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ABSTRACT

In this note. we further develop the pathwise convexity approach introduced by Ilu (19JIJ) tu

prove consistency of infinitesimal perturbation analysis for the derivative of the steady -state '\at' ni,

time of the G/G/I queue. [i addition to generalizing the argument. we illustrate the teCdiniqpie with

applications to stochastic storage theory and networks of queues.
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1. Introduction

Given a stochastic system depending on a real-valued decision parameter 0, it is often of interest

to calculate the derivative of steady-state performance measures with respect.to 0. These derixatixes

pla% an important role in the sensitivity analysis and optimization of such systems (see Cli nn (1990)

for further-discussion of these applications).

Typically, steady-state performance measures can not be calculated in analytical closed-form. As

a consequence, it is desirable to develop numerically-based algorithms for obtaining such derikati% es.

Gi en the inherent flexibility and power of simulation as a numerical tool for the stud Uf btoL11astic

systems, considerable attention has recently been focussed on the question of how to construct efficient

simulation-based estimators for derivatives of steady-state performance measures. Two general

al lroaches to the problem have been suggested in the literature: likelihood ratio gradient estimation

techniques (see Glynn (1986, 1987. 1990), Reiman and Weiss (1989), and Rubinstein (1986)) and

infinitesimal perturbation-analysis (see,=for example, Suri (1987), Ca6z(1988), and-Glasserman (1988)).

This note discusses infinitesimal perturbation analysis (IPA), and can be viewed largely as an

elaboration of the basic ideas presented in lu (1990). A major theoretical concern with IPA is the

question -of consistency. In -our current setting, IPA is said to be consistent if the IPA derivative

estimator converges in -probability to the derivative of the steady-state performance measure. -It is

known, however, that IPA need not be consistent when applied -to certain types-of systems, such as

queueing networks having multiple customer-types (see Heidelberger et al (1988)). As a consequence,

IPA consistency continues-to be a major theoretical issue.

Recently, Hu (1990) developed an elegant approach, based on -convexity, for -proving consistency

of the IPA-derivative estimator in the-context of the G/G/1 queue. -In this note, our -principal objective

is to show- that Hu's convexity technique -is a powerful-tool that can-be-useful in a-significantly -broader

setting than that of the single-server queue.

2. The Convexity Approach for Obtaining -WA Consistency

Consider a real-valued discrete-time sequence X = (X. : i > 0) representing the output of a

simulation. Suppose that the probability P governing the distribution of X depends on a real-valued
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decision parameter 0. (We specialize to real-valued decision parameters and discrete-time only in order

to simplify our exposition; the same ideas easily extend to vector decision parameters and/or

continuous-time processes.)-To denote the dependence of P on 0, we write-it as Pa.

We assume that for -each 0 in some open interval A, the sequence X has a well-behaved steady-

state. More precisely, we assume that for each 0 c A, there exists a-deterministic constant a(O) such

that

5 1Z Xk -a(0) P a.s. (1)
k=O

as n - co. The constant a(0) then represents the steady-state mean of X under Pg. The literature

abounds with various mathema ical techniques for establishing the law of large numbers (1) (eg.

Markov process techniques, stationary process theory, regenerative analysis).

The basic idea, underlying IPA is the ronstruction of a single probability space (2. , P) and a

collection of random variables {X,,(0) : n > 1). 0 c A) such that:

For each 0 c A, P{-X(0) c ') = P6 {X c }, where X(0) = (X,,(0) :un > 0). (2)

Assumption (2) asserts -that the distribution of the sequence X(0) under -P is identical to that of X

under P6 . One (standard) way to construct a probability space satisfying (2) is to use the method of

common random numbers-to drive each of the processes X(0), O-C A.

In addition, -IPA demands that the construction of (Q?, 11, -P) be-carried- out in such a way that

the behavior of Xn = (Xn(0) : 0 e A) is suitably smooth. In- this -note, we shall employ a

pathwise convexity-assumption, namely:

For each n > 0, c- Q f , Xn(., w) is convex in 0 over A. (3)

Assumptions- 1), (2), -andQ (3) guarantee that the deterministic -function- a(.) can be approximated

well, in some uniform sense.



PROPOSITION 1. Suppose a, 1) c A, where a < b. Under (1), (2), and C3),

PX()converges uniformly to a(-) on [a,bI as n - co)

where Rn(0) =-n- 1  Xk(O).
k=0

PROOF. Let A8 = w : R(0, o) - a(0) as nv- ccand Qbe the set of rational numbers

contained in A. We first show that P(A) = 1, where A n.f A,.
qEQ

By assumption (2), P(Aq) = -Pq(B36), where Be W {w 1- Xk(w) a (0) as ni- ) But
k=0

(1) guarantees that Pp(B,;) = 1. Since Q is countable, it follows that P(A) =I

Let C = {w :X,,( , ;) converges uniformfly to a(-.)on ta,bJ as n - oo}. By (:3). it is evident t-hat

X,,(., )) is convex in 0 for each n > 0 and w c P. -Hlence, we may apply Theorem 10.8 of Rockafellar

(1970) to conclude that A C C. lt-follows that P(C) -_1, proving the-proposition.

A consequence of Proposition -1 is that there exists a set having probability one on which X (0

coiixerges at each- 0 c Ia,b] simultaneously. As lti p)ointed out., this permits one to apIN Thieoremi 25.7

of Rockafellar (-1970). (Note that any 00 c A can be-embedded in somne-closed interval [ajb] g A.) The

-following theorem is a generalization -of the consistency result found in- flu (1990). It proves that the

-time-average derivative con verges -a.s. -to the steady-state derivative at-almost every point 00 c A. The

proof follows easily from Proposition 1 above and Lemma 1 of flu (1990), and is therefore-emittecl.

THEOREM 1. Assume (1), (2), and-(3) and let 00 be-a-point at wvhich-a(.) is differentiable. Then.

:-'(00 ) - Or'(00) Pa.s.

as n - 'xl, where XRn(0) n- Z X'k(0o) and X'k(0 0) is the -right-hand derivative of Xk(.)
k=0

evaluated at 00, -namely

X-V(00) = imi Xk(0o+h1) -Xk(OO)

h11[- h
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Since a(.) is the pointwise limit of a sequence of convex functions, it, is evident tht 0(.) is

convex (Theorem 10.8 of Rockafellar (1970)). Consequently a is differentiable except (possibly) on a

countable subset of A (Theorem 2%1 3 of Rockafellar (1970)). Theorem I asserts that IPA is consistent

wherever the steady-state performance measure is smooth. Smoothness of the function a(.) (at all

points 0 e A) can be established by techniques that are independent of IPA (for example, likelihood

ratio methods).

3. EXAMPLES

In this section, we illustrate Theorem 1 with some examples that arise as solutions to a certain

class of stochastic recursions. Let g : R -+ - R satisfy:

i) g(x,y) is convex in (x,y) c R x Rk,

ii) g(x.y) is-non-decreasing in (x,y) c R k + l, in the sense that if x, < x, (component-wise),

Yl < Y2- then g(x1 ,vy) < g(x 2 ,y2).

For a given stochastic sequence Y = (Yn : n > 1) (Y,, c R k), consider the real-valued sequence

X = (X, : n > 0) defined by X0 = x0 (x0 deterministic) and

X,1+1 = g(X , Y, ) (4)

for n > 0. Assume that under the distribution P9, (Yn : n > 1) is i.i.d. with common distribution F.

It is easily seen that X is then a real-valued Markov chain under PO.

To apply IPA to the calculation of steady-state derivatives of the sequence X defined by (4), we

shall- assume that there exists a r.v. Y*, a distribution P*, and a function h : R k + - Rk such that:

iii) Fg(dy) = P'{h( O,Y' ) e dy } for all 0 c R, yc ,

iv) h(. , y) is convex for y c Rk, 1 < i < k, where hi is the i'th component of h

(i.e. h(O,y) = (h1(Oy), ... ,hk(O,y)).
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Let P be the distribution under which '" = ( 1 n > 1) is a sequence of i.i.d. copies of Y' (generated

under P') and set X0 (O) = x0, with

Xn+ 1(O) = g(X,(O), h(o, Y,)) (5)

for 11 > 0.

PROPOSITION 2. Under assumptions i) - iv) above, the above construction of f' and tile r.v.*s

{X,,(O) : n > 0, 0 c R} satisfies (2) and (3).

PROOF. Assumption (2) is obvious. As for (3), we call prove this inductively. Note that Xo(.) is

trivially convex, and assume X,(0) is convex in 0. We need to show that X,.,(0) = g(X,(0). h(0,

iY1+1)) is convex in 0. But, by assumption iv). each of the k + I arguments oi g is convex in 0.

Assumptions i) and ii) then guarantee the convexity of X,,+(.). This follows from an ',asy modification

of Theorem 5.1 of Rockafellar (1970).

With Proposition 2 in hand, we need only verify (1) in order to apply Theorem 1. This must be

done on a case-by-case basis (since the Markov chains defined by (4) need not be positive recurrent).

EXAMPLE 1. Consider the waiting time sequence W = (Wn : n > 0) associated with the GI/G/1

single-server queue. As is well known, the waiting time sequence in a single-server first come first serve

queue takes the recursive form

W +1 = [Wn + V. - U.+1 ]+  (6)

for n > 0, where Vn represents the service time-of the n'th customer (n > 0) and U,+, corresponds to

the inter-arrival time between the n'th and (n+li)'st customer to the system. This is a special case of

(4), in which Y,,+ = (Vn, - U+,) and g(x, yl, Y2) = [x + Y1 + Y 2j- We note that g is the

composition of a convex non-decreasing function (namely, [x]+) and a linear function (namely, x + y,
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+ y2), and hence is convex. Furthermore, g is non-decreasing in each of its arguments. so that it

therefore satisfies i) and ii).

If we assume that V = (V,: n > 0) and U = (Un : n> 1) are independent sequences of i.i.d.

random variables under P9, then IV is a Markov chain. If we further require that,

Pe{V, .)= 15{9 .)1

(7)

PO{U,,+ C N0.+= C

then the sequence W.,(O) takes the form

N\,,J() = (\\',,(0) + 0 V,, - (8)

Hence, Proposition 2 applies, thereby proving that (W,(0) : i > 0, 0 c A) satisfies (2) and (3) on any

open interval A of R. Furthermore, it is known (see Wolff 1989) that if E \, < oo, thei the law of

large numbers (1) is valid at any 0 satisfying 0 < EUn+I/EV n. Under the above conditions. it is

therefore evident that rheorem 1 may be applied to the sequence W, proving validity of IPA at all but

(possibly) many countably 00 c (0, ftO,,+A /11Q).

We further note that (7) can be modified in several ways without affecting the basic validity of

IPA. For example, Proposition 2 continues to apply to changes in location in the service time

distribution (ie. P9{Vn C .} = P{n + 0 C .}) as well as scale/location changes in the inter-arrival

time distribution (ie. P{U,+ 1 C .} = P{0 0,,+, c . or P{n+ + 0 C .1).

EXAMPLE 2. In this example, we consider a class of nonlinear storage processes that were introduced

by Klemes (1978). Given a reservoir, we let Sn be the storage at time n, and let Y,+1 denote the inflow

during period n + 1. If the outflow during period n + 1 is assumed to be a power of the storage at time

(ie. outflow equals a Sb+l for some a, b > 0), then we conclude that the sequence- (Sn : n > 0)

must satisfy the mass-balance equation
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S, = Sn + Y,,+1 " a S,,+, (9)

Hence, S,,+, = v(S,, + Y,,+,), where v is the inverse function to u(x) = x + axb. We note that if

So > 0, the sequence (S,, : n > 0) takes values in (O,co). Furthermore, u is twice continuously

differentiable on (O.0) with u'(x) = I + ab xb- i , u"(x) = ab(b-1) x6 2 . But v(u(x)) = x and hence

v'C((x)) u'(x) = 0.

v"I(tI(x))u'(x) 2 + v'(u(x)) ui"(x) = 0,

from which we may conclude that v"(y) = - u"(v(y))/u'(v(y))3 . It follows that v is convex (concave)

on (O.,e) if 0 < b < 1 (b > 1). Thus. if 0 < b < 1, it is evident that g(x,y) = v(x + y) satisfies

conditions i) - ii) of Proposition 2. If we further require that under P9, Y = (Y, : n > 0) is a sequence

of i.i.d. random variables for which

P{Y, . = P{O '"n C

the conditions of Proposition 2 are in force and the sequence S(0) = (S,(0) : n > 0) given by

So(O) = so > 0,

S,+,+(O) = v(S,(O) + 0Y'.+ 1)

satisfies (2) and (3). Furthermore, we prove in the Appendix that if fti" 00, the strong law (1)

holds at every 0 > 0 (with Sn(0) playing the role of Xn). Hence, Theorem 1 proves that IPA applies to

steady-state derivative estimation, for the class of storage models discussed here, provided the power

law exponent satisfies b < 1.

In fact, it turns out that IPA also applies when b > 1. Let Sn = - Sn, in = - Yn, and g(x,y) = -

g(-x.-y), so that ",,+j = ,(Sn,Yn). Assuming EYn < 0o, one may then apply Theorem I to the chain

(5,, : n > 0) to prove consistency-of IPA.
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EXAMPLE 3. In this example, we prove that IPA, in certain queueing network settings, is typically a

consistent estimator of the derivative of the mean steady-state waiting time (with respect to service

time perturbations) at any first-come first-serve infinite capacity queueing station. We further assume

that the queueing network is a feed-forward network, so that customers call not loop back to tile

station with positive probability. The argument hinges on the fact that the recursion (6) continues to

hold at such a station. The sequence of inter-arrival times (U, : n > 1), although no longer i.i.d., is

unaffected by a perturbation in the service times at the station. In particular, (8) continues to hold.

when the perturbation considered is a scale change in the distribution of the service times. As a

consequence, the Wn(0)'s, as in Example 1, continue to be convex in 0. Thus, if the strong law (1) can

be shown, in the network setting, to hold on some open interval A, IPA consistency follows (as in the

proof of Theorem 1), in the sense that the IPA derivative estimator will converge except (perhaps) at

countably many points 00 c A.

In light of the power of this technique, it seems worth exploring necessary conditions for its

applicability. We note that if a suitable probability space call be constructed on which (1)-(3) hold.

then for any non-decreasing convex function f,

n-
TIZf(Xk(0))
k=O

is convex in 0 (since the composition of a non-decreasing convex function with a convex function is

convex). Suppose that there-exists a steady-state distribution ir(0) for which the strong law holds, with

limit given by
1n-1

n , f(Xk(O)) - f f(x),r(O,dx).

k=o R

a.s. as n , co. Such strong laws typically hold for Markov chains. Because convexity is preserved

under pointwise limits, it follows that in order for a probability space satisfying (1)-(3) to exist,

evidently

a(f; 0) A J f(x) ir(O,dx)
R
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must be convex in 0 for any convex non-decreasing function f for which the strong law holds. This is a

necessary condition for the pathwise convexity argument used in this paper to be applicable.

To conclude this section, we note that the storage system studied in Example 2 need not be

regenerative. In particular, let b = a= 1 and let (Y, : i > 1) be a sequence of i.i.d. Bernoulli (1/2)

r.v.'s. In this case, it is easy to show chat the uniform distribution on (0,2] is a stationary distribution

for (S,, n > 0). Suppose So = x. If there existed some embedded regenerative structure in

(S,, n > 0) such that (Sn : n > 0) could then be viewed as a positive recurrent regenerative process, it

would follow that for any bounded (measurable) f,

1 2

n f(S.) - J f(x) dx/2 a.s.
k=O 0

asn - :c. Let B = {x + 2 -k : j, k c Z}, and note that S,, c B a.s. Setting f(x) = I(x c B), we find

that the left-hand side-of the above limit relation is identically one, whereas the right-hand side is zero.

We conclude that (Sn : n > 0) can not be viewed as a positive recurrent regenerative sequence. The

importance of this point is that the pathwise convexity argument employed in this paper can be used

to establish IPA consistency for certain types of non-regenerative systems. Recent work of Glasserman.

Ilu. and Strickland (1990) provides conditions for consistency of IPA in the regenerative stochastic

process setting. Thus, our work in this paper can be viewed as complementary to that of Glasserman

et al (1990).

APPENDIX

We prove here that if Yn < oo, then the storage sequence (Sn(0) : n > 0) defined by (9) obeys

a law of large numbers, in the sense that for every 0 > 0,

In-1

E Sk(0) - a(0) a.s.
k=O

as n -- , o, where the constant a(0) is deterministic. By Glynn (1989), the Markov chain

(S,(O) n > 0) has a unique stationary distribution r(0). Furthermore, E,(O)Sn(9) < c, under the
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condition ni" < o. By applying the ergodic theorem for stationary sequences, it follows that if

P{So(G) C .} = 70),

I Sk(O) - Z(O) a.s.,
k=O

where Z(9) is the conditional expectation of S0 (9) with respect to the invariant a-field. Furthermore.

Glynn (1989) proves that S,1(0) - S,,(9) - 0 a.s. as n - co, where S'(O) is a storage sequence that has

initial condition S0(O) = x > 0 and is driven by the same sequence of inflows as S,,(O). As a

consequence, the above strong law continues to hold with S0 (O) distributed arbitrarily. We may also

conclude that r(x) = P!{Z(O) c B) is independent of x (for any B), where P"(.) = P{. I S0 (O) = x}.

To complete the proof, we need to show that Z(O) is a constant a.s. Using both the Markov

property and the fact that Z(O) is invariant, we find that

P'{(S0(O),..... ()) c ., Z(O) c B) = E',{I(So(O),...,Sn(9)) C .) r(S,(O))).

Since r(.) is constant, we conclude that the above probability equals

P-{(S0(O),...,S"(0)) c .} P {Z(O) c B}.

Hence, if r(x) > 0. we obtain

P{(S0(8),...,S-(8)) f •I Z(O) c B) = Pg{(So(O),...,Sn(O)) .

As a consequence, we have that

P:{S(e) c I Z(O) c B) = P {S(O) c

But Z(O) is a function of S(O) = (S,,(O) : n > 0) so for any (measurable) A, we get

P'{Z(O) c A I Z(9) c B) = P',{Z(O) c A).
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Taking A = B, we have proved that if Px{Z(O) c B} > 0, then P.{Z(O) c B) = 1. In other words, for

any B P,'{Z(O) c B) is either zero or one. It is easy to see that this implies Z(O) is deterministic.
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