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REVERSIBLE LOGIC AS A STRATEGY FOR COMPUTING

During the 1983 Summer Study, a few members of JASON

attempted to survey the current status of the reversible logic

approach to digital computing. Our aim was to form an opinion on

which future developments of this subject might be relevant to

DARPA's computer-related interests and possibly worthy of its

support. We consulted one of the pioneers in this subject, Dr.

Edward Fredkin of MIT, at some length and brought ourselves up to

date on the (not very extensive) literature. Our basic conclusion

is that the importance of reversible logic depends crucially on the

physical architecture of the computer: It is irrelevant to the

current scheme in which packets of charge are stored on, and moved

between, structures of order one light wavelength in size, but might

be relevant and even essential if the basic information-handling

units were of molecular or atomic size (a distant but not

necessarily-unattainable goal). The question of physical

realization of reversible logic elements has been almost completely

neglected* in favor of the abstract questions of how, given the

existence of reversible logic elements, one could wire them up to

make a useful computer and how one would program it. We think that

*Apart from some interesting "existence proof" work ot Fredkin et

al.
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the problem of how to physically realize reversible computation at

something like the atomic scale should be the next question to be

attacked in this area. We also think that the very framework of

reversible logic suggests some interesting new approaches to the

problem of ultra-small-size computing elements which might be worth

exploring for their own sake. Although practical payoff on any of

these ideas is surely far off, the computer science and physics

issues raised are fascinating and of fundamental importance.

Investigations in this area are probably deserving of DARPA support

as topics in pure computer science. The body of this report

amplifies these remarks.

Energy Dissipation in Computing

Contemporary computers dissipate at least 10- 12 joules

(about 108 kT, if T equals room temperature) per logical

operation. The reason is that bits are stored as charges on

capacitors charged to about one volt (the typical operating voltage

of solid state electronic devices). Since there is a lower limit to

the size and capacitance of circuit elements that can be fabricated

on a chip using optical techniques, there is a lower limit to the

energy associated with storing one bit. That limit turns out to be

the above-mentioned 1012 joules, and the current style of computer

logic causes that entire energy to be dissipated each time the state

2



of a bit is changed. 1 The resulting heat load is a major barrier to

high speed computation.

A major question is the extent to which this dissipation is

an inescapable concomitant of computation and to what extent it is

due to "inefficient" physical or logical design of the computer.
2

Information theoretic/thermodynamic arguments have been used to

suggest that there is a fundamental dissipation limit of kT per

operation for computers designed on current principles.

In thermodynamics there is a well-known connection between

dissipation and reversible operation of heat engines. Standard

computer logic elements, the NAND gate in particular, are not even

reversible as abstract logical operations, let alone as physical

devices. It has been suggested that if reversible logic functions

are used, it is, in principle, possible to do computing with zero

dissipationl3 ,4 In this scenario, the entire computing operation

would have to be carried out reversibly in analogy with the

dissipationless operation of a reversible heat engine.

It is hard to evaluate the relative merits of two schemes

which promise to reduce dissipation to U • kT (the claimed limit

for reversible logic) and I - kT (the claimed limit for standard

logic) per operation, respectively, when the best dissipation
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achieved to date is 108 kTI We think it is worthwhile to pursue the

reversible logic scenario, not so much because it promises superior

practical benefits, but rather because it raises unfamiliar

questions about the nature of computing and suggests some

interesting new approaches to the physical realization of

computation.

There are two types of questions which arise when you

pursue this line. First, there are the questions of what are useful

reversible logic functions, how might they be tied together to make

a useful computer, and how might such a computer be programmed.

These questions are all answerable in the abstract, without any

reference to the physical realization of the system. This sort of

question is the major subject of the work of Fredkin and other

pioneers in reversible logic and the results are that manageable

reversible logic computers can be designed, although they are in

many interesting ways different from conventional computers. The

second question has to do with physical realization of reversible

computation. What sort of physical system can be used, what

calculation speeds can be achieved, etc.? Here very little is

known, although many interesting questions arise. We think this is

the most important aspect of the reversible computation problem and

have attempted to construct a framework for a serious exploration of

these questions.
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Physical Realizations of Computers

To establish a useful framework for our discussion, it is

helpful to remark that there are at least two broad classes of

physical realizations of computing machines. The most important

distinction is between open (dissipative) systems and closed

(conservative) systems. The distinction is between systems in which

the computational degrees of freedom are coupled to a "heat bath"

with which energy can be exchanged and systems in which the

computational degrees of freedom are effectively isolated from the

rest of the world. The other essential distinction is between

systems in which the computational degrees of freedom can be

described classically versus those in which they must be described

quantum mechanically.

A dissipative system will behave in many respects like a

heat engine. In particular, it should be possible to design it so

that it is more and more reversible and less and less dissipative

the slower it runs. This suggests an interesting tradeoff between

dissipation and speed of operation, about which we will be more

quantitative in the next section. (The logical architecture of such

a machine could be either reversible or not.)

A conservative system is necessarily reversible because any

closed Hamiltonian system is reversible. In fact, it is physically
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reversible whatever its speed of operation, and it would hardly make

sense for the logical architecture of such a machine to be anything

other than reversible!

Any device in which the computational degrees of freedom

are realized on a scale much larger than atomic size will inevitably

be dissipative: the total number of physical degrees of freedom

vastly outnumber those directly involved in computation, and it is

impossible to prevent leakage of energy between the computer and the

"heat bath." This is the case with all present-day machines.

On the other hand, if the computational system were

realized at the atomic scale, as some kind of cleverly constructed

lattice, for instance, then the computational degrees of freedom

would be a major fraction of the total number of degrees of

freedom. In that case, the system might function as a good

approximation to a closed reversible Hamiltonian system, and the

choice of reversible logic structure would be essential. Needless

to say, no one has any practical ideas on how to realize such a

computing system, though, of course, the entire thrust of the

development of faster computation is toward physically smaller

computing elements. The point is that if atomic scale computing

elements are ever constructed, reversible logic ideas may be most

appropriate to doing computation with them.

6



The other important dichotomy in thinking about physical

realizations of computers is that between classical and quantum

mechanical systems. This leads to a two-by-two classification

scheme which is shown in Fig. I.

Open Closed

Conventional Fredkin's BilliardClassical Machines Ball Machine

Quantum Josephson Future Atomic
Mechanical Junction Scale Machines?

Macroscopic Microscopic

Figure 1

Current computers are macroscopic and therefore classical and

dissipative. Computers constructed at the atomic scale are surely

quantum-mechanical and might well, for the reasons discussed

earlier, be effectively closed reversible systems.
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Non-dissipative classical systems are consistent with

Newtonian mechanics and represent internally consistent idealized

systems which turn out to be a useful framework for demonstrating

general features of reversible computation. We will be discussing

Fredkin's billiard ball model in that light. Finally, there exist

macroscopic (i.e., dissipative) but quantum-mechanical logic devices

based on the Josephson junction which we will use to illustrate more

precisely the theoretical limits on dissipative devices.

Theoretical Limits for Dissipative Devices

The single junction superconducting interferometer provides

an example of a dissipative logic device whose properties can be

quantitatively analyzed in some detail. In this section, we

summarize the results of Likharev5 on the device schematized in

Fig. 2.
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ICI

Figure 2

It consists of a superconducting ring, broken by a Josephson

junction (the cross in the figure), with provision for controlling

the maximum current, IM , that can flow through the junction by

varying an external current, Ic . The superconducting ring is

subject to an external magnetic field with a flux, fe I through the

ring. The ring carries a current, I , and has a net flux, , due

to the combined effects of I and *e through it. If the self-

inductance of the ring is L , the net flux satisfies

*= e -LI
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The net flux, * , is proportional to 6 , the difference of the

superconducting order parameter phase across the junction and can be

thought of as the variable describing the "state" of this system.

To be precise, 6 = 2w /o , where * - 1 is the magnetic flux
o 2e

quantum. The system is made to function as a logic device by

manipulating the state variable through changes in the external

parameters Ic and e

The energy of this system is the sum of the magnetic field

energy

1 2 1 2
UM =- LI - M ( 0 - e)

and the energy of a junction with a phase difference 6 across it

UJ3  + I 2 2w cos6

= IM  o/2w cos(2w*/o )o

( IM is the maximum junction current which, as we have said, can be

manipulated from the outside.) The total energy functional,

1 (0 - Oe)2 +IMo 2wo

U( ) C o + -cos

10
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generically has two minima. The situation when e 0 and

IM > 0 is shown in Fig. 3.

U

Figure 3

This two-fold degeneracy of the lowest-energy state can, in

principle, be used to store one binary bit of information.

Better yet, we can, by changing the external parameters,

IM and *e 9 manipulate the shape of the potential in such a way as

to smoothly switch the system point from one degenerate ground-state

to the other. This gives an explicit way of switching our bit-

storage device or carrying out an elementary logicai operation. A

possible switching sequence is shown in Fig. 4, where the system

point (the heavy dot) starts in the right-hand well and finishes in

the left-hand well.
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de 0 IM >0 e+ 0 IM >0 (b > 0 IM = 0

KU~
6e < 0 1M= 4b, 

< 0 IM>O 4 0 IM>O

Figure 4

In this sequence, the system point always sits at a local potential

minimum and the rate of change of the system coordinate is always

completely controlled by the external parameters and can be made as

small as we like at the price of dragging the switching event out

over a longer and longer time. In Fig. 5 we display a switching

sequence where this is not true.
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be = 0 'M>O (be<o IM> 0  be<0 'M>
0

de < 0 IM - 0 (eb< >0 0 IM > 0

Figure 5

In the third step of this sequence, when the barrier finally

disappears, the system point is at a large positive energy with

respect to the left hand minimum. It will roll down the hili and

eventually settle down in the left-hand minimum only after

dissipating its extra energy. The rate of this motion and the

energy dissipated in it are not controllable from the outside, and

to minimize dissipation in switching we must avoid this sort of

sequence.

We finally come to the quantitative evaluation of

dissipation in the switching event. This device has many more
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coordinates than the single flux coordinate, * , in which we are

primarily interested. The effect of these degrees of freedom can be

summarized by a viscous force

Fv =- K

which leads to damping of notions of the system coordinate (and

dissipation of energy from the * degree of freedom) at a rate

determined by K • The total energy loss in some time evolution of

is just

w-- fdtF +Kfdt ; >0

It is particularly convenient to characterise the damping

by the time, T , it takes small amplitude oscillations about ac

minimum to decay by e- l . In either of the switching scenarios

described above, $ necessarily is non-zero and there is

necessarily some dissipation. The shape of the potential during the

switching event is constrained by the requirement that spontaneous

switching into the wrong well due to classical thermal fluctuations

must be negligible (this means that the energy barrier between the

two local minima must always be much greater than kT ).
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Given this information, it is a straightforward matter to

calculate the minimum energy dissipation (corresponding to the

sequence of Fig. 4) in a switching event carried out in a time

interval T . The result is, roughly,

T

W - kT .- c
T

so long as T > T . In other words, the total energy dissipated in

a switching cycle can be made as small as we like by making the

switching time arbitrarily long compared to the basic dissipation

time scale. This is analogous to the situation with heat engines:

dissipation or entropy production can be made arbitrarily small by

running the engine arbitrarily slowly. We can also determine the

energy dissipated in a switching cycle like that of Fig. 5. In that

case it turns out that

W > kT

no matter how slowly we carry out the transition (at some stage the

system executes free fall down a potential hill whose height is

scaled by kT so that the system must dissipate energy of order

kT to come into equilibrium).
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When this sort of device is used to make a computer, the

question of overall logical organization inevitably arises. It

turns out that if we use the conventional organization based on

(logically irreversible) NAND gates (which can be simulated by

appropriately connecting together several of the above-described

switches), then switching cycles of the type of Fig. 5 are

inescapable and dissipation at the rate of roughly kT per

operation is the theoretical limit. However, if a logically

reversible organization is used, it turns out that only switching

sequences of the type of Fig. 4 need be encountered and the

dissipation per operation can be reduced arbitrarily below kT , at

the price of reducing the rate of computation. Since the motivation

for reducing dissipation was to increase the rate of computation,

this seems rather self-defeating. Later on we will discuss

possibilities in which, at least in principle, dissipationless

reversible computation can be carried out at arbitrary speed. In

the next section we will finally make explicit what we mean by

reversible logical architecture and devices.

Reversible Computation-Abstract Issues

It is a commonplace of computer science that a computer can

be built entirely out of a Boolean logic device called a NAND

gate. The action of such a device is symbolized in Fig 6.
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a

b:D 
(ab)

Figure 6

The inputs a and b take on the values 0 or I as .oies the

output. The output is computed by the function (af where the bar

means logical "not" (U = 1, T = 0) . This logical function is

clearly not reversible or invertible since several input states

produce the same output state. For this reason, a conventional

computer cannot be run backwards. The previous section implies that

the operation of a physical NAND gate entails a dissipation of at

least kT per operation.

The discussion of the logical organization of strictly

reversible computers was initiated by Bennett some ten years ago.
3

In pursuing this subject, Fredkin developed a simple abstract

reversible logical function which gave promise of being a universal
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building block for reversible computers.4 The structure and action

of this function, called the Fredkin gate, is shown in Fig. 7.

a a

b ab + ac

c 5b + ac

Figure 7

As in the case of the NAND gates, the input and output lines take on

the values 0 or 1. An examination of the truth table for this

device shows that it is invertible: the correspondence between

input and output states is one-to-one.

By ignoring some outputs and fixing some inputs, the

Fredkin gate can be made to perform any standard logical function.

For instance, the AND of a, b can be obtained by setting c = 0

and keeping only the middle output line, as in Fig. 8.
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a

a
a

ab
b ab

b

0 ab

Figure 8

This procedure requires a supply of input constants and a way of

disposing of the unwanLed outputs, known as "garbage." The brute

force method of carrying out reversible computation is to record

every one of the garbage constants which is produced during a

computation. This is not a very satisfactory proceeding since the

number of elementary logical operations required to carry out even a

simple arithmetic operation, let alone a complicated program, is

enormous and memory resources would be swamped.

Fredkin, Toffoli, and students have shown how to get round

this problem by really making use of the reversibility of the

system.6 ,7 The point is that if one is doing some machine

instruction such as computing the sum of two numbers which involves

a large number of logical operations, one may a) do the calculation,
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producing a large quantity of garbage; b) record the result,

producing a very small amount of garbage; c) run the computation

backwards, eating up the garbage produced in a). If the machine

instruction itself is logically reversible, as in

(A,B) + ( A+B ), one doesn't even have to accumulate garbage in

step b). The only true garbage which needs special memory

allocation and has to be kept to the end of the program is that

associated with truly non-invertible machine instructions. By

careful design of the machine instruction set and programming

practices, it appears possible to reduce the garbage accumulated in

a typical program to a manageable size. We are not aware of a

quantitative answer to the question, if a program requires a total

of N steps to execute, what is the minimum number of garbage bits

that must be accumulated? We suspect that the answer is log N,

which would mean that only a trivial amount of memory has to be

devoted to true garbage accumulation, but we don't have a proof.

Finally, as a result of this experience, Fredkin and

students have been able to produce sketchy but credible designs for

real computers. These designs are explicit two-dimensional wiring

diagram layouts of Fredkin gates, and have been demonstrated in

computer simulation exercises to work as expected.
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To summarize, although computers based on reversible logic

elements have some unfamiliar features, machines whose effective

operation is nearly a carbon copy of conventional computers can be

laid out as explicit two-dimensional hookups of the logically

reversible Fredkin gate. In the next section we will take up the

question whether the Fredkin gate is physically realizable.

Physical Realization of the Fredkin Gate

In order to give an existence proof for reversible

computation, Fredkin has introduced a stylized model based on

perfectly elastic collisions of billiard balls moving on a

frictionless plane. 4 Consider a two-dimensional square grid as laid

out in Fig. 9a, with unit spacing between the grid points and with

identical hard spheres of radius 1//2 moving at one lattice

spacing per time step along the principal directions of this lattice

(again, as shown in Fig. 9a). At time t = 0 , the center of every

ball lies on a grid point and that will again be true at every

integer-valued time. Balls will occasionally undergo right-angle

elastic collisions at integer-valued times (Fig. 9b).
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0

* 0

9a 9b

Figure 9a,b

The balls emerging from the collision will again move along the

principal lattice directions and their centers will coincide with

lattice points at integer-valued times. At some lattice points a

billiard ball will be nailed down to function as a perfect reflector

of anything that comes by. The presence or absence of a billiard

ball at a lattice site at an integer time can be taken as a binary

bit of information and the Newtonian evolution of such a system of

billiard balls amounts to a "calculation" involving those bits.

The construction of the billiard ball realization of the

Fredkin gate goes in two steps. First, construct the gate shown in

Fig. 10 (called the interaction gate) where the bar represents a

fixed reflector.
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CX/
C C

cx

CX

C

Figure 10

This device lets a ball on the x path go through undeflected if iio

ball is on the c path, but switches it onto a different path if a

ball is simultaneously present on the c path (and lets the c

ball through undeflected). The information processing here amounts

to switching bits between two output paths, depending on the content

of a control path. If these interaction gates are strung together

according to Fig. 10 (where the connecting paths have appropriate

delays in them to maintain proper synchronization), it is possible

to verify that the overall system functions exactly like the Fredkin

gate.
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C C

p cp + q

q p + cq

Figure 11

According to the previous section, a useful reversible

computer can be made by wiring together enough Fredkin gates. The

same computer can therefore be realized as a two-dimenbioaal

arrangement of appropriately aimed and placed billiard oaLls and

reflectors. The execution of a program on such a computer ii just

the carrying out of the Newtonian time evolution of the mechanical

system.

By construction, this system is dissipation-free and, since

the billiard ball velocity is arbitrary, it can operate at any speed

we like. This amounts to an existence proof for dissipation-free

fast computing via a classical conservative system.
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Billiard Ball Machine as Cellular Automaton

The defects of the billiard ball model as a practical

physical realization of reversible computing are fairly obvious. It

does, however, have the virtue of suggesting a different abstract

framework within which some interesting new possibilities for

physical realization suggest themselves.

The essence of the billiard ball model is that at integer

time steps billiard balls are located at lattice points only and the

pattern of occupied lattice sites changes from one time step to the

next according to some rule. The rule is not made explicit, but is

the result of evolving the previous configuration according to

Newtonian mechanics. The step by ste- tuiutloa of the state of a

lattice according to a loc..L rule is the subject of cellular

automaton theory, a pzrticularly active branch of fundamental

computer science. It is natural to ask whether the essence of the

billiard ball model can be captured in some cellular automaton

rule. For the moment, this is just an idle question, but in the

next section we will see that the cellular automaton framework is

one into which it might be possible to fit real atomic physics.

There is indeed a cellular automaton version of the

billiard ball machine which we have reconstructed from remarks of
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Fredkin. Consider a lattice divided up into individual cells by

solid and dotted lines in the manner of Fig. 12.

S1.0

Fi u re 1
---+I -I-

I I _

I I I

I I I

I I I
I I I

Figure 12

Some of the cells are occupied, and we want to devise a transition

rule to cause the pattern of occupation to change. If we look at

the unit cells defined by the solid lines alone or the dotted lines

alone, we see that they each contain four of the unit cells of the

full lattice. The transition rule will be defined for such groups

of four cells and applied on alternate time steps to the groups

defined by the solid lines and dotted lines. The transition rules

we will use are defined in Fig. 13.
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Figure 14

Single occupied cells, however, do not collide with each other in

the manner of billiard balls. In order for this to work out

properly, it is necessary to consider a train of two similar

occupied cells, as Fig. 15.

0

Figure 15
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This, and the three other versions corresponding to the other

possible directions of motion propagate and collide exactly in the

manner of billiard balls. One can also construct a configuration

which does not propagate and reflects any billiard ball

configuration incident on it (see Fig. 16).

Figure 16

As the previous sections have shown, an explicit reversible

computer design is available once we have "billiard balls" and

"mirrors." Now that we know that our cellular automaton rules

produce these two types of object, it is possible, in a perfectly

explicit way, to construct a reversible cellular automaton

computer. This is interesting because, as we shall argue in the

next section, the cellular automaton framework seems particularly

well-suited to realization at the atomic lattice scale.
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Notional Atomic Scale Realizations

We have argued that reversible computing ideas are likely

to be of most interest in the study of computers realized at the

atomic scale, where the computational degrees of freedom are not

vastly outnumbered by all the rest and a computer might function as

a good approximation to a conservative Hamiltonian system. We would

now like to explore a framework which suggests that cellular

automaton rules of the type just discussed might actually be

realizable at the atomic scale. We don't have a specific practical

proposal, but rather some general notions about the sort of physical

systems which it might be profitable to explore.

Under the right conditions, atoms or molecules will arrange

themselves in a regular lattice. For a bulk material, this lattice

will be three-dimensional, while for material adsorbed on a

convenient substrate, the lattice will be two-dimensional. Let us

consider a two-layer (i.e., essentially two-dimensional) lattice of

the type displayed in Fig. 17.
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i I IJ / //• Foreplace sites

i"- - 0 backplane sites

I kIh--%I
I,- I, ' I9 /

._ __ 0 _ _ .. .0 - -

Figure 17

The lattice sites in the two layers (foreplane and backplane) are

distinguished by open and filled circles. The basic idea is that

the sites harbor some two-fold quantum mechanical degree of freedom

(such as a spin, the presence or absence of an atomic excitation,

etc.) which can be manipulated and used as a token for computing.

For convenience, we will refer to this degree of freedom as a spin,

although it need not actually be one.

There are interactions between "spins" at neighboring

sites, and we have indicated the desired pattern of interactions by

dashed and wavy lines. They will cause the "spins" on the sites to

change with time and our goal is to cause this time evolution to

occur in a way which carries out the cellular automaton rules

discussed in the previous section. The simplest way to do this is

to imagine that all the wavy line (dashed line) interactions can be

turned on or off simultaneously from outside by some macroscopically
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controllable agency such as a laser pulse. Suppose that the wavy

line interactions can be turned on and then off in just such a way

as to exchange spins between the foreplane and backplane sites (each

wavy line connects just one foreplane and one backplane site).

Suppose further that the dashed line interactions, which connect up

cells of four sites, either all in the foreplane or all in the

backplane, can be turned on and then off in such a way as to effect

the transformation on spins corresponding to the cellular automaton

rules of the previous section. Then by alternately activating the

dashed and wavy bonds, one would effect the cellular automaton rules

as transformations on the "spins." Then by the discussion of all

the previous systems, this microscopic device could be made to

function as a reversible computer.

If we think of the site variables as really being

elementary spins, it is easy to see what is involved in obtaining

exchange. The most general interaction between two half integer

quantum-mechanical spins 36, and 32 is

HI = (t) o o 2

The bond strength, a , depends on t , since we must imagine being

able to manipulate from outside. If we turn this bond on and then

off in such a way that
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f dt a(t) -
0

(a matter of properly tailoring the laser pulse, or whatever it

actually is, that manipulates the bond) then it is easy to show that

the net effect is simply to exchange the spin values (i.e., spin up

or spin down) between the two sites. Although we have not done it

explicitly, we believe it should be possible to construct a set of

bonds for four spins which can be manipulated in such a way as to

carry out the desired cellular automaton transformation.

If a scheme of the above type can be found, it suggests

that a reversible atomic scale (and, therefore, one might hope, very

fast) computer could be built. The obvious challenge is to find

semi-realistic choices for sites, bonds, and the external driver of

the bonds. We don't have any concrete response to this challenge

but we think that materials questions of the kind raised here are a

rather natural outcome of thinking about where reversible logic fits

in the overall scheme of computing concerns. We have been struck by

the extent to which previous work on reversible computing has

focussed on abstract questions and would strongly recommend that

future work begin to focus on physics questions. The framework we

have presented is not necessarily the best one, but does give a way
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of focussing on an interesting set of materials and physics

questions, and might have the virtue of stimulating thought.

Quantum Mechanics Issues

The previous discussions have not made much of the fact

that physics at the atomic scale is necessarily quantum

mechanical. Indeed, the whole question of the role of quantum

mechanical effects in small-scale computing devices has been only

very sketchily explored in the literature. 9 The scheme we have been

discussing has one illuminating and bizarre quantum mechanical

feature which we will explain, just to give an idea of the sort of

issues involved.

The bonds of our lattice cellular automaton are

alternatively switched on and off by some external system which acts

as a clock and driver for the whole system. This driver is itself

some mechanical system executing periodic motion. Let us for

definiteness take it to be a rotator of some kind, rotating in some

angular coordinate, 0 , such that every time e passes through

some marker angle, 0 , the bonds responsible for switching spinsO

on the lattice are briefly activated.
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We can write down a fairly explicit Lagrangian for this

system:

N

L = 6 + a M aMp 6(U - 80J + •
f ~ 1 2

The first term is just the rotator kinetic energy and says that, in

the absence of other terms, the system just executes uniform

rotational motion. The next term describes the interaction with the

"wavy" bonds of the previous section: the spins are divided up

into N pairs and he interaction of each pair with 6 is such as

to effect tne _.change transition every time 6 passes through

6 • 'ie ; factor ensures the same action on the spins no matter
0

how fast a is moving. The dots indicate the terms, not yet

specified but similar in nature, responsible for the spin

transformations on four spins at a time (needed to complete the

cellular automaton rules).

In the classical approximation to the motion of 6 , the

rotator proceeds at constant velocity and one cellular automaton

transformation is executed per cycle. The quantum-mechanical

version of the motion of 6 is somewhat different. The rotator

interacts with the computer coordinates through the sum

-Ui) mi) + • • , and, as the calculation proceeds, this sum
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takes on an essentially random sequence of values. This is roughly

equivalent to saying that e is moving in a one-dimensional random

potential.

In a random potential, there are no propagating states, and

all wave functions decay exponentially with distance. If a

computation takes N steps, we prepare the system in a state

localized around e = 0 and the computation is completed when 0

is finally observed at 2wN . The exponential decay of wave

functions probably means that the time to complete long calculations

increases exponentially with N I To know under what circumstances

this would be a practical problem, we would have to have a much more

concrete model to work with. This observation could be elaborated

further, but is meant to give an example of the peculiar phenomena

that must be understood when we try to think about computing at the

quantum mechanical level.
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