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This phenomenon of internal rupture is closely related to the well-known
phenomenon of cavitation in fluids, and has therefore been dubbed "cavitation"
even in solids. Since the nucleation of a void in a stressed solid is often a
precursor to failure, it would be useful to be able to predict the conditions
under which cavitation occurs.

The present project has been aimed at trying to determine whether cavita-
tion, viewed as an intrinsic material instability, provides insight into the
phenomenon of void nucleation. The project had two principal goals: one, to bet-
ter understand the phenomenon of spherically (of cylindrically) symmetric cavi-
tation, and two, to study the phenomenon of cavitation in circumstances that do

not possess such symmetry. This report contains the results of the investigation.
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DESCRIPTION OF PROBLEM AND RESULTS:

Consider a solid sphere of unit radius subjected to a uniformly-distributed
radial tensile traction p on its surface. In response to this loading, the body
can expand into a larger solid sphere. However for certain materials, when p is
sufficiently large, it is energetically more favorable for the body to instead
develop an internal spherical cavity. A bifurcation analysis yields the value
Pcr ©f the applied stress at which this instability occurs, without the need for
an ad hoc failure criterion, Ball(1982).

This phenomenon of internal rupture is closely related to the well-known
phenomenon of cavitation in fluids, and has therefore been dubbed "cavitation"
even in solids. Since the nucleation of a void in a stressed solid is often a
precursor to failure, it would be useful to be able to predict the conditions
under which cavitation occurs.

The present project has been aimed at trying to determine whether cavita-
tion, viewed as an intrinsic material instability, provides insight into the
phenomenon of void nucleation. The project had two principal goals: one, to bet-
ter understand the phenomenon of spherically (of cylindrically) symmetric cavi-
tation, and two, to study the phenomenon of cavitation in circumstances that do
not possess such symmetry.

PART A: RADIALLY SYMMETRIC CAVITATION

The e co ibility and hardeni cavitat :

The study of cavitation in compressible materials is considerably more dif-
ficult than the corresponding problem for incompressible materials because of
the difficulty involved in solving the associated nonlinear differential equa-
tion. We studied this problem for a special class of compressible elastic mate-
rials, the material model being a generalization of one for foam rubber, and the
aim being to examine the qualitative influence of material compressibility on
cavitation. Specifically, a bifurcation problem for a solid circular cylinder
composed of this elastic material was studied. The curved surface of the cylin-
der was subjected to a radial stretch A (>1), and the cylinder was in a state of
plane strain. A cylimdrical cavity, coaxial with the cylinder, is found to
emerge when A reaches a critical value (say A.,) at which the homogeneous
deformation becomes umstable. We find that )., decreases as the material becomes
softer and also as it becomes less compressible. The corresponding value of
radial true stress r.,. also decreases as the material becomes softer, but
increases as it becomes less compressible. Figures 1 and 2 show this variation.

Reference: N. Ertan, Influence of compressibility and hardening on cavitation,
ASCE Journal of Engineering Mechanics, Vol. 114, (1988), pp. 1231-1244.

- W vity:

In this study we examined the effect of rate-dependence on the phenomenon of
cavitation in an incompressible material. Specifically, a sphere containing a
traction-free void of infinitesimal initial radius was considered, and the outer
surface of the sphere was subjected to a prescribed uniform radial nominal
stress p, which was suddenly applied and then held constant. The sphere was com-
posed of a particular class of incompressible rate-dependent materials. The
large strains which occur in the vicinity of the void were accounted for in the

-
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analysis and the problem was reduced to a nonlinear initial-value problem, which
was then studied qualitatively through a phase-plane analysis. The principal
result derived in this study is characterized by two equations relating the
applied stress p and the current cavity radius b: p = $(b) and p = P(b). The
first of these describes a curve that separates the (p,b)-plane into regions
where cavitation does and does not occur. The second describes a curve which
subdivides the former subregion -- the post-cavitation region -- into domains
where void growth occurs slowly and rapidly. Figure 3 shows an example of these
curves for a particular set of material parameters.

Reference: R. Abeyaratne and H-s. Hou, Growth of an Infinitesimal Cavity in a
Rate-Dependent Solid, ASME Journal of Applied Mechanics, Vol. 56, (1989), pp.
40-46.

The effect of axial stretch on cavitatio de

In this study the phenomenon of cavitation in an elastic cylinder subjected
to a combined axial stretch A, and a radial traction p was examined. One
possible response of the cylinder to this loading, for all A, and p, is a pure
homogeneous deformation. However, for some materials, the homogeneous deforma-
tion becomes unstable at certain critical values of the pair (A,p) and a second
deformation involving a cylindrical cavity emerges. We determined the values of
(A;,p) at which this happens. The results are displayed by constructing a curve
in the (A,,p)-plane which divides this plane into regions where the homogeneous
deformation is stable and unstable.

From the results of this study we have observed that a material which does
not exhibit cavitation at one value of the axial stretch A, might do so when it
is subjected to some other value of )\,. We also observed that a material which,
at some ),, possesses cavitated deformations which are unstable, could exhibit
stable cavitated deformations when a different axial stretch is imposed. Figure
4 shows the critical curves in the ()A,,p)-plane for different values of material
hardening.

Reference: H-s. Hou and Y. Zhang, The effect of axial stretch on cavitation,
accepted for publication in the International Journal of Nonlinear Mechanics,
November 1989.

Com son o w

Gent and Lindley(1958) conducted experiments on thin disks of wvulcanized
rubber by bonding its faces to two stiff metal disks, and then applying uni-
axial loads to the metal disks normal to its faces. They observed direct and
indirect evidence of flaw initiation at the center of the rubber specimen when
the load reached a critical value. By repeating the experiment on a series of
specimens which had been pre-treated differently, they were able to relate the
critical load at void initiation to the Young’s modulus of the material.

Oberth and Bruenner(1965) conducted tensile tests on a standard specimen of
polyurethane in which they had embedded a small metallic sphere; the sphere was
well bonded to the surrounding matrix material. During the tension tests they
observed the appearance of small cavities (near the poles of the spherical par-
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ticle) when the load reached a critical value. They too repeated the tests on a
series of specimens that had been pre-treated differently, and were able to
relate the Young’s modulus of the material to the critical load at void initia-
tion.

We carried out a finite element analysis of the two test »pecimens used in
these experiments, and used the results of these rumerical studies, in conjunc-
tion with the predictions of a cavitation analysis, to predict theoretically the
load when cavitation occurs; in both cases, the results were in striking agree-
ment with the experimental observations.

Reference: R. Stringfellow and R. Abeyaratne, Cavitation in an elastomer: com-
pariscn of theory with experiment, Journal of Materials Science and Engineering,
Vol. All12, (1989), pp. 127-131.

Vo ollaps

In this study we examined the collapse of a void, the phenomenon in which an
existing void closes due to an instability. This is the opposite phenomenon to
cavitation. A complete analysis of the collapse of a void in an incompressible
elastic material was carried out in the special cases of spherical and axial
symmetry . The analysis predicts the critical load at which collapse occurs.

We considered large, radially symmetric, deformations of an infinite medium
composed of an isotropic, incompressible elastic material surrounding a trac-
tion-free spherical cavity. The body Is subjected to a uniform pressure at infi-
nity and we examine the possibility of void collapse, i.e. the possibility that
the void radius becomes zero at a finite value of the applied stress. This does
not occur in all materials. We have determined the complete sub-class of incom-
pressible elastic materials that do exhibit this phenomenon, and for such mate-
rials, found the value of the applied load at which collapse occurs. We have
also examined the stability of the deformation, both from minimum potential
energy and dynamic stability points of view. The results were illustrated by
considering a particular class of power-law materials. Figure 5 shows the varia-
tion of the cavity radius b with the applied pressure p for three values of the
hardening exponent.

In certain respects, the results for void collapse are complementary to
those for void expansion. In this complementary problem, one is interested in
examining if, and when, a cavity in an infinite medium can grow without bound.
Many formal similarities exist between the results of the analyses of these two
problems.

Reference: R. Abeyaratne and H-s. Hou, Void collapse in an incompressible elas-
tic solid, accepted for publication in the Journal of Elasticity, July 1989,

The relationship between local and global instabiljities during cavitation,

Consider a solid sphere subjected to a uniform radial tensile load, which,
at some critical value of the load, bifurcates into a configuration involving a
concentric internal cavity. Consider an infinitesimal cube of material within
this body, just prior to cavitation, which is oriented with its edges parallel
to the radial and hoop directions. In this configuration, this material element
is subjected to a deformation with equal principal stretches A} = X9 = A3 and a
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hydrostatic state of stress. Immediately after cavitation, this same material

element has .ae geometric shape of a plate with A\] < 1 and A9 = A3 >1 (vwhere X;

is the radial stretch and A,p, A3 are the hoop stretches); see Figure 6. Thus it

is apparent that when the body undergoes the (global) cavitation irstability,

each infinitesimal material el ' -nt undergoes this local "cube -+ plate" insta-

bility (which we refer to as an asymmetric instability). This suggests that

cavitation might be viewed as the occurrence of a continuum of local asymmetric

instabilities, so that

i) a material that exhibits the ravitation Instability must necessarily exhibit
the asymmetric instability;

ii) the critical loaa at cavitation wust be a suitable average of a sequence of
critical loads for the asymmetric instability;

iii)a material thLat exhibits stable cavitation must necessarily exhibit stable
asymmetric deformations.

We have been able to yrove these results, therebyv allowing us to understand the

intrinsic nature of the cavitation instability in terms of a more simple insta-

bility that occurs locally.

Reference: H-s. Hou and R. Abeyaratne, On the cavitated instability and its
relationship to a continuum of local asymmetric configuracions?, manuscript in
preparation.

PART B: NON-RADIALLY SYMMETRIC CAVITATION

Most previous studies on cavitation, including those described in Part A
above, have been restricted to the case of radial (i.e. spherical or cylindri-
cal) symmetry. Many practical situations do not possess such symmetry and it is
therefore important to extend the radially-syrmetric studies to more general
situations. The particular three-dimensional case of axial-symmetr;, where the
nucleated void is, roughly, ellipsoidal in shape, is a special case of some
importance.

Consider an incompressible, isotropic medium, subjected to a remotely
applied axially-symmetric state of stress; let r; denote the axial stress and rjp
each of the two equal in-plane stresses. The body deforms in an axially-
symmetric manner. If ry; = 7, we have spherical symmetry and an (infinitesimal)
spherical void appears at the origin, when the applied stress reaches the value
7] = 79 = Tor. In the general case (r) » 7;) one expects to have a function
¢(ry, r9) characterizing a failure or "cavitation curve" such that when ¢(rq,
79) < 0 the body deforms homogeneously, when ¢(ry, 73) = 0 an infinitesimal
(not-necessarily-spherical) void is nucleated, ard when ¢(ry, r9) > 0 the cavity
expands; in order to conform with the symmetric case, one must have ¢(r.p, 7o)
= 0. Determining this cavitation curve is the focus of the studies described in
this part.

First, we showed that the phenomenon of cavitation is always preceded by a
different type of instability if the prescribed loading is dead, and therefore,
in all subsequent work we restricted attention on the case of prescribed dis-
placement or prescribed true stress. Next, we determined an exact analytical
expression for the cavitation function ¢ for a special compressible elastic
mater{al. We then developed an analytical procedure which led to an approximate
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Reference: R. Abeyaratne and H-s. Hou, On the occurrence of the cavitation
instability relative to the asymmetric instability under syumecric dead load
conditions, submitted to Quarterly Journal of Mechanics and Applied Mathematics,
April 1990.

Cavitation and void collapse under plane strain bj-axial loading in a special
compressible elastic material:

Consider a state of plane strain of an infinite medium surrounding a trac-
tion-free circular hole, and suppose that the medium is composed of the power-
law material considered by Varley and Cumberbatch(1980): in such a material, the
nominal stress ¢ and the axial stretch A are related, in plane strain uni-axial
tension, by

o = (E/k) (k-1 . -1y

where E and k are material constants. At infinity, the body is subjected to a
state of bi-axial stress

711 * 91, og99 ~* 03, 012 and og9q = 0.

We have analyzed the associated problem and determined the resulting deformation
and stress fields. Suppose for example that the hardening exponent has the
value k=2. Figure 7 shows a sketch of the (0y,07)-plane. The two bold curves in
the figure form a critical boundary. If the point (o0y,09) corresponding to the
remotely applied stress lies in the hatched region, the cavity is open in the
deformed configuration and has an elliptical shape. As the point (o0y,07)
approaches one of the boundaries of the hatched region, the cavity collapses
into a crack as shown.

Suppose instead that the hardening exponent in the constitutive law has the
value k=1. In this case the cavity is generally '‘'peanut-shaped’’in the deformed
configuration as shown in Figure 8. As (o0q,0p) approaches either of the two bold
lines with positive slope, the cavity collapses partially by contacting along
part of its boundary as shown in the figure. On the other hand when (¢y,07)
approaches the bold line with negative slope, the deformed cavity size becomes
infinite corresponding to cavitation.

Reference: R. Abeyaratne and H-s. Hou, Void collapse in an elastic solid,

accepted for publication in the Journal of Elasticity, July 1989.
v urve:

Consider an infinite incompressible medium, subjected at infinity to an axi-
symmetric stress state (ry, r7, 7r7). We wish to determine the resulting
deformation of this body. One deformation that the body can undergo, no matter
what the values of ry and rj, is a pure homogeneous one. Determining other
possible deformations, in exact analytical closed form, is a difficult task;
consequently, in this part of the present study, we attempted to find an approx-
imate analytical deformation field.

Consider the sub-class, say ‘'A’, of all kinematically admissible deforma-
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tions which are of the form
y1 = £(r)xq,
y2 = 8(r)xyp, (1)
y3 = g(r)x3;

here (xj,xp,x3) are the coordinates of a particle before deformation and
(¥y1.Y2.yY3) are its coordinates in the deformed configuration, 2 - x12+x22+x32,
and f and g are positive-valued functions. Note that deformations in this class
possess axi-symmetry; moreover, the special case f=-g corresponds to radially
symmetric deformations, while the special case f=constant, g=constant describes

a homogeneous axi-symmetric deformation. In view of the incompressibility of the
material one can show that deformations in ‘A’ must necessarily have the form

y1 = 272 (1 + g3R1H1/3 «,
vy = A (1+ g3RHL/3 x,, (2)
y3 = A (1 + B83/RH1L/3 &y,

where A > 0 and 8 > 0 are kinematically undetermined constants. When g=0 this
describes a pure homogeneous deformation, while when A=1 it corresponds to a

radial deformation involving a cavity of current radius 8. In general, such a
deformation carries the origin in the undeformed configuration into an ellip-
soidal cavity; B is a measure of the size of the cavity while A describes its
departure from spherical symmetry.

Thus, the collection of deformations ‘A’ corresponds to a two-parameter fam-
ily of deformations and the "best" values for the parameters A, S may be found
by minimizing the appropriate total energy of the body. Such a calculation leads
to the following two equations relating the stresses r{ and rj to the geometric
parameters A and §:

r1 + 2rp = 3/(4xp2) 3E/B, }
(3)

rg - 11 = 32/(8x(1+83)) AE/a);

here E(B8,)) is the total strain energy stored in the body corresponding to the
deformation (2). At the instant of cavitation one has f=0; setting =0 in (3)
and then eliminating (in principle) the parameter A between those two equations,
leads to a relationship between r; and r; which is the approximate equation of
the cavitation curve ¢(ry,rp)=0. The curve in Figure 9 shows the result for the
neo-Hookean material. This same procedure can be carried out for elastic-plastic
naterials as well, provided the principle of virtual work is used in place of
extremizing the total energy. The curves in Figure 10 show the result for a
plecewise power-law material for different values of the hardening exponent.

Reference: H-s. Hou and R. Abeyaratne, Axi-symmetric cavitation in solids, manu-
script in preparation.
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Numerical v cation of accuracy of a oximate cavitat curves:

In order to investigate the accuracy of the preceding analytical approxima-
tion, we undertook a numerical study. By using the large strain analysis
capabilities of the finite element program ABAQUS, we have carried out numerical
simulations for both the neo-Hookean material and piecewise power-law elastic-
plastic materials. For computational purposes, we must, of course, deal with
finite sized regions and finite sized cavities. Thus, we have taken a "large"
body containing a "small" cavity and incremented the stress in steps (along
radial lines in stress space) and solved for the various fields including the
cavity dimensions. In a graph of cavity "size" (= one half the sum of major and
minor axes) versus stress, the cavity size is found to growth very slowly first
and then to suddenly grow rapidly. We determined the limit load, i.e. the maxi-
mum value of applied stress, and took it to be an approxir ' ilon for the stress
level at cavitation.

The circles in Figure 9 show the cavitation curve for the neo-Hookean mate-
rial as determined by the finite element solution. We see that the analytical
solution 1is a good approximation and it certainly shows the correct trends.
Figure 11 shows the analytical and numerical cavitation curves (corresponding to
the curve and the circles respectively) for an elastic-perfectly plastic mate-
rial; the circles in that figure were taken from the numerical solution of Hut-
chinson et al.(1989). Similar comparisons for materials with strain hardening
were also carried out but are not shown here. Finally Figure 12 shows a compari-
son between the actual deformation fields; the two curves shown are the deformed
cavity shape according to (2) at two different values of load, while the circles
correspond to the finite element solution; the figure is drawn for the neo-
Hookean m:.terial.

Reference: H-s. Hou and R. Abeyaratne, Axi-symmetric cavitation in solids, manu-
script in preparation.

o \'4 es: compa of theory w e

We have used the failure curves ¢ generated by the aforementioned studies,
and applied it to two experimental situations: one, the experiments of Gent and
Lindley(1958) on thin rubber disks, where depending on the thickness of the
disk, they either observed or did not observe cavitation, and two, the exper-
iments of Ashby et al.(1989) on highly constrained lead wires. The predictions
of the model have been consistent with the observations. In Gent and Lindley's
experiments (see description previously) they studied cavitation in rubber disks
of various thicknesses. A finite element stress analysis of different speci-
mens, as the load is increased, ylelds trajectories in stress space correspond-
ing to the evolution of the stress at the center of the specimen, as shown in
Figure 13. Cavitation occurs when the stress trajectory intersects the cavita-
tion curve. The figure shows that the two thickest specimens do not intersect
this curve, and therefore do not cavitate at the center of the specimen, while
the others do. This observation, as well as the values of load at which cavita-
tion does occur in the thinner specimens, agrees with Gent and Lindley's obser-
vations.

Reference: H-s. Hou and R. Abeyaratne, Axi-symmetric cavitation in solids, manu-
script in preparation.
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Figure 1. Variation of critical stress r.. with hardening exponent n at
fixed Poisson’'s ratio v=0.3.
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Figure 2. Variation of critical stress r., with Poisson’'s ratio » at
fixed hardening exponent n=2.
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Figure 3. Void expansion and contraction domains for rate-dependent material.




Figure 4. Cavitation curves £(p,A;)=0 for power-law material for different

hardening exponents.
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Figure 5. Variation of the void radius b with the applied pressure p for a
spherical shell for different hardening exponents n.
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Figure 6. Pre- and post-bifurcation sketches of a material element in a cavita-
ting sphere.




Figure 7. Domain of (0,,00)-plane where cavity is open.
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Figure 8. Domain of (¢,0,)-plane where cavity is open.

Valey and Cumberbatch material with k=1.
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Figure 9. Cavitation curve ¢(rq,72)=0 for neo-Hookean material.
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Figure 10.

Cavitation curve ¢(ry1,79)=0 for elastic-plastic materials with

different hardening.
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Figure 11. Cavitation curve ¢(ry,73)=0 for elastic-perfectly plastic material.
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Figure 13. The intersection of stress trajectories and the cavitation curve for
. rubber disks of various thicknesses.




