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1 Introduction

Confidentiality security is concerned with restricting the disclosure of in-
formation in systems. One way of achieving this is to use an information
flow policy which defines the different classes of information (for example,
classified, secret, etc.) that can exist in the system and a flow relation which
describes how information may flow between these classes. System entities
(users, processes, files, etc.) are considered to be the sources and sinks of
information, and each is bound to a security class from the flow policy. This
binding is interpreted as: if entity A is bound to class a then A may source
information of class a or higher and may sink information of class a or lower.
A system is considered multilevel secure if all flows between entities main-
tain the flow policy. Note that there are special cases where certain entities,
such as trusted subjects, are allowed violate this requirement in a controlled
manner.

Traditionally information flow policies have formed lattices[8], with good
reason as it is easy to build state based enforcement mechanisms. However.,
it may be desirable to enforce non-transitive information flow policies. That
is, a flow policy where information is allowed flow from class a to class b,
and from b to class c, but not from a to c. An example of such a policy
is reclassification: there are three classes of information, secret. classified.
and downgrade; classified is allowed flow to secret: secret is allowed flow
to downgrade, and downgrade is allowed flow to classified, but secret is
not allowed flow (directly) to classified. A (trusted) security officer, cleared
to downgrade, may read secrets and reclassify as downgraded information,
which may flow to classified. Further examples of reflexive flow policies will
be given in in this report.

Another desirable generalisation for flow policies concerns the consis-
tency of the join operator (the lowest upper bound). Traditionally, if in-
formation may flow from a to c and from b to c, then the join of infor-
mation of class a and b may flow to c. If this assumption is removed, we
have a means of describing aggregation flow exceptions: a user of class c
is allowed to sink information of class a or class b, but not their aggre-
gate. That real aggregation policies exist, is demonstrated by Brewer and
Nash in their popular Chinese Wall paper[6], and supported with further
examples by Meadows[20]. Many models for aggregation policies have been
proposed[6,16,19,12]. We seek a unified definition of an information flow
policy that includes aggregation properties.

Separation of Duty rules are normally associated with integrity policies

4



and models[7,15,21]. For example, a cheque must be proposed by a manager,
and cleared by an accountant, or vice-versa, before it can be written. How-
ever, separation rules can also apply to information flow (confidentiality)
policies. For example, a user of a dial-up database may only view database
information if it is accompanied by charges information. This type of sepa-
ration flow policy can be thought of as dual of an aggregation policy: only
the aggregate may flow, not the individual classes.

This report proposes a single structure that can be used to describe infor-
mation flow policies that may have transitivity, aggregation and separation
exceptions; a high water mark mechanism is developed for enforcing these
policies.

Section 3 examines the traditional notion of an information flow policy.
Section 4 proposes a structure, a conglomerate relation, that can be used
to describe our general information flow policies. Relations and operators
over flow policies are developed that allow flow policies to be compared,
composed and abstracted. Ve use the Z notation[23] as a convenient syntax
for flow policies.

Section 5 introduces how conglomerate relations can be used to capture
aggregation and separation exceptions in systems and in information flow
policies, and defines, the abstract requirements for a secure system.

Section 6 shows how an arbitrary flow policy with no separation (of duty)
exceptions can be enforced using the high water mark mechanism proposed
in [11]. With a high water mark mechanism, each system entity is bound to
a class that represents the join of all classes of information it has sunk to
date. Thus as a system progresses, high water marks rise. Traditional high
water marks rise to a single imit[26], in our model there is a set of possible
limits. The policies that can be enforced by this model include quasi-ordered
policies, and reflexive policies. We show how the mechanisms simplify for
these cases to: the traditional lattice flow model[8] with static binding for
quasi ordered policies; the interval confinement model[10] for reflexive flow
policies. The interval confinement model can be viewed as a generalisation
of models that associate an interval of classes with system entities, such as
partially trusted subjects[3,22], and high water marks with limits[26]. This
leads us to the conclusion that we can classify the type of confidentiality
policy enforced by these systems as reflexive. Section 7 gives examples of
reflexive and aggregation flow policies.

Section 8 develops an alternative high water mark model that can en-
force any separation and/or aggregation information flow policy. As before,
every entity has a high water mark that may rise according to the informa-
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tion it sinks. However, to implement separation, water marks may not rise
linearly-certain class combinations may be invalid, representing separation
exceptions. Section 9 gives examples of separation flow policies.

Section 10 considers the relationship between separation and aggregation
policies, and £hows how complementing one can give the other.

The structure used to describe an information flow policy can also be
used to describe an integrity policy. Section 11 investigates the possibility
of using conglomerate relations to describe integrity policies.

Section 12 contains a summary and discussion of the work described in
this report. The appendix contains all the necessary proofs of properties
proposed. The Z notation[23] is used throughout this report.
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2 Lattices

Lattice structures will be used in this Daper to describe information flow
policies. This section gives a Z formulation of their structure.

The set of all partially ordered sets is

posets[X] == {P: X -- Xjid P C P A
P-P-1 =idPA

P. P = P}

A partially ordeed set is reflexive, antisymmetric and transitive. Given
poset P, then a .- + b E P means that a is less than or equal to b in P, (a is
dominated by b in P).

Given a po.et P, then an element o of this set will have a set of upper
bounds (everything that dominates it in P) given by u-bounds P a, and a
set of lower bounds given by 1-bounds P a.

=[x]
u-bound_,
1-bound_ : posets[X] - (X - TX)

VP : posEts[X] *
u-boundP = {a Xja E dom P . a - ran({a} < P)}
l-boundP = {a: Xa E domPe a -- dom(P > la})}

Functions u-bound and I-bound can be generalised to give the upper and
lower bounds that are common to a set of elements of a poset:

[X]
U-bound_,
L-bound_ : posetsfX] - (PX - TPX)

V P : poscts[X] 0

U-boundP = {A PIXIA C domP e A n fu-boundPOAD)
L-boundP = {A :PXIA C dom P * A n fll-boundP(AD}

We can now define what a lattice is. A lattice is a partially ordered
set such that every set of elements have a unique upper bound that forms
a lower bound on all other upper bounds on the group of elements: and a
unique lower bound that forms an upper bound on all other lower bounds



on the group of elements.

lattice[X] ==
{P: posets[X]j
VA: PX e A C domP

#(U-boundP A) l (L-boundP(U-boundP A)) = 1 A
#(L-boundP A) n (U-bondP(L-boundP A)) = 1}

A lowest upper bound operator (lub) can be defined on a lattice such
that it returns the lowest upper bound of a non-empty set of elelnints.

[X]
E)_ : lattice[X] -X -o X

V L : lttice[X]

(E L = {A :P 1X; a :A
(U-boundP A) l (L-boundP (U-boundP A)) = {a}
e A a}

A binary version of this operator can also e defined where ab = E{a b}.
Given some set of elements from a lattice, the m.ximunis on this set, is

the set of components from this set such that there is no other component
in the set that dominates these maximums. Note that if the lattice is total
(i.e.. every element either dominates or is dominated by. every other element)
then there is just one maximum. There is a similar definition for minimums.

[X]
maxs.. : Iattictc[x] - PA - 'PX

V L :I-atticE[X]
maxsL= {A. B:PXIB C A A A C doni(L > B) A

ran(B < L)n. A = B 0.4 - B}

A powerset lattice of a set of elements is a lattice with components drawn
from the powerset of the elements; a partial ordering defined by subset, and
bound operators defined by union and intersection.

P :X - lattice[p'x]

VA: PX
PA = {B, C : PXIC E PA A BC C e B - C}
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A powerset lattice iiistributive, i.e., its bound operators distribute over
o.ie another, and com plement able, i.e., every component has a complement.
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3 Secure Information Flow

An information flow policy can be thought of as defining the different classes
or kinds of information that can exist in a system and how they may prop-
agate. An example of this is the military flow policy which defines a set of
information flow classes that represent the sensitivity of information in the
system, and an ordering relation that describes relative sensitivity. Let us
introduce the set of information classes as the basic type

[classes]

Rather than thinking of information classes as just security classes (as
in the traditional sense), they can be thought of as a way of associating
a simple representation of meaning with information in the system. We
shall see later how the information itself is represented in the system. For
the moment, we impose the traditional restrictions[SJ on a policy, in that it
should form a lattice. For a given flow policy, P E lattice[classes], if a , b
is a maplet of P. then it means that information of class a is permitted to
flow to class b.

To apply a flow policy to a system we must, in some way, relate the
information in the system to the security classes of the policy. We chose to
do this by viewing the system in terms of system entities and the informa-
tion flows between these entities. The entities of a system are the sources
and sinks of information of interest in the system. They might correspond
to subjects and objects such as those in [2]. or Cie more abstract system
interfaces of [13]. Introduce the set of all such entities as the basic type

[en is]

The functionality of a system will be abstracted to just flows between these
entities. For the moment we will not concern ourselves with semantics for
information flow, except that it is a relation between entities. Define the set
of all possible abstracted systems to be

systems P Pents - ents

systems = JS : ents - entsl id S C S}

If S E systems is a particular abstract system, then e - f E S means
that information can flow from entity e to entity f over the system S. The
only requirement we will place is that information flow should be at least

10



reflexive: information can always flow from an entity to itself. Note that
our characterisation of information flow is over the lifetime of the system;
we will show later how a flow semantics might be given in terms of states

and state transitions.
The relationship between a system and a flow policy can be established

by binding each entity to an information flow class from the policy. The
class of each entity represents the class of information that the entity is
allowed to sink and source. The system is regarded as secure so long as the
multilevel security requirement is maintained, i.e.,

if information flows from class a to class b in a system implies,
that a - b must hold in the policy.

Thus we define a secure system by

Secure-System
S : systems
P : lattice[classes]
/: ents - classes

dom3 = .dor S
ran/3 C U dom P

V e,f : ents *
e f E S > 3e - f E P

The schema states that a system S is secure by flow policy P, given the
entity binding function 3, if every flow between entities in the system is
allowed by the flow policy. The other restrictions ensure that every entity is
assigned an information class from the policy. Entity confinement is partial
as it only maps entities of the system to information classes.

It is attractive to use lattice based information flow policies, as they
lead to simple flow control mechanisms[8] that are inductively defined over
secure states and secure transitions. An example of this is the star property
and ss-condition[2] (under strong tranquility); the tranquil Bell LaPadula
model can be thought of as an 'unwinding' of our abstract notion of a secure
system.

In [9] Denning shows how an arbitrary reflexive and transitive (quasi
ordered) ordered set can be transformed into a lattice. This allows us to
weaken our requirement that a flow policy should form a lattice, to one
requiring that it form a quoset. Further weakenings of these requirements
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can be made. However as we shall see throughout this report, dynamic
binding mechanisms are needed to enforce these more general policies. In
[10], a method for enforcing non-transitive flow policies is proposed. This
approach also results in simple inductive requirements for secure states and
secure transitions which result in an implementation mechanism that is not
unlike a high water mark mechanism[25]. Furthermore, non-transitive in-
formation flow policies are useful, and examples are given in [10,12].

Flow policies, whether transitive[8] or not[10], are assumed to have a
consistent class combination operator E (giving a lowest upper bound on
lattice classes), where if information of class a - " flow to class c and infor-
mation of class b can flow to c, then their agj :gate a E b should also be
allowed flow to c. This initially seems reasonable-a person who is allowed
read access to one file or another should also be allowed read both-and it
contributes to the simple flow control mechanisms. However, in [6,16,19,12,
confidentiality policies are described, whose essence is that class combina-
tion does not form an upper bound operation; a consultant is allowed read
information about bank A or bank B, but for conflict of interest reasons, not
both[6]. Therefore, we propose to drop the requirement that an information
flow policy should have consistent class combination operator (i.e., lowest
upper bound operator). However to do this, it is no longer sufficient to rep-
resent an information flow policy as allowable flows between single classes.
We need a new structure for a flow policy in which we enumerate not only
flows between classes, but also flows between groups of classes.

12



4 A Theory of Conglomerates

In this section we will describe a structure that will be used to describe
information flow policies. The structure, a conglomerate relation, will be
defined generically as it will also be used to describe information flows in
systems.

When we use a simple relation to describe a flow policy there is an
implicit assumption that if a may flow to c and b may flow to c then the
join of information of classes a and b may also flow to class c. To remove this
assumption, we will need to enumerate whether information formed from the
combination of a and b can flow to c. Thus the information flow relation will
be a relation of type (Pclasses) - classes. This relation describes whether
a conglomerate of information classes (i.e., information drawn from a set of
classes), may flow to some class.

Define the set of valid conglomerate relations to be

=[x]
IZ : P(PX - X)

Z= {P: PX - X
Va :X * a E UdomPUranP '

fdom P > {a) {a}}

For some conglomerate relation P : RZ[X], then A - a E P means that
the conglomerate of elements A is dominated by a in P. This is akin to
saying that the 'join' of elements of A is dominated by a. We can use
this structure to capture relations that do not have consistent bounds. For
example, we may have maplets {a,c) - c and {b,c} - c. but not have
{a, b, c) - c. The constraint on the set 7 [X] is such that an element is
always dominated by itself, regardless of what conglomerate may be involved
(a form of reflexivity). We shall see later when we consider the set 7%f[classes]
that these are reasonable restrictions to make for flow policies.

A conglomerate relation from 1Z[X] is defined over a subset of its base
type X. Define the alphabet of conglomerate relation to be this set. Since
we have for any P E 7?[X]

ran P = Udom P

the alphabet of P is simply ran P, and thus,

13



[ix]
FIX : Z[X] -PX

a-_ = ran_

Some useful definitions on the set of conglomerate relations are

[X]
T-,
.L_ : ,x - T[X]

VC:PX.
TC = {a :xa E C {a} - a)
.C = {A PX; a: Xa E A A AU C C *.4 - a)

Relation TA gives the smallest possible conglomerate relation for an alpha-
bet A, and _IA the largest. Enumerating all possible relations can be rather
tedious, so the operator -. should be used when possible

=[x]

_ -,_:PX x X - 'RIX]

VA: P.X; a: X
A -- a = TA U {A': 'PXA' C A * A'U {a} - a)

A'-- a = (TA U {a))U {A U{a) '- a)

Example 1 As already seen, we can use conglomerate relations to describe
relations that do not posses consistent upper bound operations. Consider a
conglomerate relation R with alphabet {a, b, c} and maplets:

fa} -. a {b>-. b Jc}I-..c
la, c)},c f{b. c) -c

or defined in shorthand as,

R= ({a)-, c)U(b}-, c)

This relation does not have a consistent upper bound (join) on elements a
and b: element a is dominated by c, element b is dominated by c, but the
conglomerate {a, b, c) (which represents their join) is not dominated by c.
A

14



A conglomerate relation P : 7Z[X] contains an aggregation exception if
there are conglomerates A, B : 'PX, and a : X, such that

A#a EPA B E PaE PAAUB- a.P

In the last example, relation R contained an aggregation exception. A dual
to an aggregation exception is a separation exception, where there are con-
glomerates A, B : PX, and a : X such that

AUB aE PA (A- a P V B- a P)

4.1 A Framework of Conglomerate Relations

In this section we will show that the set of conglomerate relations 7Z[X]
forms a lattice. Appendix A contains all the appropriate proofs.

The abstraction operator allows us to hide certain elements of a conglom-
erate relation. If P is a conglomerate relation and C some set of elements,
then P@C gives P abstracted to elements of C. This can be thought of as
viewing P though the 'eyes' of the window C.

[NJ
-Co-: RZ[X] x PX - 1Z[X]

VP : ?[X]: C: PX 0
P@C = {A : PX * A n C - .4) - (P > C)

If C - a appears in relation P. then CnaoP -- a appears in P_&C iff a E C.
The abstraction operator always returns a valid conglomerate policy, Some
laws for abstraction are: given P, Q : P[X]; B., C : PX, then

o(PlC) = oPnC
P, {} = {}

P&CoP = P

(P0B)ATC = P(B n C)

PCQABCC PAB C Q¢C

Example 2 A conglomerate relation has alphabet {a, b, mid) and is defined
as

R = {a) , mid U {a, mid) ., b

15



(a total ordering with a < mid < b). If element mid is hidden we get,

R0{a, b} = {a} . b

(a simple ordering a < b). If R = {a} -, mid U {mid} -- b (i.e., non-
transitive), then RC{a, b} = T{a, b}. AL

Example 3 A conglomerate policy with alphabet {a, b, c} is defined as

R = {a,b}'--c

= Ta, b, c} U {a, b,c} -- c}

Note how only the conglomerate of a and b can be dominated by c. If R is
abstracted to {a, c} we get

R~{a,c) = c

reflecting that when R is viewed though a window {a, c), the viewer cannot
see how b can affect the relation. and thus does not know when maplet
{a, c} -- c is observed that it was a's join with b that made it possible. A

There is a partial ordering relation E defined between conglomerate re-
lations. If P E Q then we say that Q is more restrictive than P, in that
any maplet that is not allowed by P will also not be allowed by Q. Note
however, that Q may introduce additional elements.

[X1
_ -_: n7?X] - R[X]

VP,Q 1z[X] 0

oP C oQ A QCaP C P

Conglomerate restrictiveness and abstraction are monotonic with respect to
each other: given P, Q : 1Z[X]; B, C: PX, then

BC CAPE Q PgB[_ Q C

Restrictiveness is rather like a combination of refinement and concealment[14].
If P E Q, we use abstraction (concealment) to hide any new elements in-
troduced by Q, and then check that the result is a subset (refinement) of
P.
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The set of conglomerate relations 1Z[X] forms a lattice with lowest upper
and greatest lower bound operators defined by U and l respectively.

=IX]
- U

n: IZ[X] x JZ[X] - 7Z[X]

V P, Q: TZ[X].
PU Q = {A : PX; a: XIA U {a} C aPU aQ A

(a E aQ A An aQ - a E Q) A
(a E aP A n aP - a E P)}

P n Q = P@(aP n aQ) u Q (aP n aQ)

Note that for P, Q : TZ[X] we have,

a(PUQ) = OPUaQ

a(PfQ) = oPnoQ

Example 4 Define the relations

P = {a}-- b Q = {b}-.-a
R ={bc}-'a S ={b}.c

The join of P and Q must preserve the restrictions of both policies, and thus
P U Q = {a, b}, i.e.. no flows are possible except reflexivity. In the join,

PU R = T{a,b,c}U {c}-,- a

the maplet {a. b, c} 1- a is not included, since it introduces a conflict with
{a, b} -- b E P, when viewed through the alphabet of P. If one policy
introduces new classes, then any flow involving those classes are valid, as
long as they do not violate the original policy. Thus

PUS= {a} ,--, bU {a,b} ,- cU {c),, a

A

The set of all conglomerate relations with the same alphabet A forms an
algebra that is a sublattice of 1Z[X] with restrictiveness defined by superset;
U defined by intersection; fn defined by union, and universal upper and lower
bounds defined by TA and -LA, respectively. Since it forms an algebra, each
conglomerate relation P has a complement defined by P.

17



[X]
_: 1Z[X]- Z[X]

V P IZ[X] a
P = TaP U (.LcP - P)

Since P is complement operator, we have

PUP = TaP
P n = _LaP

4.2 Classes of Conglomerate Relations

The set of conglomerate relations that do not possess any separation excep-
tions is defined as

-s[X] =={R : IZ[X]IVA,A': PX; a: Xe
A - A' a E R =€,

J{A a, A'- a) C R)

We call ls[X] the set of aggregation relations. Conglomerate join is closed
over aggregation relations.

The set of conglomerate relation that do not posses any aggregation
exceptions is

7"-A[X] == {R : [X]IVA.A' : TX; a : X e
{A ,- a, A' -. a} C R

A U A' -- a E R}

We call this set the set of separation relations. Conglomerate join is closed
over separation relations.

The set of conglomerate relations that posses neither aggregation nor
separation exceptions is

IZo[X] == JZA[X n s[X]

We call this set the set of reflexive relations. It is easy to show that any
relation R E 1Z°[X] can be represented by a simple reflexive relation X -

X. Conglomerate join is closed over reflexive conglomerate relations, and is
equivalent to the definition of join for reflexive relations defined ;n [10]

18



Finally, the set of quasi ordered conglomerate relations (reflexive, tran-
sitive, and no bound exceptions) can be defined as

quoset[X] == {R : T oVa, b,c : X 9

fa) , bU{b}-. cC R
{a)-s C C R}

4.3 Inconsistent Lower Bounds

The definition of a conglomerate relation cannot capture relations that have
inconsistent lower bounds: if a is dominated by b and a is dominated by
c, then it implicitly implies that a is dominated by b and c. If we wish
to capture relations that have inconsistent lower bounds it is necessary to
enumerate lower bounds as conglomerates, not single components. Thus a
conglomerate relation would be of the form P'X - PX. By modelling incon-
sistent lower bounds, we can capture flow relations of the sort: information
is allowed flow from a to b, or from a to c but not both.

In this report we develop a high water mark mechanisms that can en-
force flow policies described as conglomerate relations. The mechanisms we
propose are currently suitable only for enforcing conglomerate relations with
consistent lower bounds. i.e., policies from R[classes]. Thus. in this report
we will not consider policies that mayv have inconsistent lower bounds.

19



5 Separation and Aggregation as Flow Proper-
ties

In this section we will show how a conglomerate relation might be used to
represent the flows and flow policy for a system. We will illustrate how
conglomerate relations can capture aggregation and separation (of duty)
properties. Section 5.3 will define what is meant by secure information flow.

5.1 System Abstraction

A conglomerate of entities is used to represent a set of entities that source
some information, in concert. Define the set of all possible abstract systems
to be

systems == R[ents]

Given some system S : systems, then for E :Pents and f : ents, E f E S
means that information can flow from conglomerate of entities E to entity
f over the lifetime of the system S. This can flou relation is an abstraction
of the functionality of the system and can capture more properties about
the information flow than the simple entity to entity relation described in
section 3.

How does the constraints defined on conglomerate relations reflect rea-
sonable requirements for information flow in systems? The 'reflexivity' re-
quirement ensures that information can always flow from an entity to itself.

Example 5 A simple system has two entities A and B. which correspond
to a file and a user. This system will permit information to flow only from
the file A to user B, and not in the other direction. The flows in the system
can be captured by

Simple = {A}-,-. B

This system contains no aggregation or separation exceptions. Z

Example 6 A system maintains coordinate information in files Long and
Lat, and has a single user, SysOp. The system enforces an aggregation
policy such that the system operator may only view one of the files. The
information flows in this system can be captured by schema Coord-System.
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Coord-System
S : systems

S = {Long) ,,, SysOpU
{Lat} , SysOp

We will use the schema notation as a convienent way of packaging up an
abstract system.

In this system, there is no flow from conglomerate {Long, Lat} to SysOp,
implying that, while the individual flows can occur, a flow from the longitude
and latitude file (an aggregate) is not possible.

This policy is not a particularly practical example of an aggregation
policy, but gets across the idea of aggregation in a simple manner. Lunt
[17], argues that by appropriate normalisation such a policy should not be
expressed in terms of aggregation. However, Meadows[20] shows that there
are useful policies that are best expressed as aggregation policies. We will
examine these policies in later sections. A

In addition to representing aggregation scenarios (as in the last example).
conglomerate relations can also capture separation of duty: a flow EUE' , f
is allowed, but E - f is not. Separation of duty policies are normally viewed
as control or integrity policies. and examples of these will be given in section
11. The next example example looks at separation arI information flow.

Example 7 A university examinations system maintains two files about
students: Health, which gives (some) details on student health, and Exams.
which gives their marks from recent exams. The Head of department scans
though both files and determines the final mark for each student. College
policy dictates that the health file must be consulted, so that a 'borderine'
student with health problems may be considered favourably. Thus, the
system must implement a form of separation policy, in that the head may
look at both files in concert, but not individually. However, whether the
head acts appropriately on the health information cannot be controlled-
the policy only ensures that (some) health information was consulted. The
flows of such a system might be described by

Results-DB
S : systems

S = {Health,Ezams} '- Head
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The presence of the flow {Exams, Health} to Head, implies that conglom-
erate information from exams and health can How to the head, however
individually exams and health cannot flow to the head. Separation (flow)
policies will be considered in section 8.

5.2 Information Flow Policies

An information flow policy defines the flows that are allowed between the
classes of information in the system. The structure of the flow policies
discussed in section 3 imply the existence of consistent upper and lower
bound operators. This implies that if information is allowed flow from a to
c and from b to c, then an aggregate or join of information of class a and
b is allowed flow to c. However, as has already been pointed out, we may
wish to design systems where this does not hold, i.e., a may flow to c. b
may flow to c, but a and b may not flow to c. Thus we will describe an
information flow policy as a conglomerate relation, which will allow us to
enumerate how collections of information may flow.

A conglomerate of classes is us, i to represent information that has orig-
inated from the classes in the co1,iomerate. in concert. Define the set of
information flow policies to be

policies == R[classc.,]

Give~i a policy P : policies, A - b E P meaiis that information is allowed
flow from class conglomerate A to class a.

The constraints on conglomerate relations also apply to policies: it is
implicitly assumed that information may always flow to itself, regardless of
the conglomerate.

Example 8 The traditional military ordering can be described as

Military
P : policius

P = {classified) - secretU
{classified,secret} -, top-secret

Note how every permitted conglomerate flow must be enumerated. Z

Example 9 Continuing with the coordinates example, a flow policy can be
defined to describe the appropriate flow restrictions Let classes lat and
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long represent latitude and longitude information, and let op represent the
class of information that an operator is allowed handle. The flow policy can
be captured as

Coords-Pol __

P : policies

P = {long} ",- op U {lat} -, op

In this policy latitude or longitude information is allowed flow to class oper-
ator, however, an aggregate of longitude and latitude (information sourced
from class lat and long in concert) is not allowed flow to the operator. /n

Example 10 A privaLe hospital information system processes information
of class recs (medical history); treat (treatments given to patients); acc
(patient accounts); dir (shareholder information); and mgmt (information
handled by management). How information may flow between these different
classes is described by the reflexive relation in figure 1. Note how treat

recs dir

mgrnt

treat acc

Figure 1: Flow policy HOSPITAL

information is allowed flow to recs or mgmt, but fo, confidentiality reasons,
canrot flow to class dir. Similarly, acc information is not allowed flow to
recs (for profitability reasons). Management is allowed coordinate all this
information given these constraints.

This policy (taken from [11]) can be described as the conglomerate rela-
tion
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Hospital
F P : policies

P = {treat,acc) , mgmtU

{treat ,mgmt} -,- recU
{accmgret} -,.* dir

Example 11 Users of a dial-up stock market database must be aware of
charges when they access stock information. This can be captured by the
separation policy

_Stock-Pol

P : policies

P = {charges} - userU
{charges,stock} '- user

A user is always allowed sink charges information, but may only sink stock
information as a conglomerate with charges information. L

When describing a separation flow policy, one must realise that the sep-
aration is based on flows, not control. Thus we call them separation flow
policies. In the example above the user is allowed sink information based
on both stock and charges information. This user can in turn forward this
aggregate information to any other user. Separation policies are considered
further in sections 8 and 11.

5.3 Secure iformation Flow

Recall the multilevel security requirement for information flow policies as,

if information can flow from class a to class b in a system implies
that a -- b must hold in the policy.

This can be restated for conglomerate flow polices as,

if information can flow from class conglomerate A to class b in a
system. implies that A * b must hold in the policy.

24



The relationship between a system and a flow policy is established by
binding each entity to a information class from the policy. The class of each
entity represents the class of information that the entity is allowed sink and
source. Thus the confidentiality policy can be captured by

FMC- Conf-Pol
P policies
I-: ents - classes

ran CtP

Function /3 gives the information class from the flow policy P for each
entity of the system.

A system is secure so long as the multilevel security requirement is main-
tained. Thus a secure system can be defined by

FMC-Securc-System
FAIC-Conf-Pol
S : systent"

doma 3- = aS

VE : Pents; f : ents e
E - fE S

OdED- Of E P

This schema states that a system S is secure by a given confinement policy
if for every flow from entity conglomerate E to entity f then the (conglom-
erate) class of the information sourced by E may flow to the class of f. The
restriction dom 3- = aS ensures that every entity of the system S has an
information class.

Example 12 Consider the coordinates examples (6 and 9). The system
Coord-DB is secure by policy Coord-Pol, since every possible flow of the
system is allowed by the policy. Suppose the system contained a trojan
horse that generated flow from {Long,Lat} to Op, then the system would
no longer be secure since

UJ3(j{LongLat,OP}[) {long,lat,op}

30p = op

and the flow {long,lat,op) - op is not allowed in the policy Coord-Pol.
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Note that our definition of a secure system is based on ensuring that
flows between individual entities are secure, as opposed to ensuring flows
between all entities of one class to all entities of another class are secure.
In the coordinate example, we do not consider the possibility of two opera-
tors colluding: one operator reads longitude information, and another reads
latitude information. This can be avoided by using entities to represent per-
sistent knowledge environments[19]. If it was felt that operators in the same
building would collude, then we could represent the building's network as an
entity of class op. As soon as somebody on the network accesses longitude
information, the network's class changes, and nobody in that building can
subsequently access latitude information.

5.4 Choosing a Flow Semantics

In the following sections we will look at how we can construct general mech-
anisms for enforcing arbitrary conglomerate flow policies. We shall see in
section 8 that it is not practical to implement state mechanisms that can
enforce any conglomerate policy, and therefore we seek to collect a selection
of mechanisms that can enforce interesting classes of policy. Section 6 looks
at a general mechanism for enforcing aggregation policies, and section 8,
separation policies.

One of the simplest classes of flow policies are conglomerate relations
that form quasi ordered sets. We know that such policies are easily enforced
using traditional state based flow models. The following holds for systems
that enforce quoset policies,

VFMC-Secure-System 9
P E quoset[classes]

3 Secure-System'
P = P' A 0- = 3'_ A
S E quoset~ents] A S' 1_ S

This theorem tells us that given any secure system that enforces a quoset
flow policy, then it is always possible to add extra (secure) flows to the sys-
tem so that the system also forms a quoset. Therefore if we are interested in
only enforcing quoset policies, we need not look for an information flow se-
mantics that can capture transitivity, aggregation or separation, exceptions.
Similar conclusions can be made about reflexive policies (the semantics need
not express aggregation or separation properties), and aggregation and sep-
aration policies.
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6 Implementing Aggregation Policies

In [11,12] a model was proposed that could be used to enforce aggregation
policies. We will now demonstrate how this model, the group confinement
model, can be used to enforce any conglomerate policy that does not posses
separation properties (i.e., policies from 1Rs[classes]). The group confine-
ment model is implemented using a generalisation of a high water mark
model.

6.1 FMG: Group Confinement Model

In the group co:,finement model the confidentiality policy is described by
a lattice flow policy and entities are bound to classes from this lattice as
described below.

FMG-conf-pol[ C]

L: lattice[C]

fl.-: ents - C
3T,-: ents- P. 1 C

dom 3. = dom ,3 r,

V e : dom 3± e
Ii±e E dom(L L> 3 T)

Lattice L gives the flow policy. Its components can be instantiated as classes
or if desired as sets of classes if a powerset lattice policy is used. Every entity
is bound to a set of intervals from L (all with the same lower bound 3_), and
the upper bounds are given by the set 3T,. This entity binding is interpreted
as:

* entity e may source information at class O± or higher. and

" may sink information at any class a E OT, or lower.

This binding is subject to the multilevel security requirement. The group
confinement model can be defined in abstract terms as:
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FMG-Secure-System[ C]
FMIG-conf-polF-S. systems

dom. ±_ = aS

V E : Pents; f : ents s
E~-fES=*

E IOLED E dom(L > i3,f)

A system is considered secure if for every conglomerate flow E f in the
system, then the class of information generated by E (i.e., the lowest upper
bound of the class of information each e E E can source) must be permitted
to flow to entity f (i.e., there must be some class in OTf that dominates
the class of the source information).

Note how this characterisation of a secure system can enforce aggregation
exceptions: an entity may be allowed sink information of class a or class b
but not both if their join (a e b) is not dominated by some component of
O3T,. We shall see later how the shape of the bindings of entities determine
the class of policy enforced.

We now propose a function that transforms an arbitrary aggregation
policy into a lattice, plus sets of intervals for each class (of the form defined
in FMG-conf-pol). Given some aggregation policy P : TZ-s[classes] and
a, b E aP, then b forms a bound on a, if it dominates a in the policy, and
every thing that conglomerates involving b can flow to, then a can a"'o flow
to. i.e., if a < b where

(P)a < b € {a,b)- bE PA

V B : Pclasses; c : classes .

B U {b)-- c E P = B U {a, b) c E P

Define the set of all bounds of class a to be

bounds P a = {b : classesl(P)b < a)

We now define a mapping from aggregation policy P to intervals of a pow-
erset lattice PakP by
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41.-:policies -i. (classes -4- P classes)
41)T,-: policies -*+ (classes -#- PPclasses)

V P :policies 0
P E 7Z~s[classes]

t.P= {a: classesla E arP. a . bounds P a) A
ODTP = {a classesia EctP 0 a -~maxs(dom P C> fa))

The mapping is flow preserving, in the sense that for any aggregation policy
P: Rf classes], we have

V A : Pclasses; b :classes 9
A U f{b} 9 aP =::

(A ~- b E P) * 3 B E "DT, P be * U'I'-AD C B

Note the similarity between the relation

UIP-LAD C B

and the test for security in the FMIG-Secure-System schema. We can enforce
any aggregation policy using the group confinement model and the transfor-
mation above were: an entity e bound to class a in the aggregation policy
P : R-s[classes] will have

OT f 4 ~TP a

with a powerset lattice policy P,,QP. Thus systems enforcing aggregation
policies can be characterised by

Aggregation-Securc -Systemn
FM G-Secure-Syst m [P classes]
FMIC-conf-pol

P E 7?-s[classcs]

L = PaP

OT, -= 0- 9 TP)

Since 4 is flow preserving, it follows that any such (secure) group con-
finement system is also a secure conglomerate system, i.e.,

V AggregatIion -Secure-System.9
FMC- Secure- System
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The flow preserving mapping maps an aggregate policy P to a powerset
lattice P~oP. If P has a large number of components, then P aP will
be even larger. We can improve on the mapping using the optimal flow
preserving mapping proposed by Denning[9] as follows

1. Given a aggregate policy P, create a partially ordered set Q with
components

'P± P(aPDUUtT. POrPD

and an ordering relation defined by subset.

2. Denning gives a terminating algorithm that takes an arbitrary poset (a
subset of a powerset lattice), and adds additional components so that
each element has a unique lowest upper and greatest lower bounds.
Use this algorithm on the poset Q, to give the lattice to be enforced
by the high water mark model.

Example 13 Consider the coordinates example 9. Table 1 gives the flow
preserving mappings for classes op, lat, and long. The lattice to be used by

class I 41 Coords 4tTCoords

op {op} {{op,long}.{op,lat}}
long {long) {{long}}
lat {lat} {{lat}}

Table 1: Bindings for Coordinate Flow Policy

FMG can be either the powerset lattice P.{op,lat,long), or the lattice in
figure 2, generated using Denning's transformation on the poset generated
by t. I

6.2 iFMG: A State based Refinement of FMG

We will chose a system model that is an abstraction of the traditional manda-
tory access control models. Since we are concerned with just tile mechanisms
for enforcing the confidentiality policy, the model is considerably stripped
down: we have a fixed set of entities throughout the the life of the system,
and only flows due to accesses are modelled, not actual accesses.
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{ op,long,lat }

{op,long} {op,lat}

{ long} { } {lat}

Figure 2: Transformed Coordinate Lattice

Firstly, we identify two kinds of system entities: memorable (ncmb1)
and memoryless (menless)

memble : Pents

Ynemblc n memless =

A memorable entity is an entity that can 'remember' information sunk to
it, and is liable to forward that information at any later state. An example
of a memorable entity is a file: information written to a file can be retrieved
later by performing a read. A memoryless entity is an entity, which having
sunk information will, in essence, forget the information and is relied on not
to source that information at a later state. An example of a memoryless
entity is a trusted subject: it is trusted not to source (inappropriately) any
information sunk. In the original definition[ll] of the group confinement
model only memorable entities were considered.

A state of a system captures the flows that could occur due to the accesses
during that state. These 'access flows' are drawn from the set:
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acc-flows : P(ents -- ents)

acc-flows = {A : ents .-. entsl
doam A C memble U memless A
idA CA A
A t> memble A C A}

Information flow is assumed to be reflexive. Information flow through mem-
orable entities is assumed to be transitive: if entity e writes to memorable
entity f and entity g can read entity f, then there is also a flow from e to g.
A memoryless entity does not necessarily 'propagate' information from its
sources to its sinks. Since we are modelling only flows due to accesses, we
assume that there are no aggregation properties on memorable entities: i.e,
if information can flow from entity e to memorable entity f and from entity
g to entity f, then there there is also an implicit flow from conglomerate
{e, g} to f. If f is memoryless, then we assume that it forgets one while
viewing the other. Thus we choose to represent the flows as a simple relation
between single entities. Section 8 will consider a more elaborate scheme for
modelling flows at a state.

A secure state in the IFMG model is defined as

_Secure-State[ C]

FG-conf-pol[4,h,,m/3_L± 6 1,ns/13TJ

A : acc-flows

dom A = dom hm

V e,f : ents *

f - E A 1> memble
('ihumC bh.nf E L

e 1- f E A t> memless =>

bh,,jre E dom(L t> 61,n,f)

Each entity e has a current high water mark given by hm e1 . This can be
thought of as representing the class of information that the entity has sunk
to date. The set 6lim, gives the limits to which the high water mark may
rise. The flows for the current state are given by A. A state is secure if,
for every flow e - f E A, (memorable f) then the class of information held
by e must be dominated by the class of f. If f is memoryless, then any

'We use 6 for any variable that can change as a system progresses
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information sunk is immeaditaly 'forgotten', and thus its high water mark
need not reflect the information it has sunk. Therefore the flow is secure so
long as f may sink the information.

The initial state does not permit any flows except reflexivity

Initial-State[C]

S ecure-State

A = idA

When a system makes a transition from one state to another (as a result
of some access requests), the lattice policy and system entities must remain
fixed. However, the high water marks are allowed to float upwards to reflect
the information they may hold. As the high water marks rise, certain limits
may have to be removed so that the bindings are still valid (i.e., so that the
blim dominate the high water mark). Note that the bindings of memoryless
entities remain static as they 'forget' between states. In [11] we show how
to calculate the new high water marks (for memorable entities) in a precise
manner. This is reflected in the definition of a secure transition:

Secure- Trans(C]FASecur -State [C]

L = L'

domA = domA'

V C ents e
fE (dom S.m)flmemblf

e5 ), = 6hmg dom A' > {e}jD A
C 61m,, e f dom({ ,e} < L)

e E (dom 6h,m) n menless
hu, e= 6 hwme A

b Iims = 
6 Imse

This mechanism provides us with the ability to enforce aggregation policies:
a high water mark may drift towards any limit, but as it does so, certain
other limits are removed, and the entity may no longer access information
at those classes.

A system is characterised by an initial state; a state transition function
and a set of reachable states. The system is secure if the basic security
theorem holds:
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Theorem 1 A system is secure if it starts from a valid initial state, and
if every state transition achievable by the transition function is a secure
transition. Such a secure system can be characterised by

iFMG-Secure-System[ C]
Initial-State

E : PSecure-Trans

1

Example 14 Consider the coordinates example 13. Table 1 gave the flow
preserving mappings (page 30). If the system operator is memorable then,
from the initial state he may enter a state with access to longitude informa-
tion, or a state with access to latitude information. He may not enter a state
with access to both. If he enters a state with access to longitude informa-
tion, his high water mark needs to rise to match the class of information he
has sunk, i.e., class {op,long}, and this results in the removal of {op,lat }
from his 6 hl, ensuring that latitude information cannot be accessed.

Note that in this simple example, it is the class of the user (the system
operator) that changes, and thus there is no oppertunity for a covert channel
due to denial of access. However, suppose the system operator owned a
file (memorable) that had class op. This file, if shared, can be used to
create a covert channel: the system operator could first read some longitude
information; a trojan horse will then access latitude information and if the
coordinate is above the equator, it writes it to the operator's file, if it is
below the equator it does nothing. By testing for denial of access on the
file, the operator can determine what hemisphere the coordinate is. This
problem is addressed further in [11]. A

6.3 Formal Basis for iFMG

To justify that an iFMG system is secure, in the sense of the abstract
model, it is necessary to prove that iFMG-Secure-Systern is a refinement
of FMG-Secure-System (and thus a suitable refinement of a secure conglom-
erate system enforcing aggregation policies). Thus we need to construct an
abstraction mapping between the abstract FMG and the state based iFMG
model, and prove that a system secure by the state based model will also
be secure by the abstract model. This has already been done in [11], and it
is not pursued further.
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6.4 A Framework of High Water Mark Models

When enforcing an aggregation policy using the group confinement high
water mark model, the binding of an entity at any state can be pictured as
in figure 3. The entity is allowed sink any information that appears under
4,,m, and source information at or above 6 kwm. The area between 6 Awm and

ra- ..- b b-i-,-,,,e = maxs dom P > {/3e)

6 htuwm

Figure 3: High Water Mark for Aggregation Policies

blim, gives the allowable future high water marks for the entity. As the high
water mark rises, the set of possible future high water marks diminish. If
6hm heads towards the limit a, then the limit at b will eventually disappear,
so that the entity no longer has a potential to read information at this class
(b). This forms the basis for the implementation of aggregation policies.

Policy join (U) is closed over aggregation policies, implying that we can
build a policy to be enforced by the group confinement model, based on a
collection of smaller aggregation policies. An example of this is the Chinese
wall policy in example 17.

6.4.1 Reflexive Policy Model

If a flow policy P is reflexive (i.e., a member of 7R[classes]) then each
class will have only a single maximum in 4-rP, since we know that for
A, B : Pclasses; c : classes then

(A - c E P) A (B - c E P) = A U B #- c E P

and we have

DT, P a = {Udom P t> {a}}
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Given this, the conditions on states and state transitions simplify -consider-
ably: each entity is bound to a high water mark and a single static limit. The
resulting state machine model is the interval confinement model described
in [10].

Policy join (U) is closed over reflexive policies, implying that we can
build a policy to be enforced by the interval model, based on a collection of
smaller reflexive poicies.

The binding of each entity can be pictured as in figure 4. An entity can

e= I{Udonm P t> {3e}}

Figure 4: High Water Marks for Reflexie Poicies

sink anything below 6 j, and can source anything above 6hwm. The high
water mark may rise to any class in the area bounded by this interval. As
the high water mark rises, there are (lower) classes that the entity can no
longer source to. However, the entity can always sink everything under the
single 6 Im, (i.e., there are no aggregation exceptions).

This class of high water mark mechanism is similar to the high water
mark mechanism adopted by the Compartmented Mode Workstation[26].
with all entities memorable. Thus ,-:e conclude that the policies enforced by
the CMV can be classed as reflexive. The high water marks of memoryless
entities are static, and the. can be compared to partially trusted subjects[3].

6.4.2 Quasi Ordered Policy Model

If the policy to be enforced form a quoset, then the flow preserving mapping
simplifies even further to, for P : quoset[classes]: a : classes.

4. Pa = UdomP >{a}

4 T, Pa = {UdomP C>{a)}
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which corresponds to the Birkoff mapping[5]. that maps a quasi ordered set
to a powerset lattice. In this case the high water mark model corresponds to
the tradibional lattice model, with each entity bound to a static class drawn
from a lattice. Binding is static since bh,,m is already at the limit, and thus
cannot rise.
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7 Examples

7.1 Reflexive Policies

Example 15 Consider the simple military policy in example 8. Suppose we
wish to extend this by introducing two new classes admiral and general.
Class admiral has no restrictions on the information classes it may sink
and/or source. The only restriction on class general is that it cannot sink
top-secret information. This policy can be defined as

_Mil-2_
P : policies

P = Military U .f{admiral} LU {general} , top-secret

Observe the use of conglomerate join: any flow is permitted so long as it does
not violate the three operand policies Military, ..L{admiral) (no restric-
tions on an admiral), and {general} -,.- top-secret (general is dominated

by top-secret).
This policy can be transformed to a lattice policy by the mapping 4,

calculated in table 2. The application of Denning's transformation on these

class a 4tL Mil-2 a DT Mil-2 a

classified {cga} {c,g,a)
secret {c,s,g,a} {csg,a}
top-secret {c,s,t,g,a} {c,s,t,ga}
general {c,g,a} {c,s,g,a}
admiral {c,g,a} {c,s,t,g,a}

Table 2: Bindings for policy Mil-2

classes give a simple total ordering (lattice),

{c,g,a} {csg,a} C {c,s,t,g,a)

which is simply a re-labeling of the original military lattice. If an admiral A

is bound to class admiral, then in the model he gets bound to the interval
pair ({c,g,a}, {c,s,t,g,a)). This entity A is memoryless-he is trusted
to handle admiral information appropriately, and therefore may simulta-
neously sink and source any class. If the general creates a (memorable)
file, it would initially be assigned class admiral, and if secret information
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were sunk to that file, its high water mark needs to rise to reflect the file's
contents.

Thus any memoryless entity bound to class admiral is like a trusted sub-
ject bound to the interval classified, top-secret; a memorable entity bound
to class admiral is like an object with an initial high water mark classified,
that may rise to top-secret. A memoryless entity bound to class general is
like a partially trusted subject who is trusted to handle classified and secret
information appropriately. A memorable entity bound to general is like an
entity with an initial high water mark of classified, that is allowed rise
to the limit secret. I

In the last example the new policy Mil-2 can be thought of as a refine-
ment of Military, i.e., we have

Military C_ Mil-2

It is possible when developing a policy to end up with an unintentionally
restrictive result. For example, if a policy was defined as

Mil-3 = Mil-2 U {top-secret} -, secret

we have Mil-2 C_ Mil-3, but this new policy no longer permits information
flow from secret to top-secret. Thus, when building complex policies it is
worth investigating how much of the original policies are preserved. For
example 15, we have

military = Mil-2_oMilitary

which gives reassurance that the new policy preserves the original intentions
of policy Military.

Example-!a-The hospital pilicy (example 10) is transformed by the flow
preserving mapping given in table 5 to the lattice with components

f)}, ft), fa), t m ,f m r)
{t,ma}, {dm,a}, {t,ma,drl}

where each class is denoted by its first letter. In this example, a hospital
administrator would be bound to class mgmt. For the policy to work effec-
tively, the administrator should be modelled as memoryless: he is trusted to
handle treatment and accounts information appropriately, i.e., not forward
treatments onto shareholders. Any files he may create should be memorable
so that their high water marks reflect the information class they contain. L
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class 4±Hospital OT' Hospital

treat Wt ft)
acc I{a} I{a}
mgmt {m} {t,ma}
recs {t,m,r} {t,m,r}
dir {d,m,a} {d,m,a}

Figure 5: Flow Preserving Mapping for Hospital-Pol

7.2 Aggregation Policies

Example 17 A stockmarket database holds confidential information on dif-
ferent organisations. A unique information class ('dataset') is used to denote
the information of each company. Consultants are allowed access the infor-
mation held in the database. We have,

Orgs : Pclasses
cons classes

where Orgs, is the set of all organisation information classes, and cons
denotes the class of information that may be handled by consultants.

Organisations can be organised in terms of conflict (of interest) sets. Two
companies occur in the same conflict set if they have conflicting interests.
A conflict set is of type

conflict-set == P1 Orgs

A number of (possibly intersecting) conflict sets may defined over a set of
organisations. For example, a bank might also have an insurance business,
and thus may appear in both the banks and insurance conflict of interest
sets.

The information in a conflict class must be kept disjoint: one bank is
not aflowed find out anything about another bank. A consultant is allowed
access to the information on any one bank, but no more. Thus if a consultant
is modelled as memorable, the conflict policy for a conflict set C can be
defined by conflict-pol C, where

conflict-pol_: conflict-set - policies

V C : conflict-set o
conflict-pol C = T(C U {cons})U

U{c: C s {c} cons}
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A consultant is allowed consult for any number of organisations so long
he preserves the conflict policy for every conflict of interest class, i.e., he
can consult for any group of organisations so long as they have no conflict
of interest.

Suppose there are three conflict of interest sets for banks, insurance
companies and oil companies. The flow policy in this case can be captured
by the Chinese wall

_Chinese-Wall ____
P : policies

Banks, Oil, Insurance : conflict-sets

P = conflict-pol BanksLi
conflict-pol OilU
conflict-pol Insurance

Z

Example 18 The chinese wall policy in the last example was only con-
cerned with constructing a wall around the consultant, and did not consider
how organisations that do not have conflicting interests should relate to each
another. While conflicting classes are disjoint in Chinese-Wall, information
from classes that do not conflict can flow freely between one another. For
example, if a, b E Banks, and c E Oil such that a, b are not conflicting with
c, then {a, b} - c is a valid flow. Therefore. we propose a modified chinese
wall where all organisations are disjoint, as

_China-2 .

Chinese-Wall[old-P/P]
P : policies

P = old-P U T(Banks U Oil U Insurance)

The conglomerate join operator is useful for joining policies with differ-
ent alphabets together. However, before using, the policy specifier should
be clear on its semantics. In example 17, conflict-Pol only considers the
flow restrictions between a conflict set and a consultant. When two con-
flict policies are joined all flows are allowed that do not violate the original
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two policies. Thus, since a single conflict policy does not express any re-
strictions between classes of different conflict sets, the resulting chinese wall
reflects this. Thus a policy specifier should always remember that the flow
restrictions described in a flow policy extend only to the alphabet of the
policy.

Example 19 In any realistic implementation of a chinese wall, there will
exist sanatized information to which the conflict policy need not apply. De-
fine the class of such information as

I sanatized : classes

Sanatized information has no flow restrictions on it, and thus a new Chinese
wall can be defined as

China-3_

Chinese-wall[Old-P/P]
P : policies

P = old-P U IL{sanatized}

In this policy information from all banks are allowed flow to class sanitized,
and class sanitized is allowed flow to consultant, but transitivity does not
follow. Therefore this policy can only be successfully implemented by re-
classification: A memoryless entity of class sanitize (typically a trusted
person) reads all conflict set information, adds sufficient noise etc.. and

reclassifies it as sanitized, so that it can be sunk (as sanitized) by any con-
sultant. Note that 'reclassification' refers, not to an actual class binding
being changed, but a (trusted) entity sinking information and sourcing it
at a lower class. A memorable entity of class sanitize is also allowed sink

all conflict set information, but in doing so its high water mark rises and it
becomes inaccessible to the consultants. /A

Example 20 A telephone directory holds the names and numbers of in-
dividuals from a number of different departments. The information about
each department (telephone numbers) is assigned a unique class. A quan-
tity aggregation policy can be specified which states that no user is allowed
access to the numbers of more than limit departments.

We can define a general quantity aggregation policy as
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qty-agg(_, (Pclasses x N x classes) -+- TZ_.s[classes]

V A : Pclasses; lim : N; c : classes e lim > 1
qty-agg(A, lim, c) = { A' : Pclassesl

A' C A A #A < lir A U {c} t cl

Where, give a set of classes A, natural number N and a class c, then
qty-agg(A, N, c), specifies that conglomerates drawn from A, not larger than
N may flow to class c. Thus, if Depts give the set of departments and user
the class for a user, then policy qty-agg(Depts, 10, user) ensures that a user
may not discover the telephone numbers of more than ten departments.

The conflict policy in a chinese wall, is a quantity aggregation policy
where a consultant may only read one (1) dataset.

A high water mark implementation of this policy will keep track of tele-
phone numbers propagated between users (using the system). If one user
accesses accounting and personell numbers, then this is reflected in his high
water mark. When this user forwards information to another user, these
numbers will be propagated and the latter user's high water mark will re-
flect this.

A variation on this policy might allocate limits based on the clearance
(classified, secret, etc) of the user. This is left as an exercise for the reader.
IL

Example 21 The granularity of aggregation in a conglomerate policy ex-
tends to to information classes, not entities. Thus if we wished to generahse
the last example to the traditional telephone-book example: no more that
limit telephone numbers may be released to an individual; we need a sepa-
rate class for each number:

Numbers : Pclasses

The policy is simply qty-agg(Numbers, limit, user). Due to the potential
size of Numbers, it would not be realistic to directly implement such a pol-
icy using our high water mark model. But the high water mark model is just
one possible refinement of the abstract conglomerate model. We could pick
a restricted class of policies T N[classes] that expressed only quantity aggre-
gation policies and then build a new state model where entities' high water
marks are numbers which reflect the number of telephone numbers sunk so
far. This model would not be as precise as the group confinement model,
since when one user forwards information to another, the destination's high
water mark must be updated to the sum of the source high water marks.
Precision is lost because the) may share some telephone numbers. /A
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Example 22 A large corporation is divided into a number of divisions, and

divisions into departments.

I Depts, Divs : Pclasses

It is possible construct a conglomerate polcy that described all the allowable
flows between individual departments and divisions (and their conglomer-
ates). An alternative approach is to use military style classifications to asso-
ciate degrees of trustworthiness with employees and how much information
they are allowed access.

A classified employee is only allowed access to information about at most
three (3) departments, and one (1) division:

Class-Emp = qty-agg(Depts, 3. classif ied) U
qty-agg(Divs, 1, classified)

Note that there is no constraint on what departments and/or division is
accessed.

A secret employee is permitted access to at most six (6) departments
and two (2) divisions

Sec-Emp = qty-agg(Depts, 6, secret) U qly-agg( Divs, 2, secret)

A top-secret employee is permitted access to all departments and divi-
sions

Top-Emp = Dirs U Depts ,,.- top-secret

The overall corporate security policy is thus

Corporate-Policy
P : policies

P = Class-Emp U Sec-Emp U Top-EmpU
Military

Note that the military polcy is still enforced. However, suppose the classi-
fied user has accessed three departments, and the secret user has accessed six
other, different, departments, then the classified user may no longer forward
information to the secret user.
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In all of these examples we concerned ourselves with what information
a user may sink. We did not consider what information users may source.
For example, it is desirable that classified users from example 22 should be
allowed source departmental information. Thus we could redefine

Class-Emp =( qty-agg( Depts, 3, classif ied)U
qty-agg(Divs, 1, classif ied))U
U{d : Depts * Depts U classified -* d)

which allows a classified user source information to any department. Note
that we cannot express any aggregation exceptions on how many different
departments classified may source to: our framework does not cater for
inconsistent lower bounds.
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8 Implementing Separation Policies

In section 6 we described a general high water mark model that could enforce
any aggregation policy from Z._s[classes). In this section we will describe an
alternative high water mark model that can enforce any conglomerate policy.
It is not practical to implement this model in its entirety, and therefore
section 8.4 considers useful classes of separation (and aggregation) policies
that have reasonable enforcement mechanisms.

8.1 Separation Flow Policies Revisited

A separation exception in a flow policy extends to all information at the
classes involved. The granularity of separation of duty is at the class level.
and not necessarily at the entity level. For example, a policy might state
that information may flow from class lo to class hi, and from class hi to
class lo only in the presence of a security officer so. This policy might be
captured as:

P ={o, SO) hi
{hi,so) l- lo

The conglomerate of information {hi,so), may flow to class 1o. Suppose
there are entities H, L, and SO, representing a high user, a low user and
a security officer. The high user can send hi information to the security
officer, who in turn forwards it to the low user. This is a valid flow since the
information that the low user sinks is a conglomerate (join) of hi and lo
information. Information cannot flow directly from the high user to the low
user. However, the low user can now be thought of as holding conglomerate
information of class {lo,hi,so}, which can be combined with any addi-
tional item of hi information, and the result may still flow to lo. Thus the
separation exception occurs at class granularity, not entity granularity.

If we reexamine the requirements of this downgrading policy. we see that
the desired policy is not a separation (flow) policy, but a reclassification
policy. A security officer is allowed read high information and reclassify it
as low. This can be captured by the reflexive relation

Reclassify = {lo,sso) - hi U {hi} - sso U {sso} -,-- lo

Information is allowed flow from high to sso, and from sso to low, but not
from high to low. Downgrading (high to low) can occur only through a
memoryless (partially trusted) security officer.
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Thus, when describing a separation flow policy, one must remember that
the separation is based on flows, not control. In the example above, class so
represents information generated by the security officer, not control, and as
information it (as part of a conglomerate) could propagate through (memo-
rable) entities. We will consider separation as control, when we use conglom-
erate relations to express integrity policies in section 11. The state based
security mechanisms will be built with this in mind.

8.2 FMU: A Universal High Water Model

The confinement bindings in the FMU model are identical to the bindings
in the group confinement model, except that instead of giving a set of limits
(OT7,) on the classes of information an entity may sink, we give a set of sinks:
the information classes an entity may sink.

FMU-conf-pol[ C]
L : lattice[C]
i3.L : ents - C

s.k : ents -,-. PC

dom O/. = dom sink

ran &,,k C dom L

Lattice L gives the flow policy. Every entity is bound to a component of
this lattice by OL, which represents the class of information the entity may
source. Every entity is also bound to a set (ank which gives the set of
classes of information that the entity may sink. The only restriction we
place on these bindings is that every entity may sink the class of informa-
tion it sources. The difference between this binding and group confinement
binding is illustrated in figure 6: the holes represent areas where separation
exceptions occur: an entity may not sink any class within the separation
area, however as soon as additional classes are joined, they rise out of the
separation area and the flow is valid. Aggregation exceptions occur on an
entity whenever the aggregate (join) of two classes that are valid sinks of
the entity leave the area defined by &,,k The area between L (the lower
bound of L) and /3T, in the FMG binding represents the set of classes that
the entity may sink. Note that there are no holes in this area, and thus no
separation exceptions can be expressed. Aggregation exceptions may only
occur at the extremities of the binding.
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Figure 6: Typical FMU and FMG bindings

In a system, flows are constrained by the multilevel security requirement.
Thus a secure system is defined as

FMU-Securc-Systern[ C]
FM U-conf-pol[ C]
S : systems

domra3± = aS

V E : PEnts; f : ents .

ED3± O ED E ,i.kf

A system is considered secure if for every conglomerate flow E f f in the
system. then the class of information generated by conglomerate E (i.e., the
lowest upper bound of the class of information each e E E may source), is
allowed to be sunk by f.

We can map any conglomerate policy P to a powerset lattice P..oP by

ot± : policies - (classes - -classes)
4 ,ik : policies -- (classes - PPclasses)

V P : policies .
4 = fa aP • {a}}
-tsinP= {a : oP* a - dom P b> {a)}

This mapping is flow preserving in the sense that for P : policies

V APclasses; b : classes*
A - b E P €* U4).LPOAD E usnkP b
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Combining this with the FMU model gives a model for enforcing conglom-
erate policies as

iFMC-Secure-System
FMC-conf-pol
FMU-Secure-System[P classes]
L=PJP
fL- = P fl

&.s~k- = Ci~k P 900

Since di is flow preserving, it follows that any such secure iFMC system will
be a secure conglomerate system, i.e.,

V iFMC-Secure-System e
FMC-Secure-System

8.3 iFMU: A State Based Refinement of FMU

In this section we will describe a high water mark model that can enforce
arbitrary conglomerate flow policies. Section 8.3.1 views a system as a collec-
tion of entities that send messages to each other. We give an interpretation
of information flow for such a system, and relate it to the abstract notion of
information flow used in FM U-Securc-System. Given this view of a system.
section 8.3.2 proposes a high water mark mechanism for enforcing conglom-
erate policies. Section 8.3.3 proves that any system that is secure by the
high water mark mechanism will be secure by the abstract model FMU. Sec-
tion 8.4 looks at restrictions on the class of conglomerate flow policies that
result in simple tests and operations for the high water mark mechanisms.

8.3.1 System Abstraction

We represent a system as a collection of entities with an ability to send
messages to one another. Entities represent the sources and sinks of infor-
mation in this system for example, users, files, processes, windows, etc. The
state of a system represents the current set of channels between entities.
along which messages are being sent. We will assume that the existence of
a channel represents an intention to use it to send and/or receive messages.
The set of possible message flows between entities at any state are described
by a conglomerate relation from the set
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I msg-flows :P [ents]

We will describe the constraints on this set shortly. Given any M : acc-flows,
then E P- f E M is interpreted as meaning that there is a commitment
for information flow from conglomerate E to entity f. Thus a state M :
acc-flows cannot express any aggregation exceptions, since every flow is a
commitment and thus there is no opportunity for a choice between one flow
or another.

There are two types of entities, memoryless and memorable

memble,
memless : Pents

memble n memless = {}

A memorable entity is any entity that is liable to source any information
it has proviously sunk. Examples are files, variables, untrusted programs.
An untrusted editor is memorable since it may coiitain a trojan horse that
can 'remember' any secrets it edited. A memoryless entity will not inappro-
priately forward information it sinks. Trusted routines may be considered
memoryless: a trusted windowing system that can correctly handle multi-
level information will not steal a secret on one window and it reappear on a
classified window. An appropriately classified user is prevented from cutting
out a secret from one window and pasting it to a classified window: in this
case there is an attempted flow from a secret window (entity) through a
memorable paste buffer (entity), to a classified window (entity). Of course.
the user could read the contents of the top-secret window and retype it into
the classified window. However, there are easier ways of leaking a secret, for
example using a telephone.

When a message is sent from a memorable entity e to entity f then in
addition to the flow from e to f, there is a potential for transitive flows from
everything that sinks to e, to f. Thus, if M : msg-flou's represents the flows
at the current state and given a memorable e, suppose {e,f} - f E M
and {g,e) :- e E AM; then {e,g,f} - f E M should also hold; however
{g,f} : f need not hold, since there there may not be an opportunity
for a direct flou from g to f-it always goes through entity c. Given a
memorable entity e, and current message flows Af : msg-flows, the set of
possible conglomerates it can forward are P C> {f}. Note that the forwarding
of a conglomerate E always gets performed in concert v ith e itself. If E is
a set of memorable entities, then the set of conglomerates it could forward
is the set all-fwd(M, E), where
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all fwd(_,_) : T?[ents] x Pmemble - PPents

V Af : R[ents]; E :Pmemble; e : memble
all-fwd(M, {}) = {{}}
all-fwd(M, E U {e}) =

{F, G: PentslF --. e E M A
G E aBl-fwd(M,E - {e}) 

Fu G}

Memoryless entities are assumed not to propagate information in this way.
Thus we can defini the set of valid flow relations due to message communi-
cation at a state as

msg-flows :PZ[ents]

m,,g-flows =

{M 7[ets]l
M E RIA[ents] A
V E :Pents: f : ents .

E- f E M =
(En menhlcss) U al]-fwd(M. E n memble) , f E 11}

A variation of the all-fwd function giv-s the set of all entities that can be
forwarded, in some way, by a conglomerate relation as

all-fwd*(_.-) : R[cnts] x Pents - Pents

V Al : 7[ents]: E : Pents *
all-fwd*(M. E) = Udoin(M t> E)

Note that all-fwd*(AM. E) = Uall-fwd(;M, E).
If our system makes a transition from a state with flows .l to a state with

flows ,M', we must agree with what the overall flows should be. Clearly, the
flows of Af will remain in effect as potential flows of the system. However, at
state AP, memorable entities will propagate any information they received
during Al to their sinks in M'. Suppose there was a flow {,f} f E Al,
and a flow {f,g) - g E A', then overall there is also a flow from {e,f,g}
to g. If there are just flows {e,g} g and {f,g} - g at state Al and
an only flow of {g, h} -. h at state AP, then since *he flows represent a
flow commitment, then we can can say that there is a low from {e,f,g.h}
to h overall, but not necessarily a flow from {, g} to h At tate M'. we
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know that entity g holds information from both e and f, and it is this
conglomerate that is propagated, not the individual e and f.

Thus, if a system has made a series of transitions that result in overall
flows S : R[ents], and enters a new state with flows M, then each memorable
entity e at state M will propagate the conglomerate all-fwd*(S, {e}) to all
its sinks in A. Therefore, if a system has gone through a sequence of states
t : seq1 msg-flows, the overall flows can be defined as flows t, where

flows.. : seq1 msg-flows 1Z[ents]

V t : seq1 msg-flows; Al msg-flows .
flows (Al) = Al A
flows t(M) =

flows tU

{E : Pents; f entslE - f E A e
(E n memless) U all-fwd*(flous t, E n memble) t f}

Note that we have assumed that every state along i has the same alphabet.
If a system is described by a prefix-closed set of state sequences T. then

tie overall flows are calculated as U flowsg T[.

8.3.2 A High Water Mark Model

We are now in a position to describe a high water model that enforces flow
policies from the FMU model for systems whose flows can be modelled as
above (section 8.3.1).

A system state describes the current message flows and gives the policy
binding according to FMU-conf-pol.

_Secu re-Sta te[C]F il ( -conf-po[ C] h[b A /3 ]

AM : msg-flows

aM = dom 6 hum

V E : Pents; f : ents s
E -f EAf=:>

Each entity e has a current high water mark given by 6A,m. This represents
the class of information that the entity currently holds. It differs slightly
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from the high water mark in the group confinement model in that it repre-
sents the classes of information the entity has sunk up to, but not including
the current state. Conglomerate relation M represents the flows due to the
message commitments at the current state. If there is a flow E f E M
then the class of information generated by the entities in E must be sink-
able by f, i.e. in Gind. Note that unlike the group confinement model, we
cannot check that the class of conglomerate E is dominated by some limit
of Gikf, since Gainkf may contain holes (recall figure 6).

The initial state permits any flows so long as it is secure.

7 lnitial-State[C]
Secure-State[C]

When a system makes a transition from one state to another (as a re-
sult of some communication requests), only high water marks of memorable
entities may change. The high water marks may rise upwards to reflect any
new information a memorable entity has sunk. A secure transition is defined
as

Secure- Trans[C]

zASecure-State

L' = L

V : ents e
e E memorabl o 

6h rn f= ED6hw., (a l-fwd*(M. {ef )
e E memless n a,11 =

6'we= bhumE A

The new class for 6, is a member Of 6s,nk since: given that Al does not
contain any aggregation exceptions. then we have that

all-fwd*(M, Ie) - e E Al

and since Al is secure it follows that

(@6A,maflfwd*(f,{fe1)) E Gike

which implies, by its definition, b,.ne E Cik. Note that, unlike most high
water mark schemes, a high water mark may not drift upwards arbitrarily,
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it rises only to include the classes of information it has sunk. As before, a
memoryless entity does not change its high water mark.

A system is characterised by a single initial state; a state transition
function, and a set of reachable states. The system is secure iff the basic
security theorem holds.

Theorem 2 A system is secure if it starts from a valid initial state, and
if every state transition achievable by the transition function is a secure
transition. Such a system can be characterised by

iFMU-Secure-System[ C]
Inritial-State[C]

E : PSecure- Trans[C]

Example 23 Consider the stock market database example 11. Table 3 gives
the flow preserving mapping t for this policy, where the first letter of each
class is used to denote the class. If entities U, C, and S represent a user.

class 4 1 Stock-Pol lsj,kStock-pol

user {u) {{u},{uc},{ucs}}
charge {c} {{c})

stock is) {{s}}

Table 3: Flow Preserving Mapping for Stock-Pol

a charges file. and a stocks database, then 4l,± gives the initial high water

mark for each entity. If the user attempts to directly access the database S.
then there is a flow {S, U} - , which is invalid, since

h.wmSU 6h.wmU fu's)

However, if the user first reads the charges file (state s,), he may then read
the stock information (state s2). This secure history is outlined in table

4. Once the user has read stock information his high water mark rises to

{u,c), and now the flow {S, U} - U E s2.M, is secure. Note that the user
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state si si.M S1 .i hwm U

S1 {C}-.* U {u)

s2 {S- U {u,c}

Table 4: A Secure history for Stock Access

could read both charges and stock simultaneously at state sl. This would
be modelled as

sI.M = {C,S} -. U

However, we would require some assurance that the program that allows
the user access the database does not provide flow {S} - U. Compare this
state with a state with flows A = {C, S) - U, which is not secure since
{S, U} b E Al.-

8.3.3 Formal Basis for iFMU

To justify that an iFMU system is secure, we have to prove that it is a re-
finement of FAIU-Secure-System. Thus we need to construct an abstraction
mapping between the abstract FMU and the state based iFM U, and prove
that a system secure by iFMU will also be secure by FMU.

The FMU and iFMU share the same set of entities. In the iFMU the
initial high water marks of entities correspond to the bindings assigned in
FMU. The fact that high water marks change as the system progresses is
a artifact of the implementation. If T gives the set of all possible secure
histories of a system, then set of flows over the entire system is the union
of the flows over individual secure histories, i.e., Uflowsg TD. We can prove
that for any secure history t of the system, then

V E : Pents: f : ents *
E - f E flows t E bhm(gE E sinkf

which implies that any system secure by iFMU will also be secure by FMU.

8.4 A Framework of High Water Mark Models

Recall figure 6, which illustrated the shape of Gk for each entity. Not
only does ,jk define the allowable classes of information that an entity
may sink, it also defines the possible classes the high water mark may rise
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to. Since sjk does not change along a secure history, when enforcing a
conglomerate policy P : policies, it is sufficient to store one copy of 'IPink P a
for each class a, and have Ginka cross reference this. While this does save
considerably on space (each entity has a current high watermark, and a
class from aP indexing into c4ink P a), the structure O4 i, P a, has a
potential to be quite large. Inspection of the conditions for secure states
and transitions reveal that it would be impractical to build a completely
general security mechanism to enforce an arbitrary conglomerate policy. We
therefore seek classes of useful conglomerate policies such that the shape of
0,ink result in simple conditions on states and state transitions. We can also
save on the size of the generated lattice policy, if desired. by using Denning's
transformation.

Sections 8.4.1 to 8.4.3 outline how effective security mechanisms could
be arrived at for reflexive, aggregation and separation policies.

8.4.1 Reflexive Flow Policies

If a flow policy P is reflexive (i.e., a member of TZo[classes]). then any class
a E aP will have a single maximum in 0,in P a defined as 4-TP a, where

ITP a = Udom P r> {a}

and since P has no separation exceptions, the area in ),,,k has no holes.
and thus Gink can be represented by its extremities. If 3e gives the class of
entity e under policy P, then its initial binding is calculated as

6 hwmE = 0±P (3 e)
Te = OTP (P3 )

and will have the typical shape illustrated in figure 7. Given this, the con-
ditions on secure states and secure transitions simplify considerably. The
condition on a secure state that

E) bh..gED E 'Ginkf

must hold if E - f E M, can be simplified to

Ubsh,.,.ED c9 rf

Since the policy does not express any aggregation or separation exceptions,
this can be simplified further, so that state flows are viewed as a simple
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Figure 7: sink for Reflexive Policies

relation between single entities. Thus we result with variation of the interval
confinement model[1O].

Note again, the difference between the notion of a high water mark in
the FMU, and a high water mark in the group confinement model: in FMG,

bhwm gives the (join of the) class of all information that has been sunk by a
memorable entity upto, and including, the current state; in FMU, bh,.m gives
the (join of the) class of all information that has been sunk by a memorable
entity upto, but excluding, the current state. Both approaches are equally
valid, however we found that it was easier to use the latter interpretation
of a high water mark when developing the model for enforcing separation
policies.

8.4.2 Aggregation Flow Policies

If the flow policy does not contain any separation exceptions. i.e.. P E
l?_A[classes], then the typical shape of 6ik is as pictured in figure 8. Since
there are no holes, then ,i~k can be represented by its extremities. Each
entity has a current high water mark bh,.m and a set of limits on what it can
sink, T, (which can be calculated as the set of maximums on 4,ink P). As
with group confinement, the high water mark will drift towards one limit

from T3,mk, as it sinks information.

8.4.3 Continuous Separation Policies

While policies from T?_s[classes] do not contain any aggregation exceptions.
the shape of the mapping (,,,k can have an number of holes, which may
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Figure 8: Gin for Aggregation Policies

make implementation mechanisms impractical. We will therefore propose a
restricted class of separation policies that do not contain any holes. so that
Gink, can be described by its extremities.

Define the set of continuous separation policies to be 7Z.classes],
where

R-AIAX] {= R: 7L'-AIXIV A, B : PX; c : X*
IA '- c. B - c) C R A
{c} C A A A4 C B =:

VC : *PX * A C C A C C B
C '- c E R}

Given any P : R...A-classes], and a : classes, then the extremities of the
area (41sik P a) - I{{a}) can be given by the mapping

1tL Z-A-[ClaSSES] classes P classes
l?...7ZAiclasses] -classes - classes

VP :R-ZA.classes]e
4-,P= I{a :aP * a miiis (dom(P L> {a)) - If{a}))

$DT P = I{a a P .a a- U(dom(P >~ {a))))

Given this, we can prove that for any P : l'R.A. [classes), then

V A : P classes; b : classes * A ~ b) =
A - bE P,*
3 B : Pclasses e B E (D'±, A

B C A A A C )
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Each entity will have a current high water mark 6hum, and ,ik will be
represented by ., and T, giving the lower extremes and an upper extreme
(there are no aggregation exceptions) of ,ink, respectively. This binding is
pictured in figure 9. We know that a flow E f during some state is secure

6Awm

Figure 9: ,jj for Continuous Separation Policies

only if

which can now be rewritten as

(e6bhim(]ED = h,,f) V
(E6hDm gE[) 9 Tf A
3 B : classes e B E &_Lf A B C @6hm(E[))

Notice how the high water mark must make an initial 'leap' from its initial
value to the area bounded by 2, and T.- This is how a separation exception
gets enforced: only when sufficient classes are present can can information
flow to the entity.

A similar mapping can be developed for continuous separation poli-
cies that allow aggregation exceptions (i.e., policies from lZA.[classes] U
T _s[classes]. Instead of a single top on k, there are a number of tops.
The bindings for such a mapping are illustrated in figure 10
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9 Examples

Example 24 The stocks database example 11, will have a flow preserving
mapping described by table 5. and a lattice policy P {uc,s} (or, Denning's

class 'p± 4. T

user {u} {{uc}} {u,cs}
charges {c} {c} {c}
stock {s) {s} {s}

Table 5: Flow Preserving Mapping for Stock-Pol

transformation can be applied to the components given in table 5). L

Example 25 Separation exceptions can be used to prevent classes of in-
formation being made available until such time as it is appropriate. For
example the policy

R = {rclj, bU {{rfl,a } - b}

does not allow information flow from class a to class b unless is is accompa-
nied by 'release' information of class rvel. Suppose entities R, A and B are
bound to rel, a and b, respectively. Initially, information may not flow from
A to B. However, if there is a flow from R to A, and A is memorable, then
the high water mark of A rises so that it is now allowed flow to B.

This can be used in the chinese wall example, whereby before a company
'goes public', its dataset is not accessible to consultants. By combining the

dataset with release information, the company becomes public.
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A conflict policy will give entities access only to classes that have been
released:

C-Rel-Pol_ : conflict-set - policies

V C : conflict-pol e
C-Rel-Pol C = U{c : C o{ c, rel} -- cons

f{relc} -,- c}

If a company c has not been released, its high water mark is {c} and a flow
to the consultant is not possible. A company can be released by writing
some release information to the entity holding the company information.
This will cause the high watermark of the company entity to rise, so that it
forms a conglomerate {c, felc}, which may flow to consultant.

Note that to achieve the necessary granularity for this policy, it is nec-
essary to have a different release class for each organisation class. If we had
used a single release class for all organisations, then it could propagate from
one dataset to a consultant, giving the consultant potential access to all
other datasets. IL

Example 26 Consider a downgrading policy for the Military policy from
example 15. We could use a reclassification scheme as described in section8.1.
However, under this scheme the security officer is not accountable for what
he reads and downgrades. A more satisfactory scheme would be to use a
separation of duty rule which required the admiral to release information to
the security officer for downgrading. The security officer is not permitted
arbitrary access to secret and top-secret information. This policy can be
specified as

Mil-Downgrade
P : policies

P = Mil-2U
{admiral} - so U {so) -,- classified

The admiral can read top-secret information, reclassify it as admiral and
forward it to the security officer. The security officer can take this informa-
tion and reclassify it as classified. In both cases some trusted (memoryless)
entity is necessary so that an admiral can sink a secret and source it as
admiral (without its secret component); and a routine to allow the security
officer sink admiral information and source it as so.
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Now we have separation of duty: secrets cannot be downgraded without
first being proposed by an admiral, and then cleared by a security officer.
Note how the separation of duty is achieved by the use of memoryless en-
tities, and a reflexive policy: no separation exceptions are in effect. This
is an example of static separation of duty, where the separation occurs in
a predefined sequence. This approach is similar to the technique in [15] for
separation of duty for integrity policies, which uses partially trusted sub-
jects (memoryless entities) bound to pairs of classes from a lattice integrity
policy (implementing a reflexive integrity policy).

In section 11 we will give an example of a dynamic separation of duty
integrity policy.
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10 Relating Aggregation and Separation

Separation and aggregation exceptions can, in a sense, be thought of as
duals of one another. An aggregation exception might state that A may
flow to c and B may flow to c, but together they may not flow to c; a
separation exception would state the opposite: together they may flow to
c, but individually they may not. This section shows how this relationship
can be formally established.

We can prove that, given any aggregate flow policy then its complement
forms a separation policy, i.e.,

V P : 7Z-s [ classes] * P E ' -A [ C108SCSI

For example an aggregation policy that includes flows {a} -, c, {b} , c, but
not the flow {a, b} , c, when complemented will allow the flow {a. b} - c.
but not the flows {a} c or {b} - c.

The complement of a separation policy however, does not form an ag-
gregation policy. For example a policy defined by

P = Tfa, b, c} U fa) - b

(b is disjoint) is a separation policy (1?_A[classcs] includes all reflexive
policies). However, F includes the flow {a. b.c} b. but not the flow
{a,bj - b, and thus T is not an aggregation policy. We can however.
transform any continuous separation policy into a reflexive component and
a separation component. and the complement of the separation component
forms an aggregation policy.

A continuous separation policy P : 1A.[clasS]. can be made reflexive
by filling in the 'hole' (area where separation occurs) to give a policy PR
defined as

PR = {A: Pclasses: a: classcslA C Udom P t> {a} e AU {a) - a}

This new policy is valid and reflexive (PR E Ro[classes]). The 'hole' that
has been removed can be put into a new policy Ps that enforces only that
hole (i.e., the separation exceptions). and has no other restrictions on flow.
It is defined as

Ps = -LOP - (PR - P)
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and forms a continuous separation policy Ps E 7Z _A[classes]. Ps can also
be defined as

Ps = (.LaP- PR)U(-LaP n P)
= P U (-LOP- PR)

= PUTOPU(J..aP-PR)

= Fn T -,
and since a sublattice of policies with the same alphabet form an algebra,
we can write

PSUPR = (P nPR)uPR

= (PRUP)rn(PRLiPR

= PuTaP

= P

Thus the policy P can be thought of as having a reflexive component PR
and a separation component Ps. We can prove that the complement of the
separation component of P forms an aggregation policy, i.e.,

VP 7".A[classes) * Ts E JZ.s[classes]

Since P = PR U Ps, we have

V A : Pclasses; b : classes
A -bEP¢*

(A- bE PR A .4- b E Ps)

V A : Pclasscs; b : classes *
A4- b E P 4*

A = {b) V
(A - bE PR A
A- b Ps)

Thus P can be viewed as positively enforcing a reflexive component (PR).
and negatively enforcing an aggregation policy (s). We can view this
policy in terms of the binding pictures of section 8.4. Information may flow
from class con,;lomerate A to class b iff A = {b} or, A falls in IDm PR b
(enforcing the reflexive part with the shape of figure 7). and if A does not
fall in 4 ivk s b (negatively enforcing the aggregation part, which has the
shape in figure 8). Thus the shape of 4,,nk P b- {{b}) is simply the shape
of ',,,k PR b minus the shape Ot,,k PS b, which turns out to be the original
shape for a continuous policy described in figure 9.
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11 Integrity Policies

A well known dual for the traditional lk-tice flow model is the Biba[4] in-
tegrity model. An integrity policy describes sets of clearances and a lattice
relation between these clearances that defines their relative superiority. In
this section we will illustrate how the conglomerate flow model can be used
to enforce integrity policies described as conglomerate relations.

With an integrity model we are concerned with whether or not one entity
may affect the integrity of another. We will use the same conglomerate
structure to model a system, except that instead of information flow, we
mc 'el integrity: if S : systems, then E - f E S means that the entities E
can, as a conglomerate, affect in some way the integrity of entity f.

We can use the flow policy framework to describe integrity policies.
Given integrity policy P : policies, then A - b E P. means that, as a
conglomerate A has higlier clearance than b. Each entity in the system is
assigned a single integrity clearance using the function 0.

A integrity secure system is simply a system such that for every ability to
change integrity E - f E S, the integrity policy must be upheld., 3(ED
Of E policies. Thus any system characterised by FMC-Securf-System, with
the integrity interpretation, is a secure system.

Example 27 A cheque may only be written to by an accountant and a
manager, but not by them individually. Thus a policy for writing cheques
is the separation policy

Chcquc-Pol
P : policies

P = Tacc,mgr,chk) U {acc,mgr} - chk

A

We can use the conglomerate high water mark model to enforce integrity
policies. However, when doing so, v ? must be careful about the propagation
of integrity clearances i.(., integrity flow. If entity A can change the integrity
of entity B, and B change the integrity of C, should the integrity clearance
of A 'flow' to C? In the Biba model this is not an issue since the integrity
policy is transitive, and thus it is implicit that A can affect C. However
this question must be addressed if the integrity policy is non-transitive. We
can model entities as memorable or . -noryless, depending on whether or
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not they propagate integrity changes: affecting the integrity of a memorable
entity has a potential to propagate those changes to everything the mem-
orable entity can affect; affecting the integrity of a memoryless entity will
have no propagating effect.

Example 28 The cheque writing policy can be implemented by the use of
cheque transitions: the manager writes to a cheque transaction, and then
forwards it to the accountant for clearance (or vice versa). Only when the
transaction has been cleared can it be sent to the cheques file.

Define a set of unique labels to represent each cheque transaction

CT : Pclasses

The cheque writing integrity policy can be specified as

Cheque-Trans
P : policies

P = U{t: CT e({mgr} -,-. t) U ({acc} , t)}u
{mgr,acc, t} - chk}

To propose a cheque. a manager requests a transaction, writes to it and
forwards that transaction to the accountant, who in turn clears it and send
the transaction for printing. Note that an accountant is not permitted to
change a transaction generated by the manager (and vice-versa). Compare
this dynamic separation. achieved by aggregation exceptions. with the static
separation in example 26. The cheque file may be updated only in the
'presence' of the manager, accountant and a transaction. We can prove that
this policy is more restrictive that the original cheque policy. i.e.,

Cheque E Cheque-Trans

Thus the original separation of duty rule for cheques is preserved in the more
detailed policy.

To implement this policy, all entities must be memoryless except the
cheque transactions, which should be memorable. Transactions are used
to propagate 'clearances' to modify other entities. The cheques file must
be memoryless, otherwise once the first transaction has been written, the
clearance for writing subsequent transactions will be retained, regardless of
whether they are cleared. A transaction. class t will have an initial high
water mark {t}. It is not dominated by class chk. If a manager writes to
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a transaction, the security mechanisms will update the transaction water
mark to {mgr, t}, and it still not dominated by chk. Now, the accountant
may exar Line the cheque request given by t. The accountant is not however,
allowed riodify the transaction-an aggregation exception. If the cheque is
valid, then the accountant will write it to the cheques file, (which is equiv-
alent to a conglomerate write of accountant plus transaction (transaction
plus manager) to cheques file).

Note that some assurance is required to ensure that transactions are used
only once: we do not want the accountant printing multiple copies of the
same cheque.

In this last example, due to potential sizP of CT, it would not be practical
to directly the policy as a powerset lattice. Like the telephone book example,
some other mechanism should be derived which implements the high water
mark and lattice more efficiently. For example. every cheque transaction
class is identical in terms of what they can sink and source. Therefore, we
could build a lattice with classes mgr,acc,chk and a distinguished class t
which represents any transaction class. Whenever a I occurs in a water
mark it is instantiated by an actual transaction identifier. Further research
is required to develop refinements of the high water mark mechanisms to
make use of similarities in pools of classes.
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12 Discussion

This report proposes a structure that can be used to describe information
flow policies that may have transitivity, aggregation and separation excep-
tions; a high water mark mechanism can be built for enforcing these policies.

In section 4 we examined how conglomerate relations can describe flow
policies that may have an inconsistent join operator. Having inconsistent
joins in a flow policy provides a way of describing aggregation and sep-
aration exceptions. In section 7 we capture many popular aggregation
policies[6,19,20], using conglomerate relations. Research on separation of
duty policies[7] seems to have concentrated primarily on separation rules for
integrity. In this report we describe separation flow policies, and give some
examples of how they might be used. Conglomerate flow policies are state-
less specifications of security in a system. They describe the different classes
of information that can exist in a system, and how they may propagate. The
granularity of a flow policy extends only to the classes, and not the enti-
ties bound to those classes. This must be remembered when specifying flo-w
policies, in particular, separation policies.

Section 11 examined how conglomerate relations could be used to de-
scribe integrity policies. A useful policy for cheque writing was described,
which contained both aggregation (a cheque request may be written by ei-
ther an accountant or a manager, not both), and separation (a cheque may
written only by a conglomerate of accountant and manager).

Relations and operators for comparing, composing and abstracting con-
glomerate flow policies are described in section 4. These operators allow us
to build a complex policy from simple components. Section 7 gave examples
of how these relations and operators can be used. Section 10 showed how
the policy complement operator relates separation and aggregation policies.

In this report we only considered flow policies that had inconsistent
upper bounds (joins). A more general class of flow policies is one that in-
cludes policies that have inconsistent lower bounds. Such policies are of
type P classes - Pclasses, where a maplet X Y means that information
may flow from class conglomerate X to class conglomerate Y. Such a struc-
ture could capture policies such as: mission-X may be learnt by agent A or
agent B, but not both. Interesting integrity policies can be described: given
classes (purchase order) and (cheque), a clerk may write one or the other
but not both. In its current form, our high water mark model cannot enforce
such policies. Further research into models for enforcing such policies would
be worthwhile.
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Sections 6 and 8 develop high water marks models that can enforce
conglomerate flow policies.

The first model, based on the group confinement model[11,12], enforces
aggregation policies (flow policies that do not express separation exceptions).
This model is a generalisation of the traditional high water mark model.
Each entity has a high water mark, and a set of limits to which it allowed
rise. As the high water mark rises, some of the limits will 'dissappear'. This
is how aggregation exceptions are enforced. This model enforces conglomer-
ate policies by way of a flow preserving mapping, which takes an arbitrary
aggregation policy, and maps it to a powerset lattice plus high water marks
and limits, to be enforced by the high water mark model.

In the group confinement model, we identified two kinds of entities: mem-
orable and memoryless. A memorable entity will propagate any information
sunk to it. A memoryless entity does not propagate information. Thus, only
the high water marks of memorable entities need to reflect the information
they have sunk to date (it may be propagated). Each time a memoryless
entity sources information, its class is the (static) class of the entity. Since
the high water mark model is abstract, there are no restrictions on what
entities should be. They represent all (interesting) sources and sinks of in-
formation. Examples are users, programs, windows, files, or even persistent
knowledge environments[19]. If an entity is trusted to appropriately handle
information at some class, then that entity can be considered memoryless.
For example, an admiral (example 15) is trusted (by the very nature of his
binding) to handle all admiral information appropriately; therefore he may
be treated as memoryless-he is allowed read some secrets. 'forget' them.
and then talk with a classified user. However, if he creates a file and puts
a secret in it, the file is memorable and its high water mark must reflect
the class of it contents. Trusted software can be thought of as memoryless.
a certified windowing system should be allowed to simultaneously display
secret and classified windows for an admiral.

Sometimes we must view a user as memorable. For example, in the
chinese wall policy, consultants must be considered as memorable-they are
liable to 'remember' information about conflicting organisations. If a user
is trusted at some classes, but not others, it may be necessary to model the
user as two entities, representing the memorable part and the memoryless
part.

We discovered that the group confinement model generalises many ex-
isting flow policy models. Figure 11 summarises our observations. If a flow
policy is quaii-ordered, then the flow preserving mapping from conglomer-

69



Reflexive Quoset
Seper-at ion

Agcr-egiat ion

Conglomerate
Policies

Interval Group
conf inement Single, static conf inement
[3,10,15,2 1, conf inement [6,12,16,19]
22,25,26] [2,8]

Figure 11: Taxonomy of Policies and High Water Mark Models
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ate policy to powerset lattice simplifies to the Birkoff mapping from quasi-
ordered set to powerset lattice. In this situation, the conglomerate flow
model corresponds to the traditional lattice flow model with static binding.

If the flow policy is reflexive, but has no aggregation exceptions, then
each class from the flow policy maps to an interval pair from the lattice to be
enforced by the high water mark model. Each entity is bound to an interval
pair; the lower bound corresponds to the initial high water mark, and the
upper bound gives its limit. This type of binding for memorable entities
corresponds to the binding used in the Compartment Mode Workstation[26].
Thus we can think of the class of policy enforced by this system as reflexive.
Memoryless entities bound to these intervals correspond to partially trusted
subjects[3,22], and thus such systems can also be thought of as enforcing
reflexive flow policies. Recall the admiral flow policy example (15).

The second high water mark model proposed in section 8 can enforce
any conglomerate flow policy, separation and/or aggregation. The model is
more general than the group confinement model, in the way it models the
flows in a system. However, its notion of, and mechanism for maintaining,
high water marks is virtually identical to the group confinement model. The
only difference is that a high water mark of a memorable entity in the group
confinement model represents the class of information that has been sunk
to that entity upto and including the current state. In the universal high
water mark model. it is the class of information sunk upto, but excluding
the current state.

While the universal high water mark model can enforce any conglomerate
policy, it would involve an unacceptable overhead to maintain the water
marks. We therefore sought a smaller class of policies, continuous separation
policies, that could be enforced efficiently. With these policies, a high water
mark must make an initial 'leap' before it can rise as normal. This 'leap'
corresponds to overcoming a separation exception.

In any system that uses high water marks, covert channels due to denial
of access can arise[9]. We do not address this problem in our high water mark
model; it is necessary to look outside the model to detect and/or avoid these
flows. Any implementation oriented model for conglomerate policies should
address this problem. A number of possible strategies are considered in [11].

We like to think of the two high water mark models as providing guide-
lines on how to enforce conglomerate policies: at present they need more

refinement to be used in practice. It would be worthwhile to develop de-
tailed systems oriented models, that enforce conglomerate policies. Only
then can questions on denial of access, what constitutes an entity, and what
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are memorable and memoryless entities, be effectively dealt with.
Having the framework of conglomerate flow policies, and being able to

consider various subsets of policies is appealing. It allows us to make com-
parisons between the policies enforced by existing models. For example, we
discovered that systems with partially trusted subjects can be thought of as
enforcing reflexive policies (section7). We saw how reflexive policies provide
a form of static separation of duty (section 11). Are there more efficient
mappings and mechanisms for restricted classes of policy? For example,
quantity based aggregation policies? An interesting application of this abil-
ity would be to investigate if the reclassification policy described in [1] can
be captured as a conglomerate policy.
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A A Framework of Conglomerate Relations

Lemma 1 Conglomerate abstraction is closed: given P : IZ[X] and C : PX,
then P@A E 1Z[X], i.e.,

Va : (Udom P@C) U (ran P@C) * fldom P C> {a = {a)

PROOF Abstraction can be defined as

P@C = Kc - P t> C

where Kc = {A:PX 9 An CfnoP -- A}.
Consider some A : Pclasses; a : classes such that A - a E PtC. By

the definiton of range restriction, we have a E oP n C. Furthermore, since
the domain of KC is drawn from subsets of aP n C, then A C oP n C also.
Given that A - a E P@C, then there exists some A' : P classes such that
A i A' E Kc and A' - a E P > {a}. But since P is a valid policy, we
know that a E A', and therefore, since a E oP n C, then a E A also. Thus
we have

V A : Pclasses; a : classes * A - a a eA (1)

For any a E oPnC, we have {a} - a E Pand {a} {a} E Kc. This
implies that {a} - a E P4C. This with the fact that the range of P -(' is
a subset of oP n C, and the range is drawn from subsets of oP n C, implies
that

(Udom P4-C) U ran PAC = oP n C

which when combined with equation (1) proves the lemma.
COROLLARY The following laws follow

oP4C = aPfnC
P 4,a P =P

P@{} = {}

Lemma 2 Given conglomerate relation P : IZ(Xj, and B, C: PX, then

(P@B)@ C = P@(B n C)
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PROOF Let

Kc = {A:PX ANctPABNC'-A}

KB = {A:PXoAnoPAB -A}

We have by defintion,

(P@B)C = Kc (KB P > B) > C

Distributing,

(PAB)AC = Kc; KB ; (P t> B) > C

But P > B > C = P > B n C, and since Kc C KB, then

(PCB) C = Kc;P;BfnC

= P(B n C)

Lemma 3 Conglomerate abstraction is monotonic with respect to subset.
i.e.. for P, Q :1?[XJ. and B: P'X. then

P C Q PLBC QB

PROOF The monotonicity of range restriction gives.

P C Q =:v P t> B C Q t> B

if KB = {A : PX * A n B - A. then

PC Q = KB 9 P t> B C KB - Q > B

PCB C Q-qB

COROLLARY Since domain restriction is moiiotonic in both argumeiits.

BCC APC Q P t> BC Q t>C

But if Kc = {A : PX a A n C - A), then KB g Kc, which implies

PC QABCC * KBsP >BCKc-Q t>C

> P B C Q C
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Lemma 4 Conglomerate restrictiveness is a partial order.
PROOF Given some P, Q: J?[X] then by defintion,

P C- Q *aP C aQ A Q(§)aP C P

* Reflexivity follows since Q~aQ = Q.
* (Antisymmetry) The Antisymmetry of subset implies that

P C:Q AQ gP =aP = Q

and it follows that

P EQ AQ 9P =>P CQ AQCgP

which implies P = Q.
@ (Transitivity) Transitivity of subset gives

P C: Q A Q E- R *: OP C OR

W~e have, by the monotonicitv of abstraction.

Q E-R =>' R %COLaQQ
=> (R Co aQ) C aP C Q aP

But oP C oQ =: RA~aP C Qq.oP. Furthermore. P E Q =>
QJ-4aP C P. thus we have

PEQAQER => Rc!oPCP

COROLLARY If the operands of E have the same alphabet then con-
glomerate restriction is equivalent to superset. 0

Lemma 5 Conglomerate abstraction and restriction are monotonic with
respect to each other, i.e., for P, Q :7Z[X] and B, C : PX. then

B C C A P C:Q =PABCQ4C

PROOF We have by definition,

BC CAaPCaQ aPlBCaQflC

*a(PA B) 9o(Q AC)



We have

P E Q QcaP C P

( Q@aP)@B C P&B

> (Q@aP)M(B n C) C P@B

(Q@C)A(B naP) C P&B

: P@B E Q@C

Lemma 6 Conglomerate join is closed over 1Z[X]: given P, Q 7T[X, then
P u Q E 7Z[X], i.e.,

Va:(UdomPuQ)uranPuQ ldom(P UQ) a}= {a}

PROOF Conglomerate join is defined as

PU Q = {A :PX.a :XA u{a} C oPuaQ A
(a E oP An oP a E P) A
(a E oQ => An oQ a E Q)e
A - a}

First, it follows from the defintion of U that

UdomPu QuranPU Q C aPU Q (2)

Consider any a E AP u oQ. If a E oP. then we krow {u} - a E P. and
similarly if a E oQ. then {a} - a E oQ. Therfore we have

Va :oPUoQ* {a} a E PU Q (3)

combining this with equation (2) gives

oPUoQ = Udom(PLU Q)uran(Pu Q)

Now consider anv A a E PuQ. If a E oP, we know that oPnA - a E P.
But since P is valid, then a E A n oP, which implies that a E A. Similarly.
if a E oQ, then oQ ni A h-- a E Q, and a E A. Therefore we have

V A : Pclasses: a : classcs * A - a E P u Q = a E .4

combining this with equation (2) implies that P u Q is also valid.
COROLLARY The alphabet of PU Q is oPUoQ.
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Lemma 7 Conglomerate Join gives an upper bound, i.e., for P, Q :I[]
then

PEPuQAQCPuQ

PROOF Since aP C c4P U Q), then

P UQ 9{W PX,a: XIA U f{a) g aP UoQ A

a E aP =: A n aP -,a c P)
If Kp A {A PX e A nl cP .- * A], then monotonicity of abstraction gives

P U Q@OP C Kp {A: PX, a: XIA u fa)}goP U Q A

(a E aP * AfnlaP '- a E P) 9 A , a) > aP
C Kp;{A:VX,a:XAUfa} CoPuaQAa CoPA

(a C P * AnfaP -aEP )e*A a]

g Kp-{A:PX,a:XjAUfa}CaPUaQAaEaPA

(AnioP - a P)*eA -a)

C {A:PX,a:XjAUfa)goPA
A - a E P * A '--'a

C p

The symmetry of conglomerate join implies Q E P Li Q.

Lemma 8 Conglomerate join gives the lowest upper bound of its argu-
menits. i.e.. for P, Q: 7.X], then

V R:PJZ[X] e P 1: R A Q E R => P LU Q E R

PROOF We have P ER AQ =R=> P U Q E R. Next,

PER =: P~c(oPUoQ)ECR&(oPUoQ)

=> (RA(aP UaQ))4,aP C P
VA :PX; a:X *

A - a E (J?'i(aP Ua Q))Aa P =: A i.a E P

*VA :PX; a :X o

A -a E R@,q(aP UaQ) A a E oP
*A flaP - a E P
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And similarly for Q. Thus we get,

PERAQER = VA:PX;a:X

(A - a E RA(aP U aQ) A a E QP
* An oP -. a E P) A

(A - a E R@(aP U oQ) A a E uQ

* Afl aQ - a E Q)

VA : :PX; a:X

A o a E RC(aP U aQ)

(a E oP = An oP a E ?) A
(a E oQ =* Af naQ a E Q)

* VA : PX; a:Xo

A - a E RA(oPuoQ) *

A-a E PU Q
* R (oPUQ)C PUQ

* PuQEJR

COROLLARY If the operands of U have the same alphabet thrn conglon-
erate join is equivalent to set rntersection. El

Lemma 9 Congorrate Intersection is cl,,sed: given P., : 7[.]. then
P M Q E T[X].
PROOF Ve have

Pf Q= P i, nQ) u Q (QP nAQ)

and since both sides of the u are valid conglomerate relations, and have the
same alphabet, then P fl Q is also , alid.
COROLLARY The alphabet of Pn Q is oPnoQ

Lemma 10 Conglomerate Intersection gives a lower bound, i.e., for P. Q
1?[X]

P QE P Pn Q Q

PROOF We haveaPnQ C cP. The definition of n implies that PK(aPN
oQ g P n Q. which implies P 5, Q _1 P. Symnetry of definition implies
PnQE Q. C
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Lemma 11 Conglomerate Intersection gives the greatest lower bound of its
arguments, i.e., for P, Q: RZ[X]

VR:I[X]aRE PARE Q=REPn Q

PROOF WehaveREPAR 1: Q=,aRC aPnQ, and

R E P A R E Q =. P&aR U QaoR C R

P@(aPfnlQ)4aRU Q@(aPnaQ)@aR C R

Distribuiting abstraction throught the arguments of u gives

RE PARE Q => (P@(aPnoQ)UQ@(acapaQ)),LaRC R
=> PlQ(9oRCR

SRE PnQ

COROLLARY If the operands of n have the same alphabet then conglom-
erate intersection is equivalent to set union. 0

Lemma 12 The conglomerate complement operator is closed over the set
of conglomerate relations with the same alphabet: given P : [x]. then
oP = aP and P E R[X].
PROOF Conglomerate complement is defined as

P = TaP U (_LoP - P)

It follows directly from this that

oP = Udom P U ran P

and since TaP C P. then

Va :oP { u- a E P (4)

If A - a E P then we know that A a E loP, and since ,LoP is a
valid policy. then a E A. Combining this with (4) proves that P is a valid
relation.
COROLLARY the alphabet of is QP. D

Lemma 13 The conglomerate operator gives the complement of a relation
in the subset of [X] of relations with the same alphabet, i.e.. for P : RZ[X]

PuP = TaP

Pn-p = ±oP

PROOF follows from the defintion of conglomerate complement. C
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Theorem 3 The set of all conglomerate relations form a lattice with order-
ing relation 1_; and lowest upper and greatest lower bound operators Ui and
n, respectively.
COROLLARY The set of conglomerate relations with the same alphabet
forms a distributive and comlpementable sublattice of 7Z[X]. []

Lemma 14 Conglomerate Join is closed over the set of the set of conglom-
erate relations that do not express separation exceptions, i.e.,

VP, Q : "Rs[X] e PU Q E IT-s[X]

PROOF We have by definition for P,Q:7[X]; A, B :PX; a X, that

AUB,-aEP UQ €, AuBU{a}CaPUoQA

a E oP = (AU B) noP - c E PA

a E oQ - (AU B) n aQ - a E Q

But since P E R.s[X] then

(A U B) n oP- a E P
= (AnclP)U(BfnoP) - a E P
= (An aP) - a E P A (B naP) a E P

and similarly, since Q E TZs[X].

(A U B) n oQ - a E Q

,(AlnoQ) - a E P A (B noQ)- a E Q

Thus if .4u B a E Pu Q then.

a E oP => (An oP) - a E PA
a E aQ = (A noQ) . a E Q

which implies A , a E P U Q, and similarly we can show that B a E
P U Q. Therefore P u Q E lZs[X]. ED

Lemma 15 Conglomerate join is closed over the set of the set of conglom-
erate relations that do not express aggregation exceptions. i.e.,

V P, Q : RA[X] 0 Pu Q E -A[X]
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PROOF We have by definition for P, Q : Z[X]; A, B :X; a X, that

A '- a AB s-- a =
AU B U {a} C P U aQ A
(a E aP A aoP a E P) A
(a E aP B n oP a E P) A
(a E aQ n AnoP a E Q) A
(a E oQ = BfnaP a E Q)

and since P E SZs[X], this implies,

a E OP = {(AfnaP) - a,(BfnaP)' a} C P
aEaP= (AUB)noP#-aEP

Similarly, since Q E 7SA[X], we get

a E oQ = (Au B)nfQ- a E Q

combining these results implies A U B - a E P U Q, which implies P U Q E
_ A [x ]. 1

Lemma 16 Conglomerate Join is closed over the set of the set of conglom-
erate relations that do not express separation nor aggregation exceptions.
i.e..

V P. Q: 7o[X] 0 P u Q E Po[X]

PROOF Follows from the results of the last two lemmas. since if P. Q E
1,o[X], then P and Q are members of both S?-s[X] and RTA[X]. and so is
their join. But we have that

So[X] = 7Z-A [X] n ?_Zs[X]

COROLLARY By inspection we see that our definition of join over policies
from lRoclasses] is identical to the (reflexive) policy join operator defined
in [10]. 0
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B Implementing Aggregation Policies

B.1 FMG: Group Confinement Model

Lemma 17 If P is a flow policy with no separation exceptions then the
mapping -t is flow preserving in the sense that given P E 71Zs[classes], then

V A : Pclasses; a : classes * A U {a} CaP =

3 B : Pclasses *B E )T, P a A U ±P OAD _ B

Recall that the definition of -t gives: for policy P, and a : classes, then

-_P a = {b :classesl(P)b < a)

11)TP a = maxs(dom P > f{a})

PROOF (if part) Suppose B -- c E P holds. This can be written as
(B - {b)) U {b} -. c E P for any b E B. By definition we have

4)±P b = {a : classesI(P)a < b)

which implies, by definition of bound (_5), that for any a E 4) -L P b. then

(B - {b})u {b}- CE P = (B - {b})u {a.b) ,- cE P

and we can progressively add components of 4)_P b to give

(B - {b)) u{b}- cE P = (B - {b)) u {b}u 4)P b - cE P

and we can repeat the process for every other conponent of P- {b} to finall"
give

(B - {b}) U {b) - C E P =: B U U(]D±P BI)- C E P

But since bound is reflexive, we get

B-{b))u{b)--cEP = U4.P(BD -cEP

=, UI.Ji.POB[) E dom P > f{c}

* 3 C : Pclasses e
C E maxs dom(P > {c}) A U4)±POBD 9 C

S3 C : Pclasses a

C E 4PT, A U4)iP(BD 9 C
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PROOF (only if) Suppose that

3 C : Pclasses e
C E $tT', A U 4D.POBD C C

Then since the C for which the above holds is a member of 4)T, we have,

3 C : Pclasses * C - c A UP.CBD 9 C

But we already know that B C ,0j.P(BD ( reflexivity of bound), and by
transitivity of subseteq gives B C C. Since P is an aggregation policy, then
if C - c E P then all subsets of C may flow to c. Therfore B c E P.
and the lemma is proven.
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C Implementing Separation Policies

C.1 FMU: A Universal High Water Mark Model

Lemma 18 The mapping 4P is flow preserving, in the sense that for any
policy P : policies, then

V A Pclasses; b :classes .
A - b E P t U4)±P6AD E C4i)kP b

PROOF Given A: Pclasses; b: classes the defintion of 4) gives

U4).LPAA = A

,,nP b = domP I>{b}

and if A - b E P. then U4) P(A[) E Ci,,P b follows and vice-versa. 0

C.2 Formal Basis for iFMU

Lemma 19 Given a history t of states from msg-flou's. and a state .A:
msg-flous. then for every memorable entity e E oM

alI-fwd*(flows t'(M. {e}) =
allfu'd (AM, . e }) n mendkssU
all-fu'd* (flows t, all-fu d* (.1, {} ) n me mblec)

PROOF We have by the defintion of flows t and all-fwd*, that

all-fwd*(flows t(Af), {e)) =

U dom(flows t > {e})U (5)

U{E : Pents]E - c E M (6)

(E n mcmh ss) uU(dom flows t > (E n mEmblec))}

Since Al does not posses any aggregation exceptions, equation (6) can be
written as

U dom(M > {e}) n mernless U

U IE: PentslE E domM > {eL ) U(domflows t L> (En memblc))}

= Udom(f t>{e})fnmemlessU

Udom(flows t C>(UdomA! t>{e))Nmemblc) (7)
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But e is memorable, and thus

e E U dom(M i> {e}) n memble

which implies that the result of equation (5) is a subset of equation (7), and
therefore we have

Udom(flows C(AI) t> {e}) =

Udom(M t> {e}) n memlessU
U dom(flows t > (Udom(M t> {e}) n memble))

and the lemma follows. C

Lemma 20 For any secure history I (a sequence of secure states formed by
a series of secure transitions), and a secure state sn such that C(s.) also
forms a secure history, then we can determine the high water mark of each
memorable entity at state sn in terms of the inital high water marks of all
the sources of e, i.e..

sn.6h,,me = E 6hwm(]all-fwd*(flows t. {e})[

where 6 hu,m = t 1.6 h.m, the initial high water marks. and the defintion of
flows is extended to sequences of secure states.
PROOF We will use induction over the length of t.

" (base case) If #t = 1, then

all-fwd*(flows t. {e}) = all-fwd*(t 1.M, {})

and sipce the transition from state (t 1) to state s2 is secure, we have
by Sfcure- Transition.

S2.bhu-mC = E bhw(all-fwd*(flows t, {e ))

and the lemma holds for the base case.

* (inductive hypothesis) Suppose that the lemma holds for histories of
length n. Now consider a history !^(s,.s,+i) of length n + 1. By
the definition of a secure transition from s, to s,+, we have for a
memorable e,

s . = s,. 6h,,allfwd*(s.M, {e})[) (8)

= s,.6hu,, all-fwd*(s,,.M , { })nl7nbflzb l)e (9)

(sfl.6u,(all-fwd*(s.M,{})f n ernlsso  (10)
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Since the high water marks of memoryless entities remain static, equa-
tion (9) can be written as

(Db6,wm gal-fwd*(s,.M, {e}) n memble D  (11)

However, the high water marks of memorable entities change, and
applying the inductive hypothesis to equation (10) implies that for
any memorable f E all-fwd*(s.M, {e}), then

S. 6hmf = E h , all-fwd*(flows t, {f})D

and therefore, equation (10) can be written as

&{f: entslf E all-fwd*(sn.AI, {e}) n niemble e

(@ t hwm (all-fwd*(flows t, {f})I)}

=6 bh.,,, (]al1-fwd*(flows t, alc-fwd( s) .M.{e}) n mernbl))

and combining this equation with the memoryless case gives

Sn+I
6

hU'm- =

eh,,.,gall-fwd*(s,1 .M, {e}) n mfmlessU
all-fwd*(flows 1, all-fwd*(s,.M, { c) n mniemble)j)

which, by replacing all-fwd* by it defintion and applying the result of
lemma 19 gives.

sn+.6h .mif = E)hr,,(]all-fwd*(flows t'(s%),{c))D

i.e.. the lemma holds for histories of length n + 1.

Thus by induction the lemma is proven.
COROLLARY Given a memorable conglomerate E C nemblc, then

es,n.bh,,mgED = E) 6h.mall-fwd*(flows t. E)I)

Lemma 21 Given any non empty history t of secure states, arrived at via
a series of secure transitions, then

V E : Pents: fents e
E - f E flows t --

PROOF We will use induction on the length of the history t.
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e (base case) If #t = 1, then flows t = (t 1).A, and the lemma follows
from the defintion of a secure state.

* (inductive hypothesis) Suppose the lemma holds for histories t of
length n. Consider a secure history t'(s1 +1) of length n + 1. By the
defintion of function flows-, we know that if E - f E flows t(si+),
then either

E - f E flows t

in which case, by the inductive hypothesis the lemma holds; or if
E - f is not in flows t, then

E - f E {G : Penis; f : entslG ,- f E s,,+.M e
(G n memless) U all-fwd*(flows t, G n rnembl ) f}

Pick a G : Penis such that

G f E s,+I..If

and G propagates E to f. i.e..

E = (G n memlcss) U al-fwd*(flows t. G n memblc) (12)

Since s,+, is secure. we have

(@Sn+l.h.m(G[) E ,,nkf (13)

(since Csmk is static, we have ,, = s+I .Sk ). But 6 h.,, for mem-
orable entities in G can be calculated according to lemma 20. along
with the fact that 6h,,.m is unchanged for memoryless entities in G.

Thus we have.

E) 8,n+1 - . G[) = e )4I,,(( n frlmessu
all-fwd*(flows t. G n mEmbic )[)

applying equation (12) to this result gives

Es+.bh.wmG = E)6h,,.OED

But this result, along with equation (12) (state s,+, is secure) implies
that

e(jhumgE) E Gn~kf

i.e.. the lemma holds for any secure history of length n + 1.

By induction the lemma holds for all secure histories. C
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C.3 A Framework of High Water Mark Models

C.3.1 Continuous Separation Policies

Lemma 22 Given a continuous separation policy P :7?_A[claSS]S, then

V A : Pclasses; b: classes * A$ {} A A 5 {} 
A -bE P,*
3B :Pclasses* B E mins(dom(P > {b}) - {{}{b}))) A

BCAA

A C UdomP t> {b}

PROOF Suppose that A , b and A {} and A $ {b}. It follows that

A C Jdom(P > {b}) (14)

and since A - b. we also have

A E (dom(P t> {b}))- {{}.{b}}

thus there must be a minimum less than A. i.e..

3 B : ' classcs * B E mins(dom(P > {b}) - {{}. {b}))

combining this with equation (14) gives the if part of the lemmma.
If we have

A C Udom P L> {b} A
3 B : Pclasses 9 B E mins(dorn(P > {b)) - {{}.{b))

then since P is non-aggregating. we have for C : Pclasscs

CE dom P C> {b} E PA C' E dom P t> {b) E P
CuC,-bE P

Which implies that for the above.

U dom(P t> {b}) b E P (15)

Also given our inital assumption, we have some minimum B : P classes such
that B - b E P. But B C Udom(P c> {b}), and P is continuous, which
implies every conglomerate between B and the top may flow to b. But we
have B C A and A C U dom(P > {b}) which implies that A - b E P, and

the lemma is proven.
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D Relating Aggregation and Separation

Lemma 23 The complement of any policy not exhibiting separation prop-
erties does not exhibit aggregation policies, i.e.,

V P : Ps[classes] 0 "P E TZ-A

PROOF By definition we have

P = TaP n (.LaP - P)

Thus, for .4, B : Pclasses; a : classes then {.4 ,- a, B - a} P implies
that:

* If { A a, B - a) C ToP, then it follows that A U B a E TaP,

and thus A U B - a E P.

* If A a E (LoP - P), then we have A : a P. But policy

P E _,[clossesj, and thus does not exhibit any separation properties:
if A - a ' P, then AuC -- a .P must hold for any C-ifa C existed
such that 4 U C - a E P then this would violate the requirement

.4 U C a E P .4 a E P A C-- a E P

Therefore we must have A U B a ' P and thus A U B a E
(_LP - P), implying that A U B - a E P. By symmetry, if B a E
(laP - P). then A U B , a E P also.

Thus we have for any P C R_s[classes], that

V.A. B : Pclasses: a : classes e

{.4 - a. B -a C P =
A4 U B - a E P

i.e.. P E T--A[classe s].

Lemma 24 Given a continuous separation policy P : ._A clas s]. then

PR is a valid policy, where

PR = {A : Pclasses; a : classesIA C Udom P > {a) * A U {a} - a

PROOF We have

aP = Udom PR U ran PR
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and for any a E a P, then {a) .- a E P, which implies

{al -a EPR (16)

For any A :P classes; a classes, we have A i- a E PR implies, by the
definition of PR, that a E A. Combining this with (16) implies that

va: aP * domn P t> {a} = I{a)

i.e., PR forms a valid policy. Note also that aP = oPR.
COROLLARY Since PS = PflFH-, and PR is a valid pol-icy, then PS nmust
also be a val-id policy,. D

Lemma 25 If P E 1Z..Ai[classes], then PR E TZO[clas,es]. where PR i.
defined as in the previous lemma.
PROOF The definiton Of PR states that for any c, thei all subsets of
U dom P t {c) may flow to c. Thus if A U B may flow to c. then so too
may their subsets, i.e., .4 -. c E PR and B - cE PR.

Similarly, if A4 may flow to c and B may flow to c then both .4 and B
are subsets of Udom P >~ {c}. and thus so too is A4 u B a subset. Therefore
A u Bc.

Lemma 26 Given a continuous separation policy P A[cas].then
the complement of its separation component Ps = P n 75R. where PR is
defined as above, forms an aggregation policy. i.e.. P5 E R... SjclaS" qEs]
PROOF Since a sublattice of policies with the same alphabet forms a
boolean algebra, and OP = ONR, we have

P5  = P n75R

= 7 PLiPR

= (TckP U (IckP -P)) n PR

- (PRfnlTaP) U(Rf(0F -P))

= TOP u(PRnLIoP - P)
= TQP U(PR -P)

For A. B P classes; a :class.s if A U B -a ETP . then

A LiB -a E ToP V (17)

A LiB - a E (PR -P) (18)
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If equation (17) holds, it follows that {A # a,B -, a} g TaP, which

implies
A o a E Ps A B- a E Ps (19)

For equation (18) we have

A -aE PR A AUB-- a _ P (20)

Since PR E TZo[classes], then A U B - a E PR implies that A " a E PR
and B - a E PR. Since PR is simply policy P with its holes filled up, then

if A U B - a E PR, then there must be some conglomerate C containing
both A and B, with C - a E P, i.e.,

3 C: Pclasses * A U B C CAC - a E P (21)

If A U B , a P, then since P does not have aggregation properties, we

have
A a 'PVB- a 'P (22)

Suppose that A - a E P holds. Then by equation (21), there exists some

C such that C ' a and A U B C C. But P is a continuous separation
policy which implies that all conglomerates between A and C (including

A U B) may flow to a, i.e., A U B *- a, which is a contradiction. Therefore,

if A U B t- a ' P holds, then

A-.a.PAB-a.P

combining this with equation (20) gives

A -- a E (PR - P) A B a E (PR - P)

and thus,

A-a E PsA B- a E Ps

combining this with (19) gives the desired result. 0
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