AD-A228 821

memW K

Approrad low guble mtxxsq
Diwmtbareiy, Unlatiod

BTIC FILE COPY

SDRL Q14-02021-C

Q14 - Standards Development Plan
Ada Interfaces to DIANA

Analysis and Recommendations

D

M £ ECTEREG

Prepared for

Software Technology for Adaptable
Reliable Systems (STARS)

Unisys STARSCenter

Shipboard and Ground Systems Group
Reston, Virginia

Prepared by

Unisys Corporation

Defense Systems

System Development Group

P.O. Box 517, Paoli, PA 19301-0517

Contract No. F19628-88-D-0031
IDWO P.O. 010412

March 20, 1989

1 Executive Summary

Intermediate languages (IL) for Ada will be an important component of a robust Ada software
engineering environment. The Descriptive Intermediate Attributed Notation for Ada (DIANA) is
the best known and most fully explored Ada IL, and had been used as the basis of commercial Ada
compilers. Unfortunately, commercially available compilers do not provide public interfaces to the
Ada library, and so semantically analyzed Ada intermediate representations are not available to
third party software tool developers.

" Nevertheless, public tool interfaces to Ada libraries in IL form must be considered an important
component of the future STARS SEE. Peregrinc Systems prototype DIANA implementation, put
in the public domain by STARS, is the first publicly available Ada frontend which produces a
well-defined IL, based upon the 1986 definition of DIANA, [MS86]. «

Given the importance of ILs to STARS, and the lack of available alternative IL implementations
for STARS use, we confess to a bias to evaluate DIANA favorably as an interface formalism. Q14
expended considerable effort in testing, ruggedizing, and enhancing the Peregrine prototype in
order to be able to make immediate use of it as a STARS component.

As a result of these efforts Q14 considers the current DIANA prototype to be a reasonable basis
for the development of prototype tools. We recommend the Peregrine prototype be enhanced by
STARS to include fuller IDL capabilities, and be retargeted to make use of more readily available
parser/scanner generation tools. > em

Extensive use of ILs in the STARS environment raises issues concerning the integration of IL
instances with other environment data; these issues must be studied. In particular, the relationship
of ILs to IL producers (e.g., compilers, ACE) and consumers (e.g., test processors, browsers) must
be defined and potential configuration management issues addressed.

2 Introduction

Q14 work with DIANA was intended to provide an evaluation of DIANA from two distinct per-
spectives. One perspective would focus on the DIANA formalism, i.e., does it assist or inhibit the
development of software tools for Ada? In order to make such an evaluation, we needed to develop
prototypical applications (application drivers) which would allow us to explore the suitability of DI-
ANA for toolbuilding. This led to a secondary perspective which focused on the DIANA prototype
implementation. This paper describes the Q14 efforts to evaluate DIANA from both perspectives.

Section 3 provides a brief overview of the design and rationale of the DIANA definition. Section
4 describes our evaluation of DIANA from the toolbuilder perspective. Section 5 describes our
evaluation of the Peregrine prototype. Section 6 discusses some issues raised by introducing an IL
processor into the STARS environment. Finally, section 7 states the conclusions made as a result

of this evaluation effort. pwm

PR NN 'l‘tv Codes
-3 . 8

,A'.":Al.l. aud/or’
Srcetal

™

3 History and Overview of the DIANA Definition

The DIANA Reference manual was first published in March, 1981. The initial design was based on
Ada as defined in the July 1980 Ada Language Reference Manual (LRM). The design was revised
to meet the July 1983 Ada LRM. The current design, dated May 1986, reflects changes made to
correct weaknesses in the design and manual, and to provide a more uniform definition [MS86].
The 1986 version makes better and more extensive use of the IDL class mechanism to achieve a
more concise and uniform specification.

DIANA is described in the Interface Description Language, IDL [JN81]. IDL is a formalism for
describing typed, attributed, directed graphs. This formalism is obviously general enough to describe
any data structure, including parse and attributed abstract syntax trees. The general purpose
nature of IDL is an important factor to consider: it is not a definition tailored to intermediate
languages, as is, e.g., IRIS [BFS88].

[MS86] makes the claim that DIANA, although designed to be an IL to provide communication
between the front and back ends of a compiler, is equally suited for use by other tools in the
Ada support environmer.t. Tools such as language-oriented editors, cross-reference generators,
test-case generators, formatting tools, etc., can improve the efficiency and quality of any software
development process. Usually these tools use, as input and output, some intermediate form that
has been produced by another tool in the environment, rather than the source text itself. Using
an intermediate form precludes the need for the tool to generate lexical, syntactic, and semantic
information that has usually been generated previously elsewhere in the environment. Since the
generation of this information for Ada is a complex and expensive task, it makes sense to do the
generation once and allow multiple tools to process the resultant structures.

While DIANA does not include information from dynamic semantic analysis, optimization, or code
generation, it does provide the results of static semantic analysis, lexical, and syntactic information.
This information should be sufficient to support the development of a broad class of software tools,
such as those cited above. However, it was clear even to the designers of DIANA that there was a
conflict between the desire to create a formalism which would support generalized tool requirements,
and the need to define a concise, implementable DIANA specification.

The approach taken to resolve this conflict was to define in DIANA the minimal number of semantic
attributes (i.e., those attributes required to represent the results of static semantic evaluation e.g.,
overload resolution, type checking) that could not otherwise be easily computed in one pass over
the abstract syntax tree. In other words, the definition of DIANA is not sufficient to support the
development of an Ada compiler — it must a priori be extended with additional attributes. Thus,
effective use of DIANA in a CASE tool development environment presupposes the existence of a
DIANA implementation which supports tool-specific extensions to DIANA.

4 Evaluating the DIANA Formalism

During the course of our evaluation, several DIANA prototype applications were developed. These
protoiypes were designed to facilitate evaluation of both the DIANA definition as well as the
Peregrine prototype implementation. In this section we focus on the DIANA formalism.

DIANA is reasonably uniform, well defined, and almost intuitive. The DIANA interface package
provides sufficient access to DIANA instances, and supports construction of more sophisticated
access routines (e.g., generic iterators and filters) to simplify the application interface to DIANA.
This approach of constructing higher-level access routines based upon the low-level DIANA interface
addresses some of the issues raised below concerning the embedding of extensive navigation logic
within applications.

While developing the prototypes, it also became apparent that DIANA is large and complex. Per-
haps this is to be expected since Ada is a large, complex language, and it would be unnatural to
assume that an Ada IL could be simpler than its parent language. There are two ways this com-
plexity manifests itself to the toolbuilder: distribution of related information in DIANA instances,
and the need for extensive case analvsis.

4.1 Distribution of Information

One desirable property in an IL is locality of related information. That is, within a given context
in an DIANA instance, the information describing that context ought to be readily available. Since
we had no other IL to compare DIANA with, we are unable to claim that DIANA has this property,
or that DIANA is qualitatively worse or better in this respect than other IL’s. However, it is clear
that quite often information which intuitively belongs to a particular DIANA construct is actually
located several nodes away in the DIANA instance.

For example, it would be intuitive to assume that the name of a compilation unit would be as-
sociated with the DIANA construct whi-h represents the compilation unit. In DIANA, however,
this information requires several attribute fetches, corresponding to a mini-tree walk. Figure 1
illustrates this aspect of DIANA. Note that in this example the desired information is only two
nodes away from the compilation unit node; however, the reader will appreciate that if the name
of a compilation unit is two nodes distant from the compilation unit node, then in more complex
situations this kind of distribution will be more exaggerated.

function get_compilation_unit_name(compilation_unit : tree) return string is
begin
return printname(d(1x_symrep,
d(as_source_name,
d(as_all_decl, compilation_unit))));

end get_compilation_unit_name;

Figure 1: Navigational Logic in DIANA Applications.

The cumulative effect of this distribution of information is that application code can become com-
plex, and highly dependent upon navigational logic which is really quite distinct from the applica-
tion logic itself. Navigation logic in DIANA applications is a source of maintenance problems and
potential run-time errors, especially when the DIANA class-structure is factored into the navigation
rnde.

Note, however, that figure 1 encapsulates this distribution within a single utility function. Judicious
use of this technique greatly enhances program understandability.

4.2 Extensive “Case” Analysis

One vay in which the complexity of the DIANA definition is reduced is through use of IDL Classes.
Classes represent an abstract node which acts as a placeholder for the class’s member nodes. The
class RANGE illustrated in figure 2 illustrates the class mechanism. In the DIANA definition, the
nodes runge, range_attribute and void can appea: wherever the class RANGE is defined as the type
of a structura] attribute.

As noted, the 1986 definition of DIAN A makes extensive use of the IDL class notation. This notation
simplifies the definition considerably, especially since attributes defined in classes are inherited by
the class members (which can also be other classes). This powerful definitional vehicle, however,
results in application code which spends a great deal of time ascertaining what kind of node is
currently being expected, i.e., case analysis.

-- RANGE ::= range | range_attribute | void;
-- RANGE => sm_type.spec : TYPE_SPEC;

-- range => as_expl : EXP,

-- as_exp2 : EXP;

-- range_attribute => as_name : NAME,

-- as_used_name_id : used_name_id,
-- ags_exp : EXP; -- EXP or void

procedure pp_range_class(range_class : tree) is
subp_name : constant string := "pp_range_class";
begin
case kind(range_class) is
when dn_range =>
pp-range(range_class);
vhen dn_range_attribute =>
pp_range_attribute(range_class);
when dn_veid =>
NULL;
when others =>
error(subp_name,kind(range_class));
end case;
end pp.range_class;

Figure 2: Sample code from source reconstructor.

The code in figure 2 is extracted from the source reconstructor application. The procedure
pp-range_class processes the RANGE class, and is essentially a junction which dispatches the
class instance to the appropriate routine. Of the 623 nodes defined in DIANA, 184 of them are
classes. Thus this type of case analysis is done repeatedly, at the cost of run-time performance and
source code size.

4.3 Summary Evaluation

DIANA is a complex formalism which requires some effort at mastery; this effort is not unrea-
sonably extreme. Application code which makes direct use of DIANA, at least as defined by the
interface package, tends to embed complex navigational logic and considerable amounts of case
analysis. Judicious definition of higher-level interfaces to DIANA, perhaps application speciiic in-
terfaces, is one way to reduce this overt complexity and facilitate development of more maintainable
applications.

DIANA is a reasonable IL for tool processing. The author’s instincts are that if DIANA is suitable
for compiler applications, then other tools — by definition less complex tools — will be well served.
However, as noted earlier, this will require DIANA implementations to support tool-specific tailor-
ing of the DIANA specification.

5 Evaluating the Prototype

5.1 Prototype Overview

Peregrine developed a prototype Ada front end that produces DIANA from Ada source, as well as
some tools to make use of the DIANA. This implementation is based upon the 1986 specification
of DIANA which is presented in [MS86]. Access to the DIANA nodes is based on the package
provided in the 1983 DIANA definition, briefly described in section 4. The prototype, which is
written in Ada, produces DIANA representations from statically correct Ada source. It does not,
however, guarantee failure on statically incorrect Ada programs, and so processes a superset of the
Ada language.

Overall, we are significantly impressed by the quality of the implementation. The single most
important metric for our evaluation was whether the implementation works; as our report on Q14
testing efforts illustrates, the prototype works very well. Further, the implementation is small, and
imposes very little overhead on applications which use the DIANA interfaces.

5.1.1 Software Virtual Memory

As noted, the original development environment for the Peregrine prototype was restrictive, but
not only in terms of compiler technology: real memory was restricted as well. Because of this,
the prototype makes use of a software virtual memory scheme. DIANA nodes are represented as
logical pointers into virtual memory implemented as a DIRECT IO file with fixed size pages. These

5

pointers are records containing simply the node type, page number, and location within the page.
The node in virtual memory contains the type and the number of attributes in the node.

At first we were skeptical about this aspect of the prototype. It was thought that this imple-
mentation would make debugging significantly more difficult, and would have a serious impact on
performance. However, we now consider this to be one of the best features of the implementation.
Performance impact is not substantial, and is greatly offset by the capability to break the frontend
into several distinct phases. Although a cursory examination of the code which uses the software
virtual memory gives the impression of a very obtuse implementation, this impression is due mostly
to issues of coding style. However, we have in fact encountered no problems in this part of the
prototype.

5.1.2 Frontend Phases

The use of virtual memory allows the Peregrine prototype to be implemented as a a multi-pass
system, with each pass being a separately compiled main program. The virtual memory files persist
between phases, and so provides a means of communicating between phases. The organization of
these phases is depicted in figure 3. A shell script, provided as part of the prototype controls the
sequence of the frontend phases. A Q14 prototype has replaced the shell script with calls to CAIS-A
process management; an alternative implementation would be to write ACE command procedures.

The first phase of the frontend is the parse phase. This phase parses the source and constructs
an attributed, but unevaluated, abstract syntax tree. This abstract syntax tree is passed, via the
virtual memory file, to the library phase.

In the library phase the transitive closure of all with-ed units is determined, and these units are
read into virtual memory from the DIANA library. This is another benefit of the software virtual
memory scheme: the Ada library is simply a collection of virtual memory snapshots, one snapshot
per compilation unit. The library phase simply opens these files and relocates them into the global
virtual memory file.

The semantic phase then does the static semantic analysis for the unit and the new DIANA instance
is written to the DIANA library by the write library phase. Static semantic analysis essentially
involves, for each Ada object reference and subprogram call, the location of the defining occurrence
of the object or subprogram. The defining occurrence is represented as a tree-valued semantic
attribute, i.e., a pointer to the node which defines the object or subprogram. Also, minor tree
transformations are performed which replace temporary nodes built during parse phase with the
proper nodes. For example, the parse phase can not distinguish between array slices and function
calls. The 1983 DIANA definition specified the apply node be used in these contexts; the Peregrine
prototype always constructs function_call nodes, and replaces them as needed during semantic
analysis. The apply mechanism is superior, as we found several instances where the function
node was not replaced; we believe it is better to distinguish all nodes which may require tree
transformation.

Errors that may have occurred during the first three phases are reported during the error phase
and if so, the write library phase is not performed.

Parse Phase

Library Phase

3 d

Z///FVirtual Memory 4////

R ‘

Semantic Phase

Write Library

Error Phase

Figure 3: The five phases of the prototype Ada front end.

5.1.3 Generation Tools

DIANA was designed to have a minimum set of attributes. The attributes that make up this set
were considered to be needed by most tools that might use DIANA. Rather than burden all potential
users of DIANA with extra attributes, the definition of DIANA was meant to be extensible. The
intent was that attributes could be added to the DIANA definition, producing a customized DIANA
superset for a particular tool or environment.

IDL has the notion of IDL refinement, a mechanism whereby IDL readers (i.e. programs which
read IDL) can augment or filter various attributes defined on the IDL instances. Such a mechanism
would go a long way to making DIANA genuinely useful in a CASE-building setting; unfortunately,
a full IDL implementation is not included in the Peregrine prototype. The prototype does provide
various generation tools used to bootstrap the prototype, including a primitive IDL processor.
Q14 successfully demonstrated the use of these tools to extend the DIANA definition with a new
attribute. However, unless multiple DIANA implementations are to be maintained, or the DIANA
implementation manages a union of all tool-specific attributes, this kind of extensibility is too
limited.

5.2 Testing the Prototype

In order to evaluate DIANA as a potential IL for STARS, we believed it necessary to develop small,
prototypical applications which would explore DIANA. Of course, to do this we needed a relatively
stable DIANA implementation. Our first step, therefore, was to establish whether the Peregrine
prototype would support our efforts; this required some testing efforts.

One important asea oi concern in the standards arena is that of validation to ensure compliance
with a standard. Validation in general is extremely difficult because of the complexity involved
in defining a finite number of tests meant to demonstrate compliance of a large body of specified
functionality. Fortunately, the ACVC tests constitute a large body of well constructed validations
tests. Given the lack of available alternatives to the Peregrine prototype to provide STARS with a
usable Ada IL implementation, validating thc Percgrine prototype became an issue.

The Interface Standards Task DIANA evaluation effort combined prototyping and validation by
developing a DIANA application which would simultaneously serve to help us explore DIANA
interface issues as well as make some determination concerning the soundness of the Peregrine
prototype. The latter evaluation would allow us to recommend whether the Peregrine prototype
should become a component, or serve as the basis of such a component, for the STARS environment.

5.2.1 Application Driver - DIANA Source Reconstructor

We decided that a source reconstructor would be a good way to test the prototype because it
would access each node of a given DIANA instance. That is, in order to reconstruct the Ada source
corresponding to a DIANA instance, it is necessary to perform an ordered traversal over each node
in the DIANA instance. Using the DIANA instance of a given Ada source as input, the source
reconstructor outputs a source file that is semaniicaily equivalent to the original source.

The source reconstructor was implemented in approximately 2800 Ada source lines and has, for each
kind of DIANA node, one procedure to reconstruct that particular type of node. It proved to be very
helpful in showing problem areas in the Peregrine DIANA prototype, especially in abstract syntax
tree construction (i.e., errors in the parse-phase tree building, not semantic analysis). Although
adequate for testing the syntactic attributes of DIANA instances (i.e., those corresponding to the
abstract syntax tree) the source reconstructor does not examine semantic attributes within a node.
Since much of what a DIANA implementation is supposed to provide is described in the semantic
attributes, this would be an apparent deficiency.

The Q14 plan was to first develop the source reconstructor, and then augment the implementation
to include in the reconstructed source the values of various semantic attributes. For example,
following the use of an object in an Ada statement, an Ada comment would repeat the type
declaration corresponding to the object. This part of the source reconstructor application was
never developed. As it happens, the basic source reconstructor proved sufficient not only in terms
of evaluating the DIANA interfaces, but also as a vehicle for evposing errors in the Peregrine
prototype. Further, the ACVC class A and C tests were determined to be a more inclusive test
suite for uncovering the same class of problems the extended source reconstructor was intended to
uncover.

NOTE: All such errors have been reported and fixed by Bill Easton, the prototype developer.

The source reconstructor demonstrates the need for extensibility in the DIANA implementation.
Even such a simple application as a pretty printer will be hampered by DIANA because the defini-
tion does not provide enough information to allow the exact reconstruction of the original source.
In this case, it is impossible to distinguish whether a reference to a function operator (e.g., “+")
occurred as an infix or prefix expression. The additional information could only be placed in the
DIANA instances by modifying the scanner or parser actions of the prototype.

5.2.2 Robustness Testing

The next step in testing was gradually to apply the source reconstructor to ever more complicated
Ada source programs. Since simple Ada programs uncovered no problems, it was decided to attempt
to determine the limits of the prototype. To do this, the source code for two STARS Fuundations
projects, ACE and RLF, was processed by the Peregrine implementation. This effort exposed
several errors which were not related to capacity, but rather to semantically complex Ada constructs
such as overloaded generic subprograms.

Eventually, the prototype successfully processed hoth ACE and RLF, which consist of approxi-
mately 257,000 Ada source lines and 86,100 Ada statements. This source includes both hand-
written and machine generated software, and tests both capacity and correctness of the Peregrine
prototype.

5.2.3 ACVC Testing

Finally, the source files of the ACVC class A and C tests were run through the DIANA prototype
and the source reconstructed using the source reconstructor. Both the original source and the

reconstructed source were then compiled to determine whether the resultant objects matched. As
some of the ACVC tests will produce errors when compiled, only those tests that describe valid
Ada were used. All of these produced equivalent objects when compiled.

An important point to note is that the ACVC testing does not imply that the Peregrine proto-
type successfully passes the A and C class tests, but rather that overt symptoms of failure (e.g.,
program error exceptions) are no longer exhibited. Once again the source reconstructor proved a
valuable vehicle for testing, since several ACVC sources that were “successfully” processed by the
Peregrine prototype were later found to have incorrect DIANA instances - related mostly to failure
to properly replace function nodes with array slice nodes after overload resolution.

5.3 Limitations and Deficiencies
5.3.1 Non-Portable Code — Representation Clauses

Our first observation is that the Peregrine prototype makes use of Ada representation clauses for the
principle data type, Tree. Figure 4 is extracted from the DIANA source. The use of representation
clauses is not of itself objectionable, and so is not considered a deficiency; we note it merely
because it has prevented successful compilation on all of the Unisys STARS Ada compilers (the
Alsys compiler does not support representation clauses!). See [PC88] for a discussion of portability
problems presented by Ada representation clauses.

type BYTE is range O .. 16#FF#;
for BYTE’SIZE use 8;

type SHORT is range -16#8000#%# .. 16#7FFF#;
for SHORT’SIZE use 16;

type TREE is record

TPG: SHORT;
TTY: BYTE;
TLN: BYTE;

end record;

Figure 4: Excerpt from prototype package defining TREE.

5.3.2 Extensibility

DIANA implementations must provide a mechanism for the definition and use of tool-specific
attributes. Since attributes may be conveniently computed at parse (tree-building) time as well as
during post semantic analysis phases, two forms of tailorability would be desirable: implementation
tailorability, and DIANA tailorability.

' A beta version of Alsys which does support representation clauses is being tested

10

Since the Peregrine prototype is not implemented using readily available parser and scanner gener-
ators, substantial implementation tailorability is problematic. This conclusion is only strengthened
by the lack of encapsulation of the handwritten portions of the prototype.

Although the prototype includes the means to tailor the DIANA definition, the solution is not
flexible enough to support development of a wide class of tools without creating either multiple
DIANA implementations, or a cumbersome, monolithic DIANA implementation which manages the
union of all tool-specific attributes. Also, although we were able to extend the implementation with
an additional attribute, this process was not turnkey, and exposed some hard-wired limits. These
limits were easily adjusted, but this again points to the difficulties in using this implementation
beyond experimental purposes.

5.4 Summary Evaluation

We accepted the Peregrine prototype for evaluation based upon a clear understanding that the
implementation was an experimental prototype. Although we have criticized the implementation
on various grounds, the overall quality is impressive. As a result of the extensive testing and
use of the prototype, the Ada community now has a public domain Ada front end to use in the
development of prototype Ada CASE tools.

Although the testing done on the Peregrine prototype is insufficient to support the claim that the
prototype constructs correct DIAN A instances from correct Ada source, the ACVC validation effort
demonstrated that the prototype correctly constructs the DIANA abstract syntax tree, and that
overload rcsolution is being done correctly (for the class A and C tests).

This does not demonstrate that the Peregrine prototype has passed the A and C tests. First, the
prototype may not detect illegal Ada programs, and does not guarantee the form of the DIANA
instance constructed for illegal Ada programs; thus this aspect of the ACVC is not addressed. It
may be concluded, however, that the prototype constructs proper semantic interpretations (i.e.,
the static semantic analysis is correct) since this aspect is explicitly explored by the ACVC tests.

Overall, the prototype seems reasonably sound, and should be considered a suitable basis for
construction of prototype applications. Besides the source reconstructor application, Q14 has pro-
totyped a graphical DIANA library browser and successfully browsed the DIANA implementation
itself. Thus, the prototype has sufficient capacity to process non-trivial applications, and does
not i.apose significant resource consumption restrictions upon applications which use the DIANA
interfaces.

The utility of this prototype would be dramatically enhanced if the following features or limitations
would be addressed:

o Retarget the system to use gnu flex and bison, or versions of these public domain tools which
generate Ada.

o Incorporate a genuine IDL processor, with at least the IDL refinement capability.

e Provide better type encapsulation and internal documentation.

The point of each of these items would be to facilitate the transfer of the DIANA implementation
to developers interested in extending or enhancing the prototype.

1

6 Intermediate Languages in the STARS SEE

This section describes some issues raised by introducing Ada IL processor(s) into the STARS
SEE. This issues concern required IL processor featurs as well as larger issues of integrating IL
representations into an overall environment object management system.

6.1 1IL Use Issues

Two classes of IL users exist within an environment: those that produce IL instances, and those that
consume these instances. It is possible to have several IL producers in addition to many consumers;
this, in turn, introduces configuration management issues.

The most important IL producer within an environment is the compiler, since this tool produces
the production code, and in a sense is the final arbiter on what constitutes valid Ada source.
Unfortunately, none of the compilers in use on the Unisys STARS effort provide public access to
their IL. Because of this, a separate IL producer must be introduced which certainly does not
produce the same IL as the environment compiler(s).

Each additional IL producer introduces configuration management problems. Consider an environ-
ment in which two compilers are in use, as well as an IL producer such as the Peregrine prototype.
What is the relationship between the ILs produced by the compilers to that of the Peregrine pro-
totype? How should the IL instances by kept “in synch” with the compiler library? This might
require a higher-level interface to do what amounts to dual compilation. In this scenerio, the IL
producer could prove constraining, especially if the compiler can correctly process Ada source which
the IL producer can not process: what if the Ada compiler succeeds but the IL generator fails?

Such issues can only be addressed when it is established which tools in the environment are IL
producers, and which tools are consumers. One issue immediately apparent is the relationship of
the Ada Command Environment (ACE) to STARS ILs. Current plans for ACE place it outside
of the context of ILs: it is neither a producer nor consumer, but rather a separate “command
language” processor which processes a small subset of the Ada language. It is reasonable, however,
to evaluate the implications of extending the ACE context to include the processing of full Ada.

If ACE were to migrate towards Ada interpretation, then serious thought would have to be given
to use of ACE as an IL producer and consumer. One mechanism for achieving this would be to
introduce an ACE IL reader/writer. The reader/writer would enable ACE to maintain it’s own
internal IL while supporting a more accessible IL formalism (e.g. IRIS, DIANA). Such an approach
could introduce problems of subset semantics, where either ACE or the external IL producers
process a subset of the other’s IL.

An alternative approach would be to replace the ACE IL with a better known, more complete
IL, such as DIANA or IRIS. Although this would be a more involved undertaking than the above
approach, it would place ACE on a migratory path to interpretation of complete Ada, and would
support the emergence of a single IL producer of interest, with target code generation via compila-
tion seen as the tail-end of the development process. In this approach, careful scrutiny of alternative
ILs from the interpreter perspective would be appropriate.

12

Some of the characteristics of an IL to support ACE overlap with IL features which other tools
can make use of. Some of these characteristics are discussed in the following subsections; these
characteristics can apply both to an IL formalism as well as an IL producer implementation.

6.1.1 Lazy Evaluation

This refers to the capability of computing values only on demand. The utility of this feature became
apparent during implementation of the DIANA browser. This prototype has substantial start-up
overhead because Peregrine prototype loads the transitive closure of all units “with-ed” by the
browsed unit and ensures that semantic attributes all point to valid trees. To support adequate
performance for interactive tools such as the DIANA browser, either lazy evaluation should be
supported, or else a monolithic, incremental data structure should be used, i.e. a persistent data
structure which models the entire library and is always fully resolved.

Although this example refers to the Peregrine loader implementation and not to lazy semantic
evaluation, it may be appropriate for environment tools to associate semantic rules with IL nodes
in order to compute values on demand; such a capability can be seen as a generalization of a method
used to achieve lazy evaluation of semantic attributes.

6.1.2 Incremental Processing

This refers to the capability of modifying isolated contexts within IL instances without necessarily
propagating changes across an IL library or having to write an entire IL instance. This is an
important concern if tools are going to share tool-defined attributes within the IL instances. If a
tool modifies an attribute of some IL instance, then we should require a minimal propagation of
changes in order to ensure that other tools will not be out-of-date with respect to the IL instance. If
a crude mechanism for incrementalness is used such as timestamps, and entire IL instances are read
and written in order to modify a single attribute, then extensive recompilation may be required.

6.1.3 Incompleteness

Some tools in an environment may wish to process incomplete or erroneous specifications, for
instance a library browser or intelligent coding assistant. The IL formalism should have a well-
defined notion of incompleteness and the IL implementation some strategy for handling illegal
input strings. This characteristic should not be interpreted as requiring that the IL producer do
something sensible with all input strings (what should it do if it is asked to process a FORTRAN
program?), but rather that it should fail but still produce an IL instance which can still be processed.
For example, undefined identifiers should not produce disconnected IL trees, but rather semantic
attributes which indicate the location and kind of errors detected.

6.2 Environment Integration Issues

During implementation of the DIANA browser prototype, a number of issues regarding the inte-
gration of program library data and other environment data (e.g., requirements data) emerged. In

13

general, relationships may be desired between the contents of a program library to the contents
of some database; futher, the program library objects participating in these relationships may be
very fine grained. For example, the value of a numeric constant within a package declaration may

be tied to a requirement or a design issue discussion, which itself represented in an object base or
relational DBMS.

One solution may be to integrate the IL implementation into a common environment database (or
object manager). However, such an object manager would need to support management of very
fine-grained objects, and would have to have suitable performance characteristics to support very
demanding response-time requirements.

If no such object manager exists or can be realistically imolemented, then a set of external schema
interfaces need to be defined and developed such that t: ctual schema consists of various repre-
sentations ranging from objects in an object manager, data in a relational DBMS, and e.g., raw Ada
files as in the Peregrine prototype. This solution, however, works to the contrary of environment
extensibility.

7 Conclusions

The Interface Standards task concludes that a common intermediate language and a common
generator for it will be an essential part of any Ada SEE. We are inclined to conclude that further
effort be expended on extending the Peregrine prototype, and that STARS should develop tools to
make use of DIANA. The DIANA definition, although cumbersome in many ways, is mature and
well explored, and the Peregrine prototype makes this IL available for immediate use.

An alternative IL, such as IRIS, may provide a technically superior IL formalism to DIANA. IRIS,
currently being used within the DARPA ARCADIA consortium, uses a representational formalism
tailored for intermediate language use, unlike IDL which is more general-purpose. Also, IRIS
incorporates a highly extensible attribute implementation. The IRIS attribute mechanism may
facilitate extending the semantics of the IL to incorporate special purpose sub-languages, e.g., a
requirements sublanguage.

At this time we do not have enough information to recommend IRIS or DIANA as the IL for
the STARS environment. The Peregrine prototype is more advanced in terms of accurate static
semantic analysis than any other public domain Ada frontend - in Ada or otherwise. On the other
hand, IRIS may represent a better long term solution for IL-based environment integration. Since it
is envisioned that many tool fragments within a STARS SEE can utilize a standard IL, an analysis
of IRIS versus DIANA is an essential next step for STARS.

Any IL processor inserted in the STARS environment will need to be integrated with other envi-
ronment data resources. This integration introduces configuration management problems, and will
stress the information management capabilities of the prototype environment.

Acknowledgement

We wish to thank Bill Easton for his consistent support, his willingness to answer questions, and
the rapid turnaround on bug reports as well as extensions to the Pergrine prototype. This support

14

was highly appreciated and critical to the success of this evaluation.

15

References
[BFS88] Deborah A. Baker, David A. Fisher, and Jonathan C. Shultis. The Gardens of Iris.
Technical Report Arcadia-IncSys 88-03, Incremental Systems Corporation, August 1988.

[JN81] D.A. Lamb J.R Nestor, W.A. Wulf. IDL-Interface Description Language: Formal De-
scription. Technical Report, Carnegie-Mellon University, August 1981.

[MS86] Kathryn L. McKinley and Carl F. Schafer. DIANA REFERENCE MANUAL Draft Re-
vision 4. Intermetrics, Inc., 4733 Bethesda Ave., Bethesda, MD 20814, May 1986.

[PC88] B. Pollack and D. Campbell. The suitability of ada for communcations protocols. In Sizth
National Conference on Ada Technology, pages 170-181, March 1988.

16

