SRETRBUTION STATEMINT A

AD-A228 818

BTIC FILE COPY

B gvney) ler pabli Mmese;

e

2.0

T hin g Unin . 5

o - sl et oo = 2

Q14 - Interface Standards
Informal Technical Data
Ada Interfaces to SQL

STARS-QS-02021/002/00

12 April 1989 |
DTIC

FLECTE 3%
NOV14199Q 8 %
C&”B -

|

Form Approved

REPORT DOCUMENTATION PAGE A OMB No. 0704-0188

PuDIIC reDOrtiNG TUrden 10r this (CIleCtiON Ot INTOIMatoN 15 @sTIMated 1 dverage ' ~Oour Der “2sPONse. INCILAIrg the time fOr reviewing INStructions, searcning existing aata sources
Fatrerry and Maintaining the gata neeqed, ana (OMDIENNG ANG réview:ng the ccilecuion ot intormation Seng comments r. arging this burden estimate Or anv dther asoect of this
colectian 2t intormaticn. nCIUdING SUG3SILIONS TOr reguCINg this Durden (S Washington Heaaauarters Services, Directorate for information Ooerations and Reports, 1215 Jetterson
Nass manaay. Suite 1204 Arhngten, VA 222024302, ana to the Oftira ot Management and Buaget Paperwork Reguction Project (07€4.0188), washington. OC J0503

1. AGENCY USE ONLY (Leave dlank} | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
12 april 1989 Final

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

Interface Standards Informal Technical Data,

Ada Interfaces to SQL STARS Contract

F19628-88-D-0031

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Unisys Corporation
12010 Sunrise Valley Drive
Reston, VA 2209

GR-7670-1067 (NP)

9. SPONSORING. MONITORING AGENCY NAME(S) AND ADDRESSIES) 10. SPONSORING : MONITORING
AGENCY REPORT NUMBER

Department of the Air Force
Headquarters, Electronic Systems Division (AFSC)
Hanscom AFB, MA 01731-5000

©14-02021/002/00

11. SUPPLEMENTARY NQTES

12a. DISTRIBUTION AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release;
distribution is unlimited

13. ABSTRACT (Maximum 200 words)

" This report provides a brief overview of the various methods available
for creating an Ada interface to SQL and summarizes the strengths and
weaknesses of each. A specific comparison is made between the SQL

i Ada Module Extension (SAME) and the WIS Ada/SQL. The two approaches

are evaluated using thirteen different criteria including "user code

portability", "performance", "effective use of Ada", and "effective
use of SQL". The SQL Ada Module Extension (SAME) approach is
recommended for the Software Technology for Adaptable, Reliable

Systems (STARS) program as the best available means of providing

an Ada-to-SQL interface. Although the WIS-IDA Ada/SQL approach has

some noteworthy characteristics, the weight of evidence suggests

that much greater effort would be required to transform this approach

into a product quality interface than is the case for SAME. .

ST

.
™

14. SUBJECT TERMS 15. NUMBER OF PAGES
SQL 28
SQL Ada Module Extension (SAME) 6. PRICE CODE
WIS Ada/SOL

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified IInclassified Inclassified SAR
LCNTEIANT 808507 Soyrears fecm 298 Rey 120

STARS-QS-02021/002/00

INFORMAL TECHNICAL DATA

STARS Q14 INTERFACE STANDARDS

Ada INTERFACES TO SQL

CONTRACT NO. F19628-88-D-0031

SDRL 014-02021

12 April 1989

PUBLICATION NO. GR-7670-1067 (NP)

Prepared for:
Electronic Systems Division
Air Force Systems Command, USAF
Hanscom AFB, MA 01731-5000

Prepared by:
Unisys Corporation
12010 Sunrise Valley Drive
Reston, VA 22091

12 April 1989 STARS-QS-02021/002/00

PREFACE

This document was produced by Unisys Corporation, Defense Systems, in sup-
port of the Unisys STARS Prime contract. This SDRL is for the Interface
Standards Task, 014, of the Unisys STARS First Increment. It is CDRL type
A005, SDRL number 02021, Volume 002, for the Ada Interfaces to SQL.

e e
Accescica For
o aPATYY

T AR M
sooanuced 1 J

| 5

t. + 4N
EVET SRR R 30 Ao Do MR e B

“"iL.;iogl

Ave L1 LLlity Ced

i
e

27

M;. ~ —_— it anifor
‘%
[, ' pist 5in)
\\ “’1047’

12 April 1989 STARS-QS-02021/002/00

1 Executive Summary

The SQL Ada Module Extension (SAME) approach is recommended to STARS
as the best available means of providing an Ada-to-SQL interface. The SAME
is an extension of the SQL module approach ([Boy87], which is based
upon the premisa that Ada and SQL are separate languages, and should be
programmed in separate source streams and compiled in their native
environments. The initerface between Ada applications and SQL queries
is Jjust that: an abstract interface, not an interface characterized by
distributed, embedded SQL statements. Perhaps the single most compelling
advantage of the module approach is that it neatly bypasses many of the
conceptual difficulties created by source level interweaving of
languages (Ada and SQL) of significantly different typing and computa-
tional models.

Also included in this report is a detailed description of the «criteria by
which the SAME approach was compared with other alternatives for an Ada-
to-SQL interface. In particular, a detailed comparison is made of the
strongest competing candidate, the WIS Ada/SQL approach.

Although the WIS-IDA Ada/SQL approach has some noteworthy characteristics,
the weight of evidence suggests that much greater effort will be
required to transform this approach into a product quality interface
than 1is the case for SAME. Besides the immediacy of possible product
quality SAME implementations resulting from the disentanging of SQL
from Ada (and thus leveraging existing product quality SQL com-
pilers), the SAME also supports sound database application design prin-
ciples, and seems more in the ‘"“spirit" of Ada and software engineering
than other embedded SQL alternatives. Finally, the SAME provides con-
crete benefits not provided by any alternative, most notably robust error
processing and safe treatment of SQL null values.

At this time a working SAME support library is available, and has
been used in Q14 to develop Ada-SQL applications using an INGRES rela-
tional DBMS. There is reason to believe that the SAME could be used
today in the development of Ada applications requiring access to SQL
databases. Further, the SEI is currently developing a SAME compiler
which will automate the construction of the Ada-SQL interfaces which
characterize the module approach.

2 Introduction

This report begins with a brief overview of the various methods avail-
able for <creating an Ada interface to SQL, and summarizes the
strengths and weaknesses of each. Section 4 then provides a high-level
overview of SAME, a recently developed method for binding Ada to SQL,
and introduces some of the terminology used to describe thz SAME. A
more thorough axposition can be found in (Gra88]. Section 5
presents a detailed description of the key characteristics of the SAME
which influenced our decision to recommend the SAME to STARS. Section 6

12 April 1989 STARS-QS-02021/002/00

presents an extended discussion of a criteria which can be used to evalu-
ate alternative approaches to providing Ada interfaces to SQL services:;
also included in section 6 is a point by point comparison of the SAME
to the WIS [BFHH87] Ada bindings to SQL, called Ada/3QL. Finally, sec-
tion 7 presents the summary conclusions of this report.

3 Methods of Interfacing Ada to SQL

[Bry88] provides an excellent overview of possible methods of creat-
ing a binding from Ada to SQL. The bindings metliods are not wunique to
the Ada-SQL interface problem, and issues raised by each of these methods
are pertinent to other standards as well (e.g., Ada/GKS, Ada/Posix,
Ada/X). What distinguishes the Ada-SQL interface problem from those just
cited 1is that the Ada-SQL interface is an interface between two
languages, each with its own computational and typing model. In con-
trast, bindings from, say, Ada to POSIX or X do not introduce the
same kinds of complexity. [(EFGW87) provides a good description of the
problems to be addressed by Ada interfaces to SQL.

(Bry88] characterizes four methods of binding Ada to SQL:

Embed Alien Syntax into Ada Source

o Extend the Ada Language
o Allow User-Defined Procedural Interfaces
o Provide a Standard Interface In Ada

Each of these approaches is summarized, below.

3.1 Embed Alien Syntax into Ada Source

This method is more commonly known as a "pre-processor"™ method, and
might be considered the classical approach to interfacing a program-
ming language to SQL: the SQL standard [X3H86] specifies embedded "bind-
ings" for FORTRAN, COBOL, Pascal, and PL1.

There are several benefits to the pre-processor approach. First, indus-
try clearly has extensive experience with this method, and in fact the
form of the embedded interface is surprisingly uniform among the
different languages. This enhances the prospects for reliable implemen-
tations, and presents a solution already familiar to the programming com-
munity.

On the negative side, the pre-processor approach makes it difficult
to use existing Ada tools such as debuggers, test case generators, com-
plexity measurement tools, etc. on application source which includes

12 April 1989 STARS-QS-02021/002/00

embedded, pre-processed SQL statements. Although the pre-processor
may generate in-line Ada calls to DBMS services, those familiar with
debugging such output code will appreciate the difficulties presented.

The Ada community also has well-justified objections concerning the use of
pre-processors, since they in effect result in ad hoc extension of the
Ada language as specified by the LRM.

3.2 Extend the Ada Language

Closely related to the embedded pre-processed approach is the idea
of simply extending Ada with additional constructs to support SQL.
This approach has been adopted, for example, by various COBOL
dialects, and results in a clean integration of data processing and
other programming language features. A further advantage of this
approach is that the language compiler is able to perform more extensive
query optimization than is possible in the pre-processed method, since the
entire source program is available for analysis.

On the negative side, SQL is a standard with a life of its
own, and extending Ada with SQL services will cause additional prob-
lems in Ada 1language maintenance. Also, the Ada language is already
complex; additional SQL semantics will require further ACVC develop-
ment, will compound the complexity and expense of constructing a vali-
dated compiler, and will in general increase the cost of such products.

3.3 Allow User-Defined Procedural Interfaces

This method is characterized by the provision of user-defined pro-
cedural interfaces to individual SQL queries. The actual query may be
written in a foreign language, e.g., SQL, and compiled separately. The
user-defined procedure in this case can use the Ada pragma interface
facility to 1link with the separately compiled source.

This method is closely related to the SQL module approach. The
SQL standard defines a formalism known as SQL module language, which
defines a procedure-call syntax for making SQL services available to
external languages. The SQL module language interface specifies a parame-
ter profile for the SQL module, i.e., the external module in the
pragma interface statement.

The advantage of this approach is that it bypasses many of
the conceptual difficulties introduced by intermixing statements in
two distinct programming languages. Further, it makes use of existing
SQL tools, such as optimizing query compilers; this can be an important
factor if database queries have strict performance requirements.

The weakness of the module approach is that the types projected
onto the module interface are the SQL types. SQL is a notoriously

12 April 1989 STARS-QS-02021/002/00

weakly typed langnage, and requiring application programs to deal with
SQL types defeats 0o a large extent many of the benefits gained by using
Ada as the application programming language. Also, [Bry88] notes
that the module approach also suffers from problems stemming from the
difficulties of debugging code generated by distinct language processors.

The discussion of the SQL Ada Module Extension approach, later in
this report, characterizes the extensions to the module approach just
described which address these weaknesses.

3.4 Provide a Standard Interface In Ada

This method attempts to define, in Ada, a set of general purpose inter-
faces for passing data to and from a database. The goal of this approach
is to provide an interface to database services which presents a strongly
typed, native Ada interface; the details of type mapping to underlying
SQL types would be hidden.

One such proposed set of interfaces was developed by WIS JPMO and
IDA ([BF88], and is called "Ada/SQL". The Ada/SQL interfaces provide
Ada compilable SQL Data Definition Language (DDL) and Data Manipulation
Language (DML).

The advantages of the Ada/SQL solution derive from the exclusive use
of Ada; although eventually an interface to the underlying DBMS will
need to address Ada-SQL type mapping issues, the application programmer
deals with SQL in terms of native Ada data types. Further, commonly
available programming tools such as pretty printers and debuggers can be
applied to the Ada/SQL application program. -

The disadvantages of the Ada/SQL approach are more subtle. First, as
noted in [Bry88], the generation of SQL column operations "may be
prohibitive if subprograms are generated based solely by looking at
the DDL."™ The solutions taken to address this problem have been the
development of "scanner" tools which examine the application program
(or all parts of the application program which incorporate Ada/SQL
DML statements) to determine which of the generated column operations is
actually required by the application; other operations are either filtered
or never generated.

The term "scanner"™ is actually a misnomer, since the term implies simple
lexical analysis whereas the tool actually needs to perform (at a
minimum) full overload resolution in order to determine which types and

subprograms are being used by the processed application source. The
introduction of this tool in the Ada/SQL solution also introduces confi-
guration management problems: the additional precompilation and subpro-

gram generation phase requires that the generated packages be kept in
synch with the Ada/SQL DML.

Also noted in [Bry88] is potential problems with run-time perfor-
mance of Ada/SQL queries. Since the gqueries are expressed in

12 April 1989 STARS-QS-02021/002/00

terms of Ada interfaces, the SQL processor will not have the oppcr-

tunity to do compile-time optimization. It 1is also wunlikely that an
Ada compiler will know about the Ada/SQL interfaces and SQL in order to
do equivalent optimization. Further, the execution of Ada/SQL queries

results in the construction of ASCII strings which represent the
desired query:; these strings are sent to the DBMS which then disassem-
ble (parse) the strings. This is also a built-in inefficiency.

At this point, evaluation of the pros and cons of Ada/SQL is diffi-
cult, since although the above problems have yet to be resolved it is
not clear whether they indicate problems with the underlying Ada/SQL
approach or are just implementations issues. What 1is apparent is that
no available implementation of Ada/SQL is suitable for commercial use
at this time. This in fact has been recognized by the A.J.P.O. which in
1987 directed the Software Engineering Institute to study the issue of Ada
interfaces to SQL, and to propose a solution to this difficult problem.
The first step in this process was a report [EFGW87] which outlined the
characteristics of a "good" interface from Ada to SQL.

An objective evaluation of proposed solutions to the problem of
Ada interfaces to SQL [X3H88] [BFHH87) [Boy87] yields the conclusion that
the SQL Module alternative is most promising.

4 QOverview of SAME

The central idea of the module approach lies in the treatment of
Ada and SQL as equally important, separate languages. That 1is,
SQL is neither subsumed by, or embedded into, Ada source code.
Instead, the module approach stipulates that SQL programming be done in
SQL, and Ada programming be done in Ada. The interface between SQL
and Ada code is achieved through use of a module compiler. The module
compiler translates standard SQL module language into Ada source code, or
object code which can be combined with Ada at link time.

SQL modules consist of a sequence of SQL statements; in [X3H86] only

data manipulation statements (DML) may appear in SQL modules. The
individual SQL statements define, e.g., SQL queries. A module compiler
will generate an Ada interface to each such SQL query. The Ada inter-

face to the SQL query will provide input to SQL as procedure input
parameters, and return the results of the query to Ada as output parame-
ters. The implementation of this interface, also generated by the module
compiler, could be a pragma interface to the code generated by the DBMS
SQL compiler.

One weakness of the module approach described above is that the
Ada application interface to the SQL statement will be presented in
terms of SQL-compatible types. Although at some point all interfaces
between Ada and SQL will have to map application types to the under-
lying SQL DBMS supported types, it is not desirable to impose the rela-
tively 1lax SQL type model on Ada applications. The direct interface
between Ada and the SQL queries compiled by the SQL compiler is called

12 April 1989 STARS-QS-02021/002/00

the concrete interface precisely because it presents in the interface
the concrete SQL types, i.e., the types of the relation’s columns.

The SAME extends this model by placing an additional layer
between the Ada application and the concrete interface, called the
abstract interface. This interface presents a strongly-typed inter-
face, with application-defined abstract types as parameters. The
difference between abstract types and concrete types is Dbest illus-
trated by example. In a database, the column types for an employee
relation’s employee-name and employee-city may well be represented by a
simple character string, perhaps even strings of the same length. In
SQL, there would be nothing illegal about comparing values of one
column with those of the other. In Ada, the application would prefer
to model employee-name and employee-city as distinct abstract types.

The application types in the abstract interface are called domain
types, because they represent the abstract domains which correspond
to the concrete SQL domains ("columns"). These types are derived from
types provided in the SAME support library. The support library defines
a set of abstract data types which encapsulate the representation and
semantics of the needed Ada-SQL type mapping. Thus, SAME provides a
measure of controlled Ada-SQL type extensibility. If Ada types (e.g.,
enumeration types, decimal types) are to be represented in the relational
database, an enumeration support ADT will be written and inserted into the
SAME support library (NOTE: these ADTs are already defined and implemented
in the SAME).

5 Characteristics of the SAME Approach

The SAME layered interface approach and abstract domain typing
approach provides opportunities to introduce other desirable Ada
characteristics into the Ada-SQL interface, such as robust error
detection and safe treatment of SQL null values. The following sub-
sections outline these salient characteristics of the SAME. It is
hoped that the sum of this description will provide the reader with
some measure of the elegance as well as problems inherent in the SAME,
However, by far the best description of the nuances of the SAME can be
found in [GraB88], which includes example SAME programs in addition to
numerous discussions of design rationale for the SAME approach.

5.1 Finite ‘State Modifier’ Parameterization

Marc Graham (SEI) has pointed out an interesting distinction between
the Ada interface problem posed by SQL and, say, POSIX or the X Window
System. Essentially, systems such as POSIX, X, and DIANA can be

characterized by a finite set of state-manipulation interfaces. SQL,
however, is a programming language, and no such finite number of state
modifier functions are definable. Thus, inherent in any interface of

Ada to SQL is some element of interface generation.

12 April 1989 STARS-QS5-02021/002/00

The Ada/SQL approach generates operations from an Ada schema specifica-
tion, resulting in enormous compile-time resource consumption and the
need for some kind of pre-compiler to filter overloaded operations not
actually used by the DB application program. Embedded SQL uses pre-
compilation to map embedded SQL statements to a set of interfaces which
do not so much define an SQL interface as they do provide generalized
run-time services to a backend DBMS,

In the SAME, this interface generation 1is elevated to the status
of principle design activity, rather than by-product (or means to an
end). Each SQL query is viewed from the Ada application as a call to an
abstract interface defined for some SQL services. The details by
which this service is rendered is transparent to the application, which
is freed from concerns such as mapping SQL data types to their abstract
types in the Ada program, from concerns about database error conditions,
and freed from the implementation details by which the query was satis-
fied.

The abstract interface constitutes a .ind of external schema [Cle85)
which provides the Ada application program a high degrece of data
independence. For example, the application program would be well insu-
lated from schema reorganization (schema evolution), which would in most
cases require only relinking of the application rather than any recod-
ing. In contrast, any Ada-SQL interface solution which is achieved by
co-mingling Ada and SQL source is fundamentally weaker in this regard.
Of course, with proper design discipline some degree of deta indepen-
dence can be achieved in embedded approaches. None of the embedded
approaches mandate definition of abstract interfaces, as is the case in the
SAME,

5.2 Separating Distinct Language Paradigms

Ada and SQL are distinct languages, each with distinct typing
and computational models. Ada is a procedural language, with a
notion of "sequence". In contrast, SQL is a query specification language

which has a more declarative rather than procedural reading. Ada is also
a strongly typed language, with a notion of type extensibility via data
abstraction and type constructors. SQL 1is a weakly typed language.
These and other distinctions create conceptual and pragmatic barriers
to interfacing SQL and Ada.

Consider some implications of the distinct type models of SQL and
Ada. Note first that in any interface between Ada and SQL,
queries will eventually be processed by SQL using the rules of SQL.
Thus it is not possible to impose the Ada type model on SQL data-
bases. Rather the interface must clearly specify a type mapping to
and from Ada and SQL types.

For example, SQL has a notion of "string" type, as does Ada (there are
other examples, e.qg., distinctions between arithmetic types such as
SQL Float and Ada fixed-point numbers, but the string example should

12 April 1989 STARS-QS-02021/002/00

suffice). However, the semantics of string processing ir SQL 1is sub-
tlely distinct from the semantics of Ada strings. SQL defines rules for
string comparison which would allow strings of unequal length to
nevertheless be "equal" (SQL def‘nes "padding" semantics for such com-
parisons) . In Ada such stri..js would never be equal. The Ada-SQL
interface should make such distinctions clear. In Ada/SQL, the seman-
tics of strings at the interface arz those of SQL:; however, string
values returned by Ada/SQL target specifications, e.g., fetch...into
statements, are converted to native Ada string objects, with Ada string
semantics. Thus the application code treats strings with subtiy dif-
ferent semantics than does the DBMS.

In the SAME, the goal is to provide a clear separation of SQL and 2 da
type semantics by processing each language under its own native
environment; the type mapping semantics are then projected onto an inter-
face (see next section) which encapsulates the type mapping semantics.
In the SAME, this interface is defined by the SAME support library,
and the domain types derived from this library. The type semantics
encapsulated in the SAME library support a uniform view of applica-
tion types, both within application and the DBMS.

5.3 Abstract Domain Types and Concrete SQL Types

In the SAME, the mapping of SQL types to Ada types is accomplished

via the definition of abstract domain types (in Ada). A SAME domain
type consists, in general, of two derived type definitions and one
generic package instantiation. The database application program deals

with domain types, not SQL types.

The underlying types from which the domain types are derived are
defined in the SAME support library. These support types encapsulate
the SAME mappings from the concrete representation of types in the
underlying database (as defined in the SQL standard [X3H86]) to their
corresponding types in Ada. Thus the application programmer is two levels
of abstraction away from the DBMS-specific enccdings of the standard
SQL types. This distance, as well as the architectural 1localization of
this type mapping, simplifies the task of hosting SAME on various
DBMS platforms, and insulates the application program from subtle
changes in the SJI standard types (because of the encapsulation of the
support types as abstract data types).

Although this type mapping scheme introduces additional complexity
for application programmers, there are a numper of benefits in addi-
tion to those listed above, including safe treatment of SQL null
values, robust error handling, and improved database application design.
These points are discussed in the following three subsections.

5.4 Safe Treatment of SQL Null Values

12 April 1989 STARS~-QS-02021/002/00

One significant difference between Ada’s and SQL’s notion of type
values is the SQL null value. The null wvalue represents the value
"unknown", and introduces a notion of incomplete information alien to
Ada, where a type is defined as a set of values and a set of opera-

tions; there is no Ada value which represents the unknown value. In
SQL, the occurrence of a null value is indicated by an indicator param-
eter to a query. It is the responsibility of the invoker of a query

to evaluate the indicator parameter and take appropriate action in the
case of a null value.

Mistreatment of SQL null values can lead to programming errors that

are obscure and difficult to diagnose. The SAME approach guarantees
safe handling of null values by freeing the application programmer
from his obligation to check the indicator parameter. Instead, the
programmer declares his intent to allow or disallow null values
through use of the appropriate domain type. Note that the SAME
distinguishes the application programmer from the interface program-
mer. Although the interface programmer is not freed from the

responsibility of correctly handling SQL null values, as discussed later
in this report the development of a SAME compiler will automate interface
programming.

It was noted above that domain types consist of two type deriva-
tions and a package instantiation: the two base derived types
correspond to null bearing and non-null bearing types. The SAME is
guaranteed to raise an exception if a non-null bearing type receives
a null value; further, the SAME guarantees consistent handling of null
values, as null valued semantics 1is encapsulated in the support types
abstract data type definitions.

5.5 Robust Error Handling

A corollary to the above discussion on safe treatment of null values
is the generalized notion of robust error detection and recovery.
Again, the interface problem stems from differences in Ada and SQL, in

this case from distinct interpretation of error conditions. In SQL
the notion of "error" is generalized into a single integer code
(SQLCODE) which represents an indicator for the current state of the

underlying DBMS. A few values of SQLCODE are defined by the standard
(e.g., 0 means a successful "fetch", 100 means end of file), but most
-- including the real error states (defined as negative SQLCODE values)
are left to the DBMS vendor to define.

The onus of detecting, evaluating, and acting upon the value of
SQLCODE is placed upon the application developer. This presents at
least two problems. First, there 1is no assurance that the applica-
tion program will correctly recognize erroneous database conditions --
indeed, there is nothing to mandate that the application program wil?
examine the SQLCODE. This lack of robustness stands in sharp contrast
to the goals of Ada software development. Second, the encoding of
vendor-specific SQLCODE values into software is a clear obstacle to

11

12 April 1989 STARS-QS-02021/002/00

application portability, in this case portability across different DBMS
vendors.

In the SAME, one task of the application and SAME interface
developer is to specify which SQLCODE values represent meaningful
results for a particular SQL request; all values not in this set will
invoke the SAME error processing system, which will eventually result in
the raising of an exception. Such values usually correspond to an error
situation which the application program could not recover from in any
event. Note: the SAME error processing facilities do provide escape
mechanisms which would allow the application to make some attempt at
recovery.

One immediate result is that the application developer is not aware
of the notion of SQLCODE, but can instead code his application under
the assumption that all requests to the underlying DBMS (through SQL)
have completed successfully and without error. Furthermore, both
application and interface code are clearer. Application code is clearer
since it can assume error-free processing. Interface code is more self-
documented since it is more informative to enumerate the few valid SQLCODE
values than write code to process all possible invalid codes.

5.6 SAME Support for Sound Database Application Design Principles

Perhaps no single defining characteristic so clearly delineates SAME
from embedded approachs to interfacing SQL as the way in which SAME
supports -- mandates, actually -- a sound database application design
approach. As already mentioned, interfacing Ada to SQL requires at
some point the generation of application-specific interfaces to the SQL
processor; in the SAME, these interfaces become a focal point of the
application design process, rather than a secondary artifact.

In practice, this means that the interface from an application to the
DBMS are defined early in the application development process; using the
SAME makes it difficult to formulate the application -- DBMS interface in
an ad hoc fashion. This is clearly a desirable result for several reasons.

Defining the required DBMS services is an integral part of the
design of any database application. Embedded approaches in
effect grant the application coder the privilege of making wuse of
the DBMS in an uncontrolled and perhaps inappropriate fashion (e.g.,
creating but forgetting to "drop"™ temporary tables). In cases where
the designer and coder are the same person, this may be tolerable
(although arguably still an inappropriate process to develop software);
however, in larger organizations where application coders may not be as
experienced as the system designer, such a situation may be less pardon-
able.

Early definition of the abstract interfaces to SQL services also

requires a clear and documented mapping of SQL database types to the
abstract types to be manipulated by the application programmer.

12

12 April 1989 STARS-QS-02021/002/00

Interestingly, in traditional database application design, the database
designer will go through a process of schema definition which begins
with identification of the abstract objects which the database applica-
tions will manipulate. These abstract objects are then represented in
the underlying database using types supported by the DBMS. Unfor-
tunately, the abstract objects defined during database design are not
captured in the schema, and this important information is often 1lost.
In environments where only Ada will be operating on the DBMS, or
where an Ada application will be the originator of a particular
schema, the SAME provides a vehicle for capturing and making use of
this information. In cases where existing schemas will be used by
SAME applications, this information may be harder tc ‘:rive.

5.7 SAME Complexity: Need for Automation, and Approaches

The SAME derives much of its effectiveness through explicit handling of
critical Ada-SQL interface issues (e.g., type mapping, error handing, type
extensibility, null values). However, the SAME is also overtly complex;
although the application programs remain clear, the implementation of the
abstract and concrete modules remains a tedious and complex task. This is
perhaps the weightiest criticism which can be leveled at the SAME (although
in fairness it can also be argued that all problems can be characterized by
some minimum level of complexity which will be exhibited by their solu-
tions).

It is clear that interface programming in the SAME is tedious, and
requires some means of automating the definition and implementation of
the SAME interfaces (domain packages, abstract and concrete modules).
Figure 1 illustrates a fragment of an abstract module for the SAME.

Fortunately, SAME tools are in design, and prototypes are expected
to be available by August 1, 1989, The following subsections describe
one possible SAME tool configuration, and issues raised by SAME tooling.

5.7.1 Module Compilers and SAME Compilers

The SAME, as 1it’s acronym suggests, is an extension of the SQL
module approach to support more fully the Ada language. Module com-
pilers for the module approach -- not SAME -- have been implemented,
e.g., XDB on UNIX Unisys 5000 and MS-DOS personal computers, and
Datacomm, MVS/CICS for the Army SIDPERS-3 project. These systems work
by compiling standard SQL module 1language into Ada code which accesses
the DBMS., In SAME terms, these module compilers generate concrete
modules, so named because the interface to this code projects the con-
crete type model employed by the SQL processor.

The key to the SAME automation is to extend the SQL module 1language,
either through bona fide language extensions or comment-style

13

12 April 1989 STARS-QS-02021/002/00

procedure FETCH(TUPLE : in out PART_NBR_CITY PAIRS; FOUND : out boolean) is

CITY BUF: CHAR (1 .. 15):
CITY IND: INDICATOR_TYPE;

begin
CONCRETE_MODULE.FETCH (TUPLE.PNO, CITY BUF, CITY_IND, SCP.SQLCODE) ;
case SCP.SQLCODE is
when NOT FOUND =>
FOUND := false;
when SQL ERROR =>
SDEP .PROCESS_DATABASE_ ERROR;
raise SCP.SQL_DATABASE_ERROR;
when others =>
if CITY_IND < 0 then -- null city found
ASSIGN(TUPLE.CITY, NULL_SQL_CHAR):
else
ASSIGN(TUPLE.CITY,
CITY OPS.WITH NULL(CITY_NOT NULL(CITY_BUF))):
end if; .
FOUND := true;
end case;
end FETCH:;

Figure 1: SAME Abstract Module Code Fragment

annotations, with the additional information required to generate the
abstract domain types, abstract modules, and other ancillary concerns
such as packaging. Thus the solution which presents itself is a SAME
compiler. Figures 2 and 3 illustrate the distinction between the
vanilla module compilers and the SAME module compiler. NOTE: these fig-
ures do not illustrate dependencies among generated Ada code (i.e.,
"with"s), but merely identifies generated vs. handwritten Ada source.

5.7.2 Third Party Solution: Syntactic Dialects

One problem with the SQL standard is that it is defined as an intersec-
tion of vendor features; thus the situation that the standard defines a
language which no one supports but many comply with [Dat87]! If the
SAME is to succeed, in the sense that it can be adopted by Ada develop-
ers to a wide range of target DBMS, the SAME compiler must be flexible
enough to support multiple vendor implementations of SQL.

As suggested by the <classification of the SQL standard as
an "intersection" standard, most DBMS vendors support a common core set
of SQL features, but then vary with vendor specific features (e.q.,
dynamic DDL statements, database connect statements). This raises a
dilemma: if we are to promulgate a SAME compiler for widespread use in
STARS, we must be able to construct such a tool without having to rely

14

12 April 1989

—— — ——— ——— ———— ——— —— —— - — ——— -

Figure 2:

STARS-Q5-02021/002/00

—— —— ——— — ——— ————— -

SQL Module Approach

15

12 April 1989 STARS~-QS5-02021/002/00

| | / SAME \
I SQL Module | === >/ \
I + | \ Module Compiler /
| SAME annotations | \ /
|
| [|
v v v
| | 1 || I
| Concrete (1 Abstract I Domain (
] (Ada) Module | | (Ada) Module | Packages |
| || I I
I I I
___ I
_________________________ |
| [\
| rF - emecececcceee—-
| Ada Application | == / \
I | f———————————e >/ \
------------------------- | ---—==---—=-->\ Ada Compiler /
------------------------- | \ /

- —— — ——— ——— —— - —— - ——— -

Figure 3: Possible SAME Tool Approach

on DBMS vendors. Yet, how can such a tool be constructed economically
if each one is by definition vendor-specific (based upon the vendor’s SQL
dialect)?

The solution is to devise a SAME compiler which is constructed with
the presumption of supporting several SQL syntactic dialects. As the
term implies, a syntactic dialect L’ of 1language L conveys the same
semantic content, albeit structured in a slightly (syntactically) dif-
ferent form. If this goal is achievable, then the SAME compiler
can be specified and implemented with respeci to a common intermediate
representation for the SQL module language, with syntactic variants
mapped to the common intermediate form at parse time.

The SEI approach to achieving this objective is the use of
the Unisys generation system, SSAGS (PKP*82] . SSAGS is in
essence a powerful compiler-compiler which generates parsers, tree-
builders, semantic evaluators, and code (source) generators from a
high-level specification language. A direct benefit of using SSAGS is
its built-in support for the separation of concrete grammars (the actual

16

12 April 1989 STARS-QS-02021/002/00

SQL dialects) and abstract grammars (the intermediate representation).
The SSAGS generated semantic analyzer and code generators process the
output abstract grammar, and so are insensitive to the possibility of
multiple input concrete grammars.

Figure 4 is an abstract illustration of a SSAGS-generated family of
SAME module compilers.

Semantic Source

I I | |
| [I [
| I I [
= | [—=—=m——- >| | |
| | Evaluator | Generator |
I | | |
| | | |
| | | [

—— — —————— — ————————

Figure 4: SAME Compiler Families by Generation
5.7.3 The SAME Module Language

The question arises: "What should the SAME input language look like?"
There are two basic positions, and a compromise position. The SAME
design committee has not committed to a particular position, and all have
been and are under evaluation. Essentially, the three positions are:

o] Standard SQL module language with comment-form annotations
o A concise SAME language
o Extended SQL module language

The first approach extends the standard module language transparently
via comment-style annotations, similar to the way Byron and Anna extend
Ada. This idea is based upon the observation that the module language
contains sufficient information to generate the concrete module; the

17

12 April 1989 STARS-Q5-02021/002/00

annotations would provide additional information concerning the Ada-SQL
type mapping, recognized error conditions, domain types packaging,
etc. Figure 5 illustrates a fragment of extended module language.

There are some advantages to this language approach. First, preserva-
tion of the standard module language means several languages (or
systems) can share the same SQL module specification; since the anno-
tations are transparent to existing module compilers, they can be
ignored. Also, considerable effort has been expended in defining the
SQL module language. Preserving the language and merely adding syntax
for the SAME builds wupon this considerable language design investment.
Unfortunately, it has been observed that the comment extensions to
the module language results in a cumbersome language for the SAME, with
some degree of redundancy. This aesthetic problem could pose a serious
obstacle to widespread acceptance of the SAME compiler.

An alternative approach to the SAME language would be to define a
new language "“from scratch", such that the language would contain all
the necessary information to generate a corresponding standard module
language specification in addition to the Ada particulars. Such a
language would not be constrained by the SQL module language syntax,
but could, for example, be based upon different language principles
(e.g., pure relational algebra, or perhaps SQL including the modifications
mentioned in [Dat87]).

Perhaps the most obvious argument against this position concerns our
desire to see a SAME processor prototyped by August 1989; it would
seem that designing a new language would require considerable effort,
besides the obvious risks to industry acceptance. Such an approach,

~- SQL module comments are introduced by the "--" characters
-- SAME annotations are represented by the "&" suffix on SQL
- module comments

~-& domain PNO is new SQL CHAR (5):

~--& domain SNAME is new SQL CHAR (20);

~-& domain CITY is new SQL CHAR (15):

~-& domain STATUS is new SQL INT range 0 .. SQL_INT’range;

create table S (
SNO CHAR (5) NOT NULL, --& domain : SNO

SNAME CHAR (20), --& domain : SNAME
STATUS INT, --& domain : STATUS
CITY CHAR (5), -~-& domain : CITY

UNIQUE (SNO))

~- other table and domain definitions here

Figure 5: Sample SQL Module Language Annotations

18

12 April 1989 STARS-QS-02021/002/00

while feasible in a pure research setting, would not provide a satis-
factory near-term solution.

The final alternative, simply extending the SQL module language in
order to facilitate SAME compiler derivation of much of the information
couched in the "&" annotations, 1is currently favored by the SAME

committee. Since no complete concrete syntax has been proposed, it is
difficult to evaluate the aesthetics of this proposal. The obvious
advantage is a more convenient syntax for SAME users. The disadvan-

tages are additional configuration management problems in multi-lingual
environments (i.e., the SAME module would not be accessible to these
tools, although perhaps pure SQL module language output from SAME would
be accessible; this introduces configuration management issues).
Further, there are some risks to industry acceptance due to variance
from an existing standard, although the risks appear to be smaller
than in the "from scratch" language alternative.

5.8 Summary of SAME

The SAME addresses the most difficult issues raised by attempting
to interface two languages cof radically different paradigms. The
solution offered by the SAME is flexible, makes good use of Ada and SQL
language capabilities, and is designed to impose a minimal interface

overhead. On the minus side, SAME applications, or rather the applica-
ticn specific SQL interfaces, are quite complex, and are tedious to con-
struct. Fortunately, most of this tedium is automatable; the SAME

compiler under design at this time will accept SQL module language (some
variant) and automatically generate the abstract and concrete modules
and domain packages. This tool should make the SAME the Ada-SQL
interface of choice for production quality Ada SQL applications.

6 A Comparative Analysis: SAME vs. Ada/SQL

No discussion of Ada-SQL bindings can be complete without consideration of
the Ada/SQL approach. Other alternatives to embedding SQL in Ada
(e.g. pre-processed comment-form) are not as noteworthy since they
unnaturally extend Ada by preprocessor, whereas Ada/SQL uses the inherent
extensibility provided by Ada.

The Lockheed SQL work performed under a STARS Foundations contract is
not sufficiently distinct from the WIS Ada/SQL work to warrant a
separate evaluation. It is mainly distinguished from Ada/SQL by the
approach to generating the overloaded domain operations, which is accom-
plished via successive instantiation of a nested generic data dictionary
specification. In fact, this generation technique was the main thrust
of the Lockheed work. All of the points in the following evaluation
apply equally to Ada/SQL and the Lockheed prototype.

At the outset it must be stated that, from the SQL

19

12 April 1989 STARS-QS-02021/002/00

programmer’s perspective, Ada/SQL provides an elegant interface to SQL.
Given a strict requirement that all aspects of an Ada-SQL interface must
be coded in Ada, it is difficult to conceive a better solution. Indeed,
in the absence of what otherwise appear to be pervasive problems in
achieving product-quality implementations of Ada/SQL, our evaluation in
this report might have been different.

One key presupposition in the SAME is that the single-language solu-
tion requirement is wholly inappropriate for this particular interface
problem; SQL and Ada, as fundamentally distinct entities, should be
treated as such, and SQL should not be subsumed or embedded in Ada.

6.1 The Evaluation Criteria

In order to establish an objective comparison, it is necessary to formu-
late criteria, a set of features, by which systems are compared.
Table 1 provides an overview summary of one such set. Many, but not
all, of the criterion were derived from [EFGW87]. In the following evalua-
tion, several conclusions are suffixed with a "?" to indicate that the
author has less certainty concerning the conclusion, or that there is room
for debate concerning the conclusion. In these cases an attempt is made to
present Ada/SQL counter-arguments in an honest way.

One point of note is that the evaluation which follows is based
upon current implementations of the Ada/SQL model. [BF88] indicates
that implementations compliant with the Ada/SQL specifications could
generate, from application source, embedded SQL for a commercial

preprocessor, calls to external SQL modules as in the module
| Criteria | SAME |Ada/SQL |
ettt | === | === |
User code portability	yes	yes
Third party solutions	yes	yes(?)
Pure Ada solution	no	yes
Standard preservation	yes	no(?)
Performance -- Compile time	yes	no
Performance -- Run time	yes	no
Ease of use	no	yes
Support DB design methods	yes] no	
Effective use of Ada	yes	yes
Effective use of SQL	yes	no {
Well defined type mapping	yes	yes(?)
Data independence, schema evolution	yes	no
Data interoperability to non-Ada applications	yes	no

Table 1: Ada-SQL Interface Evaluation Criteria and Results

20

12 April 1989 STARS-QS5-02021/002/00
approach, or any host of alternatives. From this perspective, one
could view the Ada/SQL approach as a solution which is symmetric to
the automated SAME -- rather than generate the interfaces from standard
module language, generate the interfaces from Ada source. However,

the author knows of no such implementations, and the evaluations below
apply to current implementations only.

A second point of note is that in several cases the author evalu-
ates weaknesses of current Ada/SQL implementations against a SAME solution
which includes a SAME module which does not yet exist. On the sur-
face, this would seem to be unfair. However, the generation of the SAME
abstract and concrete interfaces from an enhanced SQL module language
specification is not a difficult language implementation problem, and
does not require the use of tools which must perform static semantic
analysis of Ada source, as in the case of the Ada/SQL "scanner."

6.2 Applying the Criteria

6.2.1 User Code Portability

User code portability must take into consideration portability
across hardware platforms, Ada compilers, and DBMS. It must be assumed
that Ada code is written in a machine independent way, and so applica-
tions using the SAME and Ada/SQL should achieve a high degree of
application code portability.

This evaluation is somewhat muddied in the SAME because there are
really three classes of application software: the application
itself, the SAME interfaces, and the SQL code. There’s also a dis-
tinction between the automated SAME (i.e., with SAME compiler) and
the manual SAME., In any event, application code uses an abstract
interface, and so will be portable.

In the manual SAME, some additional portability issues are raised
since each concrete module implementation will need to be examined for

e.g., pragma interface syntax, which is not fixed by Ada. Also, the
manual SAME might require hand modification of the SQL code to com-
ply with vendor idiosyncrasies. Thus, manual SAME appears to present

more obvious portability problems than Ada/SQL.

In the automated SAME, the application program is still portable,
and further the SAME interfaces and concrete modules are generated from
the SAME language. Thus the issue of SAME portability reduces to the
identical constraints imposed on Ada/SQL portability, i.e., portability of
the system to a host DBMS and Ada compiler.

On the other hand, it must be recognized that Ada/SQL is not isolated
from potential portability problems raised by vendor SQL idiosyncrasies.
It is an open question whether this could result in more insidious forms
of portability difficulty: it is not clear that problems arising from
vendor "quirks"™ can be isolated and easily resolved, since SQL statements

21

12 April 1989 STARS-QS-02021/002/00

appear passim in the application code. One example of such difficulties
concerns character set independence. Not all DBMS process strings in
ASCII, yet Ada/SQL interfaces manipulate Ada strings, which are by
definition ASCII. Further, the Ada/SQL implementation constructs ASCII
string representations of SQL queries to be processed by the SQL proces-
sor; a non-ASCII DBMS will not accept such strings.

6.2.2 Third Party Solutions

This is really an issue of practicality: is it likely that
third party commercial vendors will make available production quality
versions of either the SAME or Ada/SQL? Two potential classes of prob-
lems could prevent this desirable result: either method could, in prac-
tice, require access to either compiler or DBMS internals in order to
produce efficient application code, or else the implementation cost of
either method could be prohibitively expensive.

It is clear that in this category, the SAME has a marked advan-

tage. This is because the SAME makes use of existing SQL proces-
sors, and does not duplicate the effort of SQL syntactic and semantic
processing within Ada. Further, the generation of column operations in

Ada/SQL for non-trivial DDL specifications will exceed most (all?)
compiler limits [Bry88); therefore a pre-compiler capable of full Ada
overload resolution is required in order to examine the application
source to determine which of these column operations are actually
needed (the rest are filtered). This is an expensive prospect, and
although a public domain Ada front-end is available, it is not validated.

Although SAME systems can be constructed by third party vendors, it
may be the case that DBMS vendors will have an edge in producing pro-
duction quality SAME module compilers. Access to the underlying
DBMS data dictionary could provide, if nothing else, better integration
of the SAME compiler with pre-existing DBMS utilities.

6.2.3 Pure Ada Solution

There 18 no question here: Ada/SQL allows the application program-
mer to develop an application in pure Ada, whereas in applications
using the SAME someone, perhaps not the application programmer (e.qg.,
database administrator) will have to write SQL code. To Ada/SQL advo-
cates, this is one of the most appealing characteristics of Ada/SQL.

On the other hand, the author questions whether this is a signifi-
cant benefit, or perhaps the root cause of severe difficulties in making
Ada/SQL systems "production quality." In any event, the need for
Ada/SQL pre-compilation filtering and difficulties with run-time per-
formance of Ada/SQL query execution indicate that the pure Ada solution
has not been achieved without cost.

22

12 April 1989 STARS-QS5-02021/002/00

6.2.4 Preservation of Standards

The Q14 mandate concerned Ada interface standards, and therefore
this criterion is particularly important to the author. SQL is a language
which is undergoing a formal standardization process in ANSI; we can
expect the language to evolve in time (SQL2 is currently a draft
standard) . Any solution to the Ada-SQL interface problem must recognize
this reality, and thus the solution must be adaptable to changes in both
Ada and SQL.

The SAME has a clear edge here because of the separation of the Ada
and SQL text. The SAME application programs, and indeed the abstract
and concrete modules are, for the most part, insensitive to minor
changes to the SQL standard. On the other hand, Ada/SQL embeds SQL
statements =-- albeit in Ada syntax -- throughout the application pro-
gram. Further, the considerably complex pre-compiler is also sensitive
to the SQL standard. All embedded approaches prima facie make it more
difficult and expensive to maintain compliance with future versions of the
SQL standard.

One point important enough to repeat is that SAME application pro-
grams view database resources through an external schema; this means
that the SAME application is not only relatively impervious to schema
evolution, but is also relatively isolated from the underlying conceptual
schema. That is, the SAME application program would probably not
change considerably under changes to the SQL standard, or for that
matter migration of the implementation of the abstract and concrete
modules to an entirely different data model.

6.2.5 Performance -- Compile Time

This evaluation refers to existing implemeritations of the SAME
and Ada/SQL. The negative evaluation of Ada/SQL compile time performance
refers to the required pre-compilation pass. This essentially dou-

bles the required compilation time, and this could be expensive in
large-scale applications., Further, the tight coupling between Ada/SQL
application code and the Ada/SQL data dictionary (which controls the
generation of column operations) adds additional compilation (not 1link)
dependencies.

On the other hand, as has been mentioned, SAME application programs
are fairly impervious to modifications to the schema which do not
"lose" information required to satisfy application queries. This
removes the compilation dependency between the abstract interfaces and
the DDL in most cases. Also, although the automated SAME includes a
compilation pass, it appears at this time that the semantic processing
involved 1is far less extensive than in current Ada/SQL "scanner" solu-
tions.

A mitigating argument against this negative evaluation is that an

23

12 April 1989 STARS-0QS-02021,'002/00

Ada/SQL application programmer is free to "package" the Ada/SQL queries in
a form similar to the abstract interface used by SAME a>plications.
Although this would indeed b. a good coding practice, it is not enforced
by Ada/SQL. This would also not remove the two-pass compilation require-
ment.

6.2.6 Performance -- Run Time

This negative evaluation of Ada/SQL is more cut-and-dry. The
Ada/SQL approach prohibits the possibility of compile-time query
optimization. Thus, applications requiring tight performance constraints
on time-critical DBMS accesses would not be well served by Ada/SQL. On
the other hand, the separate sourcing of SQL allows the vendor supplied
SQL compiler full opportunities to optimize queries. A possible mitigat-
ing argument against this negative Ada/SQL evaluation would be to
note that in practice such time critical queries would be few, and
that in such cases it is possible to re-write the Ada/SQL code pex=form-
ing the query to make use of a commercial embedded-SQL product. This
would provide access to compile-time query optimization for the few
queries that require it, while maintaining a pure Ada solution else-
where. This does not, however, seem to be a satisfying counter-argument.

6.2.7 Ease of Use

This is a difficult criterion to assess, since it is granted that
the SAME approach as it stands introduces considerable complexity for
database application programming. On the other hand, public domain SAME
automation tools are expected to be available to the Ada community by
some time in August, 1989.

Nevertheless, as currently implemented, there is no question chat

Ada/SQL is both conceptually and practically easier to use than the SAME
solution,

6.2.8 Support DB Design Methods

As mentioned earlier in this report, the SAME supports
sound database application design principles by requiring early (design
time) identification of required DBMS services. In contrast, Ada/SQL

(and all other embedded SQL approaches) encourage an ad hoc approach to
this part of application design; apparent design decisions can be made
"on the fly" during the coding phase.

The elevation of database interface specification to a key design
activity is a major improvement on the process of developing database
application software in Ada, and meshes well with current software
engineering design principles.

12 April 1989 STARS-QS-02021/002/00

6.2.9 Effective Use of Ada

Both Ada/SQL and the SAME are satisfactory in this respect.

6.2.10 Effective Use of SQL

Again, separate sourcing of Ada and SQL has its advantages. The
SQL standard is essentially an intersection standard, based upon a common
set of SQL features provided by most SQL DBMS vendors. In practice
this means particular implementations of SQL will provide additional
services not defined in the SQL standard. Separate sourcing of SQL
allows database applications to take advantage of these additional
features. The reader may question whether it is in fact a good idea to
take advantage of vendor-specific services, as this has clear ramifica-
tions on application portability. It would seem that constraints, e.qg.
use only "standard" SQL, are best made on a project to project basis.
The SAME, in any event, does not prevent the use of non-standard but
potentially very useful vendor specific services, and in this regard is
more flexible than Ada/SQL.

6.2.11 Well Defined Type Mapping

Both the SAME and Ada/SQL are constrained by the same require-
ment: data manipulated in the Ada programs must have a corresponding
concrete representation in the wunderlying DBMS. Both the SAME and
Ada/SQL provide the Ada application programmer with a view of database
types as abstract types, and so both are satisfactory in this regard.

The "2" is appended to the Ada/SQL evaluation to indicate that Ada/SQL
may not define the type mapping as clearly as in the SAME. First,
note that the SAME support 1library defines supported base types as
abstract data types; the application domain types are derived from
these base types. Thus in ihe SAME there is a well defined, isolat-
able description of the Ada-SQL type mapping system. Further, the mechan-
ics of extending the SAME to support different abstract base types
(e.qg., decimal) is well defined even if the required code to implement
the base type is not.

It also must be noted that neither SAME nor Ada/SQL support arbitrary
Ada data types. Clearly, access types are not included, and record
types (variant or otherwise) would violate relational first normal form.
Thus, although Ada/SQL and the SAME are constrained by the same type
mapping requirements, in the author’s opinion the SAME tackles the
problem with greater uniformity.

6.2.12 Data Independence, Schema Evolution

25

12 April 1989 STARS-QS5-02021/002/00

This point has been made in conjunction with earlier discussions of
the equivalence of the SAME application’s abstract module interface to
the notion of external schema. SAME application programs (as dis~-
tinguished from the abstract and concrete modules, which in practice
may be shared among several applications) are relatively data independent
and impervious to information preserving schema modifications. This
much is absolutely enforced by the SAME. 1In contrast, Ada/SQL does not
require the use of abstract ("external") interfaces to SQL services, and
must be considered weaker in this regard.

6.2.13 Data Interoperability to non-Ada Applications

One consequence of the Ada/SQL approach is that the database
schema definition is derived from Ada source definitions of records and
types. This is reasonable only in environments where Ada is the sole (or
perhaps principle) language in |use, In multi-lingual environments,
especially those that employ database 4GLs, this Ada-orientation intro-
duces problems, e.g., configuration management problems.

In the SAME, Ada is considered just another player in the data-
base environment. Thus, single schema definitions may be shared,
easing configuration management problems as well as making the database
concrete column type representations available to all applications 1in
arbitrary languages.

One mitigating argument which can be made is that the schema defini-
tion generated from the Ada/SQL data dictionary package can be shared by

non-Ada applications. However, such access must Dbe restricted to
"read-only" in order to ensure Ada source compatibility with the data-
base. This is a configuration management problem which arises since
the Ada compilation system will not track dependencies between Ada
source and the DBMS data dictionary. Further, recompilation of the
Ada/SQL source, even if out of date with respect to the DBMS schema,
will still succeed (in generating incorrect code). In contrast, recom-

pilation of SAME SQL module code will detect inconsistencies with the
DBMS data dictionary at compile time.

6.2.14 Ease of Validation

This criterion is more a conjecture than the other criteria, as
is reflected in the "2" suffixes to both evaluations. The issue
of validation arises by virtue of Ada compiler validation: can
similar requirements be placed upon the Ada-SQL interface? The first
point to note 1is that it is extremely unlikely that an underlying
DBMS will be "validated", whatever that would mean. Nonetheless, it
might be wuseful to validate the interface to the DBMS.

Again, separate sourcing is the key to the favorable (albeit tenta-
tive) endorsement of the SAME. The SAME interface is thinner than that of

26

12 April 1989 STARS-QS-02021/002/00

Ada/SQL precisely because it does not embed SQL; thus there is no

reason to validate that portion of the interface. Further, the addi-
tional tooling required of Ada/SQL to filter unnecessary column
operations requires wvalidation. This 1is so because the pre-compiler

must perform full Ada overload resolution; it is, in fact, a compiler
frontend.

The SAME support library would need validation; however, this should
be straightforward since it defines for the most part the Ada-SQL

type mapping, and this code is straightforward. Further interfaces
requiring validation would be identified on a per application basis as
new abstract and concrete modules are constructed. Note that the

application use of domain types would not require validation, since they
are derived from the SAME support library.

Finally, the validation of abstract and concrete modules could also
be simplified by validating the SAME interface generator. The idea would
be to prove the generated code valid by construction, and is indeed one
of the salient benefits of the approach being taken to construct the
SAME compiler.

7 Conclusions

In the author’s opinion, the SAME approach to proving an interface
from Ada to SQL should be pursued by STARS. Although the Ada/SQL
approach has some noteworthy characteristics, the weight of evidence sug-
gests that much greater effort will be required to transform this
approach into a product quality interface than is the case for
SAME, Besides the immediacy of possible product quality SAME implemen-
tations resulting from the disentanging of SQL from Ada (and thus
leveraging existing product quality SQL compilers), the SAME also sup-
ports sound database application design principles, and seems more in
the T"spirit" of Ada and software engineering than other alternatives.
Finally, the SAME provides concrete benefits not provided by any
alternative, most notably robust error processing and safe treatment of
SQL null values.

The SAME will require automation to achieve widespread acceptance;
the interface programming task, although conceptually simple, is
tedious. STARS should adopt the SEI SAME prototype for use in the STARS
SEE. Because this prototype will be constructed using SSAGS, the SAME
compiler should be fairly maintainable: there would be some flexi-
bility in terms of definition of the SAME input language, should the
syntax prove unacceptable to SAME users.

27

]

) 12 April 1989 STARS-QS5-02021/002/00

References

[BF88] Bill Brykczynski and F. Friedman. Ada/SQL Binding Specifications.
Technical Report M-262, Institute for Defense Analysis, 1988.

[BFHH87] Bill Brykczynski, F. Friedman, F. Hilliar, and K. Hook. Level
1 Ada/SQL Database Language Interface User’s Guide. Technical
Report M-360, Institute for Defense Analysis, 1987,

[Boy87] Stowe Boyd. SQL and Ada: The SQL Module Option. Technical
Report CA-8708-1701, Computer Associates, August 12387.

[Bry88] Bill Brykczynski. Methods of Binding Ada to SQL: A General
Discussion. Technical Report T-W4-206, Institute for Defense
Analysis, October 1988,

[Cle85] Erik K. Clemens. Data Models and the ANSI/SPARC Architecture,
chapter 2, pages 66--114, S. Bing Yao (editor) Principles of
Database Design, 1985.

[Dat87] C.J. Date. A Guide to The SQL Standard. Addison-Wesley, 1987.

[EFGW87] Charles Engle, Robert Firth, Marc H. Graham, and William Wood.
Interfacing Ada and SQL. Technical Report SEI-87-TR-48, Software
Engineering Institute, December 1987,

[GraB88]) Marc H. Graham. Guidelines for the Use of the SAME. Technical
Report SEI-88-MR-9, Software Engineering Institute, October 1988.

[PKP*82] Teri Payton, S. Keller, J. Perkins, S. Rowan, and S. Mardinly.
SSAGS: A Syntax and Semantics Analysis and Generation System. 1In
Proceedings of COMPSAC '82, 1982.

[X3H86] ANSI Technical Committee X3H2, Database language -- SQL. 1986.
X3.135-1986.

[X3H88] ANSI Technical Committce X3H2. Draft proposed American National
Standard embedding of SQL statements into programming languages.
1988. X3.168-198x.

28

