
DTIC FILE 00TY AD-A229 054

RADC-TR-90-203, Vol II (of three) U '
Final Technical Report
September 1990

DOS DESIGN/APPLICATION TOOLS
Software Top-Level Design Document

Honeywell Corp.

DTIC
ELECTE
OV28UGO

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

Rome Air Development Center
Air Force Systems Command

Grifflss Air Force Base, NY 13441-5700

90 11 27 035

This report has been reviewed by the RADC Public Affairs Division (PA)

and is releasable to the National Technical Information Services (NTIS) At

NTIS it will be releasable to the general public, including foreign nations.

RADC-TR-90-203, Vol II (of three) has been reviewed and is approved

for publication.

APPROVED: : 4fr1 /

THO2\AS F. LAWRENCE
Project Engineer

APPROVED: 4r*..c '#
RAYMOND P. URTZ, JR.
Technical Director
Directorate of Command & Control

FOR THE COMANDER:

IGOR G. PLONISCH

Directorate of Plans & Programs

If your address has changed or if you wish to be removed from the RADC

mailing list, or if the addressee is no longer employed by your

organization, please notify RADC (COTD) Griffiss AFB NY 13441-5700.

This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations
or

notices on a specific document require that it be returned.

REPORT DOCUMENTATION PAGE I 0

1Wnu I% vbw a f te em n .aa a@me I'm "M W a. MW. VIA& em W ma No mWqW on" ma one= mm"
41 emwdo bmo em a ra Mm am Wii mW _ 01 em mu. 41 9W Mftw 40 AM

M WA a- 60OMU Munn M. 1Wmu WMa M (%7 "u pm s tie jWM am qM. SUM Sao. &Aqg0 2a 4j. Am a
^mMMN COW umm -WWM NOem &AW "UWW - s.OW

2 R O 3. W M AM

I Final Dec 87 - Dec 89

4.TrLE AM SU TITE 5. puNOvG4 MA

DOS DESIGN/APPLICATION TOOLS Software Top-Level Design Document C - F30602-87-C-0104
PE - 62702F
PR - 5581

LA.TAOM5 TA - 21
WU - 78

7. PERFOAaaNG OAGMMUZTIOld 1M6) ANO AOONSS4S) a. f!tXMAt4G ORNIZATION
Honeywell Corporation REPORT MAASER

Sensor and System Development Center
1000 Boone Ave, North
Golden Valley MN 55427

s. SPOMaoNMOMM"MO gGM AGMkG' MAWIS AAt0ooRuSuSI 10 3POSO"NOMWTOWG AGENCY
Rome Air Development Center (COTD) . UMM

Griffiss AFB NY 13441-5700 RADC-TR-90-203, Vol II
(of three)

ii. S.EhENTAWAW1NOM

RADC Project Engineer: Thomas F. Lawrence/COTD/(315) 330-2158

?T2a O31JTlOWMAAUTY SATIMENT tIa. OISTRUISUN GOOE

Approved for public release; distribution unlimited.

Developing applications for execution in'a dijtributedprocessing environment is a difficult
task. Such environments dominate Air Force CjI systems, which are necessarily distributed.
In addition to being a physical necessity, distributed systems offer, relative to centralized
processing systems, the potential for increased performance and fault tolerance. Realizing
that potential is a key objective behind research in distributed systems technology.

The goal of this contract is to:
l, Define and demonstrate a framework for integrating development toolsj A
2y Define and construct tools that support the development of distributed applications

A tool integration platform was designed and developed as a fundamental element of an inte-
grated development framework. The RADC Distributed System Evaluation (DISE) Environment
Tool Integration Platform integrates software development tools by automating and coordin-
ating information exchange between tools, through use of the CRONUS distributed system and
the ONTOS object oriented database management system. -.... . (Continued)

14 S"CTTMGI&. wue"i OF PAGES
Software Development Tools, Resource Allocation, Tool Integration, 102
Reliability Analysis, Distributed System, Object Oriented DBMS pql.g

S S CASU.nat M. SliMIITY- iiLAWICAMN SFt, lT GAWICATIOW 3 L"TAMON OP ASTRACT

7W #c~C.S5PCT I -. 7"sg Wgs OF ASTPACT

UNCLASSIF LED I UNCLASSIFIED UNCLASSIFIED UL

%uwam#, 2%

Block 13 (Continued)

Two development tools were selected and implemented that illustrate the types
of technology required to support distributed application development. The
Allocator assists developers with determining efficient implementations for
distributed applications. The Reliability Analyzer generates reliability
measures for application components given a set of hardware reliabilities.
The two tools have been integrated into the IP. -

This report summarizes the contract's objectives and results.

PREFACE

This document is the Final Software Top Level Design Document for RADC contract F30602-87-C-
0104, DOS Design Application Tools. The contractor is Honeywell's Corporate Systems Development
Division. The document specifies the design of the Tool Integration Framework and Development
Tools System. Requirements for the system are defined in the Draft System/Segment Specification
document generated under this contract. The System presented in this document consists of three
Computer Software Configuration Items (CSCIs), presented in separate parts, each of which is for-
mated according to the Software Top Level Design Document Data Item Description.

Aooession For

NTIS GRA&I

DTIC TAB L'i
Unatwounced 0
Justification

By
Distribution/

Availability Codes
Avail and/or

Dist Special

ill

Table of Contents

PART I: TOOL INTEGRATION FRAM EW ORK .. I
1. Scope ... 3

1.1. Identification .. 3
1.2. Purpose .. 3
1.3. Introduction ... 3

2. Referenced Docum ents .. 4

3. Requirem ents ... 4
3.1. CSCI Architecture ... 4

3.1. 1. DISE Tool Integration Fram ework ... 4
3.1.2. Project Database Architecture ... 6

3.2. Functional Allocation .. 6
3.3. M em ory and Processing Time Allocation .. . 6
3.4. Functional Decom position ... 7
3.5. Top Level Design .. 8

3.5.1. Database TLCSC ... 8
3.5.1.1. Identification .. 8
3.5.1.2. Database Schem a .. 8

3.5.1.2.1. Approach .. . 8
3.5.1.2.2. Schem a Definition .. 11

3.5.1.3. View Translation .. 11
3.5.1.3.1. Translation Rules ... 11
3.5.1.3.2. Exam ple Translation Rules .. 14

3.5.1.4. Tool Access Interface: PDB Object Operations ... 16
3.5.1.5. Tool Integration: Tool/PDB Coupling .. 19

3.5.1.5.1. Directly-Coupled Tools .. 19
3.5.1.5.2. Indirectly-Coupled Tools ... 20

3.6. Adaptation Data ... 20
6. Notes ... 20

6. 1. Interfaes ... 20

6.1.1. PDB Interface to Cronus .. 20

6.1.2. Tool/PDB Interfaces ... 21
6.2. Database Schem a Design Notes ... 21
6.3. Tool Integration Framework Requirem ents ... 22

6.3.1. Project Database .. 22
6.3.1.1. Inform ation M odel .. 22

6.3.1.2. Data M odel ... 22
6.3.1.3. Database Schem a .. 23
6.3.1.4. Data Definition Language (DDL) .. 23

6.3.1.5. Data M anipulation Language(DML) .. 23

-Vw

6.3.1.6. User Interface .. 23
6.3.1.7. Cronus Interface ... 23
6.3.1.8. Database Services ... 23

6.3.1.8.1. Runtim e Services .. . 24

6.3.1.8.2. Schem a Creation/Instantiation Services ... 24
6.3.2. Database access support for foreign tools .. 24

APPEN DIX : Forn a4 Schem a Definition ... 25
10.1. define type Environm ent; .. 25
10.2. define type Operating-system ; .. 25
10.3. define type Hardware; ... 25
10.4. define type Processor .. 26

10.5. define type Com m unication-subsystem ; ... 26
10.6. define type Com m unication-link; .. 26
10.7. define type Com m unication-delay-function; .. 26
10.8. define type M inload; 27

10.9. define type M axload; .. 27
10.10. define type allocation-constraint; .. 27
10.11. define type Object-constraint; ... 27
10.12. define type Load-constraint; ... 27
10.13. define type Program ; ... 28
10.14. define type Input-data-set; .. 28
10.15. define type Unit-of-Distribution; ... 28
10.16. define type allocated-U_0_D; ... 28
10.17. define type Client; .. 29
10.18. define type Type-m anager ... 29
10.19. define type Type-m anager-spec; ... 29
10.20. define type M gr-file; ... 30
10.21. define type Program -module; ... 30
10.22. define type Procedure; ... 30
10.23. define type Program -m odel-elem ent; .. 31
10.24. define type Program -model; ... 31
10.25. define type Program -fam ily; ... 31
10.26. define type Source-code; ... 31
10.27. define type Uninstrum ented-Source-code; .. 31
10.28. define type Instrum ented-source-code; ... 32
10.29. define type Executable-code; .. 32
10.30. define type Object-code; ... 32
10.31. define type Com piler-option; .. 32
10.32. define type Type-spec; ... 33
10.33. define type Type-def; ... 33

- Vi -

10.34. define type Type-def-operation; ... 33
10.35. define type Body; ... 34

10.36. define type Type-def-spec; ... 34
10.37. define type Operation-spec; .. 34

10.38. define type Header ... 35
10.39. define type M odule Logical Call; ... 35
10.40. define type Operation Logical Call; ... 35
10.41. define type Execution-Call-Number ... 35
10.42. define type cost-com ponent; ... 36
10.43. define type Invocation-cost; .. 36
10.44. define type Local-Comm -Proc-Cost; .. 36
10.45. define type Param eter .. 36
10.46. define type Allocation; ... 37
10.47. define type Perform ance; .. 37
10.48. define type Response-Tim e; ... 37
10.49. define type total-time; ... 37
10.50. define type Assignm ent; ... 38
10.51. define type Error ... 38
10.52. define type Access-right; ... 38
10.53. define type Cantype; ... 38
10.54. define type Representation; ... 39
10.55. define type com m -delay-function; .. 39
10.56. define type processor-cost; ... 39
10.57. define type actual-residents-cost; .. 39
10.58. define type estim ated-residents-cost; ... 40
10.59. define type execution-cost; .. 40
10.60. define type type-def-exec-cost; ... 40
10.61. define type client-execution-cost; .. 40
10.62. define type execution-cost-component; ... 41
10.63. define type lifetim e-cost; .. 41
10.64. define type network-delay; .. 41
10.65. define type com munication-cost; .. 41

PART II: ALLOCATION TOOL ... 43
1. Scope ... 45

1.1. Identification .. 45
1.2. Overview ... 45

1.2.1. Purpose .. 45
1.2.2. Role in the Integration Fram ework ... 45
1.2.3. Use and Functionality .. 45
1.2.4. Developm ent Phases ... 47

- vii -

1.3. Introduction ... 47

2. Referenced Docum ents ... 47
3. Requirements ... 47

3.1. CSCI Architecture .. 47
3.2. Functional Allocation .. 47
3.3. M emory and Processing Time Allocation ... 48
3.4. Functional Data Flow ... 48
3.5. Global Data ... 49

3.5.1. Global Data Types ... 49
3.5.2. Global Variables 51

3.6. Top Level Design ... 52
3.6.1. Function TLCSCs ... 52

3.6.1.1. M ain TLCSC .. 52
3.6.1.1.1. Identification .. 52
3.6.1.1.2. Inputs ... 52
3.6.1.1.3. Local Data ... 52
3.6.1.1.4. Processing .. 52
3.6.1.1.5. Outputs ... 52

3.6.1.2. User.tnput TLCSC .. 52
3.6.1.2.1. Identification .. 53
3.6.1.2.2. Inputs ... 53
3.6.1.2.3. Local Data ... 53
3.6.1.2.4. Processing .. 53
3.6.1.2.5. Outputs ... 54

3.6.1.3. Data-consistent TLCSC ... 54
3.6.1.3.1. Identification .. 54
3.6.1.3.2. Inputs ... 54
3.6.1.3.3. Local Data ... 54

3.6.1.3.4. Processing .. 54
3.6.1.3.5. Outputs ... 54

3.6.1.4. Exec-Analysis TLCSC ... 54
3.6.1.4.1. Identification .. 54
3.6.1.4.2. Inputs ... 54
3.6.1.4.3. Local Data ... 54
3.6.1.4.4. Processing ... 55
3.6.1.4.5. Outputs ... 55

3.6.1.5. CostM odeling TLCSC ... 55

3.6.1.5.1. Identification .. 55
3.6.1.5.2. Inputs .. 55
3.6.1.5.3. Local Data ... 55
3.6.1.5.4. Processing .. 55

v Viii -

3.6.1.5.5. Outputs ... 55
3.6.1.6. Optimization TLCSC ... 56

3.6.1.6. 1. Identification... 56
3.6.1.6.2. Inputs... 56
3.6.1.6.3. Local Data.. 56
3.6.1.6.4. Processing.. 56
3.6.1.6.5. Outputs ... 57

3.6.1.7. User-Output ThCSC.. 57
3.6.1.7. 1. Identification... 57
3.6.1.7.2. In~puts... 57
3.6.1.7.3. Local Data ... 57
3.6.1.7.4. Processing.. 57
3.6.1.7.5. Outputs ... 57

3.6.2. ADTr TLCSCs... 57
3.6.2. 1. CostModel ADT TLCSC ... 57

3.6.2. 1. 1. Identification... 57
3.6.2.1.2. Abstract Model.. 57
3.6.2.1.3. Operations.. 58

3.6.2.2. Allocation ADT TLCSC.. 59
3.6.2.2. 1. Identification... 59
3.6.2.2.2. Abstract Model 60
3.6.2.2.3. Operations.. 60

3.6.2.3. UI ADT TLCSC .. 61
3.6.2.3. 1. Identification... 61
3.6.2.3.2. Abstract Model.. 61
3.6.2.3.3. Operations... 61

3.7. Adaptation Data... 61
6. Notes ... 61

6. 1. Interfaces .. 61
6.2. Requirements Specification .. 62

6.2. 1. Purpose .. 62
6.2.2. Inputs... 62

6.2.2.1. Distnibuted application.. 62
6.2.2.2. Distributed application cost estimates ... 62
6.2.2.3. Processing environment .. 63
6.2.2.4. Objective function selection.. 63
6.2.2.5. Assignment constraints.. 63
6.2.2.6. Search constraints on optimization... 63

6.2.3. Outputs .. 63
6.2.4. User interface ... 64

-ix -

PART III: RELIABILITY ANALYSIS TOOL .. 65

1. Scope ... 67

1.1. Identification .. 67

1.2. Overview ... 67
1.2.1. Purpose .. 67

1.2.2. Role in the Integrating Fram ework ... 67

1.2.3. Use and Functionality .. 67

1.2.4. Development Phases .. 69

1.3. Introduction ... 70

2. Referenced Docum ents ... 70

3. Requirements ... 70

3.1. CSCI Architecture ... 70

3.2. Functional Allocation ... 70

3.3. M emory and Processing Time Allocation ... 71

3.4. Functional Data Flow ... 71
3.5. Global Data .. 71

3.5.1. Global Data Types ... 72

3.5.2. Global Variables .. 74

3.6. Top Level Design ... 74

3.6.1. Function TLCSCs ... 74

3.6.1.1. M ain TLCSC ... 74

3.6.1.1.1. Identification ... 74

3.6. 1.1.2. Inputs ... 74

3.6.1.1.3. Local Data .. 74

3.6.1.1.4. Processing .. 75

3.6.1.1.5. Outputs ... 75

3.6.1.2. Initialize TLCSC .. 75

3.6.1.2.1. Identification ... 75

3.6.1.2 ,2, Inputs ... 75
3.6.1.2.3. Local Data ... 75

3.6.1.2.4. Processing .. 75
3.6.1.2.5. Outputs ... 75

3.6.1.3. Store-info TLCSC ... 76

3.6.1.3.1. Identification .. 76

3.6.1.3.2. Inputs ... 76

3.6.1.3.3. Local Data .. 76

3.6.1.3.4. Processing .. 76

3.6.1.3.5. Outputs ... 76

3.6.1.4. Process comm and TLCSC .. /6

3.6.1.4.1. Identification .. 76

3.6.1.4.2. Inputs ... 76

3.6.1.4.3. Local Data.. 77
3.6.1.4.4. Processing .. 77
3.6.1.4.5. Outputs ... 77

3.6.1.5. Compute reliability TLCSC 77
3.6.1.5. 1. Identification. 77
3.6.1.5.2. Inputs... 78
3.6.1.5.3. Local Data ... 78
3.6.1.5.4. Processing.. 78
3.6.1.5.5. Outputs ... 82

3.6.1.6. T Hiability computation TLCSC ... 82
3.6.1.6. 1. Identification... 82
3.6.1.6.2. Inputs... 82
3.6.1.6.3. Local Data ... 82
3.6.1.6.4. Processing.. 82
3.6.1.6.5. Outputs ... 82

3.6.2. ADT TLCSCs... 82
3.6.2. 1. Applic Th.CSC... 82

3.6.2. 1. 1. Identification... 82
3.6.2.1.2. Abstract Model.. 82
3.6.2.1.3. Operations.. 83

3.6.2.2. UI ThCSC ... 83
3.6.2.2. 1. Identification... 83
3.6.2.2.2. Abstract Model.. 83
3.6.2.2.3. Operations.. 83

.i.7. Adaptation Data .. 84
6. Notes ... 84

6. 1. Interfaces .. 84
6.2. Requirements Specification .. 84

6.2. 1. Purpose .. 84
6.2.2. Inputs... 84

6.2.2.1. Distributed application.. 85
6.2.2.2. Hardware Reliability Characteristics... 85
6.2.2.3. Subsystem Specification .. 85
6 2.2.4. Subsystem Annotations... 85

6.2.3. Output ... 86
6.2.4. User interface ... 86

- xi -

List of Figures

Figure 1. DISE Tool Integration Architecture .. 4
Figure 2. Project Database Architecture .. . 5
Figure 3. Project Database Functional Decom position ... 7
Figure 3. Project Database Schem a .. 9
Figure 5. Directly-Coupled Tools .. 19
Figure 6. Indirectly-Coupled Tools .. 20
Figure 7. ToolIPDB Interfaces .. 21
Figure 8. Allocation Tool and DISE ... 46
Figure 9. Allocation Tool Functional Decom position .. 48
Figure 10. Allocation Tool Data Flow ... 49
Figure 11. Reliability Analysis Tool and DISE ... 68

Figure 12. Reliability Analysis Tool Functional Decom position ... 71
Figure 13. Reliability Analysis Tool Data Flow ... 72

- xii -

PART I

TOOL INTEGRATION FRAMEWORK

1. Scope

1.1. Identification

This Software Top Level Design Document describes the top level design for the Computer Software
Configuration Item (CSCI) identified as the Tool Integration Framework, CSCI Number 1, of the DISE
Tool Integration Framework and Development Tools System. The requirements for the System appear
in the Draft System/Segment Specification.

1.2. Purpose

An integrating framework provides methods and facilities that enhance the process of developing
software. Integration assures easy transfer of information among tools, simplifies their use, facilitates
consistency maintenance as applications are transformed from requirements to implementation and off-
loads menial tasks front people to computers. Development tools in DIF- are generally developed in
isolation and therefore may not operate in a coordinated fashion. Furtt, .,Lore, DISE is an evolving
environment that will continue to acquire new, sophisticated development tools, such as instrumentation
tools and performance analyzers, that need to be integrated into the tool base. The objective behind
this CSCI is to develop a framework for integrating tools in RADC's DISE environment.

The purpose of the DISE Tool Integration Framework is to:

" support and encourage cooperation among (existing and new) independently developed program-
ming tools by automating (or partially automating) data exchange and sharing among the tools,
and

" capture and retain all information required to develop the application/system (information gen-
erated during system development).

Tool inte,ration in this framework will be achieved using a project database (PDB) in which tools can
store, and through which they share, information. Tools will interface with the PDB for their data
input/output requirements. The PDB provides a canonical, well-defined and conceptually centralized
database of tool input/output data entities. These entities are the various pieces that comprise the dis-
tributed application under development, such as source code modules and processing environment attri-
butes. These entities are cast in an information model that characterizes the enterprise of developing
distributed applications.

The PDB is a tool integration mechanism in the sense that it coordinates the interactions between tools;
it simplifies the task of bringing a tool into the development environment and having it work with
other tools in a coordinated fashion. While this approach is clearly not the only relevant notion of
integration in a development environment, it plays an important role in a broader integrating framework
and provides a platform upon which other integration mechanisms can be built.

In this framework the PDB will serve both as a repository of information and as the medium for infor-
mation exchange among tools. This design specification focuses on the PDB and the nature of its sup-
port for the integration of development tools.

1.3. Introduction

This document presents a top level functional and abstract data type decomposition of the Tool Integra-
tion Framework CSCI and its single TLCSC (Top Level Computer Software Components). It also
defines the interfaces between this CSCI and other CSCIs in this System, the Reliability Analysis Tool
and the Allocation Tool. Included in the Notes (paragraph 6) are an external interfaces section, data-
base schema design notes and a detailed requirements specification.

-3.

2. Referenced Documents

" Draft System/Segment Specificaton, DOS Design Application Tools, Contract No. F30602-87-C-
0104, CDRL No. 3, 25 August, 1988, RADC/COTD, (Honeywell Inc., Corporate System
Development Division).

* Cronus User's Manual, Cronus Release 1.2 BBN Laboratories. Inc., 15 January, 1988.

" Tutorial Documents, Cronus Release 1.2 BBN Laboratories, Inc., 15 January, 1988.

3. Requirements

This section presents the requirements for the Project Database (PDB). It begins with a discussion of
the overall architecture of the PDB as it relates to DISE, Cronus and development tools. Section 3.4
presents some additional details on the current functional decomposition of the PDB. Detailed designs
of the main PDB components are provided in section 3.5.

3.1. CSCI Architecture

This section shows how the PDB fits in DISE and presents a top level architecture of the PDB itself.

3.1.1. DISE Tool Integration Framework

The framework architecture as it relates to DISE is depicted in Figure 1. The PDB is encapsulated in
a Cronus object manager that is located on a computing platform in the distributed computing environ-
ment. Each platform in the network hosts both a local or constituent operating system (COS) and the
Cronus distributed operating system (DOS). Software development tools execute as Cronus applica-
tions, accessing the PDB through communication constructs provided by the DOS. This architecture

Host

APLs Tools Tools APLs OMs

Cronus Cronms
COS COS

Network

Host

COS
~Cronus

DatabaseAPLs Tools
PlatormPD

G8485-3192A
Figure 1. DISE Tool Integration Architecture

.4-

supports both distributed development, where developers anu their tools may be dispersed across the
network, as well as tools that operate in a distributed manner, such as performance measurement tools
and distributed debuggers.

This architecture supports distributed application developers in two important ways. First, by virtue of
the DOS's services, it buffers them from problems related to distribution that arise when using a net-
work of computing platforms for development. Second, it offers them a potentially diverse set of
development tools that work in a coordinated fashion with respect to the program under development.

Tool developers also benefit from this architecture. The DOS hides problems related to platform distri-
bution. This allows them, when implementing a tool, to selectively utilize the different processing
resources available in the distributed environment without concern for compatibility with other plat-
forms. More importantly, the architecture allows tool developers to focus on the tool's function and
the single project information repository made readily accessible in the network through DOS services.
A tool developer therefore is not forced to understand, implement and coordinate the interactions it
has with each of the (potentially large set of) other tools in the environment, interactions which would
necessitate understanding the input/output data formats of each other tool, and its location and host
computing platform. The architecture shown in Figure I benefits both distributed application develop-
ers as well as tool developers by building upon the DOS services and encapsulating the PDB in an
object manager.

C r o n u s.

.

Cu-

,be
JI

Cronus

Front End TooWndependent Tool.SpecKic
VOTnmsilor TransWaio Rules

POO 10

08612-3676A

Figure 2. Project Database Architecture
DOW pw .5-

3.1.2. Project Database Architecture

Figure 2 depicts the CSCI top-level architecture for the Project Database. The PDB is a Cronus object
manager that acts as a front end to an internal database platform. The PDB's Tool Access Interface
provides a set of operations that tools can invoke to access data in the database. Tools make calls on
this interface for their data needs, for example, to retrieve particular processin environment attributes.

The Tool Access Interface operations invoke the Tool-Independent View Translator. This translator
applies tool-specific translation rules that define a mapping between the external (tool) and internal
(PDB) views of the data. The rules translate external data references issued by a tool into the
appropriate data manipulation language (DML) code fragments that are developed in accordance with
the PDB schema definition. The DML fragments applied by the View Translator on behalf of a tool
provide access to the desired data in the underlying database platform. Access occurs through the
Database Platform Access Layer, a programmatic DML interface provided by the database platform.

Some of the advantages of encapsulating a database platform within a Cronus object are listed below:

" All issues relating to distribution (message routing, location transparency, naming, etc.) are han-
dled by the Cronus distributed O/S. The database can, therefore, support distributed tools and
tools that run at remote sites.

" By encapsulating all database implementation dependencies, a consistent external interface can be
provided to the tools. The different tools in the supported toolset will interact with the database
through this tool access interface only and see the PDB as just another Cronus object. As all
Cronus applications interact with Cronus managers/objects, this architecture allows the different
tools running as Cronus applications to access data in the database via a similar programming
interface.

" The presence of such a consistent programmatic interface to the PDB facilitates integration of
new tools into this framework.

" Cronus internals will not be modified. Our approach will entail creation of a specialized Cronus
Manager to contain the PDB, but will require no changes to the Cronus kernel or any of the
existing tools/managers.

Schema definition and modification are effected on the database platform directly using the platform's
native data definition language (DDL) and associated facilities. These changes are made by the
project/database administrator, and not by a variety of tools, so providing remote access to these facili-
ties via Cronus is not seen as particularly beneficial. Schema maintenance requires detailed knowledge
of the database platform's DDL facilities and the information model, and are typically made relatively
infrequently.

3.2. Functional Allocation

The requirements for this CSCI are defined in the System/Segment Specification document identified
above in section 2. In particular, the requirements for the Tool Integration Framework specified in sec-
tion 3.1.6.1 of that document identify requirements for four functions: information model and database
schema definition, tool access capability, type definition and schema extension capability and user
interface capabilities. All these functions are allocated to the single Database TLCSC.

3.3. Memory and Processing Time Allocation

Not specified.

-6-

3.4. Functional Decomposition

Section 3.1.2 presented the top-level design architecture of the PDB. This section presents a slightly
more detailed picture of the current approach to implementing that design. The first aspect to note is
the selection of a particular database that will serve as the underlying database platform. The selected

product is Vbase l, a commercial object-oriented database available for UNIX 2 environments. It pro-
vides a data manipulation language (DML) called COP, which is an extension of the C language, and a
data definition language (DDL) called TDL for defining object types.

Figure 3 shows the functional decomposition of the PDB into a set of processes. Application develop-
ers apply tools, each a separate process, through tool-specific interfaces. As discussed above, these
development tools interface with the PDB object for their data requirements using the Cronus Interpro-
cess Communication (IPC) facilities. The View Translator in this design is broken out as a separate
process. The PDB object interfaces to the View Translator using local (UNIX) IPC facilities. The
View Translator is written in COP and accesses Vbase through its programmatic interface. The View
Translator applies tool-specific translation rules, also written in COP, to access the database in response
to a tool's request. Finally, database maintenance and storage management are handled transparently
within Vbase.

This architectue provides a number of benefits in addition to those identified in section 3.1. In partic-
ular, the PDB object is not affected by the addition of new translation rules, implying at least that the
PDB object does not have to 6~e recompiled/estarted with each such addition. In fact the intermediate
View Translator process allows the PDB object to be independent of Vbase, in effect shielding the
PDB object from the specifics of the underlying database platform. Finally, this design may possibly
provide some flexibility with respect to supporting multiple concurrent tool accesses on the database.

Obet TranslatoRu"
Developer

Tool Cronus UNIX Vbase Vbase
Interfaces IPC (PC Progrwnatic Storage

Interface Management

G9141-0660

Figure 3. Project Database Functional Decomposition

'Vbese is a uadmak o Ontoloic, In.
2UNIX is a uadmt of AT&T Bell Lab tories.

-7-

3.5. Top Level Design

3.5.1. Database TLCSC

3.5.1.1. Identification
This design specification focuses on the four primary features of the database: the schema, the transla-
tion rules, the tool access interface and tool/PDB coupling. Section 3.5.1.2 below presents the data-
base schema that captures the information needed by application development tools. Section 3.5.1.3
describes the translation rules that provide a means for defining a tool's particular view of the database
schema. The tool access operations exported by the PDB object for tools to use are presented in sec-
tion 3.5.1.4. The two methods of integrating tools with the PDB are discussed in section 3.5.1.6.

3.5.1.2. Database Schema

3.5.1.2.1. Approach
A schema characterizes an enterprise as the schema designers perceive that enterprise. These are the
points of view present in the PDB schema:

" Software engineering within the Cronus world. We modeled neither strictly from the Cronus
point of view nor from a vanilla software engineering point of view, but from the point of view
of the software engineering enterprise carried out in DISE/Cronus. More Cronus-specific detail
could be included in this schema, depending on user requirements; i.e., the queries practicing
developers and actual tools run against the database.

" Different data models among tools. We do not require that all tools have the same model of
their data. Instead we provide a schema that models a neutral view and translators to provide
each tool with a tailored view.

" Technical rather than project management point of view. -There is a great deal of detail about the
elements of the program under development and enough information about, say, versions or
configurations to "make" a program, but no purely management information such as sign-offs,
deadlines, deliverables and the like. However, there is nothing in the data modeling technique
that prevents the extension of the schema with project management objects, operations and rela-
tions.

" Program development rather than running programs. The project DB is not for storing or con-
trolling results a distributed application program produces during operation. It can, however, store
some program output (such as the results of instrumentation runs) that is used in program
development.

" Design point of view. The design point of view is the one people have when they do develop-
ment. We support that point of view, providing methods for the routine work of gathering up
some elements of the program under development to present to tool such as a compiler in the
proper syntax. We selected appropriate methods by examining tool inputs and outputs.

" Tool level of abstraction. The schema models at a different level of abstraction than the view
designers have, because tools see the world at a different level of granularity than people. For
example, the schema models a type operation's specification as: name, input parameters, return
values, precondition, postcondition. A designer is perfectly capable of recognizing and using
these parts separately, but is most likely to think of and refer to them all as "the specification."
Tools, on the other hand, sometimes use only parts of "the specification;" for example, genmgr
needs a type operation's name, but not the rest of its specification.

-8.

Abbrov NameeqrunfB I ru aa Tx

Puma Name Programca~dYrt

- Keplcto Fam I nReliability

Re~ainProgram C0 lI'ie flCir-output

Method: Moel
CollecriSource Unift-ofDstrbtin

-eMethod: Name

Got Cronus _Super Deogfl_Atvtdbln PM

Elemente

Method ProgaName

Iot Codeod

CollectComoo'e

Meosag
Corr M , ~l

i i. OpionFiSure 4.od r

Raaene~re TataLThxe Sum

Value iIReliability
Per onraros V~rlo

NaeRequirements Input Data Text Rea Ifly AIoaffio-r ;m) Alloratlof
Nae I am ostan

Programm
Alw toed lr b~r tobetLa

rr CoCr i Constraint
P n I Exctbe cd

Uoio Compier Opticr Aae code

n meobleLoad

Uratnalird e U-- Comile OpinAsinen au

I lnWetrur o Otio ed
Method:eT pe4AerSpeM d

I. Optrosce So0c Codea

Typ MinSeCom

To,?runete Comm
Name IName uNace

Ma1.d Cotoed _Source CoegrogrT

TY -Mv-peComom
Nn SNasmte

prtooitn Method: Collect SorceHarwar Cosabtt

ConstrCost

Mothi: CofectAStualc

SystemResictents

Cost Cose

Logicalai Cal nPora eiet

Todul Faeil Cos

Criticalityite malNu bre

C, Cos!

Figure 4. Projec Daa eShm

Rgeea~bfS TMtL TkM Sum

Value INaII ~
PifoMMavl Version

Rols lUty vW Colual~n

n Allocation

Cdese Cd
-"Cod e Conat n C n traint

0b) Code

Mocal opirOtoU-0-Co0ie pto Asaignment Value

Option
0Max

fo Load

Min
Load

Value

Namamecio

processo Storag Iorc

Typeuecto WIr_1 Com lChn

CNam Unitto Exegt
CObrtnCcos

0Value

Databae SceanI

This schema models data for these tools: Allocation tool, Reliability Analysis tool, text editor, Cronus
definetype, Cronus genmgr, a compiler and instrumentation. Data can also be accessed by ad hoc
query using the PDB's native query language.

Figure 4 shows the entities, attributes and relationships to be represented in the database schema. Ovals
represent the entities, arcs between the ovals represent relationships between entities and attributes are
represented by line segments with labels. The diagram includes additional information about hierarchi-
cal relationships between entities, represented by a bold arrow with the subtype at the head of the
arrow. For example, Assignment is an entity participating in three relationships, one each with Alloca-
tion, Processor, and Allocated Unitof Distribution. Assignment has no attributes associated with it.
TypeDef is a subtype of ProgramModule. This means that in addition to the other attributes and rela-
tionships that are directly represented for Type_Def, it also has associated with it the attributes of
Program_Module relationships to two subtypes of Source Code, Implemented and Unimplemented. The
degree of a relationship is represented by annotations to the relationship arcs. A 1-n relationship is
represented as an arc with a "I" at one end and an "n" at the other end. The diagram is a graphical
representation of the entities and relationships that will be represented as objects and properties in the
formal database schema discussed below.

3.5.1.2.2. Schema Definition

The formal database schema is a collection of object and method definitions stated in terms of the data
definition language, TDL, used by Vbase. Each object class is defined as having a name and proper-
ties and a supertype. The values of the properties may be other objects defined in the schema or stan-
dard objects representing base types, e.g., integer, string. Objects may have associated methods. The
methods are expressed using COP, a data manipulation language provided with Vbase.

The Appendix contains the list of types in the formal schema. It represents the information character-
ized by Figure 4. Most entities in Figure 4 are represented as objects in the formal schema. The rela-
tionships between two objects A and B are represented as properties of an object A whose value is of
type B. The property names correspond to labels on the relationship arcs when those arcs are labeled.
Typically only one direction of a relationship is represented. The other direction can be derived from
the data in the database. In cases where the 1-n direction is explicitly represente it is captured in the
Vbase schema as a property whose value is a distributed set of objects of some type. The properties
of an object also represent the attributes of the entity in the drawing. The names of those properties
correspond to the names of the attributes being represented. Subtype information from the drawing is
presented in the supertype declaration of the object definition. Objects with no other supertype in the
schema are represented as objects whose supertype is Type, a predefined type in Vbase. Type provides
useful facilities for object creation and manipulation that are inherited by all objects in this schema.

3.5.1.3. View Translation

Tools use the database as a repository of information and as a medium for information exchange. Data-
base operations allow the different tools to access data in the database. A tool access interface imple-
mented at the Cronus object interface level provides DML calls that are used by the tools. The calls
supported by this interface are retrieve, update, copy, exists, create and delete. These calls are pro-
cessed using the invoking tool's translation rules and translated into data access calls in the PDB's
native DML. The next two subsections describe our approach to view translation and provide some
example translation rules.

3.5.1.3.1. Translation Rules

A database schema is commonly thought of as defining a "union of user views" of the data in the data-
base. Typically, users want shared access to overlapping data. To provide shared access it is necessary

- 11 -

to define a schema from which multiple user data needs can be derived because the schema itself will
not match the data needs of every individual user. In this environment the users of the database include
software developers and the application development tools. Since the database is intended to support
future tools as well as existing tools, and since there may be conflicts in the data needs of existing
tools, it will not be possible to define a schema which is tailored to the data needs of all existing and
future users of the database. The solution is to define a schema which supports user requirements by
allowing required data to be derived from information stored in the database and a uniform mechanism
for deriving the data needed by individual users (i.e., development tools and software developers).

Another reason to provide a uniform mechanism for deriving data is the inflexibility of the Cronus
object interface. Any change to this interface requires the PDB object and manager to be brought down
and recompiled. To accommodate the data needs of new tools in this evolving environment, tools in
the system access the PDB via the same interface but have their own views of the data ii, the database
by deriving their information from the database via tool-specific translation rules.

The uniform mechanism in this approach is a view translation module. The view translator requires
each tool to specify a set of view translation rules. View translation rules specify the correspondence
between tool's data structures and elements of the database schema. These translation rules define a
view on the database tailored to the associated tool. The tool developer .,ist specify the rules and must
invoke (indirectly, through the tool access interface) the view translator for access to database items.
The view translator will accept the request, translate it to an appropriate database expression, access the
database, and return the results to the tool in terms of the tool's local data structures.

The general form of a translation rule is:

<Toolname, Op_name, Ruleselector> ==> <databa--e expression>

The <Toolname, Opname, Rule-selector> tuple uniquely identifies a particular rule. Toolname
specifies the invoking tool, and Opname is the name of the operation being performed. Since a tool
may use an operation on a variety of different database entities, a ruleselector parameter is introduced
to identify the rule corresponding to a particular database entity for a given tool and operation. For
example, for the update operation the Rule selector might simply be the name of the tool variable to
be modified, as it would uniquely identify the database expression to be applied in order to modify the
corresponding database entity.

The right hand side of the rule is a database expression written in the internal DML. Depending upon
the operation being performed and the type of entity involved, the expression may require various input
and output values which correspond to tool-specific variables. For example, a rule involving the
update operation would require one or more input values from the tool. An retrieve operation might
require a single output parameter to hold the value retrieved. These tool-qpecific variables can be any
type defined or used in the tool, for example, an unstructured variable such as the descriptor of a
record field or an array cell. The types in the database expression mu: t be compatible with the types of
the corresponding tool variables. For example, the database expression cannot return a set of values if
the tool variable is defined to be a single value. If the tool requires multiple values from the database,
the tool must support the restructuring of those values in a form which can be manipulated locally, by
requesting the values from the translator at the appropriate level of granularity. The translation rules
provide database access using only those capabilities defined by the database DML.

The internal DML for the PDB is the COP DML of Vbase. Rules may be specific to a particular PDB,
necessitating a fourth parameter (the PDB name) in the left hand side of a rule. Translation rules then
take the following form:

<Toolname, Op name, Rule-selector, OPTIONAL DB nanv> =-> (COP code)

-12.

The COP code body, or the code to be executed to actually access the required data item in the data-
base, can be-stored in a separate tool-specific file. This file, containing COP code fragments, could be
compiled and linked with the View Translator and applied through the database's programmatic inter-
face. Or, the code for the translation rules relevant to a tool can be stored in the database in a
translation-rule object, instantiated on a per-tool basis, and applied from within the database itself.
The View Translator applies a translation rue as a result of a Tool Access Interface call issued by a
tool. As discussed above, the COP code fragment thus obtained typically requires from the tool some
input and output parameters. The View Translator executes the COP code fragment in the context of
these parameter values to carry out the desired operation on the database. The View Translator may
provide standard facilities for opening and closing the database and any other functions which must be
performed for all translations.
The tool developer is responsible for writing the tool's translation rules and for invoking the appropri-
ate call on the Tool Access Interface (which in turn invokes the View Translator). Several points must
be observed by the tool developer to ensure successful application of the translation rules:

" Database reference must be correctly relativized.

" Results of database expressions must be of the correct type and granularity for the tool variable.
" Errors should be caught and the ap'ropriate exceptions raised.

References to database objects must be correctly relativized. For example, if the tool assumes that a
variable, say TypeDefinition, refers to a particular type definition (e.g., a type included in the Type
manager for Unit Of Distribution UID), then the translation rule database expression must reflect that
relativized reference. it would be an error to simply translate the tool variable Type_Definition as the
database object TypeDef. The correct translation would be something like the COP fragment:

TypeDefinition =

Input: (UnitOfDistribution, Type_Manager, TypeManagerSpec,
Type_Def)

Output: result
DB name: Projectdb
Code:

ud id = Entity$NameLookup("Unit Of Dist$UID")
result = ud id$Type Manager Of$Spec Of$Type_DefOf$TypeDefName

The extended path name specifying the value of result mentions the property names of the objects and
the actual objects mentioned in the import list. The final result expression must be of type String to be
compatible with the type of the tool variable TypeDefinition. A common error would be to use the
expression below instead of the correct expression.

result = udid$Type_Manager Of$SpecOf$Type_DefOf
The value of this expression would be a database internal pointer to the database object TypeDef and
not a string value compatible with the tool variable TypeDefinition.
The approach to tool access of the database through a view translation mechanism will provide modu-
larity to both database maintenance and tool development. Changes in the database schema may result
in changes in the view translation rules for a tool but not in changes to the tool itself. Different data-
base management systems may also be substituted without requiring change to the tool's internal code;
all changes would be localized to the view translator mechanism.

- 13.

3.S.1.3.2. Example Translation Rules

iHere are some sample rules for translating tool requests for data retrieval/update into database accesses.
They are specific to the schema presented in subsection 3.5.2.1.2 and are written as COP (C Object
Processor) language fragments. Translation rules are not needed for all data structures used by the tool,
only for those that the tool (or tool envelope) mentions in database calls. The implemented translation
tools will use COP to reference the PDB; people may use Vbase SQL for ad hoc queries.

Examples from the Allocation Tool

TRANSLATION RULE for Allocation Tool Update:

ToolName: AllocationTool
Op_Name: update
Rule selector NewAssignment
OPTIONAL DBName: PDB

Input parameters: Processor.name, Unit-of-Distribution.identifier
Output variables: AssignmentInfo.assign
Code:

obj Assignment theassignment;
obj Allocation the allocation;
obj Unit-of-Distribution the uod;
obj Processor the_processor,

theallocation = $Entity$NameLookup ("Allocation$current");
the_uod = $Entity$NameLookup ("Unit-of-Distribution$Unit-of-Distribution.identifier"),
the-processor = $Entity$NameLookup ("Processor$Processor.name");
theassignment = Assignment$[

Platform: the_processor
Software: the uod
occurs-in: the allocation]I

TRANSLATION RULE for Allocation Tool retrieve:

ToolName: AllocationTool
OpNaiac: retrieve
Rule selector Assignmentjperformance
OPIONAL DB Name: PDB

Input parameters: none
Output variables: Assignment-Info.performance
Code:

-14-

obj Allocation theallocation;
Float result;

{
the allocation = $UnorderedDictionary$GetElement (AllocDictionary, "current");
result = the allocation.cost;
I

Examples from Cronus definetype

We retrieve the following values from the PDB to give to Cronus definetype. Each retrieval could
have been written as a separate translation rule. The application doing the retrieval is the envelope for
definetype.

TRANSLATION RULE for definetype retrieve:

Tool Name: "definetype"
Op Name: retrieve
Rule selector: which type
OPTIONAL DB Name: PDB

Input parameters: which type
Output variables: nameresult, number result, abbrev-result,

subtype-of result, key_result, annotationjresult,
cantyperesult

Code:

obj Type-def the typedef;
String name_result, number-result, abbrev result, subtype-of result,

key_result, annotationresult, cantypejresult;

{
thetypedef = $UnorderedDictionary$GetElement (TypeDefDictionary, which-type);
nameresult = the type_def$name;
number result = the_typejdef$number,
abbrevresult = the-typedef$abbrev;
subtype-of result = the_type_def$supertype$name;
keyresult = thetypedef$key;
annotation result = thetypedef$design-annotation;
cantypejresult = the-typedef$cantyperepresentation$rep info;
I

Examples from Cronus genmgr

We retrieve the following value from the PDB to be part of the type manager specification given to
Cronus genmgr. The application doing the retrieval is the envelope for genmgr; the OUTPUT VARI-
ABLES used are those found in genmgr.

TRANSLATION RULE for genmgri retrieve:

ToolName: "genmgr"

s15-

OpName: retrieve
Rule selector: which mgr
OPTI'ONAL DBName: PDB

Input parameters: whichmgr
Output variables: abbrev

/* We assume an operation is unimplemented when its uninstrumented source code slot is empty.
This is indicated when has-value returns 0.*/

Code:

obj Type-Manager-Spec thetypemanager,
the typemanager = Entity$NameLookup(Type-Manager-Spec$which-mgr");
I
abbrev = the_typemgr$abbrev;
I

Example of Editor Input

This is an example of gathering up the source code extension of the PDB client object for a particular
Cronus client under development. (Source code is collected and stored in an object's Source slot by a
method called Collect-source).

TRANSLATION RULE for Editor retrieve:

ToolName: "Editor X"
Op Name: retrieve
Rule selector: which client
OPTIONAL DBNam-e: PDB

Input parameters: which client;
Output variables: file;
Code:

obj Client the client;
File editor-file;

the client = $Entity$NameLookup("Client$which client");
the client$Collect-source; /*method invocation*/
editor file = Client$Source;

3.5.1.4. Tool Access Interface: PDB Object Operations

Tools access the PDB through its Tool Access Interface. There are six data access calls supported by
the Tool Access Interface in the Cronus PDB object: retrieve, update, copy, exists, create and delete.
Thcsc calls allow the tool to retrieve and manipulate application information retained in the PDB as

- 16.

dictated by the needs of the tool. The calls have the natural semantics:

retrieve: Obtain a database entity to be used by the tool.

update: Modify attribute values of a database entity.

copy: Copy one database entity to another database entity.

exists: TRUE if entity exists in the PDB.

create: Create an instance of an entity type.

delete. Delete an instance of an entity.

The general syntax of a call is:

Opname(Toolname, Ruleselector, [OPTIONAL DBname], <List of Tool variables>)

Example calls would look like these:

retrieve ("AllocationTool", TypeDef, PDB, TypeDefinition, result)

update ("AllocationTool", TypeDef Name, PDB, TypeDefinition.name, "George")

The calls made by tools to invoke these primitives and the required parameters for each of these calls
are given beow.

Data retrieval:
retrieve (toolname, Rule-selector, [PDBI, variableofinterest, result)

RETURNS call-status
BEGIN
locatedb(PDB) => pdb;
get translationrule(toolname, retrieve, Rule_selector, pdb) => COP-code;
invoke(pdb, COP-code, variable-of interest, result) => call-status;
return(callstatus);
END

Raises TYPE MISMATCH if result is of incorrect type
Raises NOT_ FOUND if translation rule for Rule selector is not found
Raises NOPERM if permission is denied

Data updates (inserts & deletes):
update(toolname, Ruleselector, [PDBI, variable, new_value)

RETURNS call-status
BEGIN
locatedb(PDB) => pdb;
get translation rule(toolname, update, Rule-selector, pdb) => COP-code;
invoke(pdb, COP code, variable, newvalue) => call status;
retur(callstatus);
END

Raises TYPE MISMATCH if newvalue is of incorrect type
Raises NOT_ FOUND if translation rule for Rule selector is not found
Raises NOPERM if permission is denied

- 17-

Create instances:
create(tool-name, Ruleselector, [PDB], object-type, instance-name)

RETURNS call-status
BEGIN
locatedb(PDB) => pdb;
get translation_rule(toolname, create, Ruleselector, pdb) => COPcode;
invoke(pdb, COP code, objecttype, instance-name) => callstatus;
retum(caflstatus);
END

Raises NOT FOUND if translation rule for Rule-selector is not found
Raises NOPERM if permission is denied

Delete instances:
delete(toolname, Ruleselector, [PDB], instancename)

RETURNS call-status
BEGIN
locate_db(PDB) => pdb;
get translation-rule(toolname, delete, Ruleselector, pdb) => COP-code;
invoke(pdb, COPcode, instancename) => call-status;
retum(callstatus);
END

Raises NOT FOUND if translation rule for Rule selector is not found
Raises NOPERM if permission is denied

Copy data:
copy(tool-name, Ruleselector, [PDBI, fromvar, tovar)

RETURNS call-status
BEGIN
locate db(PDB) => pdb;
get translationrule(toolname, copy, Ruleselector, pdb) => COP-code;
invoke(pdb, COPcode, fromvar, tovar) => call-status;
retum(callstatus);
END

Raises NOT FOUND if translation rule for Rule-selector is not found
Raises TYPE _MISMATCH if from_variable and to-variable are not of the same type
Raises NOPERM if permission is denied

Check if instance exists:
exists(toolname, Ruleselector, [PDBI, instancename, result)

RETURNS call-status
BEGIN
locate db(PDB) => pdb;
get translationrule(toolname, exists, Rule selector, pdb) => COP code;
invoke(pdb, COP_code, instancename, result) => callstatus;
retum(callstatus);

- 18 -

END

Raises NOT FOUND if translation rule for Rule-selector is not found
Raises NO-PERM if permission is denied

3.5.1.5. Tool Integration: Tool/PDB Coupling

This section discusses the manner in which tools are coupled to the PDB. Two types of coupling are
supported in this framework: direct and indirect. Directly-coupled tools are those tools that are
developed in the context of the PDB. The tool developer in this case is aware of the PDB and its asso-
dated information model, and develops the tool accordingly. Indirectly-coupled tools are those tools
that are constructed outside the context of the PDB and its information model. Such tools include both
existing tools as well as tools that are brought in from foreign environments. Both types of tools are
supported in this integration framework.

3-5.1.S.1. Directly-Coupled Tools

Directly-coupled tools interface to the PDB through two separate logical channels. As shown in Figure
5, the body of a directly-coupled tool interfaces with the PDB object through the Tool Access Inter-
face. It is through this interface that the tool obtains data from and stores data into the information
repository. The execution of one of these calls results in an appropriate translation rule being applied
on the database to access data. The translation rules themselves, on the other hand, are more tightly
coupled to the PDB than the tool's body in the sense that they are incorporated within the underlying
database platform directly as either applications or internal methods. The translation rules, while inter-
facing to the PDB through a different channel than the tool's body, are nevertheless specific to that
tool and are developed hand-in-hand with the development of the body.

DII
User 4-Tool Body T

________________ Access Interface

Translation PDB OM

Rules __

G9270-2427
Figure S. Directly-Coupled Tools

.19.

3.5.1.5.2. Indirectly-Coupled Tools

Indirectly-coupled tools also interface to the PDB through two different logical channels. As
diagramed in Figure 6, these tools are integrated by encapsulating the entire tool in a tool envelope.
This envelope performs pre- and post-invocation processing to convert between the encapsulated tool's
input/output data and the corresponding data in the PDB. The envelope invokes the necessary opera-
tions at the PDB's Tool Access Interface. Indirectly-coupled tools also have an associated set of trans-
lation rules that work in just the same way as they do for directly coupled tools. However, they are
developed in conjunction with the envelope, not the tool itself, and are still coupled to the PDB
directly. This approach supports integration of existing and foreign tools by augmenting the tool's
interface rather than requiring changes the the tool's internals.

3.6. Adaptation Data

The Tool Integration CSCI executes on a Sun workstation as a Cronus object. The host workstation
environment must therefore provide Sun workstations running UNIX and the Cronus distributed operat-
ing system.

6. Notes

6.1. Interfaces

6.1.1. PDB Interface to Cronus

The PDB is encapsulated in a Cronus object and therefore a Cronus system manager must be created,
compiled and instantiated to manage it. This manager will support one generic operation to create an
instance of the PDB object. The Cronus operations specific to the PDB are invoked by the tools and

Pro-invocation

Processing

Translation ulsOM
Rules

G9270-248

Figure 6. Indirectly.Coupled Tools

.20 -

applications in the system to access data in the PDB object.

6.1.2. Tool/PDB Interfaces

The interfaces between tools and the PDB are shown in Figure 7. The Allocation and Reliability
Analysis Tools, the CSCIs defined in Parts II and III of this document, are shown as directly-coupled
tools. They will interface to the PDB directly through the Tool Access Interface, and associated with
each tool will be a set of translation rules. Any UNIX or Cronus tools that become integrated will be
indirectly-coupled tools, employing envelopes to interact with the PDB through the Tool Access Inter-
face. Again, a set of translation rules will be developed for each envelope.

6.2. Database Schema Design Notes

This section documents some major PDB schema design decisions.

Editing
All objects may be "edited" by creating or modifying them with the PDB's native editor. Objects that
have associated source code may also be edited with any traditional operating system supplied editor
while objects that do not may be updated only with the PDB's updating mechanism. An object "has"
source code when it has a method that generates an editable entity, that is source code, from its value
and the values of some of its parts.

When an object is created or updated with a standard text editor, it must still be put back into the PDB
as an object. This is accomplished with an interactive tool that asks the user how to break the text into
slot fillers, and updates the PDB accordingly. It is not practical to develop a tool that puts objects
back automatically because we allow objects with empty slots in the PDB. No practical software tool
can determine which slot values are present and which are not without human help in the form of
interactive responses to questions or structuring of the contents of the file by embedded directives.

Candidate Tools

Allocation Reliability Selected
Tool Analysis Cronus/UNiX

Tool Tool Ts

L Tool Envelopes
DMLDML DML

ujm mmnnmn mmminm Umemmem~m ~ m

To grem. Access Interfa
S Inteal -

TrOMLio Ojet Database Shm
TRue Platform

PDB G8612-3674A
Figure 7. Tool/PDB Interfaces

-21.

The tools marked N are necessary to use the PDB; tools marked C make it more convenient.
1. (C) a type-library browser so developers can find things to reuse.

2. (N) an object entry tool to let people update objects that they have edited as text. Short term: An
interactive tool that queries the user about what text to put in each slot. Long term: a tool that
parses incomplete definitions and enters them.

3. (N) A translation engine and translation rules for every tool (existing and new) that is integrated
into the PDB.

Replication of Cronus TDDB Information in PDB

Every type definition in the PDB replicates type information in Cronus's Type Definition Database
(TDDB). This replication is necessary because software developers need information about a type's
inheritance hierarchy in order to understand the type and that information is either not available from
the TDDB or not accessible to tools and the PDB objects that need to use it. This redundancy does
not seem to raise insurmountable problems with respect to the replicated entities.

6.3. Tool Integration Framework Requirements

This subparagraph provides a condensed version of the requirements specified for this CSCI. These
requirements are derived directly from the System/Segment Specification document identified in para-
graph 2.

The Tool Integration Framework CSCI will provide:

6.3.1. Project Database
The Project Database comprises the following components:

6.3.1.1. Information Model

The information model will:
" Contain the data types used by the supported tool set. (Supported tool set : Cronus tools TBD, a

representative set of existing tools TBD, the Allocation tool and the Reliability Analysis tool).

* Be extensible (permit addition of new data types).

6.3.1.2. Data Model
The data model will:

* Be object oriented: support the definition of objects to represent the software/hardware entities in
the system and ancillary documentation and management concepts such as work plan, properties
that describe aspects of objects, and relations to other objects in the database to reflect the rela-
tionships between the various components of the software system under development. The model
should support arbitrary directed and typed relations between objects.

" Allow the addition of new types (schema extension).
" Provide a data definition language (DDL) for defining types, specifying their placement in the

type hierarchy, the operations they implement and inherit and the properties/attributes they pos-
sess.

" Allow the capture of dependencies and relationships among the data in the database through
definition of relations among them.

* Impose a structure to facilitate inheritance. (This makes schema extension easier, as the common
methods/properties/relations can be inherited by the new type from its parent type.)

-22 -

6.3.1.3. Database Schema

" Database schemas will be defined and modified in a data definition language (DDL).

" A schema (or schemas) will be provided.

6.3.1.4. Data Definition Language (DDL)

(This DDL will be used to tailor (if necessary) a schema or create a new schema to conform to some
project-specific requirements). Only static changes, i.e., changes to the schema BEFORE it is instan-
tiated will be allowed. Dynamic modifications - modifications at run time AFTER the schema is
instantiated, will not be allowed. Note: changes to objects will result in NEW object types. These new
types will belong in the hierarchy as subtypes of the parent object type. The DDL will provide
mechanisms:

" To create schemas.

* To define data types.

" To specify methods/interfaces to these data types.

" To specify operations/properties for data types.

* To create, delete or modify relations (explicitly) between objects

before a PDB instance is created.

6.3.1.5. Data Manipulation Language(DML)

The DML will provide mechanisms:

" To access data in the database.

" To traverse the instantiated database (if needed).

" To read and write attribute values associated with an object.

* To enforce data consistency and data integrity explicitly or implicitly.

6.3.1.6. User Interface

The user interface will:

" Permit the creation and instantiation of schemas.

" Provide an ad-hoc query facility to ask questions like "Who is the owner of this object?",
"Which objects were created today?", "Which objects is this object related to?".

" Provide an on-line interactive context-sensitive (multi-level) help/advice capability that describes
the syntax and function of commands/queries upon explicit request.

6.3.1.7. Cronus Interface

" Most of the Cronus manager development tools are integrated by the TDDB. To integrate these
tools and make this information available to other tools, the data types in the TDDB or the entire
TDDB will be contained in the PDB.

" Cronus internals will not be modified.

6.3.1.8. Database Services

The Database Services comprises of the Runtime Services and Schema Creation/Instantiation Services
components.

- 23.

63.1.8.1. Runtime Services

The Runtime Services component will:

" Traverse the instantiated database (in response to ad-hoc user queries and DML requests).

" Do requested operations on objects.

" Maintain relations among the objects.

" Create object instances in the instantiated database.

63.1.8.2. Schema Creation/Instantiation Services

This component will:

" Interpret DDL to create types and schemas.

" Instantiate schemas.

63.2. Database access support for foreign tools

Directly coupled tools use DML to access data directly. An example envelope will be provided for an
indirectly coupled tool. This envelope will:

" Extract the required data items from the database;

" Transform the data form (if necessary) to be compatible with the tool's input needs;

" Invoke the tool;

" Transform the tool's output data (if necessary) to be compatible with the PDB;

" Update (write to the appropriate entities, create relations, specify properties) the PDB with the
results of the tool's execution.

-24-

APPENDIX

Formal Schema Definition

This appendix provides a listing of the types in the formal schema for the Tool Integration Framework.

10.1. define type Environment;
supertypes = {Type};

properties = {
name: String;
Hardware-elements: distributed Set[Hardware];
os-type: Operating-system;
environment-for Program-family;
1;

operations = /*none*/

/* We do not have to define an iterator on Hardware-environment because the COP program
statement
iterate (<program-variable> = Hardware.class)

will yield elements of type Hardware, one at a time and we can test whether the element yielded is part
of the Hardware-environment of interest. */

end Environment;

10.2. define type Operating-system;

supertypes = (Type)

properties = {
name: String;
}

operations = /*none*/

end Operating-system;

10.3. define type Hardware;
supertypes = {Type};

properties = {
reliability: integer;
MTBF: integer,
1;

operations = /*none*/

end Hardware;

- 25 -

10.4. define type Processor;

supertypes = (Hardware);

properties = {
name: String
relative-speed: RelativeSpeed;
storage: Rational;
min: minload;
max: maxload;
mentioned-in: distributed Set[Object-constraints];
1;

operations = /*none*/

end Processor,

10.5. define type Communication-subsystem;

supertypes = (Hardware);

properties =

protocol: String; /*some computer program *1
component: distributed Set[Communication-link]
1;

operations = /*none*/

end Communication-subsystem;

10.6. define type Communication-link;

supertypes = (Type);

properties = {

to: Processor,
from: Processor,
cost: rational;

operations = !*none*/

end Codlmunication-link;

10.7. define type Communication-delay-function;

supertypes = (Type);

properties = {

subsystem: Communication-Subsystem;
related-allocation: Allocation;
Delay: Rational;
1;

operations = /*none*/

end Communication-delay-function;

26 -

10.8. define type Minload;
supertypes =(Type);

properties=

value:rational;
1;

operations = /*none*/

end Minload;

10.9. define type Maxload;
supertypes (Type);

properties=
value: rational;

operations = /*none*/

end Maxload;,

10.10. define type allocation-.constraint;
Design notes: This is the collection of arguments to a predication about allocating units of distribution
to processors.

su:pertypes =(Type);

properties

mentioned-units-of-distribution: distributed Set[Unit-of-disuibution];
occurs-in: distributed set[Allocation];
1;

operations = /*none*/

end Allocation-constraint;

10.11. define type Object-constraint;

supertypes [Allocation-constraint);

properties (

mentions: distributed Set [Processor];

operations = /*none*/
end Object-constraint;

10.12. define tyne Load-constraint;

supertypes =(Allocation-constraint);

properties

min. Minload;
max: Maxload;

- 27.-

operations = /*none*/

end Load-constraint;

10.13. define type Program;

/* program is the system model*/

supertypes = (Type);
properties =

name: String;
model: Program-model;
requirements: String;

/*relation of program to input-data shows up in Input-data-set type*/
/*allocation shows up in the allocation object*/
/*consists-of info shows up in UOD-as-used-...*/

1;

operations = /*none*/

end Program;

10.14. define type Input-data-set;

supertypes = (Type);
properties =

data: Text;
owner-program: Program;
1;

operationg = /*none*/

end Input-data-set;

10.15. define type Unit-of-Distribution;

supertypes = (Type);
properties =

name: string;
i-output: Instrumentation-output;
reliability: Rational;
mentioned-in: distributed Set [Allocation-constraint];
compiled-as-part-of: Program;
1;

operations = /*none*/

end Unit-of-Distribution;

10.16. define type allocated-UOD;

supertypes = (Type)
properties = {

allocated-from: program;
allocation-of: unit-of-distribution;

-28.

comm-Cost: communication-cost;

operations {

end alocated-U_0_D;

10.17. define type Client;

supertypeS = Unit-of-Distribution);

properties={

skeleton: Text; /*the source-code that doesn't come from any of its parts*/I
source: Uninstrumented-Source-Code;
isource: Instrumented-Source-Code;
uses: distributed Set [mgr-fle];
1;

operations={
collect-source (c:Client, Instrumented/Uninstrumeflted:Booleal)
returns (Source)
method ClientCollectSource

end Client;

10.18. define type Type-manager;

supertypes = Unit-of-Distribution);

properties [

spec: Type-manager-spec;
1;

operations = /*tnone*/

end Type-manager,

10.19. define type Type-manager-spec; supertypes (Type),.

properties =

name: String;
abbrev: String;
source: Uninstrumented-Source-Code;
isource: instrumented-Source-Code;

operations=

collect-source (t:Type-managcr-spec, TInstrumentedfUninstrumented: Boolean)
returns (Source)
method TypeManagerSpecCollectSource

end Type-manager-spec;

-29 -

10.20. define type Mgr-file;

Design notes: This type holds each of genngr's output files. We distinguish individual files for a par-
ticular type manager by their name attributes.

supertypes = (Type);

propNities -

source: Uninstrumented-Source-Code;
isource: Instrumented-Source-Code;
name: String;
manager. Type-manager,
used-by: distributed Set [Client];
1;

operations = {
collect-source (m:Mgr-file, Instrumented/Uninstrumented:Boolean)
returns (Source)
method MgrFileCollectSource
1;

end Mgr-file;

1021. define type Program-module;

supertypes = {Type);

properties =

name: String;
design-annotation: Text;
source: Uninstrumented-Source-Code;
isource: Instrumented-Source-Code;

operations =

collect-source (p:Program-module, Instrumented/Uninstrumented: Boolean)
returns (Source)
method ProgramModuleCollectSource
};

end Program-module;

10.22. define type Procedure;

supertypes = {Program-module);

properties =

source: Uninstrumented-Source-Code;
isource: Instrumented-Source-Code;
used-in: Client;
1;

operations =

collect-source (p:Procedure, InstrumentedfJninstrumented:Boolean)
returns (Source)
method ProcedureCollectSource

- 30 -

},

end Procedure;

10.23. define type Program-model-element;

supertypes = {Type);

properties = (
module: Program-module;
model: Program-model;

operations = /*none*/

end Program-model-element;

10.24. define type Program-model;

supertypes = {Type);

properties =

family: Program-family;
program: Program;
};

operations = /*none*/

end Program-model;

10.25. define type Program-family;

supertypes {Type);

properties = {
name: String;
1;

operations = /*none*/

end Program-family;

10.26. define type Source-code;

supertypes {Type);

properties = {

code: Text;
1;

operations = /*none*/

end Source-code;

10.27. define type Uninstrumented-Source-code;

Design notes: This type is here to model the fact that there are two disjoint types of source code,

instrumented and uninstrumented. This has no properties other than those inherited from Source-code.

supertypes = (Source-code);

- 31-

properties =/*none*/

operations =/*none*/

end Uninstrumented-Source-code;

10.28. define type Instrumented-source-code;
supertypes = {Source-code};

properties = {
instrumentation-options: Text; /* tells what's instrumented*/
1;

operations = /*none*/

end Instrumented-source-code;

10.29. define type Executable-code;

supertypes = (Type)
properties =

code: Bit-string;
name: String;
executable-of: Unit-of-Distribution;
composed-of: distributed Set [Object-code];
}

operations = /*none*/
end Executable-code;

10.30. define type Object-code;
supertypes = (Type);

properties = {

code: Bit-string;
source: Source-code;
options: distributed Set[Compiler-option];
};

operations = /*none*/

end Object-code;

10.31. define type Compiler-option;

supertypes = (Type);
properties = {

option: String;

operations = /*none*/

end Compiler-option;

- 32 -

10.32. define type Type-spec;

Design notes: This is the form of the PDB's Type-def that Cronus genmgr uses.

supertypes ([Type);

properties = {
name: String;,
constraints: Text; /*this will be refined later, see genmgr*/
source: Uninstrumented-Source-Code;
isource: Instrumented-Source-Code;
used-in: Type-manager-spec;
derived-from: Type-def;
1;

operations = {
collect-source (t:Type-spec, Instrumented/Uninstrumented:Boolean)
returns (Source)
method TypeSpecCohectSource

/* We need an iterator for Type-spec.class.*/

end Type-spec;

10.33. define type Type-def;

supertypes = (Program-module);

properties =

data-structure: Cantype;
spec: Type-def-spec;
number. Integer,
abbrev: String;
primal: Boolean;
key: Text; /*will be refined during detailed design*/
replication: Text; /*will be refined during detailed design*/
super Type-def; /*for getting inheritance info*/

operations =

collect-source (t:Type-def, Instrumented/Uninstrumented:Boolean)
returns (Source)
method TypeDefCoUectSource

/* a browsing tool will need get-Cronus-type-super and get-Cronus-type-sub */};

end Type-def;

10.34. define type Type-def-operation;

supertypes = (Type);

properties = f

name: String;
body: Body;
spec: Operation-spec;

- 33 -

1;
operations = {

collect-source (t:Type-def-operation, Instrumented/Uninstrnumented:Boolean)
returns (Source)
method TypeDefOperationCollectSource
};
/* We need an iterator for Type-def-operation.class */

end Type-def-operation;

10.35. define type Body;

supertypes = [Type)

properties = {
source: Uninstrumented;
isource: Instrumented;
operation-cost: Invocation-Cost;

operations = {

end Body;

10.36. define type J ype-def-spec;

supertypes = (Type),

properties = {
data-invariant: Text;
behavior-spec: Text;
spec: distributed Set[Operation-specl;
I;

operations = /*none*/

end Type-def-spec;

10.37. define type Operation-spec;

supertypes = (Type);

properties = {
head: header,
pre: Text;
post: Text;
source: Uninstrumented-Source-Code;
isource: Instrumented-Source-Code;
returns: distributed Set[Parameter];
};

operations =

collect-source (o:Operation-spec, Instrumented/Uninstrumented:Boolean)
returns (Source)

- 34.

method OperationSpecCollectSource
1;

end Operation-spec;

10.38. define type Header;

supertypes = [Type);

properties = {
name: Source;
length: Integer,
parameters: distributed Set[parameterj;
1;

operations = /*none*/

end header,

10.39. define type Module Logical Call;

supertypes = (Type);

properties = {
caller: Program-Module;
callee: Program-Module;
probability: real;
criticality: integer,
reliability: integer,

operations = /*none*/

end Call;

10.40. define type Operation Logical Call;

supertypes = (Type)

properties = {
number-of-calls: Executive-Call-Number,
callee: Type-Def-Operation;
caller. Program-Module;
logical-call: Module-Logical-call;
I

operations = {
I

end Operation-Logical-Call;

10.41. define type Execution-Call-Number;

supertypes ((Type)

properties =

value: integer,
3

- 35 -

operations = {
}

end Execution-Logical-call

10.42. define type cost-component;

supertypes = {Type}

properties = {
invocation: Invocation-Cost;
call-number: Execution-Call-Number,
Comm-cost: communication-cost;
local-comm-cost: Local-Comm-Proc-Cost;
cost: real;
}

operations =
I

end cost-component;

10A3. define type Invocation-cost;

supertypes = (Type}

properties = {
value: real;
I

operations = {
I

end invocation-cost;

10.44. define type Local-Comm-Proc-Cost;

supertypes = (Type)

properties = {
Cost: real;
comm-link-of: comm-Link;
header. header,
I

operations =

end local-comm-proc-cost

10.45. define type Parameter;

supertypes = (Type);

properties = {
string: text;
occurs-in: distributed Set[Header];

-36 -

used-in: distributed Set[Operation-specl;
};

operations = /*none*/

end Parameter,

10.46. define type Allocation;

supertypes = (Type);

properties = {

version: String;
has-performance: Performance;
* assignments: distributed Set[Assignment] modeled in Assignment*/

constraints: distributed Set[allocation-constraint];
message-traffic: Integer,
delay: comm-delay-function;
associated-program: Program;
1;

operations = /*none*/

end Allocation;

10.47. define type Performance;

supertypes = {Type}

properties = {
Reliability: Rational;
Response: Response-time;
Total: Total-time;
}

operations = /*none*/

end Performance;

10.48. define type Response-Time;

supertypes = {Type)
properties = {

value: rational;
max: processor-cost;
}

operations -

end response-time

10.49. define type total-time;

supertypes = (Type)

properties =

- 37-

reliability: rational;
sum: distributedset[Processor-cost];
I

operations = {
}

end total-time;

10.50. define type Assignment;

supertypes = (Type);

properties =

platform: Processor,
software: allocated-U_0 D;
occurs-in: Allocation;
};

operations = /*none*/

/* We need an iterate operation for Assignment.class that will iterate through all the instances. */

end Assignment;

10.51. define type Error;

supertypes (Type);

properties = {
name: String;
message: String;
used-by: Type-def;
};

operations = /*none*/

end Error,

10.52. define type Access-right;

supertypes = (Type);

properties =

permission: String;
type: Type-def;
operation: Operation-spec;
I;

operations = /*none*/

end Access-right;

10.53. define type Cantype;

supertypes = (Type);

properties =

- 38 -

name: String;
rep: distributed Set[Representation];
1;

operations = /*none*/

end Cantype;

10.54. define type Representation;

supertypes = (Typel;

properties =

rep-info: Text;
};

operations = /*none*/

end Representation;

10.55. define type comm-delay-function;

supertypes = (Type)

properties =

delay: rational;
}

operations =

end com-delay-function;

10.56. define type processor-cost;

supertypes = (Type)

properties = {

I
operations =

}

end processor-cost

I1057. define type actual-residents-cost;

supertypes ({processor-cost)

properties = {
reliability: rational;
comm-cost: communication-cost;
delay: network-delay;
execution-cost:execution-cost

operations =

- 39 -

end actual-residents-cost;

10.58. define type estimated-residents-cost;

supertypes = {processor-cost}

properties =

cost: rational;
speed: relative-speed;
lifetime: lifetime-cost;
I

operations =

I
end estimated-residents-cost;

10.59. define type execution-cost;

supertypes = {Type)

properties = {
I

operations = {
I

end execution cost;

10.60. define type type-def-exec-cost;

supertypes = (execution-cost)

properties =

value:rational;
cost-component: distributed set of[execution-Cost-component];
}

operations = {
}

end type-def-execution-cost

10.61. define type client-execution-cost;

supertypes = (execution-cost)

properties = {
value: rational;

operations =

end client-execution-cost;

- 40.

10.62. define type execution-cost-component;

supertypes = (Type)

properties =

invocation-cost: invocation-cost;
number-of-calls: execution-call-number;
I

operations
I

end execution-cost-component;

10.63. define type lifetime-cost;

supertypes = (Type)

properties =

cost: rational;
I

operations = {

end lifetime-cost;

10.64. define type network-delay;

supertypes = 'Type)

properties {
delay: rational;
}

operations
}

end network-del-y;

10.65. define type communication-cost;

supertypes = (Type)

properties =

value: rational;
I

operations =
I

end communication-cost;

- 41 -

PART II

ALLOCATION TOOL

-43.

1. Scope

1.1. Identification

This Software Top Level Design Document describes the top level design for the Computer Software
Configuration Item (CSCI) identified as the Allocation Tool, CSCI Number 2, of the Tool Integration
Framework and Development Tools System. The requirements for the System appear in the Draft
System/Segment Specification.

1.2. Overview

This overview presents a high-level view of the Allocation Tool, including purpose, role in the
integrating framework, basic operation and development plan.

1.2.1. Purpose

Distributed application developers must, at some point during development, address the question of
how to assign the program's units of distribution (objects and clients) to the processing nodes. While
the manner in which they are assigned will not affect the application's functionality, it will have major
implications for objectives related to performance, fault tolerance, resource utilization and security.
Assignments will vary with respect to how the program performs during execution since resource utili-
zation profiles, communication loads, and parallelism are all influenced by the pattern of allocation.
The allocation problem is an important concern in DISE where performance and fault-tolerance are
critical objectives for distributed applications.

Unfortunately for developers, the allocation problem exhibits combinatorial complexity; finding the
optimal assignment of components to nodes is an inherently difficult problem. Subtle tradeoffs exist
between resource utilization, parallelism and communication costs. Nevertheless it remains an impor-
tant issue in the development of distributed applications in this environment.

The Allocation Tool supports distributed application developers by determining an efficient assignment
of program units to processing nodes. The tool utilizes information about the distributed application,
its components and their interaction patterns, as well as characterizations of the processing environ-
ment. It balances processing and communication costs in finding an appropriate processor assignment
for each unit of distribution in the program.

1.2.2. Role in the Integration Framework

Besides assisting application developers with determining an efficient program allocation, there is a
second major purpose behind the Allocation Tool CSCI. The Allocation Tool serves as an illustration
of the Tool Integration Framework, the CSCI defined in Part I of this document. As an example of a
tool that supports distributed application developers, the Allocation Tool will be integrated, as a
directly-coupled tool, into DISE through the Tool Integration Framework CSCI.

The Allocation Tool accesses the PDB for its input and output data requirements. As shown in Figure
8, the tool is implemented as a Cronus client program offering a window-based user interface. This
user interface features a tool-specific interface to the PDB which permits the user to control tool data
I/O via the PDB. The tool uses the DOS's interprocess communication facilities to interact with the
PDB over the network, thereby allowing the tool and application developer to have transparent access
to the PDB over the network.

1.2.3. Use and Functionality

The Allocation Tool can be applied across the stages of development, from early in development to
implementation. The basic information the user must supply includes attributes of the processing

.45.

TUser

Allocation D
Tool O

DOS (.C O

Host A HostS5

G9141.0648

Figure 8. Allocation Tool and DISE

environment and information about the distributed application. Typically the processing environment is
a known quantity and infonmation about it can be fetched from the PDBI while the application
represents the variable parameter.

Early in development the tool can be used to evaluate alternative high-level program decompositions
with respect to their resource utilization. At this stage, the developer may only have some initial
decompositions into objects and clients along with some rough estimates of their resource utilization.
The user provides this information to the tool, either directly or via the PDB. The tool then computes
and displays for the user an allocation and its associated performance.

During implementation the tool is used to optimize the program's runtime performance. More is
known about the program at this stage, and the tool accommodates the additional detail. Again the
user may provide the data directly or may just have the tool fetch it from the PDB. The tool computes
and displays an allocation based on the specified inputs.

The tool allows the user to manipulate any of the input parameters in order to investigate its effect on
program performance. For example, the user may add some additional objects to the application, or
may change the resource utilizations of an object or the nature of interactions between two objects.
Experimentation is an important capability to offer developers. This tool supports experimentation by
offering generality and flexibility with respect to the types of inputs accepted and by providing a con-
venient interface through which they can be manipulated.

A simple loop captures the main functionality of the tool: collect all the input data, find an efficient
allocation, and display the output. Finding an efficient allocation involves two tasks: cost model con-
struction and optimization. The former task entails constructing a cost model that reflects the expected
performance of the distributed application as a function of a particular allocation scheme. Factors
incorporated into the cost model include attributes of both the application and the processing environ-
ment. The cost model captures execution costs of application modules, irnenmodule communication
costs and parallelism between modules. The optimization component employs a search heuristic to
find an efficient allocation amongst all possible allocations.

i.,o-i, -4o.

1.2.4. Development Phases

Development of the Allocation Tool CSCI will take place in four phases:

Phase 1:
Develop a convenient user interface. The user interface will offer window-based data-entry facil-
ities. In addition, it will provide a tool-specific interface to the Project Database for retrieval and
storage of tool data at the user's discretion. Completing this phase will allow the tool to be
integrated with the PDB when the PDB becomes operational, even though the tool will exhibit
minimal functionality.

Phase 2:
Implement basic tool functionality. This will include a simple form of the cost model component
that does not consider communication costs. A simple search heuristic will be employed in the
optimization component.

Phase 3:
Extensions to the cost model to include communication costs in the performance computation,
and enhancements to make the search algorithm more effective.

Phase 4:
Refinements to the cost model to make it more accurate and complete and to the search algorithm
component to increase its efficiency.

Phase 3 represents the target implementation for this tool. The final phase is optional, and will be
entered only if sufficient time and effort are available for it.

1.3. Introduction

This document presents a top level functional and abstract data type decomposition of the Allocation
Tool CSCI into Top-level Computer Software Components (TLCSCs) and the interfaces among
TLCSCs of this CSCI. It also defines the interfaces between this CSCI and other elements of the Tool
Integration Framework and Development Tools System. Included in the Notes (section 6) are an exter-
nal interface definition and a detailed requirements specification derived from the System/Segment
Specification.

2. Referenced Documents

e Draft System/Segment Specification, DOS Design Application Tools, Contract No. F30602-87-C-
0104, CDRL No. 3, 25 August, 1988, RADC/COTD, (Honeywell Inc., Corporate System
Development Division).

3. Requirements

3.1. CSCI Architecture

Figure 9 shows the top level functional decomposition for the Allocation Tool CSCI. The elements of
the decomposition, each a TLCSC, are functions and abstract data types (ADTs). The primary control
loop is captured in the function Main. The CostModel ADT encapsulates the application cost model,
the Allocation ADT encapsulates the optimization algorithm and the UI ADT encapsulates the inter-
faces to the user and the PDB.

3.2. Functional Allocation

The requirements for this CSCI are defined in the System/Segment Specification. In particular, the
requirements for the Allocation Tool specified in section 3.1.6.2 of the System/Segment Specification

.47-

FunctionsI
Main

LUserjnput LCostModeling Optimization] User-.Output

DataL.Consistent Exec_Analysis

CostMode Allcatin UlG8603-3439

Figure 9. Allocation Tooi Functional Decomposition

identify requirements for dimee functions: cost model generator. optumizer, and user interface.
Identified below are the TLCSCs to which each of the thime functions has been allocated:

" Cost model genoniator~ This is implemented by function TLCSCs 3.6.1.3 (Exec_Analysis), 3.6.1.4
(Cost-Mud~..ung), and ADT TLCSC 3.6.2.1 (CostModel).

" Optimizer This is implemented by function TLCSCs 3.6.1.5 (Optimization) and AD? TLCSCs
3.6.2.1 (CostModel) and 3.6.2.2 (Allocation).

" User -Interface: This is implemented by function TLCSCs 3.6.1.1 (User lIput), 3.6.1.2
(Data-consistent), 3.6.1.6 (User-Output) and ADT TLCSC 3.6.2.3 (User Interface).

3.3. Memory and Processing Time Aflocation

Not specified.

3.4. Functional Data Flow

The functional data flow for the Allocation Tool is shown in figure 10. Boxes in the diagram represent
individual fuinction and AD? TLCSC's, the latter occupying the bold-lined boxes. Arrows between
boxes indicate data flow, and have been annotated to show the primary data that is passed from one
TLCSC to another.

Note that the Ul (user interface) AD? encapsulates both the user and the PDB. The toot user therefore
interacts with precisely one TLCSC, which also serves as the interface to the PDB. Data flow from

.48.

NOi Key

U Cappdpe capp: dist_application
.ap ep0: processing..environment

bestaloc: best-allocation

Function TLCSC

(...)-4-- ADT instance names

d...appdlin CotMoe pert d~ppal
~pe

Exec..Analysis e (cos~myodel) (allocatin)
G8603-3465

Figure 10. Allocation Tool Data Flow

the UI ADT, therefore, may ultimately be coming from either the user or the PDB.

3.S. Global Data

3.S.1. Global Data Types

App Type = (Names, Specs, Code);
CostType = (Obj Wkd, OpnWkld, Input,_Data);
Comp Type = (Client, Object);

OpnHeaders = RECORD
name : STRING;
params : LIST OF Types;
return_type : Type;

END;

.49.

OpnList = SET OF OpnHeaders;

CostRec = RECORD (* costs associated with an application component *)
objwkld : Exec Time; (* total workload *)
opn wkld - ARRAY [Opn_Names] OF ExecTime; (* workload per invocation *)
call_profle• ARRAY [Appl_Comps] OF

ARRAY [Opn_List] OF CARDINAL; (* frequency *)
END;

Components = RECORD (* information about a client or object *)
comp-name• STRING; (* Key for accessing components. *)
comp_kind • Comp Type;
opns : Opn List; (* Specs and Code AppTypes *)
ext.spec-ref,
ext bodyref: External-File; (* Code AppType only *)
costdata : CostRec;

END;

Appl_Comps = SET OF Components;

DistApplType = RECORD (* a distributed application *)
kind : App_Type;
comps : ApplComps;
cost: CostType;
data set: InputData_Spec;

END;

ProcessorType = RECORD
name : STRING;
relative_speed : Fraction;

END;

ProcHosts = SET OF ProcessorType;

Proc_Env_Type = RECORD
processors : ProcHosts;
commcost : MATRIX [ProcessorType, ProcessorType] OF

CommCostFunc(msgsize : CARDINAL); (*F in the CostModel ADT*)
comm delays : Comm DelayFunc(allocation : Alloc Type;

msg traffic : CARDINAL); (*D in the Cost-Model ADT*)
loading factor NetworkCongestionFunc(

load SET OF Components; (* local objects/clients *)
threads of control : CARDINAL (* number of clients *)
); (*g in the CostModel ADT*)

END;

ObjFunc = (Response-Time, Total-Time);

Allocation Constraints = ARRAY [L. 10001 OF RECORD

- 50.

num constraints : 0.. 1000;
constaint type = (ObjectConstraint, Load-Constraint);
CASE constrainttype OF

ObjectConstraint :
objectname: STRING;
targets : Proc Hosts;

Load Constraint"
proc_name : STRING;
max load,
min load : CARDINAL;

END;
END;

SearchConstraint = RECORD
cpu time limit,
real time limit : SystemTime;
max evaluations : CARDINAL;
threshold : Execution-Time;

END;

MAPPING FROM SET X TO SET Y = (* Total function from X to Y.
Abstract model: a set of pairs <x,y>.
Operations: For x in X and y in Y:

assign(x, y) : associates y with x.
lookup(x) returns y : returns associated y for x.

AnAllocation = MAPPING FROM ApplComps TO ProcHosts;

AllocationInfo = RECORD
assign : An_Allocation;
perf: ExecTime;

END;

Command = (def app. def costs. def proc env, def objfunc, def ass constr,
defsearch-constr, continue);

3.5.2. Global Variables
(*** INPUT VARIABLES ***)

distapplication : DistAppl_Type; (* The distributed application under study. *)

processingenvironment : ProcEnv_Type; (* The hardware environment *)

objective function: Obj Func; (* The choice of objective function. *)
assign_constraints : AllocationConstraints; (* The assignment constraints. *)

search constr : Search Constraint; (* The 4 different search algorithm constraints. *)

(*** ADT INSTANCES ***)

cost-model : CostModel; (* The cost model ADT instance. *)

-51.

allocation : Allocation; (* The allocation search ADT instance. *)

ui UI; (* The user interface. *)

(*** GLOBAL DATA STRUCTURES ***)

best : Allocation Info; (* The current best allocation found. *)

finished : BOOLEAN; (* Termination flag. *)

3.6. Top Level Design

3.6.1. Function TLCSCs

3.6.1.1. Main TLCSC

3.6.1.1.1. Identification

This is the main function in the CSCI. It encapsulates the primary control loop for the tool. It repeats
the following four tasks until the user terminates the program: get input data, construct a cost model,
find an allocation and display it to the user.

3.6.1.1.2. Inputs

There are no inputs to this function. In the case of this function, inputs would be command-line argu-
ments provided at the time of tool invocation.

3.6.1.1.3. Local Data

Local data for the main program is global data for the tool, and global data is identified in section
3.5.2 above.

3.6.1.1.4. Processing

BEGIN Main;

LOOP
UserInput(dist application, objectivefunction, processing_environment,

assignconstraints, search constr, ui);
CostModeling(dist application, objective-function, processing_environment, cost-model);
Optimization(dist application, processing_environment, assignconstraints,

search constr, cost-model, best);
UserOutput(dist application, processingenvironment, search-constr, best, ui, finished);

UNTIL finished;

END Main.

3.6.1.1.5. Outputs

No outputs are generated by this function within the CSCI. The external interface generated, in
essence, by this function is described in section 6.1.

3.6.1.2. UserInput TLCSC

- 52 -

3.6.1.2.1. Identification

This function uses a user-interface ADT to obtain input parameters from the user. The user can pro-
vide input items in any order, the user explicitly indicates that they are finished supplying inputs. At
that time, consistency checks are made to ensure that data provided is complete and consistent.

3.6.1.2.2. Inputs

This function takes no inputs.

3.6.1.2.3. Local Data

done : BOOLEAN; (* end-of-input flag *)

3.6.1.2.4. Processing

BEGIN User Input;

ui := UI$inito; (* Initialize *)
objective-function := Response-Time;
assignconstraints.num constraints := 0;
search constr.* := INFfNITY;
done := FALSE;
LOOP (* Process a command *)

CASE UI$command(ui) OF
defapp: (* update distapplication info *)

<distapplication.kind, distapplication.comps>
UI$get(ui, <App_Type, ApplComps>);

defcosts: (* update costdata *)
<dist-application.cost, dist_application.da:a set>

UI$get(ui, <CostType, InputDataSpec>);
defproc-env: (* update processing environment *)

processing_environment := UI$get(ui, ProcEnvType);
defobjfunc: (* objective function = RespTime or ExecTime *)

objective function := UI$get(ui, ObjFunc);
def ass constr (* add/deleted from list of constraints *)

assign-constraints := UI$get(ui, AllocationConstraints);
defsearchconstr- (* establish any of 4 constraints *)

search_constr := UI$get(ui, Search-Constraint);
continue:

IF Data consistent(distapplication, processingenvironment, assignconstraints)
THEN

done := TRUE;
ELSE

UI$error(ui, "Data inconsistency");
END;

END;
UNTIL done;

END User-Input;

- 53.

3.6.1.2.5. Outputs

dist-application : DistApplType;
objectivefunction: Obj_Func;
processingenvironment : ProcEnvType;
assignconstraints : Allocation Constraints;
search constr : SearchConstraint;
ui : UT;

3.6.1.3. Data-consistent TLCSC

3.6.1.3.1. Identification

This function checks the user-supplied tool input values for consistency and completeness.

3.6.1.3.2. Inputs

dist-application : DistApplType;
processingenvironment : ProcEnvType;
assignconstraints : Allocation Constraints;

3.6.1.3.3. Local Data

None.

3.6.1.3.4. Processing

BEGIN Data-consistent;

(* Check for consistency between input data items and that sufficient inputs have been provided.
Required inputs are the distributed application, application costs and processing environment.
Returns TRUE if data is consistent and complete, FALSE otherwise. *)

END Data consistent;

3.6.1.3.5. Outputs

RETURNS BOOLEAN;

3.6.1.4. ExecAnalysis TLCSC

3.6.1.4.1. Identification

This function compiles an instrumented version of the application and executes it on a pre-designated
host processor. It captures cost data about the application, including operation execution times and call
profiles, according to the Cost Rec data type.

3.6.1.4.2. Inputs

distapplication : DistApplType;

3.6.1.4.3. Local Data

None.

- 54 -

3.6.1.4.4. Processing

BEGIN ExecAnalysis;

(* Execute an instrumented version of the distributed application to obtain cost measures.
Source code and input data are specified in dist application. The empirical measures generated
will be stored in dist._application.cost.

If instrumentation tools are available in the development environment, the implementation of this
function will simply involve generating an appropriate workload profile that can be fed to the
instrumentation tool and then invoking the tool to obtain cost measures. The PDB would serve
as the mechanism by which the workload and cost measures are transmitted between the two
tools. *)

END ExecAnalysis;

3.6.1.4.5. Outputs

dist.application : DistApplType; (* with updated cost component *)

3.6.1.5. CostModeling TLCSC

3.6.1.5.1. Identification

This function generates a cost model, which is an instance of the CostModel ADT. The cost model
is based on the application cost attributes, which may have to be generated by performing the execu-
tion analysis function, and processing environment attributes.

3.6.1.5.2. Inputs

distapplication : Dist ApplType;
objective-function : Obj_Func;
processing.environment : ProcEnvType;

3.6.1.5.3. Local Data

None.

3.6.1.5.4. Processing

BEGIN CostModeling;

IF distapplication.cost = InputData THEN
Exec_Analysis(dist application);

END;
cost-model := CostModel$generate (objective-function, distapplication, processingenvironment);

END Cost-Modeling;

3.6.1.5.5. Outputs

dist application : DistAppl_Type;
cost model : Cost Model;

oS5.

3.6.1.6. Optimization TLCSC

3.6.1.6.1. Identification
This function uses CostModel ADT to find a "good" allocation of application components to proces-
sors. An Allocation ADT instance is generated which encapsulates the optimization algorithm. The
function repeatedly gets a new allocation from the Allocation ADT and analyzes its performance using
the Cost Model ADT until either the optimization algorithm signals termination or user-specified termi-
nation criteria are met. The best allocation found is returnee.

3.6.1.6.2. Inputs

dist application : DistApplType;
processingenvironment : ProcEnvType;
assign_constraints : Allocation_Constraints;
searchconstr : SearchConstraint;
cost_model : Cost_Model;

3.6.1.6.3. Local Data

temp : AllocationInfo; (* Temporary variable. *)
count: CARDINAL; (* The number of allocation evaluations made. *)
done: BOOLEAN;

3.6.1.6.4. Processing
BEGIN Optimization;

done := FALSE;
allocation := Alocation$initialize(dist application.comps, processing_envimrnment.processors,

assignconstraints, search-constr);
best.assign := Allocation$mapping(allocation);
best.perf := CostModel$evaluate(cost-model,best.assign);
count := 1;
allocation := Allocation$setjerf(allocation, bestperf);
WHILE (NOT done) AND (best.perf > searchconstr.threshold) AND

(cputimeo < searchconstr.cputimelimit) AND
(clock time() < searchconstr.real time limit) AND
(count < search.constr.maxevaluations)

DO
allocation := Allocation$generate(allocation); (* search algorithm iteration *)
temp.assign := Allocation$mapping(allocation);
temp.perf := CostModel$evaluate(costmode!,,emp.assign);
INC(count);
allocation := Allocation$set_.perf(allocation, temp.perf);
IF temp.perf < best.perf THEN best := temp; END;

ENDWHILE;
EXCEPTION HANDLER(CONVERGED);

done := TRUE;
END EXCEPTION HANDLER;

END Optimization;

-56.

3.6.1.6.5. Outputs

best: AllocationInfo;

3.6.1.7. UserOutput TLCSC

3.6.1.7.1. Identification
The best allocation and its performance are presented to the user, who can then decide to either quit or
continue with another iteration of the tool.

3.6.1.7.2. Inputs

dist application : DistApplType;
procenv • ProcEnvType;
s-constr Searh_Constraint;
best : AllocationInfo;
ui : UI;

3.6.1.7.3. Local Data

None.

3.6.1.7.4. Processing
BEGIN UserOutput;

ui := UI$display(ui, best, dist application, proc env, sconstr);

finished := UI$query(ui); (* "quit or continue?" *)

END User-Output;

3.6.1.7.5. Outputs

ui : UI;
finished : BOOLEAN;

3.6.2. ADT TLCSCs

3.6.2.1. CostModel ADT TLCSC

3.6.2.1.1. Identification

The cost model ADT implements the allocation cost model according to the objective function
requested. It is based on attributes of the application (components and their costs) and processing
environment attributes. The generate operation create, a cost model instance, and the evaluate opera-
tion computes the cost of a given allocation.

3.6.2.1.2. Abstract Mndel

CostFunction : ARRAY [An_Allocation] OF Exec-Time;

(* each aliucation has a corresponding performance ""

-57 -

3.62.1.3. Operations

generate: obfun: Obj_Func; app: DistAppType; p_e: ProcEnvType --> CostModel;

(* This operation generates the application cost model used to evaluate allocation of distappl
components to proc env hosts. The cost model is expressed as a function of an allocation (of
type AnAllocation). An allocation maps application components to processors, and can be
expressed as a function A : ApplComps -- ProcHosts. We assume in the following definitions
that subscript indices uniquely identify members of the set of application components, object
operations and processors. These sets are denoted as follows:

= set of application components (app.comps)

8i = set of operations on object i (app.comps[i].opns)

r= set of processors (pe.processors)

The term P.(a), a e A, expresses the processing cost for processor n as a function of a given
allocation a. There are two forms for the objective function, each expressed in terms of P,, for a
given allocation a e A:

MAX{ P. (a) : 1 <_ n <_ IFl (Response Time)

IN
YP. (a) (Total Time)
R1-I

For convenience in exposition, an assignment variable is introduced:

i a(i)= nXi,=0 otherwise

P, is defined as the sum of the execution and communication costs of the application clients and
objects assigned to it:

P, (a) = EXEC, (a) + COMM. (a) + NETDELAY. (a)

EXEC, denotes resident application component (object and client) execution costs. COMM,
denotes the communication costs incurred by those components, and NETDELAY is the cost
experienced by host n due to network delays. The form of these terms depends on the type of
cost information provided by the user. The two cost types are referred to as Object workload and
Operation Workload. For Object Workload cost information (app.cost = ObjWkld) we have:

EXEC. (a) = [.Xe Ei (n)]

COMM. (a) = 0

NETDELA Y. (a) = 0

E, denotes the expected computational workload for object i over its lifetime, and is a function of
attributes of the host processor n. This term will come from app.comps[i].costdata.obj_wkld
and will be weighted according to the relative speed of processo, n as given in
p_e.processors[nl.relative-speed. Communication costs under this cost model are 0, since no
explicit information about the interactions between objects is available.

-58.

In the case of Operation Workload (app.cost = OpnWkld) EXEC,, COMM, and NETDELAY, are
expressed as:

EXEC. (a) = I Xi, E&(n) FCik
i=1 k=1 "=1

COMM.,(a) = F. F, Y. [Xi,, X,,, Cik [F(nm,Sik) + Ejk(m) (1 - X,,) gr(a- (n)
i=1 j=l a=1 k=1

NETDELAY. (a) = Dc$s(n, a)

Ek denotes the computational workload for operation k of object i for an arbitrary invocation,
and is a function of the host processor n's attributes. This quantity comes from
app.comps[i].costdata.opnwkld[k] and will be weighted according to the relative speed of pro-
cessor n as given in p_e.processors[n].relative speed.

Cijt denotes the number of calls object i makes on operation k of object j. It is obtained from
app.comps[i].costdata.callprofilej][k]. Sjk denotes the size in bytes of the message contained
in the call to operation k on object j. This is derived from app.compsU].opns[k].params.

The term a-1(n) is the inverse image of the function a. It identifies the set of objects and clients

assigned to node n:

a-(n)={ i a(i)=n

F(n,m,Sjk) is the local processing cost for node n issuing a call to an object on node m of size
Sjk and corresponds to the pe.commcost input parameter.

The factor gr(a-(n)) where T indicates the number of threads of control in the distributed appli-
cation, is in the range [0,1] and comes from pe-loadingfactor input parameter. It reflects the
degree to which a processor experiences communication delays due to the remote execution of an
RPC on behalf of a resident task. It is I if there is a single thread of control in the application
(since only I application component can execute at any time). It tends towards 0 as the number
of threads and the number of local objects increases.

Dc2 (n, a), given by pe.commdelays, is the communication network delay. A given number of
calls in the system (C) and the sizes of the messages for those calls (S) results in a cost to pro-
cessor n under the application allocation a. *)

evaluate: CostModel, AnAllocation --> Exec Time;

(* Returns the expected execution time under an allocation by evaluating it according to the cost
function defined for Cost Model. *)

3.6.2.2. Allocation ADT TLCSC

3.6.2.2.1. Identification

The Allocation ADT encapsulates the search algorithm used to find an optimal allocation. Following
initialization using the initialize operation, successive iterations of the search algorithm are effected by
calling the generateallocation operation. Prior to generating an allocation the set perf operation is
invoked to provide the search algorithm with the performance of an allocation. The actual mapping of

- 59-

application components to processors hidden within an Allocation instance is obtained using the map-
ping operation.

3.6.2.2.2. Abstract Model

currentallocation : AllocationInfo; (* mapping + performance *)
search-state SearchStateInformation;
performance • Real;
search-state SearchStateInformation;
assign_constraints : AllocationConstraints;

3.6.2-2.3. Operations

initialize: ApplComps, Proc_Hosts, AllocationConstraints, Search-Constraint --> Allocation;

(* The generator. Initializes the search algorithm. Search constraints may affect algorithm
chosen. Allocation constraints are satisfied by the Allocation generated.

One quick and easy approach for this operation would be to employ a greedy technique. Applica-
tion components are ranked in order of decreasing cost, ignoring communication, to processors
that are ranked according to processing power. Allocation constraints are met when each com-
ponent is assigned. *)

generateallocation: Allocation --> Allocation;

(* Generates a new Allocation based on the state of the previous Allocation according to the
search algorithm employed. That is, it generates the next iteration of the search algorithm.
RAISES CONVERGED: this indicates that the algorithm has reached convergence. This does
NOT mean that the mapping generated is optimal, but simply that no more improvements are
possible.
RAISES NO PERFORMANCE: this indicates that the input Allocation has not been assigned a
performance value. A performance value may be required by the search algorithm employed.

A hill-climbing technique may be employed here. On each call the previous allocation is
modified according to some deterministic modification scheme. If, on any call, improvement is
made, then the algorithm is repeated. When a complete round has been made with no improve-
ment, the algorithm terminates, raising the CONVERGED condition. This approach is easy to
implement, each call is quick and it is guaranteed to terminate. However, it may fail to reveal a
good solution by getting stuck on a local optimum.

Another approach would use simulated annealing. It generates a new allocation based on the pre-
vious one. This may be somewhat more difficult to implement than hill-climbing, but is less sus-
ceptible to the local optimum problem. Each call is quick but the approach lacks inherent termi-
nation criteria. *)

setperf: Allocation, Exec Time --> Allocation;

(* Sets the value of the current allocation in Allocation to performance value. *)

mapping: Allocation --> An_ Alocation;

(* Returns the current allocation of Allocation. *)

- 60-

3.6.2.3. UI ADT TLCSC

3.6.2.3.1. Identification

This ADT encapsulates the user interface and the interface to the PDB. It manages the display device
and supports mouse and keyboard input devices. It handles the tool's I/O needs by getting data either
from the user directly or from the PDB, as commanded by the user.

The user interface is created using the init operation, command gets a user command, get gets a data
item either from a file, the PDB or directly from the user, display and error display information for
the user, and query determines if the user is finished.

3.6.2.3.2. Abstract Model

screen : UserInterfaceDisplay;

3.6.2.3.3. Operations

init: -- > UI;
(* The generator. Initializes the user interface. *)

command: UI --> Command;

(* Returns a user command. *)

get: UI, Type --> Type;

(* Generic operation which returns a value for the specified type obtained from the user, perhaps
through the PDB. *)

error: UI, STRING --> UI;

(* Returns a user command. *)

display: UI, Allocation Info, DistApplType, ProcEnvType, Search_Constraint
--> UI;

(* Displays the allocation from Allocation_Info, along with the application and processing
environment, in an appropriate graphical manner. *)

query: UI --> BOOLEAN;

(* Returns TRUE if user is finished, FALSE otherwise. *)

3.7. Adaptation Data

This tool CSCI executes on a Sun workstation and uses the Sunview windowing system for the user
interface. Since the tool is developed as a Cronus application, the host workstation environment must
run the Cronus distributed operating system.

6. Notes

6.1. Interfaces

As an application development tool, the Allocation Tool interfaces with the following external entities:

" Cronus distributed operating system: The tool, like any Cronus application, may require access to
various Cronus system object managers.

" Project Database: The PDB is a specific Cronus object manager to which the Allocation Tool
interfaces for various I/0 needs. The data items potentially obtained from the PDB include infor-
mation about the components in the distributed application, target processing environment

-61.

attributes and assignment constraints which an allocation must meet. The best allocation and its
performance as generated by the tool may be stored in the PDB. The interface itself is defined
by the operations exported by the PDB object.

6.2. Requirements Specification
This subparagraph provides a condensed version of the requirements specified for this CSCI. These
requirements are derived directly from the Draft System/Segment Specification identified in paragraph
2.

6.2.1. Purpose
The Allocation tool accepts input data through a convenient user interface and generates an output con-
sisting of an allocation of application components to processing sites and that allocation's expected per-
formance.

6.2.2. Inputs

6.2.2.1. Distributed application
A distributed application is defined as one or more client modules and the set of objects to which the
clients pass messages, directly or indirectly. Objects consist of two parts, a specification and a body.
Clients are programs which invoke objects. One of the following three forms of description of a distri-
buted application will be provided:
1) Definitions of the objects and clients in the application. This will consist of just the names of all

clients and objects, no code.
2) Client names and object specifications. Object specifications contain headings for procedures and

functions (that is, declarations of the object's methods, including parameters and their types) but
have no corresponding bodies.

3) Source code for the application. Objects will have both specifications and bodies; clients will be
completely coded.

6.2.2.2. Distributed application cost estimates
One of the following three forms of cost estimates for the distributed application defined above must
be provided. For each form of cost estimate, the distributed application input forms with which it can
be legally associated are shown in parentheses.

* Expected computational workloads for each object and clienL These workloads are estimates of
the total execution time that will be required by each object and client, including CPU, communi-
cation and I/O time. The form and units of these estimates is TBD. (Application input form 1, 2
or 3).

* For each object, and for each operation defined on that object, the expected execution time for an
arbitrary invocation of that operation, in units TBD. Also for each object, the estimated number
of calls each object will make on each operation in every other objeCL (Application input form 2
or 3).

* A single input data set for the distributed application. While any data set is acceptable, the
interpretation of the tool's output (see section 2) will be dependent upon this input data set. The
extent to which the generated output allocation can be interpreted as an efficient allocation for the
program given different input data sets is limited by the degree to which the input data set is
representative (i.e., leads to a similar pattern of execution across objects and clients) of input data

- 62-

sets anticipated for the application. (Application input form 3 only,.

6.2.2.3. Processing environment

" For each of the maximum 400 sites (host computers) in the distributed processing environment,
its relative speed expressed as a fraction of the fastest processor's speed (the relative speed for
the fastest processor will be 1). No units are associated with this quantity since it is a ratio.

" A cost model reflecting the cost of data transmission over the communication medium, in units
TBD. This model is expressed as a function of the host processor, the target processor, and the
size of a message.

" A cost model reflecting communication system delays, units TBD. This model is expressed as a
function of two parameters, the allocation of objects to nodes and the total message traffic for the
application.

6.2.2.4. Objective function selection

One of the following objective functions is selected. Note that the application is expected to terminate
as both quantities are finite.

* Application response time, in units TBD. This is the wall-clock execution time for the entire
application, from its initiation to its termination.

" Total execution time for the application in units TBD. This is defined as the sum of the execu-
tion times of all application components, including components which execute in parallel (simul-
taneously).

6.2.2.5. Assignment constraints

Up to 1000 constraints may be placed on the assignment of objects and clients to processors. These
may be either in terms of object assignments (assigning a particular object to a specified subset of
nodes) or load constraints for processors (a particular processor must host no more than, or at least, a
specified number of application components).

6.2.2.6. Search constraints on optimization

None, one, or both of the following constraints are provided for limiting the execution time for the
allocation tool:

" Maximum time for search. This may be either in terms of the maximum number of solutions
evaluated, the CPU time for the optimization, or the wall-clock time for the optimization.

" Termination criteria. This is expressed as an acceptable level of performance according to the
objective function defined above.

6.2.3. Outputs

* An allocation of objects to processors. Qualitatively, this is to be as close to optimal as is feasi-
ble under the search termination constraints (see section 1.6). Given the nature of the problem,
however, optimality cannot be guaranteed in a polynomial-time algorithm. Therefore, require-
ments for the output will be defined as follows: computation time for the optimization cannot be
as large as an exponential function of the number of application components or processors (or
any other input parameter); as noted above, the user may further constrain this time allotment
Within the time allotment, algorithms and heuristics will be employed for finding an allocation
which yields high performance, and the allocation generated will be have the highest performance
of all allocations that are evaluated during the optimization phase.

- 63 -

* The expected performance of the allocation defined in the previous bullet. This will be the value
of objective function under that allocation. If termination criteria are specified as described under
the second bullet in section 1.6, then either a) the expected execution time of the resulting alloca-
tion will not be greater than that quantity or b) explicit notification to the contrary will be pro-
vided if the desired level of performance is not achieved within the specified (as described in the
previous bullet) time limits.

6.2.4. User interface

The tool provides an interactive interface. Where possible, inputs for the tool are taken from the pro-
ject database (PDB) on the basis of user-supplied references to required PDB entities; the tool provides
a tool-specific front end to the PDB. Inputs that, by necessity or choice, are not obtained from the
PDB will be provided either directly to the tool or indirectly with the user providing references to data
contained in files in the file system. Outputs from the tool may be saved in a file or in the PDB, at the
user's discretion.

- 64.

PART III

RELIABILITY ANALYSIS TOOL

- 65-

1. Scope

1.1. Identification

This Software Top Level Design Document describes the top level design for the Computer Software
Configuration Item (CSCI) identified as Reliability Analysis Tool, CSCI Number 3, of the Tool
Integration Framework and Development Tools System. The requirements for the System appear in
the Draft System/Segment Specification.

1.2. Overview

1.2.1. Purpose

The DISE environment supports the development of C3 applications for execution in distributed pro-
cessing environments. One of the most important characteristics of an effective C 3 application is sur-
vivability. Survivability is the ability to meet mission requirements in the event of hardware failures
and can be measured in terms of reliability and availability. Successful development of survivable
applications requires the ability to evaluate their reliability and availability characteristics.

Development decisions concerning reliability made at a later stage of development that lead to unac-
ceptable levels of reliability can result in very costly redesigns. It is, therefore, important that develop-
ers have the capability for design-time analysis of reliability characteristics.
The Reliability Analysis Tool allows the developer to analyze the implications of processing environ-
ment (hardware) reliabilities on distributed software applications. It supports the developer in experi-
menting with alternative design decisions related to the application's decomposition, component func-
tionality, processing environment and allocation of software components to computing platforms, each
of which influences application reliability characteristics.

1.2.2. Role in the Integrating Framework

A second purpose for the Reliability Analysis Tool is to serve as a demonstration of the Tool Integra-
tion Framework, CSCI Number 1. The tool uses the Project Database (PDB) for the bulk of its I/O
needs via the User Interface.

The tool provides a tool-specific front-end to the PDB. If desired, the inputs to the tool are taken
directly from the PDB using user-supplied references to the required PDB entities. Alternatively,
inputs to the tool may be read in interactively or from files in the local file system. The tool's output
may be viewed and/or saved in the PDB or a file, at the user's discretion.

The architecture of the tool with respect to Cronus is shown in Figure 11. The Reliability Analysis
Tool is a directly-coupled tool. It will interface to the PDB through the Tool Access Interface via
Cronus.

1.2.3. Use and Functionality

The Reliability Analysis Tool accepts input data through a convenient user interface and generates out-
put indicating the reliability. This is measured in terms of limiting availability (A), of the specified
sub-system which is defined as

M7TF
(MTTF + MTTR)

where MTTF is the mean-time-to-failure and MTTR is the mean-time-to-repair of the component.

The tool takes information about the distributed application, the processing environment and the alloca-
tion of application components (UODs) to processors as input. Two aspects of the distributed

- 67.

User

Rellability DAnalysis OM
Tool

mDOSTool I/O

(RPC)DO
Host A Host a

G9141-0648

Figure 11. Reliability Analysis Tool and DISE

application are required: the names of the application components (client and object UODs) and call
relationships between these components. In addition, the component of interest is named, which
identifies a subsystem of the application components through a transitive closure on the call relation-
ships. This subsystem can be viewed ds a directed graph in which the edges specify dependencies. A
set of annotations are input to the tool which specify probabilities and criticalities of these calls. The
hardware characteristics of each component in the system, including the host computers (nodes) and
communication links is given. An assignment of each application component (UOD) to one or more
processors in the environment is given.
The tool generates the expected availability of the application subsystem rooted at the specified appli-
cation component.

The DISE/Cronus hardware environment is, essentially, a network of SUN workstations on an Ether-
net. These LANs may be connected over WANs in an Intemet. The Ethernet environment can be
modeled as individual processors networked via a shared medium. Logically, the system can be con-
sidered as a network of processors directly connected to each other, with all these communication links
having identical failure probabilities.
We assume that processors fail independently and the physical environment is a shared medium.
When a processing node is down, all the application components assigned to that node are unavailable.
Hence, a limiting availability can be associated with the software components in the system.

The system is modeled as a directed graph. The nodes in the graph represent the UODs in the system
and the edges represent call relationships between these UODs. These edges are annotated with call
probabilities that reflect semantic dependencies between these UODs. For example, Ci, is the probabil-
ity that UODi calls UOD, during the execution of UODi. These probabilities specify the dependency
of one UOD on another.
A transitive call probability of UODj calling UOD, in the selected sub-system can be computed. This
probability expresses the dependency of UOD, on any UODj in the system. All possible traversal paths
from i to j and the annotations on these edges have to be considered in computing this transitive call
probability.

68.

A matrix with these dependencies can be constructed. For the given UOD,, a vector D, is computed
for all specifying these transitive call probabilities from UODt to all the other UODs in the specified
sub-system. The call graphs are assumed to be acyclic. An embellishment to the algorithm to handle
cyclic call dependencies will be discussed later in this section.
Having computed this dependency matrix, the call graph constructed for the application can be mapped
onto the processing environment. The given allocation specifies the assignment of each UOD to one
of the processors in the system. A need for (or the reliance on) the different processors in the
system/sub-system can be derived from the dependency matrix knowing the assignment of UODs to
processors.
A vector of these reliance or need values can be computed to denote the system/sub-system's need for
each of these processors. This reliance vector will reflect the application sub-system's dependence on
the hardware resources in the processing environment. Given the failure probabilities of these proces-
sors (Pi), the availability of the system can be computed. We now have the failure probabilities of the
processors and a measure of the degree of dependency of the system on each of these processors.
The different failure states of the system are determined by considering all combinations of failure
states of the processors in the system. The probability of the processing environment being in each of
these states weighted by the corresponding reliance factor yields each state's affect on application avai-
lability.

1.2.4. Development Phases
Development of the Reliability Analysis Tool will take place in four phases:

Phase 1:
Develop a convenient user interface. The user interface will offer window-based data-entry facil-
ities. In addition, it will provide a tool-specific interface to the Project Database for retrieval and
storage of tool data at the user's discretion. Completing this phase will allow the tool to be
integrated with the PDB when the PDB becomes operational, even though the tool will exhibit
minimal functionality.

Phase 2:
We assume that processors fail independently and the physical environment is a shared medium.
This is the minimum acceptable functionality of the tool required to be able to demonstrate the
tool's utility and the tool integration framework.

Phase 3:
Replication, as implemented in Cronus will be considered (given read/write quorums and number
of copies).

Phase 4:
The shared medium networks - like Ethernet LANs - are interconnected in an Internet environ-
ment. These interconnected Ethernet clusters can be modeled as a network of computing plat-
forms with their own hardware reliability characteristics. In Phase 3, a hierarchical model is
used. The availability of the subsystems on the Ethernets is computed as before. These availabil-
ities and the communication link - between these LANs- availabilities are considered, and the
availability of the overall Internet system is computed. Alternate paths between LANs may be
determined by routing mechanisms or complete connectivity may be assumed.
Given the existence of routing and communication links, the reliability problem is to compute the
proability that the given component-of-interest that identifies the system/subsystem can reach
every other component in the system. Graph theoretic algorithms to compute Source to Multiple

- 69 -

Terminal (SMT) reliabilities in such an environment for certain special cases (network topologies)
are available in the literature. They consider independent and dependent processor and link
failure probabilities, dynamic routing mechanisms, and special network topologies, but none of
them consider call probabilities or call criticalities.

Methods of extending the tool's functionality by implementing or adapting one or more of these
algorithms to meet our requirements will be identified. A hierarchical reliability computation
model will be implemented to allow reliabilities of interconnected networks of different topolo-
gies to be estimated.

* Identify relevant algorithms in literature;
* Identify methods of extending tool's functionality by incorporating these algorithms;
* Implement a hierarchical reliability computation model:

" different connectivity and routing assumptions;
" different network topologies;
" link failure probabilities;

Phases 3 and 4 will be implemented only if sufficient time and effort are available.

1.3. Introduction

This document presents a top level functional and abstract data type decomposition of the Reliability
Analysis Tool CSCI into Top-level Computer Software Components (TLCSCs) and the interfaces
among TLCSCs of this CSCI. It also defines the interfaces between this CSCI and other elements of
the Tool Integration Framework and Development Tools System. Included in the Notes (section 6) are
an external interface definition and a detailed requirements specification derived from the
System/Segment Specification.

2. Referenced Documents

e Draft System/Segment Specification, DOS Design Application Tools, Contract No. F30602-87-C-
0104, CDRL No. 3, 25 August, 1988, RADC/COTD, (Honeywell Inc., Corporate System
Development Division).

3. Requirements

3.1. CSCI Architecture

Figure 12 shows the top level functional decomposition for this Reliability Analysis Tool CSCI. The
elements of the decomposition, each a TLCSC, are functions and abstract data types (ADTs). The pri-
mary control loop is captured in the function Main.

3.2. Functional Allocation

The requirements for this CSCI are defined in the System/Segment Specification. In particular, the
requirements for the Reliability Analysis Tool specified in section 3.1.6.3 of the System/Segment
Specification identify requirements for four functions: Static Analysis, Subsystem Resolution, Reliabil-
ity Computation and User Interface. Identified below are the TLCSCs to which each of the four func-
tions has been allocated:

" Static Analysis: This is implemented by function TLCSCs 3.6.1.2 (Initialize) and ADT TLCSC
3.6.2.1 (Applic).

" Subsystem Resolution: This is implemented by function TLCSCs 3.6.1.4 (Processcommand) and
ADT TLCSC 3.6.2.1 (Applic).

- 70 -

Functions

Main

Initialize Poes_Command

Store-info Reliability, Computation

IComnpute_.RetiabilityI
ADTs

Applic .j G8603-3440

Figure 12. Reliability Analysis Tool Functional Decomposition

" Reliability Computation: This is implemented by function TLCSCs 3.6.1.5 (Compute reliability),
3.6.1.6 (Reliabilitycomputation) and ADT TLCSC 3.6.2.1 (Applic).

" User Interface: This is implemented by function TLCSCs 3.6.1.1 (Main), 3.6.1.2 (Initialize),
3.6.1.3 (Store info) and ADT TLCSC 3.6.2.2 (User Interface).

3.3. Memory and Processing Time Allocation

Not specified.

3.4. Functional Data Flow

The functional data flow for the Reliability Analysis Tool is shown in Figure 13. Boxes in the
diagram represent individual function and ADT TLCSC's, the latter occupying the bold-lined boxes.
Arrows between boxes indicate data flow, and have been annotated to show the primary data that is
passed from one TLCSC to another.

3.5. Global Data

-71-

Koy

alloc: allocation
pe: process ingenvironment
annots: anrcc(ations
reliab: reliability measures
done: termination flag
command: user command

d-appInitilizeFunction TLCSC

p(...)4-. ADT instance names

(UQ U - PP.a"0cCompMte Rlability(apl

Com Tpe clien, Obeo)n* ye fcopnnt *)
Com p aine STIG;eNaeofcietorojet*

Ploc amet PrSTRING; (* ae of poc, eso/de)

Com Names = SET OF Cornp Name;on

Str Inme ofte ojcslins omrisina n dsp pliaio.

(*Te ede wightind Ces te pRbability o callrom

ne appCliOcatn compe tof anothrpon abtarnnocto

ComL~~~~~arne~ ~ 72TIG;Nm.f letorojc

of the calling component. *)
criticality REAL

(* This specifies the criticality/necessity of this call *)
END;

CallInfo = RECORD (* info about calls for a particular UOD *)
name : CompName;
annots : ARRAY [CompNames] of annot;

END;

CallSet = SET OF Call-Info;

Reliability: REAL;

CompInfo = RECORD
name : Comp_Name;
kind : CompType;
extspec_ref,
extbodyref : ExternalFile;
reliability : Reliability;

END;

Comp_Set = SET OF Comp_Info;

Processor = RECORD (* Information about a processor *)
procname : Proc Name;
proc_reliability : Reliability;

END;

ProcEnviron = RECORD (* Information about the processing environment *)
processors : SET OF Processor,

(* set of processors comprising the processing environment *)
comm reliability: MATRIX [Proc_Name, ProcName] OF Reliability;

(* reliability of the communication medium *)
END;

MAPPING FROM SET X TO SET Y = (* Total function from X to Y.
Abstract model: a set of pairs <x,y>.
Operations: For x in X and y in Y:

assign(x, y) : associates v with x.
lookup(x) returns y : returns associated y for x *)

Allocation = MAPPING FROM CompNames TO SET OF ProcName;
(* The allocation of objects/clients to processors ir the system *)

Command = (def alloc, def annotations, focus, compute, save, quit, reset);
(* User commands *)

- 73 -

3.5.2. Global Variables

(*** INPUT VARIABLES ***)

names : CompNames;
(* names of clients/objects in the application *)

calls : CallSet;
(* calls (probabilities & criticalities) for the entire application *)

procenv : ProcEnviron;
(* processing environment: nodes and comm links *)

alloc Allocation,
(* given allocation for this reliability estimation *)

head • Comp_Info;
(* handle for entire application *)

(*** ADT INSTANCES ***)
ui : UI;

(* the user interface ADT instance *)
appl : Applic;

(* the Application ADT instance *)

(*** GLOBAL DATA STRUCTURES ***)
done: BOOLEAN;

(* termination flag : to exit from tool *)

(*** OUTPUT VARIABLES ***)
reliab : Reliability;

(* the reliability estimate *)

3.6. Top Level Design

3.6.1. Function TLCSCs

3.6.1.1. Main TLCSC

3.6.1.1.1. Identification

This is the main function in the CSCI. It encapsulates the primary control loop for the tool. Follow-
ing initialization, it iteratively processes a user command and provides a visual feedback of the changes
made by displaying the current state of the application.

3.6.1.1.2. Inputs

There are no inputs to this function. In the case of this function, inputs would be command-line argu-
ments provided at the time of tool invocation.

3.6.1.1.3. Local Data

Local data for the main program is global data for the tool, and global data is identified above in sec-
tion 3.5.2.

-7', 4 o

3.6.1.1.4. Processing

BEGIN Main;

Initialize(ui, appl, head, aoc, procenv);
LOOP

ui := UI$display(ui, Applic$gencomps(appl), Applic$gen_calls(appl), alloc, proc env);
Process command(ui, appl, head, alloc, procenv, done);

UNTIL done;

END Main.

3.6.1.1.5. Outputs

No outputs are generated by this function within the CSCI. The external interface generated, in
essence, by this function is described in section 6.1.

3.6.1.2. Initialize TLCSC

3.6.1.2.1. Identification

This function initializes the User Interface and obtains, from the user, necessary input parameters.
These parameters may come from the Project Database (PDB). The application model (Applic ADT
instance) is created, using the component names and calls for the entire application.

3.6.1.2.2. Inputs

None.

3.6.1.2.3. Local Data

comps : Comp Names; (* just the NAMES of components *)
calls : Call_Set; (* calls between the components *)

3.6.1.2.4. Processing

BEGIN Initialize;

ui := UI$init0;
(* initialize the User Interface ADT *)

<names, calls, proc env, aloc> := UI$getinputs(ui);
(* get desired input parameters => from the PDB or directly from the user *)

appl Applic$create(comps, calls);
(* create an instance of the Applic ADT to model the application *)

head UI$getcoi(ui);
(* get place holder for entire application *)

END Initialize;

3.6.1.2.5. Outputs

ui : UI;
appl Applic;
head Complnfo;

-75-

alloc Allocation;

procenv : Proc environ;

3.6.1.3. Store info TLCSC

3.6.1.3.1. Identification

This function stores the current application information in the PDB. This information includes com-
ponent reliabilities, call annotations, component allocation, and processing environment attributes.

3.6.1.3.2. Inputs

ui • UI;
appl • Applic;
head: Comp Info;
alloc • Allocation;
proc-env : Procenviron;

3.6.1.3.3. Local Data

None.

3.6.1.3.4. Processing

BEGIN Storeinfo;

tmp-appl = appl;
(* store current sub-system *)

appl := Applic$focus(appl, head);
(* get the entire application *)

ui := UI$save(ui, Applic$gencomps(appl), Applic$gencalls(appl), alloc, proc-env);
(* store relevant information in the PDB *)

appl = tmp_appl;
(* reset current sub-system *)

END Storeinfo;

3.6.1.3.5. Outputs

None.

3.6.1.4. Process-command TLCSC

3.6.1.4.1. Identification

This function processes a single user command at a time. These commands allow the user to manipu-
late system parameters (such as the allocations and call annotations and processor reliabilities), focus
on a particular set of components in the application, save the current parameters, and perform reliabil-
ity computations.

3.6.1.4.2. Inputs

ui : UI;
appl • Applic;

- 76.

head: CompInfo;
allc :Allocation;
proc-env : Proc-environ

3.6.1.4.3. Loucal Data

None.

3.6.1.4.4. Processing
BEGIN Process-command;

CASE UI$comntand(ui) OF
def-appi:(define a new application *

<zcomps, calls, proc -env, alc> := UI$get-inputs(ui);
appi Applic$create(comps, calls);
head :=Applic$gen-coi(Applic);

def annotations:(define/modify annotations on the call graph *
appi : Applic$annotate(appl, UI$getannots(ui));

def-ablc: (* define/modify allocation *
allc :=UI$get-alloc(ui);

def environ : (* define/modify the processing environment *
proc Tenv := UI$get_environ(ui);

compute : (* compute the reliability of appi *
Reliability_ cornputation(appl, alloc, proc -env);

focus : (* on application component named by user *
appi : Applic$focus(appl, UI$get -coi(ui));

reset : (* reset appi. to include the entire application *
appi : Appllc$focus(appl, head);

save : (* save the current status of appi *
Store info(ui, appi, head, allc, proc-env);

quit : (* exit loop *
done := TRUE;

END;

END Process-command;

3.6.1.4.5. Outputs

ul UI;
appI Applic;
allc :Allocation-,
done: BOOLEAN;

3.6.1.5. Compute-reliability TLCSC

3.6.1.5.1. Identification

This function implements the reliability analysis algorithm. It performs the actual reliability computa-
tion for the application component under study in the context of the current allocation and processing

-77.

environment.

3.6.1.5.2. Inputs
componentof interest : Comp_Info;
compsinfo : Comp Set;
calls :CallSet;
aoc Allocation;
procenv : ProcEnviron;

3.6.1.5.3. Local Data

None.

3.6.1.5.4. Processing

BEGIN Computereliability;
(* Perform reliability analysis on the application. The return value will be the expected limiting availa-
bility for the specified component of interest (for example, a particular client). It will be a function of
the call relationships which involve that component (directly or indirectly), the assignment of each of
these components to processors, and reliability characteristics of the processing environment.
We assume that processors fail independe:ntly and the physical environment is a shared medium.
When a processing node is down, all the application components assigned to that node are unavailable.
Hence, a limiting availability can be associated with the software components in the system. For con-
venience, the following variables are defined:

pi= probability that Unit -OfDistribution (UODj) is available

Pi = probability that processor i is available

Ai = availability of sub-system rooted at UOD

= set of processors in the system that host the UODs in the sub-system rooted at I

= set of application components in the sub-system rooted at I (compsinfo : UODs)

a :Allocation (a mapping of UODs -+ processors)

UNAVAIL (i) = unavailability of sub -system rooted at UODj

C, = probability of UODj calling UOD,

f0 UOD, and UODJ are co -assigned
B, = ! otherwise

.78.

I = the component -of -interest

The term R, (a), expresses the reliability for the system/sub-system rooted at UOD as a function of a
given assignment a. This tool computes R, for the given assignment a.

The system is modeled as a directed graph. The nodes in the graph represent the UODs in the system
and the edges represent call relationships between these UODs. These edges are annotated with call
probabilities that reflect semantic dependencies between these UODs. For example, Cij is the probabil-
ity that UODj calls UODj during the execution of UODj. These probabilities specify the dependency
of one UOD on another.

Initially, if the shared medium is assumed to be fully reliable and all the call probabilities are 1, the
sub-system rooted at UOD, will be unavailable if any UOD it calls directly or indirectly is unavailable.
The reliability of the sub-system rooted at UOD, as measured by its expected availability is given by:

Ir, I
A, = l Pj (System Reliability)

i=1

i.e., the system is unavailable if any of the processors in the system fail. Still keeping the call proba-
bilities at 1, if the failure probability of the shared medium is considered, the availability of the system
is computed by

tr, I
A, Pm x [-I P, (System Reliability)

i=1

where P,. is the failure probability of the shared medium. As every remote call between 2 UODs has
to go via the shared medium, its failure always results in the failure of system (or sub-system).

Now if the call probabilities are less than 1, the effect of the called UOD's unavailability on the
caller's availability is reduced. A transitive call probability of UODj calling UODj in the selected sub-
system can be computed. This probability expresses the dependency of UODj on any UODJ in the sys-
tem. All possible traversal paths from i to j and the annotations - probabilities - on these edges have
to be considered in computing this transitive call probability. Let

DO = dependency of UOD, on UOD,

A matrix with these dependencies can be constructed. For the given UODJ, a vector D, is computed
for all 1:j:51921 and j -. At this stage, the call graphs are assumed to be acyclic. An embellishment
to the algorithm to handle cyclic call dependencies will be discussed later in this section.

compute dependency_matrix(1, D) => D, vector
I

begin
traverse the call graph and number the UODs;
for all j such that j e fl, do

if j = I then return Di, = 1; continue;
compute PATH = the set of paths from UOD, to UODt;
let k e PATH;
let lk = f-(all call probabilities in path k);

-79.

let Dij = P(UODj being called directly or indirectly by UOD,);
IPATH I

compute Dj = 1 - r" (1 - k);
k =l

end
return;

The call graph constructed for the application can be mapped onto the processing environment. The
allocation specifies the assignment of each UOD to one of the processors in the system. Hence, the
dependency on each of the UODs in the system can be translated to a need for the different processors
in the system/sub-system. Let

Nj = reliance on processor j

An array of these reliance or need values can be computed to denote the system/sub-system's need for
each of these processors. If UOD, is the component-of-interest:

computeneedmatrix(I, N) => N, matrix
{

begin
let a(I) = p,;
for all j such that j e 1 do

ifj = p, then Nj = 1; continue;
let COASSIGN(j) = set of UODs assigned to processor j;
let N, = reliance on processor j;

JCo ASSGNLj)l
Nj = I - 1I (I-D k);

k=1

end
return;

}

The reliance matrix will reflect the application sub-system's dependence on the hardware resources in
the processing environment. Given the failure probabilities of these processors (Pi), the availability of
the system can be computed. We now have the failure probabilities of the processors and a measure of
the degree of dependency of the system on each of these processors.

computeavailO => availability A,

begin
let 8 be the states of the system (combination of processor failure states);
for each j such that j e 8 do

let F(j) be the probability of the system being in state j;
let UP be the set of processors that are UP;
let DOWN be the set of processors that are DOWN.
let F, be the failure probability of processor j = 1 - Pj;

rrup I rIDOWI
Fj)= L -l P l I i=

[l- k80 -

-go0.

let PN(j) be the cumulative reliance on the unavailable processors in system state j;

compute PN(j) =1 - iDOWNI - Nk];
k=1

end;
let U, = sub-system unavailability;

j-1

A, = - U,;
end
return

The different states of the system are determined by considering the combination of the possible states
of the processors in the system. The probability of the processing environment being in each of these
states and its effect on application availability is computed. These system states are weighed by the
corresponding reliance (need) probabilities.

The above algorithm estimates the availability of the system conservatively. While not exact, the algo-
rithm errs by always under estimating the availability of the system. The following embellishments to
the algorithm result in a more accurate estimate.

Let UODj, UODj and UODk be three UODs in the system and let Ak = 1, i.e., UODj and UODk are
assigned to the same processor, say n. Moreover, let a path from UODj to UODj include UODk. If
processor n is unavailable, UODk is inaccessible. UODj is, therefore, inaccessible. Hence, while com-
puting the need for processor n, (N), if we consider the contributions of paths Dik and Dij, we will
over estimate the reliance of the system on processor n. Hence, when computing the transitive call pro-
bability Di, contributions made to it by paths going through UODk are ignored. This is to ensure that
N. is not over estimated.

This algorithm correctly estimates the effect of single failures on the system's availability. While the
probability of concurrent multiple failures is very small (given reliable processors and independent
failure rates), their effect is more accurately estimated by applying corrections to the algorithm in cer-
tain special cases.

For example, let a system consist of three UODs, UOD5 , UODj and UODk. Let them be assigned to
three processors a, b, and c respectively. Moreover, let UODj be on every path from UODj to UODk.
Let UODj be the component of interest. In computing system availability, if processor b is down,
UODk on processor c is unreachable. Hence, given processor b is down, the availability of the system
is unaffected by the state of processor c. To account for this, a compensating correction has to be
applied.
To accommodate cyclic calling graphs, the effect of these recursive call relationships on the depen-
dency values Di. has to be correctly determined. With the edges in the graph representing call relation-
ships, a reachability matrix can be computed to determine the transitive call dependencies. From this,
the cycles in the graph can be detected and treated properly.

END Compute-reliability;

.81.

3.6.1.5.5. Outputs

reliab : Reliability; (* estimated reliability *)

3.6.1.6. Reliabilitycomputation TLCSC

3.6.1.6.1. Identification

This function initiates the reliability analysis on the appropriate application information in the context
of the current allocation and the processing environment. It then updates the application information
with the reliability measure.

3.6.1.6.2. Inputs

appl" Applic;
alloc Allocation;
procenv : ProcEnviron;

3.6.1.6.3. Local Data

reliab : Reliability;

3.6.1.6.4. Processing

BEGIN Reliabilitycomputation;

reliab := Computereliability(Applic$gen coi(appl), Applic$gencomps(appl),
Applic$gencalls(appl), alloc, procenv);

(* compute the reliability of the sub-system rooted at coi *)
appl := Applic$update(appl, reliab);

(* update the appropriate Applic ADT instance with this reliability measure *)

END Reliability_computation;

3.6.1.6.5. Outputs

appl : Applic;

3.6.2. ADT TLCSCs

3.6.2.1. Applic TLCSC

3.6.2.1.1. Identification

This ADT models the application. In particular, information about components and their relationships
is maintained in a form suitable for the graph-type operations to be performed.

3.6.2.1.2. Abstract Model
component-of interest : CompInfo;

(* root of the identified subsystem *)
applic components : Comp Set;

(* application components: nodes of the call graph *)
invocations: CallSet;

(* call relationships : edges of the call graph *)

.82 -

3.6.2.1.3. Operations
create: CompNames, Call_Set --> Applic;

(* Creates an AppModel. *)
focus: Applic, Comp_Name --> Applic;

(* Establish CompName as the current component of interest in the Applic. Component sets
and call sets generated from gen calls and gencomps, below, will be with respect to this com-
ponent, i.e. the subgraph with CompName as the root. The set of components, then, will be
those components called directly or indirectly by CompName, and likewise with the call set. *)

annotate: Applic, CallSet --> Applic;

(* Weights in the given CallSet are incorporated into the Applic. *)

gen-coi: Applic --> CompInfo;

(* Returns the current component of interest. *)
gen-comps: Applic --> CompSet;

(* Generates the set of components called directly or indirectly by the component of interest. *)

gencalls: Applic --> CallSet;

(* The set of calls in the Applic, relevant to the current component of interest, is returned. *)

update: Applic, Reliability --> Applic;

(* Associate the Reliability with the current component of interest in Applic. *)

3.6.2.2. UT TLCSC

3.6.2.2.1. Identification
This ADT encapsulates the user interface. It manages the display device and input devices. It also
encapsulates the interface with the PDB in support of tool I/O needs as dictated by the user.

3.6.2.2.2. Abstract Model
screen : UserInterface-Display;

3.6.2.2.3. Operations
init: --> UI;

(* Create a user interface. *)

getinputs: UI --> <CompNames, CallSet, Proc Environ, Allocation>;

(* Obtain 4 input parameters from the user, through the PDB if specified by the user. *)

get_annots: UI --> CallSet;

(* Get a set of annotations from the user. *)
getalloc: UI --> Allocation;

(* Get an allocation from the user. *)
getenviron: UI --> Proc_Environ;

(* Get the processing environment *)
getcoi: UI --> CompInfo;

-83.

(* Get the current component of interest (coi) for the user. *)

display: UI, Comp_Set, CallSet, Allocation, ProcEnviron --> UI;

(* Display the Applic to the user showing components, calls, annotations, reliabilities, the alloca-
tion and the processing environment. Refresh the screen to reflect changes in appl's state. *)

command: UI --> Command;

(* Return a user command. *)

save: U1, Comp Set, CallSet, Allocation --> UI;

(* Save the current application information ia the PDB. This includes the application com-
ponents, calls with annotations, component reliabilities, the allocation and the processing environ-
ment. *)

3.7. Adaptation Data
This tool executes on a Sun workstation and uses the Sunview windowing system for the user inter-
face. Since the tool is developed as a Cronus application, the host workstation environment must run
the Cronus distributed operating system.

6. Notes

6.1. Interfaces
As an application development tool, the Reliability Analysis Tool interfaces with the following external
entities:

" Cronus distributed operating system: The tool, like any Cronus application, may require access to
various Cronus system object managers.

" Project Database: The PDB is a specific Cronus object manager to which the Reliability Analysis
Tool interfaces for various I/O needs. The data items potentially obtained from the PDB include
information about the components in the distributed application, target processing environment
reliability attributes and the allocation of application components to processors. The reliability
measures computed for various application components along with possible modifications to the
allocation of application components to processors and information about the components in the
distributed application may all be stored in the PDB. The interface itself is defined by the opera-
tions exported by the PDB object.

6.2. Requirements Specification
This subparagraph provides a condensed version of the requirements specified for this CSCI. These
requirements are derived directly from the System/Segment Specification identified in paragraph 2.

6.2.1. Purpose
The Reliability Analysis tool accepts input data through a convenient user interface and generates out-
puts indicating the reliability, measured in terms of limiting availability, of distributed application com-
ponents.

6.2.2. Inputs

- 84 -

6.2.2.1. Distributed application

A distributed application is composed of one or more client modules and the set of objects to which
the clients pass messages, directly or indirectly. Two aspects of the distributed application are required
input:

" The names of these application components (clients and objects).

" Call relationships between the components. For each component, there is a list of the objects
called (potentially) by that component.

6.2.2.2. Hardware Reliability Characteristics
The hardware environment consist of up to 400 host computers and communication subsystems con-
necting the host computers. Each host computer is identified by a unique name; each communication
subsystem is identified by the set of host computers it connects.

The reliability characteristics of each hardware component, including host computers and communica-
tion systems, is provided. Within the context of this tool, reliability is measured in terms of the limit-
ing availability of components, and it is assumed that components fail independently. The limiting or
"steady-state" availability, A, is defined as:

A = M'TTF / (MTTF + MTTR)

where MTTF is the mean-time-to-failure and MTTR is the mean-time-to-repair of the component.
Note that this quantity (which is in the range [0.. 1] and is unit-less) is independent of the nature of the
underlying distributions of failure and repair times.

The limiting availability is specified for each host computer in 'he environment and for each communi-
cation subsystem. .sh 4 "Allocation of Application Components"

For each application component identified in section 1.1. a list of host computers is given indicating
the host computers upon which that component will execute. Each component's list contains the name
of at least one host computer, and contains more than one if and only if it is replicated.

6.2.2.3. Subsystem Specification

A designation of the application subsystem for which reliability analysis will be performed is provided
by naming the desired application component (object or client). Naming an application component
defines a subsystem of application components through the transitive closure on the call relationships
specified in section 1.1 for that component. For example, naming an object which calls two other
objects, neither of which calls any other objects, defines a subsystem consisting of those three objects.

6.2.2.4. Subsystem Annotations

A subsystem, once defined, can be viewed as a directed graph. The edges in the graph indicate that
one application component may call the other. This means that the first object depends on the second
object in the sense that availability of the first component depends on the availability of the second
component. However, a variety of runtime factors influence the actual degree to which one
component's availability is influenced by another.

" An object may continue to execute successfully after realizing that a called object is not available.
This eliminates the called object's effect on the calling object's availability.

* An object may not always call another. During execution, there may be a low probability that
one object actually calls another. Therefore the negative effect of the called object's availability
on the caller will be reduced.

-85 -

Each edge in the subsystem graph is annotated with a number in the range [0..1] reflecting the above
two factors. For example, a I indicates that the called object is necessary and that it is called every
time. A 0 indicates that the calling object can continue executing despite failure of the called object's
host. A value, say, of 0.5 indicates that the calling object calls the other object 50% of the time that
the caller is invoked.

6.2.3. Output

The tool generates the expected availability of the application subsystem. This quantity is based on the
reliability characteristics of the hardware environment, the placement of application components within
that environment, and the patterns of interactions between the components of the subsystem.

6.2.4. User interface

The tool provides an interactive interface. Where possible, inputs for the tool are taken from the pro-
ject database (PDB) on the basis of user-supplied references to required PDB entities; the toot provides
a tool-specific front end to the PDB. Inputs which by necessity or choice are not obLined from the
PDB are provided either directly to the tool or indirtctly with the user providing references t, data
contained in files in the file system. Inputs not from the PDB arm checked for consistency. Outputs
from the tool may be saved in a file or in the PDB, at the user's discretion.

-86.

MISSION

of
Rome Air Development Center

RADC plans and executes research, development, test and
selected acquisition programs in support of Command, Control,
Communications and Intelligence (C31) activities. Technical and
engineering support within areas of competence is provided to
ESD Program Offices (POs) and other ESD elements to
perform effective acquisition of C1I systems. The areas of
technical competence include communications, command and
control, battle management information processing, surveillance
sensors, intelligence data collection and handling, solid state
sciences, electromagnetics, and propagation, and electronic
reliability/maintainability and compatibility.

