AJAA Aerospace Sciences Meeting, Reno, NV, January 9.12, 1989.
" Baldwin, B.S. and Lomax, H., "Thin Layer Approximation and Algebraic Model for Separated Turbulent Flows," AIAA-

78-257, Proceedings of the 16th AIAA Aerospaco Sciences Meeting, Huntsville, AL, January 16-18, 1978.
12Goldberg U.C., "Separated Flow Treatment with a New Turbulence Model," AIAA lournal, Vol. 24, No. 10, October

1986, pp. 1711-1713.13 Szema, K. Y., Chakravarthy S.R., Riba, W.T., Byerly, J., and Dresser, H.S., "Multi-Zone Euler Marching Technique for
Flow Over Single and Multi-Body Configurations, " AIAA-87-0592, Proceedings of the 25th AIAA Aerospace Sciences Meeting,

Reno NV, January 12-15, 1987.
14 Szema, K.Y., Chakravarthy S.R., Pan, D., Bihari, B.L., Riba, W.T., Akdag, V.M., and Dresser, H.S., "The Application

of a Unified Marching Technique for Flow Over Complex 3-Dimensional Configurations Across the Mach Number Rangc,"
AIAA-88-0 76, Proceedings of the 26th AIAA Aerospace Sciences Meeting, Reno NV, January 11-14, 1988.

15 Chen, C.L., Ramakrishnan, S., Szema, K. Y., Dresser, H.S., and Rajagopal, K., "Multi-Zonal Navier-Stokes Solutions for

the Multi-Body Space Shuttle Configuration," AIAA-90-0434, Proceedings of the 28th AIAA Aerospace Sciences Meeting, Reno
NV. January 8-11, 1990.

'6 Nusca, M.J., Chakravarthy, S.R., and Goldberg, U.C., "Computational Fluid Dynamics Capability for th, Solid-Fuel
Ramjet Projectile," AIAA Journal of Propulsion and Power, Vol. 6, No. 3, May-June 1990. pp. 256-262.
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In Equations 2-10 the laminar and eddy viscosities, p and j~t, are implicitly divided by
the reference Reynolds number. The equations used for the Euler (inviscid) calculations
are obtained from Equations 1-11 by setting both laminar and eddy viscosities to zero.
In all calculations the flow medium (air) was assumed to be a perfect gas satisfying the
equation of state:

p = pRT (12)

'I



The following power law was used to relate molecular viscosity to temperature 17

p = ( ) n(13)
Po T

where po = 0.1716 milliPoise, TO = 491.6 R, and n = 0.64874. The laminar and tur-
bulent Prandtl numbers, Pr and Pr,, were assumed constant with values of 0.72 and 0.9
respectively. The ratio of specific heats, y, was also assumed constant and equal to 1.4.

Assuming a time-invariant grid and using the transformation of coordinates implied
by r = t, = (x,y,z), q = rI(x,y,z) and ( = ((x,y,z), Equation 1 can be recast into
conservation form where , qj and ( are the new independent variables and x , x,, xc, y ,
y,7, y(, zc, z, and z( are the nine transformation coefficients obtained numerically from the
mapping procedure. The transformed time variable is represented by 7.

2. TURBULENCE MODELING

The shock/boundary-layer interference flowfield between the projectile and sabot
petals can include large regions of recirculating flow. Thus, modeling of these regions
can be critical to the overall flowfield solution quality. However most existing turbu-
lence models either do not treat such regions or do so in a semi-empirical fashion that
is frequently inadequate. To improve the predictive capabili )f separated flows using
current Reynolds-averaged Navier-Stokes codes a new turbulence model has been recently
developed.' 2 The new turbulence model is based on experimental observations of detached
flows. The model prescribes turbulence kinetic energy (k) and dissipation (e) analytically
within backflows. A Gaussian variation of k normal to wall surfaces is assumed. The
length scale of turbulence is proportional to the local distance from the wall to the edge
of the viscous sublayer which is located outside the backflow region. The latter feature is
a basic assumption of the model. The stress scale is the local maximum Reynolds stress
which typically occurs around the middle of the boundary layer well outside the separation
bubble. This scale must be supplied by a turbulence model that is used beyond backflow
regions.

'ihe main equations of the backflow model are given in Reference 12. A formula for the
eddy viscosity distribution within backflows is derived and used to supply eddy viscosity for
the Reynolds-averaged equations when the calculations are done inside separation bubbles.
Outside of them, another turbulence model (for example Baldwin-Lomax 1 ) supplies the
values of eddy viscosity. While the Baldwin-Lomax turbulence model is used to detect
flow separation and to initiate application of the backflow model, the latter model can
relocate the separation point. Comparisons of the Baldwin-Lomax turbulence model and
Goldberg's backflow model are given in References 16 and 18. For further details of how
the model treats the influence of large eddies residing outside detached regions, the history
effect of these eddies downstream of reattachment, and the mutual influence of multiple
walls on the eddy viscosity, see References 12 and 19.

1 7
Mazor, G., Ben-Dor, G. and Igra, 0., "A Simple and Accurate Expression for the Viscozity of Nonpolar Diatomic Gases

up to 10,000 K," AIAA Journal Vol. 23, No. 4, April 1985, pp. 636-638.
"aGoldberg, U.C., "Separated Flows Calculations With A New Turbulence Model," presented at the IACM First World

Congress on Computational Mechanics, Austin, TX, Sept. 1986.
19 Goldberg, U.C., "Prediction of Separated Flows With A New Turbulence Model," A[AA Journal Vol. 26, No. 4, April
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3. COMPUTATIONAL ALGORITHM

The spatial discretization technique for the equations of motion must be reliable and
robust if it is to successfully capture the complex physics of projectile/sabot interacting
flowfields. The TVD formulation for the convective terms (the hyperbolic part of the
time-dependent Navier-Stokes equations) along with a special treatment of the dissipative
terms provides an appropriate simulation. Any conventional time discretization method
suitable for the Navier-Stokes equations can be used together with this space discretiza-
tion methodology; for example, approximate factorization and relaxation techniques. In
recent years, TVD formulations have been constructed for shock-capturing finite-difference
methods.7,8 Near large gradients in the solution (extrema) TVD schemes automatically re-
duce to first-order accurate discretizations locally while away from extrema they can be
constructed to be of higher-order accuracy. This local effect restricts the maximum global
accuracy possible for TVD schemes to third order for steady-state solutions.

TVD methods manifest many properties desirable in numerical solution procedures.
By design they avoid numerical oscillations and "expansion shocks" while at the same time
being of higher-order accuracy; "expansion shocks" are shock waves which do not satisfy
the entropy inequality. TVD formulations are also based on the principle of discrete or
numerical conservation which is the numerical analog of physical conservation of mass,
momentum, and energy. Thus, TVD schemes can "capture" discontinuities with high
resolution. At a fundamental level they are based on upwind schemes; therefore, they
closely simulate the signal propagation properties of hyperbolic equations. Schemes based
on the TVD formulation are completely defined. In contrast, central difference schemes
involve global dissipation terms for stability and have one or more coefficients that must
be judiciously chosen to achieve desirable results.

Proper treatment of the dissipative terms of the Navier-Stokes equations is also im-
portant in the construction of reliable numerical methods. Unidirectional second derivative
terms are treated by using central difference approximations. Cross derivatives are repre-
sented by finite-differences the nature of which depends upon the sign of the coefficient of
such terms. This treatment augments diagonal dominance of the resulting set of discretized
equations without detracting from the accuracy and while adding to the reliability of the
numerical procedure. Further details can be found in References 7 and 8.

4. COMPUTATIONAL GRID

Numerical simulation of the interacting flowfield about projectile/sabot combinations
is complicated by the non-axisymmetric geometry. For even simplified sabot configurations
sharp corners severely hamper conventional grid generation schemes that require one set
of grid lines to be tangential and another set to be normal to the surface. Projectile/sabot
geometries are more easily gridded using the zonal approach. Tile configuration is divided
into zones of simple geometric shape. In each zone an algebraic grid is generated with
grid clustering near walls and high flow gradient regions. In the zonal approach, the
computational method and computer program are constructed in such a manner that each

1988, pP. 405-408.
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zone may be considered as an independent module interacting with other zones before or
after the information corresponding to each zone is updated one cycle. In addition, the
zonal boundaries can be made transparent to flowfield phenomena (e.g. shock waves).

Zone designations for a typical 6-zone grid used for computations described in this
report are shown in Figures 9 and 10. The actual grid is shown in Figures 11 and 12. Grid
zone 1 covers the projectile from nose to base, zone 2 covers the area between zone 1 and
the inner surface of the sabot petal, zone 4 covers the area between the outer surface of
the sabot petal and the uppermost extent of the computational domain, zones 5 and 6
cover the projectile and sabot base regions, respectively. Zones 1 thru 6, excluding zone 3,
extend from 0 = 0 to 60' in the azimuthal direction. Grid zone 3 covers the area between
the sabot petal and the azimuthal extent of the computational domain. The entire 6-zone
grid consists of 300,000 nodes and requires 10 million words of memory on the US Army
Ballistic Research Laboratory (BRL) CRAY-2 supercomputer. Grid clustering was used
along all walls to resolve boundary layer profiles and near geometric discontinuities to
resolve flow gradients. The same grid sizes can be used for cases where the sabot petal
is pitched to an angle of < 18' due to the use of a no-reflection boundary condition on
the uppermost surface of the computational domain (zone 4). These grid dimensions are
assumed to be sufficient for preliminary computational simulations where relatively short
computer run time was required. Grid refinement studies are underway including the use
of a Poisson solver2" to smooth the initial algebraic grid.

III. RESULTS

This report presents numerical simulations for the wind tunnel projectile/sabot model.
The freestream Mach number and Reynolds Number are 4.5 and 6.6 million per meter,
respectively. Simulations for Mach number 4.5 and Reynolds number 89 million per meter
are shown as well. Calculations are presented for inviscid, laminar and turbulent flow
modeling. Converged solutions required about 6 CPU hours for inviscid flow and 18 to 20
CPU hours for laminar and turbulent solutions on the BRL CRAY-2 computer.

Figure 13 shows pressure contours for the forward part of the projectile/sabot con-
figuration in the pitch plane; in this case the pitch plane cuts across the center of the
sabot petal (see Figure 8). Three sabot petals are assumed (i.e. no splitter plates) with
the sabot base aligned with the projectile base, Ax/D = 0, projectile surface and sabot
inner surface vertically separated by Ay/D = .75, and the sabots at zero angle-of-attack.
Three horizontal lines extending from x/D = 0 to 5.625 are zonal grid boundaries. Large
flow gradients (e.g. shock waves) are indicated by clustering of pressure contour lines. An
oblique shock is attached to the projectile nosetip and a normal shock is slightly detached
from the leading edge of the sabot petal. Downstream of these shocks a complex system of
interactions and reflections results. Flow expansion at the cone-cylinder junction (x/D _
2.1) is followed by a strong oblique shock on the projectile (x/D 2 2.8). Thus, a high
pressure, low speed and perhaps recirculating flow region may be present on the projectile

20 Raagopal, K., Lick, I., Szema, K., Ramakrishnan, S., and Chen, C., "A 'ersatile Multi-Zonal Gridding Technique for
Compler Geometries," AIAA-90-0011, Proceedings of the 28th AIAA Aerospace Sciences Meeting, Reno NV, January e-11,
1990.
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at this location. This region terminates with a sonic throat condition (x/D :- 4.22) and a

corresponding expansion to supersonic flow downstream.

Figure 14 shows the sonic (M= 1) Mach contours for the same configuration. Three
horizontal lines extending from x/D = 0 to 5.625 are zonal grid boundaries. These contours

indicate that a region of subsonic (.1 < 1) flow extends from xD :_ 2.8 to 4.22. between
the sabot petal and the projectile.

Figure 15 shows the measured' and computed pressure distributions over the projectile
and sabot surfaces in the pitch plane. Laminar flow modeling was employed. Computed
pressures on the projectile surface agree favorably with the magnitude and location of a
measured pressure peak (x/D _ 4.22) as well as an elevated pressure (low speed flow) re-
gion preceding this peak, 2 < iD < 4.22. The location of this pressure peak corresponds
to the termination of a low speed flow region on the projectile (see remarks for Figure 14).
Downstream of the pressure peak the agreement between computation and measurement
is also favorable. On the inner surface of the sabot petal numerical simulation adequately
predicts the pressure level and trend on the sabot slant surface. 2.75 < x/D < 3.94. Pres-
sure levels on the rest of the sabot section agree with measurements including a pressure
rise at x1D 2- 5.5. The computed magnitude of this rise is somewhat larger than observed.

Figure 16 shows the measured 3 and computed pressure distributions over the projectile
surface for three azimuthal planes including the pitch plane, 6 = 0', 30', 45' . Laminar flow
modeling was employed. Data indicate that the pressure peak at riD 2_ 4.22 decreases
in magnitude with increasing azimuthal angle. The three-dimensionality of the flowfield is
also indicated by the numerical simulations; however, only the trend of the pressure drop
is reproduced. Computations with grid clustering at the location of the pressure peak
and/or turbulence modeling may improve the results.

Figures 17 and 18 show pressure distributions over the projectile and sabot surfaces in
the pitch plane using inviscid. laminar and turbulent flow modeling. Neither laminar nor
turbulent modeling conclusively provides the best overall agreement with data. Inviscid
flow simulations require significantly less computer time by excluding the viscous terms in
the Navier-Stokes equations. However, the inviscid simulation predicts a smaller magnitude
pressure peak and lower pressures preceding the peak: this indicates these are perhaps
viscous phenomena. The turbulent prediction agrees more favorably with the pressure
levels forward and behind the pressure peak but underpredicts the magnitude of th( peak.
In particular pressures between the projectile and sabot. x/D > 5. are best reproduced by
the turbulent calculation. In Figure 18 the inviscid simulation overpredicts sabot leading
edge pressure and underpredicts pressure on the sabot slant surface (2.75 < x/D < 3.94).
Only slight differences are noted between laminar and turbulent predictions of pressure on
the sabot surface. Further investigation of laminar and turbulent flow modeling should be
conducted using grids of finer spacing.

Calculations for the wind tunnel model with splitter plates attached to the projectile
and a single sabot petal are presented in Figures 19. 20, and 21. Recall that the plates were
included to provide reflecting planes of symmetry. 120' apart, when physical restraints did
not allow the mounting of all three sabot petals. With the exception of these )lates the
projectile/sabot configuration was identical to that represented in the previous figures. The
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same grid was employed with a no-slip flow boundary condition specified on the splitter
plates. Sin:e the grid was not clustered normal to the plate (see Figure 12) boundary layer
growth was not adequately simulated on this wall. Laminar flow modeling was employed.

Figure 19 shows the pressure contours for the forward part of the configuration in
the pitch plane and may be compared to Figure 13. The presence of splitter plates has
a'tered the flowfield: in particular the normal shock on the sabot leading edge merges with
a shock apparently originating from the plate leading edge to form a shock structure that
is significantly different from th, displayed in Figure 13. Figure 20 shows the pressure
distributions for the projectile and sabot inner surfaces and may be compared to Figure
15. Data indicate that the magnitude of the pressure peak has decreased significantly
for the configuration with splitter plates. Computed pressures accurately reproduce this
effect. Computed pressures preceding the peak are not adequately predicted: this may be
the result of laminar flow modeling or course normal grid spacing on the plate. Pressures
on the sabot surface agree well with the measured data. Further investigation into the use
of splitter plates is warranted since these plates significantly alter the computed flowvfield
while no such shock structure was evident in the wind tunnel tests.

Figure 21 shows the pressure distribution on the projectile and sabot surfaces in the
pitch plane. The projectile/splitter plate configuration and one sabot petal was used.
In this case the projectile surface and sabot inner surface are vertically separated by
Ay/D = .25 and the sabot petal is at 40 angle-of-attack with respect to the projectile.
Laminar flow modeling was employed. The pressure magnitudes and trends are similar to
those of Figure 20 except for elevated pressures from riD = 7 to 1 where the bodies are
in closer proximity. The numerical simulation reproduces these higher pressures.

Calculations for an axisymmetric projectile/sabot configuration are presented in Fig-
ures 22 and 23. The axisymmetric configuration is generated by joining three sabot petals
into a tube that is concentric with the projectile. In tins case the vertical separation be-
tween the ojectile surface and the inner tube surface is Ay/D = .75. This configuration
was not tested in the wind tunnel, but is used to numerically investigate the applicability
of two-dimensional simulations. Since the axisymmetric configuration does not require a
3D simulation the required computer time is reduced from 18 hours to 3 hours on the
BRL CRAY-2. Figure 22 shows the pressure contours for the forward part of the configu-
ration illustrating that the axisymmetric geometry generates a normal shock significantly
detached from the sabot. or tube. As a result, this shock interferes with the flowfield at the
cone-cylinder junction on the projectile. x/D = 2.1. A strong oblique shock is generated
on the projectile at this location. Figure 22 may be compared to pressure contours for
the 3D geometry show in Figure 13. The axisvmmetric flowfield is significantly different
from that of the actual geometry: thus, the less expensive computation does not provide
an adequate simulation.

Figure 23 shows the computed pressure distributions over the projectile and Sabot
surfaces for the axisymmetric configuration and the measured pressures for the actual
geometry. Several pressure peaks are generated on the projectile surface. The pressure
measurements on the sabot slant surface (2.73 < x/D < 3.94) are reproduced by the calcu-
lation. however pressures between the sabot (tube) and the projectile (x/D > 4) are much
higher than measurements. These results indicate that the axisymmetric simulation pre-
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dicts a choked flow between the projectile aid the sabot and is not an adequate substitute
for the non-axisymmetric simulation.

Figure 24 shows the computed pressure distribution over the projectile surface for
turbulent flow and Reynolds number values of 6.6 million and 89 million. The three
dimensional configuration was used with Ax/D = 0. Ly/D = .75. a = 0. and three sabot
petals (i.e. no splitter plates). Grid stretching was refined in the wall-normal direction so
that 6 to 8 points define the boundary layer profile for both Re cases. Some differences
are noted between the curves, most noteably a decrease in the magnitude of the peak
pressure. The Re 89 million result approaches the inviscid result as shown in Figure 17.
Pressure magnitudes and trends on the sabot inner surface were not noticeably effected by
the increase in Reynolds number.

IV. CONCLUSIONS

Computational fluid dynamics (CFD) solutions of the three-dimensional Navier-Stokes
equations have been applied to the aerodynamics of symmetric sabot discard. The portion
of the launch cycle which involves strong aerodynamic interference between the projec-
tile and the sabot components has been examined. A configuration was considered that
included a cone-cylinder projectile at zero angle-of-attack with three sabot components.
Computed and measured projectile and sabot surface pressures are in good agreement for
a freestream Mach number of 4.5 and wind tunnel Reynolds number of six million. Grid
refinement studies are being pursued to improve agreement with data for some flow details.
Computational modeling revealed the source of a measured pressure peak on the projectile
surface as the termination of a region of high pressure. low speed flow. Computational
solutions demonstrate the importance of three-dimensional. non- axisyminet ric simulations
over axisymmetric approximations. and viscous/turbulent flow modeling over the inviscid
assumption. Pressure distributions on the projectile surface were found to be sensitive to
freestream Reynolds number.

V. FUTURE WORK

CFD methods proven using wind tunnel configurations are being applied to fielded
projectile/sabot configurations with more complex sabot geometries. A technique for the
integration of surface pressures and shear stress is being used to determine the aerody-
namic forces and moments acting on the sabot surfaces. This output could be used in
quasi-steady mode to supply aerodynamic inputs to a six degree-of-freedom sabot trajec-
tory simulation. In addition, detailed 3D numerical computations are being used to en-
hance the engineerina sabot design/analysis codes that are based on local shock-expansion
gasdynainic techniques.
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Figure 1. Typical kinetic energy long-rod projectiles with and without sabot (sabot shown
in cutaway view).
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Figure 2. Photograph of typical kinetic energy long-rod projectile in free flight during
three-petal sabot discard.

-, -, ,- o'.-
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Figure 3. Shadowgraph of typical kinetic energy long-rod projectile in free flight during
four-petal sabot discard.
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Figure 4. Photograph (front-view) of sting-mounted wind tunnel models showing
cone-cylinder projectile (center) and three sabots.

U.

Figure 5. Photograph (top-view) of sting-mounted wind tunnel models showing
cone-cylinder projectile with splitter plates below one sabot component.
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Figure 6. Schematic of wind tunnel model in the pitch plane (0 = 0, 1800).
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Figure 7. Schematic of simulated sabot discard test sequence.
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Figure 8. Schematic of symmetric sabot discard (rear-view) showing computational do-
main.
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Figure 13. Lamninar flow pressure contours in the pitch plane ((P = 0, 1800) for A/
0, Ay/D = .75, a =0".
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Figure 14. Laminar flow sonic (Ml 1) Macli contours in the itch plane (6 =0, 18o-)
for LxID = 0, A y/D = .75, a =00r.
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Laminar Flow
Ay/D .75, Ax/D = 0, Sobot AOA = 0
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Figure 15. Laminar flow pressure distributions on projectile and sabot surfaces in the
pitch plane (0 = 0,1800) for Ax/D = 0, Ay/D = .75, a = 00.
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Laminar Flow
Ay/D .75, Ax/D = 0, Sabot AOA = 0

Projectile Surface
45

COMPUTED, 4) = 0 DEGS.
40 - 0 MEASURED, 4P = 0 DEGS.

COMPUTED, (P = 30 DEGS.

35 A MEAS---RED, t = 30 DEGS.
COMPUTED, 4P = 45 DEGS.

30 - D MEASURED, 4'P 45 DEGS.
30 -i

8 25 L

S20 -

15 A

0
10

5 0

0 1 2 3 4 5 6 7 8 9 10 1

Distance From Projectile Nosetip (Cal)

Figure 16. Laminar flow pressure distributions on projectile surface in the 0 = 00, 300
and 450 azimuthal planes for Ax/D = 0, Ly/D = .75, a = 00.
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Projectile Surface
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Figure 17. Inviscid, laminar, and turbulent flow pressure distributions on projectile
surface in the pitch plane ( = 0,180') for Az/D = 0, Ay/D = .75, a = 0'.
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Sabot Inner Surface
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Figure 18. Inviscid, laminar, and turbulent flow pressure distributions on sabot inner
surface in the pitch plane (0 = 0,180') for Ax/D = 0, Ay/D = .75, ce = 0'.
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Figure 19. Laminar flow pressure contours in the pitch plane for projectile with splitter
plates, Ax/D = 0, Ay/D = .75, a = 00.
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Laminar Flow
Ay/D .75, Ax/D = 0, Sabot AOA = 0
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Figure 20. Laminar flow pressure distributions on projectile and sabot surfaces in the
pitch plane (0 = 0,1800), projectile with splitter plates, Ax/D = 0, Ay/D = .75, ce = 00.
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Laminar Flow
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Figure 21. Laminar flow pressure distributions on projectile and sabot surfaces in the
pitch plane (0 = 0,180'), projectile with splitter plates, AZ/D = 0, Ay/D = .25, a = 4'.

29



-0

r-4

Projectile

0.0 1.406 2.812 4.218 5.625
X (cal)

Figure 22. Laminar flow pressure contours inthe pitch plane (0 = 0, 180 0), axisv-mmetric
geometry, AxID 0, Ay/D =.75, a = 0'.
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Figure 23. Laminar flow pressure distributions on projectile and sabot surfaces in the
pitch plane (0b = 0, 180'), axisymmetric geometry, Ax/D = 0, Ay/D = .75, o= 00.
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Figure 24. Turbulent flow pressure distribution on projectile surface in the pitch plane
(0 = 0, 1800) for AZ/D = 0, /Ay/D = .75, a 00. Reynolds Number 6.6 million and 89
million.
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List of Symbols

cal = caliber. D
cp = specific heat capacity, constant p
c, = specific heat capacity, constant volume
D diameter of projectile cylinder section
C = specific total internal energy
F,G,H flux vectors (Eq. 1)
Ml Mach number
Pr = Prandtl number
p pressure

= see Eq. 8-10
= specific gas constant

T = temperature
t = time
U = mean streamwise velocity
U, V, w = cartesian velocity components
W dependent valiable vector (Eq. 1)
x, y, z = cartesian coordinates
A = axial separation between projectile and sabot bases (see Fig. 6)
Ay = vertical separation between projectile and sabot surfaces (see Fig. 6)

Greek Symbols

a = sabot angle of attack with respect to the projectile
ratio of specific heats, cp/c.

C =transformed coordinate
77 = transformed coordinate
p = molecular viscosity

= transformed coordinate
p = density
a , au ,, o = normal stress tensors

= transformed time
ry, r z, rz = shear stress tensors
6 = azimuthal angle, increasing clockwise looking downstream.

Pitch plane is 0 and 180', € = 0' oriented with top sabot (Fig. 8)

Subscripts

t = turbulence quantity
x, y, z = denotes spacial components

= (-direction transform coefficient
= 77-direction transform coefficient
= c-direction transform coefficient

00 = freestream quantity
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