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ABSTRACT

From a Boussinesq system of equations modified to

include background wind and temperature profiles, a

-- two-dimensional, nonlinear spectral model is derived to

study the development of boundary layer roll circulations

in a nonrotating, stratified environment. The spectral

* expansions for the dependent variables include more than

one vertical harmonic, thereby allowing the determination

I of the structure of the roll circulations and the roles of

3 the dynamic and thermodynamic instability mechanisms. The

dynamic forcing is represented by a Fourier expansion of an

3 arbitrary vertical profile of the background horizontal

wind.) The thermodynamic forcing is represented by a

I genealized, nonlinear background temperature profile. The

spectral system of equations is obtained by using the

4alerkin technique and contains the appropriate energy

surces for representing both the Rayleigh-Benard and the

inlection point instability mechanisms.

In this s*, only the linear aspects of the roll

3 solutions are examined through the use of a standard linear

stability analysis. From this analysis are obtained the

3 minimum critical values of the dynamic forcing parameter Re

and the effective thermodynamic forcing parameter Ra, that

represent the smallest magnitudes of the forcing rates

3 required for the onset of roll circulations. In addition,

/
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the preferred horizontal wavelengths' circulation depths

and orientations with respect to a reference direction are

found for the various roll modes. ( _, i --

The primary emphasis of this study is to test the

Ihypothesis that dynamic forcing by wind shear in a capping
inversion can interact synergistically with thermal forcing

at the lower boundary to excite boundary layer roll modes

that can extend into that inversion. Owing to time

constraints, we do not perform the nonlinear analysis that

Iwould provide evidence confirming our hypothesis and
3 showing whether this interaction is manifested by one or

two dominant circulations in the vertical. This model is

* tested with an idealized wind profile and arbitrary

temperature profile. The model results are examined

further by using two observed wind and temperature profiles

obtained from the 1981 West German field experiment KonTur.

One of the temperature profiles displays a distinct capping

I inversion having significant wind shear; the other

temperature profile is characterized by weak, generally

linear behavior that has only a small portion of the

3 capping inversion, as well as moderate wind shear, within

the vertical domain. Good agreement with observations is

I found in the first case having a distinct inversion capping

* a well-mixed layer--a result unobtainable from previous,

simpler models. Although the model results for the case

3 with an observed, generally linear profile are acceptable,

U
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they are slightly poorer than the results obtained by using

Ithe simpler model that has only an estimated linear
profile. In both cases studied, many aspects of the

observed roll circulations are adequately described by the

inflection point instability mode that is excited by shear

in the upper portion of the boundary layer, in agreement

with the energetics analysis of Brummer (1985).
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Chapter 1

INTRODUCTION

In the present study, we examine the effects of wind

shear in a capping temperature inversion on the development

of roll circulations in the planetary boundary lyer.

Although the boundary layer is usually viewed as extending

3 only up to the inversion base, we will broaden this

convention somewhat to equate the depth of the roll

I circulation with the depth of the boundary layer. In this

thesis, we extend the spectral model of Haack-Hirschberg

(1988) for nonrotating, two-dimensional, thermally and

3 dynamically forced flow by including a generalized vertical

temperature profile in addition to an arbitrary background

*horizontal wind profile.

Horizontal rolls usually are confined to a boundary

layer that is capped by an inversion, but in some cases,

3 the roll circulations may extend some distance into that

inversion. Certainly, roll circulations that are driven

* thermodynamically from the surface must remain below the

inversion. Thus rolls may extend into the inversion oDl

if sufficient dynamic forcing occurs within the inversion

* itself.

Brummer (1985) presents evidence via visual

observations and an energetics analysis that in some cases

* roll circulations do indeed extend into the stable

I
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inversion layer and are not simply bounded by the average

level of the inversion base. Apparently then, a deep roll

circulation may develop via a synergistic interaction of

the motions forced thermally from below the inversion and

the motions forced dynamically from within the inversion.

In this case, the inversion base is not a material surface

forming a lower boundary for a circulation decoupled from

3 the well-mixed layer, as is often assumed. Thus modeling

the effect of dynamic forcing within a capping inversion on

I boundary layer roll development by permitting the rolls to

extend into the inversion rather than just to perturb it,

is a physically relevant goal, and it is the goal of the

present study. An improvement in previous spectral models

(e.g., Shirer and Brummer, 1986; Haack-Hirschberg, 1988)

*for these types of cases is possible by improving the

3 representation of the basic state temperature variations

via inclusion of a nonlinear vertical temperature profile

3 in the model.

Boundary layer roll circulations may be influenced by

convectively forced gravity waves that are reflected by the

3 stratosphere or by the capping inversion itself (Clark et

al., 1986). Because we do not include in our model the

I complicated and not yet fully understood interactions of

gravity waves with the boundary layer, we are not

representing the effects related to these convection waves,

*even though they may substantially influence the results.
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Favorable results obtained with the boundary layer-limited

model, however, may provide some evidence that the effect

of gravity waves on roll circulations is of secondary

importance.

From observational studies, characteristic background

flows and typical spatial and temporal features have been

associated with roll circulations (e.g., Kuettner, 1959;

LeMone, 1973; Kelly, 1984). Theoretical studies of roll

circulations have identified four possible instability

I mechanisms, three of which are well known: a thermal

mechanism, which is due to the Rayleigh-Benard convective

instability, and two dynamic mechanisms, which are due to

the inflection point instability and the parallel

instability (Brown, 1980). More recently, a fourth dynamic

instability mechanism, the shear instability, was

3 discovered by Haack-Hirschberg (1988), but the properties

of this new instability mechanism are not yet fully

3 understood. Finally, numerical and analytical models have

further clarified the properties of roll circulation modes

that arise from the three well known driving instability

mechanisms (e.g., Faller and Kaylor, 1966; Asai, 1970;

Shirer, 1986; Shirer and Stensrud, 1988). Although these

I efforts have improved our understanding of roll

circulations, we continue to seek a relatively efficient

but accurate means for diagnosing all the mechanisms

underlying roll circulations. Lorenz (1963) demonstrated
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the adequacy of using low-order spectral models to

represent convective flows, and we use this type of model

to examime several boundary layer instability mechanisms.

As mentioned earlier, we develop a modified version of

the low-order spectral model created by Haack-Hirschberg

(1988), who combined two previous models: the pure dynamic

model of Stensrud and Shirer (1988) and the single-

wavenumber thermal model of Shirer (1986). A model that

contains representations of both of the dynamic and

thermodynamic forcing rates adequately captures the thermal

and inflection point instability mechanisms that are

thought predominantly to produce boundary layer roll

circulations (Kuettner, 1971). Linear analyses of

low-order models yield the critical values of the

I appropriate forcing parameters whose magnitudes must be

exceeded in order for rolls to form. The relevant forcing

parameters for the present study are the effective Rayleigh

number Rae, which represents the magnitude of the

surface-based thermodynamic forcing Ra as modified by

I thermal dissipative effects of a capping inversion or a

stably stratified boundary layer, and the Reynolds number

Re that represents the magnitude of the dynamic forcing by

the background wind shear. The critical values of these

parameters, denoted by Raec and Rec, are functions of the

horizontal cell wavelength L, the orientation angle 9 with

respect to a fixed reference direction, and the assumed

I_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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depth ZT of the roll circulation. The minimum values of

Raec and Rec, denoted by (Raec)min and (Rec)min, designate

the minimum, critical forcing rates necessary for roll

development to occur. The corresponding values of L, P and

zT yield the preferred geometry, Lp, Pp and ZTp of the

resulting roll circulations. Finally, from the above

parameter values, the preferred values of the roll

propagation period Tp may be obtained.

To provide a visual representation of the relationship

between the critical dynamic and thermodynamic forcing

rates, we plot the values of (Raec)min as a function of the

values of (Recmin. Often several curves can be drawn, one

3 associated with each particular instability mode. If the

parameter values for the atmosphere cross one of the

transition curves for a roll circulation, then the

associated roll mode is expected to develop.

1.1 Previous Studies

I Kuettner (1959) studied boundary layer roll

3 circulations identified through the presence of linear

cloud patterns known as cloud streets, and he was among the

3 first researchers to identify the characteristics and

causes of these cloud patterns. The existence of cloud

I streets indicates that roll circulations are occurring, but

3 the lack of cloud streets does not indicate an absence of

I
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roll circulations. It is generally believed that the

clouds simply act as tracers identifying the roll

circulations and that roll circulations occur much more

frequently than do cloud streets (e.g., Kuettner, 1971;

Brown, 1980). Extensive observation of cloud streets has

provided information on typical roll wavelengths,

I orientation angles and propagation periods. This data

suggests that roll circulations are predominantly

two-dimensional, have wavelengths ranging from one to eight

times the depth of the boundary layer (Kelly, 1984) and

propagate with periods of between 15 minutes and two hours

(Brown, 1972). Cloud streets commonly occur in

environments having moderate to strong wind shear

(Kuettner, 1959, 1971), although in some cases they occur

in relatively light winds as well (Plank, 1966). The

orientation of the roll axis is generally parallel to the

direction of the mean wind shear in the boundary layer

(Kuettner, 1959, 1971). Figure 1.1, taken from Brown

(1980), shows a schematic of the structure of roll

I circulations that we study.

Since roll circulations are a frequently occurring

phenonenon in the boundary layer, it has been recognized

i that a better understanding of these secondary circulations

may provide a better understanding of how the planetary

I boundary layer interacts with the free atmosphere (Brown,

1970). It follows that increasing our knowledge of

I
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I

IFig. 1.1 Schematic Diagram of Typical Roll Circulations.

These circulations have wavelength L and are
I oriented approximately parallel to the direction

of the mean boundary layer wind v m (from Brown,

i 1980).

I 7

I7

I
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boundary layer/free atmosphere interactions will help

improve techniques characterizing the effects of the

boundary layer via the use of bulk quantities, and that

these results will lead ultimately to improved general

circulation models.

As mentioned earlier, roll circulations commonly

manifest themselves in the form of cloud streets and these

streets often occur within stratocumulus outbreaks. The

surface area of the globe that is covered by stratocumulus

cloud decks is significant, being quite persistent in the

Northern Hemisphere summer near the eastern boundaries of

the subtropical oceans and in the Arctic region (Agee et

al., 1973; Suarez et al., 1983). Both global climate

models and general circulation models would benefit from a

better understanding of how these essentially solid cloud

decks form and evolve. In some cases, roll circulations

play a major part in the dissipation of these stratocumulus

cloud decks (e.g., Nicholls, 1984). It is therefore

important to discover the conditions under which the roll

instability mechanisms can act to cause a solid deck of

stratocumulus to break into streets. The decrease in

effective surface albedo in these situations would be

significant since an area that previously was covered

completely by clouds becomes mostly clear; this clearing

occurs because the surface area covered by cloud streets is

only a fraction of the area over which the roll
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circulations extend. Roll circulations also act to affect

the energy transfer between the boundary layer and the free

atmosphere. Rolls modify the existing energy balance by

increasing surface friction, extracting momentum from the

mean flow and redistributing surface heating, moisture and

turbulence (LeMone, 1973). All of the above interactions

upon the boundary layer and free atmosphere warrant further

study of roll circulations.

As noted earlier, the four instability mechanisms that

have been identified with the development of boundary layer

rolls are the thermal instability, the inflection point

instability, and the parallel instability (Brown, 1980) as

well as the shear instability (Haack-Hirschberg, 1988).

The thermal instability is often called the Rayleigh-Benard

instability in honor of Lord Rayleigh who studied the

generation of roll circulations in Benard convection. This

mechanism may operate in a statically unstable environment

when a sufficiently large positive lapse rate exists near

the surface. When this lapse rate, represented by a

Rayleigh number Ra, exceeds a critical value, roll

circulations form to replare thp m-tiorless, conductive

state. In this case, convective perturbations are able to

grow by extracting energy from the background thermal state

(Shirer, 1986). The mean background wind shear also

influences the thermal instability mechanism by causing

free convective cellular patterns to form into linear
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patterns with respect to the mean wind shear direction when

I the mean wind speed is greater than just a few meters per

second (Kuettner, 1959, 1971). Indeed, Kuettner (1971) has

shown that a wind component normal to the roll circulation

* axis imposes a stabilizing effect on the transport of heat

via convection. Consequently, thermally driven rolls

I acquire alignments that minimize this cross-roll component

of the wind shear (Shirer, 1980). These two-dimensional

rolls can bifurcate into three-dimensional cellular

patterns if the lapse rate increases sufficiently in

magnitude relative to that of the wind shear (Kuettner,

1971).

In a dry neutrally or stably stratified environment,

the potential temperature lapse rate is necessarily

nonpositive and thus, perturbations must derive energy from

the background wind profile (Stensrud and Shirer, 1988;

Haack-Hirschberg, 1988). Two such dynamic mechanisms are

3 described in the literature: the inflection point

instability mechanism, which is a form of the Kelvin-

I Helmholtz instability, and the parallel instability

3 mechanism. Rayleigh (1880) discovered that a wind profile

with an inflection point was inherently unstable to

infinitesimal perturbations. However, an inflection point

is a necessary but not a sufficient condition for this

-- instability mechanism to exist (Drazin and Howard, 1966).

More recently, Brummer and Latif (1984) revealed that an

I
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inflection point located near the middle of the domain

I yields the most unstable unidirectional wind profile. For

I this dynamic mode, perturbations grow by extracting energy

from the component of the wind shear normal to the roll

axis. Therefore, roll circulations generated by the

inflection point instability mechanism are generally

aligned normal to the (unidirectional) wind component that

3 has the maximum amount of shear (Haack-Hirschberg, 1988;

Stensrud and Shirer, 1988).

I In contrast, the parallel instability mechanism is

characterized by the growth of perturbations that extract

energy from the along-roll wind shear (Kaylor and Faller,

3 1972). Rolls formed by this mechanism are aligned parallel

to the direction of along-roll wind shear, as are the rolls

I produced by the thermal instability mechanism. Lilly

3 (1966) was the first to study the parallel instability

mechanism and revealed that it is a function of the

3 Coriolis force and the (eddy) viscosity. Thus, including

the Coriolis terms in a physical system can make along-roll

perturbations energetically active. However, Brown (1970)

* concluded that this instability mechanism is not important

st values of Reynolds numbers or wind speeds typical of the

3 atmosphere. In contrast, other investigators (e.g.,

Etling, 1971; Kaylor and Faller, 1972) believe that the

Coriolis terms provide a significant source of energy to

3 the development of roll circulations.

I
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The fourth known instability mechanism is the shear

instability that was recently identified by Haack-

Hirschberg (1988). This dynamic instability mechanism,

which may be a form of gravity wave instability, is

characterized by a strongly stratified (Ra < 0) atmosphere

and by relatively strong wind shear or large values of the

Reynolds number. For simple wind profiles, the growth of

perturbations is preferred in the direction normal to the

mean wind shear, as with the inflection point instability,

but is not dependent on the existence of an inflection

point in the wind profile. Perturbations occurring under

the above conditions can grow from any wind profile having

sufficient wind shear.

1.2 Spectral Modeling of Boundary Layer Rolls

In many previous studies of secondary flow

instabilities for boundary layer roll development (e.g.,

Brown, 1970; Etling, 1971; LeMone, 1973), investigators

*have reduced the partial differential equations into a

-- system of wind profile-specific ordinary differential

equations in appropriate amplitude variables, or to a

single high-order differential equation in one of the

variables. These methods produce satisfactory results but

are lengthy and complicated to develop and require

3 significant computer time. In more recent years, the

I
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low-order modeling approach has been employed to represent

the roll circulation modes developing from the above

instability mechanisms. Lorenz (1960) introduced this

modeling concept, which is based on the assumption that the

dependent variables may be represented by a small number of

horizontal and vertical harmonics. From the shallow

Boussinesq system of equations, Lorenz (1963) used the

Galerkin technique (described by Higgins, 1987) to derive

the smallest possible nonlinear spectral model for the

representation of Rayleigh-Benard convection. A complete

review of the Lorenz model and of nonlinear hydrodynamic

modeling in general is found in the book edited by Shirer

(1987a).

Spectral modeling of roll circulations has been

*conducted using successively more complicated low-order

models. Spectral models developed by Shirer and Dutton

(1979), Shirer (1980), Shirer (1986), Stensrud and Shirer

(1988) and Haack-Hirschberg (1988) have extended the Lorenz

(1963) model to include the known significant instability

I mechanisms pertaining to roll circulations. The resulting

-* roll characteristics compare well with those obtained from

earlier numerical models of Rayleigh-Benard convection and

more importantly with observations. The method of

low-order spectral modeling has, however, been criticized

by some who are concerned that the severe truncation used

to represent the dependent amplitude coefficients may
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prevent sufficient representation of the full physical

problem. Indeed, these concerns still remain at present.

However, because spectral models can represent the

background wind profile explicitly through the Fourier

coefficients of the wind and wind shear, Shirer (1980)

noted that this modeling approach is ideal for direct

Icomparisons between theory and observations. Now, owing to

the work in this thesis, the background temperature profile

can also be represented explicitly by suitably chosen

Fourier coefficients, hence adding an important degree of

freedom to the problem.

-- As a test of the adequacy of our model, we apply it to

some particular cases. First we use idealized wind and

temperature profiles in order to ensure that this model

adequately represents the known instability mechanisms, and

* to test our hypothesis that rolls may extend into a capping

inversion if sufficient dynamic forcing is available in

that inversion. Then we compare our model results with

observations taken during the KonTur field experiment

(Brummer et al., 1985).

* The study here is a linear analysis that is the first

step toward finding the complete nonlinear solution, which

3 is planned as future work. The full solution consists of

roll circulations and roll-produced modifications to the

background profiles composing the basic state; the

summation of the basic state and its modification by the
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roll circulations yields an interactive basic state.

Observations necessarily involve this altered basic state,

and Shirer and Haack (1989) have shown that removing the

roll modifications from the background wind yields a better

Iestimate of the basic state that is forcing the rolls. As

a consequence, a better estimate of the preferred geometry

of the expected roll modes is obtained; these preferred

values must be chosen before the nonlinear solution is

found. Once this full roll solution is known, we will be

Iable to confirm the accuracy of the model results via
Icalculations of the energetics of the solutions. In

addition, we will be able to determine if one or two

circulations are dominant in the vertical via the

availability of two vertical wavenumbers in the vertical.

Thus, obtaining good results for the preferred geometry

using the linear version of the full model is an important

indication that the nonlinear model is able to capture the

essential physics of the problem.

The Haack-Hirschberg (1988) model results for the 18

September 1981 case of the KonTur experiment did not match

observations very well because, in contrast to the wind

profile, the observed nonlinear temperature profile was

Iestimated using only a linear function. We find that our

model, which is an extension of the dynamic/thermodynamic

model of Haack-Hirschberg (1988), gives results that

compare very favorably with the observed data, with the

I _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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greatest improvement occurring in the dynamically driven

I capping inversion case of 18 September. Here, the good

results we obtain suggest that our model captures at least

the minimum degrees of freedom needed to study roll

circulations. Thus the geometry of roll circulations can

now be adequately described by a spectral model for the

i generalized case of rolls extending into a capping

i inversion in a sheared environment.

In Chapter 2, we present the full spectral model for

the combined thermal and dynamic instability mechanisms.

In subsequent chapters we perform a standard stability

analysis of the linearized system, and the resulting roll

circulation modes are investigated using various idealized

and observed wind and temperature profiles.

I
I
I
I
I
I
I
I
I
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Chapter 2

MODEL DEVELOPMENT

U As we mentioned in Chapter 1, there are four

mechanisms known to affect the formation of horizontal

rolls--three dynamic and one thermal. Two of the dynamic

I instabilities, the inflection point instability (Brown,

1980) and shear instability (Haack-Hirschberg, 1988),

originate primarily from the effects of cross-roll vertical

wind shear on perturbations in the basic flow. The third

dynamic instability, parallel instability, originates from

along-roll wind shear and rotation in the background flow

3 owing to the Coriolis force (Shirer, 1986). Finally, the

thermal instability occurs primarily when the effects of

surface heating dominate the dynamic instabilities

(Kuettner, 1971). To keep our model as simple as possible

while retaining the major characteristics of the roll

3 circulations, we choose to concentrate on the most common

instabilities--inflection point and thermal (Brown, 1980).

I In doing so we are ignoring the parallel instability by

3 neglecting the Coriolis force. This simplification can be

justified since the time scale on which roll circulations

3 exist is usually less than the time scale on which the

Coriolis force is important (Brown, 1980). As we see in

Chapter 4, the shear instability appears to be limited to

3 atmospheric conditions having strong static stability.

I
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Since our model includes both dynamic and

I thermodynamic forcing rates, we require the following

shallow Boussinesq equations for the perturbations

describing the rolls: the vertical and horizontal equations

3 of motion, the thermodynamic equation, the ideal gas law

and the incompressible form of the continuity equation.

UShirer (1986) found that in the presence of sufficient

3background wind shear, the first perturbations to grow
produce circulations that vary only in the cross-roll

plane. This is the mode we seek since it forms at a

minimum value of the forcing. Thus, variations along the

-- roll axis may be assumed to be negligible, and so the

system of equations reduces to a two-dimensional one. A

set of spectral equations is then derived using appropriate

Im Fourier expansions for the perturbations and the background

wind and temperature profiles. Haack-Hirschberg (1988)

gives an energetics analysis showing that the spectral

3 system in the linear temperature profile case contains the

dynamic and thermodynamic energy sources required to form

I roll circulations. When the capping inversion containing

3 wind shear is included, we will find here that the basic

energetics analysis remains essentially unchanged, with the

3 inversion acting thermally as an energy sink but

dynamically as an energy source.

I
I
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2.1 The Partial Differential EquationsI
3 Because roll circulations are limited to very shallow

depths of the atmosphere (less than about 4 kilometers), we

3 invoke the Boussinesq approximation that is modified

slightly to include arbitrary height-dependent background

wind and temperature structures. In this system, as in all

3 Boussinesq systems, the roll circulations are assumed to be

perturbations imposed on a conductive basic state. The

I basic state is hydrostatic and consists of arbitrary,

vertically varying, background temperature and horizontal

wind profiles. We use the first six coefficients in a

3 Fourier series to represent the background wind profile

(Stensrud and Shirer, 1988) and three Fourier coefficients

I to represent the background temperature profile.

* The basic flow has much larger spatial and temporal

scales than the roll circulations. Therefore, we assume

3 that time-independent background profiles lead to roll

circulations that in turn may alter these background

profiles. The fluid domain is assumed to be cyclically

I continuous in the x-, or roll-perpendicular, direction.

The y-axis defines the roll-parallel direction.

I Correspondingly, u(z) is the cross-roll wind component and

v(z) is the along-roll wind component.

I
U
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2.1.1 The Boussinesq System

The Boussinesq expansions for the dependent variables

are

u(x,z,t) = U(z) + u'(x,z,t) (2.1)

w(x,z,t) = w'(x,z,t) , (2.2)

T(x,z,t) = To(z) + T'(x,z,t) (2.3)

in which

To (z) = T oo - azT(water-air)(Z/ZT - 1)

+ H(z) , (2.4)

I p(x,z,t) = Poo - POgz + pi(x,z,t) (2.5)

p(x,z,t) = PO + p'(x,z,t) , (2.6)

and in which the variables Too ,Po and Poo are constants,

A z T(water-air) is the temperature difference between the

ocean surface and the air above it and ZT is the domain or

I roll circulation height.

The forcing mechanism for the convection is the

I surface temperature difference AzT(water-air); thus this

term must be positive in order for convective rolls to

I
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form. In the absence of this forcing, the background air

Itemperature profile is Too + H(z) where H(z) is defined as

- H(z) = - AzT(air)z/ZT + G(z) (2.7)

I in which

_ G(z) = Tcos(z/zT) + T2sin(2rz/zT)

3 + T3 cos( 2rz/zT) (2.8)

- and the coefficients Ti are constants. The first term on

the right of (2.7) is the linear lapse rate of the observed

temperature profile and is generally nonzero when the
inversion is included; thus IAZT(air)/ZTl is usually less

than the dry adiabatic lapse rate 7d . The second term on

the right of (2.7) is the harmonic part of the observed

3 temperature profile and the Fourier expansion we use for it

is given in (2.8). Including some of the harmonic portions

* allows for a representation of an arbitrary background

temperature profile. Figure 2.1 displays a vertical

temperature profile denoting the applicable variables. The

3 solid line in Fig 2.1 depicts the temperature profile

produced by including the harmonic terms in H(z).

Obviously, we see that three trigonmetric terms cannot

3 reproduce the original temperature profile exactly.

However, the small deviations from the original profileI
I
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Fig. 2.1 A Typical Boundary Layer Temperature Profile.
This profile is given by (4.6)-(4.7) (dashed
line) and its approximation H(z) is given by
(2.7)-(2.8) (solid line). The air temperature
near the surface decreases at the dry adiabatic

lapse rate Yd until the inversion base zi and

then increases within the inversion at the
constant inversion lapse rate Y(inv) until the

domain top zT .I
I
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giving for example the apparent stable layer near the

surface, are physically meaningless in this model because

we use vertical wavenumbers one and two to represent the

flow, necessarily filtering the effects of these small

deviations. In Section 2.2 we show the relationship

between G(z) and the Fourier integrals of the temperature

profile that define the coefficients Ti .

The primed variables in (2.1)-(2.5) denote the

perturbations due to the rolls. Upon substituting these

quantities into the complete partial differential system

and discarding small terms, we obtain a set of modified

Boussinesq equations in which the trivial solution

represents the basic state and the nontrivial solutions

represent the dynamic states, or roll circulations (Dutton,

1986).

We represent the wind flow with a streamfunction in

order to reduce our problem to one in the two variables *

and T'. The following form of the streamfunction satisfies

the continuity equation V • v' = 0:

= -u ; =w' . (2.9)
3z ax

A vorticity equation is formed next. With the pressure

gradient term eliminated, the Boussinesq equations may be
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written as

aI__(Vy) + (LfY) g+ T U + U 1-(Va2)
at T0 X ax az 2  ax

- V 4 , = 0 , (2.10)

aT' + J(#,T') - A B(z)
at ax

+ U aT' _ = 0 , (2.11)
ax

in which the nonlinear Jacobian operator J is defined as

J(f,g) = kf - U A (2.12)
ax az az ax

v is the coefficient of eddy viscosity and x is the

coefficient of eddy thermometric conductivity. The

buoyancy term B(z) is the difference between the background

and dry adiabatic lapse rates and can be written as

B(z) = - T - Yd
az

[AzT(water-air)/ZT - AH ] - Yd (2.13)

2.1.2 Boundary Conditions

We assume that the horizontal flow is 2r-periodic

since the vertical boundaries that define the horizontal
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portion of the domain are cyclically continuous. This

condition allows for the horizontal propagation of the roll

circulations by the background wind--a necessary condition

for modeling cloud streets. The width of the horizontal

domain is given by a characteristic wavelength L, where

0 5 x 5 L; preferred values for L are given by a stability

analysis (Chapter 3). In the vertical the rolls are

confined to the region given by 0 5 z 5 ZT, where zT

specifies the top of the domain. Unlike in previous

I models, zT is not necessarily at the bottom zi of the

inversion. Instead, the roll circulations in this model

can extend into the capping inversion, provided that there

is sufficient dynamic forcing. The value of zT is

variable, allowing rolls of various depths to be compared

U in order to see if their extension into the capping

inversion is plausible (Chapter 5).

A well posed initial/boundary value problem must have

appropriate boundary conditions if unique solutions are to

exist. We will choose the vertical boundary conditions to

be those that are frequently used and mathematically the

simplest in this type of modeling: rigid, stress-free, and

perfectly conducting (e.g., Shirer, 1986). The boundary

I conditions on * and T' are

I (O,z) = $(L,z) (2.14)

UI!_ _ _ _ _ __ _ _ _ _ _
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' (x,0) = (x,zT) VY(x,O) = V*(x,zT) = 0 (2.15)

T'(0,z) T'(L,z) , (2.16)I
T'(x,O) = T'(x,zT) = 0 . (2.17)

Boundary conditions always limit the Fourier representation

of the variables owing to the required choice of basis

functions. However, the above boundary conditions force no

unacceptable limitations since our physical problem allows

full waves horizontally and half waves vertically.I
2.1.3 Dimensionless QuantitiesI

Using dimensionless forms for the variables in the

model equations allows the parameters of interest to be

revealed while producing the fewest number of parameters in

the equations. A priori, we know the general form of the

forcing rates in the system of equations, and we have

generally accepted definitions of the dimensionless

parameters. The goal of non-dimensionalizing is to choose

appropriate forms for the variables so that the proper

forms for the dimensionless parameters result in the

I dimensionless equations.

In the modified Boussinesq system, the Reynolds number

Re, given by (2.31), and the effective Rayleigh number Rae,I
I



27

given by

Rae = Ra + Ra i  (2.18)

are the control parameters. The terms on the right of

(2.18) are defined in (2.32), (2.33) and (2.34),

respectively. The Reynolds number represents the dynamic

forcing rate, and the effective Rayleigh number represents

the effectiveness of the thermal forcing in the presence of

-- an inversion with its associated wind shear. As we discuss

more below, necessary conditions for rolls to extend into

an inversion are given by Rae > 0 and Re > 0; sufficient

3 conditions are that the value of Raec exceeds that of a

critical effective Rayleigh number Raec and that the value

of Re exceeds that of a critical Reynolds number Re. The

first term on the right of (2.18) is the standard Rayleigh

number that represents the instability due to the thermal

I- forcing by the sea surface water/air temperature

difference. The second term on the right of (2.18)

represents the average potential temperature lapse rate in

the domain. As discussed in Chapter 1, a capping inversion

containing sufficient wind shear can force boundary layer

I convection that reaches the bottom zi of the inversion to

3 extend somewhat into that inversion. Roll circulations

that extend into the inversion necessarily have a non-zero

3 value of Rai . Since the effect of the inversion is to

I



I
28

increase domain static stability, Rai is normally negative.

Thus for rolls to extend into the inversion, IRal must be

greater than IRail in order for Rae > 0 to occur. Of

course, if the rolls do not extend into the inversion and

I if the boundary layer is well mixed, then Rai = 0 and Rae -

Ra. As we discuss later, the rolls respond to these

forcing rates by assuming preferred horizontal wavelengths

* and orientations with respect to the mean wind shear

direction; as noted above, we can determine whether and how

I far the rolls may extend into the inversion by determining

* the dependence of Raec and Rec on zT.

The definitions used to specify the dimensionless

forms, which are denoted by asterisks, are

U x = x*L/2w , (2.19)

z = z ZT/7T (2.20)

I t = t ZTL/( 2 wax) , (2.21)

*I Y *I (2.22)

IT' = T*7t3vxTo/(gzT3) (2.23)

SU(z) = IV(zT)IU* (z*) (2.24)

I V(z) = IV(zT)IV*(z*) ,(2.25)

I
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I 2 2 a 2 aa  2
V a - + a- (2.26)Iax* aZ* 2

For consistency, we note that (2.24) and (2.25) imply that

U*2(n) + V*2(W) = 1. (2.27)

I Finally, the aspect ratio is defined to be

a = 2 zT/L . (2.28)

Substituting the dimensionless forms (2.19)-(2.28)

into the Boussinesq versions of the vorticity and

thermodynamic equations (2.10)-(2.11) produces the

following system that models shallow roll circulations:

13t* 2Y Px U x

at*(V~~ + j** V2?*-P + P ReU

I - * Re - ' * **at ax ax*

P' Re *2 - = 0 (2.29)
ax* az *  a

a t* ax az ax

- j aT* = 0 . (2.30)I a
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The control parameter Re is defined to be

Re = IV(ZT)I ZT/(nv) . (2.31)

The control parameter Rae originates from B(z) in (2.13)

and is defined in (2.19) to be Rae = Ra + Rai . Here, Ra is

the surface-based thermal forcing defined as

I
(Ra zTwater-air )  j (2.32)I~~ fa= 7J {ov

Rai is the thermal contribution from the atmosphere

and is defined asI
Rai ={ l 7d} * }2.33)

zT o

Using Poisson's equation, we may express (2.33) in terms of

I the potential temperature gradient AzO(air) via

I
Rai z - (--ai) %-I3 - (2.34)

Finally, the harmonic contribution to the lapse rate is

I given by

I = _T. sin(z + 2T2 cos(2z - 2T3 sin(2z . (2.35)

|

I
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Other than being dimemsionless, equations (2.32)-

(2.33) are analogous to B(z) in (2.13) except that the

background lapse rate -BTo/Bz in (2.13) is now separated

into two physically distinct terms: the positive forcing

rate is placed in (2.32) and the thermally stabilizing

portion is placed in (2.33). For convenience 7 d is placed

in (2.33) so that a neutral lapse rate gives a well-

mixed layer, or Rai = 0. This separation more clearly

indicates that the effective Rayleigh number Rae can be

viewed as having two mathematically distinct portions. In

the special case, G(z) = 0, of no harmonic contribution,

this system reduces to that of Haack-Hirschberg (1988),

who considered an atmosphere with a stable lapse rate.

Implicit in her model are both terms AzT(water-air)Z/ZT and

a zT(air)Z/ZT in To(z). The effective Rayleigh number Rae

is analogous to her Rayleigh number, although our

definitions clearly distinguish between the destabilizing

water-air temperature difference that forces convection and

the stabilizing air temperature difference that retards it.

Because we do not include latent heating effects in

the model, we do not use the virtual potential temperature

ev while recognizing that Laufersweiler and Shirer (1989)

have shown that latent heating can significantly affect

roll circulations. We do not consider this lack of degree

of freedom as significant in our case studies presented in

Chapter 5 because there, the value of Q is a reasonably



32

good approximation to Qv and because we are emphasizing

dynamic forcing effects.

The Prandtl number P is defined to be

pI= V/ , (2.36)

and the dimensionless Jacobian operator J * is analogous to

that of J except for the addition of asterisks indicating

that it is operating on dimensionless variables. In the

next section, we derive the spectral representations

corresponding to the dimensionless system (2.29)-(2.30).

2.2 The Spectral Equations

The boundary conditions, as determined in the previous

jsection, allow us to express the system (2.29)-(2.36) by
ordinary differential equations that exploit the harmonic

nature of the dependent variables in the system. We use

i the Galerkin techique (e.g., Higgins, 1987) to transform

the Boussinesq equations into spectral form. The spatial

character of the dependent variables * * and T * must be

represented by orthogonal trigonometric basis functions.

After Haack-Hirschberg (1988), we use the following

truncated Fourier series to provide appropriate spectral

expansions for ' and T

I
I
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** * t*
~ x ,z ,t ) =

I l#,(t*)sin(x*)sin(qz*) + V2(t*)cos(x*)sin(qz*)

+ * 3 (t*)sin(x *)sin(nz *) + **(t*)cos(x )sin(nz )

+ 3(t *)sin((q-n)z + Y,(t*)sin((q+n)z*) , (2.37)

and

* * t

T* (x ,z ,t ) =

T,(t*)cos(x )sin(qz*) + T (t*)sin(x )sin(qz

+ T3 (t*)cos(x *)sin(nz ) + T (t*)sin(x *)sin(nz

+ T,(t*)sin((q-n)z*) + T,(t*)sin((q+n)z*)

7+ T (t*)sin(2qz + T,(t*)sin(2nz ) . (2.38)

The spectral expansions (2.37)-(2.38) were chosen for both

I mathematical and physical reasons; the numerical substripts

are used for notational convenience to identify each of the

dependent amplitude variables. The expansions (2.37)-

(2.38) must satisfy the boundary conditions, must allow

translation of the rolls through the horizontal domain by

*representing all possible horizontal phase relationships

3 between the harmonic components (Pyle, 1987), and must

capture the dynamic and thermal instability mechanisms

I (Stensrud and Shirer, 1988). Stensrud (1985) and Stensrud

and Shirer (1988) showed that two vertical wavenumbers are

required with q = 1 and q < n in order to represent the

infection point instability. Earlier researchers (i.e.,
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Saltzman, 1962 and Lorenz, 1963) showed that only three

spectral terms remained after long temporal integrations of

a larger convective model without a background wind

(Shirer, 1987b). In the spectral model (2.39)-(2.52),

based on (2.37)-(2.38), four such triplet submodels

(*1,T 1 ,T7 ), (" 2 ,T2 ,T7 ), (* 3,T3,T), and (Y,,T 4,T8 ) are

linked nonlinearly via (1%,14 6,T,,T,) in order that

propagating rolls can be modeled. In (2.37)-(2.38) the

streamfunction coefficients *, and *, and the temperature

coefficients T. through T. represent the nonlinear

modification of the background wind and temperature

profiles by the roll circulations.

A 14-coefficient spectral model is obtained by

substituting (2.37)-(2.38) into the dimensionless system

(2.29)-(2.30) and taking the appropriate derivatives. Our

system consists of rate equations 4i and f . for each of the
amplitude coefficients *i and T . The spatial dependence

in the partial differential equations is eliminated by

multiplying them by each one of the basis functions in

(2.37)-(2.38) and integrating the result over the domain.

Since we have expressed the dependent variables in terms of

trigonometric functions, the orthogonality of the basis

Ifunctions causes most of the terms in the resulting
3 equation to vanish. The 14-coefficient model we obtain is

similar to that of Haack-Hirschberg (1988) and is given byI
I
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I= d.,T 1  + Re(al*, + a 2 , '4  P b1 y' + cil *Y'

+ c2w,* 6  , (2.39)

*= - d Ta - Re(a.0 + a 'it ) P b 1*# - c **

I *1 (2.40)

at

+I + 4 * 2 1 6  (2.41)

i -' = - d T4 - Re(a~i + a4, 1  P b~v c3 "

I c (2.42)

3113 2b + (,2*3 (2.43)I ~at*

I * = 2bi --- 1 1# Y1 (2.44)

at46 2 2

- *= C (*a T a+c- 3 Ts - ,"6T 4) + c 7*11 T 7
at 6 - 8, 3 5 

Re(a.T. + a ST )+ (Rae + zi *

I+ r 2Y13 -b 1T1  (2.45)

oT8I = C 6 (*4 T3 5 ,T 3) + c 5(yi*T 3 - * 4 TO - c 7,'aT 7

I+ Re(aT. + aT 3) (Ra e + r ) * 2

LPbT 2 (2.46)
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t (T 2 - i' T ) + c (* T - #'T ) + c * Ta t 6 a2 1Ta5 1 a 5

- Re(aT 2 + a7 T ) + t 2*1+ (Rae + £3 3

- b2 T3  , (2.47)

3_T. T =c ,('aTa - TI) + ca(ST1 - * 2 TG) - c8 * T8

at*

+ Re(a.T. + a7 T3) -z2*2 - (Rae + V3) Y'4

-b T , (2.48)

3T _C 6a = ( IT 3+ 3TI - YT2 - 2T*) - b 3T5  (2.49)
at* 2

T6  = --(j2 T4 + i4T 2  - 1 T3  - 3 T1 ) - bT S 9 (2.50)

at* 2

aT 7  c 7
at* --z(*2T2 - IT,) - bT 7 (2.51)

aT8  c T- = -(*,T4 - 3 T 3) -beT • (2.52)

at* 2

The spectral equations (2.39)-(2.52) contain four sets

of coefficients ai, bi , ci, and di that are defined in

Table 2.1. The coefficients denoted by ai appear with the

dynamic forcing parameter Re and originate from the

inclusion of a height-dependent background wind U(z) in the

partial differential equations (2.10)-(2.11). These

coefficients depend on the Fourier coefficients of the

background wind profile that are defined in Table 2.2.

The coefficients denoted by bi originate from the
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dissipative terms V** and VaT ' in (2.10)-(2.11). The

coefficients ci occur only in the nonlinear terms as a

result of the Jacobian operator J in (2.10)-(2.11).

Finally, the coefficients di appear in the thermodynamic

energy conversion terms in the vorticity equation. The

occurrence of these four types of terms in the ordinary

differential spectral system indicates that all terms in

the partial differential equations are represented in the

spectral system (Haack-Hirschberg, 1988).

A special case occurs when n = 3q because the spectral

coefficients T. and T7 are equal and opposite (Haack-

Hirschberg, 1988). In this case, the 14-coefficient model

reduces to a 13-coefficient one. Since we will be doing a

linear analysis, this special case willnot affect our

results.

The effective Rayleigh number Rae appears in

(2.45)-(2.48) together with the Fourier coefficients r.1

that represent the harmonic part G * /z* of the background

lapse rate. Together, these terms represent the entire

stability term B(z). In general these Fourier coefficients

are defined as

3G- 1 G sin2(qz*) dz* (2.53)
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Table 2.1

Coefficients in the Spectral Model (2.39)-(2.52).

These coefficients are functions of the aspect ratio a,

the vertical wavenumbers q and n, the Fourier coefficients

of the background wind Ai and ri, and the Prandtl number

P. The integrals Ai and ri are given in Table 2.2

(s = a2 + q2 , and t = a2 + n2 ) (after Haack-Hirschberg,

1988).

i ai  I b I ci I d

1i p (s At+ fr) a (n-u) (q2 _2qn-a 2) P
-1 S a 2s s

2 P" (t A2 + r2) t (n+s) (aa-2qn-q2 ) F

s a 2s t

3 P  (t A3+ r 3 ) (n-Q) (n-q) (n2_2qn-a )
t a 2t

4 (s A2+ r a ) (n+Q} 2  (n+u) (a2_2qnn 2 )  -
t a 2t

51 P At1 q (n±.) --
a 2

61 P A2  4n 2  (n-q)
a 2

71 P A3  --- q

81 n
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Table 2.2

Fourier Coefficients of the Background Wind Profile.

The variable U *(z *) is the dimensionless cross-roll wind

I conponent, and the variables q and n are vertical integral

wavenumbers (after Haack-Hirschberg, 1988).

I
i A. i rI
1 U jo U* sin (qz* )dz* 2 sin (qz*)dz*

7 0 7r 0 3z*

Ir U* sin(qz *)sin(nz )dz

2 ' a 2-U* sin(qz*)sin(nz*)dz7 o 3z *2I

31 Z J' U*(z*) sin2(nz*)dz* 2 -z* sin 2(nz )dz*

0 0 *z

Tr a G * sin(nz*) sin(qz*) dz* (2.54)
7Tf0 a *

0az

where q and n are vertical wavenumbers. Since we have

I
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direct measurements of the observed temperature profile and

not of the rate of change of the observed temperature

profile, we will find it convenient to integrate these

definitions by parts. The coefficients (2.53)-(2.55) then

l become

l = S G*(z*) q sin(2qz ) dz* (2.56)

I = " S7 {G* (z*)[(n+q) sin((n+q)z*)

I - (n-q) sin((n-q)z)~ dz* , (2.57)

3 7 7G*(z n sin(2nz) dz* (2.58)

For our specific representation (2.8) of G (z ) we

find that zi and TI are related by

L 3 7T T , (2.59)

T* (n-a (n I (2.60)

i [" L(3-n)(l+n) (n+3)(1-n) 2

8n2 T * (2.61)
I 3 (1-4n 2 ) 1

We will use these relationships in Chapters 4 and 5 when we

use observations to determine values for the ci terms.

I
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2.3. Orientation Angles

We now introduce the response parameter P, the

orientation angle between the roll axis and a fixed

Ureference direction. The orientation of the roll with

respect to the background wind is probably the most

distinguishable aspect of roll circulations and so it

3 requires proper representation. The preferred roll

i geometry is determined by assuming that the preferred

orientations and aspect ratios are those that yield the

3 smallest values for the critical forcing parameters Raec

and Rec . As mentioned earlier, the ai terms contain

integrals with respect to height of the background

wind--more specifically, integrals of the mean background

wind Ai and of the mean wind curvature ri representing the

wind shear. The wind component U(z) in the integrals is

defined to be along the cross-roll coordinate x.

I It is well known that the rolls align approximately

* parallel to the mean wind direction in the boundary layer,

or more accurately, parallel to the mean direction of

3 vertical wind shear (Shirer, 1986; Stensrud, 1987). It is

therefore important to know the cross-roll and along-roll

components of the background wind. The background winds

3 are measured in a standard reference system. In order to

isolate the roll wind components from those in this

I reference system, it is advantageous to rotate the

I



42

reference system into the roll coordinate system. Figure

2.2 depicts the rotation procedure, where the wind vector V

has a component Us parallel to the standard xs-aXis and a

component V s parallel to the standard ys-axis. Upon

performing the rotation, we introduce the orientation angle

P that is defined to be the angle between the roll axis y

and the standard x s-axis. Thus the amount that the

standard coordinate must be rotated in order for the

background wind to to be aligned parallel to the roll axis

is given by P - 900. A right-handed coordinate system is

used such that angles counterclockwise of the xs-axis are

designated positive and angles clockwise of the xs-axis are

designated negative. The xs-axis can be chosen for

convenience. For example, in dealing with observed wind

profiles as in Chapter 5, we will use the mean wind

direction to define xs . Each wind component of the roll

coordinate system has contributions from two wind

I components of the standard coordinate system. Thus we use

the formulas

U (z*) = U* (z* )sin P - V*(z )cos P (2.62)

V (z *) = (z )cos P + Vs (z )sin P , (2.63)

The restriction placed on the wind speed at the top of the

domain given by (2.27) also applies to the standard winds.

I
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YsI ^ y

I il)"

II

I ~(shear)

I
vi S

I

Fig. 2.2 Rotation of the Standard Coordinate Axes (XsTs)

into the Roll Coordinate Axes (x,y). The roll
orientation P is the angle between the standard
axis xs and the roll axis y (after Pyle, 1987).I

I
I
I
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Thus the restriction on the standard winds become

I U*2(w) + V*a(w) = 1 (2.64)

To use the observed winds, we must first integrate the
wind curvature terms ri by parts to transform the integrals

of 6 2U*/8z *  into integrals of U*. Since we have neglected

the Coriolis force, the along-roll winds do not enter into

problem. Thus we need only consider the cross-roll

expression (2.62) when we relate the Fourier coefficients

to the reference winds. The coefficients in Table 2.2

become

*2 I 7r ~ . (z cos(2qz*) dz* (2.65)

S2= 7 so U* (z f (q+n)2 cos((q+n)z*)

- (q-n)2 cos((q-n)z*)} dz* (2.66)

3 rl = l! j7o U*(z) cos(2nz*) dz* . (2.67)

I All of the Fourier coefficients in our example can now

I be defined in terms of the reference coordinate system by

substituting (2.62) into the forms in Table 2.2 for Ai and

I into (2.65)-(2.67) for ri. These substitutions give (after

Haack-Hirschberg, 1988)

I



45

Al = U. sin P - V I cos P (2.68)

A2 = U2 sin P - V2 Cos P (2.69)

A3 = U 3 sin P - V3 cos P , (2.70)

F 1 = US, sin P - VS I cos P (2.71)

r 2 = US 2 sin P-VS2 cos , (2.72)

F3 = US3 sin P -VS 3 cosP (2.73)

in which the Uiq Vi, USi, and VS i are integrals of the

background wind components in the referenc coordinate

system and are defined in Table 2.3. The addition of the

orientation angle via rotations in the Fourier coefficients

of the background wind now make the spectral model

complete.

2.4. Energetics Analysis

A thorough energetics analysis of the model equations

for the special case zi = 0 can be found in Haack-

Hirschberg (1988). We note that the ri = 0 case

satisfactorily contains the energy sources for both dynamic

and thermodynamic instability mechanisms, a conversion term

and a dissipation term. Of particular interest to our
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Table 2.3

Integrals of the Background Wind in

the Reference Coordinate System.

The variable U (z*) is the wind in the xs-direction,

and V (z*) is the component at right angles to U (z ).

The variables q and n are vertical integral

wavenumbers (after Haack-Hirschberg, 1988).

U = z Usin 2(qz*)dz *U S= T Uscos(2qz* )dz

U= TJ U*sin(qz*)sin(nz )dz

US8 = 2o Uscos((q+n)z* )dz*

[U, fo " (Jn) U o s( *~
= Usin2(nz*)dz* - U COS((q-n)z* )dz*

3s 7T f* 7SUS3 Ana Ir *

3 Js Uscos(2nz* )dz0

= Vsin 2 (2qz * )dz* VS = Vscos(2qz *)dz0 )do

a= * sin(qz*)sin(nz )dz*
0

VS3  (q+n)2 V*cos((q+n)z* )dz*

(-n 2 T Y

- 2 7V *s((q-n)z )dz*

7? Vssin (nz*)dz VS 4 7 V COS(2nz*)dz
30rs3 7



I

model is the effect of the capping inversion. As mentioned

earlier, the capping inversion increases atmospheric

stability and so it acts as a thermal sink. In addition,

it increases atmospheric instability due to its associated

I wind shear and so it acts as a dynamic source. The

i effective Rayleigh number Rae represents the thermal

stability of the atmosphere and is composed of the sum of

the destabilizing effect of the water/air surface

temperature difference and the stabilizing effect of the

linear component of the temperature profile. Because the

j contribution of the linear component may be over- or

underestimated by the inclusion of the harmonic terms as

depicted by Fig. 2.1, the contribution of the harmonic

portion of the temperature profile may cause a phenomenon

known as "ringing". Ringing may be caused by undulations

about the linear function that introduce spurious energy

sources/sinks.

The rate of change of total roll energy, which is

given by the sum of the total kinetic and available

potential energy rates of change, can be written

schematically as

I LE). = a(E)+ . AE
at at at

I
i - RS + G(APE) - INV - DIKE + APE) ,(2.74)

I
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in which the Reynolds stress term RS is defined as (from

Haack-Hirschberg, 1988)

RS = P Re A,[(n2 -q 2)* 1.* + (q2-n)* 2 3 ] 2 (2.75)[
the generation term is defined as

G(APE) = P Ra/(-Ra i ) (T 1*1 - T2* 2

+ Ts3 *3 - T4*) (2.76)

and the inversion effect is given by

INV = - P/(-Rai ) (t1 T1 1 - rIT 2 * 2 + E3 T3# 3

I - 3 T4 * + & 2 * 3T1 - r2 * * T2 + eC2 iT 3 - E2 *2 T4 ) .(2.77)

I Since a steady-state condition 3(E)/3t = 0 exists

for roll circulations (Haack and Shirer, 1989), the

rolls are maintained when energy sources balance energy

I sinks. Thus in this case (2.74) can be written as

I D(KE + APE) + INV = RS + G(APE) . (2.78)

[
If the rolls are to be maintained in the presence of

I dissipation and an inversion, then for fixed G(APE) (i.e.,

sea surface/air temperature difference or Ra), RS must

I
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iincrease in value. Thus in order for rolls to extend into

an inversion, there must be sufficient wind shear acting on

J the rolls to overcome the thermal retarding effects in INV.

The only way this may occur is if the rolls are driven from

Iabove by the shear, and from below by the sea surface/air
temperature difference.

In Chapter 3, the roll modes will be determined by the

manner in which the rolls capitalize on the various energy

sources. These modes are found from a linear stability

Ianalysis of the conductive solution and will be shown to
arise from a Hopf bifurcation to a periodic solution.

I
I
I

I

I
I
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Chapter 3

LINEAR STABILITY ANALYSISI
Now that the spectral system of equations

(2.39)-(2.52) has been developed, the next step in

determining the conditions under which horizontal rolls

may form is to conduct a linear stability analysis of the

system. As mentioned in Chapter 2, rolls form only when

the dynamic and thermodynamic forcing rates Re and Rae

overcome the dissipative effects by exceeding their

critical values Rec and Raec.

A means of representing these critical values is to

form a curve in (Ra,Re)-parameter space; such a curve is

also a function of the response parameters--the aspect

ratio a, the orientation angle P and the domain height ZT.

Because we wish to plot only the thermal forcing rate Ra,

we must first subtract any thermal contribution of the

atmosphere, which is given by Rai < 0, from the effective

thermal forcing rate Rae that our model calculates, as can

be seen by (2.18). The method by which the contribution

from the atmosphere is removed from Rae is demonstrated in

Chapter 5.

An example of a stability curve, as described above,

is shown in Fig. 3.1. To find the bifurcation points from

which roll solutions emanate, we perform a linear stabilityI
I
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Fig. 3.1 Schematic of a Hopf Bifurcation Curve. The
critical values of the forcing rates Rac and
Rec are determined from particular values of

aspect ratio a , orientation angle P and domain

height ZT (from Haack-Hirschberg, 1988).



52

analysis of the conductive solution of (2.39)-(2.52).

Because the solutions branching from these bifurcation

points apparently are supercritical (Haack and Shirer,

1989), all values of forcing in the region below and to

the left of the curve (e.g., point S), represent

perturbations that damp to the conductive or trivial

solution. Here, roll circulations are not excited. As the

forcing rates increase to the critical values Re = Rec and

Ra = Rac (in this example, the magnitude of the dynamic and

the thermodynamic forcing rates are equal), a bifurcation

to a new solution occurs. This bifurcation point (point H)

signals an exchange of stability from one solution to

another. In our case, H is known as a Hopf bifurcation

point, as will be discussed later. Perturbations do not

grow or decay until the forcing rates exceed those for the

Hopf bifurcation points. At these values, the

perturbations amplify and the conductive solution becomes

unstable (point U). If the new solutions emanating from

the Hopf bifurcation points are supercritical, then they

will be stable temporally periodic ones and so they will

represent propagating roll circulations.

In previous studies of roll circulations (Shirer,

1980; Stensrud, 1985, 1987; and Stensrud and Shirer, 1988)

it was found that, usually, temporally periodic solutions

emamated from the bifurcation point even though a

bifurcation to a stable steady solution is in general also
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a possibility. Steady solutions were possible, but only as

special cases of the temporally periodic ones. Thus, we

will only consider Hopf bifurcation points that signal an

exchange of stability from the conductive solution to a

temporally periodic one (Marsden and McCracken, 1976; Pyle,

1987).

As discussed by Haack-Hirschberg (1988), her full

model contains the special cases of the two-vertical

wavenumber pure inflection point instability mechanism

(Stensrud, 1987; Stensrud and Shirer, 1988), and the

single-vertical wavenumber model of the thermal instability

mechanism (Shirer, 1986; Stensrud, 1987). In Section 3.3

we confirm that our modification to the Haack-Hirschberg

model maintains these two submodels.

3 3.1 The Linear Spectral Systemn

I In this section we linearize and reduce the spectral

I system of equations in order to simplify and perform the

stability calculations. According to Hartman's Theorem, a

I nonlinear system can be adequately represented by its

linear component at points arbitrarily close to the

bifurcation point (technically a hyperbolic fixed point) of

Sthe nonlinear system (Devaney, 1987). In addition, a

linear solution that is stable is also nonlinearly stable
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to sufficiently small perturbations, while unstable linear

solutions are nonlinearly unstable to any perturbation

(Hirsch and Smale, 1974). In general a linear stability

analysis is devised to find the unstable wave mode that

grows the fastest. This mode is the most unstable and

dominant one and it is also the most unstable one for the

nonlinear system. The method used to find this mode

consists of assigning the dependent variables in our

linearized system the form A eXt, in which A is the

Iamplitude and X is a complex eigenvalue or characteristic
3exponent. Using Euler's relation, we can show that the

real part Xr of X represents growth or decay, while the

imaginary part Xi represents the frequency of the branching

temporally periodic solution (Pyle, 1987). To indicate a

-- bifurcation point at which there is no growth or decay, we

want solutions for which Xr =0. In addition to the case

Xr = 0, if X.i = 0 then a bifurcation to a steady solution

3 occurs. In our problem, such a bifurcation is possible but
we did not find any in our analysis. However, if Xi d 0

then a Hopf bifurcation to a temporally periodic solution

3 results. As noted earlier, a temporally periodic solution

is the one of interest in studies of horizontal rolls and

U is the only one we discuss here.

3 As stated in Chapter 2, the linear system consists of

14 equations that resulted after the nonlinear terms were

5 neglected. These 14 equations can be decoupled into two

I
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independent systems, one with eight equations and the other

with six. Since the latter system has only dissipation

terms that do not contribute to the exchange of stability,

it cannot contribute to a bifurcation point and so it can

be eliminated from consideration. Thus, the 14 equations

reduce to eight. The system can be reduced further by

expressing the spectral components in terms of complex

3 variables (Pyle, 1987). The result is two decoupled

systems in which one is the conjugate of the other: one

I system gives solutions corresponding to the -iX i root, and

3 the other gives solutions corresponding to the +i i root.

The negative set of complex conjugates yields the following

linear system represented by the variables ,' V2 T., and

T2:

V WIx - iV 2 =(Re ia, - P b1 ) 1 + Re ia 2 ;

+ id1 T , (3.1)

i2 = 43 - i 4 = (Re ia3 - P b2 )V a2 + Re ia4 V2 3
+ id2  T2  , (3.2)

= T2 - iT1 = (Re ia, - b I )TI + Re ia6 T 2

I - i(Rae + t,) I - it2  (3.3)

I * ~ ~
T2 = T4 - i 3 = (Re ia7 - b2 )T I + Re ia, T.

i - i(Ra + r (3.4)

3 The coefficients ai, bi , and di are given in Table 2.1.

I
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To solve the linearized spectral system (3.1)-(3.4),

we use the following form of the temporally dependent

amplitude coefficients that was noted above:

eat - Xt
jT = T T e I (j = 1,2) . (3.5)

Substituting the forms (3.5) into (3.1)-(3.4) and taking

the temporal derivatives yield four linear equations in 'jIA
and Tj. After canceling the common factor eXt, we find

that the characteristic exponent X is the only term

remaining on the left side of (3.1)-(3.4). These four

equations can be made into homogeneous equations by moving

X to the right side. If the system (3.1)-(3.4) has

nontrivial solutions, then two or more of the equations in

i the system must be dependent so that the determinant of the

matrix of coefficients must vanish. The determinant of

i (3.1)-(3.4) can be written in the following form:

7 Ti TT2

Re ia1 -Pb1 -X -Re ia 2  id, 0

(A) I(s)

3 Re ia4  Re ia3-Pb2 -I 0 id2

------------------------- -------------------------- = 0

- -i(Rae+c ) -ic2  Re ia.-b,-X Re ia,

(C) I (D)

-it -i(Rae+t )3 Re ia, Re ia7 -b2-X

I(3.6)
I
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Expanding the determinant (3.6) gives a fourth-degree

Icharacteristic equation in X, which is given schematically

I by
j4

C X + C 3 X3 + C 2 X2 + C1 X +• 37C, +C~+ X + C O = 0 .(3.7)

I
The coefficients Ci are polynomials and are functions of

the forcing parameters Re and Rae, the aspect ratio a, the

Fourier coefficients ri, Ai and ri (which depend on the

domain height ZT), the wavenumbers q and n, and the Prandtl

number P. The coefficients Ci are complicated and lengthy.

To obtain their expressions, we used the symbolic

manipulator CFORMAC, which is available on the IBM 3090 at

Penn State. After the determinant is expanded, CFORMAC

allows us to find the coefficients that multiply a

designated variable. Appendix A shows a portion of the

commands that were used to find the coefficients in the

1 (3.12), which is derived from (3.7).

3.2 The Hopf Bifurcation PointsI
Since we seek values of the forcing rates for which

a temporally periodic solution emanates from the conductive

one, a signal for a Hopf bifurcation must be introduced

into the characteristic equation (3.7). The HopfI
i__ _ _ _ _ _ _
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Bifurcation Theorem states that a temporally periodic

solution emanates from a steady solution when a complex

conjugate pair of characteristic exponents crosses the

imaginary axis with nonzero speed (Marsden and McCracken,

1 1976; Haack-Hirschberg, 1988). As the forcing rate

approaches its critical value, the real part of the

exponent Xr vanishes, and the imaginary part Xi gives the

limiting dimensionless frequency w (as Rae approaches Ra

and Re approaches Rec) of the periodic solution (Pyle,

1987). A Hopf bifurcation, therefore, is signaled in

I equation (3.7) by setting

I = i = i O  (3.8)

0

This substitution produces a fourth-degree polynomial

equation in w* containing both real and imaginary terms.

The resulting equation is expressed schematically asI
I R + i = 0 , (3.9)

in which the imaginary part I is a cubic equation and the

real part R is a quartic equation, given respectively by

I= A 3 + B Re *2 + (D i Re
2 + C + Ra F i )

0 1 c o c ec o

+ Gi Rec + H i Raec Rec+ Ei Rec = 0 (3.10)I
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jR = r + Kr Rec 4* 3 + (Lr Re + Mr + Nr Raec) o

I + ( Re3 + Sr RaecRec+ Tr Re c ) c* + Ur Re4

+ (V + Wr Raec) Re' + Xr Raec

+ Yr Raec + Zr =0 (3.11)

I
IThe forcing values Rae and Re have been set to their

critical values Raec and Rec, since these are the values at

the Hopf bifurcation point that signal branching solutions

having frequency *"

I Our goal in this analysis is to find the minimum

Ivalues of the forcing rates Raec and Rec that give a Hopf
bifurcation. To accomplish this goal, we must choose the

variables that will be expressed in terms of the others.

Both equations (3.10) and (3.11) are functions of Raec, Fi'

Rec , and o, as well as the response parameters a, Ai, ri ,

q, n and P; the dependence on ZT is incorporated implicitly

into the values of Ai, ri and vi. However, if we choose

Ivalues for Rec and the response parameters, then there are
two unknowns in two equations: Raec and o. Since (3.10)

is linear in Raec, we may easily find an expression for it.

This value of Raec is the one required to make the

imaginary part of the characteristic equation vanish and it

I
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is given by

RAi *3 + B.Re * 2 + (D.Re + Ci)c* + G.Re3 + EiRec
HiRec+ Fi W

I (3.12)

This expression for Raec is then substituted into (3.11) to

make the real part of the characteristic equation vanish.I *anRe

The result is a sixth-degree equation in both woand Re

Finally, we solve for o as functions of Rec and the

response parameters. This final equation is named the Hopf

bifurcation equation and is given by

dw *6 + d1 Re cw* 3 + (d1 Rez+ d1 0 )'. + (d Re3 + d3Rec)3

13 0 12co0 C 0 089c aC 0

(dTRe* + d Re 2 + d )w*2 + (d Rec + d.Re 3 + d Re c ) .;

I + (d Re + dRe* + d 0Re2) = 0 (3.13)

I in which

k-2 s . .,14
dk fk (Ai i i3.14)

Before obtaining the w * roots, we must find numerical

values for each of the coefficients dk in addition to

specifying each value of Rec. We recall from (2.62)-(2.67)

thatI
I
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= gi(UiViP) i=1,2,3 , (3.15)
ri = hi(USiVSiP) J

where the integrals Ui, Vi, USi and VS i of the wind are

defined in Table 2.3. Thus we must specify the following

quantities: values for zT, q, n and P; an idealized or

observed wind profile to obtain values for Ui, Vi, USi, and

VSi; an idealized or observed temperature profile to obtain

values for si; and appropriate ranges for the values of

Rec, P and a. For given values of Rec, P and a, the

solutions to (3.13) yield six complex roots for ". Of the

six possible roots, only real ones are acceptable. We find

numerically acceptable results by requiring that the

imaginary root be no larger than 10- 9 times the real root

and that the residual in (3.13) be no larger than 10- 9

times the largest coefficient. The critical effective

Rayleigh number Raec for each combination of Rec, P, a and

*o may now be found by substituting the acceptable value of

0,jo into the imaginary part of the characteristic equation

(3.12). Because this equation is linear in Raec, we find

that expressing the Hopf bifurcation equation in terms of

Wo permits unambiguous identification of the common roots

to (3.10)-(3.11). Finally, it is important to note that we

may now sort the calculated values of Raec from the

smallest or preferred, to the largest values for each value

of Rec. This final step allows clear identification of the

I
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preferred modes and saves a tremendous amount of research

time.

The values of Rec and Raec describe the minimum rates

of dynamic and thermodynamic forcing needed to drive roll

circulations and they depend upon the geometry of the rolls

that are described by the response parameters a and P (and

ZT via the Fourier coefficients Ai, Fi and ti). Numerous

transition curves resulting from various combinations of a

and P cross the line where Rec is constant; three such

possible curves are depicted in Figure 3.2. However, only

the curve containing the smallest value Rac(min) of Rac
yields the relevant preferred Hopf bifurcation point

because the atmosphere generally evolves from a stable to

an unstable state by reaching the smallest values of Rac

and Rec first. Similarly, the preferred Hopf bifurcation

point occurs at a unique minimum value Rec(min) of Rec that

is on a line of constant Rac. As before, we subtract Rai

I from Raec to obtain the transition curve in (Ra,Re)-

parameter space. The dotted line in Figure 3.2 shows the

curve given by the minimum values of Ra c and their

* corresponding values of Rec . This curve is often called a

preferred or expected curve because it marks the transition

in (Ra,Re)-parameter space between the region where rolls

*are possible and the region where they are not;

it is preferred because this curve is the first one

encountered in the transition between solutions.
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Fig. 3.2 Schematic Illustration of Three Hopf Bifurcation

Curves. Each curve is associated with fixed
values of aspect ratio a, orientation angle P and
domain height zT. Points on the transition curve

(dotted line) represent the minimum values of
both Rac and Re c (from Haack-Hirschberg, 1988).
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Figure 3.3 isolates the expected transition curve.

The state of the atmosphere can evolve from the region

where rolls do not form (left of a curve) to the region

where they can form (right of a curve) along an infinite

i number of paths. The path that the atmosphere takes

i depends on the evolution of the dynamic and thermodynamic

forcing rates. For fixed values of ZT, the values of a and

P given by the intersection of the paths with the expected

transition curve gives the preferred values of the roll

i geometry for a roll of depth ZT. If the atmospheric

forcing rates Re and Ra are to the right of the transition

curve and evolve along path 1, then at the crossing point

on the curve, horizontal rolls will develop having roll

characteristics given by ap = al and tp = P,; along path 3,

rolls will develop having characteristics ap = a and P =

P3 . Thus by knowing how the atmospheric values of Re and Ra

have evolved, we may determine if roll circulations are

i possible and if so, what their preferred roll

characteristics will be. If the atmospheric values far

exceed the values on the transition curve, as shown by

paths 2 and 3 in Figure 3.3, then the expected roll

geometry is uncertain. However, the geometry of the rolls

may be estimated by using the values ap and Pp given by the

closest Hopf bifurcation point. Here, the expected roll

geometry would be approximated by the values of a2 and P2

for path 2 and by the values a3 and P 3 for path 3. The

i
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IFig. 3.3 Schematic Illustration of Possible Hopf
Bifurcation Curves Associated with Fig. 3.2. For
a given value of Rec the preferred set of roll

parameters a p and Pa is the one that yields the

I minimum value of Rac. For a particular

instability mode, this curve denotes the
transition in (Ra,Re)-parameter space between
the roll-free state and the roll state (after

Haack-Hirschberg, 1988).I
I
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accuracy of this approximation is related to the rate of

change of ap and Pp along the transition curve.

In our numerical analysis of the thermal and

inflection point modes, we find that it is often difficult

to determine where one mode ends and another begins in

(Ra,Re)-parameter space. It appears that a generally

smooth or at least ambiguously located, transition occurs

between the modes. However, for a constant value of Rec we

can sometimes find portions of our ordered list of Rac

values in which an abrupt change in Rac or another

parameter value occurs that signals the end of one mode and

the beginning of another mode. The corresponding location

in (Ra,Re)-parameter space depicts the right-most side of

the mode demarcating the largest value of Rac for which

that mode can occur. When this right-most side is

impossible to identify, we indicate only the left-most

preferred transition curve for each mode (see Fig. 3.3).

We have derived a governing Hopf bifurcation equation

(3.13) for the spectral equations developed in Chapter 2.

In Chapters 4 and 5, this equation will be used to identify

the roll modes that may develop from an idealized and two

observed wind profiles. In the next section we will

confirm that the special case E. 0 contains the separate1

special cases of the inflection point and thermal

instability mechanisms given by Haack-Hirschberg (1988),

and we will discuss the case ti # 0 in a calm environment.
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3.3 Special Cases

The stability results of the linear spectral model

(3.1)-(3.4) can be verified by checking that the results of

Ispecial, limiting cases agree with those of previous,
simpler roll circulation models. The model derived by

Haack-Hirschberg (1988) represents the two dominant

instability mechanisms in one system. She compares her two

single-wavenumber thermodynamic instability mechanisms with

I those occurring in a model of moist convection in a sheared

environment (Shirer, 1986). She then isolates the pure

inflection point instability mechanism and compares it with

3 the instability results obtained by Stensrud and Shirer

(1988) in a neutral environment. Both of these studies

allow analytic and numerical comparisons. The results from

3 Haack-Hirschberg (1988) confirmed that the dynamic and

thermodynamic instabilities were the same as those obtained

3 by Stensrud and Shirer (1988) and Shirer (1986). To prove

that our model accurately represents these two instability

mechanisms, we must compare the linear case (z = 0) and

3 the nonlinear case (ti #0) with the linear case given by

the Haack-Hirschberg (1988) dynamic and thermodynamic

I model.

I
I
I
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3.3.1 Pure Inflection Point Case

The pure inflection point instability mechanism is

driven by dynamic forcing alone. Thus we may eliminate the

I thermodynamic forcing by setting both the effective

Rayleigh number Rae and the harmonic components ri to zero

in (3.9), which together imply neutral static stability.

After performing this step, we obtain the same Hopf

bifurcation equation as that found by Haack-Hirschberg

I (1988); it is given by

I
Re2 (a1- a )2b b2 + (a a )(b1 + b )2 ]

+ P2(b,+ b2 )2blb 2 = 0 (3.15)I
and the limiting frequency is given by

e a(a2+q2) + a 3 (a2+n23
0 c (2a + q + n2)J ' (I

In this case the limiting frequency 'o is a function of

the product of Rec and the weighted average of the

Fourier coefficients a1 and a3. Thus Co is a function

of the relative contributions of the cross-roll wind U* (z*)

and cross-roll wind shear 3U * /az . Since b. and b2 are

positive, the only way a real value of Rec can occur is

for aaa* < 0. Because this product can be negative only

I
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when q # n, then it follows that two vertical wavenumbers q

and n are needed in the model in order to capture the

inflection point instability mechanism (Stensrud, 1985).

We use the results from the analytical version of the

I inflection point special case as a standard against which

we may check the results from the full model. For given

wind and temperature profiles and set values of the

parameters Rec, q, n and P, the values of Raec, a PpI aaeesZT, ec p p

and w* obtained numerically should assume values very close
0

I to those given analytically. In addition, the numerical

I results obtained from the ti # 0 case should assume

reasonable values compared with those obtained from the zi

= 0 case. The differences that we get from this special

case are assumed to be due to the effect of wind shear

within the inversion. We use idealized wind and

temperature profiles to make this numerical comparison in

Chapter 4.

i 3.3.2 Single-Wavenumber Thermal Special Cases

In this section we verify that the Hopf bifurcation

equation of the thermal model obtained with the harmonic

Iportion zi of the temperature profile included is analogous

to that obtained by Haack-Hirschberg (1988). The thermal

case can be isolated from the inflection point case because

the use of only one vertical wavenumber filters the

usInl n
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inflection point instability mechanism; but as we will see,

it does not filter the thermal one. When the mixed

wavenumber terms r2 and A2 are assumed to vanish,

Haack-Hirschberg (1988) shows that her full model contains

Itwo single-wavenumber thermal q- and n-submodels. These

submodels are identical except in vertical wavenumber.

Here, in order to decouple the two submodels, we must set

E2 = 0 in the full model as an additional requirement. The

remaining v. and v3 terms act to modify the resulting

Icritical value of Rae.
A determinant representing each of the single-

wavenumber thermal q- and n-submodels is given by

re-expressing (3.6) as

# T 2 T 2

Re ia.-Pb1 - id0(E) 0
-i(Rae+c )  Re ia.-b,- x

IRe ia3-Pb- X id2(IF0o (F)

-i(Rae+r 3) Re ia 7 -b2 -x

I= 0 , (3.17)

where a2 , a. and a. are set to zero because they depend

only on A2 and r 2 . Upon completing the stability analysis.

for each submodel, we obtain similar equations for theI
I
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critical effective Rayleigh numbers and the limiting

frequencies of the periodic solutions. From the stability

analysis of IEI = 0, we obtain

P(a - a.)z P b,

a ec cL d (P + 1 +d (3.18)I and

I
Re (a,+ asP) (3.19)

0 (P + 1 )

governing the thermal q-submodel. From a stability

analysis of IFI = 0, we obtain

Pt a - a)2 1 b8Ra = Re2  7 +- - (3.20)

ec c d (P + 1)3  (.20)

I and

I * (a3+ a7 P)

Re c  (3.21)0 ° (P + 1)I
governing the thermal n-submodel.

After substituting the definitions of ai , bi and di

into (3.18) and (3.19), we obtain the following Hopf

bifurcation and frequency equations for the q-submodel:

I
I
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Raec =Re q2  (a+q 2 ) 3 3.22)

(a2+q 2 ) ( p + 1) a

and

= Re PrA + (3.23)
o c (a2+q 2)(p + 1)

I
Similar substitutions for the thermal n-submodel yield

Raec =Re 2  p2  3 (a 2 +n2 ) 3  (3.24)

(a2+n 2 )(p + 1)2a 2

I
andI

=Re P A+ + (3.25)0 o (a +n 2)(p  + 1)

I
Since the critical Rayleigh numbers (3.22) and (3.24)

differ only in vertical wavenumber, we combine them into

the following general wavenumber Hopf bifurcation and

frequency equations:

I
Raec r22 (a 2. 2 + 1)2 2 23 mI R2m 1 a a - ,(3.26)

and

[
I
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I = Re c  [ Am + (3.27)0 c (a 2 +m2 )(P + 1)

i in which m represents a general wavenumber. The

I generalized Fourier coefficients Am and rm become

I Am =A 1
A = A and e = r when m = q;
Am =A. m I

I
rm =3 and m = r when m = n . (3.28)

I
As noted by Shirer (1986), owing to the dynamic

effects, the smallest critical Rayleigh number occurs in

two special situations giving rm = 0: the first is when

i there is an appropriately placed inflection point in the

cross-roll wind component U * so that rm a u * /3z* vanishes.

The second special situation occurs for a unidirectional

wind profile. For example, when rm is integrated by parts

and rotated into the reference coordinate system using

(2.62), rm = 0 becomes

rm = USmsin(6p) - VSmcos(P p ) = 0 . (3.29)[
Equation (3.29) is satisfied if, for example, USm = 0 and

P p = 900. For the single-wavenumber thermal special cases,

(3.29) produces preferred values of the orientation angle

I
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Pp that minimize the effects of the cross-roll component of

the wind shear U*/az*. These preferred angles are given

3 by

I VSm
tan(p)= - . (3.30)

USmI
For the preferred orientation angle cases, the Hopf

3 bifurcation and frequency equations (3.26)-(3.27) reduce to

Raec = - m (3.31)

(a2 +2m2 a

=ac - Cm - Rai = Raec - Rai  (3.32)

aI *
o Re P A (3.33)

I
When cm = 0, the two thermal submodels reduce to those

I of Haack-Hirschberg (1988). Thus the thermal instability

3 mechanism is retained in the full model. Significantly,

just as a condition on r m gives a preferred orientation

3 angle, a condition on em will give the preferred

circulation depth ZTp. From (3.32) it is clear that for

convection to occur, then the critical value of the forcing

3 rate Rac must be larger than the critical value Raec

because the heating rate must overcome the effect of theI
I
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inversion term Rai < 0. Depending on the form of G(z) in

(2.8), tm may be either positive or negative. So, as we

stated in Chapter 2, the harmonic component of the vertical

temperature profile may act as an energy source or sink and

thus decrease or increase the value of Raec. However, as

we will see in Chapters 4 and 5, the magnitude of the

harmonic term vm is on the order of 10a times the other

term in (3.31) and its sign is usually negative.

Therefore, the value of Raec can be approximated by using

* this value of the (negative) Zm term.

3- When a well-mixed layer is capped by an inversion, as

shown in Fig. 2.1, then cm = 0 and Rai = 0 holds for all

3 heights zT that are less than the height z1 of the

inversion base, while Rai < 0 and em < 0 hold for all zT a

U zi . From (3.32) we conclude that the deepest circulation

3giving the miminum value of Rac occurs when zT = zi . Thus

the height of the inversion base caps the roll circulations

in the purely convective case, as expected.

The preferred aspect ratio is found by setting the

derivative a(Rac)/3a2 to zero when Ra= 0 and e= 0. The

expression for the preferred value of ap is therefore given

by

= (3.34)

3 After obtaining ap, we find the smallest critical

I
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Rayleigh number for any given wavenumber m by using (3.32).

Because the smallest vertical wavenumber produces the

smallest value of Rac, we choose m = q = 1. Hence we

obtain the value ap = Vi/2 - 0.707 from (3.34). The

corresponding smallest value of Rac is therefore (Rac)min

6.75; should we consider the nonpreferred thermodynamic

case, we get (Raec)min = 6.75 - t.. Wavenumber one is the

3gravest mode and so it is always the preferred wavenumber

for any thermal case. Therefore, q < n must always equal

I one. Wavenumber n, however, may be any integer not equal

3 to one. For the case n = 2 we obtain the values ap - 1.41

and (Rac)min = 108.00, and for n = 3, we obtain the values

3 ap : 2.21 and (Rac)min = 546.75.

Here, we have seen that allowing only single-

wavenumber representations in the Hopf bifurcation equation

1 (3.13) eliminates the dynamic energy source and separates

the full model into two single-wavenumber thermal ones. In

the full model we obtain values of (Raecm , ap, Pp and wo

for given wind and temperature profiles and set of

parameters Rec, ZT, q, n and P; by varying the magnitudes

of both Rec and ZT we obtain their preferred values as

well. We compare these values from the full model with

Ithose given by the single-wavenumber analytic equations
3 (3.31)-(3.33). In Chapters 4 and 5 we perform this

numerical verification for idealized and observed wind and

3 temperature profiles.

U
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3.3.3 Steady Pure Thermal Special Case

The final special case that we consider is one that

gives the critical effective Rayleigh number for boundary

layer convection occurring in an environment with no

background wind (U *(z) = 0) but with a temperature

inversion that includes all three harmonic portions (ci #

0) of the temperature profile. Physically, in this case,

the convection would not be organized into rolls or cloud

streets; instead they would take on a tessellated pattern

and our two-dimensional model would predict that there is

no preferred orientation angle P p. Because U*(z*) = 0, the

critical Reynolds number Rec must equal zero as well. In

addition, without a background wind, the rolls cannot

propagate through the domain. Although a Hopf bifurcation

is in principle possible (e.g., for gravity waves), we did

not find any during the numerical computations. With no

I background wind, the roll frequency w* must also equal0

zero, and this forces the imaginary part of the

characteristic exponent Xi to vanish.

Thus we consider bifurcation to steady convection so

that the characteristic exponent Xr equals zero. The

determinant (3.6) for the special case of Rec = = 0 and

0 is given by

I
I
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-P b i  0 id1  0

0 -Pb a 0 id2

-i(Rae- i- T -b- 0

I-i -i(Rae+E 3 ) 0 -b2

I = 0 . (3.35)

I Upon expanding the determinant (3.35), we obtain the

following quadratic bifurcation equation in Raec:

Ra c (dd) + Raec (V d d + V d C: - P b2 d - P b2 d

lP b d - r P b d + i d d

- a d1 3 b 2 1312

b+ pa a C2 _ dd = 0 (3.36)

I
When the 2 term equals zero in (3.36), we obtain the same

expressions for Raec as those given by (3.31) and (3.32).

i When r2 : 0, it is easy to show that the discriminant of

(3.36) is positive, implying that critical effective

Rayleigh numbers exist for any inversion. Moreover, for

the case of an inversion capping a well-mixed layer, the

I minimum value of Rac is given by Rai = 0 and E. = 0 so that

I the preferred value zTp of the circulation depth is the

height zi of the inversion base (Section 3.3.2).

I In this chapter we have seen that our full model,

I
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which includes an arbitrary vertical temperature profile,

can be reduced to several special analytic cases. These

analytic cases are analogous to those obtained by Haack-

Hirschberg (1988). Not only do the special cases provide

useful information about the dynamic and thermal

instability mechanisms, they also provide a basis upon

which to check the numerical results that are obtained from

the full model. We will use the values obtained from these

special case equations to identify the inflection point and

thermal modes within the full model results presented in

the next chapter.
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Chapter 4

MODEL RESULTS USING IDEALIZED

WIND AND TEMPERATURE PROFILES

Up to this point, we have developed a system 3f

spectral equations that models boundary layer rolls. We

then derived its resulting Hopf bifurcation polynomial

(3.13) giving the critical values for the various roll

modes. After examining (3.13), we learned that its

solutions were dependent on the background wind and

temperature profiles (via their Fourier coefficients), the

orientation angle, the cell aspect ratio, the Prandtl

number and the vertical wavenumbers of the circulation. In

this chapter we study how idealized background temperature

and wind profiles affect the solutions of (3.13). The

idealized profiles serve to specify the values of the

Fourier coefficients Ai, Fi and Ei" To determine how the

temperature and wind profiles affect the solutions of

(3.13), we must solve it using a range of values for some

of the parameters listed above. To resolve all of the

known features of the billows profile, we have found it

necessary to use a high resolution grid defined by
-o

incrementing Rec every 2 units, P every 5 and a every

0.05. Together with the Fourier coefficients, this range

of variables allows us to adequately find the various

transition curves in (Ra,Re)-parameter space.
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The results using idealized profiles provide a

conceptual framework guiding the interpretation of the

results for more complicated, observed profiles. Here, we

find it convenient to consider idealized wind profiles

having characteristics that approximate the wind in the

boundary layer and produce modes that have been documented

by others. We will check our model results using an

idealized billows wind profile that supports the inflection

point instability mechanism (Brown, 1980). We are not

aware of other researchers who have studied the effects of

a generalized wind profile interacting with an arbitrary

vertical temperature profile on horizontal rolls that do

not interact with the free atmosphere. Hence we can make

only qualitative comparisons with some work by others

pertaining to certain aspects of our problem. For example,

Brown (1972) studied Ekman profiles in stratified boundary

laaers and has shown that the inflection point mode exists

only near neutral stratification; Asai (1972) provides

evidence of the existence of an inflection point mode in

slightly unstable stratification. Thus we must rely mostly

on analytic checks to determine model accuracy. Once we

have verified the numerical results for the linear or

nonharmonic temperature profile case (ri = 0) with that of

Haack-Hirschberg (1988), we will determine the effects of a

nonlinear or harmonic temperature profile (zi # 0) that

contains significant wind shear in a capping inversion.
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We find that our model produces all of the expected

roll modes: the shear mode (Haack-Hirschberg, 1988) that

occurs only in a stably stratified regime (Raec < 0); the

inflection point mode that is characterized by a neutral

stratification (Raec = 0); and the single-wavenumber q- and

n-thermal modes that are restricted to the statically

unstable regime (Raec > 6.75). In this chapter, we

investigate the dominant characteristics of each of the

instability modes for the complete two-harmonic case with

general thermal and dynamic forcing rates. However, we

will not examine the single-wavenumber n-thermal mode since

we know it displays the same qualitative features as the

physically more relevant single-wavenumber q-thermal mode

that we do investigate (Haack-Hirschberg, 1988). In the

next chapter, we use the results obtained from the

idealized profiles to help identify the modes that likely

existed on two days of the 1981 KonTur field experiment.

4.1 Billows Wind Profile

In this section we develop a simple unidirectional

billows wind profile that is known to support the

inflection point mode (Brown, 1980). We choose a wind

profile for which the inflection point may be located at

any height z* in the domain and at any value e of V* (z *).ip ip

Such a billows profile is given by
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U (z*) = 0 , (4.1)

V (z*) : d(z - 1/3 + e . (4.2)

To satisfy the restriction (2.64) for the dimensionless

form for the wind, the variable d must obey

* -1/

d (1 - e)(n - zp ) (4.3)'p

Substituting (4.3) into (4.2) gives the following form for

a billows profile having an arbitrary inflection point

height:

U (z*) = 0 , (4.4)

V(z ( e) [ *)] + e (4.5)-7 Z ip )

Although e is defined as the value of V* (zi), we may also

choose e so that V(0) = 0 (see Section 4.3).

4.2 Idealized Temperature Profile

To complete the idealized model, we specify a simple

ve-t 4cal temperatuire profile. Adding this degree of

freedom to our spectral model allows us to examine the
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effect of a temperature inversion on the transition curves

and roll characteristics given by the above simple

unidirectional billows wind profile. The temperature

profile consists of two parts. In the part of the

atmosphere below the capping inversion, the temperature

decreases linearly at the dry adiabatic rate. Within the

inversion, the temperature increases linearly at a rate we

can specify arbitrarily. A dimensional profile depicting

such a vertical temperature structure is given by

To(z) =Too a zT(dry) Z/zT

+ A zT(inv) (z - zi)/(z T - zi )  (4.6)

in which Too is the temperature at the surface z 0,
AzT(dry)/ZT is the dry adiabatic lapse rate, the height of

the inversion base is given by zi , AZT(inv) is the total

temperature change within the inversion and 6 is given by

6 = 0 , 0 < z < z i

6 1 zi  5 z 5 zT (4.7)

The third term on the right of (4.6) is an analytic version

of the H(z) term in (2.7) and ATI'dry/zT is a versio. of

A zT(air)/zT in (2.7). The Fourier coefficients ti in this

case are specified using (2.56)-(2.58) by
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D(inv)[ (7+ sin(qz] (4.8)

2q

= - 1- sin((n+q)z i)
2 (n+q)

I - 1 sin((n-q)z )] , (4.9)
(n-q)

I ,,I (inv)[ sin(2nz

2n

in which is the dimensionless version of the lapse

rate 7(inv) zT(inv)/(zT - zi ) in the temperature

inversion.

In the next section, we analyze the stability of

(3.13) using both the wind profile (4.4)-(4.5) and the

I temperature profile (4.6)-(4.7). After comparing the

linear temperature profile case (ri = 0) with that of

Haack-Hirschberg (1988), we examine the effect of two

statically stable potential temperature profiles (ti 0)

on the roll modes that are produced by the billows wind

profile.

I
I
I
I
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4.3 Stability of the Billows Wind Profile with and

without a Capping Inversion

To simulate physically realistic conditions, we would

like to locate the inflection point in the wind profile at

the same height as that of the base of the temperature

inversion since the inversion is where the wind speed

usually begins to increase significantly. This situation

would allow us to investigate the forcing of rolls by the

I shear within the inversion. However, for the wind profile

I (4.4)-(4.5), our model does not yield an inflection point

mode for z > 0.6n. This effect is consistent with that

found by Brummer and Latif (1985) who show that the

inflection point instability becomes more difficult to

i initiate as the level of the inflection point moves away

from the center of the domain. In addition, owing to the

numerical procedure we used, we find only spurious results

U when z = 0.5n. Therefore, we choose an inflection point

level at the upper limit of the acceptable range, which is

zip z 0.6n. For this value of zip, e = 0.534 produces the

-condition V*(0) = 0 and d = -0.479. We place the base of

the inversion zi in the temperature profile (4.6)-(4.7) at

i = 0. 8 zT (z* = 0.8n) and set the inversion strength

'(inv) = AzT(inv)/(ZT -zi) at a moderate value of 5 C/100

I- m. Figures 4.1 and 4.2 show the potential temperature

I
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I Fig. 4.1 Vertical Profile of the Potential Temperature
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Fig. 4.2 Billows Wind Profile Given by (4.4)-(4.5). The

dimensionless wind speed v (zip) at the height

zip of the inflection point equals e equals

I 0.534. The dimensionless wind speed v *zT) at

the domain top zT is unity.l
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and wind profiles given by (4.6)-(4.7) and (4.4)-(4.5)

respectively. By comparing Figs. 4.1 and 4.2, we see that

jthere is a relatively large amount of wind shear located

near the inflection point height zip as well as within the

Icapping inversion itself. In the next subsection, we

analyze the importance of this shear.

4.3.1 The Linear (ci = 0) Temperature Profile Case

The transition curves and the preferred values of a,

P and Iw*I resulting from the profiles (4.4)-(4.7) for the

linear temperature profile case (z• = 0) are shown in Fig.

4.3 and an enlarged version of these transition curves is

depicted in Fig. 4.4. We find that our model produces the

three expected instability modes: the shear mode, the

inflection point mode and the thermal q-mode. Our results,

in general, agree qualitatively with the billows results

obtained by Haack-Hirschberg (1988). We do not get the

same quantitative results as obtained by Haack-Hirschberg

(1988) beause we wanted to check the effect of changing the

height zip of the inflection point. We set zip at 0.6n

and the corresponding value of e at 0.534, while Haack-

Hirschberg set z* at the value of 0.50r and e at 0.500.

Table 4.1 shows the effects of increasing the level of the

inflection point. The point in (Ra,Re)-parameter space

I
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3 Fig. 4.3 Mode Diagram for the Billows Wind Profile
(4.4)-(4.5) Illustrated in Fig.4.2 for the Ei = 0

Case Given by the Temperature Profile (4.6)

Illustrated in Fig. 4.1. The thermal q-mode is

denoted by the small dashed line, the inflection3 point mode is denoted by the solid line and the

shear mode is denoted by the large dashed line.
Preferred values of a are given above preferred
values of 9 (in degrees). Preferred values of

* I are shown in parentheses. Here, q = 1,

n = 2, P = 1, ZTp = 1000 m.
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Table 4.1

Effects of Varying the Level of the Inflection Point

on the Inflection Point Mode.

(at Raec =0)

Model (Rec)min ap I *

Haack-Hirschberg 24.93 00 0.6 12.5

(zip = 0.50n)I ip

current 52.46 00 0.45 26.1

(zi' = 0.60r)
[]p

-- that we choose to make this comparison is where the

* inflection point mode crosses the line Raec = 0. The most

notable difference is that both (Rec ) and W* I double in

I value when the inflection point is moved from 0.50' to

0.60,, in general agreement with the results of Brummer and

Latif (1985).

3 We show these effects of the inflection point height

using the inflection point mode because it is the more

I physically relevant of the dynamic modes; similar changes

in the preferred values are seen for the shear mode. The

thermal mode, being only weakly dependent on the wind

I
I
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shear, is not affected by changes in the inflection point

height. Although we have shown analytically that the

thermal mode is independent of the background wind when

there is only one vertical wavenumber, we get a slight

I increase in the value of Raec as the magnitude of Re c

increases. This dependence may be physical or it just may

be due to numerical approximation. In either event, we do

not consider this small dependence to be significant. For

clarification, we restate that our model, or any model

considering non-neutrally stratified conditions, gives

stability results in terms of the effective Rayleigh

number Rae and so the transition curves are most

conveniently plotted in (Rae,Re)-parameter space (as is

done in this chapter). However, when comparing model

results with observations or with other model results (as

we do in Chapter 5), we find it more physically meaningful

to express the results in (Ra,Re)-parameter space because,

Ias noted in Section 5.4.1, the sea surface/air temperature

* difference that forces the solutions determines Ra rather

than Rae.

* Another important reason for the difference between

our results shown in Fig. 4.3 and those of Haack-Hirschberg

1 (1988) is due tu the grid resolution that we used to solve

5 (3.13). We have discovered that using a high resolution

grid allows us to separate the single Haack-Hirschberg

1 (1988) billows inflection point mode into an inflection
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point mode and a shear mode that she did not find.

Apparently, the grid resolution used by Haack-Hirschberg

may not have been sufficient to separate the shear and

inflection point modes. She incremented Rec in units of

20, P every 100 and a in units of 0.10 while we used 2, 50

and 0.05 respectively.

As seen in Figs. 4.3 and 4.4, the inflection point

mode (solid line) is distinguished from the shear mode

(large dashed line) by having aspect ratios that are less

than 1/2 those of the shear mode as well as by it being

the mode that occurs near neutral stability. In Fig. 4.4

we can follow the inflection point mode well into the

thermal mode regime. Because the inflection point mode

appears at larger values of Rae than the thermal mode, its

transition curve gives a local rather than a global minimum

in parameter space and so is not as physically important.

Eventually, however, as Re c decreases in magnitude, the

inflection point mode becomes more difficult to identify.

Beginning at Rec - 21, the inflection point mode becomes

indistinguishable from the thermal mode. The inflection

point mode is also difficult to identify when Rec > 56

because it interacts with the shear mode. We call the

regime in Fig. 4.3 where the inflection point mode

interacts with the shear mode the dynamic mode regime since

we cannot unambiguously identify which dynamic mode would

be expected.
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The mode characteristics that most clearly identify

I the inflection point from the shear and thermal modes in

our model are relatively abrupt changes in the frequency,

aspect ratio, orientation angle or critical effective

Rayleigh number. Table 4.2 shows a portion of the sorted

model output illustrating where the sh, - mode clearly ends

and the inflection point mode begins. Here, the beginning

of the inflection point mode is identified by the dramatic

increase from -117.51 to -12.48 in consecutive values of

Ra from 24.798 to 27.021 in values of Iw*I and a drop inRec,

Table 4.2

A Portion of the Model Output

Showing a Clear Mode Transition.

(at Rec = 56, ti = 0)

Raec ''o0 a p p

-129.26 24.416 0.65 -6.0

-124.18 24.529 0.65 4.0

-121.08 24.610 0.65 -1.0

-117.51 24.798 0.60 -1.0

-12.48 27.021 0.45 -1.0

-11.33 26.989 0.45 4.0

-9.87 26.945 0.45 -6.0

-7.10 27.466 0.40 -1.0
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i ap from 0.60 to 0.45. The preferred orientation angle Pp

does not change, however, because the wind profile is

unidirectional.

However, as happens frequently during the transition

I between preferred modes, distinct mode characteristics are

not so clearly defined. Recall from Fig. 3.3 that the

first transition curve encountered is the physically most

relevant one and that a path that the atmosphere follows

may cross more than one curve in parameter space. We

confirm Haack-Hirschberg's general suggestion that values

of ap, Pp and Raec that identify the shear mode are

virtually identical to those for the inflection point mode.

Thus it is difficult to determine where one mode ends and

the other begins. In addition, we find that a smooth

transition occurs between the inflection point mode and the

thermal mode as found by Haack-Hirschberg (1988) for the

sinusoidal wind profile. This smooth transition is

_ probably the reason why the shear and the inflection point

- modes are not distinguishable with the courser grid

resolution and this effect may be related to why mixed

modes are found typically in the atmosphere. In the

(Rae,Re)-parameter range where it is difficult to determine

I the preferred mode, local minima in the critical values

interact making it impossible to label a particular mode.

Thus there is no physical relevance in separating them.

* Because the thermal mode (small dashed line) depends

I
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only weakly on the unidirectional wind, its transition

curve as shown in Fig. 4.3 is virtually independent of Rec .

Table 4.3 compares the values of (Raec )min, p, ap and t" I

obtained from the single-wavenumber thermal q-mode with

those obtained from the two-wavenumber representation of

the full model for the linear ( = 0) and nonlinear ('1

0) cases discussed below. We find that the single-

wavenumber E = 0 analytic results match those of the

single-wavenumber, special case of the full model, which is

given in both cases by A2 = r 2 = t = 0. Thus the thermal

q-mode may be numerically identified within the full model

and we may now have confidence that deviations from these

values in the zi : 0 case are due only to consideration of

the more complicated nonlinear vertical temperature

profile.

4.3.2 The Nonlinear ( i # 0) Temperature Profile Case

The case of the billows profile with a capping

inversion included (ti # 0) is shown in Fig 4.5. We get

the same three instability modes as in the non-inversion

(Ci = 0) case. Here, we see that the shear mode generally

occurs at smaller values of Re c than it does in the

non-inversion case, and that unexpectedly, the preferred

values of Raec throughout a large part of the shear mode

are only weakly dependent on the value of Rec. This result
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Table 4.3

The Thermal Special Cases Using a

Billows Wind Profile and an

Idealized Temperature Profile.

(q1, n=2, P=1, zi*=0. 67T z!=0.87, 7(inv)21 0 °C/200 m)(qln=1 =I ip=0 1

Model (Raec)min V a 'D 0

q-mode (6.75)* -- 0.71 0.0

analytical expressions

(E i = A== r,= O)

(3.30)-(3.34)

q-mode (6.75)* -- 0.71 0.0

full model

representation
(Z i= A 2= r 2= o)

two-wavenumber 6.75 900 0.7 0.0

full model

representation

(Ei = 0, Re c  = 1)

two-wavenumber 36.37 90 1.2 0.0

full model

representation

(L i :0O, Rec = 1)

S* Raec is independent of P

-- indeterminant: no preferred values of P
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Fig. 4.5 Mode Diagram for a Billows Wind Profile (4.4)-

(4.5) Illustrated in Fig 4.2 for the . # 0 Case
Given by the Temperature Profile (4.6)

Illustrated in Fig. 4.1. The thermal q-mode is
denoted by the small dashed line, the inflection

point mode is denoted by the solid line and the

shear mode is denoted by the large dashed line.
Preferred values of a are given above preferred
values of P (in degrees). Preferred values of

c I are shown in parentheses. Here, q = 1,

n = 2, P = 1 and ZTp = 1000 m.

I
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implies that the shear in the inversion is driving the

Irolls and produces the preferred mode since its critical
Reynolds numbers are smallest in magnitude. Another

contrast between the non-inversion and inversion cases is

3 that the aspect ratios are larger for all modes when the

inversion is included. This increase in aspect ratio is

I most apparent in the inflection point mode, where they

increase from about 0.45 to 3.0. The reason for this

increase in aspect ratio may be due to the increased

3 thermal stratification when the inversion is included, as

well as the increased values of zTp occurring when wind

shear in the inversion forces deeper rolls to exist. A

3 more stable atmosphere will induce a larger restoring force

on the roll circulations and so will cause the circulations

to decrease their radius. That is, the upward portion of

* the circulation will be turned down sooner than would occur

in a less stable environment, and the downward portion of

3 the circulation will be turned up sooner. Thus the roll

wavelength decreases or the roll aspect ratio increases.

I Using the methods for identifying mode transitions

3 mentioned earlier, we are able to follow the shear mode for

a short distance into the preferred inflection point

3 region. In contrast to the non-inversion case, the

inflection point mode remains clearly defined in Fig. 4.5.

The range of (Rae,Re) values for which the inflection point

mode occurs is much larger than for the EI  0 case shown

I
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in Fig. 4.3, implying that this instability mechanism is
more dominant for the r. # 0 case than for the ti 0 case.

i However, this phenonenon may be rela.ed to the large change

in aspect ratio that simply provides a clear separation in

dynamic mode characteristics in the E. # 0 case. TheI 1

inflection point mode shown in Fig 4.5 becomes independent

of the value of Rae at Rae t -500 as Rec increases past a

3 value of Re % 70. This result is consistent with a result

of Brown (1972) who found that one of the two dynamic

* instability mechanisms disappeared as the thermal forcing

rate became less than a certain value or as the wind shear

became greater than a certain value. Like the linear

temperature profile case, the inflection point mode is

characterized by neutral stability and we can follow this

3 mode into the Raec > 0 region, as shown by Asai (1972).

However, we cannot identify the inflection point mode once

it intersects the thermal q-mode at (Raec)min = 39.37.

3 Figures 4.6 and 4.7 combine the transition curves from

Figs. 4.3 and 4.5 as an aid in comparing the inversion and

I non-inversion cases. Here, we see that the thermal

3 transition curves shift to more positive values of Raec for

the i # 0 case as compared with the ci = 0 case. Another

distinguishing feature of the ri # 0 case is that the

dynamic modes are excited at smaller values of Rec than for

the t. = 0 case while the inflection point mode is shifted

3 to more negative values. Thus while the thermal modes are

I
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Fig. 4.6 Mode Diagram for a Billows Wind Profile (4.4)-

3 (4.5) Illustrated in Fig. 4.2 Comparing the
E = 0 and ri # 0 Cases Given by the Temperature

Profile (4.6) Illustrated in Fig. 4.1. The

thermal and inflection point modes from Figs. 4.3

(Ei = 0, dashed lines) and 4.5 (Ei # 0, solid

5 lines) are shown. As in these figures, a few

selected preferred values of a, P and I * I are

3 given next to the curves.

I
I
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Fig. 4.7 Same as Fig. 4.6 Execpt for the Shear and3 Inflection Point Modes.
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suppressed by the inversion, the inflection point mode is

U excited by interacting with it. The shear mode occurs at

significantly smaller values of Re for the ti # 0 case

than for the z1 = 0 case and it also becomes independent of

Raec.

When the inversion height is lowered from 800 m (ziI 1

0.8w) to 600 m (zi = 0.6w) while maintaining the same

3 inversion strength 7 (inv)' the preferred mode has the

following characteristics:

i --ap increases by a factor of 2

--(Rec)min for the dynamic modes decreases by a factor

of 2

--(Raec)min of the thermal mode increases by

approximately an order of magnitude

I--(Raec)min of both dynamic modes increase by about
3 40 percent (i.e. these values become more positive)

With the inversion now 400 m deep, more surface heating

I would be needed to produce a thermal mode. Thus, as we

discussed in Section 3.3, it is apparent that rolls

associated with this mode would not extend into the

3 inversion at existing levels of thermal forcing and the

preferred value of zT is zi for the thermal mode. When we

3 use observed data in the next chapter, we can vary the

i value of zT as an aid in determining which instability mode

is preferred. If the best model results come from using a

3 value of zT that is at or below the height of the inversion

I
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base, then this indicates that the thermal mode may

dominate. In contrast, because the magnitude of (Rec)min

has dropped in half, rolls that extend into the inversion

are preferred for the dynamic mode. Indeed, because Raec S

_ 0, the appropriate view may be that the rolls originate in

the inversion and extend down into the well-mixed layer.

We conclude this because the observed value of Rae can be

U negative only if the sea surface/air temperature is

negative so that there is no thermal forcing. Because of

I the large magnitude of the wind shear associated with the

3 billows profile, the dominant instability mechanism is the

inflection point instability for weak to moderate values of

sea surface/air temperature contrasts so that Raec > -500,

and is the shear mode for large negative temperature

I contrasts. We hypothesize that if large wind shear exists

3 in the inversion and Rae % 0, then the inflection point

rolls extending into the inversion are preferred over the

* thermal rolls that remain below the inversion within the

mixed layer.

IFrom Figs. 4.4 and 4.5 we see that the thermal mode

3 has a frequency Iw* I on the order of 0.1, implying that

these rolls are virtually stationary. In contrast, the

Iinflection point mode shown in Figs. 4.3 and 4.4 has much

*- larger frequencies implying significant roll translation.

Physically, it is clear that the rolls produced by the

thermal instability would not translate since these rolls
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are aligned parallel to the background wind. In contrast,

the rolls produced by the inflection point mode would be

I expected to translate since these rolls are oriented normal

to the background wind.

An important test of our model is to determine whether

it gives physically realistic roll propagation periods for

each instability mode. These periods can be calculated by

using the definition T 2/w * for the dimensionless
u p =

period T * of a wave and then substituting the general

dimensionless form (2.21) for time t*. The dimensional

period Tp is

ZT L P
Tp= 

(4.11)

and the dimensional phase velocity is

C = L , (4.12)T p

where L is the domain width that is related to a and zT by

L = 2 zT/a. The following typical values for the

inflection point mode without an inversion (i 0) are

used to calculate the propagation period: Rec 54, 0w*I =

27.0, a = 0.45, zT = 1 kin, P = 1 and 20 m2 /s. These

values, which also characterize the shear mode, give a

3 typical period of 44 minutes and a phase velocity of 1.7

I
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m/s. For the inversion case (ci 0) at Rec = 54, we use

the following typical values: ICI = 12.9, a = 3.10, zT =

3 1 km, and v = 20 m2 /s. These values give a typical period

of 13.3 minutes. Typical periods for the inflection point

* mode in this case are generally one-third to one-half the

periods of the shear mode. In calculating the roll periods

for the inversion (ri 0) and non-inversion (ti = 0) cases,

we used the value of v as reported by Brummer (1985), which

as noted by Laufersweiler and Shirer (1989), would be

I appropriate for a well-mixed layer. Owing to the model

3 formulation, we must assume that a boundary layer with an

inversion has the same values for Y and x as an atmosphere

3 without an inversion, even though it makes more sense to

assume that the values of v and x decrease with height in

I the inversion.

* We see that including the inversion in our model has

reduced the propagation period for the inflection point

3 mode to one-third of its non-inversion value. Thus roll

propagation is due to the dynamic forcing of the mean wind

aiid due to an oscillation caused by the additional

3 restoring force introduced by the inversion. In contrast

to the inflection point mode, the phase speed of the

I thermal mode is essentially zero in both cases with a

* period on the order of three days.

Haack-Hirschberg (1988) suggests that the shear mode

3 she found may be a gravity wave mode, which has a

I
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characteristic period of oscillation in the range of 6 to

I 35 minutes (Dutton, 1976). Her reasoning is that the

1propagation period of the shear mode is on the same order
as that of a gravity wave oscillation. We find that both

the shear mode and the inflection point mode have periods

on the order of a gravity wave oscillation for the Ei # 0

case and so this criteria alone may not be sufficient to

explain the shear mode. This result implies that gravity

waves influence roll propagation rates when the rolls are

driven by shear within the inversion. The extent to which

gravity waves excited by the capping inversion influence

roll propagation rates is not yet clear. As recognized by

Haack-Hirschberg (1988), however, both the shear mode and

the gravity wave mode, but not the inflection point mode,

I- occur in strongly stratified conditions. The only part of

i the vertical domain that is strongly stratified (see Fig.

4.1) is the portion within the inversion. If a gravity

wave occurs, then it will probably be restricted to this

region. The shear mode then may only be physically

relevant in the capping inversion and may not be

* appropriately viewed as extending down into the boundary

layer; to be sure however, we must find the nonlinear

i solutions to this problem, which is task beyond the scope

i of this thesis.

Using the squared Brunt-Vaisala frequency given by

I
I



I
109

2 = (g/eo)(ae/az) o  , (4.13)

and the temperature profile given by Fig. 4.1, we may

calculate the period of a gravity wave as a further check

3 of its relevance to the shear mode. A gravity wave

occupying the entire vertical domain in Fig 4.1 with an

I inversion strength of 5 0C/100 m would respond to a linear

3 temperature gradient of approximately 3 0C/1000 m. In this

case, the period given by (4.13) and the definition of a

3 wave period Tp = 2w/. is 10.3 minutes. A gravity wave with

this period of oscillation would be indistinguishable from

the periods of the shear and the inflection point modes.

3 As noted above, it is possible that any shear modes

produced by the model may be most appropriately interpreted

I as gravity waves that occur only within the inversion. In

this case a typical gravity wave having vertical scales of

ZT - zi % 100 m would have a period of oscillation of 2.6

3 minutes, which is clearly distinguishable from that for the

boundary layer filling dynamic modes.

I In the next chapter, we use observed wind and

3 temperature profiles to compare the full model results with

observations of horizontal rolls taken during the KonTur

3 1981 field experiment. Good agreement between any one of

the three instability modes and the observations indicates

that the full model contains appropriate background

* representations for modeling observed roll circulations.

I



110

Chapter 5

MODEL RESULTS USING OBSERVED

WIND AND TEMPERATURE PROFILES

In Chapter 4 we used idealized wind and temperature

profiles to verify that the Hopf bifurcation equation

(3.13) that governs the stability of the linear spectral

model (3.1)-(3.4) produced three of the known instability

modes: the shear mode, the inflection point mode and the

thecmal q-mode. In this chapter, the full model is tested

further by using observed wind and temperature data. The

roll modes that are excited by the observed wind and

temperature profiles are identified numerically through the

use of the features and characteristics discovered in

-- Chapter 4.I
5.1 The KonTur 1981 ObservationsI

The observations used below in (3.13) were taken over

the North Sea off the coast of West Germany as part of the

West German field experiment KonTur that was conducted

during September and October 1981. The purpose of KonTur

I was to supply a data base for detailed modeling of

mesoscale and smaller scale convective processes. On three

days, 18 September, 20 September and 26 September,

horizontal roll circulations were observed and the data

I



I
I 111

were analyzed (Brummer, 1985). On 20 September, the rolls

occurred in statically unstable air ahead of an advancing

cold front and they did not extend into the capping

inversion. On 18 and 26 September, the rolls occurred in

statically stable air ahead of an approaching warm front.

In the first case, approximately one third of the roll

circulation extended into the capping warm frontal

inversion overlying the well-mixed portion of the bcundary

layer, while in the second case the rolls were restricted

to a weakly stratified boundary layer. On 18 September,

cloud streets were visible during the entire time that the

measurements were taken. In contrast, on 26 September

cloud streets were visible for only a short while after

data collection began. Afterwards, the roll circulations

were made visible by quasi-linear patterns in the boundary

layer haze. Of the three days that measurements were

taken, 20 September was the only day that was characterized

I by a mixed layer that filled the entire depth of the roll

circulations. The vertical wind shear on this day was very

weak; hence the height ZT of the roll circulations

* essentially must be limited to the height zi of the

inversion base, as observed. Since we are interested in

Hthe effect that wind shear in an inversion has on roll

circulations, we limit our study to the days of 18 and 26

September.

Of the measurements that were taken during KonTur, the
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relevant ones for our use are the vertical soundings of

potential temperature, mixing ratio and horizontal wind

components that were taken by two instrument-equipped

aircraft. The coordinate system that was used to express

I the measured winds assigns the x-direction to the along-

roll wind component and the y-direction to the cross-roll

wind component. Figures 5.1 and 5.2 display these observed

vertical profiles for 18 and 26 September, respectively.

On 18 September the potential temperature profile reveals a

I well defined mixed-layer capped by a strong inversion; on

26 September, a strong inversion caps a weaker one that

extended through most of the boundary layer. The tops zT

of the observed roll circulations, which are indicated by

the solid horizontal lines, extended well above the

inversion base zi on the 18th; in contrast, on the 26th the

rolls extended very little above the base of the inversion.

As we note below, the values of zT were reported to be 530

m ± 50 m on the 18th and 500 m ± 50 m on the 26th. Brummer

(1985) estimates that the heights zip of the inflection

points in the wind profiles were at approximately 450 m ±

50 m on 18 September and at 440 m ± 50 m on 26 September.

An energetics analysis by Brummer (1985) revealed that the

roll circulations on both the 18th and 26th were driven by

the inflection point instability since the buoyancy terms

were predominantly negative. To verify Brummer's

energetics work, our model should produce roll

N
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Fig. 5.1 Vertical Profiles of Potential Temperature G,
Mixing Ratio m, Along-roll Wind u and Cross-roll
Wind v Measured on 18 September 1981 During5 KonTur. The solid horizontal lines give
estimates of the cloud base zB and circulation

top zT. The inflection point in the cross-roll

wind is denoted by zip (after Brummer, 1985;

Haack-Hirschberg, 1988).

I
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Fig. 5.2 Vertical Profiles of Potential Temperature G,I Mixing Ratio m, Along-roll Wind u and Cross-roll
Wind v Measured on 26 September 1981 During
KonTur. The solid horizontal line gives an

estimate of the circulation top ZT. The
inflection point in the cross-roll wind is

denoted by zip (after Brummer, 1985;3 Haack-Hirschberg, 1988).
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characteristics that are similar to this dynamic mode.

The measured horizontal wind components u and v have

an accuracy of ±1 m/s (Shirer and Brummer, 1986). Using

the profiles that were measured by the aircraft and the

estimated magnitude of the eddy viscosity v as given by

Brummer (1985), and assuming v = , we calculated the

observed ranges of the dynamic and thermodynamic forcing

3 rates Re and Ra using the respective definitions given by

(2.31) and (2.32). Owing to the difficulty in estimating

I values for x (Brummer, 1985), it is normally set equal to

3 the value of v. The uncertainties in the estimates of v

vary from one-half to twice the values reported by Brummer

3 (1985) and so the ranges in the observed values of Re and

Ra can be large. For example, on both days, the values of

v range from about 10 to 30 m2 /s. When plotted in (Ra,Re)-

3 parameter space, these ranges appear as elongated, tilted

areas that are shown in Figs. 5.7 and 5.8 (Section 5.4) for

3 each of the two roll cases.

The observed average roll heights zT on both days had

a 50 meter margin of error, so we varied ZT to determine

3 the height that provided the best results; in this way we

are able to find zT. for the mode describing rolls

I extending into the inverison. On 18 September, we varied

3 ZT from 575 m to 475 m and got results that did not

represent the observed roll geometry until we used a roll

3 top of 525 m; the observed roll height was reported at 530

I
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m (Fig. 5.1). On 26 September, there were no roll clouds

visible and so the average roll top height was assumed to

Ibe the highest level of significant turbulence (Shirer and
Brummer, 1986). Brummer (1985) reported zT on 26 September

to be 500 m; however, this height apparently applies to the

0920 UTC soundings that were incomplete. Instead, we use

the soundings that were taken at 1120 UTC for which a

domain height of 450 m seems more appropriate (Fig. 5.2).

We verified that this height was more representative of the

observation because we varied ZT from 550 m to 400 m and

I got the best results with zT = 450 m.

The sea surface temperature on 18 September was

reported by Brummer (1985) to be 15 0C and on 26 September

it was 16 °C. On both days, Brummer (1985) estimated that

the sea surface/air temperature difference at the surface

was between +0.5 0C and +1.0 0C.

Roll wavelength L and orientation angle f are two

other important features that indicate whether the model

successfully captures an instability mechanism. Ranges for

these values were determined visually by the mission

scientist on each flight. The estimates of the wavelengths

were compared with measurements of the radiative flux and

mixing ratio that were taken during the cross-roll flight

legs. The reported ranges in L were obtained from these

comparisons. On both days, these comparisons revealed that

L varied by about a factor of three: on the 18th L ranged
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from 1200 m to 3300 m, and on the 26th L ranged from 800 m

- to 2700 m (Shirer and Brummer, 1986). We use this range in

values of L to make our model comparisons.

The roll wavelengths are combined with the domain

height to calculate the range of observed aspect ratios.

The observed roll orientation angles were expressed in

terms of the direction of the mean boundary layer wind.

*This wind direction was estimated to be along the roll

axis, producing an observed orientation angle P of 900.

I The uncertainty in the orientation angles was estimated by

Shirer and Brummer (1986) to be ± 100. When we compare the

orientation angle produced by our model with that of the

3 observations, we use the directions corresponding to those

for the mean wind shear and the mean wind direction. For

both days, the observed roll characteristics are summarized

3 in Tables 5.2 and 5.3 in Section 5.4.

Using the observed wind and temperature profiles for

I each roll case, we solve the Hopf bifurcation equation

(3.13). The resulting transition curves are then graphed

in (Ra,Re)-parameter space producing mode diagrams similar

3 to those given in Chapter 4. In this chapter, we find it

more convenient to use Ra rather than Rae; further

I explanation is provided in Section 5.4.1. We consider the

3 model results to be in agreement with observations if:

I
I
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3 1) the (Rac,Rec ) transition curve for a mode passes

through or just to the left of the observed

3 (Ra,Re)-parameter region, indicating that the

atmospheric values of Ra and Re were greater

-- than the minimum values of Rac and Rec that would

3 be needed to excite that mode, and if

2) the preferred roll characteristics ap and Pp for

*that mode fall within the observed ranges of a and

l, and if

3) the preferred circulation depth ZTp falls within

3 the reported range of zT, and if

4) the roll periods Tp given by the model are

I physically realistic.

In the remainder of this chapter, we use the KonTur

wind and temperature profiles to compare our model

3results with the observations in order to determine

which of the instability modes most likely generated the

Iroll circulations.I
5.2 Results from Two Previous ModelsI

In this section, we summarize the results obtained

from two previous spectral models of roll circulations: the

3two-wavenumber pure inflection point instability model of
Stensrud and Shirer (1988), and the two-wavenumber

Idynamic/thermal model of Haack-Hirschberg (1988).

U
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Stensrud and Shirer (1988) derived a spectral model

I from a two-harmonic expansion; a similar two-harmonic

i expansion was adopted for the present study. Since the

Stensrud and Shirer model lacked thermodynamics, it was

3 restricted to cases of neutral static stability. They

considered only the data measured on the 26th and they

performed an interpolation of two wind profiles that were

3 taken two hours apart; in contrast, we use the later, more

complete observed profile. Because the wind data were

I interpreted differently from ours, we can make only

* qualitative comparisons with their results.

The essential findings of Stensrud (1985) and Stensrud

3- and Shirer (1988) are that the observed characteristics on

26 September may be described by the pure inflection point

I instability mode. The values of the roll geometry produced

3 by their model were in general agreement with the

observations. Stensrud's (1985) results on the 18th,

3 however, are not as revealing as those on the 26th. He

concludes that the inflection point mode played little or

no role in the formation of the rolls on this day while

3 recognizing that this conclusion contradicts the results of

Brummer (1985). As we show below, the reason for

U Stensrud's inconclusive results must be due to the neglect

3 of the basic state temperature profile.

The model of Haack-Hirschberg (1988) extended that of

3 Stensrud and Shirer (1988) to include a simple case of

toasmpecs
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thermal stratification. Our model is similar to
Haack-Hirschberg's except that we have added the Ei terms

3 into the definition of the temperature profile in crder to

account for a more general vertical temperature structure.

* Although the observed winds are represented more accurately

in our model (we used values at 25 m intervals versus

Haack-Hirschberg's 50 m intervals), we feel that the

3 differences in observed data used by both models are not

significant.

I Haack-Hirschberg concludes that the shear mode gives

i the best representation of the observed forcing rates and

roll characteristics on both 18 and 26 September. To

3 support her conclusion, she used the observed ranges for

the atmospheric values of Raec given by Shirer and Brummer

(1986). Shirer ai'lJ Brummer calculated these observed

3 ranges by estimating the linear contribution to the

vertical temperature profile and by incorporating the

3 effects of latent heating. Because an inversion occurred

on each day, this linear contribution to the vertical

temperature profile gave a positive slope and therefore,

3 the ranges of their atmospheric Rayleigh numbers were

negative. In contrast, we calculate the ranges of the

I observed Rayleigh numbers by using the magnitude of the

surface forcing that is given by the water/ai temperature

difference AzT(water-air ) that was positive. This method

3 gives atmospheric ranges of the Rayleigh rumber that we

I
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feel are physically more realistic. If this is the case,

then we show below that the shear mode is too far to the

left of the observed atmospheric ranges in (Ra,Re)-

parameter space to adequately represent the forcing

-- mechanisms that occurred on 18 and 26 September. (Of

course the shear mode is still a possible instability

mechanism since it is to the left of the atmospheric

3 ranges.) Instead, we conclude in agreement with Stensrud

and Shirer (1988) and Brummer (1985) that the inflection

I point instability mechanism played a more important role on

3 these two days.

1 5.3 Fourier Representation of the Profiles

UBefore we analyze the stability results from the
3 KonTur cases, we first must ensure that the Fourier

coefficients of the background wind profile (A. and rj) and

3the temperature profile (ti ) adequately represent the
observed data. In this section we test the accuracy of the

Fourier coefficients in the model by using them to

construct approximations of the vertical profiles.

Mathematically, it is easy to obtain the optimal Fourier

_ coefficients. However, to ensure that these coefficients

3 represent physically realistic conditions, the approximate

profiles obtained by using the mathematically calculated

* coefficients must give good visual fits to the observed

I
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3 data. Once we obtain this good fit to the data, we may

have confidence that the effects of the wind and

3 temperature profiles on the stability analysis are properly

represented.

I To approximate the wind and temperature profiles, we

3 use an IMSL least squares program. This program gives the

optimum amplitudes of the coefficients for user-defined

functions that best fit the observed data. We interpolate

the data given in Figs. 5.1 and 5.2 at 25 m intervals.

We choose the following Fourier expansion to represent each

3 wind profile on 18 and 26 September:

* * * ** * (z) V + V *sin(z ) + V cos(z) + V* s n ( 2 z

+ Vcos(2z) + V*sin(3z*) , (5.1)

in which V* (z*) is the diminsionless height-dependent

background wind that has components in the x - and

Sy* -directions. We are limited to six amplitude

3 coefficients in (5.1) since we have six Fourier

coefficients Aj and rj, with j=1,2,3. We choose the

3 particular trigonometric functions given in (5.1) because

they are the lowest order functions of the more complete

Fourier series and because their coefficients have the

* largest magnitudes.

We approximate the observed temperature profiles using

3 the same method as that for the wind profiles. Here, since

I
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we have three Fourier coefficients ti of the temperature

with i=1,2,3, we can only use three trigonometric

3- functions. The Fourier expansion that we use to represent

each potential temperature profile for the 18 and 26

I September cases is given by

O 0(z*) = Aze (air)z + 0. cos(z ) + 0, sin(2z

+ 04 cos(2z *) (5.2)

I As we discuss below, inclusion of a constant term 90 in

(5.2) gives a poorer qualitative fit to the data, while the

linear term AzG(air) is required to estimate with (2.34)

3 the value Rai in order to calculate Rac from Raec.

Finally, the coefficients 0., 0. and 04 have the same

meaning as T*, T* and T* in (2.8) because both represent

3 deviations from a linear background profile.

Figures 5.3 and 5.4 display the observed wind profiles

I (dashed lines) and the approximated wind profiles (solid

3 lines) for 18 and 26 September, respectively. Here, the

u-wind is the cross-roll component and the v-wind is the

3 along-roll component. We see that the approximate wind

profiles provide accurate representations of the observed

wind profiles. The potential temperature profiles are

3 displayed in Figs. 5.5 and 5.6. These approximate profiles

(solid lines), although not as accurate as the approximate

wind profiles, provide visually adequate representations,

I
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Fig. 5.3 A Comparison of the Observed Profiles (Fig. 5.1;

dashed lines) and the Approximate Profiles (solid3lines) of the Along-roll Wind v and the

Cross-roll Wind u on 18 September 1981. The

appropriate Fourier coefficients are given in

Table 5.1.
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I Fig. 5.4 A Comparison of the Observed Profiles (Fig. 5.2:
dashed lines) and the Approximate Profiles isolid
lines) of the Along-roll Wind v and the
Cross-roll Wind u on 26 September 1981. The
appropriate Fourier coefficients are given in

Table 5.1.
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Fig. 5.5 A Comparison of the Observed Potential

Temperature Profile (Fig. 5.1; dashed line),

the Approximate Profile of Pbtential Temperature

(solid line), and Its Linear Component (dotted

line) for 18 September 1981. The appropriate

Fourier coefficients are given in Table 5.1.
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Fig. 5.6 A Comparison of the Observed Potential

Temperature Profile (Fig. 5.2; dashed line),

the Approximate Profile of Potential Temperature

(solid line), and Its Linear Component (dotted

line) for 26 September 1981. The appropriate

Fourier coefficients are given in Table 5.1.I
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3 in addition to being the mathematically optimal

representations, of the observed potential temperature

3 profiles (dashed line). As with the profile depicted in

Fig. 2.2, the deviations from the observed values are on a

I small enough scale that they do not significantly affect

3 the model results. We see that on 26 September the linear

component (dotted line) of the temperature profile gives a

3 good approximation to the observed profile. On 18

September, however, only the full expansion provides an

adequate representation to the observed data.

* In addition to the trigonometric functions that we use

to approximate the wind and temperature profiles that are

I shown in Figs. 5.3 through 5.6, we must also consider

i constant and linear functions in order to represent the

mean value and the trend in the data. For the wind

3 profile, we find that a Fourier expansion including only

the constant term in the expansion gives the best fit to

I the observed data. In contrast, for the temperature

3 profile, we find that the Fourier expansion containing the

linear function gives the best fit to this data. Since the

3 number of Fourier functions that we may use to represent

the temperature profile is severely limited, we cannot

include enough terms from a sine or cosine series to

adequately approximate a linear function. Thus the linear

term is required to produce an adequate fit. Physically,

I the linear component of the expansion represents the

I
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3 buoyancy term B(z) that is given in (2.13) by the

difference between the background temperature lapse rate

3 -BTO/z and the adiabatic lapse rate Yd. The wind

profiles, however, include the first three terms of a sineI *

series in z and so it can adequately represent the linear

3components of the observed data.
We approximated the temperature profile by including

3 the constant term and found no significant improvement in

the results. In fact, the approximated potential

temperature profile including the constant term for 26

3 September did not provide as good a qualitative fit as did

the profile without it. Thus the Fourier coefficients of

I the potential temperature that we predominantly use in the

3 model do not contain the contributions from a constant

coefficient. In the next section, we will illustrate the

* effects of including the constant term in the Fourier

potential temperature expansion by showing how much the

preferred transition curves vary in (Ra,Re)-parameter

3 space.

It is understandable that the least squares fit to the

* potential temperature curve is not as good as the least

squares fit to the wind because we have only three

trigonometric functions, that is three Fourier

3 coefficients, available to fit the observed potential

temperature curve. In addition, the vertical variation in

Ipotential temperature is much greater than that of the

I
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3 wind, thus making it more difficult for a limited expansion

to accurately fit the curve. We note that increasing the

3 number of coefficients in the spectral expansion (2.38) for

the temperature would improve the fit to the potential

temperature profile. It follows that a better

3 representation of the background potential temperature

would produce model results that are in better agreement

3 with the observations.

We have discovered that using the vertical wavenumbers

q = 1 and n = 2 in the Fourier definitions gives a more

3 accurate least squares fit to the wind profile on both 18

and 26 September than the vertical wavenumbers of q = 1 and

I n = 3 that Haack-Hirschberg (1988) used. This result is

important since we also get the best least squares fit to

the observed potential temperature profiles when we use

3 vertical wavenumbers of q = 1 and n = 2. In addition,

these vertical wavenumbers give good results for the

I preferred roll geometry on both 18 and 26 September, and so

1 we feel that these wavenumbers are the most appropriate

ones for this analysis.

3 As mentioned earlier, the expansions (5.1)-(5.2) that

are used to approximate the wind and temperature profiles

included either a linear term or a constant term in

* addition to the trigonometric terms that we use to define

the Fourier coefficients for the stability analysis.

I Including the non-trigonometric terms in the least squares

I
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analysis causes the magnitudes of the amplitudes

multiplying the trigonometric terms to change according to

3 the contributions from the non-trigonometric terms. The

dimensionless Fourier coefficients of the temperature r.

Icontain only trigonometric functions whose values are
*dependent on those for the non-trigonometric functions.

For example, on 18 September, the least squares values for

the Fourier coefficients zi without the effect of the

constant term are given by ei -87.5, r2 f 175.4 and t3

-180.7. With the constant term included in the least

squares analysis, these coefficients become E % -34.2

z2 - 165.5 and v 3 -125.1. We see that the more complete

3 expansion causes the magnitudes of the trigonometric terms

to decrease considerably. While the effect of the

temperature inversion as represented by the Ei terms

3 decreases in this case, the amplitude of the linear term

increases so that the variation in backround temperature

I H(z) given by (2.7) remains essentially unchanged.

1 Now that the background wind and temperature profiles

are represented properly by our model, we may conduct a

3 stability analysis using the Fourier coefficients derived

from the observed data; the values for these coefficients

are shown in Table 5.1. With these Fourier coefficients in

3 our model, we have confidence that the dynamic and

thermodynamic forcing rates are represented properly.I
I
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ITable 5.1

Values of the Fourier Coefficients Used in the Model.I
18 Sep 26 Sep

* Wind Temperature Wind Temperature

u(1)= -0.12262 6(1)= -34.23 u(1)= -0.11332 E(1)= -50.31

i u(2)= -0.04979 r(2)= 165.49 u(2)= 0.03075 t(2)= 35.04

3 u(3)= -0.09078 c(3)= -125.12 u(3)= -0.09057 (3)= -56.93

u(4)= 0.17638 u(4)= 0.10660

i u(5)= -0.11655 u(5)= -0.10841

u(6)= 0.19605 u(6)= 0.06242

v(1)= 1.04944 v(1)= 0.94147

3 v(2)= -0.02284 v(2)= -0.04747

v(3)= 1.03445 v(3)= 0.92937

I v(4)= -0.06614 v(4)= -0.04882

i v(5)= 0.11485 v(5)= -0.00178

v(6)= -0.02476 v(6)= -0.00167i
The coefficients of the wind u(1)-u(6) and v(1)-v(6) form

the Fourier coefficients that are P-dependent. (cf.

3(2.68)-(2.73))

I
I
I
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1 5.4 Stability Results

3 In order to obtain our model results for 18 and 26

September, we specify the values of the Prandtl number P,

U vertical wavenumbers, q and n, domain height zT and

* coefficient of eddy viscosity v and then compare them with

the observed values as given by Table 5.2. As shown below,

3 we get good model results using the observed values of zT

for both days. Unlike in the z. = 0 case, the results for

the ti # 0 case depend much more on v and P. On 26

3 September, we get good results using tle observed value of

v with either the vi = 0 case or the ti d 0 case. On 18

3 September, however, we found it necessary to increase the

magnitude of v to the upper iimit of the observed range in

order to get good results for the zi # 0 case. Increasing

3 the value of v on the 18th improved the orientation angles

by about 25 percent. The good model results on the 18th

* using a larger value of v than observed suggests that

* either there is a problem with our model or that the

observed value of v is actually larger than reported.

I Since our model gave good results using the rest of the

observed data, we feel that the value of v is likely larger

I than reported.

3 In testing different values for the parameter L' in

order to achieve the best model results, we found for bothU
U
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3 Table 5.2

3 Comparisons of Values Specified in the Model

with the Observed Values.

3 Case Prandtl no. wave no. zT (m) v (m2/s)

P Q n Obs Model Obs Model

318 Sep 1 1 2 530 525 15 30

1 (10-30)

26 Sep 1 1 2 450 450 17 17

3 (10-30)

days that the values of Rac t I, Pp and a are all

3 sensitive to the value choosen for v. As the value of v is

increased from its lower observed limit to its upper

observed limit, the values of Rac become more positive, the

values of Jo decrease, the values of a decrease and the

values of P increase. Also, choosing larger values of '

I force both the range of atmospheric values and the

3 preferred modes toward larger values of Rec . The primary

effect of varying the Prandtl number P is to vary the

3 preferred values of Iw* I. Doubling the value of P from 1

to 2 causes the value of Iw*[ to double. We note that

estimating the value of x was not even attempted by Brummer

3 (1985), implying that there is a great deal of uncertainty

I
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in the values of the roll periods by (4.11).

We find for the KonTur cases, that an adequate grid

* resolution needed to differentiate the dominant roll modes

involves increments of 20 in Re, 50 in P and 0.05

3 in a. Because our y-axis is aligned parallel to the rolls,

we must rotate clockwise the roll coordinate system used in

KonTur (Figs. 5.1 and 5.2). Thus the winds in our model

3 are related to the KonTur winds by the following rotation:

v(our model) = u(KonTur) and u(our model) = -v(KonTur).

I Our orientation angle P measures the angle between the roll

3 axis and the standard xs-direction. Thus an orientation

angle of ± 900 corresponds to a roll axis that is parallel

3 to the mean wind direction.

5.4.1 The Linear (zi = 0) Temperature Profile CaseI
The two mode diagrams for the linear ( =i 0) cases

are given in Figs. 5.7 and 5.8. In each figure, the

3 observed range in Ra amd Re is enclosed by the tilted box

and the observed values of a and P are noted above the mode

diagrams. A few preferred values of a, P and Iw* I are0

3 listed along each transition curve. The stippled regions

next to the transition curves in these figures represent

3 the variations in the values of Rac that occur when the

constant term is added to the = 0 version of the

I1
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26 SEPTEMBER 1981 1120 UTC

Observed ranges

3-i0o< # < +100

400-- 0.33 < a < 1.37

0 .8 ... .. .....
80 .. ...

0 0 - ( 6 1 .0 ) ... .
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Fig. 5.7 Mode Diagram for the E. = 0 Case on 26 September1

1981. The observed (Ra,Re)-forcing region is
denoted by the tilted box and the stippled region
near the transition curves denote the uncertainty3in the locations of the curves owing to the

method of determining the values of zi (see

text). The thermal q-mode is denoted by a dashed

line and the inflection point mode is denoted by
a solid line. Preferred values of a are given3 above preferred values of P (in degrees).

Preferred values of l'- o are shown in paren-3theses. Here q = 1, n = 2, P = 1, ZTp = 450 m.

1
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18 SEPTEMBER 1981 0855 UTC

Observed ranges

400- _10o< p < +100

. . .. ..... 0.24 < a < 1.00

0.80
-15 ..

2 Re200 - 0.60i - -15 [
= - ~( 195.3) ':..

1 100- - -10
(41.0)

*0-
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3 Ra
Fig. 5.8 Mode Diagram for the E. = 0 Case on 18 September

1981. The observed (Ra,Re)-forcing region is
denoted by the tilted box and the stippled
region near the transition curve denotes the

uncertainty in the location of the curve owing
to the method of determining the values of Ei

i1

(see text). Here, the preferred transition curve
is the only one that exists and is probably a

hybrid of the thermal q-mode and the inflection

point mode. Preferred values of a are given

above preferred values of P (in degrees).

Preferred values of Ic*0o are shown in paren-

theses. Here q = 1, n = 2, P = 1, ZTp = 525 m.
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potential temperature expansion (5.2). Normally, a

constant term is needed in any least squares fit to data.

However, not including the constant in (5.2) ties the

nonharmonic portion of the potential temperature profile to

the observed value at the surface (dotted lines in Figs.

5.5 and 5.6; further explanation is provided below).

The linear component AzG(air) gives two effects that

are related. First, it makes the approximate temperature

profile more representative of the observed values.

Second, the linear contribution affects the values of the

3 critical thermal forcing Ra. that must be determined from

our model-calculated values of Raec. Because we used the

3 sea surface/air temperature difference to estimate the

values of Ra for the atmosphere, we want values of Rac

Irather than values of Raec in order to compare the observed
3 and modeled cases. Using (2.18), we must subtract from

Raec the contribution Rai due to the linear component of

3- the profile. On both 18 and 26 September, the linear

components of the potential temperature profiles are

positive, and so by (2.34) we have Ra i a -AzO(air ) < 0;

3thus the resulting adjustments to Raec are positive. Hence

we must shift the transition curves to the right in Figs.

3 5.7 and 5.8 (and also in Figs. 5.10 and 5.12 in Section

3 5.4.2). Thus, as mentioned in Section 2.1.3, the values of

Rac > 0 must be larger than the values of Raec given by the

* model in order for dynamically driven rolls to occur in a

I
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statically stable environment.

Including the constant term eo, in addition to the

linear term Aze(air)' in the Fourier temperature expansion

(5.2) produces the stippled regions in Figs. 5.7 and 5.8

_ (and also in Figs. 5.10 and 5.12 in Section 5.4.2). The

3stippled regions in Figs 5.7 and 5.8 are direct results of
not explicitly representing the vertical temperature

profile in the stability analysis. In both cases, the

transition curves are shifted to the right in

-- (Ra,Re)-parameter space by an amount equal to the

contribution of only the linear term A B in theI Az (air)
expansion (5.2) of the potential temperature profile. The

3 width of the stippled regions to the right of transition

* curves is proportional to the magnitude of the linear term

when a constant term is added to the expansion (5.2).

Including the constant term increases the magnitude of the

linear term and maintains its positive sign; for example,

Ion 18 September the linear term increases from a value of

-- 0.43 to 0.72 °C and on 26 September it increases from a

value of 0.44 to 0.55 °C. These stippled regions,

therefore, depict the amount of uncertainty in the location

of the transition curves when slightly different expansions

-- are chosen to determine the magnitude of the linear

3- contribution to the potential temperature profile. For the

E = 0 case, it appears that the constant term isiIrelatively important; the uncertainty in the location of

I
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3 the transition curves equals a variation in Ra of about 40

to 50.

5 For the case of 26 September shown in Fig. 5.7, we can

easily identify the two physically relevant roll modes.

The thermal q-mode is identified in the statically unstable

regime (dashed line). The inflection point mode (solid

line) is normally characterized by its being the mode that

crosses the line Ra = 0; however, since we use Ra rather

than Rae, the curves are shifted toward positive values of

Ra as noted above. The value of the critical Reynolds

3 number Rec at neutral stability (Ra = 0) is 228.0. The

values of ZT, ap and Pp that correspond to the inflection

3 point curve are well within the observed values of a and P

but the values of Pp for the thermal mode are not

representative of the observed values. Thus, on this day,

3 we feel that the inflection point mode is the dominant

mode, in agreement with Brummer (1985) and Stensrud and

I Shirer (1988). Within the observed (Ra,Re)-region, we get

I fp = 750 for the inflection point mode. Thus the roll axis

is 150 to the left of the mean wind direction, which was

reported by Brummer (1985) to correspond to the observed

orientation. A physically more accurate reference

direction with which to compare the orientation angles

* given by the model is the direction of the mean wind shear

value (Table 5.3). We use Simpon's rule to determine this

3 value. On 26 September we find that the direction of the

!I_ __ _ _ _ _
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mean wind shear is 70 to the left of the mean wind

direction. The difference between the model and this

reference direction is then only 80--a significant

improvement over using the mean wind as the reference

I direction.

Table 5.3

Summary of Typical Model Results

for the Inflection Point Instability Mode.

I Case #'(degrees) a, TD
0__$ MODE OBS MO])EL MODEL

V V t.=° ri 0  C =0  E-i0 0 E.=0 Z.i0

18 Sep -86 -90 -10 -75 0.24- 1.25 0.65 1 min 7 min
1.00

26 Sep 83 90 75 70 0.33- 0.80 0.80 4 min 3 min1.37

18 Sep: Rec % 50 26 Sep: Rec 1 150

SVs is the direction of the mean wind shear and Vm is

m the direction of the mean wind

I
otypical frequency for the inflection point mode

corresponds to a typical roll period of about three to four

* minutes and a phase velocity of approximately four to five

meters per second. This phase velocity is greater than the

cross-roll wind component, indicating that the roll is

propagating downstream in addition to being advected by the

I
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mean cross-roll wind. In addition, the phase velocity

given by the thermal mode is about 20 percent larger than

the phase velocity given by the inflection point mode. In

comparison, Brown (1972) states that roll periods typically

I vary between 15 minutes and two hours and LeMone (1973)

observed periods of 30 to 46 minutes in her case study.

Our model apparently gives roll periods that are about

five to ten times shorter than would be expected, possibly

due to the rigid lid approximation or to the limited number

of spectral components in the model. The reason for these

* higher than expected frequency rates must be understood in

order to produce a spectral model that accurately captures

I all of the roll characteristics. Overall, however, the

results for the linear temperature profile case on 26

September compare favorably with the observations, in

agreement with Stensrud and Shirer (1988). This result is

not altogether unexpected since the linear term well

I approximates the potential temperature profile (Fig. 5.6).

On 18 September, we cannot unambiguously identify

separate thermal and inflection point modes, except for the

appropriate limiting values of Rec = 0 and Rac = 0. The

mode that is indicated in Fig. 5.8 is the one corresponding

to (Rac)min, that is, it is the preferred mode. There

* appears to be considerable interaction between the thermal

and inflection point modes making it difficult to

3 distinguish where one mode ends and another begins.

I
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Throughout the values of Re corresponding to the

atmosphere, there are no apparent differences in aspect

ratios, frequencies or orientation angles between the two

modes.

I To confirm that the curve shown in Fig. 5.8 for 18

* ISeptember gives the preferred mode and to determine if

there are two modes and how we might separate them, we

3 contoured the values of Rac as functions of a and P for

various values of Rec. Fig. 5.9 shows a typical graph for

I the linear temperature case on 18 September at Rec = 50.

3 Immediately, we can see in Fig. 5.9 that only one mode

exists. Thus the curve depicted in Fig. 5.8 is not only

3 the preferred mode, it is the only mode that exists,

possibly a hybrid rather than a pure mode.

The values of the orientation angles and aspect ratios

3 associated with the preferred mode given in Fig. 5.8 match

those values of ap and Pp given by the mode in Fig. 5.9

I that we identify with the thermal mode. The values of a

i compare favorably with the observed ones. However, the

orientation angles along the part of the transition curve

3 near the observed (Ra,Re)-region in Fig. 5.8 have values of

-100, or 800 to the right of the mean wind direction (Table

I 5.3). We use a typical frequency for the inflection point

3 mode within the observed (Ra,Re)-region to calculate the

propagation period for this case, and we find that it is on

3 the order of one minute. This propagation period appears

I
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Fig. 5.9 Contour Diagram Showing Values of Ra c as

Functions of a and P for Re c = 50 in theE = 0

Case for 18 September 1981 Shown in Fig. 5.8.
The parameter values corresponding to the

preferred mode given by the minimum value of Ra c

* are noted to the right of the diagram.
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to be too short to be physically realistic. We conclude

from Fig. 5.8 that the i= 0 case for 18 September does

not give satisfactory results, in agreement with the

conclusion of Haack-Hirschberg (1988) who also used a

I linear temperature profile. We next investigate the

3 effects of including the complete inversion (ti # 0) case

on the stability analyses for 18 and 26 September.

U
5.4.2 The Nonlinear (ti # 0) Temperature Profile Case

* The mode diagrams for the full inversion cases are

given by Figs. 5.10 and 5.12; they follow the same format

3 as that used in Figs. 5.7 and 5.8. As before, the

locations of the small shifts in the transition curves

(stippled regions) are due to the method by which the least

3 squares program fits a curve to the potential temperature

profile when a constant term is and is not included in the

I expansion (5.2). For the case of 26 September, the linear

term Aze(air) remains positive and increases in magnitude

from 0.39 to 4.4 0C when the constant term is included. In

3 this instance, the net effect of the new magnitudes of the

coefficients multiplying the trigonometric functions is to

I offset the large change in magnitude of the linear term and

to shift the curve slightly to the left, as shown by the

stippled region in Fig. 5.10. For the case of 18

September, the linear term changes in magnitude and sign

I__ _
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from 0.30 to -1.05 °C. However, owing to the effect of the

new magnitudes of the coefficients multiplying the

3 trigonometric functions, the transition curves in Fig. 5.12

shift to the right slightly, thereby offsetting the effect

I of the changes in magnitude and sign of the linear term.

3 The widths of the stippled regions shown in Figs. 5.10 and

5.12 depict the small amount of error introduced into the

5 values of Rac when the constant term is not used in the

expansion (5.2). For the ti # 0 case, we see that the

constant terms can be neglected without introducing

3 significant errors into Rac; the variations in Rac given by

the stippled regions in Figs. 5.10 and 5.12 are less than

* 10 in both cases.

As seen in Fig. 5.10 for 26 September, the thermal and

inflection point modes apparently interact in the same

3 manner as they did for the non-inversion case on the 18th.

The transition curve here represents only the preferred

3 mode that occurs at the minimum values of Rac and Rec.

Figure 5.11 shows the contoured graph of Rac as a function

of a and P at a value of Rec = 150 for the nonlinear

3 temperature profile case on 26 September. In contrast to

Fig. 5.9, we see that there are two modes present, as

I normally expected. Two modes also occurred at each value

3 of Rec that we tested. Thus it is possible to separate

these individual modes, but it requires a grid of about

3 1, 2 and 0.025 in Re, P and a, repectively. A grid of this

I
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400- Observed ranges
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Ro
IFig. 5.10 Mode Diagram for the E i 0 Case on 26 September

i 1981. The observed (Ra,Re)-forcing region is

denoted by the tilted box and the stippled

region near the transition curve denotes the

uncertainty in the location of the curve owing

to the method of determining the values of Ei
(see text). Here, the preferred transition

curve is the minimum one consisting of the

thermal q-mode at lower values of Re and the

inflection point mode at higher values of Re.

Preferred values of a are given above preferred
values of Pp (in degrees). Preferred values of

* I are shown in parentheses. Here, q = 1,

3 n = 2, P = 1, ZTp = 450 m and v 17 m2 /s.
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Fig. 5.11 Contour Diagram Showing Values of Ra c as

3Functions of a and P for Rec = 150 in the t. 0

1
Case on 26 September 1981 Shown in Fig. 5.10.

*The parameter values ,'responding to the two

preferred modes given by the local and global
~minimum values of Ra c are noted to the right of

I the diagram.
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Fig. 5.12 Mode Diagram for the F. 0 Case on 18 September

I

1981. The observed (Ra,Re)-forcing region is

denoted by the tilted box and the stippled

regions near the transition curves denote the

uncertainty in the locations of the curves owing

to the method of determining the values of E.
(see text). The thermal q-mode is denoted by

the dashed line and the inflection point mode is

denoted by the solid line. Preferred values of

ap are given above preferred values of #p (in

degrees). Preferred values of I-* are shown in
0

parentheses. Here q = 1, n = 2, P = 1,

I ZTp = 525 m and v = 30 m /s.
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resolution is too fine to be computationally practical in

this case over the range required to perform the analysis.

3 One of tue modes in Fig. 5.11 occurs at a local

minimum value in Rac (Rac = 184) and has an orientation

Uangle that is about 40 degrees from the observed value.

The value of Pp corresponding to this mode changes little

and its value of Rac increases gradually as the magnitude

of Rec increases. This mode displays characteristics of

the thermal mode. The other mode occurs at a global

minimum value in Rac (Rac t 161) that decreases as the

magnitude of Rec increases. This effect combined with the

fact that values of Pp change significantly with changes in

*the magnitude of Rec, leads us to conclude that this mode

in Fig. 5.11 is the inflection point mode. The

corresponding values of Pp compare favorably with the

observed values of P (Table 5.3). The values of ap and p

for this mode are not quite as representative of the

observed values as those for the t 0 case.

*One of the results of including the full inversion for

the 26 September case is to increase the roll aspect ratio

I a. The analysis of the billows profile in Chapter 4 also

revealed an increase in the magnitude of a when i  0 and,

as we stated there, we believe that the value of ap

3increases in response to the increase in static stability,

as well as to the increase in values of ZTp that occur when

3wind shear in the inversion forces deeper rolls to exist.

1
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The orientation angle P p decreases slightly for the full

inversion case meaning that the angle that the roll makes

with the mean wind direction increases. For example, at a

value of Rec t 140, we find that Pp = 700. The angle that

I the roll makes with the mean wind direction is therefore

1 200. For the linear case, the roll axis is aligned 150

from the observed direction. Since Pp has increased in the

3 full inversion case, for consistency the magnitude of the

cross-roll wind should increase and the propagation period

should decrease. Indeed, the propagation period decreases

* to about three minutes.

In general, we conclude that on 26 September the

* linear case gives better results than the nonlinear case.

Previous researchers (e.g., Haack-Hirschberg, 1988;

Stensrud, 1987; and Shirer and Brummer, 1986) have found

* satisfactory results from their models that do not include

a capping inversion. Their models assumed a linear

I temperature profile that well approximates the observed

3 profile on the 26th. We think that the nonlinear Fourier

temperature coefficients vi that we used introduced some

3 error in the represention of the deviation from the

predominantly linear temperature profile. We conclude

that the shear in the inversion was not able to drive

* circulations significantly into the inversion.

As can be seen by comparing Figs. 5.8 and 5.12, the E.

* terms significantly improve the results for 18 September.

U
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3 In Fig 5.5, we discovered that the potential temperature

profile on the 18th can be approximated adequately only by

i a nonlinear function. The requirement of a nonlinear

potential temperature function to adequately represent the

I potential temperature profile likely explains the failure

of simpler models. Unlike the case of 26 September, the i

terms for the case of 18 September allow for a clear

i distinction between instability modes. The thermal mode

(dashed line) shown in Fig. 5.12 is located in the

statically unstable region and the inflection point mode

3 (solid line) is characterized by neutral stability. Of the

two possible instability mechanisms, the inflection point

i mode clearly represents the observed values much better and

so these rolls are likely to have been dynamically driven,

in agreement with Brummer (1985). Fig. 5.3 reveals the

3 existence of a very large amount of wind shear within the

inversion on the 18th and so we conclude, in agreement with

3 model results, that the inflection point instability

mechanism could have driven the rolls only if they had

extended significantly into the inversion.

3 As with the case of 26 September and the billows case,

the values of ap for the case of 18 September increase with

i the inclusion of the nonlinear terms 'i (Table 5.3). The

i increase in the value of ap on this day is significant and

less representative of the observed range of the values of

a. However, the difference in the values of ap in this

U
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case may not signify a problem with our model. As noted in

Section 5.1, the cloud streets on the 18th were well

* developed and had been observed for hours before the

observations were taken, and so they have likely evolved to

I an advanced stage of development. Etling and Raach (1987)

i showed that roll circulations tend to develop smaller

values of a as the magnitude of the forcing rates increase

3 (i.e., as the atmospheric forcing values move away from

those values required for bifurcation) in order to

transport energy more efficiently. Finding larger

3 preferred values of a, which are associated with the

minimum value of the bifurcation point, than observed is

3 consistent with this general cell broadening result (see

also Chang and Shirer, 1984).

The most significant improvement in the 18 September

3 case is in the value of Pp. Here, for values of Rec near

the range for the atmosphere, the values of Pp improve to

I -800 at Rec : 25 and to -700 at Rec z 60. These angles are

i even closer to the mean wind shear reference direction that

is 40 to the right of the mean wind direction, giving a

3 reference angle of -860 (Table 5.3). At increasingly

larger values of the wind speed or Rec, P p gradually

decreases in magnitude, and so the cross-roll wind

3 component increases in value. This decrease in the values

of P as the magnitude of the wind speed increases is in

3 agreement with the roll energy balance equation (2.78).

I
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* For constant values of the other generation and dissipation

terms in (2.78), we use the definition of the Reynolds

3 stress RS in (2.75) to show that RS can also remain

unchanged in (2.78) for increases in the magnitude of Rec

I if the value of P p is decreased in magnitude so that the

3 Fourier coefficient A2 is decreased in value.

Since the rolls on 18 September with ti # 0 are now

* aligned more nearly parallel to the mean wind direction,

th3 roll periods have increased significantly from their

values in the linear case. With the nonlinear terms E.1

included in the model, the roll period at a value of Rec

60 becomes six to seven minutes. However, since the values

3 of Pp decrease rapidly with values of Rec, the roll

propagation periods decrease correspondingly.

On both 18 and 26 September, we find that a shear mode

3 begins at values of Rec > 360 for both the linear and

nonlinear cases. These values of Rec are located at the

I upper limit of the range of values of Re for the atmosphere

3 on both days. In addition, the range of observed values of

Ra for the atmosphere is located in the statically

3 unstable region given by Ra > 0, whereas the shear mode is

located at values of Ra < -600. For these reasons, we do

not consider the shear mode to be physically relevant in

3 these cases, and so we do not include them on our regime

diagrams.I
I
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5.4.3 Summary of Results

As stated in Chapters 1 and 2, the effects on the

stability analysis of including the nonlinear terms zi in

* the definition of the vertical variation of background

temperature may not be apparent until a specific case is

examined. We have found that the ri terms provide

* significant improvement in model results for a temperature

profile having a distinct capping inversion and significant

I wind shear, such as occurred on 18 September. When used

* with a case having an approximately linear temperature

profile and a smaller amount of shear as on 26 September,

we found that the ri terms give slightly poorer results.

On 18 September, our model gives values of ap and Pp that

are in good agreement with the observed values only for the

nonlinear ( i # 0) case. The values of ap in this case are

near the upper limit of the observed values.

I Including the nonlinear temperature terms in the model

i causes a marked increase in the roll aspect ratios for the

billows case and the cases of 18 and 26 September. On 18

* September the nonlinear temperature terms shift all modes

toward more negative values of the thermal forcing; on 26

I September there is no significant shift in the transition

curve. Also on 18 September, which is the case having the

larger mount of shear in a more distinct inversion, the ci

* terms tend to increase the roll periods to values closer to

I
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the expected ones in comparison with the z i  0 case.

However, the periods produced by ri # 0 case are still

about five times too small, which as we noted above

suggests that further model improvement is needed. The

I values of Pp on both days may signal even better agreement

with the observed values since Shirer and Haack (1989),

using FIRE data, have shown that removing some of the

* linear component of the background cross-roll wind improves

tPp by as much as 15 to 20 degrees. We have found that the

U inflection point instability mechanism likely produced the

rolls on both 18 and 26 September, which is in agreement

with the energetics analyses by Brummer (1985). Table 5.3

* above summarizes our results and compares them with the

observed values.

In this study, we have gained considerable insight

* into the representation of boundary layer roll circulations

that develop in the presence of an arbitrary vertical

I temperature profile and an arbitrary, vertically sheared,

horizontal wind profile. In particular, we have seen how

shear in an inversion above a well-mixed layer can interact

* synergistically with thermal forcing from below to produce

a boundary layer roll circulation extending well into the

I inversion. We conclude that for many cases this type of

* spectral modeling approach captures the information

necessary for adequate representation of boundary layer

rolls. However, to be certain, further testing with data

I
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from other field programs such as FIRE and ERICA is clearly

needed. Owing to the inclusion of the additional physical

effects via the arbitrary temperature representation, there

may be a secondary application of this model. An

interesting experiment would be to apply this model to the

i transverse bands or billow clouds that frequently are found

in the atmosphere at levels of three to six thousand

i meters.

i
I
i
I
I
I
I
I

I
I
i
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Appendix

UA Portion of the Output Produced by the Symbolic

Manipulator CFORMAC That Was Used to Find the

Coefficients in (3.12).

Here, A, B, D and F are the coefficients Ai, Bi, Di and Fi

3 in the imaginary portion of (3.12).

a=coeff(Imagw**3)

A = - P BI - P P2 - 81 - 82

Ib=coeff(Imagre*w**2)
B P B1 A3 - P 91 05 - P 81 A? - P Al B2 - P 82 AS - P B2 AT -

Al - 81 A3 - 81 AT - Al 82 - 82 A3 - 82 A5

3d=coeff( Imag ,wre*-2) 2

o - P 51 A3 A5 - P El A3 AT - P BI A5 AT + P 81 A6 -P Al 82

2
- P Al B2 Al - P 82 A5 AT + P B2 A6 - 81 Al A3 - B Al AT + 81

A4 - 81 A3 AT - Al B2 A3 - Al B2 AS + A2 A4 02 - 82 A3 A5

3f=coeff(|ma2,w*re)
F = 0

f =-C pPff(magw8ra)

F=-P B1 C2 - P 01 en2 - B1 02 - D1 82

~ci :coeff ( i ma'g, w)

2 2 2 2 2 2
CI P 81 B2 * P 81 82 + P BI 82 - P SI RE A3 A5 - P BI
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