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Stochastic Dynamics and Bifurcation Behavior of Nonlinear
Nonconservative Systems in the Presence of Noise

Abstract

The main objectives of the completed work 1are to develgp
mathematical techniques to reduce the dimensionality of multidegree-of-
freedom nonlinear systems near bifurcation points and to solve for the
response statistics of the reduced system. The asymptotic behavior of
nonlinear dynamical systems in the presence of noise is studied using the
method of stochastic normal forms. The crucial point in the normal form
computations is to find the resonant terms that cannot be eliminated
through a nonlinear change of variables. Subsequent to reduction of the
dimensionality, a Markovian approximation is used to obtain the associated
stochastic normal forms. The key result is that the second order stochastic
terms have to be retained in the normal form computations in order to
capture the contributions of the stable modes stochastic components to the
critical modes drift terms. It is also shown that the method of extended
stochastic averaging is in fact "equivalent" to stochastic normal forms for a
specific class of nonlinear systems. In addition, mean square stability of
the response is obtained and the bifurcation behavior and associated
stationary and transient probability density functions for the reduced
stochastic system are determined. Finally, the general results are applied
to the study of the dynamics of aircraft at high angles of attack, plates
under gas flow, structures under follower forces, and propellant lines

conveying pulsating fluid.
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1. Introduction

The goal of this work is to obtain results pertaining to the statistical
as well as the sample behavior of nonlinear structures subjected to random
excitations. Among many results obtained in this work for nonlinear
stochastic systems, the results pertaining to the problem of stabilization by
noise are of practical significance. These effects have been demonstrated by
the P.I. for both gyroscopic and nonconservative systems [1,2].

In order to understand the bifurcation behavior of a dynamical
system, a reduction in the mathematical complexity of the n-dimensional
problem is required. Often certain variables which are asymptotically
stable can be eliminated as being unimportant with the essential behavic
of the system restricted to the dynamics of the remaining critical variables.
The initial work involves developing mathematical techniques such as
stochastic normal forms [3] and extended methods of stochastiz averaging
[4] to approximate multidegree of freedom nonlinear structures subjected to
random excitations by lower dimensional Markov diffusive process. Thus,
as a first step we have developed and extended mathematical techniques, to
reduce the dimensionality of nonlinear stochastic systems neér bifurcation
points. Subsequent research involves applying these techniques and
proposed methods (see, for example, [5]) in order to obtain an
understanding of co-dimension one [6] and co-dimension two [7] stochastic
bifurcations. The major goals of this research effort are to examine the
stochastic dynamics, stability and bifurcation behavior of various nonlinear
stochastic problems with direct impact on the mission of AFOSR. Such
problems include: aircraft at high angles of attack under the effect of
atmospheric turbulence; rotating shafts and rotating systems under

pulsating loads; propellant lines conveying turbulent flow, etc.




The PI has completed most of his objectives and the results from this
project have revealed new features in the theory of nonlinear stochastic
dynamics. Highlights of these features are briefly discussed in the

following subsections.

2. Development of Mathematical Techniques

When a multidegree-of-freedom mechanical system undergoes a
bifurcation, it does so only in a few degrees of freedom. The simplest
deterministic example to point out is when a single mode becomes unstable
due to a control parameter u being slightly increased beyond a critical value
We. For example, 1 and p represent the axial and Euler loads respectively,
in buckling of a column. In the vicinity of |, the temporal evolution of the
motion of the critical mode in the first approximation is given by
x=(u-Ho) x+ax3. This situation becomes more complicated when a set of
control parameters W are varied in such a way that several modes may
simultaneously become marginally unstable. In such situations, the
system is said to undergo a multiple bifurcation. The associated simplest
possible amplitude equations which capture the complete dynamics of the
original system in the vicinity of He are called the normal form.

For deterministic systems, in addition to the theory of normal forms,
the theory of center manifolds and method of averaging are particularly
useful in reducing the dimensionality of large nonlinear dynamical
systems. However, consistent methods for the analysis of multidegree-of-
freedom stochastic nonlinear systems are currently lacking in the
engineering community. The 'mathematical techniques presented in this
section, namely stochastic normal forms and extended stochastic

averaging, respond to this need. In order to understand the complex




interaction between noise and the inherent nonlinearities in mechanical
systems and their bifurcation behavior, a reduction in the mathematical
complexity of the n-dimensional problem is required, as discussed, in
which the dynamics of the response are captured in the remaining critical
modes. Often certain variables which are asymptotically stable can be
eliminated as being unimportant with the essential behavior of the system
restricted to the dynamics of the remaining critical modes. To this end, the
method of averaging was extended, following Papanicolaou and Kohler [8],
by the authors [4] to include the analysis of nonlinear systems which exhibit
co-dimension one bifurcations. Application of this method to study
stochastically perturbed general nonconservative problems was presented
by Sri Namachchivaya and Tien [2].

The ideas of center manifold and normal forms were extended to
stochastic systems by Knobloch and Wissenfeld [9] and Coulett [10],
respectively. The applicability of the method of normal forms to nonlinear
stochastic systems was demonstrated by Sri Namachchivaya and Hilton
[11]. However, these extensions were unsuccessful in capturing the
contributions of the stochastic components of the stable modes to the critical
mode drift terms. Such effects were shown to exist by Sri Namachchivaya
and Lin [4] using extended stochastic averaging. The goal of this work is to
present the method of stochastic normal forms developed by Sri
Namachchivaya and Leng [3], in order to reduce the the dimensionality of
nonlinear stochastic systems near bifurcation points. Furthermore, it has
been shown that these two methods are, in fact, equivalent for a specific
class of nonlinear systems. We also wish to add that an alternate approach
has been used by Caughey [12] to analyze nonlinear stochastic systems.

This approach replaces a nonlinear stochastic system without an exact

]




solution by an "equivalent" system with an exact solution chosen in some
optimal fashion. There need not be any reduction in dimension. The
method of stochastic normal forms differs because it replaces the original
system by an "equivalent” system of lower dimension by the elimination of
stable modes.

There are two approaches to obtaining normal forms in deterministic
systems. As in Guckenheimer and Holmes [13], in the first method, one
first computes the lower dimensional center manifold on which the
dynamics reduces for large times and then a nonlinear change of
coordinates is applied to transform a small dimensional system to normal
form. In the second method, one systematically expands the original vector
fields in powers of the amplitudes of critical modes, as in Elphick et al. [14],
to yield both the normal form and center manifold. This paper outlines a

method which has its basis in [3,14].

2.1 Meth f hastic Normal Form

The theory of normal forms goes back to as early as Euler; Poincare
[15] and Birkoff [16] contributed a more definite form of the theory. Poincare
[15] considered the problem of reducing a system of differential equations of

the form

dx dy _ n n
dt Ax+f(x) to 3t Ay, xeR", yeR" . O

The formal solution of this problem deals with finding near-identity

coordinate transformations x = y + ®(y) which eliminate the analytic

expressions of the nonlinear terms. Ii was shown that sucl, a formal




solution exists provided the above system is hyperbolic and the eigenvalues

A;j of the diagonalizable matrix A satisfy

Mo kXN for j=12,...n |kl=3Xk =2 (2)

where k is an integer vector k =(k; , kg ,..., ky) withk;20. Furthermore, it
was proven that if, in addition to the above results, the eigenvalues lie
strictly to one side of a line through the origin in the complex plane, then
the formal series ®(y) is convergent. If the system is nonhyperbolic or the
condition (2) is violated, the analytic expressions of the nonlinear terms
cannot be completely eliminated. The normal forms of equation (1) are
dictated by the nature of the linear operator and contain only resonant
nonlinear terms that cannot be eliminated through a nonlinear change of

variables. Thus, the nonlinear system in (1) can be reduced to

dy _ n
e Ay+g(y), yeR",

(3)

where g is simpler than f and the resulting simplified nonlinear equations
are said to be in normal form. Such reductions have been widely used to
study deterministic autonomous and nonautonomous systems and Arnold
[17] contains a good exposure of this subject. In bifurcation problems, the
eigenvalues of the linear operator A are composed of two sets, one on the
imaginary axis and the other with strictly negative real parts. The linear
vector space E associated with A can also be divided accordingly as

E =E. @ E5 such that x.e E. and x5 € E; with x = x. ® x5.




The purpose of the theory of normal forms in our investigations is
two-fold: first, to extend the normal form theory to incorporate nonlinear
stochastic systems and secondly, to demonstrate the relationship between
stochastic averaging and normal form theory for non-nilpotent systems. To
this end, consider a dynamical system governed by nonautonomous
differential equations in Rn

x = Ax + flx, n) + o&(t) Bx = AM)x + fix,n) + oF(x, t, M) (y)
which depend on two external parameters i1 and 6. The matrices A and B
are nxn matrices which depend smoothly on n, §(t) is a stationary
stochastic process with zero mean representing the parametric excitations,
and x = 0 is the trivial solution of Eq. (4) for all values of n and 6. The
nonlinear function f is a vector function which is smooth in its arguments

and the ith component of the rth order polynomial can be represented by

N
§ 0 =) fmx™ =) fmmm X1 %57 . xq", 6 = D
m m r=1 (5)

where m =(m;, mg ,..., my) are non-negative integers, XM = x]"'--- X5 - -- XJ*"
is an rth order monomial such that £m;=r, fi, are the coefficients of the
monomial with a particular combination of (m;, mg ,..., my)and the
summation is over all such monomials. Furthermore, the trivial solution
of Eq. (4) in the absence of stochastic excitation, i.e., o = 0, loses
stability and undergoes a co-dimension one bifurcation, namely, either
a Hopf or a simple bifurcation at n=0, and the associated linear operator for
these cases is A(0) = diag {iw; , - 1wy , A3 ,..., An}, or diag (0, X2, A3 ,..., An) .
Consider a near-identity nonlinear transformation

x =y + W(¥) + aU(y,t) + 62V(y,t)




where W(y) is a homogeneous vector polynomial of degree k, k being the
lowest order nonlinearity that exists in Eq. (4), U(y,t) and V(y,t) are vector
polynomials with time dependent coefficient. Interpreting Eq. (4) in the

Stratonovich sense, we want the transformation to yield

y =AMy +gym + oG (y:n.&t) + o%H (y,n,&(t) (6)
where g(y,0) = 2 gi.m Y™, and y™m are the rth order monomials such that
m
Y m;=r with G(y,0,§(t)) and H(y, 0, §(t)) at least linear in y. Now, we

define the Lie bracket of W and Ay as

La = [W, Ay] =%¥- Ay - AW .

(7)

Considering now a monomial in the ith component of W, using the fact that

A is diagonal and the notation of Eq. (5), the above equation yields

La W lmym ={(m 1) - A Whpym (8)

Equating the monomials of order k, we can then evaluate the coefficients of

the monomial elements of W by solving

LAw}(;m = ?i(,m"g"‘lk;m’gyk;m = h%(;m y Emj=k (9)

where ﬁfm,’g}fm are the coefficients of the monomial y™ of the following

polynomials of degree k, respectively,




k k-1 : (k+1-s)
Y fyewey, 3 W

r=2 s=2 f

g(y) .

La is called the homological operator, since Ly : Hi (R") - Hx (R"), where
Hy (R") is the space of homogeneous vector polynomials of degree k on Rn.
The crucial point in the normal form computations is to find a
homogeneous polynomial vector field of degree k in a space complementary
to the range of the homological operator. The dimension of the vector space
increases with k. This makes the computations cumbersome for large k.
Furthermore, since the matrix A is diagonal, the image of La, Im(Lp), and
its null space, ker (L), span the whole space. Consequently, in order to
solve Eq. (9) we should have hi]fm €Im (Lp) and this gives a condition that
gi‘§m may be chosen in the null space of La, i.e., g.;]fm eker (La) when the null
space is not empty. Furthermore, from Eq. (8), the resonance condition for

the deterministic terms reduces to

n
2 mA-Ai=0 foralli=1,2,..,n.
I=1

Similarly, equating the terms of order k in y and 1 in o, the time

dependent coefficients of the monomial elements of U are evaluated from

at (10)

=~k ~k
where Fim(t), Gim(t) are the coefficients of the monomial ym of the

following polynomials of degree k, respectively,




10
k1 o Sy + W(y))

2 F+Wpn+y B TrWOD) gy

r=1 s=1 an

k-1 ktls k+l-s

s=1 i 8=2 f]

Identifying the terms of order k in y and 2 in o, the time dependent

coefficients of the monomial elements of V are evaluated from

(i + LA) VE D) = Bl - Bo(®) - H®)
&t (11)

~k ~k
where Fin(t), Hin(t) are the coefficients of the monomial yMm of the

following polynomials of degree k, respectively,

K aFFk+1-s)( W)t af(k +1-s )( W)
2 i y+wiy), UJ( )+ 2 i y+W(y) Vjs(y,t)

s=1 i s=1 f]

k-1 ks 2
+ 3 S Dypnuies

(k+1-s) (k+1-8)
i Ui O Gaup kzl W,y Y H)
H ) ’
s=1 f] s=1 i
=2 f !

GE B BN B G BN A T M D AR N NE oE O e G I e
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In Eqgs. (10) and (11), the derivative (a/at) acts only on the functions
Ugm(t) and V}?m(t) , respectively. Equation (10) contains the results from Eq.
(9), and Eq. (11) contains the results from both Egs. (9) and (10). In the above
expressions, the repeated subscripts imply summation up to n. After
taking Fourier transforms, the resonance condition for the stochastic terms

becomes

n
i+ Y mN-A=0 foralli=1,2,.n.
=1 (12)

and this expression dictates the stochastic normal form. The coefficients of
the monomial elements W, U and V are solved from Egs. (9), (10) and (11),
respectively, keeping in mind both the deterministic and stochastic
resonance terms.

The noise terms in the critical modes which contain stable variables

can be eliminated. Let the noise term be of the form

m mp n g
ycl1 ...... Yep ) (ysll ...... ysq) E(t)

then the stochastic resonance condition is

q

P
i+ Y midg + Y mdg - =0
l=1

I=1

where the A¢;'s are either zero or pure imaginary and the Asj's have
negative real parts. Since at least one of the nj's is a non-negative integer,

it is obvious that the resonance condition can never be satisfied for any
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value of Q. Hence, the noise terms containing the stable variables are
removed from the critical modes.

Similarly, in the case of linear multiplicative noise, noise terms of
the form y¢; £(t) can be removed from the stable modes. Checking the
resonance condition,

Q4+ WA -2 =0, Im+Em=1

since A is zero or pure imaginary and A has a negative real part, the
resonance condition cannot be satisfied for any Q. It is worth pointing out
that, for higher order noise terms, such a decoupling may not be possible
because of "stochastic resonance”. This can be illustrated through an
example in which A, =jo, A, = -jo(Hopf bifurcation), and As; =-7.
Let the stable mode contain a noise term of the form y:ll yz;z ys; &(t). The
resonance condition is

1Q+m; o)+ ma(-jo)+ 1(-y)-(-y)=0,ie, j(Q+(m;-my) ®)=0
which is satisfied for Q = (mg - m;) ®. Thus, it is not always possible to
remove such terms unless the noise §(t) has no energy at the frequencies
Q=(mg-m)w.

More specifically, putting x = {x., x¢}, f={f., £}, W = (W, , W}, U =
{Ug, Ugl, V=1{V., Vs} and A = diag (A;, Ag} where the eigenvalues of A
are pure imaginary or zero and the eigenvalues of Ag have negative real

parts, the normal form procedure can be stated as: given

% = AcXe +fe(Xe , X5, M)+ OFc(xc , X5, 5 &)
Qd}% = Asxs+fs(xc,Xs»n)"'GFS(xc’xS’n;é(t))

R
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the near identity transformations
Xe = Yo + We (Yoo Yo M) +0Ue (yeya&®)n) + 02VdyeysE®)m)
X5 = ¥s + Ws (Yer ¥ M) + 0Us (Yeys&t)m) + 02Vdyeys&E)n) .
yield

% Acye + gdyem) + 0Gdye&),n) + o?Hdye&(t)n)

dys

It AgYs + EdYeyen) + 0G{yeysEt)n) + 02HdyeysEt),n)

and W, U and V are such that g., G; and H. are as simple as possible and
take values in E.

Since the theory of normal forms arises from perturbation analysis,
it is usually presented for equations which contain a small parameter. In
nonlinear equations, the small parameters can be easily introduced by
scaling of the state variables. In order to study the interplay between the
deterministic and stochastic components of the system, it is assumed that
the nonvanishing nonlinear term in the normal form is of the order £2 and
o=¢. Furthermore, for simplicity, it is assumed that the vector field f is an
odd function of x and the stochastic terms are linear in x and can be

partitioned as

Xe

Xs

{F& (% , %a , E(E) ,n)}
Fg (xc y Xg g(t) ,ﬂ)

Bee (B(t), M) Bes (E(t), M) }

Bs E(t) , M) Bss (E(t), M) (13)

As shown earlier, the noise terms in the critical modes which contain the
stable variables can be eliminated. For the case of linear multiplicative

noise, the same goes for the Bgc(t) x; terms in the stable mode equations.
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Hence, performing the normal form transformation described earlier, we

obtain

{yc} [Ac 0 “y} 2[ g2 (vo } [ch 0 Mycl
= +€ + &
s 0 A, !¥e g3 (e, ys 0 But) | ¥

.2 {Bcs(t) UsAt) 0 } :Yc}
Ys

0 Bs(t) Ugs(t) (14)

where
ch = Ac Ugs - Ugs As + Bis(t) (15)
Usc = As Usc - Usc Ac + Bsc(t) (16)

Using the fact that the noise is linear multiplicative allows one to
decouple the stochastic terms in (13) leading to Eqgs. (14), (15) and (16),
which provides the 0(¢2) contribution from the stable modes to the critical
modes. The method of normal forms has effectively uncoupled the critical
modes from the stable ones. It is worth pointing out that the deterministic
part of the uncoupled system is the same as the deterministic normal form
for the system unperturbed by noise. The nonlinear vector function g.(y.)
for various co-dimension one and two bifurcations are given in Arnold [17]
and Guckenheimer and Holmes {13]. It remains now to solve Egs. (15) and
(16) in order to completely obtain the stochastic components of the normal
form.

Before proceeding further, Eq. (14) is brought to a "standard form" by
using a transformation

At

Ye =2
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and Eq. (14a) can be replaced by a differential equation in z as

Scil% = g2~ Act g3 (e Act 7) 4 g~ AtB () e Atz + 2 “AB(t)V,(t) e Ac'z an

Using the fact that the normal form g2 (yc) lies in the null space of the

homological operator Lj, i.e.,

3
98 Vo) p v A, g} =0
aYc

the total differential of g3 (yc) = g2 (e ' z) can be written as

3 3
0 0
g_ [gg(eAth)] = % AceActz = %8 Acye=Ac gff’ (yo)
t oy 9e (18)

Equation (18) is a linear first order ordinary differential equation in g2 (yo),
whose solution is

g2 (o) = et gd(x,t=0) = e’ g(2)
Thus Eq. (17) can be rewritten as

%% = e2g3(z) +ee At Bt) etz +e2e At By(t) Vielt) e Atz 19)

2.2  Markov Approximation of Reduced System

In this section, the above lower dimensional equations are replaced
by diffusive Markov processes whose transition probabilities at time
intervals At (At >> T¢or) are approximately the same as those of the original

processes. There are two ways of deriving the drift and diffusion
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coefficients which completely describe the Markov process. In the first
method, the increments x(tg) - x(t1) and x(x4) - x(t3), where t; < ta < t3 < ty4,
are assumed independent when the correlation time of the smooth process
is much smaller than the relaxation time of the reduced system
(Stratonovich [18]). The second method deals with the asymptotic behavior
of the solution of the lower dimensional system when 1o, tends to zero. The
use of the first method to calculate the drift and diffusioﬁ terms is shown in
the Appendix of [3]. A physical interpretation of this approach which is
more appealing to engineers is given by Lin [19]. It will be shown that the
approximation of the solution of the lower dimensional cquctiions by a
Markov process give rise to the same drift and diffusion terms as those
obtained in the extended stochastic averaging technique [4]. However, for
simplicity, consider only two cases, one in which Egs. (15) and (16) will be
solved explicitly.

Case 1: A, = 0 (divergence instability)

In this case, Egs. (15) and (16) reduce to:

ch = - Ugs Ag + Bes (1) (20)

Use = Ag Use + Bgc (V) (21)

The required particular solution for the normal form transformation is

Uest) =

f Be(s) e 4s° ds) e At
t (22)

t
Usc(t) = eAS" (f
\

- 00

e "8 Bo(s) ds)
(23)
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Hence, the reduced system is (where z now represents the variable after

transformation)

z = €2 F(z) + € Bedt) z + €2 { Be(t) f t e AEIB_(s) ds) z}

(24)
Using the Markovian approximation and performing a time-translation, it

is found that the drift contribution from the stable modes to the drift term of

the critical mode is

which agrees with that obtained from the extended averaging theorem.

f ’ Bu(t) e 2° By, (t+1) dr) xc}}

-oo

(25)

Case 2: A, =diag {-jo; , jo1 ,....., -j@n , jon] (flutter instability)
In this case, the solution of Egs. (15) and (16) are:

ch(t) =-e Act (j e’ Acs Bcs(S) e Ags dS) e’ At
t (26)

t
Uu(t) = eAst(f e A8 B (s) e Acs ds) e Ot
27N

As before, the 2nd order correction to the drift from the stable mode is:
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0
j e Act B (t) e~ AT By (t+1) e At d’t) xc}}

|
- (28)
which agrees with that obtained from the extended averaging theorem.

In both examples, we have assumed that the deterministic part has
been reduced to a normal form. This assumption does not invalidate the
equivalence in any way, since it has been shown that deterministic normal
form and deterministic averaging methods are equivalent for non-nilpotent
systems, Arnold [17] and Sethna [20].

In the above discussions, we have assumed that the linear operator is
diagonalizable. However, when it is not diagonalizable, the method of
averaging cannot be applied due to the fact that the matrix eAt contains
terms that are polynomials in t and the time average does not exist. Unlike
averaging, normal forms can be used in the analysis of such nilpotent
systems. Results for a system with a double zero bifurc:tion is presented by
Sri Namachchivaya [7] for a two dimensional case.

A comparison has been made between the stochastic normal forms
and stochastic averaging, and the equivalence of these two methods is
demonstrated for a special class of nonlinear stochastic systems [3). It has
been shown that for systems under the effect of linear multiplicative and
additive noise, the stable modes lead to a second order correction in the
critical modes which, to our knowledge, has been ignored by previous
researchers. The results justify the viability of stochastic normal forms as
an alternative to stochastic averaging, which to date has been a traditional
technique in the analysis of weakly non-linear systems under broad-band
excitation. Moreover, unlike stochastic averaging, the method of stochastic

normal forms is not limited to systems with non-nilpotent linear parts.
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3. Summary of Results of Completed Work

The work completed under this project is summarized in the
following subsections. Detailed analyses of these problems are given in
Appendices A-F. Most of the results of the initial investigation are
presented in [6]. However, due to its great length, this paper has been
omitted from the final report.

3.1 hasti i ncon iv m

As a second step, using the above developed extended averaging
method, the PI and his graduate student [2] investigated the dynamic
stability of stochastically excited general linear nonconservative systems.
Modified stochastic averaging method is employed to obtain the contribution
from the stochastic components of the stable modes to that of the critical
modes. Results of mean square stability are shown to depend only on those
values of the excitation spectral density near twice, difference and
combination of natural frequencies of the nonconservative system. The
details are found in Appendix A. Subsequent research involved applying
these techniques to obtain an understanding of co-dimension one [6,21] and
co-dimension two [7] stochastic bifurcations that occur in nonlinear
nonconservative systems.

Statistical properties of the stochastic response of a system
undergoing a Hopf or simple bifurcation in the presence of parametric and
external excitations have been obtained [6,21]. It was found that the
addition of small stochastic parametric excitation gives rise to a shift in the
bifurcation point whereas the addition of external excitation modifies the
bifurcation behavior entirely. The result is shown in Fig. 1, where we
observe that the parametric excitation has a "stabilizing” effect. That is, it

delays the transition of the trivial solution (zero equilibrium state) from
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being a stable solution to an unstable solution. Physically, this indicates
that parametric excitation is not necessarily undesirable when considering
system stability. Furthermore, it is shown that in multidegree-of-freedom
systems the contribution of the stochastic components in the stable modes to
the drift term of the critical mode may be beneficial in terms of stability.

The stationary probability density functions have been obtained. The
effect of external excitation can also be seen by comparing Fig. 2 and Fig. 3.
This distinguishing feature is reflected in the stationary moments of the
system shown in Fig. 4. The above findings illustrate the non-intuitive
behavior possible in stochastically perturbed nonlinear systems on the
verge of bifurcation.

A dynamical system undergoes a co-dimension two bifurcation due to
the presence of additional degeneracies other than those encountered for
the simple and the Hopf bifurcations. In (7], attention is restricted to the
stochastic version of the case of double zero eigenvalues with non-semi-
simple forms. The case under investigation is that in which the normal
form associated with non-semi-simple double zero eigenvalues is perturbed
by weak Gaussian white noise. Moreover, since the normal form for this
case represents the van der Pol - Duffing oscillator, it can be viewed as a
van der Pol - Duffing oscillator under both parametric and external
excitations. Detailed analysis of the stochastic normal forms of this co-
dimension two bifurcation has been given by Sri Namachchivaya in
Appendix B.

3.2  Applications

The major goals of this research effort were to examine the stochastic

dynamics, stability and bifurcation behavior of various nonlinear stochastic

problems with direct impact on the mission of AFOSR. Such problems
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include: aircraft at high angles of attack, panels under gas flow with both
turbulent boundary layers and random axial loads; rotating shafts and
rotating systems under pulsating loads; propellant lines conveying
turbulent flow, etc.

3.2.1 Aircraft at High Angles of Attack [22,23]

Consider an aircraft in steady flight at an angle of attack s. Suppose
some disturbances take place at time t = 0, e.g., due to a change in the flap
deflection angle; the aircraft will subsequently undergo an unsteady motion
relative to its steady flight. Such an unsteady motion of the aircraft
modifies the air flow and hence the aerodynamic forces on the aircraft
which in turn determine its motion. Thus, the aircraft's subsequent
motion can only be determined by simultaneously solving the unsteady flow
equations of the air and the equations of motion of the vehicle as a rigid
body, aeroelastic effects being assumed negligible.

Although simultaneously solving the coupled equations in principle
represents an exact approach to the problem of arbitrary maneuvers, it is
inevitably a very difficult and costly approach. In classical aerodynamics,
the traditional approximate approach is to assume the pitching motion to be
a small amplitude periodic oscillation consisting of simplc harmonics. On
this basis the flow equations are decoupled from the inertia equation, and
are linearized to determine the aerodynamic respnnse to such a harmonic
motion. The so-called aerodynamic coefficients thus obtained are then used
to predict the motion of the aircraft. Even though this approach ignores the
time-history effects on the flow field and the aircraft motion, it gives a good
approximation for calculating the aerodynamic response, and hence, the
pitching moment from the unsteady flow equations. This approximation

was adopted bv the PI in his investigations [22,23] of this problem:.
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A complete unfolding of a co-dimension two bifurcation due to a
double zero eigenvalue of the equations of pitching motion of an aircraft was
carried out in the vicinity of zero stiffness derivative, and zero damping
derivative. Unfolding of such a singularity uncovered all possible
bifurcations that were present in the vicinity of the singularity, in addition
to the results of various other previous investigations. This method
provided results pertaining to uniqueness of limit cycles and global
bifurcations. A detailed analysis of this problem is presented in Appendix
C.

The analysis of post-critical behavior of aircraft based solely on
deterministic nonlinear analysis has not proven to be adequate. The
inclusion of the effects of a turbulent atmosphere increases the
sophistication of the model. It is possible to regard isotropic atmospheric
turbulence as a broadband stochastic process. The nonlinear system now
has stochastic elements. Appendix D contains a broader description and
demonstrates the methodology by investigating the effects of atmospheric
turbulence on the lateral dynamics of fighter aircraft at large angles of
attack and sideslip.

3.2.2 Rotating Shaft (1]

One of the most fundamental components of a mechanical system is
a rotating shaft. It is, therefore, not surprising that through the years
considerable effort has been directed at obtaining a better understanding of
such mechanisms. Toward this end, an analytical method, based on some
of the mathematical ideas mentioned above, has been applied for
investigating a rotating shaft under stochastic excitations of small
intensity. Explicit stability conditions are derived for first and second

moments of a two degree-of-freedom rotating shaft. When the stochastic
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excitation is a white noise excitation, the first moment stability conditions
reduce to that of the deterministic case. It is shown that the addition of
non-white noise excitation has a stabilizing effect on the parametric
instability of harmonically excited rotating shafts. Finally, the stability
conditions of a symmetric shaft along with their numerical results are
presented. The mean square stability conditions for purely white noise
excitation are given in Fig. 5(a) and 5(b), where Sy, D and W are the spectral
density, nondimensional damping and shaft rotational speed, respectively.
The ® represents the normalized natural frequency of the symmetric shaft.
Explicit results for both the white and non-white noise cases are detailed in
Appendix E.

3.2.3 Propellant Lines Conveying Pulsating Fluid [24,25]

The transverse vibration of propellant lines of large liquid-fuel
rockets and other vehicles continues to be a proklem for the space industry.
Here it is realistic to assume that the flow is turbulent and the support
excitations are random. The deterministic problem with harmonic flow
velocity has been investigated as a preliminary step [24]. In this
preliminary study, the ideas related to the method of averaging, Poincare-
Birkoff normal forms, and the center manifold theorem have been used at
different stages of the analysis to investigate the stability and bifurcation
behavior of nonlinear supported pipes conveying pulsating fluid. Explicit
results for the stability boundaries of the trivial solution, as well as
bifurcating paths and their stability, have been obtained for values of the
system parameters m (amplitude of the excitation) and u (frequency of the
excitation), where the value of u is taken in the neighborhood of
subharmonic and combination resonances. These results are presented in

Appendix F. In the subsequent study, the PI included the effect of random
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excitation and obtained results for mean square stability. The detailed

analysis is given in [25].
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APPENDIX A

I. Introduction

This paper investigates the stability of the trivial solution of linear
nonconservative structural/mechanical systems with stochastically varying
parameters. The stability of a single degree of freedom linear stochastioz
system has been studied by several investigators. Notably, Stratonovich and
Romanovskii [1], Weidenhammer [2], Graefe [3] found that stability depends
only on the excitatlon spectral density at frequencies near twice the system's
natural frequency, a result analogous to that for the deterministic Mathieu
equation. These results have been extended by Ariaratnam and Srikantaiah [4]
and Sri Namachchivaya and Ariaratnam [5] for general multidegree of freedom
conservative nongyroscopic and gyroscopic systems, respectively. In this
paper, we deal with oscillatory multidegree of freedom linear systems with
gyroscopic and circulatory forces and it is assumed that a finfte number of
modes undergo flutter instabllity, while the remaining modes are assumed
stable. For systems examined in [4,5] the method of stochastic averaging,
which was initially proposed by Stratonovich [6], has been used to obtain
conditions for stability in the second norm of the response. However, for the
system under consideration, both the rapidly oscillating flutter modes and

decaying stable modes are coupled with rapidly varying stochastiz

components. The asymptotic behavior of such a system 1s studied using the

modified method of averaging [7,8].

II. Equation of Motion

The equations of motion of a linear nonconservative system subjected to
random parametric and external excitation of small intensity can be written in
the matrix form

A;*Bé*Cg-eF(g.é.'t) (1)

In equation (1), the n vector g represents the generalized coordinates of the




System, A, B and C are constant nxn matrices, F represents an n vector linear
term in g and §, i.e.
F(g,g.t) = (D,g + D,3)r(t) + sgl(t)

Furthermore, the matrix A = AT

represents mass-like terms and is generally
positive definite. The matrix B = u(D+G), where D represents linear energy
dissipation terms and the matrix G represents the gyroscoplic terms arising
usually from the Coriolis forces, l.e. G = -GT. The matrix C = K

T

and K1 = K T are stems from the potential energy

+ u(K1 + Kz], where K = K .

and the centrifugal forces respectively, and Ko is an antisymmetric matrix.
The parameter u is usually referred to as loading parameter in mechanical
system. The term f(t) and g(t) represents the time dependent stochastic
perturbations. Moreover, the matrices D,, D2 are some nxn constant matrices.
It may be noted that the unperturbed linear (e=0) equations, when both D and
K, are identically zero, represent a conservative gyroscopic system which has
been studied by Sri Namachchivaya and Ariaratnam {5].

It 1s convenient to transform equation (1) into a vector form of 2n-

dimension. Putting

S = [ 0 ] and X = S
%o
2nx1 2nx1
now equations (1) can be transformed into
Rx = Sx + € Qx f{t) + ¢ 3 g(t) (2)

It may be noted that R and S are chosen so that they are symmetric when A, B
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and C are symmetric. In general, the unperturbed system Ri = Sx, has 2n

eigenvalues, some of which are complex conjugate pairs
A, =§, ¢+ y A =§ - . = 1,2 .. N and the rest may be real
U T I 7 Bl Bt I y

eigenvalues 2 y J = 1,2..m, such that 2n = 2N + m. It is obvious that

2N+ T %y
when all the real parts of the eigenvalues are negative and large, the
unperturbed system will be asymptotically stable and the small stochastic
perturbations, i.e. f(t) and g(t) will have negligible effect on the system.
However, as the loading parameter, u, varies and reaches a neighborhood of
certain critical value, some of the real parts of the eigenvalues approach
zero and the modes corresponding to these eigenvalues are sensitive to small
perturbations. In this paper, the effect of stochastic fluctuations on linear
nonconservative system (2) undergoing a "flutter" type instability is studied.

Consider the system (2), it i3 assumed that at y = Hop the system
contains M pairs of noncoincident pure imaginary eigenvalues with no resonance
i.e. n‘w1 + n2w2 + .. nMwM = 0 (“J % o, integers), and the remaining
eigenvalues have negative real parts. To study the behavior for small
derivatives from Hop: let u = ucr + n, and the unperturbed part of equations
(2) 1s brought to the simplest form that has a minimum coupling to this end,

consider the transformation [9]

x=C , y=[Uuvy] (3)

- (2], 24", 262, 242 ... a2, .7

ol

where U, V and W are 2M. 2(N-M) and m = 2(n-N) dimensional vectors,
respectively and [4 consists of column vectors that are the real and imaginary
parts of the eligenvectors a = ¢ + id of the direct eigenvalues problem.
Furthermore, for convenience, the eigenvectors have been ordered such that the

first M eigenvectof: correspond to the oritical eigenvalues. Subdbstituting (3)




into (2), and premultiplying by the adjoint eigenvectors

1 2
D = [g‘,-.f1,§2,-£2, .o l')zN+ ,ee b n]

. i
where b is the adjoint eigenvector given by b = e + if and a D" = Gij
yields

. 1
0 -8+ c[k% + u'v e wiulee) + esVece)
. 2
V=BV~ e[N1g + L‘Y + ng]f(t) + es( )g(t)
Q = Co! + E[Nzg + p1y + ng]f(t) + es(3)g(t)
AS wJ
where A = diag J , J=1,2 .. M
° -w AS
&) 3
”
By
B = diag y J o= M+1, M#2 , N
- -8
&) 3
C = diag [- a,, - A, -a ], m=2(n-N)
kK° u' M
11 2| =pTQC, as, - o(n)
N L L ’ J
N P

and the matrices K, L, M, N and P are explicitly given in Appendix A.

the transformation, V =« T Z

cos(w,t) sln[wjt)

J
~sin(th) cos(th]

where T = |diag s J = M+, M+2,...N

the system (4) is transformed into the form as

(4)

Using
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the first 2M equations are critical and the rest n-2M equations are
asymptotically stable, 1{.e. 6r > 0, ay >» 0, r = 1,2,¢0¢.y, M-N and { =
1,2...m.

In physical systems, the exzitations are real nolse processes and results
under the assumptions of white noise excitations are not direétly applicable.
However, for excitation processes with wide band spectrum of nearly oonstant
spectral density, the equation of motion may be approximated by a set of
equivalent Ita equations whose solution is a Markov process and satisfies the
Fokker-Planck equation. The results obtained may then be applied to certain
real physical systems. This approximation is made by applying the method of

stochastic averaging to a set of equations in "standard form" that are exactly




equivalent to the equations of motion (5). Such equations in standard form

are achieved by means of the transformation

- = o 6
UZJ-1 aJsinoJ , U2J aJ osoj (6)

where

®, ~uw.t + ¢ J=1,2,...M

J J J
Substitution of equation (6) in equation (5) yields a set of 2n first order

equations in a, ¢, Z and W in the form

. 0 1 t
a e[sFJ(g) Fj(g,g.g,!,t)f(t) GJ(Q.t)g(t)]
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the matrices xéi). X;i), Xéi) are explicitly given in Appendix B.

III. Approximation to Markov Process

An exact solution of Eqs. (7) for arbitrary random processes f(t) and
g(t) is not available. However, if the intensities as well as the correlation
time of the processes f(t) and g(t) are sufficiently small, using a limit
theorem due to Papanicolaou and Kohler [7,10], the solution process
fa(t), ¢(t)} may be approximated in the weak sense by a diffusive Markov
vector process. It is then possible to solve for the response amplitudes.
This method of approximation, known as stochastic averaging 1is analogous to
the ordinary averaging method of Bogoliubov and Mitropolsky [11] for the
deterministic case.

By making use of the formulas of Appendix C as shown in Papanicolaou and
Kohler [7,10], one can obtain the drift and diffusion terms, however,
evaluation of the drift and diffusion coefficient defined in Appendix C is

long and cumbersome. Bypassing some of the algebraic details, drift and

diffusion terms are given as

m, -
r
a 2 3a 2 2
r .+ rot -
AGrar * 8 J1,rrsrf(0) * 16 (H1,rr * J1,rr)sff(2”r)

el e s ()
Ta_ Sop-1 S2r /°gg'¥r
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M asz +2 2
L 16a [(H1,rs * J1.rs ]Srr(“r * ws)
s=r r
_2 *2
* (H1,rs Y J1,rs) Sft(wr - wsJ]
M ar . . _ -
L 5_ [( 1,rsH1,sr * Jl,rsJ1.sr]Sfr(wr * wsJ
Sar .
- - + +
(H1.rsH1,sr - J1,rsJ1,sr) Sff(mr B ws)
- + - +
1,er1,rs * H1,rsJ1,sr) u’I‘t‘(mr - ws)
+ - + -
(H1,er1,rs B H1,rsJ1,sr] wff(wr * ws)]
N-M ar . . _ _ _
551 5_ [(HZ,PSH3,SP * J2,rsJ3,sr) Sff(wr * wM+s)
- - + + -
(H2,rsH3,rs - J2,rsJ3,sr') Sff(wr - wM+s)
- + - + -
(H3.er2,rs v Hz,rsJ3,sr)wff(wr - “M+s)
+ - + - -
(H3,er2,rs - H2,r3J3,sr]wff[wr * mM+s)]
m a -
r 2 2 2 2
551 8 [(M2r-1,st.2r-1 * 2r,s s,Zr) Sf(wr)
2 2 2 2 N
(MZr.st,Zr-l 2r-1,s s.2r] *rr(“r)]

s = S

™
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1 + -
T8 (H1,rr * Jl.rr)*rr(zmr)
+1M[—H’ 3T -H 97 s (e v w)
8 L ( 1,ar 1,rs 1,rs 1,sr’' ff W T g
sar
- + - +
(H1,er1,rs * H1,rsJ1,sr)Sff[wr B ws)
+ + - -
( 1,rsH1,sr * J1,rsJ1,sr)wff(wr * ms)
- - + +
[H1,rsH1,sr - J1,rsJ1,sr]wff(wr - ws]]
1 N-M . . _ _ _
¥ ] 551 [_ (Hz,rsHB,sr * J2.rsJ3,sr]wrf(wr * u’M+s
- - + + -
¥ (Hz,rsH3,sr - JZ,rs 3.sr)wff(wr - wM+s)
- + - + -
* (H3,er2,rs * H2,r5J3.sr] Sff(wr B wM+s)
+ - + - -
B (H3,rsJ2,sr - H2.rsJ3.sr) sff(wr * wM+s]]
m -
_1 2 2 2 2
8 g [(HZr-1.st.2r-1 * MZr.st.Zr)wff(”r)
2 2 2 2 -
* (MZr,st,2r~1 - 2r-1.st,2r] sff(“r)]
T
(o0] -
arar
2 2
s;r‘-1 * s;r arz 2
2 888(“r) * <5 Y, rr Spe(0)
a 2
s 4= (0 o+ 37 ) s.(2u)
8 1,rr 1,rr £t r

)
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M sz
* [(H1 rs 1 rs)sff(mr ¥ ws)
sar
L2 *2
¥ (H1,rs * J1,rs) Sff(wr - “s)]
T
[uo ]a a
rs
a a

L85t g s, (0)

y 1,rr 88 “ff
aa, . _ _
* 78 (H1,rsH1,sr * J1,rsJ1,sr) Sff(wr * ws)
aa, _ . .
78 (H1,rsH1.sr B J1,rsJ1,sr Sff(wr B ws)
T
(o] -
ar¢r

°r H. J. s..(0)
4 t,rr 1,rr ff

T
[00"] -
a0
a, .
n H1,ssJ1,rr Sff(o)
. or (b ab  +w, 37 )s, (e, -w])
8 1,8r 1,rs 1,rs 1,s8r e Y T Ys
. or (w7 97 -H 3] )s, (e, *tw)
8 1,sr 1,rs 1,rs 1,sr’ ff W T Uy
T
[00”]
ot
2 s1 2 s1 2
1 2r-1 or
1] Hl rr ff(O) * 2 sgg(“r)
2ar




where

H H S,.(0)

1
4y t,rr 1,38 ff

st W eal 9l ) s (e, vae)
8 t,rs 1,s8r i,rs 1,sr ff* r 8
1 - - + + -

'8 (H1.rsH1.sr J1,rsJ1,sr) Sff[”r ws)

= K° + Ko *
1,3k 2j-1,2k 2j,2k=1 ' Y1,k

%

:!'i*

1 1 "
gk T Magor,ak Moy ok-1 0 U2, 5k

: 4 1 1 b4

Hy ns * Nop-1,29  Nor 231 0 J3,rs

Spplw) = zfo Rp(T)o0sutdr , ¥oo(w)
_ » I ¢

Sff(m) =2 fo er(T) e coswtdt ,
_ - 6.1

Wrr(w) - 2{0 Rrr(r) e coswtdt , |
- - a4t

Spplw) = Zfo Rrr(') e coswtdr ,

o] (o]
= Koy,2¢ * Kaj-1,2k-1

1 1
=Mookt Mago1, 20

1 1

= N og ¥ Mooy, 2s-1

2] R, (v)stnwtdr,
0
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a0 - -a,t
Orr(w) - Zfo R“(t) e J stnuvdr . J=1,2,...,m

IV. Stability Analysis

When the excitation is deterministic, the concept of stability is the
usual Liapunov concept employed in the theory of stability of motion, while in
the case of stochastic excitation, a definition of stability must be
introduced. There are several definitions of stochastic stability in the
literature but most investigations have been concerned with only two types;
namely, stability in the moments and almost sure or sample stability. In this
paper, we shall examine only the moment stability of the trivial solution.

The trivial solution a = 0 of the system

a = Fla,t,n(t)) =0, Flo,t,n(t)) =0 (8)

is said to be asymptotically stable in the nth moment if all joint moment of
order n of the component of a are bounded in absolute value for t 2 0. For
n=1, the trivial solution {s said to be stable in the mean. For n=2, the
trivial solution is said to be stable in mean square.

A suitable norm ||y(t)|]| of the state vector in the critical mode u is
defined and conditions are derived such that E[IIy(t)l|2] remains bounded rpr

t tending to infinity. The norm of the solution vector U is defined by

M ' M
2 2 1/2 21172
Hyll = [rf1 (U5, *+ U517 7° - [r§1 a’]

so that

M M
2 2 =
E(lIyl1°) = ¢ E[a]) = £ W

r=1 r=1
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where Er(t) denoted the second moment of the amplitude ap. Hence,
E f[llvllzl 20 1f M +0, r=1,2,..M
By using the Ito differential rule [12); namely, if g(a,t) denotes any
twice differentiable scalar function of a, t then the corresponding

Ito equation for g(a,t) is

M M

d€ - Lt ve I T g gj aw, (9)
f=1 ju=1
where L(+) is the differential operator
n n n 2
O A I A e O R L A &
i=t 3 %3y i=1 j=1 1985

and wj(t) are mutually independent Wiener processes. Taking the expectation
of both sides of Eq. (8), the differential equation governing the expected

value of ¢ is

o Ele] = u(elg])

since the wJ(t) have 2zero expectation. Thus, setting g = ai linear,
differential equations are obtained that govern second moments of the

amplitudes as

dM M

r 2 2 T 2 =
— =¢“2m a_ + e“[o0"] = I A M (10}
dat a.r aa, gu) 98

where the coefficient Ars are given by

- S,,(0) +

1
Aer = 3 %1,prStee 2 <3, reSee(20,)




o
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M
1 + -
*v t [KS,rsSrr(Qrs) - K6.rssrf(ars)

Sar

+
7 rs*ft(n ) 8,rswrf(0rs)]

1 N-M
+ n b [K
8=

+ -— -

9,rs rf( r, M*s) - KIO,rsSrf(nr,M+s)

vo(a . ) - v (2 . )]
“11,ra¥ee % Mes! T 12, rs¥eelfn Mg

m
1 -~
'yt [ <13, peSpplw,) - Klu,rswff(wr)]

+ 208 (11)
r

+
; = ceo 12
2.rssrf(ars) * ‘u,rssrr(“rs)] » resi rhs = 1,2,..M0 (12)

1
Ars = 4 [K

where the quantities « i=1,2,...14 are defined in Appendix D.

i

Thus, from Eq. (10), necessary and sufficient conditions for stability in
the second moment are that all eigenvalues of the matrix A = [A;;] have
negative real parts. These conditions may be found by applying the Routh-
Hurwitz criteria to matrix A.

If the excitation has a broad-band spectrum with a constant spectral
density S,, over a wide band of frequencies, i.e. Sff(m) - gff(“) = érr(m) =
S, and Voplw) = Err(w) - ;rr(w) =~ 0, then the matrix A remains a full (no zero
elements) nxn matrix. For multi-degree of freedom systems, the Routh-Hurwitz
conditions involve computation of determinants of large matrices, which is

tedious. Thus, the stability conditions for M=2 can be written as

A, + A

22

ClA AR -~ PUINT L e o S Y- ) * y— v - e ..
h . v D e
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A, A <0 (13)

11822 = Aty

It 1is evident from Eqs. (12) that x and «, rg are positive

2,rs
quantities, implies Ay5A;; > 0, thus, the stability conditions of Eq. (13) can

be simplified to

2A61 + 30011 <0 (14)

2A62 + 30022 <0

2
S, (011a22 B) + 2s°(A51a22 + A6201'] + A8, 88, > 0
where
1 1
4y 732 (‘1.11 * ‘2.11) Yy (‘5,12 ‘6.12)
1 N-M 1 m
L A s -« J++ T «
y 5=1 9,1s 10,1s y g=1 13,1s
1 1
%0 " 3 (‘1,22 * ‘2,22) Yy (‘5,21 ‘6,21]
1 N-M ( ) q m
+ - I 'S - K + = I «x
B2y 9.2 10,2s 4 o, “13,28

1
8 =% (‘2,12 ¥ ‘u,12) (‘2,21 * ‘u.21)

Returning now to the M-degree of freedom system, some particular forms of
excitation spectrum S(w) are considered, whose values are small everywhere
except 1in the neighborhood of some Wy {.e. S(w) vanishes outside the
bandwidth wy " 172 Awo <w < w, * 172 LU The correlation time of such a
stochastic process is 0(1/Awo). while the relaxation time of the amplitude
process is O(1/c2). Therefore, 1if Amo » ez. the Markov approximation

obtained by use of the limit theorem will remain valid. In the following,

L
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cases in which w =2 andw =« o, tw|, ris = 1,2...M are considgered.
Although dealing with a multi-degree of freedom system, knowledge of the

frequency content of the excitation can simplify stability analysis.

Taking w, = I“r t msl. (r#3), it {s evident that off-diagonal elements of
the matrix A except Ang and Ag. are identically zero, {.e. Aij = 0,
1,3 = r,s, 1«j and Ayy = 288,, 1 » r,s. Furthermore, if w, = 2w  then all the

off-diagonal elements of matrix A are identically zero; i.e. Agy = 0, 1 =4,

and A11 = 2A61. i » r,s stability conditions for wo = ms + w, can be written

as

1 +
Aér * 8 KS,rs Sff(ﬂrs) <0
1
L L st,f(n ) <o (15)

)

1 2 +
64 Sff(grs)(xs,rsrs,sr K2,rs‘2,sr

s..(2° ) + ) + 8646 >0
Qrs AGrKS.sr A6:=.'<5,r*.'=, 4 r s

Similarly, if w, = lw, - ws|. r=s, the corresponding stability conditions are

r

nrs) <0 (16)

)

6" rr(o J('<6,r's'c6,sr' T %y,rs®y,sr

1
'3 srr(° ) (86 r*q,sr A‘s‘h.rs) v A588, >0
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Finally, taking wy = Z”r' the stability condition is obtained as

A8 srr(zwr) <0 (17)

1
r *y ‘Z.rr
It may be noted that the stability condition of Eq. (17) can also be obtalned

from the inequalities of Eq. (15), since ‘S,rr Kz,rr'
V. Application: A Cantilever Column Subject to Stochastiz Follower Force

In order to 1illustrate the general results obtained previously, we
consider a cantilever column of length %, mass per unit length m, flexural
rigidity EI, and with a stochastically varying follower force p(t) = p,

+ ef(t) as shown in Fig. 1. Equation of motion and the boundary conditions

are shown as [13]

’ a ’
Pyt | 2y, |
2 3 '

ax ax

*
where E is coefficient of internal dissipation which is assumed to be Kelvin-~
Voigt type and ¢ is the coefficient of external damping. Now, defining the

dimensionless quantities

172 172 _*
. X L1 _ (EI t Y E
ey gy oG 5. el 2
L £
or? pL
8" ety 2 P TELTFo T e

The dimensionless equation of motion is obtained as
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a m + u‘pa;"a;’s_aﬂ.o (18)
9E 3t 13 13 ot

and the dimensionless boundary conditions are

an .
n 3E 0 at £ o,
2 3n
é_g - 3-3 -0 at £ =1
13 ok

This problem was considered in a different context by Wiens and Sinha (14] and
Parthasarathy and Evan-Iwanowski [15]. The discrete equations of motion
corresponding to Eq. (18) are obtained by using a two term Ritz-Galerkin
approximation as

Ig+Bg+Cg-= €D, F(1) g
where the matrices B, C and Dy can be written explicitly as

~

12.36a+8 0 12.36+0.86P -11.7U4P
B = , C = o] [o]
0 485.52a + 8| 1.87P 485.52-13.29p
L 0 (o]
[ -0.86 11.74
D, - )
| 1.87 13.29

The characteristic equation of the system (Eq. (2)) is obtained as
y 3 2 2
A"+ (497.881a+28)A~ + (497.881+a” + 497.88 a8 + 6002.168
- 12.436P A% + (12004.3a + 497.8818 + 252.3USaP,

- 12.4368 P_)A + 6002.16 + 10.595 P2 = 0 , (19)
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and from Routh-Hurwitz criteria, the governing equations for stability are

a >0, B_>os .
(112.2748°2 + 55898.9a8 - 4.25255 10602)P§ - (7.541 105"

73

- 2.842 10'a”8 + 2.855 1063282 To2

+ 8.039 10°a

+ 18070.3q83 + 6.668 10%s + 24.8728" + 13392.78%)p

93

+ 3.587 10"%" + 4.608 10%38 + 1.473 10%%°

+

1,348 10%2 + 767666083 + 1.115 1058 + 995.7628"

2238778°% > 0 (20)

+

In an earlier study of the deterministic problem, Leipholz [13] concluded that
rods subjected to external viscous damping does not affecst stability and can,
thereforg, pe neglected. From Eq. (20), the critical force in Fig. 2 is not
affected by the external damping for the case of internal damping a = 0.
Leipholz also showed that for the clamped-free rod, internal damping must
always be considered and has a destabilized effect. In Fig. 3, the structure
with internal damping, the smallest flutter load turned out to be Pap = 10.68,
which is less than Pcr = 20.1 in Fig. 2. Consequently, in this paper we shall
only consider the system with internal damping (i.e . a » 0, B = 0).

By using the transformation matrix C and D mentioned previously, one c¢an
show that the system has one palr of purely imaginary eigenvalues at the
stability boundary in Fig. 3 and bring the system in the same form as Eq.
(4). Now, the results of the last section can be readily applied.

Numerical calculations were done for different internal damping a. It is
evident from Eq. (14) that the stability condition for the second moment of

the linear system can be written as
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1 1
as, + S, i ("1,11 * "2.11) ‘s (“9.11 - "10.11” <o,

the numerical results obtained are plotted in Fig. 4 which also shows the
effect of internal damping on the stochastic stability boundaries of a
cantilever beam with follower force. It can be seen that the stability
regions reduce with decreasing value of internal damping a. Furthermore, as a
approaches 0, the whole region 1in the parameter space (AP. So), where
AP = (P__ - P)/P__, becomes unstable.

er er
VI. Conclusion

An analytical method has been presented here for studying the stability
of linear nonconservative multidegrees of freedom system subjected to
stochastically varying excitation of small intensity. These systems are
typically encountered in the study of the dynamic stability of elastic
structures under random loads.

The equations of motion were first transformed into 2n first-order
equations in the amplitude and the phase varlables. These quantities, by
using the method of modified stochastic averaging, under suitable conditions,
converge to a Markov vector which satisfies It; equations. From the It;
equations, criteria for mean square stability were obtained, with the aid of
the Routh-Hurwitz criteria. In analogy with the deterministiec results, it is
found that only those values of the excitation spectrum near twice the
system's natural frequencies and the sums and differences of the natural
frequencies influence the stability. As an application, the 3stochastic

stability of cantilever columns with stochastic follower force was considered.
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Appendix A1l
The matrices K°, L, M, N and P are explicitly calculated using the

eigenvectors and the matrix Q.

]

k%, M', N' and L' are the partition of [a

i
° 1 =1,2,...M
K™ = [a ] , { -
1J 2Mx2M J 1,2.--."
1 1= 1,2,...M
M = [a ,] ) '
1 ougon-py |3 = METME2, LN
'L = Me1,M42,...N
N - laij] , (J DM,
Z(N'M)XZM 1Sy
A i= Me1,M+2,...N
) J = M*1,M+2,...N

a
L o (n-M) x2 (NM)

M2 and L2 are the partition of [Bij]

M~ = [B ] ’ { T
i oMxm j=1,2,...m

] (1= M1 Me2, L LN

2
LS = [8,.
ij 2(N-M)xm J 1,2,...m

N° and P' are the partition of [Yij]

2 i{i=1,2...m
N o= [y, .] o ’
13 oy | 7 1020 M
1 1 =1,2,...m
P o= [y ] I D
U nxa(n-my 3 = Me1,Me2, N

1 «<1,2,...m

P = [pij]mxm ) {J “1,2,...m

- - ———— e -+ e = — e - —-——
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Appendix - .

The matrices xii), xil) and x;l) are defined as follow

(0) l - R + +
XaJ (a,9,t) > aJ[Jl,JJ J1'choszoj + H1'stin20J]
1 M + -
‘3 kfjak[J1'Jk008[°J - ¢k) + J1.chos(oJ - ¢k)
- +
+ thksin(éJ - Ok) + H1,jk31n(°j + Ok)]
N-M

x(1)(z b,t) = 152 (ar sin;- - 37 sine’
a 1% 2 o, k=12, 5k j 2,3k j

- ~

H- - R H+ °+]
2,Jk°os°j 2,jk°°s j

N-M . .
el sz (HD . sine] + H. _ sind|
2 o fakt T2,k ™y T T gy
. Jr o+ - o%)
2'JkCOS J Z,chos J
(2) 1 0 2 2
XaJ (W,9,t) = 3 kf1wk(MZJ-1,k31n°j + M2j,k°°s°j)

1 - + -
R - 5 - in2é
X¢ (a,¢,t) > aJ[H1,jJ + H1,JJcoszoJ J1,JJS n J)

~m X
2]

K - +
> [H1'chos[0J - Ok) + H1’chos(oJ + Ok)

+ -
- J,'Jksin(OJ - ok) - J1‘Jksin(oj + ok)]

N-M a -

(1) 3 + —- - +
X, (Z,0,t) =3 I ZZk_1(J2.chosoj Ia, 1%,

‘J k=1
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+ B stne - H. . stne’)
2,3k M5 7 T2, k3%
- N;MZ (H. coséT + H. . cose’
2 k=1 2k 2,k J 2,3k7777y

35 sine - J- . sine’)
2,3k% %5 7 2, 5340

(2) 2 2
X¢J (W,0,t) = kf1wk(M2J-1.k°°s°J sz'ksinoj)
M a - -
(o) S (,~ - + +
X (a,p,t) = £ = (H cosd_ + H cosé
ZZr-I g=1 2 3,rs ] 3,rs s
35 sine” - J°  _sine’)
+ -
3,rss nos 3,rss n s
(o) M as - " - + “+
X (a,$,t) = L 3 (H sin¢_+ H sin¢
ZZr g1 2 3,rs r 3,rs r
. gl o+ JI  _cose’)
3,rs%0%% 3,rs%05%
M
(0) 2 2
xwi = 2f1az (N1,22 1sin0£ + N1'22cos¢l)

where
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Appendix 3
The drift and diffusion terms can be obtained by applying the following

limits directly to equation (7).

M oF oF aG
vrocsdal e e F2 HR (o)
g1 02y bhro¥ LT 94y LT
1
MG,
{=1 i s T 8
N-M  3F aF | 8.1
vorocgb—g3 el > Rep®
r=1 Zop-1 r=iet Zop “TiT 1220,w=0
N-M  3F! aF | Spt
i 3 -3 3 r
L a, T G, T a, Oor, Reglvle
r= 2r-1 't 2r ©77 |z=0,w=0
m aF1 a T
+ L < 3;1 F: > Rtr(r)e
K1 k T 1z=0,w=0
] aF1 a1
+ T < 3;1 G: > R, (1)e K ] dt} + M {F§} ’
Ke1 k 7 |z=0,w=0 ‘8 t




t =--
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2 2
o M oF oF
-u{flz <5ded e >R (0
3t = gar 90y LT TR
9F2 F2 362 36>

2 2
M 3G 3G
+ -J-2 +—~1 >
X 3 Gi c 3 G < R__(1)
1=1 it g v 88
2 2
N-M 23F aF § t
v Ly Fg -1 3 g > Rep(tle
r=1 22r-1 r=t zZr r.1 z=0,w=0
2 2
N-M aF oF § T
TR N
r=1 Z2p-1 rht Zop T 12.0,w=0 g
m 3F2 y akr
+ T < F' > R,..(1)e
k=1 awk K,T 20 ,w=0 ff
2
m oF a Tt
+ [ < 3;1 c: 2 Re (T)e K ax}
k=1 k K17 lze0,w=0 '8
7
aiaJ
BRI 1.1 1.1
M{ [ [<EiFy > Rop(1) + PG o GyFy > Ry (D)
[ ] L 4 td

—— — —— ot e _— —————— -

—— e — S - ——
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+ <G'G1 > Rgg(t)]dt} ’

13,1
[ooT]a1¢J ;
:{ {: [(FlFi'T>Rrr(t) + <FlGj’T + GIF§'1> Rrg(t)
+ <G;G§'%> Rgg(r)] at} ,
[caT]oiOJ - :{!:[<F5F§'T>Rff(r) . <P‘fo‘J°"T . GfFi,T>Rf8(T)
+ <cfcj.1> Rgg(r)] ar}

(+) = Gj(-,t+1), M is the averaging operator
T

where F! X Flee e+, ot
t

J» J Js
defined by

-1T
M(e) = im T [ (+) at
t T T e o
Rrr(t) = <f(t) « f{t+1)>, <+> denotes the expectation, and in evaluating the
expectation in Egqs. (7), a and ¢ are treated as constants. Then (a,¢) in
Eqs. (7) can be uniformly approximated in the weak sense by a Markov diffusion

T
process having drift vector m and diffusion matrix [oo ].
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Appendix -+

The quantities Ky {=1,2,....15 are defined as follow:

K

*
‘1.rr JI,rr K1.rs = J
H*Z . J_2
‘Z,rr 1,rr 1,rr Kz.rs
- J{-
K3,rr t,rr 1,rr K3,sr
2 2
= H  +Jd
‘".rs 1,rs 1,rs
R T A
KS.rs t,rs 1,sr 1,rs 1,sr
- - + +
“6,rs HI,rsﬂl.sr Jl,rs 1,sr
HooJb e H,
K?.rs 1,sr 1,rs 1,rs 1,sr
W Jl H a7
K8,rs 1,sr 1,rs t,rs 1,8r
WoOOH o+ Jd. __Jd.
K9.rs = %2,rs"3,sr 2,rs 3,sr
H.  H. N
“10,rs =~ 2,rs 3,sr 2,rs"3,sr
o Jb s+ H, Il
‘11.rs 3,sr 2,rs 2,rs 3,sr
Ho  Jo H,  J-
"12.rs 3,sr 2,rs 2,rs 3,sr
2 2 2 2
‘13 - M2r-1,st,2r'--1 2r,s"s,2r
. M2 2 Ml 2
14 2r,s s,2r-1 2r-1,s s,2r
K, = 31 2 + s1 2
15 2r-1 2r

+ J+
t,rr 1,83
2 2

+ -

H +J
1,rs 1,rs

- J+
1,88 1,rr
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APPENDIX B -

Introduction

There exist several natural phenomena that vary in a random manner due to

the effects of large numbers of urknown factors. Dynami2 systems in such

environments are subjested to stochasti: ex~itations. The stability and tne

nonlirear response of such stochastlce systems have become of increasing

interest in engineering. Examples of stochastic excitations include forces
generated by jet and rocket engines in modern high-powered aircraft, space and
missile structures, as well as ex2itation due to earthquakes, ocean waves and
wind gusts. They fluctuate randomly over a wide band of frequencies and have
to be conslidered as stochastic¢ functions of time defined only in probabilistli?d

The effects of such fluctuations on nonlinear systems have been
Horsthemke and

terms.
studied by various researchers. For one dimensional systems,
Lefever (1977) and Arnold et. al. (1978) established the existence of

tranaftion or bifurcations solely induced by noise. These 1deas were extended

to two dimensional systems by Arnold et. al. (1979) using the well-known

Lotka~Voltera model for two interacting populations. The effect of stochastle
perturbations upon a dynamical system exhiditing co-dimension one bifurcations
has been studied by Baras et. al. (1982) Graham (1982), Lefever and Turner
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(1984) and the author (1988a,1988b, 1989). The effect of additive noise was
considered in {1982), while the effect »f multiplicative noise was studied by
Graham (1982). The author (1988b,1989) considered a more general problem in
R", with both multiplicative and additive stoshasti> excitations. Even though
a large amount of work in co-dimension one stochastis bifurcations has been
reported, there is still considerably more work to be done in stochastisally
perturbed co-dimension two bifurcations. The goal of this paper is to present
the results pertaining to the statistical as well as the sample behavior of
nonlinear systems that exhibit a parti~ular co-dimension two bifur-ation and

subje>ted to random excitations.

A dynamical system undergoes a c2o-dimension two bifurcation due to the
presence of additional degenerazies other than those encountered for the
simple and the Hopf bifurcations. Such degenerazies can be ~lassified into
two types, in the first the linear part is similar to that of 20-dimension onre
bifurcation but additional degeneracies occur in the nonlinear terms of the
normal form or higher order degeneracies occur in the linear part, and in the
second the linear part of the vector field is doubly degenerate. In this
paper, we shall oonsider the stochastiz version of the 2o-dimension two
bifurcation of the latter type. There are three 2zases of such types of
degereracy with two, three and four dimensional center manifold where the
lirear part 2an have: 1) two zero eigenvalues, 2) a pair of pure imaginary
eigenvalues and a zero eigenvalue and 3) two pairs of pure imagirary
eigenvalues without 1:1 resonance, respectively. For a deterministic
symmetric system these are represented by the following three cases which

depend on two parameters M, and "2:
(1) Double zero, nondiagonalizable eigenvalues
x + uzi + §x2 tHX g x3 =0 . (1a)
(2) Simple zero and pure imaginary palr of eigenvalues
3

ro= uro+arz + (ar + drzz). z =~ uy + ord - 2° + (erzz + fz3). (1b)

(3) Two pure imaginary pairs of eigenvalues without resonance




r.=ur, +a,r 3. a, . r.r 2 r, = u,r, ta,r 2, a_.r 3 (1e)
11 111 1212 ° 2 22 211 222 °

The detailed analysis of these cases with various classifications and
unfoldings are summarized in Guckenheimer and Holmes (1983). For simplicity,
in this paper we shall restrict our attention to the stochasti2s version of

sase 1, i.e., double zero eigenvalues with non-semisimple forms as in Graham

(1987).

Statement of the Problem

Consider a oco-dimension two bifurcation assoziated with nonsemi-simple
double zero eigenvalues, whose center manifold is two dimensioral and the

associated normal form is given by Guckenheimer and Holmes (1983)

us=v,
(2)
v = TRV VIR u3 - u2v
1 - A
where My and u. are the unfolding parameters and u, = u, = 0 define the 2o-

2 1 2
dimension two singularity point. We are interested here in the =oase

where the normal form is perturbed by weak Gaussian white noise and
we assume without proof that the assoriated normal form is obtained by
letting o, = uo[1 + 51/2n1(t)) and by introduzing an additive noise
term 51/2n2(t) in the second equation. It is worth noting that the influence
of additive noise for this case was also considered by Graham (1987) and as in
nis case the emphasis will be given more to the bifurcation behavior as
opposed to the derivation of the stochastic normal forms. Moreover, since the
normal form for this case represent the van der Pol - Duffing oscillator, the
problem below, given by equation (3) can also be viewed as van der Pol -
Duffing oscillator under both parametric and external excitations. Detailed
analysis of the stochastic normal forms for various nonlinear stochastic
systems have been given by Sri Namachchivaya (1989). Thus consider
u = v,

v o= HgU * M,V % u3 - u2v + ei/z[uoun1(t) + nz(t)] . (3)
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For the linear equation, since the stability is not affected by the non-

homogeneous terms, the following set of Ita equations {s examined:

X =Bx + ¢ x dw

where

0 1 0 0
x = (u,v) , B = [;U “2] , g = [y q]

and the excitation term is uon(t)dt = vdw. The almost sure asymptoti-
stability ~ondition is obtained, usirng the approach of Khasminskii (1967), by
examirning the Lyapunov exponent . For the above equation, the value of A ran
be obtained in the same manner as in Kozin and Prodromou (1971) and Nishioka

(1976) and is explizitly given as

2n
» = [ Qre)p(e) ae
0
where
1
Q(8) = (uo + 1) cosb sing + uzsin2s v 3 vzcosza 20326
9§§11%53L91~ -n/2 568 < /2
p(8) = v cos 8 s(8)
p(e-n) n/2 $8 5 3n/2
o tan §
s(-1/2,0) = [ ste)dg , s(e) = exp [Z252(r(5))]
-n/2 cos § 3v
2
f(g) = 2tan g - 3u2tan£ - 6u
ol
and C 1is a normalizing ~onstant. If A is negative, the sample paths are

stable with probability one. However, in this paper our attention will be

focused on the analysis of the nonlinear system.
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Analysis

It is obvious that for both ¢ u3, the two dimensional system undergoes
stochastically perturbed co-dimension one bifurcations when the
parameters Mg and My take the values u, = o, Wy = 0 (simple) and Mo <0
and My = 0 (Hopf) and have been studied before (Arnold et al., 1978; Sri
Nama~hohivaya, 1988). Thus, in this se-tion, we 2onsider the bifurcations
asso~iated with the reduced normal form which represents a weakly perturbed
conservative system. Such a redustion is obtained by using the restalings

2 2 - - =
2- 2:U‘EU,V-€V,t-Et,

and henceforth omitting the bars from the scaled variables for simplizity, we

2an reduce Eq. (3) to the form

.y
dt
3_: = Vou t ud . e[("z ) “Z)V] * 61/2["0“"‘1(” * r‘2(”]’ )

whish 2an be interpreted as either a Stratonovi~h or an Ito equation since the
. . 2
correation term is identizally :zero. Now introdu-ing H = v /2 + P1 2(u),
2 2 ’

P1'2(u) = T vy /2 ¢ u“/u, G(u) = (v2 - u°), the Ito equations for u and H

can be written as

du = /Q1 2(U) dt

(5)

aH = e[Q, H(uiGtu) + Fluilar + ¢ /2 o (w) aw,}

where

2
1 i 2 1 2
o) = 2(H - P (W), Fluw) -3 151(0‘,(u)) , 0, = VU, oy = 1.

9




In the sequel we consider only two cases, namely:

(1) H = v372 + py(u), Yo < 0, and the fixed points are given by
(0,0) & stable and (: V- Vo' O) < unstable. The Hamiltonian levels of
2 2 1/241/2
interest lie within H = (O.vo/u) and uot= + [- Vo + (vo - uH) ] .

(ii) H = vz o+ Py(u), Vo >0, and the fixed points are given by

(0,0) & unstable and (t /vo,O) < stable. The Hamiltonian levels of

2 + 2
interest lie within H = (- v /4,0) and u. = [v_ ¢ (v + uH
0o 0 o} 0

1724172
R R

Now applying <he theorem of Khasminskii (1968), we obtain the one

dimensiornal Ito equation

HH
where

4 (H) { |
- — - + C(H)]
) = (o) | (otw) V3 (0 + 7 fau - 2L L)

u T (H) "2

(o]

o 5/2
s - (5)(5%) ([5(v,/v,)(2-m)% = 4(a® a1)]E(m)
- 2[5(v2/v°)(2-m)(1-m) - (2-m)(1-m) JF(m)}
v 1/2

r 2

C(H) = (E?E] [(s,,v2)E(@) + (S,,/2v_)(2-m)F(m)]
+

u_ (H) 02
-2 1 —_— HH
oHH(H) = (X—ET) ?_ /01'2(u) {2F(u)}du = O

ug (H)

5/2
v

o = (B)(5Z)  {[5(s5,/v,)(2-0)% « 45, v 2(n°-n+1)] E(m)

()
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- 2[5(8,,/v,)(2-m) (1-m) + s”voa(z-m)u-m)]F(m)}

+
u_ (H) _ 172
a =[O 73 d“( 7 (2_'” F(m) , T(H) = 2A(H)
u_ (H) ",2' vy
Q [e]
2
v (m=-1)
o] d 2
H = >— . and 2C(H) = T ["HH]
(2-m)

In the above equations F(m) and E(m) are complete elliptiz integrals of the
first "and second «inds, respectively. By solving the corresponding Foxker-

Planck equation the stationary probability density is obtaired as

wst(H) = sonst. exp{y} (7)
WJhere
v = 2f == gy 10 (ac)
02 (H)
HH"®

The statiorary protability density functions are snown in Fig. 1 for various
values of exgitations. In Fig. 'a the parametriz> excitation is varied while
keeping the external excitation fixed and vice versa in Fig. 1b.

Following the arguments of Stratonovich (1963), the probability density
that the displacement u at time t given the value of H, i.e. p(u,tfH). is
proportional to the time a system spent at u knowing that the energy level
is H. Furthermore, the time u(t) spends at the point u is inversely

proportional to the velo2{ty and thus

w(u|H) = 1(u) and w(u,H) = w(H) W(u|H)

1
T(H) /Q1.2
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and the density in u and v 2an be written as

H(u,v)
w(u,v) = const. exp [2 f {B(y)/o:H(y)ldy] . (8)
Ho

For the asso>iated deterministi2  problem, i.e. n1(t) = nz(t) =
0, 9Hs/3t = 0 gives »onstant energy loops such as limit 2ycles and separatrix,
and the corresponding parameter values My and u., which satisfy B(H) = 0 2an be
obtained for values of H eﬂo,vi/u) and H €(- vo/U,O) respextively for case
(i) and case (ii). As before, the extrema of W(H) given by 3y/3H = O denote,

so to speak, the continuation of the deterministi> constant energy levels or

the "limit cycles" and are given by

) L2 dA(H)
2A(H)B(H) + o (H) 227 = 0 (9)

The stability of su2h limit cy2les is determined by the sign
of (82w/82H]H - H These results are shown in Fig. 2, where the left hand
side of equation‘%Q) is ploted against m and the most probable values are
given by point m,. In addition to these, the "fixed points" of thne
stoosnasti~ system are obtained by solving 9d¢/ou = 0 and 3y/3dv = 0, and their

stability is determined by the matrix of the second derivatives of y.

Bxit Time Problems

In order to examine the stochastic stability of the equilibrium points
from the Ita equation of the Hamiltonian H, it (s i{mportant to determine the
domain of attractions of the deterministic system. Knowing the domain of
attraction we can say that the stochastic system losses stability (w.p.1) when
the trajectories cross the boundary of this domain. In the sequel, the domain
of attraztion of the deterministic system is calzulated for some regions in

i
the parameter space for the case PZ(VO'U) s - (vi/2)u +u /b,

It is obvious when Yo < 0 and v, < 0, the trivial equilibrium point is
asymptotically stable and when Vo < 0 and v, = 0, the deterministic system

undergoes a Hopf bifurcation and stable 1limit cycle exist for Vo <0

and v, = 0. Similarly, when v, < 0 and vo = 0 the deterministic system
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undergoes a simple bifurcation and two stable equilibrium points exist

for v, < 0 and Yo > 0 . Furthermore, applying Bendi{xson's criterion, i.e., If

2 2

the divergence of the vector field in R® has a fixed sign (zero excluded) in a
simply conne~ted region D in R® the system has no 2losed orbits lying entirely

in D, we have (v2 - u2) < 0 for v, < 0 implying no 2losed orbits en2ir2ling

2
all three fixed points. The associated storhastis problems for Hopf and
simple bifurcations were discussed by the author (1988a,1989). In this paper,

atterntion is fooussed on the region Vo > 0 and 2 > 0.

Every periodis orbit for the determirnistic system must encircle one or
all three equilibrium points crossing the u-axis at (b,0). If bé[o,/v—;) then
the periodic orbit is a limit cy2le encircoling the equilibrium
point (/G;,O). Due to symmetry i.e., Po(u) = - Py(-u), there exist arother
periodiz orbit encir2ling the equilibrium point (- /;;,O). Let the periodiz
orbit for the perturbed deterministizs system be denoted as Te(b1,vo.v2).
Along the solutions of Eq. (4) with ng =Ny, = 0, we have

H = svzc(vz,u] (10)

and sinse re(b,vo,vz) is a closed path we also have

. - 2
= i = = T
f Hdt = 0, i.e., F(b,e.vo,vz] f v G(vz,u) dt = 0 (11)

r r
3 €

The funation E(b,o,vo,v ) = B(b) may be written explicitly as

2

B(b) = szo(b,vo) - JI(b,v ) (12)

o]
where J_ = J v2dt and J_ = j v2u2dt
o} 1
r r
o o}
Thus, the solution of ?(b,o,vo,vz] = B(b) = 0 is given by
- J K 13)
v, J1(b.vo) / Jo[b,vo) (13

Differentiating (12) yields
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-_— (b,o,v .vz) = Jo(b,vo) + 0

which implies, by the implizit function theorem (IFT) that there exists a
unique sontinuously differentiable funation v*(b,g,vo) suzh

that ?(b,e.vo,v*(b.e.vo)] = 0 for suffi~iently small € and

* = J J 14)
v (b,o,vo) Jl(b,vo)/Jo(b.vo) (
Having shown the existence of 1limit cycle by IFT, we next proceed to list
various periodic ortits present in the region v, > 0 anrd vo > 0. However, it

is sonvenient to employ in place of b another parameter H, whicn corresponds

to the energy level H = -(b2/2) (vo - b2/2). This change of parameters Iis
justified, since 34/3b = - b(vo - b2] is zero only at b = ¢ /;; and 0, whizh
are the fixed points. Thus, for H é[- vi/u.o], making B(H) = 0 yields
vy(Hov ) = 9 (H)/7d (H) = R(H(m)) « v, (15)
u+(H) 3 172
where J _(H) = f (2H + v u - H_) du
0 < o 2
uo(H)

= (2/3)[vo/(z-m)3/2[(2-m)s(m) - 201-m)F(m)]

u’ () )
J (H) = ]- (25 + vou - 4-)'72 wPaqu
vo(H)
- sy [v /- ]?’?[2(a® - m v 1)E(@) + (2-m)(n-1)F(m)]
and m=2(ve + un) 20w+ (V2 + uH)'2), nelo,1]
Q o] [o]
The following limits
lim vz(H(m),vo) = v, and lim vz(H(m). vo) = (4/5)v, (16)
m+ 0 m+ 1
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agree with the calzulations of Hopf bifurcation (local analysis) and saddle-
loop (using Melnikov integrals) respectively in the region Yo >0

and vy > 0 (see, for example, Guckenheimer and Holmes 1983). Furthermore, it
»ar be shown as in Carr (1981) that the limit 2ycle en2ircling each of the

2
rontrivial fixed points is unique for Hﬁi{- vO/u,o].

It should be further noted that as the noise terms tend to zero, the
extrema given by =quation (9) tend to the steady state solution of the
deterministis system given by (15). This further emphasizes the fact that the
most probable values are so to speak the contiruation of thé deterministic
steady states. The oritical values of both equations (3) and (15) are given
in Fig. 2. Hcwever, in tnis paper the domain of attraction is obtained using
the »riti»al points of the deterministic equation (15) whi~h are shown ir Fig.

3, It ~an be seer that the noise terms lower the critizal values.

Now that we have established the domain of attractions, we formulate the

exit time problem associated with the nontrivial fixed points 1in the

region \Z >0, Vo > 0 and determine the probabilisti> information concerning
the time T when the stochastic response process first passes out of a lozal
domain of attrastion of the fixed points. Sinze there are two simply
~onre~ted domains for He[- vi /u,o] we shall concentrate on the

region vzi[vo,(u/s]vo]. Furthermore, for a spezific value of v, and v there
is a unique value of H or equivalently'n1€[0.7] given by m = R‘1 (vz/vo) whinsh

defires the boundary I of the domain (see Fig. 3).

dm = um(m) dt + omm(m)dw an
372
: 1 d 2 m F(m)
where um(m) = (r(m)) (B(m) + > am [o (m)]}] , r(m) = =7
(2-m)
2()_(1){2()] 2() 2(2‘!!1)3 0 S 1
omm m) = T (m o (m , 6 (m) = °HH ;:—3—- ’ sm

Suppose that at time t = 0, the state of the system corresponds to some point
defined by mg, within D. When the random disturbance is applied, we are
interested in the time T 1t takes for a trajectory at m, to reach the

boundary I of D for the first time, i.e.
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T = min {t: m(t)€r | m(0) = mo}. @oeo (18)

Now defining the probability that a trajectory has not reached the

boundary ' during time interval t as

P(r,mo] = Pr[r <T (moJ} (19)

the Kolmogorov's (ba-kward) equation is written as

2 .
Ll - L 3P (20)
3t (T'mo) ) um(mo) amo "2 %m [mo) 3mo L'[P(T’mo)] e
with the initial and boundary conditions
NomJ = 1 n € Mrmc)=o m_€r

The distribution furn2tion of the first passage time Pr[r =T] =1 - P[r,mo)

and the correspondirz Pontriagin equation for the nth moment is given by

LM (m )] = -nm _ (m) ana M (m) =0 (21)

~

Finally, the mean fi~st passage time 2an be written as the solution of

(n)) = 502, () —F (m) + u(a) 5 (m) = -1 (22

with M1 (mc) = Oo

In addition to the boundary condition M1(mc) = 0, a boundedness
condition at my = 0, M1(0) < =, i{s usually imposed on Fhe solution to uniquely
determine M1(mo). This condition by itself implies that the left boundary Mo
= 0 Is not an absorbing boundary. This condition may be violated if the noise
term a;m(mo) vanishes at m, = 0, and cannot then be used to obtain the
solution. It 1s, therefore, important to understand the behavior of the

diffusion process m(t) near the boundary m. = 0 according to various Feller

o
classification (see, for example, Feller, 1954; Ito and McKean, 1964; Karlin

— ]




and Taylor, 1981). To this end, consider an interval (0, m,] and
let AG(O,mc) be an interior point such that m(t) 1is a regular diffusion
process in [A,mc]. Putting T, as the hitting time of x, we »2an

define Ml[mo) as the mean time to reach either A or m,, i.e.

1S

M (m ) - E{TA A Tmﬁlm(O) = mol for & <m_ <m,

~

and ~an be evaluated as

m
ﬁ1[mo) =21 - a(mo,mﬁ)/a(A,mﬁ)] f r(ma(n,m_) exp[®(n)]dn
Mo
"
+ Za(mo,mﬁ)/a(A,mc) f T(n)a(a,n) exp[4(n)]dn (23)
~ A
wnhere
z
n p 2
$(n) = I ZgLEl dx , a(z1,22] = f exp[~ ¢(x)] d;
o a {x) 2 g (x)

1

In order to =lassify the boundary behavior, consider the following
quantities Yo and BO, whish ~an be respectively defined as roughly the measure
of time to reach the left boundary 0 starting from an interior rpoint
mOG(O.mc) and the measure of time to reach an interior point mg starting from

the left boundary 0. They are defined as

z z
Y = f 2’ [f rin) exp[¢(n)]dn} exp[ - $(x)]dx (24)
° 0 0 {x) X
z z q
B, = [ rin; {f exp[- &(x)] ; } exp[#(n)]an (25)
0 n o (x)

where z is an interior point. The Feller classification of the left boundary,
0, in terms of Yo and Bo is as follows:
(1) The left boundary 0 is regular, if Yo < » and Bo < ®», The process Z2an

both enter and leave from the boundary, 0. In other words, the process




starting from an interior point can reach the boundary with some positive

probability in finite time. Similarly the process starting from the

boundary can reach an interior point with some positive probability

infinite time.

(2) The left bourdary 0 is an exit, if Y, <= and 80 =, The process

starting from ar interior point can reach the boundary with some positive
probability, but starting at 0, it is impossible to reach any interior
point moé(o,mc). Furthermore, the exit boundary {s either a trap or an
absorbing point.

(3) The left boundary 0 is an entranze, if Yo = @ gnd BO <=®, An entranze

boundary cannct be reached from any interior point, i.e. the probability

is zero that %the prozess starting at arn interior point can reach an

entrance bouncary. Furthermore, the process starting from an entrance

boundary moves at on2e to the interior never to return to it.

The prozess

(4) The 1left bourndary 0 is natural, if Yo = ® and BO = @,
starting from zn interior point cannot reach the boundary in finite time

and the process 2annot reach any interior point starting from the natural
boundary.

Using this classification, Kozin and Sunahara (1987) established some
stability properties of the singular point, O. In the similar lines we

establish an instability condition for the singular point Q.

Theorem:

Let the singular point 0 be the left boundary of the interval (O,mc].
The singular point {s wunstable in probability, 1.e. the event {sup

>
[m(t:mo,O)l < e] has probability zero for all mg 2 0, if the follgwing
conditions are satisfied

1) 0 is an ertrance boundary, {.e. Y, = = and B (=

o]
i) Mg is a regular or an exit boundary, {.e. Ym { =
where ¢
m
o : X
Ym - f > [f r(n) exp[¢(n)]dn} exp[- #(x)] dx . (26)
¢ ¢ (x) 1z
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Moreover, the mean time to reach m, is given by

m m
dx

o e
) =2 f r(n) ff exp[- ¢(x)] > } exp[#(n)]dn (27
m n g (x)

M, (m,

[e]

and M;(0) < =.

Proof:

The proof follows the boundary behavior azcording to the above

2lassification. From the defirnition of 80 it is obvious that Bo < = implies
2
Lim f C(n) exp{e(n)] dn < = , & <2< m
8 +0 & ~
and nenre for an entrance boundary the following relationship

Z
Y +8_ =2im {a(a,z) [ r(n) exp[e(n)] dn]
° % s A

yields 2im a(4,z)
A+ 0
is given by

Thus for some m,, 0 <my<z<m,, the Pr {T, < To+ |m(0)

= mO}

Lim  [1 - alm ,z)/a(a,z)] » 1

A+ 0 °
Moreover, since 8 _ < = we conclude that, the process starting at #ny ngEO,z]
reaches z in finite time with probability one. If the right boundary f{s
regular, the z is replaced by m,. The right boundary is attractive and

attainable when m, is an exit point. Thus for both these cases
Pr {sup |m(t:m_,0)|<e} =0, for all m_ >0
o o
t >0
Now using the fact Lim afA,m_ ) = = the exit time can be obtained from
A+ 0 -
equation (23) as (27,.

For the problem under consideration, numerical calzulations indicate

that Yo = ®, Bo < » and Ym ¢ ®» and thus the singular point 0 is unstable in

”n
~
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probability. The mean exit time to reach m, 2an be caloulated using equation

(27). These results are shown in Fig. 4.

Conclusions

In this paper, a special case of co-dimension two sto-hastic bifurcation
associated with nonsemi-simple double zero eigenvalues is examined. The
normal form associated with this case is two dimensiornal and corresponds to
the stochastirally perturbed van der Pol - Duffing equation. The stochastins

. averaging method agpropriate for the ItS equations is applied to obtain a one
dimensioral Ita equation for the Hamiltonian. The probability dersity, and
its extrema are o3tained. It is found that the extrema of the density
fun~tion correspond to the least probable value from which the process leaves
rather quizkly. The oritical extrema values m, of the stochastiz system
approach the values af m at #hizh the deterministic unstable limit ocy2le exist
as the noise terms tend to zero,. Furthermore, the effezt of additive and

multiplicative noise terms on the values of m, are demonstrated and it is

the stochastic stability of the equilibrium points from the Ita equation for
Hamiltonian, the <Zomain of attraction of the determiristiz system is
obtained. The stability in probability and the mean exit time are cal-ulated
using the domain of attraction. The stability in probability is obtained by
examining the boundzry behavior of the one dimensional diffusion prozess. An
instability theorem is stated and proven. It is found that the nontrivial
fixed points are unstable in probability. The mean exit time to reach the

boundaries of the dozain of attracstion Is determined for various noise levels.
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Figure Captions
The stationary density vs m for parametrically perturbed system.

The stationary density vs m for system with botn parametric and

external exzitations,

The comparison of 2ritical points of the stochastic system with that

of cthe deterministiz system.
The ¢ritical points vs \Z for the stochastic nase.

The right boundary of the domain of attraztion vs Vs

The mean exit time vs Mg+
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APPENDIX C -

I. Introduction
Recently Hul and Tobak! analyzed the Hopf bifurcation that results when

the steady flight of an aircraft becomes unstable in pitch by increasing the

angle of attack. For the case of a double wedge aerofoil {t was found that,

degenerate Hopf bifurcation can also take

place due to the violation of a certain transversality conditionz.

in addition to Hopf bifurcation,
Since such

degenerate bifurcation is nongeneric, Sri Namachchivaya and Van Roessel3 made
use of the results of singularity theory to unfold these bifurcations.

The purpose of this note is to extend these results on the nonlinear

analysis of a pitching aircraft at high angles of attack. It will be shown

that, in addition to the above mentioned co-dimension one and two

there exist co-dimension two bifurcations associated with a

bifurcations,
double zero eigenvalue. Usually a zero eigenvalue implies a simple
bifurcation. In the case of a double zero eigenvalue with non-semisimple

Jordan form and no further degeneracy, two parameters are required for a

complete universal unfoldingu. All possible bifurcations that take place In

the neighborhood of this bifurcation point will be obtained by making use of

these unfolding parameters. A family of limit cycles may branch off from the

equilibrium surface in the vicinity of such a critical point. For the

equations of motion for a pitching wedge such a double zero eigenvalue does

occur at certain critical values of the system parameters. The partial

unfolding for this case is carried out below.

Consider an aircraft in steady flight at an angle of attack o. Suppose

some disturbances take place at time t = 0, e.g. due to a change in the flap

deflection angle; the aircraft will subsequently undergo an unsteady motion

relative to its steady flight. Such an unsteady motion of the aircraft

modifies the air flow and hence the aerodynamic forces on the aircraft which
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in turn determine its motion. Thus the aircraft's subsequent motion can only
be determined by simultaneously solving the unsteady flow equations of the air
and the eguations of motion of the vehicle as a rigid body, aerocelastic
effects being assumed negligible.

Although simultaneously solving the coupled equations in principle
represents an exact approach to the problem of arbitrary maneuvers, it is
inevitably a very difficult and costly approach. In classical aerodynamics,
the traditional approximate approach is to assume the pitching motion to be a
small amplitude periodic oscillation consisting of simple harmonics. On this
basis the flow equations are decoupled from the inertia equation, and are
linearized to determine the aerodynamic response to such an harmonic motion.
The so-called aerodynamic coefficients thus obtained are then used to predict
the motion of the aircraft. Even though this approach ignores the time-
history effects on the flow field and the aircraft motion, it gives a good
approximation for calculating the aerodynamic response from the unsteady flow
equations and hence the pitching moment. This approximation which has been
adopted by Hui and Tobak1 and Sri Namachchivaya and Van Roessel3 in their
investigations of this problem is used in this paper.

II. Statement of the Problem

Consider an aircraft in flight, free to undergo a single degree of

freedom pitching motion. The equations of pitching motion can be expressed as

da . d&
at - % I at M(t), (m

where a is the instantaneous angle of attack, I is the moment of inertia of
the vehicle about the pivot axis, and M(t) is the pitching moment at

instantaneous time t of the aerodynamic forces about the same axis. When the




motion 1is slowing Varylngs, the pitching moment M(t) may be characterized with
sufficient accuracy by the instantaneous angle of attack a(t) and the
instantaneous rate of change of the angle of attack &(t). Suppose a = ¢ is an
equilibrium state of the system of Eqs. (1); then, putting a(t) = ¢ + y(t),

the variational equations about the equilibrium position can be written as

W . M) (2)

where ¢y is the angular displacement of motion measured from the angle of
attack g of the steady flight. It is assumed that the moment required to trim
the aircraft at ¢ has been accounted for, so that M(t) is a measure of the
perturbation moment only and is determined from the instantaneous surface
pressure. As noted earlier following the mathematical modeling approach of

Tobak and Schiffs, instantaneous pitching moment can be given as

2
Po’e —

M(t) = °2 su [, (0,0,0,h) - € (¥,9,0,n]]

where p_ and VQ are the free stream density and velocity, respectively; S and
L are the reference area and length; and h represents the distance between the
apex and the pivot position as defined in Fig. 1. The function Cm(w.@.o.h)

represents the pitching moment coefficient of the aerodynamic forces about the
pivot axis and Cm(0.0,a.h) is its steady value at a fixed angle of attack o¢.
Even though Cy depends on the flight Mach number M_ , the specific heats of
the air and the aircraft shape, these parameters will be considered as

"passive" parameters in this analysis. For a finite amplitude, slow, pitching

motion with angular displacement ¢(t) around a mean angle of attack g, with

terms of 0(62.0) assumed negligible, we can write'
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- C_(¥,¥,0,h) = £(a + ¥,1) + gla + £,

which reduces the second of Eqs. (2) to

dy .
d—t' = F(W’Wnooh)
where
F(w,@.o.h) = !%El = K[f(d + p,h) - f(o,h) + g(o + w,h)i] s
I 2 =
K = 2—I' pﬂ° Vg SL

Equations (2) represent a pair of autonomous differential equations in R2
the trivial solution of which is ¢ = 0. The objective of this investigation
is to understand the stability and the bifurcation behavior of the stationary
solutions of Eqs. (2) as the system parameters ¢ and h are varied.

III. Bifurcation of Fixed Points

The functions f(o,h) and g(o,h) are related to the stiffness
derivative S{o,h) and the damping derivative D(o,h) of classical aerodynamics

as follows:

K g% (o,h) = - S(o,h) , xg(o,h) = - D(o,h)

Introducing new state variables X = ¥, ¥ = @, Eqs. (2) may be written in the

form

x' =y,

-y -z, o=, =%2 === = -3 =--2-

Y'om M X YU,y Y PoXT *QaX Y * Py XU+ QXY (3)
where u. = - S(a,h), u, = - D(g,h) 5 --13 (o,h)

u1 ’ v My ’ » Pg 2 % ’ »
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2 2
- aD = 1 98 - 19D
Q. = - — (o,h) , p, = - 57— (o,h) , q, = - 5 —5 (o,h).
0 90 1 3! 802 1 2 802
It is evident that the nongeneric case ﬁ1 = ;2 =0 {.e., D(ac,hc) = 0 and

S(oc.hc) = 0, gives rise to a double zero eigenvalue with non semisimple
Jordan form as the Jacobian, It is well known that the damping and the

stiffness derivatives are respectively quadratic and linear in h, {.e.,

p(o,n) = D_(s) + D (o) h + D (¢)n®

2

S(o,h} = So(a) + S1(c)h

Furthermore, the qualitative variations of the quantities D(¢,h) and S(o,h)

with o and h can be found in Hui6 for double-wedge aerofoil. The variations
of the components of S and D, namely So, Sy, Do' Dy, and D2 are given
graphically in Sri Namachchivaya and Van Roessel3. The critical values
of ¢ and h are obtained by letting D = S = 0 in the above expressions. The
critical parameter values and the various coefficients needed for the analysis

are given in Table 1 for L 5°, Introducing new variables x, y and new

time t,
3 P p
0 = 0 - 0y -
X = (- 2) X s Y ("_'2_') Yy, t-= (qo) t, pO'qO = 0
Po Po
ylelds
X =y, (4)
¢ 2
y = u1x + uzy + xz + Xy + p1x3 + q]x Y
%, - %, - P, 9Py
where My " (:9) My s My T (_—) My s Py 33 and q = 3 -
Po Po q q

The theory of normal forms deals with finding near identity coordinate
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<

transformations, which simplify the analytic expressions of the nonlinear
terms. The resulting simplified nonlinear equations are said to be in normal
form. Eqs. (4) are in normal form since the expression for the normal form,
for a nonlinear system with quadratic and cubic nonlinearities and a double-
zero non-semisimple Jordan block, {8 1identical to that of Eqs. (4).
Furthermore, when the quadratic nonlinearities are not identically zero, the
higher-order teirms (i.e., cubic terms) do not contribute to : :alitative
changes in the phase portrait. Thus, a simplified set of equations

X =y, (5)

. 2

Y = mx t oy X Xy,
which reveals all the principal phenomena contained in the general problem
will be analyzed. In Egs. (5), My and u, are the unfo'ding parameters and are
related to the determinant and the trace respectively of the linear c¢perator
of Eq. (3). We first seek the fixed points of Egs. (5) which are given by
(x51¥g) = (0,0) and (xq,¥5) = (- u,,0). Putting x = x5 * uandy =y, * v,
the variational equations about the fixed point can be written as

' (6)

U’V,
V= oa,u*ayv -+ u2 + uv
1 2 '
where a, =y, * 2xo, and a, = u, + xo. The efigenvalues of the fixed point are
given by
a a2
2 2
A1'2 =5t Ya , a T % (7

It is evident from Eq. (7) that the fixed point 13 asymptotically stable

if ¢, <0 and a, <0, and goes through a Hopf bifurcation at aé =0

1 2

and a, < 0. Thus, making use of the transformation

u 0 1 €
- (o) 6

v
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Eq. (6) in the neighborhood of a, = 0 can be written as

n2 +n g,
/e, (8)

e

o - /-a N

= /-a E.

e

Now the formulas for Hopf bifurcation given by Guckenheimer and Holmes7 are

used to obtain the equation governing the bifurcating path as

1

3 a2 - —
2Ra”™ + 023 = 0 ’ R 801 ’

where "a"™ represents the amplitude of the bifurcating periodic solution.

Since a, < 0 it 1is obvious that the fixed points undergo an unstable

subcritical Hopf bifurcation when a, = 0. Moreover the fixed point goes

through a simple transcritical bifurcation at a, = 0 and a2 = 0, It may be

noted that the fixed point, a stable node for a, < 0 and an unstable node

or a, > 0, becomes a saddle-node at a, = 0 while undergoing a transcritical

bifurcation.
IV. Global Bifurcations

It is clear from the analysis performed thus far and Fig. 2, that the

phase portraits in region (3) and (4) are not homeomorphic since the former

has a limit cycle and the latter does not. For similar reasons, regions (8)

and (7) are also not homeomorphic. Hence, there must be additional global

bifurcations occurring in which the nature of the fixed points do not change,

but the phase portraits as a whole undergoes a topological change. In this

section such global bifurcations are examined. The fixed point is a saddle

point when 01 > 0, and making use of the transformation

3

- 2 = 2 - v a, = ezv and = ¢t
u € z1 R € 2 01 € Ve 2 2 T .

ylelds
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dt 2
(10)
dz
2 2
i A A (v222 z1z2)
where |e|<<1 and ¢ s 0. For ¢ » 0 the above equations become an integrable

Hamiltonian system with Hamiltonian

2 2 3
I B
2 v 3

H(z,,2,) 1 72

and (z1 =2z, = 0) is a stable point and possesses a '"saddle connection".

2
Since the Hamiltonian is conserved the level curves H = constant are solutions
of Eqs. (10) with ¢ = 0. Furthermore, the value of the Hamiltonian at the
saddle point is H(0,0) = 0, and the points of intersections of the saddle loop

with the axis 2z = 0 are z; = 0 and z, = - % Ve The unperturbed trajectories

of the saddle-loop at z, = - g v, can be obtained aas
3v 2. "V
z,(t,t ) = - 3= seen” [ 5= (t-t ],
(11)
v 32, 7 ~
zz(t.to) - 5—  sech [—5— (c-co)] tanh ['E— (t-co)].

Following the Melnikov procedure given in Guckenheimer and Holmes7 for the

perturbed autonomous system (10) (with € = 0), we obtain the condition that
® 2
- 1
I. vi(tat ) [v, + ult,t )] at -0 (12)

for the saddle connection to not break under perturbation. Eq. (12) may be

written as
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2 /2
& (v,) 81, - 1) =0

y
2v @ 8v
2 4 2
where I1 = 3v1 !- sech £ tanh Edf = U5v1'

1, = sech® £ tann® gag - %gg

Thus the saddle connectiin is preserved when

It can be concluded that there exist two saddle connections: one

at u2 = g u1 passing through the trivial solution, and one at My = % u1 that
passes through the nontrivial solution as shown in Figure 1.
The above calculations indicate the existence of a limit cycle in the

regions 3 and 8 in Fig. 2. The uniqueness of this 1limit cycle will be

8

demonstrated following the procedure outlined in Chow and Hale~ and Carr et.

a19. Every limit cycle within the saddle-loop must encircle the equilibrium
point (-v1.0) crossing the x axis between Vv, and 0 at (b,0). Let the other
crossing point be (¢,0). The limit cycles for the perturbed system is denoted

as re(b,v1.v2]. Along the solution of Eq. (10) we have

2
H(z1,22) =g zz(v2 + z‘]
and since rc(b.v1.v2) is a limit cycle we have

[ Hdt = 0, t.e., F{bie,v ov,) = | zf(v2 +z)dt =0
r r
€ €

The function Ffb'o'“i’vz) may be written explicitly as

F(b,O.v1.v2) - vzso(b,v1) + 31(b,v1) (13)
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where

~ 2 ~ 2
Jo(b.v1) = Ir zzdt ' J1(b.v1] = fr zlzzdt
o o]

Thus, the solution of F(b,O,v1.v2) = 0 is given by

v, = - 31(b,v1) / Jo(b,v1) .

2
Differentiating (13) yields

oF =
3v2 (b,O,vI,vz] = Jo(b,v’) =0
which implies, by the implicit function theorem (IFT) that there exists a

unique continuously differentiable function v*[b.e.v,) such

that F(b,e,v1,v*(b,e,v1)) = 0 for sufficiently small ¢ and
v*(b.o,v1] = - 31(b.v1) / Jo(b,v1)

Having shown the existence of a limit cycle by IFT, we proceed to show that
the limit cycle is unique for a given value of vy and v, by demonstrating
that v* 1s monotonic in b. However, it will be more convenient to employ in

place of b another parameter h, which corresponds to the energy level {.e.

b
h = H(D.O) = \’1 2 3
This change of parameter is justified, since dh/db = - b(v1 +b) >0 for
- \’1 < b < 0- Thua
vy = = u,(n) s 9 (n) = - P(n) (14)
where J,(h) = 3o(b(h),v1), Jy(n) = 31(b(h).v1) and the dependence of v, s

suppressed. Since zp(d(h)) = z5(e(h)) = 0, it can be verified that
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c(h) dz1 e(h) 2,
Jr(n) = [ — , Jrm = — dz,

b(h) 22 b(h) 22

Furthermore, the liwuits

' J;(h)
Lim P(h) = - (6/7)v, and Lim P(h) = Lim 3;737 = - v,

h+0 h o+ - v13/6 hos - v13/6

agree with the previous calculaticns of saddle-loop and Hopf bifurcations.

The following relationships between J,(h), Jy(h) and their derivatives can be

obtained using the expression for 2z3;

> c(h) 213
J(n) = v an) = [ —az,
° b(h) 22

] + 2 ! =
5J_(h) = 6h J!(h) + v, “JI(h) = O
350, () + 6[nv, 3 (n) - (v, + sn)arm] = 0 (15)
o] 1 1
(v13 * 6h) J7*(n) = Ji(h)v, + Ji(h)

3 *re 2' - '
6h(v,” + 6n) g2t = v, 7d1(n) - 6h g (h)

Now using the above relations one can show that if P'(hl) = 0 for some

hy €(- v13/6.0) then

2
pro(h )a (n,) 6h 6h
3 177041 __1 1 3
6n,(v,” + 6h1) TTh, J - (v1(P(h1) ;T-) ¢ — (v1 + 6h‘) <0

2.2
Tv,P (h,) + 6(»,3 - 2h1)P(h1) - 6hyv, = 0
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Since 6h, (v13 + 6h]) <0and Jo(hy) / Ji(h)) <0, it follows from the
inequality (16a) that P''(hy) > O. Furthermore, it follows from Eq. (16b)

that - v, < P(hl) < 0. In other words, if there is a point hy for which
p'(hy) = 0, then the function P is concave up at this point with the value of

the function at this point lying between - 2 and 0. Since the end points of

p(hy) are at - v, and -6/7 v;, p'(h) » O for h e(- v13/6.0), in fact p'(h) >
0. Thus, p(hy) is a monotonically increasing function implying a unique limit

cycle.

V. Discussion of Results and Conclusion

The results of this analysis are {llustrated in Fig. 2, where the space

of unfolding parameters is divided into ten regions indicating the various

bifurcations and phase portraits of Eq. (5). In passing from region one to
region two along 0S;, the nontrivial fixed point changes from an unstable node
to an unstable focus while the trivial solution remains a saddle node. Along
0H1, the nontrivial fixed point undergoes a Hopf bifurcation giving birth to
an unstable limit cycle. It has been shown that this limit cycle is unique
and disappears along OLy; due to a global bifurcation and a saddle loop that
passes through the trivial fixed point is produced. The nontrivial fixed
point, in passing from region four to region five along 0S!, changes from a
atable focus to a stable node while the trivial fixed point remains a saddle
node. Along OT a transcritical bifurcation takes places where an exchange of
stability between the trivial and nontrivial fixed points occurs. Finally, in
going from region six through to region ten the nontrivial fixed point remains
a saddle node while the scenario of bifurcations for the trivial solution is
similar to that of the nontrivial fixed point detailed above and presented in

Figure 2.

In this note a complete unfolding of a co-dimension two bifurcation due

)




to a double zero eigenvalue of the equations of pitching motion of an aircraft
was carried out in the vicinity of zero stiffness derivative S(oc,hc] = 0, and

zero damping derivative D(oc,hc) = 0. Unfolding of such a singularity will

uncover all possible bifurcations that may be present in the vicinity of the
singularity, in addition to the results of Hul and Tobak1. Even though the
problem considered is not rich enough to fully demonstrate the method of
unfolding of a co-dimension two bifurcation point, as most of the local
results could have been obtained using methods adopted in Ref. 1, this method,

nevertheless, provides the results pertaining to uniqueness of limit cycles

and global bifurcations.
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Unfolding of Degenerate Hopf Bifurcation
for Supersonic Flow past a Pitching Wedge

N. Sri Namachchivaya*
University of lllinois, Urbana, lllinois

H.J. Van Roesselt
University of Western Ontario, London, Ontario, Canada

This paper investigates the stability and bifurcation behavior of a double-wedge aerofoil performing s pitch-
ing motion ai high angles of attack. When a pair of complex conjugate eigenvalues crosses the imaginary axis of
the eigenvalue plane, the trivial solution loses stability giving rise (0 8 periodic solution, known as Hopf bifurca-
tion, provided certain transversality conditions are nol violated. The existence of degenerate Hopf bifurcation
due 1o the violation of Hopf's Iransversality condition at certsin critical values of the system parameters is
shown. The behavior of the pitching motion near these critical values is examined by unfolding the degeneracies.
For (he supersonic double-wedge aerofoil, various parameters defining the bifurcation paths were numerically

evalusted.

1. Introduction

N recent years several new mathematical ideas have in-

fluenced the study of stability and bifurcation phenomena
of nonlinear dynamical systems. In this paper, aerodynamic
stability of a double-wedge subject to a single degree of
freedom pitching motion is investigated. Recently Hui &
Tobak' analyzed the Hopf bifurcation that results when a
steady flight becomes unsiable by increasing the angle of at-
tack o beyond a critical value o,. holding all other flow
parameters fixed. If more than one parameter is allowed to
vary, such as angle of attack ¢ and pivot position A, then
phenomena other than simple Hopf bifurcation may occur.
For the case of a double-wedge, it is found that if both angle
of attack o and pivot position A reach certain critical values o,
and A, . respectively, then the transversality condition of the
Hopf bifurcation theorem does not hold and a so-called
degenerate Hopf bifurcation takes place. However, this
degenerate phenomenon is nongeneric. In order to more com-
pletely understand the behavior of the system, it is useful to
examine it near the singularities =0, and A = A, by either in-
corporating an unfolding parameter or by studying the prob-
lem as a multiple parameter system.

In this paper, the former approach will be used 1o under-
stand the bifurcation behavior of the system. A general
framework for unfolding such degeneracies has been given by
Golubitsky and Langford? using the singularity theory.

I1. Statement of the Problem

Consider an aircraft in flight {ree to undergo a single degree
of freedom pitching motion. The equations of pitching motion
can be expressed as

da
dr

. da
=a, I-—d-I—-SM(I) )

Received Oct. 25, 1985, revision received March 14, 1986.
Copyright © American Institute of Aeronautics and Astronautics,
Inc., 1986. All rights reserved.

*Assistant  Professor, Department of Aeronautical and
Asironautical Engineering.

tAssistant Professor, Department of Applied Mathematics.

where « is the angle of attack of the steady flight, / is the mo-
ment of inertia of the vehicle about the pivot axis, and M (/) 1s
the pitching moment ai instanianeous time r of tihe
aerodynamic forces about the same axis. When the motion is
slowly varying,* the pitching moment M(/) may be char-
acterized with sufficient accuracy by the instantaneous angle
of attack a(¢) and the instantaneous rate of change of the
angle of attack a(r). Supose a =0 is an equilibrium state of
the system of Eqgs. (1); then, putting a(¢) =g+ ¢ (1), the varia-
tional equations about the equilibrium position can be written
as

o
TR
dy M 1

Y . (ny=—p_ VS 0.0 0,h)-C,, (¥.¥.0.h
i ,(l) le' SSL(C,( ah)-C, (¥. 4.0 )(I’)

\

ansverssiity condition
violsed: (D 0.0’ &

wensversaiity conditien
stiohod:© SO

Fig. 1b Transversality condition and Its violatios.
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where ¥ is the angular displacement of motica measured from
the angle of attack o of the steady fight; o, and ¥V, are the
freesiream density and velocity, respectively; § and L are the
reference area and length; and A represents the distance be-
tween the apex and the pivot position as defined in Fig. 1a.
The function C,, (¥.¥,0,h) represents the pitching moment
coefficient of the aerodynamic forces about the pivot axis and
C.(0,0,0.h) is its steady value at a fixed angle of attack o.
Even though C,, depends on the flight Mach number M, , the
specific heats of the air and the aircraft shape, these
parameters will be considered as **passive’’ parameters in this
analysis. For a fimte amplitude, slow, periodic, pitching mo-
tion with angular displacement { (/) around a mean angle of
attack o, with terms of 0(y°,§) assumed negligible, we can
write'

~C, (4 ¥.0.h)=f(a+ V. h)+glo+y.h)Y

which reduces the second of Egs. (2) to

dy ;
T-Fw-\ﬁ.a.h)
where
. Mt
F(yd,0.h) = ( )=x[_[(a+¢,h)-f(g_h)
; 1 .
tgla+¥. M), A‘-‘-Epcl/;_SL

Equations (2) represent a pair of autonomous differential
equations in R* the trivial solution of which is ¢ =0. The ob-
jective of this investigation is 10 understand the stability of this
trivial solution and the bifurcation behavior of Eqs. (2) as the
system paramcters o and A are varied.

HI. Stability of the Trivial Solution
The functions f(a,h) and g (o.h) are related 1o the stiffness
derivative S(o.h) and the damping derivative Do k) of
classical aerodynamics as follows:

S (o= ~S(ah
%0 o.h) = o.h),

A

xg(o,h)= = D(a.h)

@90 -0Nn-0

™o oR o

@00 Oee

Fig. 2 Bifurcation diagrams: 8) supercritical, b) subcritical, snd ¢}
degenerate Hopf bifurcation,

J. GUIDANCE

Introducing new state variables y, =¥, y, = {, Eqgs. (2) may be
written in the form

0
=A' 4
y J+[ F(¥,.y:.0.h) ]+0(|y|) 3
where
[ ]
y=
Y2
0 1
A(a'h)=[—S(a,h) —D(a.h)]

F(y, -)’I'a-h) = Bll)‘f + Bl:.":y: + C,“_Vf + C“:)’f}';

- 1 aS - 1 3D
o e e— e— 'h . 3T — N
Bu=-75 55 Bz oo
N 1 3s - 1 #D
= =2 (a.h), = T
Ci 31 307 (a.h) Ci: 3 39° ta.h)

The stability of the trivial solution is governed by the eigen-
values of the matrix 4, which are

D . -
)\=-T:i\.S—D:/4=——§:1‘., (4)

4

It is evident that the equilibrium position is asymptotically
stable when
S(o,h) >0, D(a.h)>0
and instability occurs when D(o,h) =0 and S(o,h) >0, giving
rise 10 a pair of pure imaginary eigenvalues; or when
D(a,h)>0and S{a,h) =0, giving rise to a zero and a negative
eigenvalue; and the nongeneric case D(o,h)=0 and
S(o.h) =0, giving rise 1o a double zero eigenvaiue. Only the
first case will be considered. Though the extension of the
general results obtained in this paper for a two parameter
system is possible, we shall analyze the problem as if it were a
one parameter system. To avoid duplication of calculations,
we shall refer to the bifurcation parameter as g which can
represent the angle of attack o (or the pivot position h)
hoiding A (or o) constant. Let us assurmne that at u=y4, . the
damping derivative becomes zero D(y, ) =0, the stiffness
derivative S(u, ) >0, and the corresponding eigenvalues are
A\ = xiand w, = £~'S(p, ). According to Hopf's theorem,*
the system described by Eq. (3), along with the conditions

w(p, )=w,>0, D(u, )=0 (5a)

dD

—_ =D (u)#0 (5b)
du ey

has a family of periodic solutions bifurcating out of the
equilibrium solution y =0, parameterized by the amplitude a
for lal small. Furthermore, Hopf showed that along the
periodic solution branch u is an even function of ¢ given by

B=p, +psa +pgat+ e, (6a)

assuming
u:=0 (6b)
These solutions exist either for u>u, (supercritical Hopf
bifurcation) or for u<p, (subcritical Hopf bifurcation)
depending on the sign of . Bifurcation of such periodic solu-

tions out of the trivial solution, when Hop("s conditions, viz.,
Eqs. (5b) or (6b) or both Eqs. (5b) and (6b), are violated is in




Cc-21
UNFOLDING OF DEGENERATE HOPF BIFURCATION 415

JULY-AUGUST 1986

general called degenerate Hopf bifurcation. The preceding
analysis holds for any single degree of freedom motion. Ap-
plication of the analysis requires a knowledge of the stiffness
derivative S and the damping derivative D together with their
partial deriva:ives. The stiffness and damping der‘vatives for a
double-wedge aerofoil in supersonic flow have been deter-
mined by Hui.® In this paper their partial derivatives have
been calculated numerically using the results of Ref. 6. For the
problem of double-wedge aerofoil it is the violation of Eq.
(5b) which occurs, hence it is the degenerate Hopf bifurcation
associated with the violation of Eq. (5b) which will be studied.
Hopf's transversality condition, as well as its violation when A
is taken as the bifurcation parameter, is shown in Fig. 1b.

1V. Bifurcation Analysis

In this section both Hopf and degenerate Hopf bifurcation
will be considered. Assume that at p=gu ., the damping
derivative becomes zero [D{(u ) =0] and the stiffness
derivative is positive [S(p,)>0]1. The eigenvalue is
A = xiw, = £ivS(p,) and the corresponding eigenvector Is
L)
( To)sludy the Hopf bifurcation and its stability, a change of
coordinates is made to put the system of Eqs. (2) into a stan-
dard form. This is achieved by the linear transformation

y=Tx ()]

rfo ]

is the matrix consisting of the real and imaginary parts of the
critical eigenvalue and x = (x,.x;) represents the new state
variables. The above transformation yields the sysiem of
equations with the linear part in standard form as

MRS
0C”'xf+C”:x‘;x:]

B8
+ [—”—x, + B\ Xy +
w «

« .

where

(8)

Before proceeding to degenerate Hopf bifurcation, a summary
of the results for the regular Hopf bifurcation will be given.

Hopf Bifurcation

Now the formulas for Hopf bifurcation given by Guck-
enheimer and Holmes™ and Ariaratnam and Sri Namachchi-
vaya,” are used to obtain the equation governing the bifur-
cating path

2Ra* - D’ (u,)na=0 ()]

where
i s
=—(B, By +wCy1y), 1=p-p <1,
8w;

and a represents the amplitude of the bifurcating periodic
solution given by

: |1 B
X, =asing + £ [—l- B _ —I-B,:sinZot + ———'—'—cosu]
w L2 w 3 6 w,

N

sin2¢ + ——2—8, ,cosZo] (10)
W, 3

a1
X, =acosp—— | —
w L3

where

=l +const a=w,+az(P+%R)

| 1 | I 3
pey [t - greist - greicu]
The amplitude parameter relationship can be written using Eq.
(9) as
2R .

= : |
D ()" (n

n

provided that D* (u ) #0.

When D’ (u) <0, which is generally the case when eigen-
values cross from left to right in the complex \-plane, it is evi-
dent from Eq. (11) that the bifurcating path exists for n>0
only if R<O0 (supercritical biiurcation) as shown in Fig. 2a.
Similarly the bifurcation path exists for <0 only if R>0
(subcritical bifurcation) as shown in Fig. 2b. The opposite is
true for D' (u, ) >0. It is well know- *hat the damping and the
stiffness derivatives are respective adratic and linear in A,
ie.,

D(o,h) =Dy(0) + D, (0)h + D, (a)h*
S(o,h) =So(a)+S,(a)h 12)
Furthermore, the qualitative variations of the quantities
D(a,h) and S(o,h) with o and h can be found in Hui® for
double-wedge aerofoil. By considering o as the bifurcation
parameter, i.c., u=g, the results of Hui and Tobak' are

recovered. Similarly, the amplitude parameter relationship,
considering A as the bifurcation parameter, can be writien as

p - 1 {Si<aofaa)}
“ T 8(D, (o) +2D:(0)h) U 3o S h=h

(13)

h

Degenerate Hopf Bifurcation

Now we shall examine the bifurcations that can take place
when Hopf's transversality condition [Eq. (5b)] is violated,
i.e., degenerate Hopf bifurcation. It can be shown that in
double-wedge and flat-plate aerofoils, degeneracies of the
above-mentioned type for both parameters (3D:/do =0,
3D/ah = 0) are present. However, S(a,h) >0 only for the sec-
ond case, and thus the degenerate Hopf bifurcation when
D=0, aD/3h =0, will be examined, i.e.. when

. D,(a,)
Dy =4D D,(a,), h = ———"—

i(o,) o(0,)D; (a,) 2D, (o,)
provided D, (o.) #0. Violation of the transversality condition
when h is considered as the bifurcation parameter is shown in
Fig. 1b. Furthermore, for the cigenvalues to be purely im-
aginary we shouild have

sl (oc)Dl (0‘.)

>0
w;(af)

So(ﬂ,) -

Since we are studying the local behavior of the system, Eq.
(8), as opposed 10 the global one, subsequent analysis is per-
formed in small neighborhood of x, while the above condi-
tions prevail. Thus, making use of the general results given in
Ref. S for degenerate Hopf bifurcation, the equations govern-
ing the bifurcating path and improved frequency for the
wedge problems are obtained as:

2Ra’ - Dy (0 )Aa=0 (14a)
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and (17) yields the previously obtained result of Eq. (15). In Fig. Ja
$1(0.)R s R the case D;(0.)/R<0 is considered, for which Eq. (17)
6=u,+a{a [P— L bl ]* .(a,)( )} (14b) represents an ellipse for >0 and has no real solution for
4w:Dy(0,.) e 2D, (a,) B <0. On the other hand, for D, (e.)/R >0 Eq. (17) represents

respectively, where #=h—hA_. The existence of the bifurcating
path depends on the sign of R/D,(s.). In other words, a
bifurcating solution exists only if R/D, (6.) >0. Therefore, in
degenerate Hop! bifurcation, the bifurcating path exists on
both sides of the a axis as opposed to Hopf bifurcation where
the bifurcating path exists ewher for h>0 or for h<0. The
bifurcating path can be expressed explicitly as

a 3 (ao/aa)} .-
h-h =s—20 s @ (92720 is
h *Z\D:(o){sao 5 ) Snen as

' :
1t may be noted that each bifurcating path defined by Eq. (I5)
has a distinct frequency given by Eq. (14b). If D; >0, then
both bifurcating paths given in Eq. (15) are unstable while the
trivial solution is stable. On the other hand, if D, <0 no bifur-
cating solution exists. These results are shown in Fig. 2c.

V. Unfolding

Now to consider the behavior of the system near this
nongeneric degenerate Hopf bifurcation, an unfolding
parameter is introduced. Since the degeneracy occurs while
considering h as a bifurcation parameter, it is natural to con-
sider o as an unfolding parameter. Loosely speaking, a
parameter is said to be an unfolding parameter when it fills in
the missing lower order term in the bifurcation equation. The
main theoretical results classifying various bifurcations and
their unfoldings when the conditions of Eq. (Sb) or (6b) or
both fail were presented by Golubitsky and Langford® using
singularity theory. Making use of available results,’ the equa-
tion governing the bifurcating paths incorporating 3D/do can
be written as

a#D oD
I_ | — e — 5) =0 16
2Ra (am TG W (16)
which simplifies to
. D.(o) -
:_ 2 ¢ h: -38=0 17
R 8 an

where

1
B=E[Dé(a‘)+0[(a‘ Vh +D;(0, )h2]8

d=o0-o0,

h=h-h

Depending on the sign of D, (a.)/R and 8, a set of bifurcation
diagrams as shown in Fig. 3 can be obtained. For §=0, Eq.

| e

pee sed 08 ]

Fig. 33 Case Dy(0.)/R<0.

[xr s 2

Bed [

Fig. 3b Case Dy(s,)/R>0.

Fig. 3 Unfoldings.

an hyperbola for 8 #0 as sketched in Fig. 3b where s and v in-
dicate stable and unstable solutions, respectively.

Applying the results obtained in the above analysis 10 Hui's
solution® for a double-wedge aerofoil, it is found that the case
corresponding to Fig. 3b occurs. The special cases of a flat
plate aerofoil and a wedge may be obtained from Hui's solu-
tion® by an appropriate choice of shape parameters r,. r, in
Fig. 1a. For the purposes of this study, we focus our attention
on the case 7, = 7, = §°* since this approximates a thin aerofoil.
For a double-wedge in supersonic flight the various com-
ponents of the stiffness and damping derivatives, namely §,,
S., Dy, D,, and D, are plotted in Figs. 4 and 5. Using Eq.
(12), S{o.h) and D{a,h) for a given value of 0 and » may be
obtained.

In addition to these results, various other quantities re-
quired for the bifurcation analysis and unfolding are also
calculated and displayed in Figs. 6 to 8. {n Fig. 6 the relation-
ships between A_and o, and between M_ and o, are plotted.
From this figure one may obtain the critical value of A and ¢

T T T T T T T —
00 $.00 19.00 1500 2000 2500 3000 3% 00 4000

Fig. 4a Sy vsofor M_=23...10.

943 1

40 9

210 o
s 21p '1
2.3 4
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-0 T -

Y T T Y T Y
[ 1] $00 1000 S8 B 200 NN B w6

“«

Fig. b S, vsefor M_=23,...,10.
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for a specific Mach number. In Fig. 7 the relationship between
the bifurcating coefficient R and M, is superimposed on the
relationship between the second derivative of the real part of
the eigenvalue with respect to A (i.e., — D.), and M. With the
help of these figures the bifurcating path given by Eq. (15) can
be obtained. The relationship between the unfolding
parameter 2R8/3 = (dD/30)(0,,h.) and M, is plotted in Fig.
8. Therefore, Figs. 6 to 8 contain all the information required
to completely determine the various bifurcations that can take
place.

V1. Conclusion

In this paper, the acrodynamic stability and bifurcation of
an aerofoil subject to a single degree of freedom pitching mo-
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tion has been studied. 1t was found that, in addition to the
simple Hopf bifurcation, degenerate Hopf bifurcation can
take place if more than one parameter is allowed to vary. Fur-
thermore, it was shown that in the degenerate case, there will
be two periodic bifurcating paths (on both sides of the a axis),
with two different frequencies. These frequencies are either
both stable or both unstable, as opposed 1o Hopf bifurcation
where the bifurcating path exists either for n>0 or for n<0.
However, the situation giving rise to degenerate Hopf bifurca-
tion is nongeneric. By the introduction of an unfolding
parameter, the possible generic bifurcations that can take
place near-the singularity were obtained. This reveals that for
D, (0.)/R >0, there exist either two subcritical bifurcations or
no bifurcation in a neighborhood of the degeneracy depending
upon the sign of B. Similarly, it was found that for
D, (0,.)/R <0 there exist either two supercritical bifurcations
or no real solutions in a neighborhood of the degeneracy
depending upon the sign of 8. In addition, numerical results
of the various components of the stiffness and damping
derivatives, and other quantities required for the bifurcation
analysis, were presented for a thin aerofoil.
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APPENDIX D

In ion

In the last fifty years fighter aircraft have evolved from designs
characterized by subsonic speeds, moderate to high aspect ratios and
negligible sweep to designs capable of supersonic speeds employing low
aspect ratio wings with significant sweep and taper. Many of these
changes were dictated by the need to reduce drag in transonic and
supersonic flight and this in turn led to new problems in finding a suitable
compromise between performance, handling qualities and stability/control
requirements. Recent developments have demonstrated that an aircraft
with reduced static stability (RSS) supplemented with an active flight
control system (ACFS) results in lower weight and increased
maneuverability [1]. The design of such aircraft requires that the control
systems and the aerodynamic configuration be considered together from
the start. Traditionally flight controls were used only to improve the flying
qualities of a chosen configuration. The feasibility of this control-
configured vehicle (CCV) design approach is amply proven by the X-29
research program [2].

The CCV approach has two immediate implications for combat
aircraft design. The first is the possibility of direct-force maneuvers (DFM).
Direct force maneuvers refer to the "ability of the aircraft to yaw and pitch
independently of the flight path or to maneuver at constant fuselage
orientation”. This is especially significant in target tracking. The second
is post-stall capability (PST) in close air combat which allows the aircraft to
perform "controlled tactical maneuvers beyond the maximum lift angle of

attack up to at least 70 degrees" [3]. The design of fighter aircraft with
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these capabilities requires an understanding of translational and rotational
mode interaction as well as nonlinear aerodynamics at large angles of
attack and sideslip. Some of these problems of mode interaction and
nonlinear dynamics have been observed before the advent of the CCV
approach. The phenomena of coupled yaw and pitch divergence at large
roll rates was investigated in [4-6]. Mode coupling can also occur at special
values of design parameters. For example, the stability of the lateral modes
of a rigid aircraft is influenced by the choice of the wing dihedral angle
(C1B) and the vertical tail size (Cnp). In Figure D.1 the stability boundaries
are plotted in terms of ClI and Cnp. At CIp = -0.002 and CnP = 0.0025 the
stability boundaries intersect and the aircraft experiences a simultaneous
loss of both Dutch roll and spiral stability. This phenomenon is most likely
to occur at high lift coefficients (i.e. large angles of attack).

While the conventional linear model with its assumptions of small
angles of attack and sideslip is adequate for the determination of stability
boundaries, at large angles of attack and sideslip the aerodynamic deriva-
tives are no longer constant and hence a nonlinear analysis is required.
Rhoads and Schuler [7] were one of the first to perform a theoretical and
experimental study of airplane dynamics in large-disturbance maneuvers.
A key feature of their work is the dependence of the aerodynamic stability
derivatives on the Mach number and angle of attack. Unfortunately any
possible effects of large sideslip angle were omitted. Since then, NASA has
conducted a series of wind tunnel investigation of the effects of large
sideslip angle on both static and dynamic stability derivatives (NASA TN
5361, 6091, 6425, 6909, 7972). A sample of these results is reproduced as
Figure D.2. The nonlinear behavior of the stability derivatives is evident. It

was also observed that the rate or "delay" derivatives due to the sideslip
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angle, traditionally omitted from the linear model, may be important for
supersonic fighters and their omission can lead to large errors especially in
system identification [8]. It is interesting to note that the influence of the
rate derivatives was also observed by Tobak and Schiff [9] and Orlik-
Ruchemann [10].

Having established that at large disturbances, stability derivatives
depend on both the angle of attack and sideslip in a nonlinear manner, the
next challenge was to relate these nonlinearities to the dynamics observed
at large angles of attack and sideslip. One of the earliest study was carried
out by Ross [11] on the HP-115 at the Royal Aircraft Establishment (RAE).
Based on a cubic dependence of the yawing moment on the sideslip angle, it
was demonstrated that an unstable Dutch roll mode gave rise to a limit cy-
cle. This was perceived during flight as an oscillation of the aircraft wing
about the roll axis and is commonly referred to as "wing-rock”. This work
was followed by investigations of cubic nonlinearities in the rolling moment
as well as in the damping-in-roll derivatives [12]. The Gnat trainer was
used for this study. In this case both directional divergence as well as wing
rock was accounted for. It was also noted that the influence of external
stores was significant, confirming the sensitive dependence of the nonlin-
ear dynamics on the aircraft configuration.

Another nonlinear motion was identified by Johnstone and Hogge
[13]. In their study of the A-7, they identified certain combinations of angle
of attack and sideslip which led to a mutual cancellation of the rolling
moments due to the angle of attack and sideslip. The longitudinal and lat-
eral mode coupling resulted in a phenomena called "nose-slice”. Basically
"nose-slice" refers to a predominantly yawing motion followed by a rapid

roll. The nose-slice departure occurred at angles of attack considerably




lower than that for normal stall. This departure was not predicted by the
parameter (CnB)dyn (NASA TN 6993) commonly used as a measure of spin
resistance. This parameter is actually an approximation for the coefficient
of the quadratic term in the fourth order characteristic equation for the lat-
eral dynamics. Mathematically the criterion is neither necessary nor suf-
ficient for stability although in practice predictions based on this parameter
correlated well with flight test results with few exceptions.

Various methods are available for the analysis of nonlinear systems.
Instead of decoupling longitudinal and lateral modes, some researchers
have tried to retain as much as possible of the full 6 degree of freedom
model. One such method is the pseudo-steady state (PSS) analysis of
Young, Schy and Johnson [14,15]. Observing that the effects of gravity are
typically small compared to the airspeed for supersonic fighters, a 5th order
model was derived. Equilibrium solutions of such a system were referred to
as "pseudo-steady”. This approach was carried to its extreme by Carroll
and Mehra [16], Hui and Tobak [17]. The thrust of their research is the use
of bifurcation theory to compute the equilibrium solutions of the full 6
degree of freedom system with nonlinearities based on the interpolation of
wind tunnel test results. In the context of bifurcation theory, the Dutch
roll/wing rock instability observed by Ross corresponds to a supercritical
Hopf bifurcation. This phenomena is characterized by a pair of complex
eigenvalues crossing the imaginary axes. The loss of spiral stability is
characterized by the crossing of a real eigenvalue. This is referred to as a
simple bifurcation. The nonlinear dynamics of aircraft with eigenvalues
close to the imaginary axes (i.e. marginally stable /unstable or critical
modes) was studied by Cochran and Ho [18] using Malkin's method.
Basically Malkin's method is related to the theory of center manifold which




is a dimension reduction technique whereby the critical modes are decou-
pled from the stable modes and the analysis is then performed on a subsys-
tem of lower dimension.

The extension of these techniques for the analysis of nonlinear sys-
tems perturbed by random excitation has not received much attention from
the flight dynamics community. Physically this corresponds to flight at
large angles of attack and sideslip in a turbulent atmosphere. In the pres-
ence of random excitation, the dependence of the stable modes on the criti-
cal modes was studied by Haken [19] and is referred to as the "slaving
principle”. For a stability analysis it is more relevant to consider the de-
pendence of the critical modes on the stable modes. One such method is the
extended stochastic averaging theorem of Papanicoloau and Kohler {20]
which provides a Markov approximation for the dynamics of the critical
modes. Another approach developed by Coullet et al. [21] uses the idea of
"normal forms". Once again the emphasis is on dimension reduction and
simplification of the resulting subsystem. It was found that for systems
perturbed by random excitation, certain nonlinear terms which are remov-
able from the deterministic normal form must be retained due to a phe-
nomena called "stochastic resonance’. The methods of stochastic averag-
ing and stochastic normal forms were reconciled by Namachchivaya and
Leng [22]. The key result is that the stable modes generated a second order
contribution to the critical modes. This was omitted by Coullet et al. [21].
The resulting subsystem was then found to have the same Markov
approximation as that given by the extended stochastic averaging theorem.

The problem of mode interaction is not limited to flight dynamics. In
aeroelasticity fairly similar phenomena can be observed. The nonlinear

oscillation of panel flutter was studied by Dowell [23]. In Figure D.3, the
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stability boundaries of a plate in a gas flow are plotted in terms of the
nondimensional pressure difference across the plate (A) and the in-plane
loading (Ry/r2). At A = 200 and R,/n2 = -4, the plate undergoes a simultane-
ous loss of flutter-divergence stability. Basically flutter is a dynamic insta-
bility characterized by a complex pair of eigenvalues crossing the imagi-
nary axis. Hence it may be regarded as an aeroelastic analog of the Dutch
roll/wing-rock instability. Similarly, divergence is a static instability and is
the counterpart of the spiral instability in flight dynamics. The phenomena
of coupled flutter-divergence instability was also observed by Landsberger
and Dugundji [24] and Chen and Dugundji [25] in their experimental
investigation of the aeroelastic behavior of forward swept graphite/epoxy
wings. In Figure D.4, the instability can be seen to occur at special
combinations of airspeed and ply angles of the composite fibers. Henceforth

for clarity, this aeroelastic perspective will not be emphasized.

Application: ircrafi ral nami I ngl f k _an

ideslip i rbulen her

The results derived in the previous sections are now applied to the
analysis of the lateral dynamics of a rigid aircraft at large angles of attack
and sideslip in a turbulent atmosphere. The example is based on the
uncontrolled lateral dynamics of the F-104. At a high lift coefficient (i.e.
large angle of attack) of C, = 0.735, the nonlinear system is defined by:
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B 01662 0 09933 01044 7 (B 0
d)p 2399 -1390 1292 0 P (1B3)B3
dt|r| T | 40772 00406 02175 0 r (np2)p3

o 0 1 0 0 ¢ 0

0
-1.390
+ -0.0406 [ P&
0

At this lift coefficient the eigenvalues are 0.0532 £ 2.207j, 0.000566, -1.88.
Hence both the Dutch roll mode and the spiral mode are marginally
unstable and the post-critical behavior requires a nonlinear analysis.
Following Ross [12], it is assumed that only the roll (p) and yaw (r)
equations exhibit significant cubic dependence on the sideslip angle 3. For
simplicity, only the etfects of atmospheric turbulence on the roll rate will be
considered. Physically this corresponds to a spanwise velocity variation
along the wing causing a rotary motion. The power spectral density (psd)

for Pg(t) is given by:

_0002046 _
1 + 0.0082w?

D) =
where the intensity is taken to be 21 ft/s and the scale factor is 2500 ft for
conditions in a thunderstorm [26].

The system is first brought to cancuical form using the eigenvectors

of the linear system. The transformation is defined by:
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-0.1975 0.1070 0.0146 0.1028 X
1889 0.7779 0.0015 5.3462 y

-0.2287 -0.3715 0.2733 -0.1215 z

-0.3317 0.8640 2.6242 -2.8436 Xs1

© T ™

where x, y represent the Dutch roll (dynamic) mode, z represents the spiral
(static) mode and xg1, the stable variable. Converting to polar coordinates (x
=r cosO and y = r sinf) and applying the extended stochastic averaging the-

orem, the stable mode x51, may be removed and the Dutch-roll (amplitude),

r and the spiral, z, critical modes are denoted by the Ito equations:

dr
dz

(ur + erz2+ cr3 + (Sp2/2r)dt + S; dwW,
(Az + dr2z + bz3)dt + So dWo

where the cubic coefficients of the critical sub-system are now linear func-

tions of 13 and nf3:

¢ = -(3.384183 + 11.90 nB3)104 e = -(5.7461B3 + 20.20 nB3)10-6
(5.324183 + 31.33nB3)10-7 d = (188183 + 11.07 np3)104

o
]

In canonical form the external excitation is given by:

c(lll(t) -0.1122
a(t) ) 0.0492
ds(t) = .0.2767 [ Pe®
dg(t) -0.2273

and hence using results derived the excitation intensities for the system

are:
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sf = 00075 | Rpp(t)cos(2.2077) dr
= 0.0075 [ 2r. ©(2.207) ] (Wiener-Kinchine relation)
= 9277x105
2 o0
S; = 007657 [Rpp(v)dr

= 0.07657. 2r. B(0)
= 9.845x104

For a soft loss of stability it is necessary that b, ¢ < 0, i.e.:

B3 < - 5.88 nf3 (b<0)
B3 > -3.52 nf3 (c<0)

The bifurcation behavior of the deterministic system is preserved if & =0,

le. :

(S22 = (Sp?

This leads to:

B3 =  -53nPp3

These conditions are plotted in terms of nB3 and 1B3 in Figure D.5. It can

be observed that for the requirements for a potential flow (8 = 0) is well




within the constraints for a soft transition. Furthermore for the values of
nP3 and 13 concerned, x = (d (S1)2+ e (S2)2)/4 is negative. Hence the
existence of a normalizable potential flow steady-state pdf for 6 = 0 is
guaranteed by the conditions b < 0 and ¢ < 0. Given the actual nonlinear
aerodynamic coefficients np3 and 13, these relations then provide an
indication of the dynamics at large angles of attack and sideslip. Since the
Dutch roll mode corresponds to a roll-yaw motion, it is preferable in
practice to stabilize the Dutch roll mode at the expense of the spiral mode.
From the correction factor for the effective unfolding parameters, this is

achieved if & > 0, i.e the nonlinear aerodynamic coefficients should satisfy:

I3 > -5.3nP3

This example illustrates the dynamic implications of the nonlinear aerody-
namics at large angles of attack and sideslip and it emphasizes the
inadequacies of a deterministic nonlinear analysis for systems undergoing

a coupled static-dynamic instability.

L
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Fig. D.1: Lateral stability boundaries (NACA report no. 1098)
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Fig. D.3 : Stability boundaries of an aeroelastic plate
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Fig. D.5 : Conditions for a soft loss of stability and potential flow
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APPENDIX E

Introduction.

One of the most fundamental components of a mechanical system is a
rotating shaft. It {s, therefore, not surprising that through the years
considerable effort has been directed at obtaining a better understanding of
such mechanisms. Toward this end, many problems have been solved. Equally
important, many other problems have been better defined (see Dimentberg [1],
Biezeno an¢ Grammel [2]). Gyroscopic systems in general, and in particular

the problem of rotating shaft received much attention because of its somewhat

unexpected results reported by Ziegler [3], in which he showed that the

damping tends to destabilize the whirling motion of a shaft-disc system, for
angular velocities above the c¢ritical angular velocity of the system. The
analysis of the system with harmonic parametric perturbations was made by
Mettler [4] and Bolotin [5], and various stability boundaries were obtained.
Tondl [6] studied the instabilities of a central disc on an asymmetric shaft
and obtained equations of an asymmetrical shaft rotating in asymmetrical
bearings was made by Gladwell and Stammers [7] using Floquet theory. However,

these analyses did not consider the dynamic behavior of the system when

parametric excitations are stochastic. The stability of random parametric

vibration of shafts have been analyzed by Tam [8)], and Schweiger [9] to
determine various regions of stochastic instability. In many practical
situations, where a shaft may be mounted to other mechanisms, the disturbance
arise from both deterministic and random sources. Thus, in this paper we
shall examine the response and stochastic stability of rotating shafts when
they are excited by random parametric excitations in addition to harmonic
parametric excitations. A paper dealing with moment stabllity of coupled
conservative systems under combined harmonic and stochastic excitation was

presented by Ariaratnam and Tam [10]. Conditions for stability i{n the firsat
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and second moments of response were derived for a thin, simply-supported,
elastic beam subjected to a small intensity dynamic transverse load at mid-
span. This paper follows the approach of Sri Namachchivaya and Ariaratnam
(111, Sri Namachchivaya [12] and Ariaratnam and Tam [10]) to find mean square

stability conditions for the response of the rotating shaft.

Formulation of the Problem

A rotating system can be identified as a gyroscopic system only when
treated in a rotating reference frame, and this approach will be followed in
considering the transverse motion of a continuous uniform elastic shaft of
asymmetrical cross-section mounted in a rigid bearing and rotating with
constant angular velocity 1 about the horizontal centerline (o0z) of the
bearings. The rotating shaft of 1length £, mass per unit 1length m, and
flexural rigidities EIU, EIv respectively, parallel to directions ou, and ov
is loaded by a time dependent axial thrust, say, P(t) = Py, (1 + f(t)), as
shown in Figure 1la.

The transverse motion of the rotating shaft is given by the following

set of two parallel differential equations: (e.g., Dimentberg [1])

EIual;'rP(t)a—;+ma;+D~g—:-2mnv-m92u=O
9z 3z at
(1)
4 2 2
EIV 2_% + P(t) i_% +m 3 ; + D %% + 2mQu - mQZV =0,
9z 9z at

For the case of simply supported ends, the following boundary conditions must

be satisfied:

u(0,t) = u(l,t) =0, v(0,t) = v(2,t) =0 ,

2%u(0,t)  3%v(0,t) 22u(L,t)  a%v(L,t)
9z 3z Y4 3z
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Considering the fundamental mode, these boundary conditions are satisfied with

the following expressions for u and v:

ulx,t) = U(t) sin® =, v(z,t) = V(t)sin = %

=N

'He assume that the axial thrust is harmonically varying and is given by

P(t) = P_(1 + F(t))
where P, is the mean value, and F(t) consists of a combination of a harmonic
term and a stationary stochastic process as perturbations, and assumed to be
of the order €. Substituting the expressions for the modes into the governing
partial differential equation and simplifying leads to the following two

ordinary differential equations for U and V:

U - 2qv + (wf - 92) U+ elgu-F(t)uUu] =0
) ] 2 ) (2)
vV + 200 + (mz -Q°) v+ efgv-Ftyv] =0 ,
where
2 2 2
- L ) -2 v
o (PE P ), w, > (PE Po], F(t) = chcosvt + f(t)
mf mi
2 2
pU _ n EIU pv i L EIV - D - IE_
’ ’ ? 4
E £2 E 22 m m22
and ;1, ;2(;1 < 52] are the natural frequencies of transverse vibration.

Putting g = U and q> = V, the Lagrange function corresponding to equation (2)

with € = 0, can be written as

oy 1 e2 .2 . 2 2,2 -2 2
Llg.g) = 5 [ay + a5 *+ 20(q,q, - q,9,) - (6] - 2%)q; - (wj - #)a}]




Now making use of the relationship 61 =P, * Aq,, 62 = P, - 2q,, where p is

the momentum vector conjugate to g, one can write the Hamiltonian as

&f 0 o -Q
-2 T
H(g.p) = % {gT.pT} s {g.p}, s=]0 w, a8 0 =8
0 0 1 0
-2 0 1

In the above equation, if Jf < 92 < Jg. S 1is positive definite and the

unperturbed system is stable and the eigenvalues of the system with ¢ = 0 can

be obtained from the equation |JS - p I] = 0. The eigenvalues are distinct

and im.ginary and are given as

+

2)2
17 Y

- - -2 - ~ -2\11/24172 5
pp = o, = 2105 + a2 v 20%) ¢ [(2° - a2)% ¢ 8a2(a2 + 22)11731 72 w2

The Hamilton equation of motion can be written as

Z=JSZ - ¢ {cB, + B,F(t)}z , where Z = (q,p), J

(3)

Now consider a canonical transformation Z = Ty where y = (Q,E) and

3  rayy,  -a a5y,
T- |3 3 Y, 3
a181 -a.a a1B1 a282
a,a1 a28 -ala1 a282
-2 2 -2 2
w, (m1 Q ) wy - lwy 2 )
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1/2
a; = (208, - a;v,))

Sinpe the transformation is canonical, the matrix T satisfies the sympletic

condition, and the inverse of T can be obtained as

L
In addition,
T st - 0,
where @ = dig {w1.w2;w1.w2}. Thus, Hamilton's equation in the new

coordinates (Q,P) can be written as

11 12 1/2 11 12
Q-aP=-¢ip(A, Q+ A P)+e "F(t)A.Q+ AP},
s - 13 1 - 2 S 2 -
(u)
21 22 1/2 21 22
P+aQ=-c{p(aA Q+A P)+e F(t)(A Q+a P)},
- - 1= 1 - 2 - 2 -
where
32(1-Y2) - a,a,(Y,+y j (1+Y5) a.a (v -y )\
11 1 1 13077, 12 1 1 19241772
Ayos 2. .2y Ao 2. .2
a1a2(Y1*Y2) a2(1-Y2) | \a1a2(Y1—Y2] -a2(1*Y2) ]
2 2 y 2 N
[;](1’Y2) a]aZ(Y1-Y2] ( (1-v7) -a1aZ(Y1+Y2)
A21 = A22 = 2 2 {
1 2. .2 i 2
32,07,77,) ap(1ev3) 3l Y] =ag(1-v3) ]
. (2%, (19v3) , aa,le(1-v,7,) - (a, + v,8,)]
Ay = 2 2
a,3,(8(1-v,7,) - (a,+v,8,)] , aju,(1+¥5 )




E-6

2
ay(8,+v,0,) o - aya,{a(107)7,) - (0,78,

AS =
2 2
a1a2[g(1*Y1Y2 - (aI-Y281)] ' aZ[BZ*Yzaz]
2
N a;(8,+v.a,), a1a2[g(1+Y1Y2) - (02-Y132)]
A =
1 2
-a,a,(801+,7,) - (ay-7,8,)] 4 a5(8,750,)
a2, (1+v2) , - a,a[g(1-v,7,) - (a,+Y 8,)]
- 10U T 248, 12 2152
a5° -

2 2
a1a2[g(1—Y1Y2) - (a1+Y281)] ' 02w2(1+Y2)]

Introducing a new time t = vt, detuning parameter 1A, and a coordinate

transformation
- ik 1 ixrr - ik 1 ik 1
P =
Q. = i(z e -ze ), P =ze + z e (5)
r r r r r r
where x = wr/w ,y V= wo(l—ex). 2. are complex variables with

conjugates Er' in equation (4) yields

2 2

z' = (i)edx 2z + n. £{¢g[(p, +iH, Jeos(xk_ -« )t
r rr Zwo J j=1 8= jrs Jjrs
+ i (D;rs + iﬂgrs)sin(xs - xr]r]zs (6)
2 - _ . -
+ 351[(Djrs iﬂjrs)cos(x + xr]t - 1(DJrs 1HJrs)sin(v<s + xr)x]zs}
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+ (22) (1) + (12) (1) 172
where Djrs B Ajrs' Ajrs ' ers B jrs * Jrs ' N € e(t),

3 -t
n, = - €g, E(t) = e’lzhcosr + f(t/v) and the corresponding equation for zr can

be obtained by conjugating equation (6).

Approximation to Markov Process

To a first approximation zr(t) may be replaced'by the solutions of
‘averaged' equations using the method of 'stochastic averaging'. According to
this procedure, the deterministic terms on the right hand sides of equations
(6) are averaged in the usual manner, while the stochastic terms are replaced
by their averaged mean plus equivalent fluctuational parts: the details of
this procedure may be found in [13]. Applying this procedure to equations
(6), it is found that the parametric excitations contribute to the averaged
equations only when the frequency of the harmonic excitation is in the

neighborhood of the value 2wy,w *+ w, and o, - wli 2.m = 1,2. Thus, for the

subharmonic¢ case, i.e., le = 1, the averaged equations take the form
1/2 4
dz_ = - e[8_ - i(dAc_ -a_ )]z dt + ¢ £ o .dw, , P =1,2,;r = £&.
r rr r rr r a1 rj
(7)
ih 2 2y1-
dz, = e{[le 1(A<2 - “12)]21 E [32(1 Yl)]zl}dt
y
+ 51/2 L o dw, , £ =1,2; £ 2 r ,
PR S B

For combination resonance of the type w = wy *ws, the averaged equations

o]

take the form;
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- - - ih (y - -
dz. = - t-:{ft!.‘i 1():1 a”)]z1 2“0 [a.laz\Y1 Yz)]zz}dt
y
+ 51/2 T o, , dw (8)
j=1 J
= = ih
dz, = e{[822 + 1[A<2 - 022)]22 + 5;;[a1a2(Y1 YZ]]z1}dt
y
NG b Oy ; dw
j=r "

i o
dz, = - e{[B11 - 1[M<1 - a11)]z1 + 2, [a1a2(Y1 + YZ)]zz}dt
4
= 51/2 z °1J dw . (9)
3= J
dz, e{[822 1(x<2 - 022)]22 - 3 [a1a2(Y1 + Yz)]z]}dt
4
+ 51/2 z 0y, dw
PRI R

A 2 ) ) 2
Brr Ttk T2 2 * 2 {(Yr * 1/Yr) Sff(O) (Yr 1/Yr) Sff(ZKr)
(w -w ] 2w
s 0
2 2

(v, +v,.) (v, -,.)

r r s
- S,., (x K )+ S,k +«_)} (10a)

YrYs fr *'r s YrYs £ r s




r+s A
r,s - N 2 zrzs{(Yr * 1/Yr')(Ys * 1/Ys)st‘f‘(O)

n

2 2
) Sep(0) + (Yr - 1/YP) s..(2¢x )]

{z z [[Yr + 1/Yr £r r

n
——
<
)
<
) S—
[\V]

T] . .4

r,2+s ;5_ [zrzs[(yr*1/yr)(Ys*1/Ys) YTy vy Sff(kr+ks)]}r’s=1'2;s’r
o]

® : 2 2
Sff(w) = IORff(r)coswrdr , wff(w) = fORfr(t) sinwtdr , A = 9/[«:1 wz)
wJ(J = 1,2...2n), are independent Wiener processes of unit intensity and the
remaining terms are as defined in the previous equations.

1t 1is worth pointing out that for the white noise case, 1{.e.

S(w) = S° and ¥(w) = 0, the above quantities reduce to




1 2 -2 2 2
Brr = (Eﬁ-) 2 2 {zwr - (wr tw - 28 )} ! arr =0
o (wr - wg )
[0a"] L) A (2 )02 1)+ (e (v v v )2l
g9 r,s = ! " 2 YrYs S rs S (o}
o
r,s = 1,2
[oT] = Z—AE {2z (Y2 +1/%) -2z (v, v v )]s (10b)
r,2+r o 2 12p20 00 r 8%s''r''s s r’'To
o
r+«s, r = 1,2
2 zz
T __ A rsyiy2 2 _ 2
(o0 ]r.2+s B ® 2 (YPYS){Y ' 1](Y8 $ 1) (Yr Y] So
o

r=38, r,s=1,2

Stability Analysis

First moments stability 1is considered in this section. The

differential equations governing the first moments are obtained by taking the

expectations of both sides of equations (7-9). It is evident that the

resulting equations will be the same as equations (7-9) with the stochastic

terms absent and the variables Zp, Er replaced by their expectations. Since

these equations are linear, the conditions for stability in the first moments

can be found readily with the help of the Routh-Hurwitz criterion. In the

remainder of this section, the moment stability conditions are obtained first

for the subharmonic resonance case wy = 2w£ anq then for the combination type

reso .
nances, w, * |w, t w, |

Subharmonic Resonance

Setting % = m and ‘m = 1/2 in equations (7) we obtain the following

stability conditions
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Brr >0 r=1,2, r=m (11a)
2 h 12 (&f B 55)2 | 2
(1 - 2a - v/wo] > {(—5] (('E'""'ETE) - U8 } .m=1,2, m«r (11b)
Yo w- “2)

It 1s evident that the results for the case of harmonic excitation
(ét.wo = me) can be deduced from inequalities (11) when the stochastic terms
are removed. The conditions (11a) depend only on the damping term and the
stochastic part of the excitation, whereas the inequality (t1b) is a
modification due to the stochastic term of the known stability condition

derived for the case of harmonic excitation.

Combination resonance : w, = |w, * “2'

For combination resonance, we begin the analysis with the

case x, + <2 = 1. For this case, the stability conditions are found to be

Brr >0 r=1,2 (12a)

2
172 172
] }

* [85578,4]

-2 1/ - 2
- [(w1 _ 92) 2+ (“’g _ 02)1/2]
x((=3) 2 - 8485, (120)
2w° (wl - mz) wyw,

It is evident that for 811822 > 0, we must have @ < ;1 for the existence of
stability ©boundaries 1in the (h,v/mo) parameter space. Similarly, the
stability conditions for the case IKI - x2| = 1 are found to be

B..>0 r=1,2 (13a)

rr

2 2 1/2 172,12
(1 -(a” - a,,) - v/mo) > € [[8”/822] + [8“/822] }




E-12

[(Gf _'92)1/2 3 (ag _ )1722

2
x[ - (223 - 8,,8,,) 4 £130)

2
Zwo [m1 + wz) W, u,

Furthermore, for 2 < w, and Brr > 0 the system will be always stable.

1

Again, the conditions (11a), (12a) and (13a) depend only on the
damping term and the stochastic part of the excitation, while the conditions
(11b), (12b) and (13b) are modifications due to the stochastic term of the
known stability condition for the harmonic excitation. In the absence of

stochastic excitation or when the stochastic excitation is a white noise, the

conditions reduce to the inequalities for the case of harmonic excitation,

with
+ g 1 - - 2
(8,,)° = (=) [20] - (@] + w5 - 227)] ,
11 sz (w1 2 m2] 1 1
o)
* 4 - 2 (-2 -2 2
(822) = 2] o 7 o [2w2 (w1 *w, - 20 )] (14)
2 1 2
+ Z 42 1 -2 -242 2 (-2 -2 2
(8y185,)" = (=3 5 [(oy - w3)™ + 82 (] + ) - 20%)]
2 (w1¥m)
2
It is obvious that for the undamped system (g = 0) the first
moments are always stable (eritically) when wy = w, + w, and
wy = [w1 - m2| in the regions @ > ;2 and @ < ;1. respectively (see Figure
1b). Since the natural frequencies are ordered, w, > Wy and the
inequality 2w§ < ;f + ;g - 292 < 2w$ holds, when the damping is
2 -2 +
present (g = 0), for 2% < wj, we have (811822) >0 and

(8,)% > 0, (322)t > 0 and the stability is governed by the conditions (11b)

and (12b) for the cases 2&1 = 1 and Ky * Ky 1, respectively. Furthermore,

2 -2 + t +
for 2° > w,, we have (811) > 0, (822) <0 and (811622) < 0, implying that
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the first moments are always unstable regardless of conditions (11b) and
(12b). This indeed agrees with the results of Chetayev (14], which states
that the addition of complete dissipation will destabilize the system which
was originally stabilized by gyroscopic forces. Thus, one can conclude that
for white noise excitation first moment stability conditions are fdentical to
the stability conditions of harmonic excitation and the addition of damping
destabilizes the region 92 > ;g. However, when the excitations are not white
noise but a band limited excitation then it is evident from Eq. (10), that by
choosing the spectrum of the excitation near O, 20, wy * Wy |w1 - w2| one
may stabilize the system in the region 92 > ;g. and is explained below.
Returning now to the non-white noise excitation, consider some
particular forms of the excitation spectral density S(w) which vanishes

outside the band with wy T 1/2 Awo <w < wy + 1/2 Auo, such that the

correlation time is 0(1/Amo). Therefore, if Awo >> €, the Markov
approximation by the use of the limit theorem will remain valid. Thus,
considering w, = 0, and w, = lw1 + wzl will definitely  make Bys

and 322 positive for large values of S, as is evident from Eq. (10). It may
be noted that Y1Y2 >0 for 92 > ;g. Thus, by appropriately choosing the form

of the excitation spectrum, an unstable rotating system can be stabilized.

Second Moment Stability

Even though the calculation of the explicit formulas in terms of shaft
parameters for the mean square stability is long and cumbersome, the equations
governing the second order moments along with their characteristic equation
are given below. However, when the periodic excitation is absent, explicit
mean square stability conditions can be obtalned direct;y by letting h be

identically zero. The differential equations governing the second moments are

obtained by taking the expectation of the Ito equations corresponding to the
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norm {err}, r = 1,2, Thus, applying the Ito differential rule leads to the
following equations for the cases Ky + Ky = 1 and Ky =Ky = 1.

Case 1: K, * Ky = 1

%g <Z1;1> = 2¢f{[- Byp * 511] <z121> + [812] <zez;>
- iH' (<z,2,> - <z,2°]
$ 2,2, - 2ells,,] <2,z ¢ [- 8y, * 5] <220 (15)
- iH+{<z122> - <Z152>]}
%{ <z,2,> = 25{1H+[<z121> + <2222>]
- % [- (8y, * By5) - (55, * 25.,) + 1] <zyzp}
Case 2: Ky T Ky = 1
%g <z,z,> = 2e{[- 8,, + 8] <zz> ¢ [s,,] <z,2,
- H [<zyzp + <zzp]]
g{ <2222> = 26{[312] <z1;1> + [- Bop * 5221 <222é> (16)
+ H [<z1;2> . <Z1z2>]}
gg <Z1;2> = Ze[H-[<z1E1> - <22;2>]
+ % (- (8,, *8,,) * (S;o v 28,,) + ir] <z,2,0}
where
2 2
519 = NO: * {2+ (Ef - Jg)z/uazwlz}, S,y sgA * {2« (;? - ;g)/unzwgl
° o
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=2
SOA2 m$ * w, 202 s h
S12 ) peromm MR wall ORI 20}
w 172
o]
2 2=2 =2 2
St _ SoA [w1 1 wz) (m1 + w, 2(9 + mlwz))}
a4 w 2 anm w
(o} 172

and the rest of the terms are defined in eqs. (10b). In deriving eqs. (15)
and (16), the stochastic excitation is assumed a white noise.
Seeking solutions proportional to exp (Ir), the characteristic

equation for the exponent ) is obtained as

fu + a3r + a2X2 + a1r + a0 =0

where ai's for both the cases are given in Appendix - A. It may be noted that
even though the matrix equations (15) and (16) are complex, the characteristic
equation is real and stability conditions can be easily obtained using Routh-
Hurwitz criterion. Thus, the mean square stability condition can be written

as

a,a, > a2 - aza

a, >0 and a 293 1 3%

1 1

Due to the complexity of the algebra, explicit form of the stability
conditions in terms of system parameters are not derived. However, when the
excitation is purely stochastic (white noise), the second moment stability
conditions can be derived by letting h = 0, 1 = mot, and Srr(zr] = wosff[mr)

in equations (1%) and (16) as
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22 (-2 =22
(z/02) (422 + (&2 - &2)] > s Lea%s; - (o - ap) ]
¢ Wy T 9 o . 22 2 2 ’
uq 1(w‘ - wz)
22 (=2  =2,2
[89 w, *+ ( w ] ]
(c/22) (12 + (w2 - w3)] > S, —55—5—o— . (17)
40 w, (wz - w1)

16;2[(w1 - wg) - 160" - 5 3 {[(m1 - w2) + 4?)
w1w2(w1 - w, )
— —2,2 22,2
. [(wf - mz) + 8Q wz]m1
2 2qr (=2 2 227 2
+ [(uy - wy) + 027][(a] - w7)° + 82% 7] wi)
-2 2 -2 2 -2 2 2,12
+ [(w1 - 29%) v/ (wz - 29°) - (w2 - 20%)/(w,” - 227)]" > 0

The mean square stability results for the non-white noise excitation is given

in Appendix - B.

Special Case: Shaft with Symmetric Cross-Section

The results presented in the previous sections can be reduced further
for a shaft with symmetric cross-section and the simplified stability

conditions are presented in this section. For a shaft with symmetric cross-

section, 1{i.e., ;f = wi = ;2, the natural frequencies of the system reduce

;" w *+ Q and w, = w - 8 when w > Q. For this case, the value

of Y1 =Y, 1. The first and second moment stability conditions are

obtained for the case k. * kg = 1 and are given below.

tow
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First moment stability condition

{1) non-white nolse excitation

-2 = = N1/2 = = /252 (132[.2 _ .27 =
(1"20 = v/Zm) > {(811/822) + (822/811) } .[8;2) {h llC 811822}
(18)
1
where a = (—) v (1)
32mu ff
- 1
B, \" [wi + (8 _2) [sff(O) - sff(1)]}
qw
(2) white noise excitation
- 1/2 - 1/2 2 2
(1-vr22)% > E{(8) « (£8) ) (L) (nP-uPE - 2P} (19)
w+Q w*Q 8w

Second moment stability conditions (white noise excitation)
1642(D + 28) + A%[us - (1 - (a/@)%)] + (a/2)%p(D + 25)°
¢+ (1282 - p%) + 1633 < o

a, = 16H2(p + ) + 23(2s - p) + (a/@)%0%(p + 28) + p(128° - 20%) + 883 < 0

168° - 2% + (2/2)%02 - 60° + 128% < 0

ual[16H2(S—D) + 22(De28) + (9/5)202(25-0) + 6D3-12052+833] -pk <o

where

P = 16H%S + AZ(ZS + <n/5)2d) + (0/5)2205(0*23) + p38s3 >0,

Hels , s-—2%— , ana D-%
16w 32w 2w
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As before, for the case of purely stochastic excitation, i.e., h = 0,the

stability conditions reduce to .

Sfr(Zw)
8> =3 3
Z(w - Q )
fof' the case w > Q. However, for w < Q, instability always occurs.

Furthermore, for @ = 0, the above condition reduces to the well-known results
of a column under random axial loading.

The numerical results for this special case for various values of H,
S, D, w and R are given in Figures 2, 3, 4 and 5. In Figures 2(a) and 2(b),
the first and second moment stability conditions are plotted respectively for
different values of damping parameters. In Figure 3, the first moment
stability regions are compared for the white noise and non-white noise
excitations. For the non-white noise case the stability region shifts to the
right. The first and second moment stability regions are compared in Figure
4, It can be seen that the second moment stability region is smaller than
that of the first moment as one expects. Finally, the mean square stability
conditions for purely white noise excitation is given in Figures 5(a) and
5(b). The stability regions are compared for different values of the shaft

speed Q.

Conclusions
An analytical method, based on sympletic transformation and theory of
both deterministic and stochastic averaging has been presented for
investigating a rotating shaft under combined harmonic and stochastic
excitations of small intensity. Since a rotating shaft being one of the most

fundamental components of many mechanical systems, such forms of excitations
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are realistic ones to assume {n many practical situations where the
disturbance arlise from both deterministic and non-deterministic sources.

The equations of motion were first transformed to first order
Hamiltons equation and applylng appropriately deterministic and stochastic
averaging, the state variables under suitable conditions, converge in a weak
sense to Markov vector which satisfies It; equations. From the It; equations,
conditions for first and second order moments were obtained, with the aid of
Routh-Hurwitz criteria. It was shown that the results for harmonic excitation
case can be obtained from the first moment stability conditions by making the
stochastic terms identically =zero. For the white noise excitation, first
moment stability conditions are identical to the stability conditions of
harmonic excitation. Furthermore, it was observed that stabilization of

harmonic parametric instabilities are possible when the excitation is band

limited with certain spectrum.
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Figure 1(a)

Figure 2

Figure 3

Figure U4

Figure 5

(b)
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Figure Captions

Rotating shaft with pulsating axial load.

Stability boundaries for the deterministic undamped case.

First and second moment stability boundaries for h = 0 and f(t)

is white noise.

Comparison of first moment stability boundaries for white noise

and non-white noise excitations.

Comparison of first and second moments stability boundaries for

the white noise case.

Mean square stability boundaries for purely stochastic (white

noise) excitation (nh = 0).
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Appendix - E1

n<2~l
(((Ls. -18 )8 +(s 8,.)S u’z
355 "3 %1% n T8 S
2
! 1 N e T
3 5B T3 By a2 [(s;; - 8;;)s;5 = 4
ls 2, s g -Lg %3 -(2s,,-5, +B ]H’z
252 " 25%8 T3 % a2 12 "5t
1 21 2 _ 3.1 2 ¢
(38, = 38,) 8 =55 - 35 3,115
{((s,, -8,,)s H’2 +ls 8. -L18.2 -8
1T B /S 7 5118 T2 % 22
(2s,. + B ]d'z v(ls -Ls )82
PILT DS Ty % Pa2
2 1 2
(s), - 8,08, * (sy, - 8,408,281 * 7 5148y
1 3 - - * 1 2
T AN CER 28, JH (s;, =3 81)82
) 3.1 2 1.3
(sy; - B3y )8:28, * 515" * v 5B~ B I 8y,
1 21 - (1 ! 1 27,2
(8, - 58,18, - (5, -3 B11)3,0 ~ 3 512 I
1 -1 - (1 1 21 21 o*
[(G S,y =% 882 - (7S - 58182 -7 Siz } 8,
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2 2.4°
+ [a(s,, 28),) S,, - 4S,,° * 8,\B,, - By, Ju
- (L -1 3 _g 3, 1. 2, 2
(35, ~ %8108 =S5 =528y -3 S, 8y,
. 1 - 3 - 23 LA 2
(((38,, +5,,-5,*58,)5,,-(5,-5¢s, 2,2,
v (s, -8.)s. -+8_2%. 2H*2 e 5 2.1s 8 -1g 25
11 " By lSip T3 8y, 12 T2 5B T2 8 Py
3 12 W2
O e - TP IR CUILE LD E P P
2 5 2 1 2
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APPENDIX F _

INTRODUCTION

In the 60's, rather unusual and severe bending vibrations were
observed on the trans-Arabian pipe line, which at that time was a large
above-ground oil pipe line supported at 20m intervals. Several analysis
were carried out by Ashley et al [1], Housner [2]) and Long [3], but none
was able to predict the observed frequency of the vibration, nor could
explain the origin of the motion except the fact that both free and forced
motions due to cross-winds may create these observed phenomena. Housner
(2] did, however, indicate the possibilily of a dynamic instatllity of the
pip2 at certain critteal véloci:ies of the fluid which he related to the
tucxlirs of a column. These resulis were veri{fied experimentallv somztire
later by Dodds et al [U4]. This phenomenon was due to the terms that
represent the Inertia forces produced by the curvature of the pipe, and was
not included in the equation of motion presented by Ashley et al [1]. Long
[2] used the equation of motion presented by Housner and calculated the

frequencies of vibration for various end conditions by & power =series

method.

1.1 Literature Review

It secms thet the first Investigators of pipes conveying fluics
mentioned in the previous sectjon are Ashley and Haviland (1] and Housner
[2). A subsequent elegant study was made by Niordson [5], which led to the
same equations of motjon as that obtained by Housner [2]) and to essentfally
the same conclusjons regarding stability of pipes with simply supported
ends. Furthermore, Niordson presented a treatment of the problem tasec on

s+ 11 “heory and derived the bzam e3.aztion as one approximation. La‘e-
y '




Handelman (6] presented an analytical method in which the character of the
eigenvalues of the problem s determined from the structure of the
differentlal equatlon of motion without determining specific solutions.

The existence of oscillatory instability (flutter) was fully
explalned in two outstanding papers by Benjamin ([7]. These papers o213l
with the dynamics of articulated plipes (consisting of rigld tubes connectz!
by flexible joints) conveylng fluids, which is a discrete representation of
the continuously flexible system. In this work, he found that a
cantilevered system of articulated pipes was subjected to osclillatory
instability. Benjamin was the first to percelve that the dynamical pro=i.m
{3 Independent of fluld friction, and also pointed out that the buckling
instabf{lity [s possible In the case of a vertical cantilevered svstenm,
where gravity ls operative, if the fluid is sufficliently heavy.

Gregory and Paldoussis (8] have shown ‘theoretically and
experimentally the stability of cantilevered pipes at suffliciently high
velocities. The stablility of tubular cantilevers conveying fluids
(neglecting gravity forces) was further dlscussed by Nemat-Nasser et al [9]
with emphasia on the effect on the stability of velocity dependent forces,
such as dissipative and Coriolis forces, they showed that such forces may
destabilize the aystem. Subsequent papers by Herrman [10] and Herrman and
Nemat-Nasser [11] stressed the connection between the problem of
instability of cantilever conveying fluid and the more general problem of
instability of a cantlilever subjected to a "follower™ type force at the
free end, i{.e., a force retaining the same angular disposition relativa %o
the free end in the course of small motions of the cantilever. The effact
of internal preasure on the stabllity of plpes conveying fluld was atudied

both theorztlcally and expericzentally bty Naguleswaran and Williams [12] 24
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it was reported that pipes with both ends supported may buckle even at low
velocities by the action of Internal pressure. Chen [13]) studied the
stability of a pipe conveying fluid with the upstream end clamped and the
downstream end constrained by a linear spring, so that the boundary
conditions are intermediate between those of c¢lamped-free and clamped-
pinned conditions, accordingly, both buckling and oscillatory instabilities
are possible in general, depending on the spring constant.

In all the studies discussed above, the flow velocity was taken to
be steady. Chen [14] examined the stability of simply-supported pipes
conveying fluid with a flow velocity, U, which has a time dependent
harmonjc component superimposed on the steady .velocity Uy, Such that U =
Ug(1 + ucoswt)., He found that parametric instabilities could happen in
such cases, and also determined the boundaries of stability-instability
regions, moreover, he found that parametric combination resonance are also
possible. Chen obtained the equation of motion by substituting U(t) in the
original equation of motion oblained for steady flow. Hence, Chen's
equation of motion did not take into account tr: longiiudinal acceleration
term and, therefore, s erroneous. Paldoussis and Issid [15] considered
the case of a harmonically varying flow velocity U = Uo(1 + uccswt),
reder{ved the pertinent equatlon of motion, correcting the e-ror in Chen's
formulation, and extended the analysis to boundary conditions other than
simply-supported. In this study, they obtained the regions of
jnstabilities in the (u,w) parameter space using the method proposcd by
Eclotin [16]. It should be pointed out that these authors ottained only
the regions corresponding to subharmonic resonance, and wrongly concluded
LvrL o g-mhinztion resonance cannot be obtained using the aame method.

Recently, Arjaratnam and Sri Namachchivaya [17] presented an araly:ical
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method for thg stabllity analysis of pipe with flow velocity U =
Uy (1 + ucoswt) for both subharmonic and comdbination resonance c1ises.

Non-linear analysis of flow Induced planar motions was presented by
Thurman and Mote (18] for a pipe with simple supported ends conveyling
fluid. The analysis was carried out using perturbation technique and the
autncrs found that, in determining the natural frequencies of the 3ystem,
the i{mportant of ncn-linear terms Inc¢rease with flow velocity, 30 that tna
range of appllcabllity of linear theory becomes more restricted as the flow
velocity Iincreases. It was Aalso noted that as the fluld velocity
Increases, the effect of the longitudinal tension vartfation during
o3ciilatlion becomes Increasingly {important. More work on this line was
done by Holmes [19] and Rousselet and Herrman [20].

An analysis taking 1into account the clrcumferentfal modes
especially far short pipes was made by Paldoussia and Denise [21,22]. Thay
analyzed both cantilevered pipes and pipes with clanmped ends and found Ehats
in additlon to instabilities {n the beam modes, instabllities In the
circumferential ~odes are also possible, and verified these findings ty
experiments. Similar theoretical results were obtained later by a
different analytical method by Weaver and Unny [23] for simply-supported
shells. Chen and Rosenberg (24] studied the fluld-shell (interaction
characteristics in the small flow veloclity range less than the subcritical

flow velocity considering the fluid to be ideally compressible.

1.2 Scope of Preaent Research
Although the Hamiltonlan approach given in [17,25,26] is elegant,
the meaning of the physical variablea are sometimes lost and the effect of

dampl~z nmay no% bte filly includ2d, moreover, the equations ¢’ -~ . .-




supported plpes conveying pulsating fluid contain nonconservative
parametric excitation terms. For these reasons, a non-Hamiltonian apprcach
Is used to develop an analytical method for studying the stability and
bifurcation behavior of supported pipes conveying pulsating flow.

The nonlinear dynamical system under investigation is formulated in
detail 1in Chapter 2. In addition, various transformations are made to
derive a set of equations Iin "standard form". The stability boundaries and
bifurcation behavior of pipes in the presence of parametric excitations for
the cases of subharmonic and combination resonance are discussed in Chapter
3 and 4, respectively. The numerical scheme developed for calculating the
stability boundaries and bifurcation paths for large parameter vzlucs fgr

the autonomous, averaged equation is presented in Chapter 5. Finally,

Chapter 6 summarizes the conclusions of this study.
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STATEMENT OF THE PROBLEM

2.1 Problem Definitlon and Formulation

This research investigates the transverse motion of a uniform pipe
of length L, mass per unlt length m and flexural rigidity EI, filled with
fluid of mass per unit length M, with various support condlitions . In
general, the fluid flow field will be affected by the lateral vibration of
the pipe, similarly the fluid interacts with the pipe itself and alters the
vibrational behavior of the system. In this study, the fluid {3 conaldered
to be lIncompresaible and inviscid, flowing in a pipe of constan%t cross-
sectional area and perimeter. Furthermore, the effects of pipe motion on
the fluid are not accounted for, while the effects of fluld on the motion
of plpe i3 considered.

The ejuation of motion {3 derived bty using *"e anerzy principile.
The methodology presented herein is similar to that given in (151. For
sufficient accuracy a linear moment-curvature relationship is assumed. The
potential energy of deformation or, equivalently, the strain energy of the

system, considering first order nonlinearities in the axial atrain is givan

by

L T 2 L
E ._o. ' .1.'2 .E_I. llz
U-ZI[EA*u*Zy]dx¢ZIy dx . (2.1)

o o]
where w and y are the longitudinal and tranaverse displacements, To is the
externally applied tension, and prime represents differentiation with
respect to x. The kinetic energy of the pipe i3
«2
y

A
m A
T1 - EIO dx ’ (2.4;
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where dot represents differentlation with respect to time t. Furthermore,

the fluid kinetic energy is

£ 2
fAG +wy P e lali =398 - &) ) ax (2.3)

)
"
M b 4

where the axial contraction in the x-direction Is expressed as

X 2
[ (yre,0)%) e .
(o]

o]
VI B

Benjamin [5] has shown the statement of Hamilton's principle for a pipe

conveying fluid, in the absence cof dissipative forces can be written as

t t
2 2
s ] (L+muic,)dt - [ mly, +uyl) sy, at (2.4)
) 2 gl Y O o '

+
t “

where the Lagrangfan L = Ty + T, - U and subscript L represents the values
of the corresponding quantities at x = L. Specifically, for =supported

pipes, since C, = 0 and Yo = 0 equation (2.4) can be reduced to
t2
§ [ Lat -0, (2.5)
t1

Substituting equations (2.1), (2.2) and (2.3) into equation (2.5), one

obtajns
t t
24 .2 2 b e .2 . 1,2
6! > Mu RLd: + Gf f [ > <~ y< o+ Mu(yy' + > uy ')

t t 0

1 1
s EA To 1 2 El 2

- MuC ~ 3 (EK + W > y')< - ' y'' ]dxdt -0 (2.6)




By applying the usual varlational tachinques to Eq. (2.6) the equatfon of

small lateral motlons i3 obtained as

(M +m) y + 2Mu ;' + Huay" - Toy" e Mu(R - x)y'? + EIyIV

1
- EA [uw' + 12 yPly] -0 (2.7)

The corresponding boundary conditfons for pinn2d-pinned and
clamped~clamped pipes can be written respectively as
y(o,t) = y(2,t) =0 , y'"(o,t) = y'"(2,t) =0 ;
y(o,t) = y(L,t) =0 , y'(o,t) = y'(2,t) =0,
one can define an average axial strain eo(t) as

L

£
1 1 .,2 1 2
eo(t) "1 ,'o (w' 3 y'“Jdx = ETY Io (y') dx .

Substituting the above equation In Eq. (2.7) yields the equation of the

tranaverse motlon as

(M + m)y + 2Mu§' + [Mﬁ(l-x) + Mu2

L
EA 2 1v
1B R ey ey o 2.8)

By defining the following non-dimensional quanti<ies




T 12 172 172 172

_ o - M M - E* 1
Tl EI ’ u-['—) ul .-M]"’(M*m) N E‘:;E(————E(M*’m)) R

and incorporating damping terms, the dimensionless equation of motion is

obtajined as
B alV e oIV o [ -F « (1-) Mr G] n'' + 2Mron’ + 1

]
et [ ()% -0, (2.9)
o]
where the dot and prime of the above equation represent the differentiation
with respect to new time t and €, respectively and E* is the coefficient of
internal dissipation which is assumed to be viscoelastic and of the Kelvin-

Voigt type. Furthermore, the nonlinear damping terms such as

g
[ (y)ex]y?,

E‘I

|

are assumed to be small. The fluid velocity is assumed to be harmonically
varying and given by u-= G;(l + ucost). where Go is the mean
velocity, v is the frequency of the parametric excitation and p i=s the
amplitude of the periodic perturbation which §s assumed to te amall and of
the order e. Thus, one can approximate W = Gz (1 + 2ucosvt). The
discrete equations of motion corresponding to equation (2.9) are obtained
by the application of the Ritz-Galerkin method. Thus, approximating the

transverse motion by

n .
n(g,t) = rE1 ¢, (E)qr(t) '
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where qr(E) are the ganeralized coordinates and or(a) are the eigenfunction
correaponding to the free undamped vibratlon of a beam satisfying all the

boundary conditions, the discrete equations are evaluated as

- - . -2 = U
Ig + 2MruoBg + [A * (uo T]C]g + 55
= e{th‘g sinvt - h[ng * D3§]cost - E'Aé} ’ (2.10)

where 3U/3q represents the nonllnear terms, u = ¢h, E* = cE*, A

4
{x?,x;, cees An} the Ai's being the in vacuo eizenvaluea (With no :iull)

of the system. Dy D, and D3 ara constant nxn matrices d2fined as

diag

D1 = Mruo(C-D) , D, = 2u°C s, D, =2M u B,

2

where B, C and D are constan: nxn matrices, whose elemenia b.., ¢ anA
rs rs

d.g» respectively, involve integrals of the eigenfunctions and are givan by

1 A -
b, = Io ® (€) o_(E) d& ,

1 a -
c., - fo 8178 o(E) & ,

1 -~ ~
- re
a =] ge (&) 0rr(E) ot .
0]
Furthermore, this study considers only geometric nonlinearities of the type

glven by

- ~

U=« Cijkl qlqjqkql , where Clel = cijckl ,

k = (AL)/(4I) for pinned-pinned support condition and k = (AL)/(2I) for the
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rest of the support conditions. Thus, equation (2.10) describes the
parametrically excited motion of gyroscopie, discrete, nonlinear

mechanical systems with n degrees of freedom about the equilibrium

configuration q = 0 .

-

2.2 Transformation to Standard Form

For the purpose of studying the stability and bifurcation behavior
of supported pipes, the system is investigated by restricting it to a two-

mode discrete equations of the form
- 2Gq_ + = eF (q,q,t 2.1
q1 2GQ2 K11q1 € 1(Qp9’t) ’ ( a)

), 2.11b)

1O o

+26q X - ¢F {q,
9 9 7 %% T F ,la

where

C = MruoB12 '
T S

Kpp =4y ¢ lug =T)cyy s
y -2 =

Kyg = 25 * (ug = T) Cpp

In the above equation, dot represents the differentliation w.r.t new time 1,
where Wt o= vt, v = wo(1-cx), and A {s the detuning parameter. The
expressions for Fy, F, contain nonlinear terms, damping terms and detuning
parameter of the system. It is obvious that the equations (2.11) do not
have an exact solution. It 1s, therefore, important to use an approximate
method which offers a very elegant summary of results. One can use, for
this purpose, the method of slowly varying phase and amplitude which takes
advantage of the well known process of averaging with respect to time 1.

Now, in order to apply the method of averaging, one must transform Eqs.
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(2.11) to a s=ultabdble "standard form". This {3 achlieved by means o° 3

transformation based on the 3solution of the unperturcad

corresponding to € = Q0 of Eqs. (2.11), i.e., by assuming

lw1t -iult imzr -iwzr
q = Qe Qe * Qe * Qe '

1w't -lw]r iuzr -1u2t
G = 9ne T Qe * Q38 Qe '
fw T “lw, t Iwzt 'Iwzt
= “lQlle - a1Q12e + a2013e - 0201ue R

where wy and Qij are the eligenvalues and the {'s elgenvector

3yas s

of the

unperturbed system, respectively, a, i3 the mode ratio of the unperturbed

i

system, one can obtain
q1 = z1sin(ult + ¢1) + zzsln[wzr + ¢2]

= z1sin¢1 + zzslno2 ,

q1 = zlm1coso1 + 22w2c0302

Similarly

a, = 01Z1COS(N1T + ¢1) + azzzcos(uzr + @2)

» a1z1coso1 + uzzzcoso2 R

q2 - - ZIGINISinol - zzazwasino2 ,

172 1/2

2 -, 2 2
12) v ozp =72 (0 q)

where z, = /2 (Qf‘ +Q
wy = Ky wy  ~ Ky

a, = —ST——— y 8, T 5 .
1 26w, 2 2Gu,

(2.12)

(2.13)

(2.14)

(2.15)
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By assuming both Z; and °1 to be dependent on 1 Eqs. (2.13) and (2.15)

become
Z‘sim1 + Zzsino2 + ¢,|Z1cosdhl + ¢222c0302 =0, (2.16)
uiZ1coso1 + azzzcosoz - 31¢121sin01 - c2¢22231n02 f 0, (2.17)
substituting ror qi.&i.qi fn Eqs. (2.11) yleld
m1(2100301 - ¢1Z1sin01) + wa(zzcoso2 - ¢22231n02) = eF1 . (2.18)
and
- 7 " <« - [7 e : =
w1c1(21sln®1 + Z1®1coho1] “2“2‘“2‘Jn¢2 + ¢222cos02) cFZ, (2.19)

respectively, the above Egs.
form as
( sin® ¢ iné ¢ (
siné, cos¢, siné, cos®,, W
a1cos®1 —a151n¢1 azslne2 -azs1n®2 1
w1cos¢1 -w1sino1 wzcoso2 -wzsinoz
L-w1a1sino1 -w1u1coso1 ~w2a2s1n02 -”20200302, L

Premultiplying Eq. (2.20) by the matrix S given as

/ -
wzazAzsln@1 w2A1cos01 n2A1coso1
.. 1 wzazbzcoso1 -szlsinO1 u2A1sino1
DY . _
w1a1A251n02 u1A,lcos¢2 01&1cos¢2
L -w101A2cos02 w1A1sin02 -u1A1sin02
where A1 - w202 - w1u1 ’ A2 = u2u1 - ”1“2 , B = A‘ .

(2.16) - (2.19) can be written in the matrix
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ylelds
( z, ) 0 )
Z.9 0
< 2‘1 & = ¢S } (2.21)
F
2 1
L %% ) 2 |

Equation (2.21) are now 1In the standard form and are exactly
equivalent to the original equations of motion (2.10). By using the method
of averaging, which 13 a firat approximation of an asymptotic method, the
averaged aquations corresponding to equatlon (2.21) ire writien

3ymtolically as

dz/dt = eM (x.) . d;/dr = eM (x,) . (2.22)
z $
t t
_] T
where *“ha averaging operator i3 defined asa M (-) = fim T f (-)dr y and
t T » = o)
the Integration {3 performed over explicit time <. According to the

matnematical basis of the method of averaging, If the averaged equations
(2.22) have aolution ;o(t) and 30(1) then the solution of Egs. (2.21) will
remain in a small neighborhood of Eo(t) and 3o(t) for all time since the
right-hand sides of equations (2.2') are perlodic. Furthermore, the
stabllity of the averaged system {mplies the stability of the solutions of
equations (2.21) and the averaged equations (2.22) are accurate only in the
tirst aporoximation, i.e., z =z + 0(e) , & = & + O(e). Now, >y applying
the averaging operator to Eqs. (2.21), one obtains a set of averaged
equations in the presence of parametric resonance which occurs over
specific ranges of values of w, In the viciniiy of 2wr = mv and

lur t us] =mu, m = 1,2,.... where “n and v are the nz%.~3il a3 <. (%2




frequencies. The autonomous,

for the predominant cases (1)
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averaged equations of the nonlinear system

Z“r =Wy, subharmonic parametric¢ resonance,

and (2) l“r + wg] = W combination parametric resonance are examined in

the following chapters.
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SUBHARMONIC PARAMETRIC RESCNANCE
3.1 Averaged Equations and General Results
The averaged equations of motion in the first approximaticn for

w_ = 2mr, r = 1,2 are given in Appendix A and expressed as

ir = e{hzr[urrsln[2¢r] + Vrrcos(2¢r)] + E*Erzr} ,
(3.1)

z6, le[h[Urrcos(2¢r) - Vrrsin(2¢r)] * N - XDrl ,

where the terms U.. and vrr are defined in Appendix B-I and the remaining
terms in Eqs. (3.1) are defined in Appendix B-II. Since the r.h.s. of the
above equations contain 1/(4a) as shown in Appendix B, the time {3 revarsed

by introducing a new time T = - rt. Now, putting tan § = Vrr/Urr' Rr

- (urf + vmz_)”2 and ¢ = ¢+ 0/2 In the abova equations yields
az R
7 = - 2. [nR sin (20 ) ¢ eve ], (3.2a)
ds R
i e[thcos (2¢r) + (Nr - xor)] . (3.2v)

The stationary states are determined by setting er/dT = 0 and dor/dT =
constant in Eqs. (3.2), which, apart from the trivial solution Z, = O,

yields an amplitude-frequency (a-f) relationship,

121'2 + p "W (3.3)

-1 .2, 2
V=t D [n R, (E'Er LN

Equation=s (3.3) represent the positive and negative nontrivial solutlons,

N 1
which are associated with cos 2y = - 8 /2/(R n) aad

-
1/2 22
BP

cos 29 = /(R n) respectively, where 8_ = (h°R_ - (E'er)z). By
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making use of the expression for A, Eqs. (3.3) can be rewritten as

2, 2 29172 2
vEu ¥ 2[n R, (E*Er) ] 2z P, (3.4)

It may be noted in Egs. (3.4) that the negative sign corresponda to the
positive nontrivial solution and the positive sign corresponds to the

negative nontrivial solution.

3.2 Stability and Bifurcation Analysis of Trivial Solution
In order to consider the stability of the trivial solution, Egs.

(3.2) are transformed from Zp, ¢  t0 new varlables X., X Dy means of the

tran=formation

-~ -~

Xr = Zr sin¢r ’ Xr = Zr cos¢r .
This procedure yields

dX

r
pr i le[thsin(2¢r) + E'&r]cos¢r

+ ch[thcos(2¢r) ‘N - XDr]sin¢r

- ~

- c{E'Erxr + (th + wr)xr - err} ,

dX
E?E = - ez [nR sin(2¢ ) E*; Jsing,

- ch[thcos(Zor) * N - xDr]cosor

. - e{(nnr - xor)xr + E% X ¢ Nxxr} . (3.5)
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It I3 evident that the linear part of Eq. (3.5) corresponds to the llnear
varfational equations about Zr = 0, whose 3olutions are proportional to

exp (ET], where ; = p/g {3 glven by

2.2 224172
3 - » -
Py 2 E¥ ¢ (n R_ - 1°D ) .

Therefore, the trivial solution 13 asyaptotically stiblz If the foll:-wing
conditions hold:

2.2 2,172
g.>0, It - v | > 2[n RS - (E*Er) ] . (mo = 20) . (3.62)

However, for the undamped case

1/2
Py o =t [(hﬂr + Aor)[nnr - xop]]

and the stability cinditions get simplified to
Vi, <1 - 2R, v/uo >1 ¢+ 2uRr (3.6b)

It 1s shown that for the undamped case the trivial solution, which 13

stable in the Lyapunov sense, loses lts stability at XDP = + th due to

double zero eigenvalues. Thus, for E* = 0 and N,.-(xi+xi)?r,

introducing a new time T = ¢T and linear transformations Xp = Up *+ V,

X, = - vr/(zar) and X = - vr/(znr), X, = U, +V, for the cases AD_=- =+

nR,. and xDr - - th, respectively, Eq. (3.5) ylelds

du 3 Pr >
—L v #[(2rP Ju’+(6RP + =) UY
dT r rr’r rr ZRr rr
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3Pr 2

2R ) Urvr
r

+ (6R P +
rr

P
r,_ryy3
+ (ZRrPr + R + ) v °)

. 3 2 2. .43
V. ¥ [a3ur tay Vo +a UV oaV ]

av. 3 2 P 2
= " + [(znrpr]ur + (eanP)ur v+ (6R P+ Eﬁ;) uv,
P 3
* (ZRrPr * 2R ) Vr ]
r
32 2 3
=% (U7 4 b0V 4B UV e bV ]

The normal form of the above equations are computed with the aid of the

following near-identity transformations

a, +»b 2a_ + b
., 2 10y 2 2" "1y 3
'Ur =N aonrzr * ( 2 ) anr ! [ 6 ) "r

dn ag
daT dT

In the above equations, positive and negatlive signs correspond to
the cases A = + 2hR, and A = - 2hR., respectively. It is evident from Eq=
(3.7) that the point corresponding to V/iw, = 1+ 24R. (A = - Zth) 1a

unstable. Moreover, two parameters - v, and ¥, are needed to completely
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unfold the singularity ([27], and these parameters usually represent the
determinant and the %trace of the linear operator when E* s Q, ADP - ¥ th .
However, in this study E* is ldentically zero and the damping 13 generally

2 2
fixed. Thus by introducing u, = (n er - (1 - v/wo) DPZ] one obtains

dn d€

r r 3
— = . — = u,n t 2R P n .
T r T 1'r rrr
The fixed points are given by
Fu 1/2 Fu 172
no=0, € =0;n, = (555) g =0;n, = - (50 €. -0
r ' Cp e 2R P ' p S 2R P 'eA ’
rr cr

and the nontrivial fixed polnts exist only for the following cases:
1. If P, < 0, then for the cases v/w = 1 - 2hR, and v/w = 1 + 2nR.

nontrivial fixed points exist for u, > 0 and u, < 0, respecttively.

2. If P, > 0, then for th2 cases w/w = 1 - 2hR, and v/w = 1 + 2nR,

r

nontrivial fixed points exist for H, < 0 and , > 0, respectively.

3.3 Stability of the Nontrivial Solution

The atabllity of the "global" nontrivial solution (3.3) 1is
finvestigated by examining the linear variatlonal equatlon of the averaged
equations (3.2) about the nontrivial solution. Letting Z. = Z., * X,

= -» +
and ¢r °ro + Y., (i.e., ¢ro Qro 8/2) the linear varifational equation

is obtalned as

dX

= = - e[(nR_sin2e0__ + E%_)X_ + (znzroarcoszq,m]yr_] . (3.8)
ay -

= . - ¢(22 P X - 2nR sin2p Y ]
arl %0 e r r ror’ ’
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R 8 172

Using the a-f relation corresponding to cos 2°ro = ¢ ; i) the
r

eigenvalues of the characteristic equation corresponding to Eq. (3.8) are

obtained as

- s (- ) uzm?-prer"z]”2 . (3.9)

f1,2
The positive sign within the square brackets in Eq. (3.9) corresponds to
the positive nontrivial solutfon of Eq. (3.4). It is evident from Eq.
(3.9) that for P, < 0, fhe positive nontrivial solution is stable, while
the negative nontrivial solution is unstable. The opposite results prevall
for F. > 0. For the undamped case i.e., E¥ = 0, the equation of moticn

reduces to

az, ] z.[nk, sinc¢r]
dg . 2 :
- P
r (hr, cos2e_ - AD_ + 2z r.]
Now, by integrating the above expression, and puitting Xr = /E: cos¢r and

Y. = YZ_ sin¢_ , one obtains
r r
2

2

2
r + Yr ) = Const. (3.10)

2 2
9rmr(xr -y )% alx =+ x, )Pr 6mr(xr

with the help of Eq. (3.10) one can obttain varfous phase poriraits for

different values of A and h, and thus the stability.
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COMBINATION PARAMETRIC RESONANCE
4.1 Averaged Equations and Stabllity Boundary
The bifurcation in the presence of combination resonance, which
exists under the conditions lm1 t m2| = w, {s studied in this chapter. For
the case of Ius‘ + “’Zl = W by applying the avaraging operator to E£q.
(2.21), one can obtain the averaged equations of motion in the first

approximation given in Appendix A and express as

hd 3
Z1 a e{hZZ[U]‘zsin(#1 + ¢2) + V‘2cos(4)1 + @2)] + 215*81} '

z, = elnz [u, stalo; + 9,) « Vyconln, + 9,)] ¢ Z,2%e5) (8.1

1
)

2,6, = elnz,[u) coslo, + 0,) - Vi psin(ey + 9,01 + (N - a0 )20,

2,5, = e{th[Uz‘cos(@1 + ¢2) - V21sin(¢1 * 32]] . (NZ - xoz)zz} ,

where ths quantities Uyps Uzys Vyp, and Vyy are deflined in Appendix 3-I.
Since It can be shown from the numerical calculation that UyoVyy = UpVy5 =
0 and the individual terms are nonzero, one can take Ujp/Vip = Uy/Vpy.
Introducing a new time T = - t as before and putting V,5/U;5 = tang, the
equation of motion can be reduced to

az

1
_—= e{hZZR'

s stn(e, + ¢, + 8} + Z,E% ),

2

daz

2 .
== e{hz1R21sm(¢1 * 0, *+8) Z2,E*,}

dé

1
2, 7 - e[nz

2R12c03(01 T 8) + Z‘(N1 -0, )}, (4.2)
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dé,
Z, 5 " - e{hZ‘R21cos(¢1 t oyt 8) + z,(N, - D)},
where Ry, = (u122 + \112‘?)”2 and Ry, = (U212 + v212)1/2. In order to

examine the trivial solution of the above equation, Eq. (4.2) is

transformed from Z, ¢ to new variables X, Y by means of the transformation

X1,2 7 %,20080) 5+ Yy 5 =%y o8ind, o .

This procedure yields a set of nonlinear equations in X and Y as

ax
1
ar - - edEre g en{uy, < VX)) < Aoy,
2 2 2 2
aLITIC AR D AL PG S A Y
ax,
rrai i L S SO (R SR AR SRR LR A
o 2 2y 2 2
ELE R A R Nt AR A A
av,
g = - elErey, enux, - VL) - anx, (4.3)
2 2 2 2
+ [N”(x1 + Y ) ¢ 2N12(X2 Y, )]x1l, and
.
4
ar = " elBrer, ¢ n(uyx, - v, v ) - aDx,

2 2 2 .2
LTI CAR R DR N C T A A

It 13 evident that the linear part of these nonlinear equations correspond
LC the linear varfational equations about the trivial solution. Foliowing

the procedure given in Appendix C, the stabilfty conditions are obtained as
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172 £,1/72

£
. 1 2 2, | .,2
11 = v | > [(E;) + ( I{n Ry = E*°gy6,

172
— )
&

/(Dl + 02).

(4.4)

wnere Ry = Ujolyy ° VioV5q. Furthermore, the stabllity condittons redu:ce

to
£, 1 g, 1/2
1 2 1/2
|1 = v/a | > [(E;) . (E;) ] nR S (p, +D,) (4.5)
and
v - v | > 2an1/2 7 (o, +D,) (4.6)

for the «cases where the system {3 1lightly damped and undamped,
raspectively. It 1s evident from 2gs. (4.4) and (4.5) thatl E; nas %o %2
positive for the existence of the stability boundary.

One can now conslder the case |m1 - w2| Wy again, applying the
avaragling operator to Eq. (2.21) yields a set of averaged equations given
in Appendix A and expresses as

. ~ N ~ -
z, = elnz,[u, ,stnle, - 0,) + V ,cos(s, - 9,)] + 2 E*¢ ),

z, e{nz (U, stnle, - ¢,) ¢ v,,cos(s, - 0,01 + ZE*e ),

2,6, = elnz,[u eos(s, - 9,) -V ,sinle, - e,)] « (N, -0 )z,},

Zy0, = €l- nz,[u, cos(e, - 0,) - Vysinle, - 05)] « () -ap )z, ,
wnere the quantlities U12. 0?1, sz and V21 are defined ‘n Appendix B-I. As
~af-pa - 1 ) “nat “ha ter v - ! ) b ol i I S

27:ra, 1% may »e 3ho~n SN2 © %he2 tern (UIZ Y J‘2J21; 1s izamize,
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zero. Following the same procedure given for the case of |w1 + w2| = Wos

one obtains the stabjility conditions as

(51*52)>0.

1/2 1/2

& £2 2 172
11 - vl > [(E—‘Z-) AR AL LA GRS RS

and

1/2

v - vw | > R 7/ (o, +0,) . {(4.8)

for the cases where the system is damped and undamped, respectivelv., It is

evident form Eqs. (4.7) and (4.8) that the term Rp = UyjoUs, * V12V21 , has

to be positive for the existence of the stability boundary. However, the
numerical calculation indicate that in the primary region, i.e., the region
Go < (Go)c' here (Go]c fs the critical mean velocity at which the system
loses jts stability thrcugh divergence, gp in Egs. (4.7) and (k.8 is
negative. It Is evident from the stability conditions obtained previously
that the system is always atable (no statility boundaries)
for le - 02| = Thus, In the remaining section of this chapier, we

shell only consicder the cembinatiosn resonance of the type |m.l +wal =

- N

for v < (uo)c.

4.2 Stability of the Nontrivial Solution
In order to study the nontrivial =solution of Eq. (4.2), the

= in

stationary states, apart from the w.rivial soclution Zp = 0, arec celermi

-
v

by putting dZ./dT = 0O and d¢r/dT = const. in Eq. (4.2) and from the firs:

two equations of (4.2) yleld
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1/2
V.. €
10 . [v1252) (4.92)
20 21 &
and
/
- "'(5152)‘ 2
sin(e, + ¢, + 0] = 172 g
hR
1/2
%, 6,
cos(ey + oy v 0) = e [1 - —5 | (4.9b)

P

By addlng the phase equatlons (4.2), one obtains

g 172 v g 172
21 % 2 . 2 12 72 T2 . 2
x(p, - D,) = n[( —)  Ju, S e v (——=) Ju PV o]
| 2 V., 5, 12 12 Vo & 21 21
- cos (¢, + o)) + (N +N,), (4.10)

sutstis.ting Eq. (u4.9) 1into Eq. (4.10) ylelds an amplitude-frequency

relationship as

€ £, 1/2
-y 2 2 2
A = (D, +D,] {t[(g;) . (g;) /'R - B e,
2 Va1
*Zyg (N + 28] - (v12) (Npp + 293 )1 (4.11)

the a-f relatlionship corresponding to positlve and negatlive signs will be
called the positive and negative nontrivial solutions.

The stability of the nontrivial bifurcating solution 13 examined by
considering the linear varliatlonal equation of the averaged Eq. (4.2) about
the nontrivial solution. Letting Z; = Zy149 * X4, Z5 = Zp5 " X, and

d = o, " Y whera ¢ = ) ) #8, th2 linei~ variiticnil ej.3n.2-3 it

S 10 2%
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be reduced to-
dx z
1 “20
T " E{E*E1X - E%g, 210 X, + h220R1zcoso°Y} ,
dx
e S S 10 .
5 e{- E €, 5 20 X, * E*¢X, + hZ R, cos Y}, (4 12)
] oN
-d—Y-—-—e{[*J_—F1/2 *1+~2-) ]x
dr 210 0, 7, 4
10’ “20
oN N
1 2
el — R (S ) ] x, « E*(e, « g£,)¥}
2,4 82,  3Z,, 2 1
10’ “20
where
yA V. .E. 172
1/2 1/2 2 2 10 12°2
F=[(g,76,)"°-(e,6,) "], a=n"R_-E*%.,, - )
1752 2’*1 p 172 7, V,. €
In Egs. (4.12), Z., and ¢_,, r = 1,2 are stationary nontriviel scluiions.

.nus, using the a-f relation derived from Eq. (4.11)

1/2 1727 172 2
vo=wgw [(g,7e,) 70 ¢ (e ) T a " - 20 [Ny ang,
v, €
¢ 21701 ' . -
G Gy, e )

the characteristic equation for EqQs. (4.12) can be obtained as

2 . 1/2 1/
) ¢ (0,2, 40,7 ,) 2

o3+ 2er(e, + g,) 00 ¢ [E¥°(e, v g, )

1/2 . 1/2.1/2;
o, 20(& 23 ) "“lo ¥ 2E%(¢ & ] 12,40, * ¢ o?] =0, (4.14)

wiLlre
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N, N,
o = 3z, * 3z, 2(Ny * 2N, )z,
aN N
o, = — + =2 = 2(N 2N, )z
2" 3z, " 3z, 22 12/%20

For the cubic Eq. (4.14), the condition that none of the roots has positiva

real parts 13 given by the Routh-Hurwitz criteria, which requires that

(5, +&,) >0,
2 2 2 1/2 172, 2
e*°(g, + £,)° ¢+ Fa® 20 (g, 76,) 2 (N, v 2N )
v
21
‘ (V1z) (Ny, + 285 ]1 > 0,
1/2.1/2, 2 121,
- 26%(g,6,) T Ny e 2w L) (52V12' (w,, + 28;,)1 > 0,
3 3, .2 a2, 2
2E# (El + 52) + 2F GE'(Et + 52] 5 UEW (ETE;T zm[g1 (N]1 + 2N12] (4.15)
£V
1721y _ 2
+ (Ezvtz) £, (2N12 + N22] >0 .

Since it can be shown that 51 is positive, it is evident from the stablility
conditions that for

£V
[N+ 2N 1 2

" 12 * (E; V;;] (N, + 2Ny )} =74, >0,

the nontrivial solution corresponding to the pcsiltive sign in Eq. (U4.13) {3

stable only if
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2 2 2 1/2 1/2, 2
Ex“(e, + £,)° « Fra ¥ 20 (e /e, ) "z [(N |+ 2N,,)
v
21
+ [ij) (n,, « 28,01 >0
and
172 172 2 2 2
2[(g,76,) 7+ (g,78,) 7] « [E¥°(g, + £,)° « Foa]
172 £V
a 2 2 1 21 2
el y,
¥ 4 0T, zw[;1 (N” + 2N12) + (52"12) 6, (2N12 + sz)] >0 . (4.16)

It should be notec that in the above ezuatiosn the negative and positive
signs correspond to positive and negative nontrivial solutions,
respectively. Furthermore, for light damping, i.e., E¥* 0
and £y » £ the linear variational equation of the averaged Eq. (4.2) can

be obtained as

dX
E?r = - ch220R12cos¢oY ,
dX
a7 = - chZ1OR21cos¢OY .
aN oN
dY 1 172 1 2
g7 = - clls g= R 100 (= e 225) ] x
dT Z10 p 321 322 210,220 1
oN oN
1 172 1 2
+ [+ 77— FnR + (0 ) ] x, ,
220 p 822 341 210,220 2

the amplitude-frequency relation becomes
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172 2 2 2
v w R (e ey)T e (e 07T -z, TNy e 2Ny

V.. €
211

v (=) (N, + 2~ )], (4.17)
V1252 22 12

and the corresponding stability condition is

v
2 . 1/2 172, 2 21
FhR 17 % 2(5‘/52) zlo[("11 LN L) ¢ (v12) (NZZ . 2N21)] >0,
(4.13)

Thus, for [(N‘1 + 2N12] + (v21/v12) (N22 + 2~21)] = ¥, < 0, the nontrivial

solution corresponding to the negative sign 1s always statle whila tra%

corresponding to the positive 3lgn in Eq. (4.17) is stable only {f
2 172
F™nR
p

1/2
z. ., < (e,e) ‘ . (4.19)
10 2" 2[(N11 + 2N12] * (V21/V12](N22 * 2N21l|

Evidently, opposite results prevail for wz > 0. The analysis for the
undamped system can be carried out be letting g, = EZ in Eq. (4.17). Thus,

for the undamped system, the a-f relatlion is obtained as

v
1/2 2 21
= - rams u'
v=u, 2N 2,0 [n,, + 2N ) ¢ (v12) (sz + 2N, )] (4.20)
Since F = 0 for the undamped system, by examining the condition {4.18), one
can infer that for wz < 0, the undamped nontrivial solution corresponding
to the negative sign is always stable while that correspoinding to the
positive sign {s always unstable. Furthermore, for wz > 0, the opposite

results prevall.
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4,3 Bifurcation Analysis of Trivial Solution
As pointed out in Appendix C, the trivial solution

of Eq. (4.%) losses stability at A = % lc (1.e.,

Ay =t [(51/£2)1/2 + (52/51)”2]n”?’ 7 (D, + D,)), and undergoes a Hopf
bifurcation. In order to examine the local bifurcation behavior, the
linear part of these equations is brought to the simplest diagonal form
with the help of the transformation (z,g - g,y] given in Appendix C. This
procedure ylelds

) y ¥ & C(xt]! + h(E-!vAt. ) ’

* +
c n

us= B(l

-

WA

b 4
) u+ g(u- e,n

-

<

where B(Ac) and C(Ac] are defined in Appendix C by Eq. (C6). It may be

+
noted that the nonlirez~ functions arnd h are different for A_ and A_ cdue
c

o
to the fact that the eigenvecters of B and C at X; and l; are different
even though the eigenvalues are the same. For the problem under
consideration, the nonlinear terms are cubic in y and V. Thus, the
contribution from the stable modes v to the equations restricted to the
Ik

center manifold is of the order |u , K > 3, and can be neglected in the

first zpproximation [28]. The bifurcating periodic solutions are given

[28] near A = # Ac as

- - -~

u, = z siny , u2 = z cosy , (u.21)
where

A2 -
2 = - (G'Y/R) y Y =owt ta,

1 +

A=A
c
- S
w = o, ¢ Y{e! -3 §:)1 ,
1 R 1 A= Xi

‘
|
. Tl S . N S S I TR B B B BE I BT O BE B B Ee ..
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1/2 172
£ £
1 o2 1.1/72
(v/uo)c =1 ¥ [(E;) + (51) in / (D1 + 02) .
333 333 333 333
1 1 1 2 2
R == | * + + f . (4.2
16 903 3u3w? . udu=v =0 ?
01 u1 uz u1 u2 u2 u !
333 333 333 a3g
1 1 1 2 2
s aTg{ 3 + 2 = 2 - 3} .
du, du 3u,  du,3u, u,” u=yv=0

Tha expressions for R and S are obtalned from g, and &5, which is given in

Appendix C by Eq. (C8). In addition, it can be shown that

1,2 1,272
2 - ul(c)? s ()32, ravz, (4.2

-~

2

wWhare Zro and z are defined in £qs. (4.13) and (U4.21) respectively.
+
Furthermore, at (v/uo) = (v/mo); the derivative of the real part of =:tre
critical eigenvalue, 6{, i3 negative and positive respectively. Thus, the
nontrivial solutions exist for Y >Oonly {f R < 0 and R> 0
+ -

at xc and xc respectively. Furthermore, the stability of the trivial and
bifurcation paths are given by

aw | . <L

at §'Yw and pr 28'Yw . (4,24)

+ -
Since in this problem R < 0 at Xc and R > 0 at Xc (from numerical
+

calculationsa), it 1is obvious that at Ac the averaged system undergoes a

stable supercritical Hopf ©bifurcation and at Xc the averaged system

undergoes an uns-ibla subcritical Hopf tifurcation. Tre uniamzal 347
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becomes unstable at A, glven by Eq. (4.4), due to the eigenvalues in the
imaginary axis coalescing and one palir crossing to the left and the other
to the right half of the complex A-plane. Such instabilities in the
context of HKHamiltonian systems give rise to a so-called Hamiltonian Hopf
bifurcation [29]. The linear operator at this critical A value has a non-

semisimple form, and the bifurcation behavior is yet to be examined in

detall.
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NUMERICAL METHOD
5.1 Numerical Results of Analytical Method
The numerical results of pinned-pinned pipe and clamped-clamped
pipe for subharmonic and comblnatlon resonance cases are dlscussed here.
[n order to lnvestigate tna parazetric tnstabllity, the unperturb2d a3ystenm
{s assumed stable and only the primary stable reglon will be considered,

f.e., G; < (G;]c where (uo)c 1s ® and 27 for plnned-pinned and clamped-~
clamped pipes, respectively [17] and represents the critical mean velocity
at wnich the system taccme unstitle through diverzence.

We first discuss the case of subharmonic resonance. The numericil
calculations indicate that, in the primary atable reglon “ha
terms Er' Ufr + Vir appearing in Eqs. (3.)) are positive. Thus, 1t is
evident from the stability conditions (3.6), that the stability boundaries
exist for v = 2w1, v = 2w2 . In Figs. 'a and 2a the relationships
between u and v/mo1 (wo1 is the dimensionless frequency in the first nocde
when Eo = 0) for planed-pinned pipe with €E* = 0.015 and eE* = 0.005 are
shown for the cases v = 2m1 and v = 2w2. respectively for Gg = 1.88,
Similarly, the stability boundaries for a clamped-clamped pipe with egE* =
0.005 and ¢E* = 0.001 are shown in Figs. 3a and 4a for the cases v = 2w1
and v = Zmé; respectively. In Figs. ta - 4a the polnts S and Dg represent
the parameter values at which the {nstabllity of the trivial solution of
the averaged system Eqs. (3.1) occurs through a simple bifurcation (cne
el genvalue crossing the origin in the complex A-plane) and double zero
bifurcation (two zero eigenvalues crossing the origin), respectively. The

assoclated blfurcation paths are shown in Figs. ib - U4b. For a fixed vaiue

of u, a3 v is increasad, the trivial solution loses statility at lef: poiat
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Dg or S depending on whether the system 1{s damped or undamped. The
nontrivial solution defined by Eq. (3.4) bifurcates at either point Dg or
S, giving a stable nonzero but constant Zp, value, The corresponding
solutions of Eq. (2.21) are periodic with period 2m/w, (mr = v/2),
where w, and Z,. are related by the relationship (Eq. (3.4)) as shown in
Figs. 1b - 4b. On the other hand, if v is decreased from the right to
left, the trivial solution becomes unstable at right point Dg or £ and
bifurcating solution is unstable as shown in Figs. 1b - Ly,

Secondly, for the case of combination resonance. The numerical

calculations indicate that in the primary stable region the terms 51,52 and

UjoUpy ¢+ VyoVo, appearing in Eq. (4.1) are positive. The stability

bouncaries for pinned-pinned pipe with ¢E* = 0.005 for u = 1.8 & :

clamped-clamped pipe with ¢E* = 0.001 for u_ = 4.0 are given in Figs. 5a

°
anc¢ 6a, respectively. The points H and Dy in Figs. 5a and 6a represent the
parameter values at which the instability of the trivial solution of the
averaged system (4.2) occurs through a Hopf bifurcation (a pair of
conjugate elgenvalues crossing the Imaginary axis in the complex y-plane)
and double Hopf bifurcation (defined before as a Hamiltonian Hop?
cifurcation in Hamjltonian system), respectively. The associated
bifurcation paths are shown 1in Figs. 5b and 6b. For a fixed value
of ¢ as v is increased, the trivial =clution loses stability at the lelt
point H and stable supercritical Hopf bifurcation takes place and a
periodic path branches off. The corresponding solutions of Eq. (4.2) are
modulated periodic solutions. On the other hand, at the right point H, the

t»ivial =eolution loses stabilitv, as v is decreased from far right, through

an unstable subceritical Hopf bifurcation.

i
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The humerical results o the local bifurcation analysls pertaining
to Eqs. (4.21) -(4.24) are calculated for pinned-pinned and clamped-claaped
plpes. Even though the numerical results differ from that of the previous
results in the third digit, the plots of these two results are nearly
ldentical as shown in Figs. 7 and 8 for pinned-pinned and clamped-clamzed
pipe, respectively. It 13 evident from the numerlcal cal2uiitlon that the
value of R and &' in Eq. (4.22) i3 ¥ 0.00997 and ¥ 0.0616 respectively, for
plnned-pinned condition at Xz. On the other hand, R and §' are ¥ 0.005u6

t
and ¥ 0.131 respectively, for clamped-clamped condition at Xc.

5.2 Numerical Scheme for Periodic Solutions of Autonocmous Systen

The analytical results, of the periodic solutlons of the averaged
2quations, obtalned using the Hopf bifurcation theorem i3 valid only {n the
amall nelghborhood of A = Xz. For largse values of Y =\ - xz » these
solutions btecome 1inaccurate and therefore {t 13 neceszary %to use 13
numerical scheme which can determine the bifurcating periodic solutlcns 2f
the autonomous averaged Egqs. (Uu.3). The straightforward method of
calculating steady-state periodic solutions of nonlinear autonomous Egs.

(4.3)
a=tlawn), a =a, a-(x1), (5.1)

1s to numerlically integrate the differential equations from some initial
state until the transient response btecomes negligidle. Howevar, in a
lightly damped system, convergence to the steady-state resaponse is very
slow, and the Integration muat extend over many rperlods maxking <the
computation time consuming and costly. Thus, i{n this study, we shall make

use of Newton-Raphson algorithm given by Aprille and Trick [30] %o
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determine the period T of the response and the initial condition a, such
that integrating (5.1) from the guessing initial condition a  over the time
interval [0,T] yields immediately the steady-state periodic solution of
period T. In this method, the initial value problem (5.1) is transformed

into a two points boundary value problem

T
a = E(T,a,) , where E(T,a ) = 2 « [ flatt)ua)ae, T>0  (5.2)

al°) -0 0
with 4 equations and 5 unknowns, a, T. The resulting set of nonlinear
algebralc equations are then solved using a Newton-Raphson interaction
technique. Such algorithms have been used by Tousi and Bajaj [31] to solve
pericdio solutions of averaged equatjons,

It iIs important that the initial guess of the period T and the
initial condition go is reasonably good for fast convergence of this
glgom~ithm. The known analytical solutions of the Hopf bifurcation theoren
can be used as a good starting point near A = xz . Once the period and the
initial conditions are obtained for a specific value of A, these values can
be wused as the starting point for calculating the perjod and fnitial
conditions for A + AA, provided 8A is sufficiently small. The stability of

the periodic solution a = ¢(wt) 18 governed by the varlational equation

d_c. = + = ’a—f =

o = AVE L AGY) = 2 (6¢1)) , 1 = wt (5.3)
whose solution can be written, for example, as § = Coo'(x) and C, Is an
arbjtrary constant. The Flogquet multipliers are eigenvalues, Sy of the
monodromy matrix and one of the eigenvalues = 41, The periodic =solutions

are stable provided the remaining multirliers lie inside the unit circle.
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There are three ways in which the perfodic solutlons can tecome unstabla:
{1) by cne multiplier of E3. (5.3) leaving the unlt clrcle through -
Ilving rise Lo a saddle node bifurcation, (1i1) by one mlsialtan
crosaing the unit clrcle at -1 and the assoclated bifurcation {3 referred
Yo as a perlod doubling bifurcation, and (iil) by a pair »f comdlag
conjuzate multipllers Z,%, with gl = 1, giving rise to a soluslon on 2
two-torus T2. It will be seen in the numerical examplesa that only saddle
node bifurcations take place for the problem under consideraticn.

The perlodic solution obtained using the numerical sacheme (s shcwn
in Figa. 9 and 10 for pinned-pinned pipe ind clamped-clamped piz=2,
respectlively. Even though the numerical method Involves a considerabla
amount of ccmputations, the known analytical solutlons were used Lo reduc=
this effort significantly. In Figs. 9a and 10a, the ampliiude fraquency
relationships obtained analytically and numerlically are compared for the
<amped 3system. The perlod T of the bifurcating orbit i3 plotted azairs:

the frequency v = W, + wy for the damped system in Figs. 9b and 10b.
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CONCLUSIONS

In this study, the ideas related to the method of averaging,
Poincare-Birkoff normal form [27], and center manifold theorem [28] have
been used appropriately at different stages of the analysis to investigate
the stability and bifurcation behavior of nonlinear supported pipes
conveying pulsating fluid. Explicit results for the stability boundaries
of the trivial solution, bifurcating paths and their stabllity have been
obtained for values of the system parameters p, E* and v, where the value
of v Is taken in the neighborhood of v * 2m1. v = 2w2 and vV T wy *w,. It
is shown that when the system undergoes a combination resonance, the
tilurcating solutions of the averaged system are perjodic ar opposed 2
ccnstant solutions which bifurcate in the case of subharmonic resonance.
Thus, in the case of combination resonance, the original system exhibits 2
mocdulated periodic solution or a T2 solution as opposed to period twod
solutions in the case of subharmonic resonance.

There are two types of Dbifurcating paths obtained from the
analytical method, namely the "global" and the "local" bifurcation
solutions. The "global™ bifurcation solutions are obtained directly from
the averaged equations as nontrivial solutions. Whereas the "local"
tifurcation solutions are cottained ty exezining the instability of the
trivial solution of the averaged equations and its various bifurcations.
These two results agree In their common regions of valldity. Finally, the
numerjcal scheme which determines the bifurcating periodic solutions is

cnly .=ci for the case v = w, * wy - It f=s evident from the sensitijvity

]

of the averaged, autonomous equation that the step of each Integration

should be sufficiently small.
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Ug =1.88, M, =0.8,E* =0.015, Wg¢ =9.87
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Ug = 1.88, M = 0.8, E* = 0.005, Wy = 9.87

0.50
a Damped
}1 5 ndamped
3 o S s/ /oe
0.40 3 S 3
3 | |
3 | ]
0.30 3 | |
. | |
3 | |
0.20 : :
3 | I
0.103 ' !
" | |
3 i |
3 | |
-
0.00 3
5 6 10
20 / /

N

1.5

1.0

05

0.0

Figure 2

6 7 8 9 10 VWp4
Pinned — Pinned Pipe vx2W»

(a) Stability boundaries, and (b) amplitude-frequency
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resonance v = 2w2, wy = 38.55.




F-42

Ug = 4.0, M, = 0.447, E* = 0.005, Wy, = 22.37

0.50
i 3
3
0.40 Damped
E Undamp:d
0.30 3
020 3
3
0.10 =3
0.00 1 T — U/Wol
3.00 2,
- 4
2Z 3 g
4 V4
f Stable «,’/ .
] Unstatle_ /S
200 77
] //
] /
.
LOO-:
R
o
0.00 ——p—— v/
ql v 1 WO'
Clamped-Clamped Pipe V2w,
Figure 3 (a) Stability boundarles, and (b) amplitude-frequency

relationships for clamped-clamped pipe - subharmonic
resonance v = 2m1, w, = 16.98.
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Ug = 4.0, M, = 0.447, E* = 0.001, Wy, = 22.37
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Ug = 1.88, M, = 0.8, E* = 0.005, Wg{ = 9.87
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Uo = 4.0. Mr = 0.447, E. = 0.001, WO' = 22-37
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Figure 6 (a) Stability boundaries, and (b) amplitude-frequency
relationships for clamped-clampad pire -~ c-mtination

resonance v = w, * Wy w3 = 16.93, wy = 5..77-
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Uo = 1.88. Mr = 0.8. E' - 0.005, WQ‘ - 987
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Figure 7 Comparison between local analysis and Figure 5 result

for the amplitude frequency relation for pinned-pinned
plpe - combinatlon resonance v = wy *wy wy = 7.71,
w, = 38.55.
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U= 4.0, M, = 0.447, E* = 0.001, Wy, = 22.37
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Comparison between local analysis and Figure 6 result
for the amplitude frequency relation for clamped-clamped
pipe - combination resonance v = Wt wy w, o= 16.98,

w, = 56.77.
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APPENDIX F1
AVERACED EQUATICN OF PARAMETRIC EXCITATICN
The averiged 2quatlon In the flrat rppro¢initlon for the follawing

cases of Eq. (2.21) are
(1) 20, * w

. 2
z, = Z‘lu[vD'(Z.Z)(mZQ' - wa,a,

2
. vD'(l.!) (u‘a‘az - uzuzl . 02(2,1)(w20‘ - m]az)

2 2 2 2
02 ('.2)(m26112 - mla‘xz) + 03(2,2)(u‘1‘12 - uza‘)

*

*

2 2
D3(I,l)(utm2cx2 - “1“1“2)] cos2o'

2 2
u[le(Z.i)(m‘GZ - wza‘) + le(l.2)(u]aaal - mzxza‘)

+

2 2
02(2,2)(mza‘ - u102a') + Dz(l.l)(w‘aza1 - mzaz]]

2 2 2 2
. D3(l.2)(m1mza‘a2 - u‘uza‘] + 03(2.1)(m‘u2a] 2y az)]sinzaz
4 2 2
+ Ze[lz(mzu‘a‘ - w,@a,
B 2 2 g 2 2 2 2
* Ay luyea; - T ) R L T L w e, )]

. 2 2
’ - [u[vb‘(z.l)(mza‘ - wa,) + vD‘(l,Z)(uzaluz - waay)

2 2
* 02(2.2)(m‘a|az - wzo]) * Dz(l.l)(uzaz uIa‘aZ)

2 22 2
+ 03(2.‘)(u‘az - u‘uza') 14 03(1.2)[u'a'a2 wzw‘cz)] cosZa!

2 2
- u[vD‘(Z,Z)(uza‘ - u'a‘cz) . vD‘(I.l)(mla‘oz - wzaz)

2 2
4 DZ(Z.I)[mza' - m‘azl . 02(1.2)(1.:20211 - u]cza')




+

+

+

+

+

2
T oWy Oy @y T W w0,

+

(2) 2w
2z

+

e

+

+

+
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2 2 2 2
03(2,2)[w1a102 - wowyn, ) ¢ D3(1,1)(w2w1u2 m10201)] sln2¢1

2 2 4 2
0201 T W 030 ) + C(1.1)C(2.2)(w202 + w201

17271

z§<[3c(2.2)2(m2

3 2 2 _
w,a50, - w10201) + 3C(1,1) (m2u2 m1u1a2)]
3 22
- m1a2a7) + c(2,2)c01, D (wn587)

zf‘[3C(2.2)2(w2a?

n |-

2 3 2 2
w0, A w10102) + 3C(1,1) (mzuz w1a1az)]

2 2 2
A[G(w1 aa, * w0y

* Kyplw a0, = w,

K11(“1“1°2

2 . 2 a ]
Wow &y F w250,

2
= Zz{u[le(2,2)(w1u2 - w2u1u2)
. (1) ., = wia, ) + D2, D(wa, - )
TRRRRRAL S Sl ol B Rl lern Hlw ey = woy
D.(1,2) (. 0.0, = wyala,) *+ D.(2,2) (w0 0
PARNARAS S At i w2 3+ 2712
w2w10§] + D3(1.1)(w2w1uf - w§0201]]c052¢2
[vD, (2, 1) (wsa, - w,a )+ w., (1,2) e azu - w,a 02)
HLVE R 2N 172 (R 272N 1721
D, (2,2)( ol - w0 ) + D01, ) (wa,0, - 02)
PRI A %172 AR 2%1%2 T %
p.(2,1)( a, - 20 )+ D, (1 2)( azc -

" 2 _ 2 ! 2
2e[ayluymap = wzaiep) + Ay lupwe

S
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2 2 2 2
- wza]az)]} / [U(uzu]az - w2w102 - w2u1a1 + W a1a,)]
5, = [ulvo, (2,1)( (03,35 = 9,150, )
b, = lu vD,(2.1) w3, - mZJI) + vD](1.2) T e

2)

+ 02(2,2)(w a2, - wa,

27172

+D (1,1)(u1a$ - mza‘az) + 03(2,1)('»201 - n1a,]

2.2 2
¢ 1 -
D3\ .2)(w20201 w0, a8, ) c032¢2
2 2
- u[vD,(Z,Z)(m,u2 - mza1a2] + vD‘(1,1)(u2a102 - m1a1]
b 2
. 02(2,1)(m102 - mea‘) + 02(1,2)(u‘a231 - w24231]

2 2 2 2 ,
+ D3(2,2)[w2 aya, - m2u102) + D3(1.1)(u2ula‘ - n21211)] san:Z
2 2 2.2 3 4 2
. 2] x(3c(2,2) (016201 - m2a2u1] + c<z.2)c<t.1)(m,a1 * wag

] 3 2( 4.2 .
w,a,a, 053,58, ) + 3C(1,1) [u a uzazal]

1 .2 2 4 3
5 25 (3¢(2,2%wja, - wy,’a,)

2 22 . 3
+ C(2.2)C(1.1)(u1a2 *wasa TPLIL PR L 01)

* 3c<1,1)2(m1a§ - uza1a2]] + A[G(u§a1a§

+ wza - waw, 02 - wow,a ] + K (w a,a, - w 02)
271 27120 27172 22727172 172

2 2 2
- m]a‘]]} / [U(mza1az T wyw,a,

+

Ky (wya,0,

ol + w.%.a)]
wyw Ay T 9 %2

(3) Iw‘ * w2| = w

i’ = {Zziu{»D'(Z.Z)(w21102 - ulaz'; . »D‘(l,l}(m 13, T a5,
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3 _ 2
D2(1,2)(w202 w, 0, 01)
D,(2, ) {w,a, - wa,) + D, (2,2 (ww ol - Wlaa )
21 C0 17N U50y 192 3t 2% %2 2721

2 2
D,(1, 1wy = wyuye,a,)] cos(e; + ¢,

2
u[vD,(Z.I)[m102 - w201) + vD1(1.2)[m10201 - w2623]

2 2
D2(2,2)(wzu1a2 T wa, ] + D2(1.1)(w1a201 =Wy, )

2 2 2
D3(2,1)(m201 - w1m202] + D3(1,2)(w2 023 T w w0, 01]]sin(¢

4 2 2 Yy 2
2€Z1[X2(w1m201 -, 0102) + 11(N2N1°2

2 2 2 2 2
w]o102)]} / [“(“2°1°2 T Ww, 0, T W w0, *w a1u2)]

- {2 fulwo, (2,1 (w0, - wa,) « w0, (1,2,

- w.a.a. )+ D2(1,1)(w2a2

2 2
w a2a1) + 02(2.2)(w1u 5

) 2 212

(1.2)[w1w 020

2
a, )+ D 2%o%

17172 3 17272 21 3

2 3 . - 2
wya,”)] cos(e, + 0,) - ulw (2,2 (wma, - wa,”)
v, (1, 1) (w,a.a, - 02) + o2, ) (wa, - w,a,)
TRREA L Rt b S b PARERRALP Ll B S R
2
02<1,;)(w2a23 - u1u501] +n_(2,2)

2 2
D3(1,1)(U202 - w2w10201]]81n(°1 4 02)'

2 2 2
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C(1.1)C(2.2)(w202 *wa) - waya - w]aza1]
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2 2 2
. C(2,2)C(1.1)(m23261 "y,
- 3. . 2 2
w a3, “1“1“2] + 3C(1,1) (wzaz

- wjaa,)]

2 2 2
* A[clujaya,® + wa, - “2“1“2“1 T W w,
+ K (m a.a, - wa 2] + K [m a.a
224938, T 0%, 1149149,

2 - 2 . 2 ]]
u2m1 az w2m1 (l.l u)‘ 01 02
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2 1 17172 21
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2721
+ 02(1.2)(w1013 - m202012) + D3(2.2)(m2

a

2
- u[vD](Z.l)(wza1 - 102] + vD](‘l.Z)(mzaaa1 - wa,

+ 02(2.2)(w2a2a1
2 2
+ 03(2.1)(m1a2 - ww,a,) * 03(1,2)(m1a1

y 2 2
+ Zszz[xz(wzmlaz - w2a1a2)
4
+ A} (m2w1a$ -
2 2
T ww e, w1u1az)]
2,0, = 12,10, (2,1)(wya, - w8, ) D (1,

2 2
w8 5a, ) + D2(2.2)(u201 - w, a0,

¢ 0,01 1w, % - waa, )+ D201 [y

2
- w3, ) + 02(1.1)(wza

- w1, (8w, e,

S

2 2
W T Y%
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212
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2
03(1.2)(w1u2a201

+

- w,%a,?)Jcos(s, + ¢,)

2 2
u[vD1(2,2)(m10201 - wyo, )+ vD1(1,1)(wza1a2 - w e )

S

- 3 _ 2
D2(2.1)[m1a2 “2“1) + D2(1.2)(w1a1 m2u2u1 )

+

2 2 2 2
D3(2.2)(w2m101 - ”1“2“1) + 03(1.1)(m1 a,” - m1w201u2)]sin(¢1 + oz]l

2: 2
+ 22{212K[(30(2.2) \w1a§u1 - u2u2a13)

y 2 3
+ C(2,2)C(1.1)(w1a1 * WG, T wy0,0, w5058 )
2 2 1 .2 2 Yy

+ 3C(1,1) [u1u1 - w2a2a1) * 32, «[3c(2,2) [w1u2 - w2a23u1]

2 2 2 3
+ C(2,2)C(1.1)(m102 Y w,aa, T w0yt w05 01)

2 2 2 2
+ 3C(1,1) (w101 - wza1a2)] + A[G[wz a, a

20 - w,w,a 62 - ww,a,) * K (w.a,a, - w QZ)
1 271721 2172 22' 7212 172

+

wa

2 2 2
+ K11(w201u2 - m1a1)]} / [U(m20102 - w2w102

- 0.2+ u %0 )]
w94 wy 4%

(4) Ju

- u,l -

1 o/

. . 2 2
z, = {hz{u[v01(2,2)(uzd1uz' w102) + D, (1,1) (00, - waya,]

+ 02(2.1)(w102 - w201) + 02(1.2)[w2023 - wla§01)

2 2
+ D3(2,2)(w2 @0, " wwl, )

2 2
4+ 03(1.1)(w202 - w‘uzu102)] cos(¢1 - ¢2)

2
+ u[vD.‘(Z.‘l)(wzu1 - u102) + vD1(1.2)(w102 o, - m2u23)
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2
. 02(2.2)(m2a201 - w102) + 02(1,1)(u2a§ - m20102)
2

2 2
) -
+ 03(2.1 (mza1 ”2“1“2] + D3(1,2)(w2m102 a,

2 3 y 2 2
- w, o, }] sin(¢t - 02)} + ZEZ‘[XZ (wzmia, - W, alaz)

2 2 2 2
R R LA L O P P L

2 2
T wywae, wya,,)]
*, - {Zzlu[vD,(Z.U(m,a2 - wzu,)
3 2
+ le(1,2)(u232 - w1023) + 02(2,2)(w102 - w20102)
+ 0,01, w,a,a, - 32, s+ 02, w0 w,a, - :23 )
2 121%2 7 92%2) gler 1wy @s = Wady

+ D3(1,2)(m§a23 - m1w2022a1]]cos(¢1 + ¢2]

2 2
- u[vDI(Z,Z)(m231az - w1a)) * vD1(1,1)[w212

\ 3
“1“1“2) + 02(2,1)(w102 wya, ) * 02(1.2)(u2a2

2

2 2
(2,2)(m20102 - wwe, )

w102a1] +D

3

2 2
+ 03(1.1)(w2a2 - w1u201a2]]sln[¢l - ¢2)

2
+ 21{22‘[3C(2.2)2(waa§a‘ - w1023u1)

4 2 3
+ C(‘.')C(Z,?)(uzaz t w8 T w8,a w10201)

4
v 361,30yl - waga,)] ¢ 1 2, 2362, (w50, ' - u,

2 2 2 _ 3
* C(2.2)C(1,1)(wzaza1 * w8, W, 3,53, “10102)

. 3C(1,1)2(m203 - wy0,a,)]

02»1

1

3)
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2 2 2 2
+ Al6(w,“a 8" + w0y - wpuias, wjwyay)

+ K 2) + K11(w Q.a

T w9 1%%;

22(”1°1°2

2 2 2 2 2
w ]]} / [”(w2a102 T w08, < W, + w u1u2)]

. 2
22 = {21{u(vD1(2.2)(w201 - w1a102]
+ v, (1, {wg,a, - w,a 2] + D (2,1 (w0, - wa,)
VO LT, T w385 = @95 PARLRRALF ol 1%2

3 2 2 - 2
+ D2(1.2)(w1u1 - w050, + D3(2,2)(w1 a,a, w1w201]

+ D_(1.1)(w$cf

3 - w1wzu1u2]] coa[¢1 - ¢2) ~ u[vD1(2.1)(m1a2

2 3 2
w2a1) + D1(1.2)(m2u201 wa, )+ 02(2.2)(w2u1 - w1a102)
2

2
+ D2(111)(U20102 - w,uz ) + D3(201)(w2w)°’ = w] 02)

2 2 4 2
+ D (1,2)(m1 013 - m1w23201 )]sin(tp1 - ¢2]} + 2cZz[A2(w2w1u2

3

2 4 2 2 2
w, 0102) + A1 (w2w131 - W, aluz)] / [u(mz a,a,

Waw,a - w, w0 2., w 20 a )]
27172 1721 1172

* 2 3
22¢2 = {21{u[vD1(2.1)[w1a2 - w201) + VD1(1.2)(w23201 - wa )
+ D (2 2)( uz - w, 0.0 ) + D.(1 1)[m a.a, - w,Q 2)

2 el 122% FARL 2%2% T "%

I F 23 2 )
+ D3(2,1)(w2w10‘ w, 02] 4 D3(1.2)(w1 a, wouw, 8,50, )]COS(¢1 ¢2)

2 2

- u[vD‘(Z.Z)(w1u102 T w0, ) + vD1(1.1)(m1n1 - w20102]

e 0.(2, (w0, - wa) * D12 (60,02 - wa,s)
ARt et B Al AR b 2| it

2 2 . 2 2
+ 03(2.2)(4»2«:101 W, u201j + D§1,1)(w2u1u2u1 < w, a )]sin(o1 - ¢2)
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- N

2 2 2 3
+ ZZ{Z1 x[3C(2,2) (mlaza - wyaa, )

] 2
. C(2,2)C(1.1)(w1ul Wy T w,a,0, T m202013)

1 2 y
+ 3C(1.1)2(u‘c‘2 - u2a201) *3 Zg x[3C(2,2) (mlaz - m2023a1)

a 2. a,a, = w0 30 )
1 W% %2 272

2
v c(2,200(1,1)(uyaj * ujos

2 2
+ 3C(1.1)2(m1012 - w201u2]] + A[G(mz a,q,

+w 20 - W, W, 02 - w.w,a + K (w a, e, - W az]
2 1 271721 212 2221 2 12

+ K (waa, - wa 2]]} 7 (4w 2a A, = wau 02
1212 L 2 172 27172

- m1m2012 + m120201)]
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APPENDIX F2
DEFINITION OF PARAMETERS IN THE AVERAGED EQUATIONS

The parameters in the averaged equations are defined as follows:

- [VD1.k1 - (DB.RZGJ + DN,kI”J)] ’

= [0y 2 oy ¢ (D3 40 = Dy pmyeg)]

(A2A$ + A1azB:) 7 (48) ,

[~
]

2 1
u,. = (-a.ns - A1u182) 7 (4a) ,

22 272
2 1 »
Vi = (AZB1 - A1a2A1) / (k8)

1
V.. = (-apB + A1a1A2) / (48) ,

1
> A10282) / (4a) ,

(=
| |
—~~
=
[\V]
=
FS

u,, = (-2 22 - A1n1B:) / (ua) ,

2 1
vV, = (A252 - A,aZAZ) / (ua) ,

V.. = (-a 82 o A1a1A:) / (48) ,

21 2°1
- 2 1
Uy, = (8,47 - A’asz) / (us) ,

)
= (a a2 - A‘u151) 7 (va) ,

2 1
v, = (8,85 A132A2) 7 (4a) ,

2 1
21 = (8,8 + 8,38y) 7 (ka]

where A < O .
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II. In the averaged equations the damping, nonlinearity and detuning terma

are defined as follow: (r = 1,2)
1. Damping terms:

4 Yy r+l
£, = {2zr[x2 w.a b, * X]wpa3_rﬁ1] (- 1)} 7 quay

-~

Er = E'Er .
2. Nonlinearity terms:
§:_ - ("/2)[(30222"‘:-3 * CyalpyoaJay (C22011“r2°3-r * 3C11203-r‘h1}’
ﬁi a (x/Z)[(Bszzarag_r + Cl1c22°r)A2 + (C22C11ag_r + 3C11za3_r)A1],
N, - [(ﬁr’.zr2 . 2§iz3_r2] (-1)7] 7 (ua) ,
and let
R ZN12222 '
NZ = 2N21Z12 + N22222 .
3. Detuning terms:
AD, = A{”[G(w3_rwrar + m3-r“ra§-rar - mi03_rai - wr203-r)
. K22(w3-rzar2 - wrura3_r) + K‘1(m3_ra3_r2 - “r°r°3-r)]l/(“A)'-
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APPENDIX F3
STABILITY CRITERIA OF TRIVIAL SOLUTION AND FORMULATION
OF LOCAL BIFURCATION ANALYSIS
The satability of the trivial solution {is determined by the

eigenvalues of the linear part of Eq. (4.3), i.e.,

nu + ;393 . 3202 +af+a =0 (c1)
where

a; =2 B, ¢+ g,)z0,

a, = AZ(D12 + 022) + E*z(g1 + 52]2 ~2n,

a, =2 E*AZ(Dlzgz + 0225.1) -2 E'(£1 + 52] n o,

a = (n - 120102)2 + 125*2(0152 - 0251)2 20,
and

2 2
n=(n R, - E* 51‘2) .

The stability criterion can be written

>0, a, >0 and

a° >0 ,a, >0, a 3

1 2

a, = a,a,a, - a a 2. a 2
Y 17273 o3 1

2¢. 2 2 2 2 2 2
= uE*"[2%g,6,(D; + D,)° - (g, + &) n]-[°(p, - D,)° + E¥°(e, +¢,)?) > o

It 1s obvious that for Rp <0, 1.e., n < 0, the trivial solution is always

stable and for Rp > 0, the stabllity criterion reduces to

2 2 2
(e, €, >0, 2%6,(0, + D) - (g, « &) > 0. (c2)
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The trivial solutlon loses stability when

2 1) @ 0, ) (3
2 1
and %he elgenvalues are
a1 @ o2 o sy
and
s (:J) : [(;3)2 - a—‘;—?]”z : (cu)
From the direct and adjoint eigenvalues problems,

i.e., Aa = Qa2 with a =c¢ + 14 and ATQ = Qb with b = e + if, one can obtain
the eigenvectors a and b, respectively at A = X; » at X; and A; the
2l3envectors may be different even Shough Qi Tre the z22m2, Surtharmora,
depending on whether 03'u are complex or real eigenvalues one can make use

of the transformation

X, = 2(C;u1 . d;uz) + 2[C§v1 + ajvz) .
Y - 2(c;’J u, * a;ﬂ u,) + 2(C§§Jv1 + dg,Jvz) .
or
Xy = 2 [C;u1 + d;uz] + a?v1 + a;vz , (C5)
YJ - Z(C;’zu‘ + d;’Juzl + ag*Jv] + a;’Jv2 ,

to reduce the llnear operator to
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0w, 5 v 0
dtag {[ 1. ( Il or atag {[ Joaga,t . (co)
W, 0 W, -62 W, 0
Superscripts here, denote the eigenvectors corresponding to the critical
eigenvalue. The §'s and w's in Eq. (C4) are the real and the 1zazinary
parts of the elgenvalue. It i3 evident that the averaged system exhibits a
Hopf bifurcation at \ = xc and the results of the difurcating solutions are
given in Eq. (4.21). In order to obtain the values of R and S given by Eq.

(4.22), 1t is sufficient to express gy and 85 in ter:s of new variables u,

and up alone. This s due to the fact that vy and v, can te naglected in

S fiert m-eeemsdmeties, sinze the reonllnscciticr cre cahic o dmoooat ity
Thus putting
2 .2 2 .2
Foo= = Dy (g » oy wan 06+ o)y
2 2 2 2y~
PR PN R 0 LR PIC PR PN P
Y 2 o2 2. —
Fy - [h11\)1 <Y, R 2N12(k2 * Y, )]x] , (c7)
-~ 2 2 2 244
Fy = [eh, (%%« x,%) ¢ sz(x2 .Y, )] X,y s
where X, = 2(C1u + d’u ) Y, = Z(C1 u, +d u )
J I j 2’ 3 2+31 2+3°2
and
e 81 e‘ e1
s-[' 2 3 4 (c8)
-f‘1 _1'1 - ’ -1‘1

we can write G = S + F aa functions of u; and uj.
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APPENDIX F4
STABILITY CRITERIA CF NCNTRIVIAL SOLUTICN

The atabllity of %nhe characterlstic equitton {4.12) 13 5@/

v

Routh~Hurwitz criterta, t.e., for equation

’ L ’O,
93 3202 ’ &,D 30

whera a

vl sal’? |

a,2,,(8,7€,)' 2

1710 2

172,
*oglyliy/e ) h

1/2 172
a_ = F 28‘(51/52) / ‘/,[Z

@ 0% ° 22002] .

T~2 asazility crit2rlcn c2n be written a3 folicW:

>0, a,>0 and

ao >0, a 2

1

a

a,-a = 23-3(5l . 52)3 . 2F2°E'(51 . 62)

172

172
RERER IOV N

1/2
¥ 28% “5‘ * 52}[0 2°20

1Z1olE78;

172
- (£,8,) [z, 49, * Zyg0,]} > 0
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