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\ ABSTRACT

In this note. we further develop the pathwise convexity approach introduced by Hu (1990 1o
prove consistency of infinitesimal perturbation analysis for the derivative of the steady-state waiting
time of the G/G/1 queue. In addition to generalizing the argument. we illustrate the technique with

applications to stochastic storage theory and networks of queues. ™
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1. Introduction

Given a stochastic system depending on a real-valued decision parameter 0, it is often of interest
to calculate the derivative of steady-state performance measures with respect to 0. These derivatives
play an important role in the sensitivity analysis and optimization of such systems (see Glynn (1990)
for further-discussion of these applications).

Typically, steady-state performance measures can not be calculated in analytical closed-formn, As
a consequence, it is desirable to develop numerically-based algorithms for obtaining such derisatives.
Given the inherent flexibility and power of simulation as a numerical tool for the study of stochastic
systens, considerable attention has recently been focussed on the question of how to construct efficient
simulation-based estimators for derivatives of steady-state performance measures. Two general
apptoaches to the problenm have been suggested in the literature: likelihood ratio gradient estimation
techuiques (see Glynn (1986, 1987. 1990), Reiman and Weiss (1989), and Rubinstein (1986)) and
infinitesimal perturbation.analysis (see,-for example, Suri (1987), Cao-(1988), and Glasserman (1938)).

This note discusses infinitesimal perturbation analysis (IPA), and can be viewed largely as an
elaboration of the basic ideas presented in Hu (1990). A major theoretical concern with IPA is the
question -of consistency. {In -our current setting, IPA is said to be consistent if the IPA derivative
estimator converges in -probability to the derivative of the steady-state performance measure. 1t is
known, however, that [PA need not be consistent when applied to certain types-of systems, such as
queueing networks having multiple customer-types (see Heidelberger et al (1988)). As a consequence,
IPA consistency continues_to be a major theoretical issue.

Recently, Hu (1990) developed an elegant approach, based on convexity, for proving consistency
of the IPA-derivative estimator in the-context of the G/G/1 queue. In-this note, our principal objective
is to show-that Hu’s convexity technique is a powerful-tool that can-be-useful in a-significantly -broader

setting than that of the single-server queue.

2, The Convexity Approach for Obtaining IFA Consistency
Consider a real-valued discrete-time sequence X = (Xn : n 2> 0) representing the output of a

simulation. Suppose that the probability P governing the distribution of X depends on a real-valued
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decision parameter 6. (We specialize to real-valued decision parameters and. discrete-time only in order
to simplify our exposition; the same ideas easily extend to vector decision parameters and/or *
continuous-time processes.) To denote the dependence of P on 8, we write it as P,.
We assume that for -each & in some open interval A, the sequence X has a well-behaved steady-
state. More precisely, we assume that for each @ ¢ A, there exists a deterministic constant o(#) such
that

n=1

L Eo X, — a{f) P, a.s. (1)
as n — co. The constant a(f) then represents the steady-state mean of X under P, The literature
abounds with various mathema ical techniques for establishing the law of large numbers (1) (eg.
Markov process techniques, stationary process theory, regenerative analysis).
The basic idea underlying IPA is the ruustruction of a single probability space (Q. F. P) and a

collection of random variables {X,(0) : n > 0. 8 ¢ A} such that:

For each 0 ¢ A, P{X(0) ¢ -} = Py{X ¢ -}, where X(8) = (Xn(0) : n > 0). (2)

Assumption (2) asserts that the distribution of the sequence X(#) under P is identical to that of X
under P,. One (standard) way to construct a probability space satisfying (2) is to use the method of
common random numbers-to drive each of the processes X(6), 8-¢ A.

In addition, TPA demands that the construction of (2, ¥, :13) be-carried- out in such a way that
the behavior of Xn = (Xn(f) : 6 € A) is suitably smooth. In- this note, we shall employ a

pathwise convexity-assumption, namely:

For each n > 0, w ¢ Q, Xa(:, w) is convex in 0 over A. (3)

Assumptions-{1}, (2),-and:(3)-guarantee that the deterministic-function-a(-) can be approximated

well, in some uniform sense.




PROPOSITION L. Suppose a, b ¢ A, where a < b. Under (1), (2), and (3).

P{Xn(+) converges uniformly to a(-) on [a,b) asn — o0} =1,

- -1
where Xn(0) =n~! :go Xi(®).

PROOF. Let Ay = {w: KXu(f, w) — a(f) as n. — =0}, and Q be the set of rational numbers

contained in A. We first show that P(A) = 1, where A = N_ A,

6eQ
. =1
By assumption (2), P(A,) = Py(B,), where By = {w : n™! “2 Xi(w) — a(0) asn — =}, Bt
k=0

(1) guarantees that Py(B,) = 1. Since Q is conntable, it follows that P(A) = 1.

Let C = {w : Xa(+, w) converges uniformly to a(+)-on [a,b] as n — 20}. By (3). it is evident that
Xu(-. w) is convex in 8 for each n > 0 and w ¢ Q. Hence, we may apply Theorem 10.8 of Rockafellar
(1970) to conclude that A C C. It-follows that P(C) = 1, proving the-proposition.

A consequence of Proposition 1 is that there exists a set having probability one on which X,(0)
converges at each- 0 ¢ [a,b] simultaneously. As u pointed out, this permits one to apply Theorem 25.7
of Rockafellar (1970). (Note that any 0y € A can be-embedded in some closed interval {asb] C A.) The

following theorem is a generalization -of the consistency result found in- Hu (1990). It proves that the

‘time-average derivative converges-a:s. to the steady-state derivative at-almost every point 84 ¢ A. The

proof follows easily from Proposition 1 above and Lemma 1 of Hu (1990), and is therefore-emitted.
THEOREM 1. Assume (1), (2), and-(3) and let 8, be-a point at which-a(-) is differentiable. Theun.

Z.in(eo) _— O"(OO) p a.s.

= _ n=1
as n — oo, where Xn'(8p) = n™! ‘;0 X}(0o) and X}.(8y) is the right-hand derivative of X;(-)

evaluated at 6y,:namely

ir. i Xe(0o+h) - X,(6,)
Xi(0o) = };?5 —
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Since a(+) is the pointwise limit of a sequence of convex functions, it is evident that a{-) is
convex (Theorem 10.8 of Rockafellar (1970)). Consequently o is differentiable except (possibly) on a
countable subset of A (Theorem 2{ 3 of Rockafellar (1970)). Theorem 1 asserts that IPA is consistent
wherever the steady-state performance measure is smooth. Smoothness of the function a(-) (at all
points 8 ¢ A) can be established by techniques that are independent of IPA (for example, likeliliood

ratio methods).

3. EXAMPLES
In this section, we illustrate Theorem 1 with some examples that arise as solutions to a certain

R**! — R satisfy:

class of stochastic recursions. Let g :
) glx,y)is convexin (xy) ¢ Rx R*,
i) g(x.y) is-non-decreasing in (x,y) € R**! in the sense that if X; € Xy (component-wise),

¥y < Yo, then g(xy,y)) < g(Xaya).

For a given stochastic sequence Y = (Yn tn 2 1) (Yn ¢ R*), consider the real-valued scquence

X = (X, 1 n > 0) defined by Xy = x4 (No deterministic) and

Xn-i»-l = g(X'H Yn«l—l) (4)

for n > 0. Assume that under the distribution Py, (Yn : n > 1) is i.i.d. with common distribution F,.
It is easily seen that X is then a teal-valued Markov chain under Py.
To apply IPA to the calculation of steady-state derivatives of the sequence X defined by (4), we

shall- assume that there exists a r.v. Y*, a distribution P*, and a function h : R¥*! — R* such that:

iii) Fo(dy) = P*{h(6,Y") e dy} forall § ¢ R, ye R,
iv) hy(-,y)isconvex fory ¢ R*, 1 < i < k, where h; is the i’th component of h

(i.e. h(0,y) = (hy(0,y), ... ;h (0,¥)).
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Let P be the distribution under which Y = (Y : n > 1) is a sequence of i.i.d. copies of Y~ (generated

under P*) and set Xy(8) = xq, with

Xp41(0) = g(Xa(0), h(0, \.,n-l-l)) (5)

forn > 0.

PROPOSITION 2. Under assumptions i) - iv) above, the above comstruction of P and the r.v.'s

{Xn(0):n >0, 0 ¢ R} satisfies (2) and (3).

PROOF. Assumption (2) is obvious. As for (3), we can prove this inductively. Note that Xg(+) is
trivially convex, and assume Xn(0) is convex in 6. We need to show that X,,,(0) = g(Xa(0). h(0,
Y,51)) is convex in @. But, by assumption iv), each of the k + 1 arguments «f g is convex in 0.
Assumptions i) and ii) then guarantee the convexity of X,,,,(+). This follows from an ~asy modification
of Theorem 5.1 of Rockafellar (1970).

With Proposition 2 in hand, we need only verify (1) in order to apply Theorem 1. This must be

donie on a case-by-case basis (since the Markov chains defined by (4) need not be positive recurrent).

EXAMPLE 1. Consider the waiting time sequence W = (Wpn : n > 0) associated with the GI/G/1
single-server queue. As is well known, the waiting time sequence in a single-server first come first serve

queue takes the recursive form

Wi = [W" + Vn - Un+1]+ (6)

for n > 0, where V, represents the service time-of the n’th customer (n > 0) and U, corresponds to
the inter-arrival time between the n'th and (n+1)'st customer to the system. This is a special case of
(4), in which Yp,3 = (Va, - Uyyy) and g(x, vy, v2) = [x + vy + y2)T. We note that g is the

composition of a convex non-decreasing function (namely, {x]*) and a linear function (namely, x + y,




+ ¥u), and hence is convex. Furthermore, g is non-decreasing in each of its arguments. so that it
therefore satisfies i) and ii).
If we assume that V. = (Vu:n > 0) and U = (Us : n > 1) are independent sequences of i.i.d.

random variables under Py, then W is a Markov chain. If we further require that.

Pe{\,n € '} = [.){0 \"u € '}

(7)
PG{UHH € } = i){(j:wl € } ’
then the sequence Wy(0) takes the form
Wopn(0) = [(Wa(0) + 0 Vo - G )™ (3)

Hence, Proposition 2 applies, thereby proving that (W,(#) : n > 0, 0 € A) satisfies (2) and (3) on any
open interval A of R. Furthermore, it is known (see Wolff 19‘89) that if EV3 < oo, then the law of
large numbers (1) is valid at any @ satisfying 8 < Eﬂn+,/EVn. Under the above conditions. it is
therefore evident that Theorem 1 may be applied to the sequence W, proving validity of [PA at all but
(possibly) many countably 8, ¢ (0, 1730,,“/,}:3\7,,).

We further note that (7) can be modified in several ways without affecting the basic validity of
[PA. For example, Proposition 2 continues to apply to changes in location in the service time

distribution (ie. Po{Vn € -} = P{Vn 4 8 ¢ .}) as well as scale/location changes in the inter-arrival

time distribution (ie. Pp{U, .1 ¢ -} = P{0 U,,, ¢ -Jor P{U, .y + 0 ¢ }).

EXAMPLE 2. In this example, we counsider a class of nonlinear storage processes that were introduced
by Klemes (1978). Given a reservoir, we let S, be the storage at time n, and let Y,,;, denote the inflow
during period n + 1. If the outflow during period n + 1 is assumed to be a power of the storage at time
n + 1 (ie. outflow equals a S’ for some a, b > 0), then we conclude that the sequence (Sn:n >0)

must satisfy the mass-balance equation
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Sn+l = S" + Yn+l -a S?l-l-l . (9)

Hence, S,4; = v(Sn + Y, 41), where v is the inverse function to u(x) = x + ax’. We note that if
Se > 0, the sequence (Sp : n > 0) takes values in (0,00). Furthermore, u is twice continuously

differentiable on (0.00) with u’(x) = 1 + ab x*~!, u”(x) = ab(b-1) x*~2. But v(u(x)) = x and hence

v'(u(x)) u'(x) = 0.

V() (x)* + v (u(x)) u'(x) = 0,

from which we may conclude that v"(y) = - u”(v(y))/u'(v(y)). It follows that v is convex (concave)
on (Dac)if 0 < b <1 (b>1). Thus. if 0 < b < 1, it is evident that g(x,v) = v(x + y) satisfies
conditions i) - ii) of Proposition 2. If we further require that under Py, Y = (Y, : n > 0) is a sequence

of i.i.d. random variables for which
Pg{\’n € ‘} = p{o \-’n € '}i

the conditions of Proposition 2 are in force and the sequence S(8) = (Su(#) : n > 0) given by
So(@) =S¢ > 0,

Sn+l(9) = v(Sa(0) + 0\.’n+l)

satisfies (2) and (3). Furthermore, we prove in the Appendix that if EVZ < oo, the strong law (1)
holds at every 8 > 0 (with Sp(8) playing the role of X,). Hence, Theorem 1 proves that IPA applies to
steady-state derivative estimation, for the class of storage models discussed here, provided the power
law exponent satisfies b < 1.

In fact, it turns out that IPA also applies when b > 1. Let Sn=-Sn Yn="-Yn and glxy)=-
g(-x.-y), so that S,H_l = (5n,Yn). Assuming EY} < 00, one may then apply Theorem 1 to the chain

(S,. : n > 0) to prove consistency-of [PA.
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EXAMPLE 3. In this example, we prove that IPA, in certain queueing network settings, is typically a
consistent estimator of the derivative of the mean steady-state waiting time (with respect to service
time perturbations) at any first-come first-serve infinite capacity queueing station. We further assume
that the queueing network is a feed-forward network, so that customers can not loop back to the
station with positive probability. The argument hinges on the fact that the recursion (6) continues tc
hold at such a station. The sequence of inter-arrival times (Un : n > 1), although no longer i.i.d., is
unaffected by a perturbation in the service times at the station. In particular, (8) continues to hold.
when the perturbation considered is a scale change in the distribution of the service times. As a
consequence, the Wy(0)’s, as in Example 1, continue to be convex in 8. Thus, if the strong law (1) can
be shown, in the network setting, to hold on some open interval A, IPA consistency follows (as in the
proof of Theorem 1), in the sense that the IPA derivative estimator will converge except (perhaps) at
countably many points 6, € A.

In light of the power of this technique, it seems worth exploring necessary conditions for its
applicability. We note that if a suitable probability space can be constructed on which (1)-(3) hold.

then for any non-decreasing convex function f,
1 nel
fi kZO f(X(9))

is convex in @ (since the composition of a non-decreasing convex function with a convex function is
convex). Suppose that there exists a steady-state distribution 7(8) for which the strong law holds, with
limit given by

{: 0) = ] (2. dx).

a.s. as n — oo. Such strong laws typically hold for Markov chains. Because convexity is preserved
under pointwise limits, it follows that in order for a probability space satisfying (1)-(3) to exist,
evidently

9) A [ f(x) 7(0,dx)
R



must be convex in 8 for any convex non-decreasing function f for which the strong law holds. This is a
necessary condition for the pathwise convexity argument used in this paper to be applicable.

To conclude this section, we note that the storage system studied in Example 2 need not be
regenerative. In particular, let b = a= 1 and let (Yn : n > 1) be a sequence of i.i.d. Bernoulli {1/2)
r.v.’s. In this case, it is easy to show that the uniform distribution on [0,2] is a stationary distribution
for (Su : n > 0). Suppose Sy, = x. If there existed some embedded regenerative structure in
(Sn :n 2 0) such that (Sn : n > 0) could then be viewed as a positive recurrent regenerative process, it

would follow that for any bounded (measurable) f,
n=1 2
LS s — Jfx)dx/2  as.
k=0 0

asn — 20, Let B = {x 4+ j 27 : j, k € 2}, and note that S, ¢ B a.s. Setting f(x) = I(x ¢ B), we find
that the left-hand side-of the above limit relation is identically one, whereas the right-hand side is zero.
We conclude that (Sp : n > 0) can not be viewed as a positive recurrent regenerative sequence. The
importance of this point is that the pathwise convexity argument employed in this paper can be used
to establish IPA consistency for certain types of non-regenerative systems. Recent work of Glasserman.
Hu. and Strickland (1990) provides conditions for consistency of IPA in the regenerative stochastic
process setting. Thus, our work in this paper can be viewed as complementary to that of Glasserman

et al (1990).

APPENDIX
We prove here that if EY2Z < oo, then the storage sequence (Sn(6) : n > 0) defined by (9) obeys

a law of large numbers, in the sense that for every § > 0,

L E’; Si(0) — a(8)  as.

as n — >0, where the constant o(f) is deterministic. By Glynn (1989), the Markov chain

(Sa(0) : n > 0) has a unique stationary distribution w(8). Furthermore, E, )Sna(f) < oc under the
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condition EY3 < co. By applying the ergodic theorem for stationary sequences, it follows that if
P{Ss(8) ¢ -} = =(9),

%i S.(0) — Z(0)  as.,

where Z(@) is the conditional expectation of Sy(@) with respect to the invariant o-field. Furthermore.
Glynn (1989) proves that Su() - Sh(f#) — 0 a.s. as n — oo, where Sh(0) is a storage sequence that has
initial condition Sg(6) = x > 0 and is driven by the same sequence of inflows as S,(0). As a
consequence, the above strong law continues to hold with Sy(6) distributed arbitrarily. We may also
conclude that r(x) = P%{Z(6) ¢ B} is independent of x (for any B), where P%(+) = P{. | S4(8) = x}.
To complete the proof, we need to show that Z(#) is a constant a.s. Using both the Markov

property and the fact that Z(#) is invariant, we find that

PL{(So(0),enSn(0)) € - 2(0) € B} = E%{I(Sq(6),--,Sn(8)) € -) 1(Sn(9))}.

Since r(-) is constant, we conclude that the above probability equals

P{(S¢(6),-+,Sn(0)) € -} Pz{Z(6) ¢ B} .

Hence, if r(x) > 0. we obtain

{(S0(8)5-+Sn(0)) € - | Z(6) € B} = Pz{(S¢(6),..,5n(6)) € -}.

As a consequence, we have that

PL{S(8) ¢ - | Z(8) ¢ B} = P%{S(0) ¢ -}.

But Z(9) is a function of S(8) = (Sa(8) : n > 0) so for any (measurable) A, we get

PL{Z(6) ¢ A | Z(9) € B} = PL{Z(0) ¢ A}.
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Taking A = B, we have proved that if Px{Z(8) ¢ B} > 0, then Pz{Z(8) ¢ B} = 1. In other words, for

any B P%{Z(0) ¢ B} is either zero or one. It is easy to see that this implies Z(8) is deterministic.
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