
D FILE COPY
ADVWNCED DECISION

SISTEMS

* THE BATTLEFIELD COMMANDER'S ASSISTANT PROJECT:

RESEARCH IN TERRAIN REASONING

1ADS TR-1058-01

May 22, 1987

NFINAL REPORT

for th- Period 16 January 1984 - 1 April 1987I
Contract No: DA.-.B07-84-C-K516

ADS Project No: 1058

Prepared by:

. Daniel G. Shapiro

Carl Tollander DTELEGC

201 San Antonio Circle, Suite 286

Mountain View, CA 94040

Approved for public release; distribution is unlimited.

Prepared for:

Center For Communications;Automatic Data Processing

Headquarters, Army Communications and Electronics Command

Ft. ,Monmouth, New Jersey 07703

The views, opinions, and 'or findings contained in this report are those of the author(s)
and should not be construed as an official Department of the Army position. policy, or
decision. unless so designated by other official documentation.

'201 San Antonio Circle. Suite 286
Mountain View. Califomia 94040.1289

415/941.W3912 F.X: 415.'494029

90 ii1914

r

II

Table of Contents

Introduction I

2. Domain Survey 2

\ 2.1 Potential application areas 4

3.4rhe T'eraineasoning'roblemJ 9
4.Background studies > 15

4.1 A Comparjson"Terrain Data Representations 15
4.1. -Digitized Terrain Data Structures 15

/1.2 Grid Representations 16
/ 4.1.3 Quadtrees 18

/ 4 14 Point, Line and Region Representations 2)

1.2 Representation and Manipulation of Shape 23

4.2.1 Shape Descriptors 24
4.2.2 Spatial Relations 26
4.2.3 Networks of Spatial Relations 29
4.2.4 Set Operations on Semantic Objects 31

4.3 The Symbolic Map Presentation System (SMAP) 35

5.' TheDesign of TAPS ; - -. 38
5.1 The Motivation for TAPS 38

5.2 c A'rchitecturep 41
5. he Multiple Pane Interface (MPI) 44

5.3.1 Approach 44
5.3.2 Overlay Modes 47
5.3.3 MPI Architecture 49
5.3.4 The User View 53
5.3.5 Implementation Details 56

5.3.5.1 The algorithm for computing multiple overlays 56
5 .3.5.2 Implementations for the Translucency Operator 60
5.3.5.3 An alternate overlay mechanism 65

4 5. he Geographically Intelligent Database (GI.NDB), cw, 67
* 5.4.1 The Problem 68

5.4.2 Approach 69
5.4.3 Semantics of the Query Language 72

5.4.3.1 Definitions 72

5.4.3.2 Development of the query language 73
5.4.4 Language Syntax 79
5.4.5 Representation and Dat4. Structures 82

: 5.4.6 Algorithms 83
5.4.7 Incorporating GINDB into TAPS 86
5.4.8 Example Queries 91

5 -The)Aorld odel. h , mA -, Mbt y -C';1t-$ty,, rf ',,<106
5.5.1 Representation of Force Units and Equipment 10'

V

ii

5.5.2 Tactical Feature Models 109
5.5.2.1 A Sample Tactical Feature Model 1l1
5.5.2.2 Evaluating and ranking role fillers 114

6. Future Directions 117
6.1 Tactical feature model design and development 117
6.2 Applications level extensions of TAPS 118

References 120
I. BCA Bibliography 122
II. SMAP Output 124
III. TAPS Output 126
IV. Information Concerning the TAPS Code 129

SV.1 Running the Demonstration 130

* E@eseon low,

-DIC TAB
Unlannounoed 0

. ,,Tlastfioatio

S-Distrbutrtion/

Availability Codes
Avail and/or S?

Plot Spoolal

11qA

".

List of Figuresi

Figure 2-1: An abstract design for a Battlefield Commander's Assistant 3
Figure 4-1: CATTS Data Fields 17

4 Figure 4-2: Example Quadtree 19
Figure 4-3: Set Operations on Quadtrees 21
Figure 4-4: Example Shape Descriptors 25
Figure 4-5: Spatial Relations 27
Figure 4-6: An Example Network of Spatial Relations 30
Figure 4-7: Object Intersection and Difference 33
Figure 4-8: Object Union 34
Figure 4-9: The architecture for S.MLAP 36
Figure 5-1: TAPS Architecture 42
Figure 5-2: The MP[Metaphor 45
Figure 5-3: Computation of Overlay Modes 48
Figure 5-4: MPI Architecture 5L
Figure 5-5: MPI Screen Image 54
Figure 5-6: Use of the Plane Cube in processing overlays 57
Figure 5-7: A Simple Translucency Problem 61
Figure 5-8: An implementation of translucency 62
Figure 5-9: A second implementation of translucency 64
Figure 5-10: An Alternate Overlay Metaphor 66
Figure 5-11: Two relations representing the world 74
Figure 5-12: N relations representing the world 7.5
Figure 5-13: A small relational data base 88
Figure 5-14: A Portion of a Network Representing Battalion Equipment 108

L Figure 5-15: A tactical feature model for a river crossing site 12
Figure 5-16: A Constraint Based View of Tactical Feature Models 114
Figure 5-17: Ranking Criteria for Feature Instantiations 116

k

1

I

I

iv
.I

List of Tables

Table 5-1: The truth table for andca 59

Io

I

1*
Acknowledgements:

I

As the project leader, I would like to thank all of the individuals who contributed

to the BCA project during its development. In particular, Carl Tollander performed all.4

implementation of the Multiple Pane Interface, conducted all systems integration

activities, and provided major design support. John Woodfill designed and

implemented the terrain query language, which Victor Askman later expanded. Randal

Walser provided background for determining the desired IO of our terrain analysis

prototype by examining military scenarios. Jeffrey Abram and Philip Marks were

involved with the early phases of the project where we identified terrain reasoning as

the appropriate application area, and implemented a first terrain manipulation and

display prototype.

.9

*1

.'

t

I i.

* 1. Introduction /
This document is the final report for the Battlefield Commander's Assistant

project (BCA)r_,b'-Vas a three year, three man-year effort to first identify, and then

prototype an artificial intelligence based tool for supporting battalion operations. After

a certain amount of exploratory efforts, A selected terrain reasoning as the most

important (high impact) application area, and ultimately created a terrain analysis and
'1

planning system (TAPS) prototype, which has been delivered to the sponsors.

This report documents TAPS in its "itirety, but for completenesswe also discusse-5

'euearly efforts in identifying potential application areas, and in exploring alternative

°6 approaches to some of the technical problems of terrain reasoning. A number of these

ideas are worth pursuing in the future, even if they were not incorporated into TAPS.

The outline of this report is as follows: Chapter 2 describes our efforts towards

identifying high impact application areas, Chapter 3 defines the terrain reasoning

problem we ultimately adopted, Chapter 4 describes some of our technical explorations

*into that topic, Chapter 5 documents TAPS, and Chapter 6 discusses future directions.

We have added several appendices: appendix I lists documents examined in the BCA

literature search, appendices II and III provide 35 millimeter slides of the SM.AP and

- TAPS system outputs respectively (note that only 3 copies of the report have been

delivered with this material), and appendix [V gives instructions for loading and

• -running the TAPS system.

As a compendium of our work, much of the material in this report was obtained

by abstracting sections from earlier project technical reports. The interested reader is

referred to 'Shapiro 8al, !Shapiro 85bl, and iShapiro 861 for details.

L_______________________________

2

2. Domain Survey

The first phase of the BCA project was concerned with identilying application

areas for Al technology in battalion operations. To give a sense of scope, our starting
J

point was the abstract system design shown in figure 2-1, which covers plan generation,

evaluation and monitoring in its entirety, as well as issues of situation assessment, data

acquisition, and order dissemination.

In order to restrict the survey problem to a manageable level, we made the a

priori decision to focus on activities related to combat planning and then examined

battalion operations in that area. We were looking for potential applications which

t were

a important,

* difficult or time consuming to solve by present means, and

. promising for solution by computer.

Here, an "important" problem is critical to mission success, readiness or the safety

of the battalion, while a "difficult" problem is one *in which unsatisfactory or

suboptimal solutions are often arrived at even by competent staff.

The details of our study are a bit too lengthy to describe here, since it involved a

significant amount of interaction with staff officers at corps through battalion levels,

and caused us to examine a collection of documents about battalion operations, existing

automation, and military theory. (See !Shapiro 85aj, and appendix I.) The conclusions,

a however, are easy to summarize; it turns out that the response times and resource

constraints applicable at battalion level naturally emphasize terrain concerns above

situation assessment (including enemy intention analysis), logistics, complex plan

generation and execution monitoring. As a result, we selected terrain reasoning as the

critical problem to pursue, and ultimately developed the Terrain Analysis and Planning

System (TA.PS) which is described later in this report.

i3

1
1

i

Mission specification
7(commands from Brigade

specify goals, constraints, Strategic plans)

Man/machine Battalion Commnder'ss queries Interface Work Station Controller

Battalion * requests * user models Manages tools for:
Conmander , tactical a explanations * situation assessment1Lplans s plan and plan option

" a query/edit
capabilities development

Ssupport plan evaluation
requests

aaction selection

Support
4 Systems Commander's Estimate of Situation

-- Brigade, Situation Plan EvaluationOivision Assessment Threat Analysis Tactical Plan 1m lementation
Generation a coarse to fine(all-source own force evaluators a messageda) location/status e enemy intention/ ,forceparttioning preparationdata) enemy force strategyanalysis s a int

own sensor location/status analysis e message
* a terrain/cultural # deception *unit/weapon/sensor e sensitivity routingand reoort feature info indicators assinmet chedulfng analysis (risk) e plan monitoring

input -damage reports
; . environment info a crisis alerting s contingency plan9generation what-if analysisgeneration war-gaming

Supported by system knowledge in:
s terrain & weather models
*own/enemy 0.0.9.
@nowledge enemy force deployment strategies @ logistics constraintsBases, oits osrns

* enemy force movement/engagement tactics * sensor models)
* own force deployment tactics

* own force movement engagement tactics

.4

Figure 2-1: An abstract design for a Battalion Commander's Assistant

I

"1

4I
This understanding of battalion level concerns was a valuable outcome of our

i domain survey, and it is worth discussing in more detail. The following section tries to

illustrate the change in emphasis between battalion and corps level combat planning,

4 and the types of A applications which are therefor most critical to each.

S9.1 Potential application areas

It is not difficult to identify potential applications of AI in each of the areas

governed by the principal staff officers; intelligence, operations and logistics. (We omit

- the personnel and political liaison roles as they are less immediately involved in combat

decision making.) With respect to intell, situation assessment in the broad sense is

*clearly important; this includes identifying enemy units, their status and positions from

- visual and electronic observations, and determining their intent from these particulars

+given knowledge of the battle. The central function of operations is to create plans and

monitor their execution, both of which are receiving attention as Al applications at the

t Corps and Division level (see [Stachniek 871, !Payne 86, and ,Loberg 86a, Loberg 86b").

In logistics, the problem of course is to apportion, store and assure delivery of resources
such that they match anticipated demand. Given the extremely resource intensive

nature of military operations, logistics discussions can in fact precede battle planning.

The situation assessment, planning and logistics problems occur at all echelon, but

. their magnitude changes drastically with size. At Corps. the battlefield typically

occupies thousands of square kilometers, commands 50,000 men with thousands of

vehicles, and the plans govern actions for many days at a time. In contrast, a battalion

battlefield is less than 50 square kilometers, with -500 men and a 6 to 12 hour

planning/execution cycle time. Each of these scaling factors alters the nature of the

intell, operations and logistics tasks, and therefor the type of computer support that

might be required. The following paragraphs expand on this statement by considering

. each potential application area in turn. Some of the observations we provide have been

abstracted from our work on the Air Land Battle Management Study ('Stachnick 87:)

which was tasked to compare Al planning techniques with the requirements of corps

- level planning.

!.

5

As a consequence of battlefield size. corps level intell requires deep looking sensors,

many different types of sensors, and a large number of observations to gain a picture of

the current situation. There are many enemy units with a wide choice of objectives,

implying that rather global inference is necessary in order to project their intent. From

a technical perspective, these problems translate into complex hypothesis formation, and

multisensor integration tasks. Both of these will benefit from Al based automation.

In contrast, the restricted battlefield size at battalion implies a reduced need for

sensor resources in each of the dimensions of type, quantity and depth-of-field. In fact,

battalions typically operate on direct visual observation (which is not to say that they

-] won't be able to make use of more indirect sensors in the future). This implies that

multisensor integration is clearly not important, while the hypothesis formation problem

remains, but is greatly reduced in scope. Our domain study concluded however, that

- enemy positions and likely objectives can be inferred directly from the characteristics of

the terrain given a rough knowledge of their mobility and weaponry. This was a major

piece of support for our focus on terrain reasoning.

The quantity and variety of the forces at corps suggest that the planning problem
I is more complicated, although that issue is debatable; there are certainly more resources

involved and therefor more options for employing/allocating them (and attendant

coordination details), but the military command structure keeps the number of units

directly tasked roughly equivalent (e.g., three divisions to a corps, three companies to a

battalion). In addition, a maxim of military operations is that plans must be simple in

order to be executed successfully. As a result, we can expect the complexity of an

operations concept to be low, presumably regardless of echelon.

The time scale of the plans, however, has a drastic effect on their nature and on

the type of automated support which should be supplied. At corps, the size of the

battlefield and mobility of units is such that situations can only change at a moderate

rate. As a result, execution of plans at this level (i.e., operations has a certain

minimum duration which is measured in days, and it only makes sense to consider

.6

replanning on intervals of that order. In this environment, automated planning support

systems can clearly take on the order of hours to execute.

A In addition, there are timelines to be respected in both the gathering and

S
processing of intelligence information, and in the planning time to be allocated to

subordinate units once the corps has completed its decision cycle. These effects imply

that corps level plans are built on information which may be up to several days old (by

the time execution begins), and that they must be abstract enough to accommodate

change in the situation before they are enacted, and of course during the period while

they are in force. As a result, corps level plans often read more like a refinement of

problems for subordinate units to solve than a collection of specific actions to perform.

I It follows that automated tools which support execution monitoring and plan refinement

are critical at higher echelon (since the corps needs to detect and react to situation

changes). However, the technology of AI planning has not explored the concept of

* problem refinement (vs. action selection) to any degree. This implies that applications

-in plan generation and plan refinement have technical obstacles to surmount.

C

A1 In contrast, battalion level planning has a very immediate nature. Situation data

is fresh, the planning itself takes a small amount of time, and the plans govern a period

that projects only small distance into the future (typically 6 to 12 hours). As a result,

the plans tend to be very specific in terms of objectives and intent, and their

success/failure is directly observable (unlike the process of monitoring at corps, which

requires projection further into an uncertain future). The implication here is that the

timeline is short enough that all planning tools will need to be quite fast, and that the

role of monitoring and plan refinement is more limited at battalion than corps.

1Our domain study also observed that terrain considerations placed a great deal of

structure on battalion level plans, to the point of identifying specific tactical objectives

and subobjectives, as in the selection of key terrain within an avenue of approach, or in

the choice of river crossing sites, which requires selecting covering force sites and

estimations of enemy observation areas. In fact, in the words of one battalion2

i7

commander we consulted, "if you know the enemy and your own capabilities, one look

at the terrain and the right course of action is obvious". (This greatly emphasized the

implementation of terrain reasoning tools before planning aides in our minds.) The

underlying reason for this specificity of terrain on planning at battalion level may be

because the areas of operation are not significantly larger than the predominant

weapons ranges; local terrain considerations therefor effect every decision of force

--: employment.

The potential for Al applications to battalion logistics is more simple to analyze.

At corps, the quantities of equipment and resources directly imply massive logistics

concerns. Ability to transport tonnage strongly affects our worldwide military

capability (thus the appearance of rapid deployment forces), and once forces are in

place, the available stockpile of supplies, their allocation and prioritization in many

ways determine the potential for success of any operation. The number of vehicles is

* also large enough that the effect of the equipment on the terrain also has to be

calculated. Some movements are not feasible simply because they would reduce the

environment to impassable mud. Viewing corps level logistics as a resource allocation

process, automation will need to support demand scheduling with changing priorities,

partial satisfaction and interrupts.

At battalion, most of these concerns simply go away. Battalions typically carry

several days worth of their own supplies, which means that the complexity of the

logistics chain is not at issue. Similarly, because the duration of battalion missions is

short, having the logistics base for sustained operations is more a matter for superiors.

Battalions also have a much smaller pool of owned resources to impact the force

allocation problem. As a result, battalions are much more focused on tactical

considerations.

In summary then, while battalion level situation assessment, and course of action

generation, evaluation and monitoring are all potential application areas for artificial

intelligence, the nature of the battalion level combat problem is extremely focused on

]8
the terrain. As a result, we selected terrain reasoning (above plannifig) as the critical

application area, and developed the TAPS system discussed later in this report. The

nature of the terrain reasoning problem is discussed in the following chapter.

i

4

.1

JJ

3. The Terrain Reasoning ProblemI
In our conception, the purpose of a military terrain reasoning is t(. support tactical

. decision making. From a domain point of view then, the object is to use knowledge of

the terrain to answer questions that the intelligence, logistics, or planning staff phrase,

or those requests made directly by the unit commander. It is easy to generate an

extensive list of such requests. For example;

* Sensor processing:

o Is a detection of a vehicle or unit consistent with the constraints
imposed by the underlying terrain?

o Where can we expect a vehicle or unit to deploy given our knowledge
£of the terrain (and unit mobility, or tactical capability)?

* Situation Assessment:
o What pieces of terrain (including cultural features) constitute likely

4enemy objectives? Likely targets? Where is the enemy likely to be?

o Given the tactical situation and the terrain, what is the enemy likely
to do next?

* Logistics:

o What are the main supply routes in a given area?

o What is the capacity of a road network for transporting units?

* Planning:

o Where should we choose to fight (what types of terrain are most
advantageous to us and least advantageous to the enemy)?

o What tactics (singly, or in coordination) make best use of the terrain?
*. How should the terrain be enhanced?

o How much terrain (and which pieces) should be delegated to
subordinate units?

o What are the logical avenues of approach given our knowledge of unit
mobility, and what size force can they support?

I011

0 In economy of force operations, what is the "terrain multiplier"? How
little force can we use to impede an enemy advance down a particular

I avenue?

o In offensive operations, what are the natural barriers or objectives that
define good phase lines?

o How quickly can we expect to move over the terrain, given unit
composition and expected resistance?

I o How will characteristics of the terrain affect the outcome of a battle?

o How vulnerable is a given route?

. Terrain analysis:

o Which natural features form critical terrain?

o Where should a given weapons system be deployed for maximum
effect?

o What terrain supports a particular operation, such as a river~.crossing,
a helicopter landing site, or movement across a front?

o What is the trafficability through a region by vehicle platform?

1o How will the terrain change through use or weather?
'a

This list attempts to identify questions that are principally terrain oriented,

although it is clear that information about unit, vehicle, and weapons system

capabilities is also required. In some cases, doctrinal knowledge about enemy choices is

relevant (e.g., in asking where the enemy is likely to go next and with what types of

7units), as is information about combat modelling (for predicting conflict outcomes) and

tactical options and principles. For example, one has to know the tactical concept of

shaping battles in order to decide to deploy mines which will deny the enemy access to

a particular route. Portions of such questions (where to deploy a minefield given the
desire to restrict access to an objective) are clearly within the scope of terrain reasoning.

The question then is to ask where terrain reasoning ends, and intelligence

processing, logistics, force allocation, and tactical planning begin. It is clear that all of

these applications require information about the terrain, but that each employs a body

of specialized knowledge as well. By way of response, the extreme positions are to

support operations which only reference the primitive elevation and feature data

7supplied by digitized terrain databases (with no embedded concept of military units or

their capabilities), or to expand terrain reasoning to encompass arbitrary amounts of

plan generation or situation assessment specific structures.

By this interpretation, any solution to the terrain reasoning problem will appear

Iad hoc from some dimension, since the dividing lines are inexact. Our approach has

been to identify what appear to be common or important questions, and construct a

small set of knowledge bases which are required to.answer them. We include as little

specialized data as possible.

* The design for the TAPS system described in chapter 5 (including both the

2J implemented and unimplemented portions) represents our current view of what that

terrain reasoning kernel should contain. In specific, it relies on the following types of

knowledge:

primitive features of the terrain (both natural and cultural) such as roads,
rivers, elevation data and land usage,

• the mobility of equipment and military units,

i the capabilities of weapons systems in terms of range, delivery mechanism
(direct or indirect) and target types

* the command structure, composition of units, and specific resources involved
in a given scenario,

. current knowledge with respect to the order of battle, and

* models for features of tactical interest (which organize the above information
around questions of military interest)

Without going too deeply into the algorithms which operate on the above

knowledge, it is clear that a range of capabilities is possible. For example, by processing

12

elevation data we can compute visibility profiles, and fields of fire for specific weapons.

Given primitive terrain properties, slope and vehicle data, we can build trafficability

maps for vehicles of known types (a terrain analysis activity). Using the ability to

determine fields of fire, we can write procedural models which compute good sites for

weapons deployment. For example, a direct fire weapon should be at the top of a hill,

while certain indirect fire weapons should be out of view from their targets. near the

tops of hills to enhance range. This type of information can be used in turn to generate

expectations (for the sensor interpretation problem) concerning the probable locations of

enemy units. Some other obvious possibilities are to extract natural terrain features

from the elevation data (such as ridge lines or hilltops) or to process the local topology

(with trafficability) to identify avenues of approach and critical terrain (which has field

of fire over large portions of an avenue or avenues).

The ability to write procedural models which manipulate this data provides a

powerful capability; it allows a person to express complicated questions about the

terrain, and to aggregate component features into a larger whole. We plan to use such

models (see section 5.5.2) to define a wide range of military features of interest

including river crossing sites (which have substructure .composed of fording-points,

beach-heads, covering force sites, and potential enemy locations), helicopter landing

areas, and potential mine-field empacements. (This vocabulary for military sites is also

important as an interface mechanism.) Note that the terrain requirements for all of

these features are dependent upon the characteristics of the actual units involved. Even

simple feature-extraction questions cannot be answered without reference to these

external, non-terrain oriented properties.
i
I

We have also considered adding a tactical interpretation of interactions on the

battlefield to the terrain reasoning knowledge base. This information would identify

relationships of the form, unit A is attacking unit B, or that units X, Y and Z are all

involved in a particular thrust with an attached objective. The presence of this

knowledge (once encoded - and selecting the appropriate representation is an open

question) would enable a class of analyses which determine the feasibility of actions on

13

the terrain given the current combat situation. For example, we could predict

" movement rates and anticipated strengths of engaged units (incorporating terrain effects

on maneuver and combat) or identify units able to be at a particular place at a

particular time. A representation of this kind similarly opens the door to much deeper

tactical reasoning, where we explore options for tactical actions suggested by the terrain.

At the current time we are not considering this form of data a part of a kernel terrain

reasoning system since the knowledge appears to be more specialized to plan generation

and evaluation.

:I

It is important to include a word here about what terrain reasoning is not. By the

definition above, a terrain reasoning kernel does not contain representations or

' algorithms which are highly application specific. So, for example, the system will not

model sequences of actions which compose a military plan, or provide mechanisms for

._ searching among the sets of tactical actions which might accomplish specific goals. The

system will, however, aid in generating and evaluating single tactical choices when they

are impacted by the terrain (which is often). Similarly, a terrain reasoning kernel will

not maintain signal intelligence data, or field surveillance reports which are the

underpinning employed by intelligence officers to construct situation assessments. As

mentioned earlier, it would be possible for a terrain kernel to aid in sensor

interpretation by identifying plausable areas for unit or vehicle deployment. A possible

extension is to introduce the concept of patterns of deployment (e.g., linear columns or

star-shaped radar and missile arrays) into the underlying knowledge base. This would

sipport the sensor interpretation problem, although we currently view the idea as too

application specific."1
In summary then, the concept behind our view of terrain reasoning is that it

identifies (or examines) regions of terrain which have some set of desired properties.

These properties may relate in the broad sense to mobility or weapons characteristics, or

to the identity and position of specific units, but the end result is ultimately computed

by asking the right set of low level questions about the terrain. That is, we compile
j ., application questions into requests which constrain the topology or primitive feature

I .

14

data in the underlying" terrain. In all cases, the output is a region. or collection of

regions of terrain.

Our prototype for a terrain reasoning system is discussed in chapter 5.
I

I

i

'*

15

4. Background studies

The following sections describe investigations we performed duri,:g the course of

the BCA contract which were ultimately not incorporated into TAPS. We discuss

several approaches for representing and manipulating physical space. as well as a

Symbolic Map Presentation system (S.L-k.P) which gave us exposure to digitized terrain

data and suggested many of the architectural ideas in TAPS.-

It is important to note that the work on alternate representations was crucial in

the development of TAPS, since it led to the conclusion that no single terrain

representation was going to be sufficient. As a result, we built TAPS around an

abstract query language whose purpose was to hide representational commitments,

allowing us to deemphasize the role of any specific technique. As TAPS grows however,

it will become important to implement multiple data structures, and the studies

described below will have very tangible impact.

4.1 A Comparison of Terrain Data Representations

There are several different ways that terrain data can be represented. Each

approach has its advantages and disadvantages. In this section, we discuss digitized

"* data, grid oriented representations, quadtrees. and point, line and region descriptions of

-. terrain.

- 4.1.1 Digitized Terrain Data Structures

Digital terrain data (such as that available from the Defense Mapping Agency or

the Engineering Topographic Labs) provides a pixel level description of features in the

terrain. These maps have varying resolutions, (from 12.5 meters/pixel to 100

meters/pixel or more) and are typically obtained by manually digitizing data that was

obtained via ground or aerial surveying of the regions in question. Some automated

processing of aerial or satellite photography has also been employed. Terrain data is

stored in terms of several (usually massive) arrays, one encoding properties of the

* terrain, and one for the elevation data. Digital maps provide a significant amount of

,16

information concerning each pixel; 64 bits in the case of CATTS files of the Fulda gap

region. Figure 4-1 gives a breakdown of the fields involved.

As can be seen from the figure, only a portion of the information is elevation data.

while the majority is concerned with characterizing the terrain in terms of its usage

type (urban, agricultural, forested, etc.), the presence/absence of significant man made

features (large and small roads, bridges, etc.), and its effect on the movement of

armored and unarmored vehicles (by velocity and type).

As a departure point for a more abstract terrain representation, digitized data of

this kind provides several advantages; it captures a great deal of significant information,

and it abstracts away a set of properties that are obviously important for a given

application (military planning in the case of CATTS). The data is easily presented

given a color bit-map display.

For application to tactical planning, this format has a number of'disadvantages

which must be overcome; it provides more data than needed (generally presenting both

storage and computation problems), and it is inconvenient for representing features

composed of large homogeneous regions, as well as features known to be linear (such as

roads). Digital data also tends to lose a number of cultural features of import because

- of its resolution constraints, for example; buildings, parking areas and minor roads.

- 4.1.2 Grid Representations

*A grid is a regular tessellation of a region of terrain (usually based on square or

hexagonal tiling) in which each tile has a type and an associated set of properties. As

such, a grid is a straightforward extension of a pixel view that simply employs a more

convenient tiling size. (Grids are typically used as boards in wargames, both

" computerized and manual (Quattromani 82:.) In fact, the tile properties are typically

derived by averaging over the properties of the individual pixels. For example, terrain

is often shown as "forested", "rough". and "clear", and average movement speeds are

associated with each of these classes.

S 1 17

"I

%

:J

'i

7 PIXEL-LEVEL TERRAIN DESCRIPTION (25 METERS/PIXEL)-1
e WIDE RANGE OF INFORMATION

ELEVA- TERRAIN CANOPY SOIL HYDROG- OBSTA- RASRAIL- BRDG S CE1S5 CROSNS

I ITN IT7"P1 JCLOSURE TYPE RAPHY CLES 49-51 ROADS LNEO NT| ~~22 49-51 54-EHIGTSRAD5A, NE MOVEMENT

1-16 17-21 2-3 24-26 27-31 32-45 46-48 52-53 56-58 159-64

IF

I

18"I
Grid representation often include an overlay of linear features, namely roads,

railroads and rivers. Tile access restrictions representing obstacles are also often

attached.

*

The principal advantage of a grid oriented view is that it reduces the quantity of

detail involved in the underlying representation, thereby simplifying the computations

over it that need to be performed. The specific addition of linear features is also more

convenient that in either the quadtree or DMA formats.

The disadvantages of grid representations are as follows. First, while they are

more abstract than pixels, they are not hierarchical, meaning that they provide no aid

for manipulating features of interest that are larger than tiles. Second, if used in

isolation, they suppress pixel level details which may be important; for example, the

specific locations of clearings within tiles that are predominantly forested.

In summary, grids share the advantage of pixel representations inthat they are

convenient, and in part solve the digital map problem concerned with overload of.detail.

Their disadvantages for planning are also identical, and revolve around their non-

abstract nature. I.e., both present what can be called a syntactic picture, as opposed to

* a "semantic" view which identifies the significant features of the terrain that truly

constrain route planning and vision processing decisions.

We are not contemplating the use of a grid format to the exclusion of more

I abstract representational forms.

4.1.3 Quadtrees

Quadtrees ;Samet 83, Samet 84i are a hierarchical method for representing

features in a two dimensional array of data. They operate by successively decomposing

a known region into equal fourths, and characterizing each subpart according to the

- presence or absence of a single feature.

Figure 4-2 shows an example of a quadtree. In this breakdown, each subpart is

11

If Is 16

4 IS

54 7

1 ACk

19 Z

51 6 182

7
ZS 54

21 22 25 28 33 34

24 252627 295031 32

UNION OF REGIONS INTERSECTION OF REGIONS

I AN~D It I AND 11

Figure 4-2: Example Quadtree

20

labeled in one of three ways; a black node stands for a region that contains nothing but

the desired feature, a white node does not contain the feature at all, and a grey node

represents a region that has a mixed interpretation. By successively resolving grey

nodes into smaller parts, the hierarchical decomposition shown in the figure is obtained.

(If necessary, this decomposition is continued to the level of individual pixels, which

must be either "white" or "black.")

The principal advantage of the quadtree approach is that it supports very fast set

manipulation operators (for taking the intersection and union of terrain areas). This

property is derived from the fact that a quadtree is a hierarchical representation

organized around the containment relation. The result, for example, is that the

intersection of two pixel level features does not need to be computed if it is known that

their enclosing regions are identical, or wholly independent.

Figure 4-3 show how the union and intersection operators are computed. In

essence, the operations are trivial if either node is either white, or black (e.g., the union

of a mixed region with a region that does not contain a feature is just the mixed

region). The only non-trivial case is where both nodes are grey, in which case the

problem is reduced to applying the same procedure at an increased level of resolution

A (there is an additional complication associated with aggregating the results of that

7computation).

Quadtrees also have several disadvantages. In particular,

* they must represent features in the same region of space (requiring that that
region be known in advance)

@ one quadtree is required for each feature (which leads to storage
inefficiencies)

* they require a significant amount of computing time to define (since each
pixel must be classified)

* • they are inefficient (in space) for certain kinds of features (notably highly
textured ones),

12

6 UNION

W2I 81 G,__

B B1

82 B2 B 2

'22

I INTERSECTION

IG

82 24 BSD

I ~ W Ihite
B - Black

G - Gray

1 Figure 4-3: Set Operations on Quadtrees

22,I
they are not suited for modeling features with continuous. vs. binary values

I(e.g., elevation data)

they have no localized concept of an object (i.e., objects are defined by
,* partitioning the total space of terrain), and

-. they are inconvenient for describing relations between objects.

These last two points are influencing against the use of quadtrees as a

fundamental terrain oriented data structure.

4.1.4 Point, Line and Region Representations

The Engineering Topographic Laboratory has recently been engaged in the

- definition of what can be called a point, line and region representation of terrain which

constitutes the beginning of an object oriented approach to managing terrain

information. This format is envisioned as a complement to standard digitized data,

which provides annotations to that data. So for example, point objects identify features
(primarily cultural ones) which are beneath the resolution of digitized maps, but which

are nevertheless important to describe. Examples are buildings, mountain peaks, and

other significant landmarks. Linear features are roads, railroads and rivers as

mentioned above. Region features (represented as polygons) are meant to capture

homogeneous areas (such as pine forests, or lakes, etc.) whose pixels are identical in at

least some subset of their properties. This definition allows several regions to be defined

over a single geographical area (e.g., identical in ground cover type, in mobility value,

soil type, etc.).

The point, line and region representation has the advantage of both capturing

detail that can be lost in a grid or pixel format, and of abstracting away from pixel

details where appropriate. It has the disadvantage of emphasizing polygon

manipulation operations (for performing set operations on regions) which tend to be

slow unless additional representational structure is supplied. (It should be mentioned

that there are a variety of approaches for solving these computational problems,

inclUding the approximation of concave polygons by convex ones Kuan 84*, the use of

23

"polygon comparison" techniques Weiler 80', and the maintenance of a containment

hierarchy -Havens 83!.)

1t 4.2 Representation and Manipulation of Shape

Spatial models provide a mechanism for representing and reasoning about the

. physical shape of objects, whether they are natural, man-made, or conceptual in origin.

The survey we presented in section 4.1 indicated that several types of data structures

have been used for these purposes, primarily grid organizations and quad trees, but

i concluded that neither of these were sufficient according to our criteria. Grid oriented

"I approaches lacked all sense of the abstraction required to construct larger, irregularly

shaped features, while quad-tree mechanisms provided fast manipulation operations but

lacked convenient presentations of objects.

Given this background, we decided to explore a polygon based approach patterned

after the point, line and region format presented in section 4.1.4. In this view, the

- borders of objects are represented as polygons (really vertex lists), which might be

- concave or convex, and possess holes. The operations on physical shape are then'cast as
polygon manipulation procedures. For example, polygon intersection is used to combine

descriptions (e.g., to find areas which are both hilly and forested), and polygon fill (a

graphics operator) is used to display objects once they have been identified.

As mentioned in section 4.1, this polygon oriented representation has the

advantage of providing a concise (and explicit) definition of objects, but the

disadvantage of relying on procedures that have only been implemented in a

computationally inefficient form. We decided to work with the advantages, and

specifically address the disadvantages, as explained below.

The following subsections describe the details of spatial models: the representation

of shape, the relationships which exist between shapes, the structure generated when

shapes are instantiated in particular terrain, and the operations which manipulate them.

24

4.2.1 Shape Descriptors

The following types of shape descriptors are supported in this design;

• points

lines

regions (polygons)

core descriptors

boundary descriptors

The first three are basically self explanatory. Their usefulness to represent types

of terrain objects is discussed in se tion 4.1. Core and boundary descriptors are

applications of the other primitives. A core descriptor is intended to represent the

central part of a feature and may be formed out of a point, line, or polygon. A

boundary descriptor is a polygon, and provides the most liberal definition of a feature's

extent. These shape elements are used to support gradations in the sygt'em's response;

for example, the question, "does this route go through the mountains" can be answered,

"yes definitely" if the route intersects the core description, and "only somewhat" if the

-* boundary but not the core feature overlaps the route.

We are also experimenting with the use of "point set" shape descriptors, which

are intended solely to fulfill a user interface role. They allow a user to define a feature

by scribbling on the screen with a mouse. This results in a collection of points which

can then be converted automatically into polygonal or linear regions. (There is some

ipossibility that point sets may offer computational efficiency for computing intersection

operations in some situations. If true, they will be integrated in as an internal shape

type.)

Examples of shape descriptors are shown in figure 4-4. Note that the polygonal

features are approximate definitions as opposed to explicit listings of all boundary

pixels. Tais property is both desirable from a conceptual view, and important from a

practical view. Since different quantities of detail are needed for specific applications,

25

,..PINT DEFINITION OF. OBJECTIVE

AAAAAAAAA/ AA A A
AN A A- A A A AA A A

A A A A A/
A AAA A POLYGON WITH HOLES FOR
AAAAA A A JAVENUE OF APPROACH

AA AA /A AA A
AA AA A t., A

A

AA A BOUNDING POLYGON FOR
A A

A LIA ONAINTACR

AAAA

A I- IERMONANCR

A/AA

Figure~~~ A-4 ExAl hp ecitr

261

we are leaving open the possibility of employing hierarchical refinements of object

shapes (from very approximate to completely detailed).

4.2.2 Spatial Relations

Spatial relations identify the physical interactions between the objects in the

* terrain. They appear as links (in the semantic net sense) between the shape

representations discussed above, and are used for several purposes. First, they support

object recognition because they make the physical connectivity of terrain features

explicit (i.e., they provide a framework to match upon). Second, they allow the set

. operations on shapes to be made more efficient (addressing the main problem associated

with polygon oriented representations).

The following is a list of the spatial relations we expect to maintain. Note that all

are binary predicates on shapes, and that the relations are all mutually exclusive.

Those which are not symmetric posses an inverse (hence they are listed in pairs). The

*relations are also complete in the sense that the relation obtained by applying any set

operation to any two polygons is a member of the list below.

e disjoint

* overlap

* contiguous

* in, contains

* encloses, enclosed-by

Figure 4-5 shows these predicates as defined over polygons, although they also

* operate, with some exceptions, on point and linear shapes. The exceptions are overlap

(which is not defined between points or points and linear shapes), in and contains

(which do not operate between points), and the encloses, enclosed-by pair (in which the

= enclosing object must be a poly n). The concept of enclosure here is very similar to

* that of containment; enclosure is used in situations where objects have holes. Enclosure

does not imply containment.

~*1

27

I ,--

I01 0 DISJOINT
00| 0 10

I

I OVERLAP

a

I (7> , CONTAINS

I I GL
2 I ENCLOSES

CONTIGUOUS

Figure 4-5: Spatial Relations

28

It would be possible to take an alternative approach and define links for the

I union, difference and intersection relations (which generate the other set operations).

and use them to connect all polygons instantiated over the terrain. This format could

indeed be used to encode the relations described above, but at the expense of clarity in
highlighting the named operations and by causing an increase in the complexity of the
network interconnecting shapes. For example, disjointness would have to be expressed

-by stating that the intersection of A and B is null (also true of contiguous objects), and

JIthat the union operation results in two distinct objects. Similarly, containment becomes

" the fact that the intersection and union operators chose one polygon or the other, and

that the difference operator creates an entity with a hole in the middle. This

"] complexity tends to obscure the property of simplifying further polygon manipulations.

Several possible additional relations are "near", "through", "before" and "after".

Nearness implies a fuzzy distance metric which is dependent upon the scale of the

features, while the "through" relation captures the common situation in which a road

goes through a polygonal region. (Throughness between polygons would identify regions

that "cut across" one another.) The relations "before", and "after" address the fact

- that routes, lines of advance, and avenues of approach all have a direction. These

I relations would be helpful in answering questions of the kind, "what are the first

obstacles encountered along the planned path?".

It should be mentioned that both the containment and enclosure links can be used

to form a hiera,-chy of objects in the environment. This has an important consequence

for the application systems which rely on the terrain reasoning kernel; in specific, the

hierarchy provides a quality of abstraction in reasoning where the properties of larger

objects can be examined without regard to the details of the terrain features which they
e! enclose.

* . . -t_ n.-; .-.
-

. ...- ~.,- -- , --.- - :

-,. * ...- _- * ~~-~ - -. ,-.-............. ,r - " .

-4.2.3 Networks of Spatial Relations - .. -. . - .

The process of instantiating the relations discussed above creates a network of

links connecting the spatial components of objects in the terrain. It turns out that the

properties of the spatial relations allow some economy in that structure since several

obey transitive, and distributive laws. This allows some relations to be inferred, vs.

computed and explicitly stored (see 'Shapiro 85aj for details).

Figure 4-6 shows a network of relations that might exist in a simple scene. This

network is relatively sparse (meaning that all polygons have not been compared with all
others) but it illustrates the fact that a number of additional relations can be inferred.

For example, given that the mountain is disjoint with the plain, an automated system

can answer "no" to the question "is the objective IN the mountains?" by inheriting the
disjointness' relation. The same process can be used to realize that the infantry

battalion is also disjoint from the objective, since disjointness inherits across any

number of containments. On a similar note, two objects have no intersection if they are

enclosed or contained in any shapes which are contiguou- Another principle is that no

object can overlap another unless they have the same parent (containing or enclosing

shape), or unless two of their parents overlap. From a computational perspective, these

types of considerations save a great deal of effort.

In terms of knowledge acquisition, this structure of relations can be built

incrementally as new shapes are defined. We have not identified the appropriate

procedure yet, but three possible strategies come to mind. The first is to avoid all

exploratory comparisons aimed at building a classification net and only compute those

which are required. As time progresses, this should result in a network that simplifies

further operations. The second strategy is to determine the most useful relations on the

theory that a small initial investment will save a larger number of comparisons later;

computing the smallest existing polygon a new shape is IN or ENCLOSED-BY would at

least identify its place in the hierarchy and allow superseding disjointness to be

inherited. The third strategy is to develop a minimal classification which provides the

greatest simplification when further operations are required. This would involve

MOUNTAINS OOTHILLS PLAIN

TIV

DISJOINT

MOUNrAINS FOOTHILLSPLI

O8JECTIVE
* INFANTRY BN

Figure 4-5: a Example Network of Spatial Relations

3 1- 441--
.. - .. .-

pri ip ke building "anencloses/containment hiera s
1 ipe'. buldn an hirrchy, puslhino- disjointness

_--conne tives to the highest possible place in the tree (since they inhorit down), and

"conversely placing overlap links as low as possible (since the containing objects must

:1_@. .:- .also-erlap until a- common parent is found).

- ._. -.-- . .- 4 s.-...-. .

4.2.4 et Operations6n Semantic Objects - "- " . 9

._- . have discussed ieveral methods in thischapter for computing the results of set

I - 'perations' on the spatial component of objects, but there is an open problem in

•: -- - :.-- deciding what it means to intersect (etc.) the associated symbolic descriptions. That is,

. when objects are combined, what set of properties should be attached to the end result?

Some of our thoughts on this topic are discussed below.

If we consider the purpose of the operatiois on object shape,' there are primitives

for aggregiting shapes (union), identifying shared regions (intersection), and noting

discrepancies (difference). If we view the semantic componenit of objects as attachments

to shapes (i.e., as descriptions of physical regions) then the role of object manipulation

is to compute a semantic analog whenever a spatial operation is applied. In this view.
the goal of intersecting objects is to determine the properties that still apply to the

intersected region. Similarly, the goal in union is to build a composite spatial region
&and determine which properties to ascribe to the larger whole (i.e., an abstraction

process). The goal in computing difference is similar to the intent of intersection; it is

to identify the properties that apply to one object and not the other.

It is important to notice that this approach creates two types of objects which

define geographical and non-geographical concepts. Geographical objects describe

regions of terrain (a hill, a valley, an avenue of approach) and are operated on as above,

while non-geographical objects have no intrinsic terrain analog. A mortar, an infantry

battalion, and a SAM installation are examples of the latter. Each has properties and

parts (the radar and missile components of a SA.M, its range and accuracy parameters)

but these properties cannot be combined in the same way. That is, the range of a SAM

and ihe number of vehicles in a Tank Column cannot be intersected, although their.a
associated terrain regions (a SAM\ site, the location of the tank column) can.

IRI

.i ~exam ~ -- i~L2 infanry sieand... : :-=;... -ioue 4-7 shows -an examiple of object combinatin ap phed to anifnr ead . ..

" ?r: ' amota, ied f fr•When thie ob jects are intersectd the 'est is" az-object whih is :L=.

r ath teraifeatueV meaning tlit'it -will inherit prole-ies- from each. The

lui'sti6,.-!haf isthe concealment within the fire-covered infantry site?", can then be

--=Tr_ answered -:'s-_"good ",- whlle its-density of fire coverage can- also- be- derived (via

-- iheitance)- as - high". Object differeiesults i a -re-gionwhh is only a-pait-of the
. _ 1nfantry_ste;: meaning. that udensity of-fire. .. s-gen.-a null

i n 1C 2ques1in _what is the-e~toirisie.anl

answer., Itisaso important to notice that this mechanism for combining objects relies

on the condition that object properties uniformly describe their terrain regions. A -"

property attached to the infantry site listing the "number of contained companies"

d . would be inadmissible as it would not behave appropriately under set intersection and

- difference. Those kinds of measures must be associated with the infantry object itself,

-- or recalculated whenever object combinations are required.

. ... Object union is better illustrated in the situation depicted in figure 4-8. Here,

three route components (all of which have similar property lists) are aggregated into a

single entity. The resultant object has the combined spatial region, its subparts are

obvious, but there is a question as to which properties should be included. Union

objects implies intersection of properties, meaning that the risk value of the route
should be listed as "safe". However, the question "what is the transit speed of the

route?" deserves some answer other than enumerating the travel rates associated with

its parts. The right answer is to characterize the route as a whole as go, no go or slow

go.

The issue is then how to control abstraction on properties. We have.no explicit

answer at this time, although we are considering including explicit procedures in object

models for directing "upward inheritance" of specific properties; that is, to determine

how speed, safety or other characteristics are aggregated from component parts to a

whole.

' h iI

. *--= ---- t -v.v -'- - . . '__ ~. & %.-f-W-W-- - -.'- :,---*==: ..
"

."-.=--=

:;X*-..... .=7-

1. NON-COVERED INFANTRY - -- INFANTRY"SITEI SITE .INFANTRY SITE

. APO: INFANTRY SITE ... a. . CONCEALMENT: GOOD

e SHAPE * INGRESS: POOR
S. aSHAPE

COVERED INFANTRY ./. .. .,, MORTAR FIELD OF FIRE
* SITE j SITE .DENSITY OF

s APO: INFANTRY SITE, COVERAGE: HIGH
MORTAR FIELD OF SHAPE

i FIRE
. SHAPE

Fr

*Figure 4I-7: Object Intersection and Difference

4- ; M -

SEE..~- i r ~ .

-7777 7-

s PART (PAN ROTE MONTI ROTE FOTHLL ROTE

4 ~ ~ SAFE-

PED

Figuret~tt 4-8 Obet no

:-,: _....3The Symbohd Map Pre-senjt ation Syste-m, SMAP)
, -artly inorder, to aine e ith terrain-data,-we developed an earl-

-_:i : p.lrototyp~e system (SMv~P) for presenting and man'ipulating CATTS data ';Shapiro

-'._ : : 8a):-This -system-ha.*i'd -se'ver-a[interesting features worth noting here. it provided

: :-= se-. era voperations o-oelve'on'-fa.orm of"a multiple overlay-color display. and the
. beginnings of a-fe.ature..xtraction capabilityfo -dniyn eions of miltary inierest. --

;-: -.-(.Noauto atm feature recognltio'n -was icluded)." --.......

-::- ? : : - - . - .: .:: "

T-h The architecture of-SAP was quite simple (see figure 4-g). It operated on

i . ~ -- f-.~ - Sr.a.. . . r m.... ~ r

C-ATTS data, which is a 25 meter resolution -rid giving 64 bits of feature data and 16

1, "" bits of elevation data for_ each point, which in our case covered a 10 kmn by 14 km area

-"of the Fulda Gap in GCermany. For operations, the user could request fields from the

SCATTS database by m'ousin-g-on "menus, display them-on the color screen, and invoke

| - _

acertain'al-orithms on "the-ealeiaition data described below.

poWith respect to the color display, S.iaP employed a predefined sorting of CATTS

3fields into back-round and overlay; sp-ace-illin- CATTS fields such as soil type or
ground cover were back-round, and non space-filling fields'such as road nets, river or

obstacles were overlays. Overlay data could be placed on top of any back round

display (allowing the user to view road nets over soil type, for example as a precursor

"for buildin e traversability displays) This turned out to be quite valuable as a visual

presentation aidc

The user could invoke lne of sight operations by clicking on any point of the

display, making it possible to correlate observability or fields of fire with selected

terrain conditions. Also included was an ability to evaluate the risk of a proposed path

by essentially forming a histogram of the route's observability from different vantaes.

A final operation was a manual feature extraction capability; here, the user would

define.a particular shape as a named feature (for example, a hilltop objective) which

could then be displayed in the context of selected backgrounds and other overlays.

teri[odtos loicue a nailt oeaut h iko rpsdpt

*~~~
Ge bakron field~~.- -.---

J
--. >...-* ,- -- ,.-,--- -- - - :- .- : - - - . -: ... 7 - -. -

- Get ovra field

I .Highlight feature

i -

* Compute feature

I CATT7S DATA 'CTSSymbolics 3600
* 64 bits feature FilsColor Display

16 bits elevation

.is

Elevation Processing

Algorithms

. Une of sight
• Path observability

Figure 4-: The architecture for SDpAP

16btrlvto

K__

.4..

On the whole, the facilities of SN-P were quite limited, but its creation taught us

several important lessons; that multiple overlay presentation was the preferred form of

.'@ - o S)terrain display, that the supporting implementation techniques were non-trivial, that

.---,---'there are a class of operations on elevation data which are desired features of any

terrain analysis system (calculating direct and indirect field of fire from regions or

-1-1-i~o ints, and the inverse operations in terms of observability), and that the task of

:...-.. : automatically identifying features of military interest was the critical thing to pursue.

I - Our development of TAPS was specifically directed towards that ability.

We ultimately abandoned the implementation of SMAP for very technical reasons;

it was deeply tied to CATTS data formats, it's method for supporting multiple color

overlays required preprocessing of all terrain data, and it had very little flexibility in

terms of combining overlays, including a complete inability to select display colors.

35 millimeter slides shown output from SMAP are provided in appendix II.

-i

1~

-..f,, .- . , :z; . .- .,'. # ='.- - - . ': _,' ' -- .,j " ,'.?:-= =--. -' - , . ,' .: --. -_- _ __...._.-__"--;_-__,_....

I" - .- _ _ _ _ __ _ _ __ _ _.~....~~~.~..... -A .t..

j5 -The.SignfTP~'<

-- hi -chapter describes the; capabilities, design, and initial impleineiitation of the

Terrai Analysis and Planning System (TAPS).- This system demonstrates methods for,
.. s~upihigTb'ttaliC r (and -othe--chelon)"-Emmanders as- they construct plans for

..cmbat ituations," and is -motivated by,(our std o. iltr oerain w h

co""ncluded -that terrain reasoning-was -a -critical area to pursue.--.Specifically, TAPS

- e t tidentify features of-military interest from digitized map data,

- selects features appropriate for particular tactical actions, and evaluates the impact of

- terrain on actions proposed bythe'usei: -This*defines a system"ith .the poteritial for

- helping the S2 officer satisfy the terrain analysis requests typically generated by the S3.

As such, it is not a true planning aid (which would include a representation for combat

S. .-_-__ plansan.appreciation of time, knowledge about the resource allocation process, and an

S.: . ability to suggest tactical alternatives, etc.), but rather a system which supplies the

- critical information such an aid would require.

5.1 The Motivation for TAPS

In order to better define the capabilities of TAPS, it is important to examine the

way terrain analysis is employed by the military in more detail. From the introduction

above it is clear that its role is to support planning, but we can motivate our approach

further by examining the tasks terrain analysis specialists are called on to perform.

-' From our observations, requests for terrain workups come in two forms; the first
.1

is to produce a more or less generic analysis of the entire battle area which identifies
"1 obstacles, cross country movement rates and weather effects on movement if special

weather conditions are expected to occur. (This list is not complete, and seems to differ

somewhat by echelon). The result is a collection of acetate overlays which can be

created as soon as the battle area is identified, often well ahead of any specific

engagement (years in the case of anticipated conflict areas such as Fulda). The second

type of terrain analysis request is motivated by the desire to support specific tactical

actions and occurs more frequently during the operations cycle. The essential feature of

--- 2L

r~ : _' t '::. . .L'2 " -.. .. 7. --' .C.... a .t ' ;' ta '--- - - ,,*, '_ , , -) '€. . .5-

- these: requests; his th y- require a-largeamounof context format " oncerning the

;wz :o : " r-- --- -Ai -to-select "riverF .T..uts," -e.quipment-and-,,tactu al "acitio-sprposiesfo

ossings,, areas]- forengaging. a moving.,enem helicopteri landing -.reas, mine field
________ 's'- rcationA for

.. empacenns suitable for prepared'defe avenuesof aproach for

friendly movements,- etc. .-To give a. flavor for the amountoft information

re consider a river crossing operation;-any hypothetial terrain analysis system

ill hive t6 kno at le th foowing 7 " . -

the kind of equipment &ossing the* river (to determine whether fording or
bridging is appropriate, and the locations appropriate to each)

-- - - - - - - - - ---_-- - . .

• the kinds of mobile bridges available .

.. the permanent bridges already in place (a primitive terrain feature)

" the distance of hostile. units -(iV-the scenario is move to contact,. fewer
'& _protective measures are required) . - .. -

- - * the defensive weaponry .available to the operation (given artillery,

observation over the opposite bank is less essential)

I-I

Given this input, the output of the river crossing terrain analysis is then a list of

-) features similar to the following:

e an identification of where to cross the river (and how - via bridges or
wading)

* identification of ingress paths to the river, and egress from the opposite bank

e identification of regions that provide direct fire cover to the crossing point

] identification of points that provide observation over the opposite bank

* identification of areas providing cover for the expected enemy (i.e.,
-• *predications of likely enemy positions)

t * a description of river bottom conditions and soil conditions leading to a
'discussion of throughput of forces (conducted more probably by army
engineers)

NoNote that the output above is expressed in terms of terrain regions thaL fulfill

-' '.,'A:_t ' 1Z - " - ' "."- _' - " :--'-": -"," " " -a,- " - --n1'.~ - A

"l lying :the-tight'setf lo lVel~queries to .th u' dirl _'-d t neri the te rratin."'"

" .:.'.'' . ""In summary ten the f'unction of terrain" analysis is to "take an expression of a .

"- . .planned operation and translate it into'a list of the terrain features which can fulfill th~e

7 - :-. , .: .= . -.- ..-... -.. - _ __...._ __.. .

different roles in the plan in the case of generic cross country movement - analysis the.....

notion of a tactical operation has to be taken somewh i This is exactly the

," : : "capability'we" are addressing through our -research'~in'the- BCA project.- The TAPS ...-..
system (described at length in this chapter) provides basic support for this terrain

•"" analysis activity in termis'of d a ta 'so u-rc'es, que ry, *ari*d display tools. It should be' clear
however, that the eventual solution will also require models foi tactical actions and

terrain features of interest, in addition to a knowlede of the equipment capabilities and

.rolunits in the mlitary domain. (Our thoughts on the structure of these

"-!..-- models is discussed in section 5.5.2.)

-- - - .- - .. * -

'" capWhile we have always targeted terrain analysis as the TAPS appli'ation, we have

also been concerned wit th e underlying question about the extent to which terrain1- analysis subsumes combat planning. a s such, we have a strong motivation to examine

realistic problems. Towards this end we examined scenarios from the military training
literature, identified a mission and a notional battalion (with realistic equipment list) to

iset context, and extracted some number o terrain analysis queries which were

motivated by that scenario. The results (see iShapiro 86]) tend to confirm our belief

7 that the use of TAPS (or its successors) will strongly motivate battalion level combat

planning decisions. In addition, we feel that the TAPS capability is important to the
II] echelon of corps, division and brigade.

j In the remainder of this chapter we describe the TAPS architecture, the Multiple

Pane Interface (or MPI), the GINDB subsystem, and the World Model. Appendix III

provides a set of color slides and a description of output obtained from TAPS. We have

omitted reproduction here of the battalion scenario and equipment descriptions

presented originally in 'Shapiro 86:.

z-5.2- APS- AihL -T...... . . -e 7-_.%

SThs se c tion provi e& si-ovevi ew of the architecture -'of: TAPS, w h i ch is an

-4 ineractive tool for sup'orting -terrain analysis. :The task in terrain- analysis is to --.....

-' 6' . identiLv regions of spa ce htststerqieet-fpriua tactical actions.
__s ..- - _ - . r - - - - -

' l~~potogr:aph paper- mapsY~or"their-electronic anlogu'es), _and- possibly" a geological- '--"

J _____ TL~~ This ~ roviep prviewg e the .ar..- re:f TPwic sa

la~~-iterisai be ool fsporretigterdi aasistewd. The ask pun terin anaolsisisn tof

-. . acetate overlays which identifyo c and.interpret important_ terrain regions when placed

-over an underlyig map.', ..

WhenTAPS supports the sam the uof 1/ behavior tescribed above. For our purposes, aeri

. . . .itp is reasonable to rely(onrdigitizedema dataas inu'es s a o

photography, and po tredt bt)

. . and we have defined an output mechanism which support Tulhiple o verlayis analogle us

- to (and in many ways"more ciy ble than) he acetate procedure currently employed.

This in turn provides a very convenient and powerful user interface format. With

- respect to the process of terrain analysis, our basic design decision has been to view it as

an interactive feature extraction procedure in which thef user -rows a database of

interestina regions by applying a series of questions to the 'underlying information

representing he terrain. To support this approach, we have introduced the concept of
feature models into TAPS, which define the component parts and constraints on terrain

regions that fulfill tactical roles. We hope to use the act of instantiating these models

as the basis for a mixed initiative interaction between the user and TAPS.

rpsThis approach gies rise to the architecture presented in figure 5-. There are

three major components of this system; a language for constructing terrain based

! (called the -'API for Multiple Pane Interface) for presenting candidate regions to the
user, and a knowled e base (labeled the World Model) that contains the tactical feature

models mentioned above in addition to data concerning the oranization and equipment

of the military domain.

~1

I .-.,
.
. . . -'. --. , .- ,. - - :S ;,, -

"
: . . . - . .

- . - .. . r - -

1

.. " :.+'' " +-. _". s+wr ~ -- r w a z - -- n ~ - r w+ --. . . .+

. . .) + -. , +, ., e.,+, + . ., . . , ; .+ -.- " - - --..

,' .I = :. + ' -' '-'" --++.. ..+ + -,' .+- . -- • -- -

+ ~~- -- - - . -+:.S --- : :+ -- + _.:.:-.; . . __- -.:: -__- , - -_+

-:~--~-~-~ - -WORLD MODEL - .-

ViT?-M: MANUAL---. .--. . -. -..- ... - ORGANIZATION I ACTICAL
-"JECTREG ION-'"- USER AND " ITERRAIN FEATURE

"EXTRACTION - EQUIPMENT MODELS

- ---' '- - RETRIEVAL) -

REQUESTS,

-- -- --- GINDB
-- (GEOGRAPHICALLY INTELLIGENT

DATA BASE)

MPI
(MULTIPLE DATABASE REGION EXTRACTION
PANE UTILITIES

INTERFACE) • RELATIONS • LINE OF SIGHT
* REGIONS • SLOPE
° OBJECTS * ENVELOPES

TERRAIN FEATURES

I

i

1

t -r

tt

-_ _ .. z:.... -A Ik _ .-

.... . .. h--te user deides. to develo an avenue of r a a •echiiiziied bitali-

Jtaskforce_-- He. might. start by. building a G[NDB query to retrieve regin that is

I ,b ially hiah mobility, .e,- the AND of flat, not forested and not urban. (GI.NDB

:-': answers this *by applying the appropriate logical operators _to fields extracted from the.
-+under~lying- CATTS data.) After displaying the results, he might extract(manually,"by

,;'-'= : ._- , - dnd.,", -lying, A'
-

C , d ft .1_ -1 -.- " - -. :. ..

r-a-w-...odrawing onte iisceen) the portion-whhi is=-between-7the current location and the. .-

objective, and store this as the firstaipproximation to the avenue of approach in the

- database maintained by GINDB. Next, he might decide to reduce this area by

eliminating the portions not navigable by tanks due to weather or soil conditions. This

. . could be accomplished by generating an overlay for the terrain regions with non-porous,

clay based soils that are also in thec'ufrent avenue (a low level GINDB request) and

displaying it on top of the high mobility zones retrieved above. At thispoint, it would

be possible for the user. to eyeball and then adjust this restricted avenue (again

F-.manually by drawing on the screen with the mou-s-, or semi-automatically by requesting

further manipulations of the region on display via GINDB) in response to some criterion

that he possesses external to the machine. An example is that the particular vehicles

involved might have very good traction characteristics, so only the least tractable areas

near bodies of water need to be removed. At this point the analysis might progress to

the more detailed step of identifying river crossing sites, which would involve

I instantiation of the 'river crossing site' feature model outlined in the previous chapter.

Our view is that this would proceed in stages (just like the avenue of approach scenario

"1 described here) except that the interaction would take place using the vocabulary of the.1

component parts and optional/required parameters defined by the model. Ultimately,

Ithe same type of low level terrain queries would be processed by GINDB.

The following sections describe the major components of this architecture in more

detail. Before continuing, we should point out that GINDB and the MPI have

undergone significant implementation, while organization of the World Model lives still

very much at the level of design. Some of the most interesting technical issues in the

- project revolve around determining the appropriate composition of these feature models,

-I S - - t. F _--: - - -- --'
"

--. ad"we- !0- be-- a t -o pc-throughou the- remainder! of -the contract..-: .. -.----

-ed-it in this -report. -
0. -Th Multple Pa ~ ter- f*.-

=t " :-'-- '?_.li e.NMP.(Multiple'- Pane.. Interface) is-a-flexible. toot for displaying data which... ...
an-6wii-lfoFrh i of ti color-oveulaygt.san th pementatn of the metacphortW -Our --..

. -- -s - hh pan-is colored in the-

cuntdea ar pnes -f g-a'a

:]: ".:-areas where it contains data'(see figure 5-2).-, The resultant display is what the eye :"

.-. would see as the various features overlay one another. The MPI provides operations for
vof individual panes (e.g., hashde, outnig, etc.)

. and for-reordeing the sequence in-which-the panes occur. In-addition, there are

... operators fdr -describing the contents of a pane (or subset thereof), returning the- for2m7-----# hi. ... uthe pane, and input procedures for extracting data from panes a d for

...... _creating new panes manually (via the mouse).".. .

At its core, the MPI is a color graphics tool which is independent of the BCA

application. However, in the context of BCA it can be used to compose terrain displays

Sfor such thins as cross country mobility (which includes obstacle, slope and sol

criteria), order of battle data over a feature map, and avenue of approach displays

which include elevation contours, shaded areas for zones of critical terrain, and outlines

of objectives. The nPI mouse input capabilities support placement of icons, and

addition of annotations such as labelinp the axis of an enemy thrust, numbering hills, or

flaorsf terrain alterations such as mine fieldsu The overla capability can be used to

display output from terrain analysis procedures which compute new features from the

• underlying data, for example, to show fields of fire on top of an order of battle display

as an aid for evaluating force positions.

5.3.1 Approach
Ai a graphics problem, there are two issues involved in constructing the BO.

The first is to define a logical mechanism for displaying multiple features over a given

fpot such that they are visually distinct and overlay appropriately. The second (and

r~

-. :

.. -. An,, ... '--- - -.

• .} SC R E E N

t 'ELEVATION
SFORESTS

J'HILLTOPSJ

TEXTUAL-

LABELS_ m OVERWRITE

- -\s .-z , t .

• i . NHASH

I ' OVERWRITE
SOVERWRITE

I -

I

.1

I Fiur_-_ _heI eapo

OVRRT

I

OVRRT

7Z i!L~ ; 77f_ _

obiusly- related). jioblerri is- to implement" this mechanisni -ifficiei; ,sneasml
! .. 7' an'ailysis shows-tit -the volume of data involved inprocessing multiple overlays is taxing

at the level of machine cycle times. Even for the comparatively loose' constraints of a

!'research prototype, clever algorithms are .required.

This speed requirement can be illustrated as follows. In our formalism, an overlay

. :.consists of a single feature which is.represented as a binary image and displayed in a

"-igle color. For the purposes of calculation, we can take 30 overlays as the practical

maximum, since visual clutter effects are clearly dominant at that level of complexity.

Our digitized map data employs 25 meter"resolution, so a 512 x 512 grid (which is 20

., kilometers on a side - about twice the size of a typical battalion area of interest)

contains .-.262,000 pixels, and 30 planes carry close to 8 million bits. If these are

. - accessed individually, merely touching them (reading and writing) requires -16 seconds

at 1 microsecond cycle times (using a 2 instruction loop that leaves little room for

additional processing). This should make it clear that any practical implementation has

to manipulate the overlay data cleverly, and operate fairly closely to machine specifics.

We have solved the above efficiency problems by employing a number of

assembly-language programmer's tricks; we reference memory 32 bits at a time and

employ the associated word packing and unpacking techniques, we have made extensive

use of microcoded operations such as bitbit, and in situations where no microcode

support was available we have written tight assembly language loops (via the system-
internal calls available in zeta-lisp). In addition, we have introduced an intermediate

data structure called the plane cube which represents parallel bit slices of the 8-bit wide

color screen memory. The mechanics are explained in the section 5.3.5.1, but the effect

is to support extended use of bitblt. While this is an undeniably arcane implementation

decision, it appears to produce the desired speed; we expect to process the 30 overlay

test case in circa 2 seconds.

*The procedure we have adopted for combining overlays is actually quite simple

(see. figure 5-3). It relies on two central data abstractions; overlays and aggregates,

, 1.!tr tr-
- ." , _ - sr ~-e• o,

- "- - ". r . . --. . -- " " - . - - -- . .-.. -'. --- "'- = -_2:

her rly corrspon to ndv dIi&T of, glas in th -.meItap or'-ind
are76rdered sets of.lhose-p and te r-ef'o thedsource-of daafor thic-lorF-7-7-

J~~..~~0 .. 0ruae *. -

display .n -our,approach,-the data-from each overlay is sampled in accordance with

-omep-atten-represeiting an overlay mode (e.g., hashed lines, a matrix of dots, etc.
"' -:' ' :h' t res -ii tantdata m ask. is.-written . to the color screen memory using the desired

il the rsiveryovdeusing te desire
color. s isdone for ever aggegate, producing a-mlti-color displav.

'The-.ne't ris-utvenc es l-Uliple.f.aires over- a-given -area by displaying some pixels ,

----- =- from each. - -- -- .-- . .-- - .- -. .- -; .-- =- --- X --- --.--.--". : -- ---- •_- _ - - -:- --

.-- " - fit is worth noting that this approach limits the possible overlay modes to the ones

expressible as sampling operators. In order to answer the request "display the hills over

the-...--_- e background data by tinting the background' red" we would have to introduce a

-" different type of operator. which. compares the color associated with the source pane to

- -.... the ones already on the color screen, and then invokes a combination function such as

-: . -color averaging, or color wheel addition. -We have made provisions for incorporating

this type of operator (called translucency) in our design, but since the obvious method

of implementing it (by calling a function on each source/destination pixel pair) is too

slow to be acceptable, and the more efficient approaches are correspondingly involved,

we have not included the operator in our current implementation.

5.3.2 Overlay Modes
I

The planned set of overlay modes are therefore as follows;

* overwrite

' hashing

* stippling
r

J * borders

*-translucency

In overwrite mode, the source data is not reduced by sampling, meaning that it

completely obscures whatever area is beneath it. Hashing is self evident, and stippling

3',

Ei_ W. -.- ---

7"r

~~~.,Z:,D T MASK -- . --. - -

1 -7 iT -7i7.l...SCREEN

(8b)
-~ -L:: -- COMPUTER COLOR

-. * SAMPLING DIFFERS BY OVERLAY MODE

*1 *HASHING*
W/

Figure 5-3: Computation of Overlay Modes



__ "_-____ "____+_ -e= -+-' -.. . ..... . . " S..." - '- ... '' .. . - - "-- " -.....

Z--U- Mb.r- .toIalsamphngoperator, hich takes some percentage of the pixels in the source

J -u-r icrren--mplementatioifsupports, bout four sampling frequencies ranging from 3 to --- M-'--

c-iso0%, and our.,experience is-suggesting that higher sampling frequencies will be more
' + , -.- + --- - .-- -- -+ --- --................ --- -....... - ..+ -... ..... .. - .... • ... -. -

,.tisfyingr to the eye. + The borders nide prduces tnes of are features instead of

______sampling their contents. It turns out that this can be implemented quite efficiently by a - -
fpa allel dbased on the micr6code bitblt function.

____ ._. .: . -+---: -+:+--..r-+'+ , : ++.:--- - -+  + --. + .. -- - Tu~ -..... : - -. f

I.. - ' - ~Thetrasluencyopeato idntifes cl~f b 7 ~~diateon colors,and~
therefore cannot be implemented via unary sampling. It is intended to work in

conjunction with a combination function, such as color averaging or color wheel

addition, to support the effect of looking through a tinted piece of cellophane. We have

--observed that stippling and translucency tend to be perceptually equivalent since the .- .

j -:.--_-7 -human eye averages colors .that are interspersed so'.tightly. An explicit translucency ..

....... operator will simply provide more control over the color of the result. Implementations

::!-- ..... for translucency are discussed in section 5.3.5.2. - . - -

It is possible to produce a wide variety of overlay modes of the kind described

above. Since they are defined solely by a sampling pattern, they are trivial to

construct.

5.3.3 MPI Architecture

The architecture responsible for this behavior is shown in figure 5-4. It consists of

a small collection of data abstractions whose operators are directly accessible by the
.!

user. Two main abstractions are involved; overlays, which define single panes of glass

in the Mr[ metaphor, and aggregates which collect and order overlays and are

ultimately displayed. The roles of the remaining support abstractions are as follows;

the color table manager allocates colors (really indices into the hardware supported color

table) from the 256 member set available on the Symbolics Lisp Machine at any given

time, and the pattern manager defines individual overlay modes. The data source is an

abstraction representing the source of the binary images incorporated into overlays. Its

t purppse is to separate the MPI from whatever system is being used to drive it, in this



" ; . . ,..: " - - , o .. . " .-. ' ' . -. -. - -, - - .-. - .-:i- ..--
"  

-. . . -

--" . .: =" : : ',-, - -" . - T P .:: h " . ... ." ' " .. . b'" --

-'case, .GINDB and the 'remainder of TAPS..The operations on data source objects

provide the binary image itself, or a form which produces that image. The latter is the

original query to GINDB.

At the current time, the operators of the overlay and aggregate abstractions are

directly available to the user. For example, on receipt of a dataset from GINDB, the

user can define an overlay (which amounts to. running set overlay mode and set color)

1 . and' th en display it (which uses return data s-ource to get at the input feature map).

Since the design allows many aggregates to exist simultaneously, we have added the

overlay operation aggregates which use in order to provide the necessary indexing.

Most of the operations on aggregates are self-explanatory with the exception of

] extract new overlay and describe data in region (both of which are partially

- implemented at this time). The first is the mechanism' for using mouse input to create

a new overlay by drawing on the screen. The intent is to maintain a blank top pane

which is always available for creating such annotations, but is treated specially by the

architecture in two ways. First, it will have the equivalent of a simple (single color)

- paint program attached to support user 'doodling'. Second, annotations to the pane

will be displayed immediately instead of processed through the multiple overlay

mechanism. This shortcut is possible (aside from being absolutely necessary from a user

-interface perspective) because the annotation pane is outermost, so by definition its data

cannot be occluded by anything else (so processing for additional overlays is not

. required).

"I The describe function is available as a consequence of maintaining the data source

as a separate functional object. At any time, the user can mouse on the screen, and this

t operation will determine the overlays who's data is displayed over that point (there may

be more than one). The result is a list of overlays (with mnemonic name), and in our

case the GINDB queries which produced that data in the first place. Modifications on

this operation can be used to describe the features in a given region.

The data structures which underly these abstractions are also quite simple. Each



1----Z L

a >

-* - <IEIE VRA

-G)--I mM m> SET OVERLAY MODE

-< SET COLOR

- RETURN DATA SOURCE
0 AGGREGATES WHICH USE

DISPLAY

mn C

m.t-
> SELECT AGGREGATION

G) SELECT OVERLAY
m RE-ORDER OVERLAY

INSERT OVERLAY

> ~DELETE OVERLAY r

COPY OVERLAY TO AGG.
*> EXTRACT NEW OVERLAY-3 _ DESCRIBE DATA IN REGION

I DISPLAY AGGREGATE

Figure 5-5: M'2 Architecture



52

overlay contains four parts (ignoring the slots which are relevant only if one is reading

the code):

* a data source object (which contains a binary feature map)

* a color

* an overlay mode (or pattern) used to display it, and

# a patterned-bitmap, which is the displayable form of the input data after
the overlay (or sampling) pattern has been applied.

Colors are represented as numbers which we treat as indices into one of the four

color tables (which associate numbers between 0 and 255 with color specifications

* manipulated by the Symbolics hardware). Patterns are bitmaps used to sample the

feature data before display. They encode hashed lines, herring-bone patterns, various

dot densities (used for stippling), and others. (See the section on overlay modes, above).

.- Aggregates contain two parts:

9 an ordered list of overlays, and

* an image of the color screen window (initially blank) in which it is displayed.

The ordered list allows overlays to be projected on the color screen in sequence, while

the screen image provides a stable backup copy should the actual display be altered (as

it will in the painting mode when the user constructs new overlays). Note that since

each aggregate knows the overlays it contains, and each of those overlays knows its

assigned color and display source, the aggr, 7ate's describe data operation has access to

the information which will allow it to identify the overlay name and query responsible

for each pixel on the screen. We expect this to be a powerful user interface function,

and plan to use it heavily in comparing regions selected by the user with regions

produced by TAPS to fulfill the same goals.

The only other data structure of import at this time is the query response

structure which underlies the data source abstraction that interfaces the MPI to

GINDB. It has three parts:



, S i

53

i 'S

* a binary image encoding the GINDB result

9 a list of the things returned, if any

I * the query form which produced the GINDB output

The distinction here is that GINDB can return either regions or symbolic objects

(things) depending upon whether the query form was retrieve-region or retrieve-thing.

In the later case, the query response structure holds the list of objects returned (so that

the describe functions of the MPI may access them), while the binary image reflects the

spatial components of all of those objects simultaneously.

5.3.4 The User View

A stylized picture of the MPI screen (taken from our current implementation) is

shown in figure 5-5. While the specific layout may change, the individual windows on

the screen must support the following functions;

- interacting with the data source (GINDB)

constructing individual overlays

- building aggregates from overlays

* manipulating the order of overlays within aggregates

* displaying aggregates

In our case, there are 7 windows. Reading left to right and top to bottom, they

are; a color display of the current aggregate, a listing of data sources (GINDB responses)

*. which the user can name, a display of the current data source, a list of all the overlays

that have been defined, a listing of the overlays in the working aggregate (at the

moment, only one aggregate is allowed), a palette for selecting overlay colors and modes

(patterns), and a lisp interaction window which allows the TAPS user to converse with

" GINDB. The slides in Appendix A give color examples of TAPS screens.

The intent of this organization is to promote a work station format, in which



"I 54

COLOR DISPLAY DATA SOURCE CURRENT OVERLAYOBJECTS

LISP

-- "- CURRENT
ALL OVERLAYS CURENTAGGREGATE

PALETTE

Figure 5-5: MPI Screen Image



~55

overlays are produced, stored, and then displayed in different combinations to generate

the information the user wants to see. To support a fluid interaction s'yle, the objects

in the windows are mouseable, and we have attached the major system operations

* (equivalent to operators on the data abstractions described above) to pull-down menus

on the various windows. So for example, the user can mouse a color from the palette or

a pattern, and then touch the icon for an overlay, and the overlay will be altered to

display in that fashion (note that the icon encodes the color and pattern which will be

employed). Similarly, the user can mouse the edges of the current aggregate window to

obtain a menu for aggregate operations, and then select reorder, delete overlay or

display, etc. Other miscellaneous features allow the user to name overlays, mouse on

overlays and have their data source displayed (GINDB queries), and as a special

interface with the GlNDB interaction window, to mouse on overlays and have the

(unsampled) bitmap they contain entered as region constants into a query under

construction. This last feature was included in response to our observation that the

user frequently wants to compute the intersections, unions and differences (etc.) of

overlay panes. When the operation is generalized, the user will be able to take subsets

individual panes, or regions from the color display, and input them into GINDB as a

data source for further processing.

.As our implementation progresses, we expect to add a new layer of TAPS specific

mechanisms for automatically selecting certain colors or patterns, and for controlling

screen clutter and overlay order based on a knowledge of the data involved. Several

examples come to mind; water should always default to be displayed in blue, enemy

motions in red, tactical objectives might always be shown as bordered areas, and linear

features should always occupy overlays external to area data so that they are not

obscured. In addition, text will eventually have to be treated specially so that it is

- never interpreted as a terrain object, either in extraction of data for GINDB or when

describing the contents of the current screen.



56

5.3.5 Implementation Details

The following subsections discuss particulars of the current .MPI implementation,

as well as some modifications we plan to incorporate. In specific, we cover the

algorithm and data structures used to produce multiple overlays, the implementation of

specific overlay modes, and one alternate strategy (not employed) for the overlay

process. This discussion is somewhat detailed; it is provided for those readers who are

interacting with the MPI code, or for those whose curiosity knows no bounds.

5.3.5.1 The algorithm for computing multiple overlays

From a graphics perspective, the problem in computing overlays is to take a I bit

wide feature mask together with a number representing a color, and write that number

into an 8 bit array (the color screen memory) at every x,y position where the feature

mask shows data as opposed to background. This operation has to be done repetitively

(up to 30 times) and efficiently if the MPI is to be a practical tool.

The naive method of handling this problem is to loop over the bits in the mask

and bytes in the screen array, and write the appropriate number in the corresponding

place. However, given that there are 262,144 elements in either array, the fastest loop

we could write that treated each element individually took 4 seconds to execute. This

would make computing 30 overlays a 2 minute process.

Our solution is shown in figure 5-6. The critical feature in this diagram is the

data structure called the plane cube which is composed of eight, 1 bit wide, 512 x 512

planes which represent parallel slices through the bytes of the color screen array. This

structure is used as an intermediate representation; once loaded with the appropriate

color data, the contents of the plane cube are copied into the actual color screen

memory.

The advantage of this approach is that the act of processing overlays into the

- plane cube is exceptionally fast. The task of dumping the plane cube (compacting 8 one

bit arrays into one 8 bit wide array) is cothparatively slow, but it only has to be

ezecuted once per aggregate display.



' .57

ii

DATA MASK
i J .......1..........

.. .. 1..........

...... 1111 ...... 8 1 BIT PLANES
. 111.....

.1 ........ bitbIt

0 o -/ .........0...........
0
01 o

0 (Yo ior

0. .-.......

1,/C.. aref--> c nn

1
LOAD (MANY TIMES)

* TIME PROPORTIONAL TO # SIGNIFICANT BITS
(5 BITS X 30 OVERLAYS ->.75 SECOND)

(8b)

a ---- aref o> a convert
b SCREEN

c ----aref--c

j DUMP (9NCE)

TIME PROPORTIONAL TO # arefs (TIGHT LOOP)

EXPECTED=2-4.5s

Figure 5-6: Use of the Plane Cube in processing overlays



58

The mechanism is as follows (see figure). Assume that the input feature mask is a

bit array of all ones (feature everywhere, with no background), and that the number

representing the color (say green) is decimal 2. Under these conditions, the task is to
.|

set the second plane in the plane cube to all ones, and to zero all other planes so only

green will show. (A vertical slice through the plane cube encodes the number that will

4eventually reside in color memory. Only decimal 2's can be present above any point.)

If the color number were decimal 3, then the first and second bit planes would have to

become images of the input, and the third through eighth planes cleared instead. If we

" alter the feature mask so that it is not dense, the only difference is that certain vertical
slices in the plane-cube should remain undisturbed, meaning the previous color, if any,

should be allowed to show through.

In summary, the plane cube loading task is to take every place where the data

mask shows feature, and set the vertical slice over that position in the cube to the color

number (represented in binary form). This will require setting some bits and clearing

others. Our observation is that this effect can be accomplished through a sequence of

bitblt operations; if the color bit is a one, bitblt with Inclusive-Or will set that iayer of

the plane cube appropriately, leaving other I's and 0!s that might be present in

background areas undisturbed. If the color bit is a zero, use of bitblt with andca is

required. The truth table for andca (shown below) will turn all feature mask l's into

O's, and will follow the prior value in that layer of the cube whenever the feature is 0.

(The Symbolics supports all sixteen possible arguments to bitblt for comparing source

bit, destination bit, and producing the binary result).

An efficient mechanism for dumping the plane cube data into one 8 bit array is

described below:

I. Maintain a 1 bit wide mask denoting all places in the cube where any
feature (of whatever color is present).

2. Iterate over this mask treating it as a linear array of 32 bit words.

3. Iteratively process the leading bit of the mask word, and if it is a one,
assemble whatever color number is present at the corresponding x,y position



I 59

Table 5-1: The truth table for andca

Prior value

S0 1

0 0 1 1
Feature I I

-- -- - -- -

SI I I

I o I o I

of the cube into a single byte, which is then written (see below) into the
screen array.

4. If at any time the mask word becomes zero (a single instruction test), none
of the remaining bits are considered and processing moves to the next mask
word.

5. When loading the color screen array, write it in 32 bit words vs. one byte at
a time. If this is done, successive color bytes are loaded into a temporary
register until four bytes are assembled.

-I

In all of the above, array registers are used to speed up access times, fast memory

(in this case, the control stack which is resident in the Symbolics processor as opposed

to core) is used to store temporary variables (such as the 32 bit data mask), and feature

arrays are wired down in core to prevent swapping delays. Some additional

optimizations are actually available. For example, by allocating indices into the color

table sequentially we can limit the number of planes in the plane cube which are ever

occupied. This optimization has no great effect during overlay generation (btblts are

essentially free), but it saves a large number of array references when dumping the

plane cube to the color screen. All of these (somewhat Herculean) methods are required

- to obtain the necessary display times.

We have implemented the individual portions of this algorithm and are



60I
incorporating it into the NfPI. Our current implementation employs a somewhat less

optimized approach.

5.3.5.2 Implementations for the Translucency Operator

Recalling the discussion of overlay modes above, the purpose of the translucency

operator is to allow the user to say, "overlay feature X on top of a multi-feature

background, and show the overlap by tinting the background towards color C". A

more general expression allows the result color to be computed as an arbitrary function

of the inputs, for example, by color wheel addition. Since translucency is not a unary

predicate on overlays, it does not fit in conveniently with the procedures we have

expressed so far. As a result, we have had to consider several special case mechanisms,

each of which is described below.

Figure 5-7 defines a simple translucency problem which is helpful in the following

discussion. We refer to the binary feature (the source of the overlay data) as the source

or the feature. The display (and the data it contains) are referred to as the

destination.

J

In the first method, translucency is turned into a table lookup by a rather space

inefficient mechanism. See figure 5-8. Here, we take advantage of the fact that we

know the set of color indices which have been allocated for the display, and we compute

the set of possible results of overlaying the translucent pane before any pixel operations

occur. (If the data in the translucent pane happens to overlap all feature types present

on the screen, there will be twice as many colors in the resulting display.) This

information is stored in a table which associates the source color (which is either

background or blue in the example) and the destination color (up to 256 possible) with

the desired translucency result. As an efficiency trick, we make the table 256'256

elements long and index it by a number which is computed by concatenating the source

and destination color indices. The array will be extremely sparse, but the index

calculation and lookup can be accomplished in a few instructions, hence the net access

speed is apparently quite high.



61

FEATURE DISPLAY DESIRED RESULT
l YELLOW

YELLOW "
-- ; GF !EN

BLACLACK

PU PLE

J _ _RED RED

OVERLAY IN BLUE
WITH COLOR

WHEEL ADDITION

TRANSLUCENCY MAPPING
(FEATURE X DISPLAY - RESULT)

!

-- , BLACK op BLACK (BACKGROUND)

-- , YELLOW - YELLOW

1 -- ,RED o RED

BLUE, BLACK - BLUE

J BLUE, YELLOW, 0 GREEN

BLUE, RED - PURPLE

Figure 5-7: A Simple Translucency Problem



62

COLOR TRANSLUCENCY MAPPING
'INDEX COLOR TABLE AS IDIMENSIONAL ARRAY

0 BLACK
0(BACKGROUND) -8 b-- i-8 b'

FEATURE DISPLAY ___

1 YELLOWoo0

2 RED Oil 1

* 3 BLUE022

4 GREEN 0j

5 PURPLE ~(NSD

i0

sUNUSED...

i0

!*

3 0 3

311 4

312 5
EXAMPLE 31 3

BLUE, YELLOW => GREEN

00 3 3

-LOOKUP (00000011 j00000001)

Fu n

Fiur 5-:--UNUleenatonoftrnsucnc



63

This method is appealing, although it has several drawbacks. First, it turns out

to be less efficient than desired because it requires accessing the binary feature map and
the color screen array in the process of computing a single overlay. As discussed earlier,

I this results in computation times that are significantly higher than direct use of bitblt

on the plane-cube (we have timed this translucency method at 2.6 seconds for our 512

by 512 arrays). Second, it is wasteful of color resource, in the sense that many colors

are allocated which may or may not be used since only some feature/background

overlaps occur.

Our second approach addresses both these issues. See figure 5-9. Here, we reserve

one layer of the plane cube (say the one representing the highest order bit in each byte)

for holding a translucent overlay. (By dedicating one entire bit plane to this purpose,

half of the available color space becomes unavailable.) Next, we alter the color table to

- reflect all possible feature combinations as before, but we do this by duplicating entries

for the existing indices with the leading bit turned on, and assigning those indices to the

appropriate color.

When we set up the color table in this fashion, the desired effect of adding a

traislucent overlay is precompiled into the color table. We can now load the

translucent overlay into the highest order bit plane of the plane cube (a single bitblt

operation), and the chosen colors will appear without having to reference the data in

the screen array. This translates into a marked gain in efficiency, but at the cost of

- half of the available color resource. Furthermore, it appears that only one translucent

overlay can ever be computed, since that highest order bit plane is now occupied.I
Our solution to this problem is to repack the plane cube in an off-line manner.

That is, after the display has been produced we determine the new colors which were

actually created (not all overlaps will occur) and move them to lower addresses in the

I color table (adjusting the color indices in the plane cube accordingly). We can then free

up tle color indices which were not required. If less than 128 colors remain on the

screen, this once again frees the highest order layer of the plane cube, allowing



'I

64

COLOR TABLE
COLOR TABLE AFTER REPACKING

0 BLACK 0 BLACK
0t

1 YELLOW 1 YELLOW

2 RED 2 RED

3 BLUE

" 128 BLUE GREEN

129 GREEN 5 PURPLE

130 PURPLE

1128

TRANSLUCENT I FEATURE
FEATURE DATA DATA

IN MOST REPACKED
SIGNIFICANT TO LEAST

BIT PLANE SIGNIFICANT
BIT PLANES

PLANE CUBE

Figure 5-: A second implementation of translucency



65

translucency to be reapplied. We have not implemented this function, and we do not
expect it to be efficient in any way. However, it can be performed while the system is

idle and waiting for new input from the user.

The third method of implementing translucency is to change the semantics of the

operation to be "overlay feature X on feature Y and show the overlap in color C".

Here, the inputs are both binary images, and the result is a single color, hence the

computation is vastly simplified. It can be implemented as follows:

1. Compute the intersection of the two source features.

2. Define an overlay for the result with color C and solid overwrite mode.

3. Place this overlay outside feature X and feature Y in the aggregate, and
produce the display as before.

I

Since intersections can be computed via bitblt, this operation will require

negligible execution time.

* 5.3.5.! An alternate overlay mechanism

From an I/O perspective, the mechanism above inputs a 1 bit array and an 8 bit

array and produces an 8 bit array as output. An alternate approach to the overlay

metaphor is to take two 8 bit wide arrays as input (a multi-feature source and a multi-

feature destination - the display), and produce a new 8 bit display: See figure 5-10.

Given that the source data in CATTS tends to come in multi-attribute fields (e.g., one

field encoding six different road types), there is some justification from an applications

viewpoint for adopting this metaphor.

In this view the semantics of combination is isomorphic to what has been

described above. Overlay modes are still implemented as sampling followed by

overwriting (except that multiple feature types are treated simultaneously), and the

translucency operator now has to admit the possibility of producing n*m new colors (for

n source and m preexisting destination feature types) instead of just 2"m. Both the

feature and destination arrays are allowed to contain background areas, which means



bb

OVERLAY
MODE

8b 8b 8b

FEATURE SCENCOLOR
SSCREEN

"1SET SCREEN

e.g.,

COLOR
WHEEL

ADDITION
fEL LOW,

YELLOW GREEN GREEN YELLOW

BLACK BLUE GREEN BLACK BLUE GREEN BLACK

PURPLE BROWN RED
RED

-t

Figure 5-10: An Alternate Overlay Metaphor



67

that the overlay process wants to copy bytes in the input to bytes in the destination,

I except when the source byte is 0 (representing background)..

It is tempting to implement this operation through an analog to bitblt which we

might call bytebit. It is even worth hoping that there is microcode support for such an

operation. It turns out that there is not, but worse, no reasonable building blocks are
.4

available either. The closest seeming function to work from is copy-array-contents,

- which is expressed in terms of bitbit, which in turn supports only bit-wise comparison

operators. There is never a moment when an entire byte is available for testing, such
"1
I that it can be copied to the destination or ignored as a whole.

We have written code which implements this metaphor (including the translucency

operator, which was translated into an extremely efficient table lookup), but were only

able to achieve 4-5 second overlay times. This in part stems from the lack of support,

but also from the volume of data; each multi-feature array is 8 times the size of the

I dataset manipulated when considering binary feature images. Even copy-iarray-contents

on a 512 x 512 byte array is comparatively slow; it requires over 2 seconds.

After exploring this path, our intuition was that it was less flexible and less easily

implemented than the overlay metaphor we chose. In addition, we suspected that more

information would have to be manipulated to produce the same display, even though

fewer overlays (with more features apiece) would be involved. This would indicate that

. equivalent processing times could never be achieved.

It is possible that this second metaphor will be incorporated into TAPS as a

.1 technique for overlaying aggregates as opposed to individual panes.

5.4 The Geographically Intelligent Database (GINDB)

GINDB is a query language for accessing and manipulating terrain features (in our

case, information obtained from the digitized CATTS database although attachment to

CATTS is not critical). GI.NDB represents structured terrain objects and the Oroperties



68.

of terrain with relations, and provides a query language over them (similar to the "non-

procedural" query languages of the Ingres project 'Ullman 821) that makes it possible to

retrieve objects based on their descriptions, and to combine and construct regions via

any of the algebraic set manipulation operators. A mechanism for incorporating n-ary

relations between objects has also been included, and the system as a whole h,,s been

implemented in lisp on the Symbolics 3600. It is quite efficient; typical queries require

on the order of a few seconds to compute.
-7

GINDB should be considered as an experimental vehicle which will stabilize after

various representational possibilities have been explored. However, we have made a

serious attempt to support the functionality required by a variety of terrain reasoning

scenarios (suggested by applications at ADS to terrain analysis and military planning,

processing of tactical imagery, robot vision, and automated route planning), meaning

that the implementation functions as a prototype for a generally applicable terrain

rreasoning tool.

The following sections describe the terrain storage and retrieval problem, our

major design decisions, and then the semantics of the GINDB query language, including

information about the scope of the implementation and the underlying representations.

We conclude with an appendix containing output from several demonstration senarios.

5.4.1 The Problem

The problem addressed by GINDB can be expressed as follows; given a set of

terrain features in the environment, provide a facility for retrieving them according to

their properties, and for combining them according to standard set manipulation

procedures. However, by looking at more detailed BCA scenarios, and by projecting

towards future needs (for BCA and other terrain reasoning efforts), we can impose the
following set of additional requirements;

' it must be possible to set a geographical bound on the search query

• a given search query must allow arbitrary n-ary predicates to be applied to
the terrain regions under consideration



69

the underlying representation must allow a declarative expression of n-ary
I relations
J

* the system must support structured terrain objects which contain an
arbitrary. amount of attached information (e.g., properties, attached
procedures, and spatial extent)

the query answering process must be computationally efficient

* the representation must support point, line and region features

the query language must not commit to any single representation for space.
In particular, it must allow for the possibility of simultaneously employing
bitmaps, line segments, quad trees, k-d trees, and polygons (see 'Shapiro
85a" for details).

5.4.2 Approach

The main decision involved in our work on GINDB has been to adopt a relational

database approach. This implies a commitment to a particular style of query language

- and mechanism for interpreting database requests, and a decision to represent the

component features of objects as relations. As a result, we have obtained excellent

retrieval efficiency and the generality associated with the relational mechanism, but at

the loss of the declarative simplicity provided by the more semantic-net oriented view.

To set up the contrast, semantic-net approaches represent objects declaratively as

single entities which can then have any number of attached parts. These objects are

then related by named links which provide a vocabulary for the interactions which the

system can represent. For example, the IS.. link gives rise to a hierarchical class

structure, which in turn supports the inheritance operations that are now widely known.

As a second example, we proposed a net formalism in [Shapiro 85a: that employed links

for spatial relations (containment, adjacency, enclosure, etc.) to simplify the

computation of set operations on geographical regions. In general, semantic nets will

have interpreters that supply a variety of operations to compute over the known links;

examples are demon invocation (in net languages such as FRL), object matching (in all

recognition scenarios), and representation transformation (in conceptual dependency

parsing and response generation).



70

In the'relational database view, the representation for an object is less declarative

and more procedural (or the concept of an object as a whole is less well defined),

meaning that specific operations require more search. So for example, if you are given

an object ID in a semantic net, you have a package which contains the object parts

(they are primitively available). In a relational database, the object name allows you to

look up the object in a table containing all objects in the world. The answer to that

search is the relation which contains the desired information. This distinction persists

when considering relations between objects. In a semantic net, given an object you can

find the thing which it is "a kind of" by following explicit pointer links. In the

relational view, there would be a table of ISA relations, and the process would require a

search through all known relations of that kind.

The value of the relational model comes from the generality with which it specifies

. retrievals. In essence, by breaking apart objects and forming relations, any set of

* properties can be used as indices to locate relevant features. Said in a different way, if

the purpose in an application is to find features which obey a (potentiaily complicated)

description, the relational view provides a natural format for making that occur. The

BCA application fits this criterion very well.

In summary, our reasons for chosing the relational approach are as follows:

* The BCA project is concerned both with retrieving and constructing new-I objects by the fact that they exhibit certain properties. The exact set of
those properties is unknown at this time, which argues for a more
homogeneous approach which allows arbitrary descriptions to be combined.

.At the current time, the focus is on the storage, retrieval and manipulation
of regions of space, as opposed to reasoning about the objects which occupy
the terrain. Type hierarchies, inheritance, and similar domain structuring

mechanisms are not yet required.
I

e The primary goal has been to produce a flexible query language in a short
period of time; the relational approach has simplified that task, even though
it may not be a unique solution.

Our second major design decision has come from examining the types of objects in



71

the BCA domain. In particular, we have separated the notion of a structured terrain

object with many attached properties (called a "Thing") from the concept of a region of

space which is not allowed to carry any descriptive information (called a "Spatial

Region" or "Region"). The intent here is to capture the notion that some queries result

in classifications of large terrain areas (as when forested Regions are overlayed on hilly

Regions), while others pertain to specific known Things (like finding the hilltops which

have observability over forest #12). From a computational perspective, the Things can

be expected to identify reasonably cohesive regions of space, whereas areas built from

combining arbitrary features cannot. This distinction has provided several

simplifications in the query language, and it may lead to some easy representation

• choices when multiple representations for space are entertained.I

The last critical design decision has been to hide the actual representation of

terrain regions from the user, and to write the query language such that it admits any

*- number of potential representations. The reasons for this become clear when one looks

at the terrain representations that naturally come to mind; none is optimal for

computing set operations over all types of terrain regions. Several in combination

might be desired.

To be specific, quad trees have significant space requirements and set up times,

but generally provide quick manipulation procedures. However, both the storage and

computational efficiency properties break down if the underlying regions are not

significantly cohesive. In addition, it is cumbersome to express individual objects (with

many attached properties) given a language that provides only binary exclusion

primitives. Polygonal representations are excellent for establishing objecthood and forI
expressing relations between features, but they give rise to awkward implementations of
the set manipulation operations. This is easy to perceive when considering Region

features of the kind described above. They will tend to have complex shapes, be non-

contiguous, non-convex and include holes. This leads to manipulation operations as bad

as n '4 in the number of vertices. (The system described in the BCA annual report was

an attempt at addressing this efficiency issue.) Bitmap representations can be used to



72

represent point, line and region features, and the set manipulation operations are very

* easy to express. They run in constant time .(given by the maximum region size), and

*are supported by all bitmap display processors that include a "btblt" function.

However, the representation is certainly not space efficient, and is less optimal than the

others in situations where they excel.

As a result, we have defined a query interface which is independent of the actual

representation chosen for physical space, and we have been thinking in terms of

supporting many representations simultaneously. For the current implementation

* however, we avoided dealing with the attendant conversion problems and experimented

with only the bitmap view.

5.4.3 Semantics of the Query Language

5.4.3.1 Definitions

A WOREL (WORld ELement) is a unit square in the grid which represents the

world of the database system. The world is a rectangular grid of worels where each

worel is uniquely identified by its coordinates.

A REGION is a set of worels.

AN OBJECT is a distinct entity in the world. Generally only something which is

uniformly best thought of as a single object. such as a hilltop, is denoted as an object.

Most objects probably have an associated region called a spatial component.

A RELATION is an n-ary named relationship between objects.

When finished, the capabilities of the system are to be as follows:

Id



AHBEL-RD-C3-EH-F (AMSEL-TEK/&?-ftFrVO) (70-17b) 1st End J. Van Savage/
ldv/42503
UIJIGT& Frocuremnt Data Call if@.i~ 1~ 1 Few HAM &% ova rq nE st,

irw'T~teor j3.rP-eos

CnxZ79 ELECTROMAGNTC HNVIRO in isio ISO 2 OT 190

FOR. AHim=&mD-)W(U. B xaM&)
A-$ A. FEAlty*N

1. The 11(I PDP inputs are as followes

fik Spocification A.Ipus(nQ

_c e*. Statemnt of Work (End $)

*. CDAL Justific.s±on (bet 3).

A-- AD Form 1423 (fel 4).

a.. Docment Sumry Llt (Knat. S).

I2 TW 5M CMRLs havw. b~on reviewd and found to be the minimam essential
requiremnts.

.37 r , tiss w, ction s Mr.: JohnIs Savag..- =42303. :~

4. Ci"~ Bottom Lines TIM SOLDIER.

5 Enc Is WAKBEN A..USMAN
as CkLf. R1&&rowagstic Xnvirommus Division

E L -

*7 L - _:LT C ~r A. q;



73

define regIons
update regions
delete regions

define objects
insert objects
update objects
delete objects

define relations
assert facts (that a particular relation holds between n objects)
unassert facts

query regions and objects using a "non-procedural" query language
(discussed in the the following sections)

At the current time, it is possible to define regions, to define and insert objects (in

an off-line manner), and to build an extensive set of non-procedural queries.

Additional hybrid objects might be useful. For example, (taking a mobile robot

context) a possible object might be stored having a spatial component represented by a

pie slice emanating from the point from which it was sighted. At some later time, when

the actual location and shape of the object had been found, the original possible object

could be deleted, and the identified object inserted. The key point here is to introduce

the notion of a temporary, hypothetical object into the database.

5.4.3.2 Development of the query language

In order to explain the semantics of the proposed query language, we will develop

several example queries that operate over a few normalized relational tables representing

terrain. We use the QUEL language (developed in the INGRES project) as a point of

departure, and show the transformation of those queries into the lisp-like syntax of the

implemented language.

Initially we start with the two relations in figure 5-11, and want to answer the

following query:



74

Relation: properties of worels
- ------------------------.

x I y I property
---------------------- +

135 15111forested I
136 1510lforested I
137 I5101forested I
112 12561hi11y I
115 1 151objecti I
115 1 16lobjectl I
116 1 161objectl I

Relation: objects In the world
+---------+---------------+----------------4-

Iobjectid Ikind I otherprop
---------- +---------------+----------------

lobjectl I plateau I otherval I
lobject2 I hill Iotherval2I
--------------------------------------

Figure 5-11: Two relations representing the world

Query 1: Give me all plateaux which are partially in a forested, hilly area.

In Quel this becomes:
range of wi, w2, w3 is worels
range of t is objects

retrieve (t.objectid)
where t.kind = "Plateau"

and t.objectid wi.property
and w2.property Oforested"
and wl..r = w2.x
and WI-y = w2.y
and w3.property "hilly"
and wl.x = w3.x
and w1.y =w3.y

*We can simplify the query a little by making a distinction between objects and regions.

that is between objects which have other properties besides being aggregations of worels,

and objects which are only aggregations of worels. The relation forested now represents

- the regilon which is the set of worels which are forested. Figure .5-12 shows this schema.

Query I. can now be simplified to:



75

Relation: forested

135 15111
136 15101
137 15101

Relation: hilly

112 12561

Relation: spatial components of objects in the world
--------------------

x I y I objectid I
+----+----- -- - -- -

115 I 151objectl I
115 I 161obJectl I
116 1 161objectl I
+------- +

Relation: objects in the world
--------------------------- +----------------------

I objectid i kind I otherprop I
+ ---- ------- +---------------+

lobjectl I plateau I otherval I
lobject2 I hill I otherval2l
+ ------------------------------------

Figure 5-12: N relations representing the world

range of f is forested
range of h is hilly
range of s is spatial-components
range of t is objects

retrieve (t.objectid)
where t.kind = "plateau"

and t.objectid = s.objectid
and s.x = f.x and s.y = f.y
and s.x = h.x and s.y = h.y

But suppose we want to ask the following question:



76

Query 2: Give me all plateaux which are entirely in forested, hilly areas.

This has a much more complicated translation into QUEL:
range of f is forested
range of h is hilly
range of s is spatial-components
range of t is objects

retrieve (t.objectid)
where t.kind ="Plateau"

and t.objectid =s.objectid
and count(s.x, s.y where s.objectid t.objectid)

=count(s.x, s.y where s.objectid t.objectid
and s.x = 1i.x and s.y =h.y
and s.x f.x and s.y =f.y)

What is wrong, here? Talking about single worels seems to be unintuitive -- let's switch

over to talking, about sets of worels by introducing the following relations and

definitions.

define setofpairs(s.x, s.y) to be all pairs <x, y> from relation s

deflne UNION, INTERSECTION, and EMPTY-SET as usual

Queries 1 and 2 can now be reformulated as follows:
Query 1:

retrieve (t.objectid)
where t.kind = 'Plateau"

and t.objectid =s.objectid
and INTERSECTION (retof pairs (s.x, sy),

setofpairs(f.x, i.y),
setofpairs(h.x, h.y))

<> EMPTY-SET

Query 2:

retrieve (t.objectid)
where t.):ind ="plateau"

and t.objectid =s.objectid and
INTERSECTION(setofpzirs(s.x. s.y),

setofpairs(f.x. f.y),
setofpaV.rs(h.x, h.y))

-setolpairs(c.x. s.y)

a We can simplify still more by substituting the names of the relations f and h



77

range over for the expressions "setofpairs(f.x, f.y)" and "setofpairs(h.x. h.y)". and the

function spatial-component(t) for the expression "setofpairs(s.x x.y) where t.objectid

s.objectid". Query 2 then becomes:
retrieve (t.objectid)
where t.kind = "plateau" and
INTERSECTION(forestod,

hilly,

spatial-component (t))
= spatial-component(t)

Lastly we further separate objects from regions and introduce the predicates in-region,

and entirely-in-region.
Query 1:

retrieve (t.objectid)

where t.kind = "plateau" and

in-region(t. region-that-is(forested and hilly))

Query 2:

retrieve (t.objectid)
where t.kind = "plateau" and

entirely-in-region(t, region-that-is(forested and hilly))

The following question requests the map, or set of worels that meet a certain

property;

Query 3 Show me the region which is forested and hilly.

When translated into QUEL this becomes:
retrieve (wl.x, wi.y)

where wl.property = "forested"
and w2.property = "hilly"
and wi.x = w2.x
and w..y = w2.y

Which, using the above simplifications, can be translated to something like:
retrieve-region-that-is(forested

and hilly)

A similar, but more complicated example is to ask the question:

Query 4 Show me the region which is part of some plateau and forested.



78

This becomes:

range of t is objects

retrieve-region-that-is (forested and spatial-component(t))
where t.kind = "plateau"

Note: by translation back to QUEL and implicit existential quantification the query

asks for all worels in the world which are parts of plateaux such that the places are also

forested. If one asked:

Query 5: Show me the region composed of all plateaux which are somewhat

forested.

The following query is the result:
retrieve-region-that-is (spatial-component(t))
where t.kind = "plateau"

and in-region(t, region-that-is (forested))

Finally we present translations of all of these queries into the lisp syntax

implemented within GINDB (note that the implementation uses the term "thing"

everywhere where the term "object" might be expected, thus the top level retrieval

function is "retrieve-thing", and not "retrieve-object"):

Query 1: Give me all plateaux which are partially in a forested, hilly area.
(retrieve-thing $t (and (plateau St)

(in-region $t (and forested hilly))))

Query 2: Give me all plateaux which are entirely in forested, hilly areas.
(retrieve-thing $t (and (plateau $t)

(entirely-in-region $t (and forested hilly))))

Query 3 Show me the region which is forested and hilly.
(retrieve-region (and forested hilly))

Query 4 Show me the region which is part of some plateau and forested.
(retrieve-region (and forested (spatial-component $t))
(plateau $t))

Query 5: Show me the region composed of all plateaux which are somewhat

forested.



79

(retrieve-region (spatial-component $t)
(and (plateau $t) (in-region $t forested)))

5.4.4 Language Syntax

The following is a BNF syntax for the GINDB query language:

query -> retrieve-thing
I retrieve-region

retrieve-thing -> (retrieve-thing result-expr optional-thing-predicate)

retrieve-region -> (retrieve-region region-expr optional-thing-predicate)

result-expr-> thing-expr
I (thing-expr-:-)

thing-expr -> variable
]thing-constant

optional-thing-predicate -> /* the empty expression '/

I thing-predicate

thing-predicate-> predicate-expr

[(and thing-predicate thing-predicate-)

I(or thing-predicate thing-predicate-)

I(not thing-predicate)

predicate-expr -> lisp-escape-expr
I in-region-expr

I (relation-name thing-expr--)

relation-name -> thing-type-constant

I thing-property-constant

Ithing-relation-constant
lisp-escape-expr - > (lisp lisp-expr)

lisp-expr -> general lisp expression, including query variables

in-region-expr -> (in-region variable region-expr)

I (entirely-in-region variable region-expr)

distance -> number



80

region-expr -> region-name
parameterized-region-name
boundary-expr
computed-region-expr
computed-with-data-region-expr
thing-spatial-component-expr
region-constant
(and region-expr region-expr+)
(or region-expr region-expr-i-)

[(xoerregion;expr region-expr +)
I (equiv region-expr region-expr+)

(not region-expr)
parameterized-region-name -> (slope minslope maxslope)

boundary-expr -> (bounded lowx highx lowy highy)

computed-region-expr -> (in-direction ctrx ctry direction width radius)
computed-with-data-region-expr-> (nearby region-expr radius)

thing-spatial-component-expr -> (spatial-component thing-expr)
variable -> $name

region-constant -> (region region-handle)

thing-constant -> (thing thing-handle)

thing-type-constant -> hill

plateau

thing-property-constant -> sandy
thing-relation-constant -> on-the-path-between

I connecting

region-name -> forested
1* defined as (or coniferous deciduous) XI

i hilly

Most of this syntax can be understood by looking at the examples in the section

entitled "example queries". However, it is worth giving a few notes here.

.4

The language allows the user to escape into lisp in the middle of a query in order

to apply tests to any set of things (objects) which are in the process of being examined.

-This is accomplished by use of the form (lisp lisp-expr) as above. For example, the

predicate

.(and (hill $x) (lisp (bigger $x 2)))

3 filters hill objects to see if they are larger than 2 square kilometers, where the "bigger"

predicate is written in lisp and independently accesses object parameters.



81

It is also possible to pass regions and objects into the query language from lisp .(to

allow partialresults to be stbi'ed in an application program). This is done through use

of the forms:

(thing expr)
(region expr)

Where expr is a lisp expression that produces an object of the appropriate type. For

example, the query

(retrieve-region (and (region old-data) forested))

and's the region stored in the lisp atom "old-data" with the forested region resident in

GINDB.

As a final note, because of the distinction we have drawn between objects and

regions, we think in terms of constructing regions and running predicates on objects.

As a result, there are a variety of region expressions which perform the following

functions;

nearby computes the envelope of a given region, as in all worels within 3
worels of a road.

* bounded returns a rectangular region of the specified dimensions

9 in-direction returns a pie-sliced region centered on the specified x-y
coordinates, with a given angular dimension and range.

• slope computes the region consisting of all worels on slopes within the
bounded degree range.

Thing predicates (see predicate-expr above) filter existing objects via tests written
in lisp, predicates on an object's spatial component, or according to (see relation-name

above) the type, properties, or presence of n-ary relations between an object and other

objects in the environment. Examples here are the predicates

* in-region which restricts an object to have a spatial component which is
partially in a designated region

entirely-in-region which demands complete enclosure, and



82

e hill which determines if an object is of type hill

* sandy which limits an object to have the property of being sandy

* on-the-path-between which determines if a particular relation exists,
namely that the spatial component of an object overlaps the line drawn
between two others. This form can be implemented either by a built-in
function, or by checking for the appropriate static links between component
things. As the query language develops, it will be possible for the user to

-new relations, and-query. them-using-this-,form--- -... ......

Note: at the current time, N-ary thing predicates (such as on-the-path-between)

and thing property constants (e.g., Sandy) are not implemented.

5.4.5 Representation and Data Structures

In the current implementation, regions (and spatial components) are represented

by bitmaps (although the query language makes no commitment to that form). This

approach was used both for simplicity and as an experiment as to the.effectiveness of

such a representation.

Objects are represented by Zeta-Lisp flavors, which are the basic mechanism for

building structured objects in Zeta-lisp. They allow an arbitrary amount of attached

data, procedural embedding, and provide standard operations for inheritance through a

tangled class hierarchy. The spatial components of objects are also represented by

bitmaps. It is an open issue whether distinct flavors are to be used for distinct kinds of

object, or whether different properties of different kinds of objects will be handled by

the lisp property list mechanism.

Static relations (which are currently not implemented) will have a number of

representations. One to One relations will be represented by double linking. One to

Many and Many to One will be represented by single links one way, and lists of links

the other way. N-ary relations (with N greater than two) will be represented by more

complex relation structures with appropriate links. The intent is to separate knowledge

about the actual representation of objects from the query evaluation code, so that



83

different underlying structures can be added or substituted without upsetting the upper

layers.'

We have also introduced some special representations to optimize retrieval

performance. [n particular, since queries often request the set of objects which exist

within a given region, we have implemented a pyramid/quadtree structure which

provides the required spatial index. The presence of this. structure also simplifies certain

spatial operations on objects such as determining intersection and disjunction. It works

as follows; each object is inserted once in the structure in the smallest square of the

pyramid which completely encloses it. Given an object, the candidates for intersection

must live in the same pyramid square, or in one of the squares which are enclosed

within it. Similarly, the set of all objects which don't intersect a given object can be

computed with reference to the pyramid (as opposed to running N intersections where

N is the number of known objects). So far, the pyramidal index has provided excellent

results, although an actual performance analysis might point to other, more efficient

organizations.

The final data structure of significance in GINDB is the "data dictionary" which

stores information about the regions, relations and object-types. This structure can be

e.'Imined by looking at the lisp variables *Relations* and "Regions:. The sum total of

objects in the environment can currently only be accessed through use of the query

language.

5.4.6 Algorithms

The semantics of our query language can be derived from relational languages, so

the same query processing algorithms are applicable. However with the addition of the

region constructs and the main-memory nature of the data-base, we have the ability to

add special forms of optimization based on the special representations we employ.

Our basic approach is to create an ad hoc lisp function that generates the results

specified by the query. This method has several advantages;



84

1. The query is actually processed as a compiled procedure, rather than as an
interpreted one.

2. The resulting function can be repeatedly executed on different data, thus
avoiding the cost of planning an execution strategy.

3. Such a system may be easier to debug; since processing is partitioned into
two phases (preprocessing and execution), errors are also partitioned. In
addition, the result of' preprocessing is an actual program which can be

-examined.- .................. . . ..........

The outline of the algorithm used to generate the function is as follows:

First, convert query predicate to conjunctive normal form and introduce variables

for n-ary relations and thing-constants. (Thing-constants are references to actual
objects. Thing-constants are replaced by bound variables.) Then, recursively apply the

following rules, choosing from the top following each successful application of a rule
(these steps implement the query optimizations referenced above):

1. If there is a conjunct (disjunction) which has not already been satisfied in

some way, and in which all variables have already been bound, generate
code to test this conjunct. (an example would be if $x were bound to range
over all objects in the world, and one conjunct were p($x), then code for
testing p($x) could be generated).

2. If any region expressions are free-variable free, generate code for them.
(examples would be forested, or (and forested (spatial-component $x)) where
$x is bound).

3. If there are no free variables, generate an output expression. (an example is
the query (retrieve-thing $x). After $x is bound to range over all objects in
the world, all that is left to do is produce output, that is generate code to
cons $x onto the output list).

4. If any connected (connected by n-ary relations) set of free-variables contains
no output variables, generate code for them as an existential variable. (an
example of this is (retrieve-thing $x (and (2-ary-relation $x Sy) (hill Sy)
(house $x))) if $x has been bound to range over houses, then $y is
disconnected from any output variable (since $x is bound and is the only
output variable). Therefore $y can be treated as an existential predicate,
and the query can be translated into the form: is there a Sy such that it is a
hill and 2-ary-relation($y, $x))



85

5. If any region expression contains free variables, and the free variables are
disconnected from free variables in the rest of the query, build code for
generating the region which represents the union of all bindings of the
variables in the region expression. (an example of this is (retrieve-thing $x
(in-region $x (spatial-component $y))) where $y is disconnected from any
variable, and hence the region denoted by (spatial-component Sy) can be
constructed).

6. Choose a variable to iterate over. The choice is done heuristically based on
-. the cardinalities of-the sets-the variables..range over,.and the ease-of finding- .......

related objects. The iteration can be done in a numbei of ways. The
broadest kind of iteration is iterating over all objects in the world. If a kind
(or type) predicate is used ((hill $x)) and it is the only element of a conjunct,
then only the kind need be iterated over (only hills need be considered). If
the variable is bound in a region expression which appears as a single
conjunct in conjunctive normal form ((in-region $x forested)), then the
variable can be bound using the pyramid structure, only iterating over those
buckets of the pyramid which overlap the specified region (forested).
Important rules of thumb are: if a relation is many to one, iterate over the
set of ones first; in an in-region expression, iterate over variables in the
region expression before the object variable.

There are a few other interesting algorithms: the blurring function for the -nearby

region expression, and the test which determines if there is at least one bit set in a bit

array.

The nearby region expression, given a region (bitmap) and a radius as input, is

intended to return a region which has grown by the radius. Every pixel that was

originally 1, should eventually be surrounded by a circle of I bits of the specified radius.

This is done by first or'ing the original image on itself in a circle of radius 1, followed

by or'ing the resulting image on itself in a circle of radius 3, and so on. Example
applications of nearby are shown in the following chapter.

Given a bitarray, the "set bit function" (called "any" in the implementation)

returns true if any bit is set, false otherwise. Obviously there should be a machine

instruction to do this, but there isn't. Even an optimized loop through the array testing

for set bits takes seconds. The solution to the problem is to logarithmically or the bit-

array onto itself. effectively folding any set bits into an area which is tractable for



86

ordinary loops and bit tests. This makes efficient use of the btblt function which is

supported in microcode.

5.4.7 Incorporating GINDB into TAPS

This section briefly discusses the additions we have made to GINDB in order to

integrate it into the context of TAPS. Most of the changes were minor, having to do

with ffhe inclusion of new interface code, although several were substantive. _ --

The following changes have been introduced:

* a capability to handle n-ary relations

* two new query forms for passing region and thing constants into GINDB

* an internal database for storing these newly produced items, and

* a new interface which allows GINDB to be invoked as a function, and which
returns a query response structure (QRS) that encodes its results

Of the above, the capability to handle n-ary relations is the most significant (in

terms of difficulty) since it required changes to many of the GINDB internals. The

issue is that the prior version of GINDB only knew about the unary relation of object
type while the bulk of the implementation was concerned with supporting the

manipulation of spatial data. Relations were implemented as simple lists of elements,

and member searches as simple enumerations. In contrast, N-ary relations are

implemented as n-tuples; this requires alterations to GINDB's code generator to

accommodate enumeration and selection of fields from those tuples.

Some operations such as logical negation also take on a new level of complexity

when applied to n-ary relations. In the unary case, the expression

(not (bridge $b))

was implemented in one of two ways; if the object $b was already bound in the

context of a larger query, then GINDB's coder produced a membership test for $b in

the set of bridges. If $b was not bound, then GINDB enumerated the set of all objects

I



87

and filtered each for membership in the bridge relation as above. In the n-ary case, the

expression
(not (bridge-over-stream $b $s))

can give rise to several meanings; one interpretation is to return the set of tuples[bridges X streams)

- <tuples from the bridge-over-stream relation>]

which requires enumerating the elements of the two unary relations and forming

their cross product. Another interpretation is to form the set
(not <bridges from bridge-over-stream>)

X (not <streams from bridge over stream>)

which is similar to the above though less permissive (see figure 5-13); it refuses to

include tuples such as {BR4,ST2} who's members are individually referenced in the

bridge-over-stream relation. This operation is implemented by generating code that

filters the cross product of bridges and streams by removing the ones. which exactly

match tuples in the bridge-over-stream relation. This function is implemented within

GINDB.

The new query forms for passing objects and regions into GINDB are as follows:
(region region.-constant-expr)
(thing thing-constant-expr)

where the constant expressions in the above are either

* an instance of a region or object

# an atom which is associated with a region or object in the GINDB database

# a string which is associated with a region or object in the GINDB database

* an.arbitrary lisp form which produces a region or object

This flexibility was provided in order to maximally simplify use of GINDB as a function

from lisp. In particular, it is now possible to type the following sequence of requests;

.(setq foo (GINDB '(retrieve-region coniferous)))
(GINDB '(retrieve-region (OR (region ,foo) deciduous))



88

BRIDGES: STREAMS: BRIDGES-OVER-STREAMS:

BR1 ST1 BR1 ST2

BR2. ST2 BR4 ST3

BR3 ST3

BR4 ST4

HERE, THE NEGATION OF BRIDGES-OVER-STREAMS IS:

"'-'BRIDGES-OVER-STREAMS:

BR2 ST1

BR2 "ST4

BR3 ST1

BR3 ST4

Figure 5-13: A small relational data base



89

The net effect of which is to pass in the results of the previous query as an

instance of a GINDB region. The syntax has proved quite helpful in use.

GINDB's internal database is essentially a trivial code construct for storing and

retrieving regions and objects that are developed in a given GINDB session. This

database is implemented as two association lists, where strings and atoms are allowed as

binding labels..As we move to larger numbers of stored objects, more cpmplicated

database structures will be required.

There are a number of obvious additions to GINDB which can be incorporated in

the future, but it is important to remember that our purpose is only to support the*

TAPS system as opposed to conduct R&D in the area of relational databases. As such,

these new capabilities will be introduced on an as-needed basis. A brief list of the likely

additions follows:

* the ability to pass back regions and objects from GINDB which are bounded
in size

* a capability to store instances of relations, objects and regions on disk (such
that they will not have to be regenerated on each session with GINDB).

introduction of variables into the query language such that temporary results
can be bound and accessed in separate portions of a large query form (the
current syntax requires the user to repeat phrases)

* inclusion of various forms of meta-data into GINDB, such as

o introduction of forms attached to relations which compute instances of
those relations

o the ability for the user to define new relations on the fly

o the ability to update relations, and have dependent relations flagged,
or updated in turn

The first point in the above list admits to a simple correction. Currently,

whenever GINDB returns a region it occupies the entire 512 x 512 field even if the

feature is one element in size. This was done for simplicity in the first version of the



90

system, and can be corrected by returning bounding boxes for regions together with the

appropriate registration information (to say where the bounding box lies). All the

machinery is in place within GINDB to support this function, only a small effort will be

required to make the change.

The capability to store instances of GINDB objects is clearly important in order to

support a user-workstation model. At the current time, all relations, regions and

objects which the user wishes to manipulate have to be computed each session at the

Lisp machine, meaning that no discoveries can be regarded as permanent. The

technical problem here is that it is not possible to store pointers on disk since the

addresses they reference are tied to a given lisp image. We have solved this problem in

other contexts by translated instances into a database-like record format. This will

require a little attention to detail that we have preferred to bypass in the past.

It is important to note that even though we wish to make GINDB data persistent,

we do not expect to expect to manipulate a tremendously large amount of data at any

time. This translates into the claim/hope that GINDB can remain a core-resident

database retrieval system, meaning that we can avoid the need to implement the

caching and paging schemes (etc.) which go along with disk based database systems.

We have not examined the difficulty of introducing temporary variables into the

query language beyond a cursory level of detail. It appears to be a change primarily for

the code generation portion of GI.NDB, and there is some possibility that query

variables would be difficult to include in the (deliberately simplistic) recursive-descent

approach the code-generator currently applies. Since the intended purpose of the

change is syntactic, the amount of energy we will devote to the problem is limited as

well.

When TAPS is exercised in a workstation mode, it is reasonable to expect that its

data will become more volatile, since new objects and relations may be produced on the
fly. The ability to support these capabilities raises a collection of 'deep' relational

database issues having to do with the inclusion of meta-data in a retrieval system.



91

In more detail, when a new object is created it is important (from the perspective

of database completeness) to determine the relations the object ought to belong to.

This in turn requires relations to know the domain of their attributes (so that the

relevant relations can be identified), or schemas which link object types to the relations

in which they participate. In addition, in order to automatically produce new instances

of relations (new tuples given a single attribute), it will be necessary to attach methods
to relations -which perform the.appropriate search. If these methods are viewed as

constraint forms we gain the ability to update properties of objects and determine if

they still belong to a given relation. This is important in support of the general goal of

database consistency.

Without going into a long list of relational database issues and solution methods,

it should be apparent that a variety of problems arise as the data becomes more

volatile. From our perspective it is important to avoid such complications where

possible, which suggests that GINDB should be used to represent fairly static facts

about terrain features and relations between objects fixed in the terrain (objectives,

areas of operation, minefields and other non-moving features).

5.4.8 Example Queries

The following pages present output from the GINDB system, generated as images

of the Symbolics display. The use of GINDB is also documented in the context of our

demonstration of TAPS (see appendix III), but these examples (though with toy data)

focus more clearly on GINDB. Note that each example provides the input query,

graphical and/or textual output, and timing figures for each of the query preprocessing,

compilation, and execution stages.

The sample database contains a number of regions culled from CATTS data, and

a library of approximately 200 objects which were created solely to exercise the query

language and have no military meaning. There are four object types in this data;

letters, hills, obstacles, and unknown-objects. The first three are objects with spatial

components taken from character fonts. The last comes from a mobile robot example,



92

where occlusions during sensor sweeps result in conical areas that may include unknown

obstacles.

In the material that follows, the command show was used to display the spatial

components of'the objects returned by the previous query.



0

u v

U *Y

A-c

/ o u t.

0 0

u "M
uc 0

Ur Oea

a -
viO

C4

-. a;.

w c~~

L 0 .

a A' a



u Sw

;9z. WD C

.0

C)u w.

UC 0 

*0

U Go

a, I

.0 1 -
In u w



x m

CI C
0 C 0



a

0'

V" w

U

0 u

c*
r V-1

- c 0
to tM r E

4,*0 0

0, 0 0; c

0 ..

U of v

~-Co

I ~ u €o u
W U

a Ou w a



V

C' 0( 0

w CDv

31 cp

CCMC

o 0

I. 0 al

CK L
v- 0 .0 4

-z L 0

u~kC.



0C.J

u u

a~ 0

Wa c c

0-0

M 0- 0



Ci

!u

0 It

L.at -

c~ac

-S 
U; 

-S

•c v w . O t

Cfro

.jr m. 0 0

00

CA IA In.,U " ".

-w a

0 0

- C-.-CI

C.,c,

a ca-

*L a
-S4

AVL

w ,
a 0 uva



C)C

00

0

4 5 in 0

-4. CDC)

0. co'a

I i n '0

.44

a. x: 0

!! 64

ClfiIf C,1

LCL I

"o- Q 0. j

*%LA W' C 0at L 0 1-W



1, 1

-Ic a

knU m1.C

a u

In 0 u

C4 'r w

I* CU -

.4 4 -qi m 0
0 C; 0

0 *

0 ON L

- 0.

.. LC
C.,W*U a C

1 0 > D
a u v J



60

C-4u

ol

0 c

C0- 
Q'

Lu L

m c



'p0
-4

~t44 V(~j

I
U) 6
uJ C

U. -
C q

p-a
a.

-~ 4

-~ -pa -

'p

I'
0



-d 0
x 3

c: a L

C--)

C)C

cr0

Lu rI-

U-J

Ir



.24

C))

U,-l

' 4JQL



. E m i

106

5.5 The World Model

The material in this section discusses the information we expE..-t a terrain

reasoning system to maintain about the military environment; the organization and

composition of units, the capabilities of vehicles and individual weapons systems, as well

as the capabilities of units taken, as a whole. In addition, we postulate a collection of

feature models which express the characteristics that must be possessed by the terrain

intended to fulfill particular tactical purposes. The motivation for incorporating this

knowledge into TAPS was discussed in chapter 3. In brief, we view the resulting

database as the minimal set of support for a wide body of applications.

The discussion below documents design ideas as opposed to implemented code.

5.5.1 Representation of Force Units and Equipment

In order to resolve questions concerning the use of terrain, it is important to

model the capabilities of the units, vehicles, and weapons systems which .are deployed on

the terrain. The most obvious form of representation is a system of frames, which are

flexible templates for representing typical situations. Frame languages are a well

explored technology for manipulating class structured data, and are therefore

particularly well suited to the hierarchical structures found in military organizations.

Their ability to support deduction by inheritance provides a desirable parsimony in

representation.

It's quite easy and natural to define units and equipment in terms of frames.

Consider, for example, the following simple frame for a mechanized rifle squad,



107.

frame* Mech Inf Rifle Squad
slot: amo value: Mech Inf Plt
slot: members if-needed: AskFor( Mech Inf Squad T.eader )

AskFor( Assistant Squad Leader )
AskFor( Mech Inf Gunner )
AskFor( Mech Inf Driver )
AskFor( Antlarmor Specialist )
AskFor( Automatic Rifleman , A )
AskFor( Automatic Rifleman , B )
AskFor( Grenadier )

AskFor( Rifleman/Sniper )
slot: vehicles value: BradleyFightingVehicle

where "amo" means "a member of", and "if-needed" refers to a program that

can be invoked to determine the value of an individual's frame slot, if that value is not

present with the individual and is needed to answer a query, or perform a computation,

etc. "AskFor" refers to a program that queries the user for the value of a slot; it will

be invoked, typically, when a new frame is created for a new individual (i.e. instance)

of a class. We use a loose pseudo-code here for the sake of readability. Typically,

frames are specified as embedded association lists in lisp.

The utility of this form of representation can be seen from figure 5-14 (where

"amo" means "a member of", "aio" means "an individual of", and "ako" means "a

kind of"). Using this structure, it is possible to deduce properties of units which are not

expressed local to their definition. So, for example, if we want to know the area

controlled by a mechanized rifle platoon, we can look down the AMO links to discover

it is composed of squads employing Bradley fighting vehicles, and up the AIO links from.

there to the definition of a Bradley vehicle which will identify the range of its weapons

systems.

Notice also that a complete frame database for battalion organization and

equipment forms a "tangled" hierarchy, with a great many cross linkages (of different

link types) between frames. Mechanisms for performing inheritance through tangled

hierarchies are common in object oriented programming langauges.



108

I , ]

TO IS-U CANOA3 IA

bil APC' aFLI AUO 
AP

Figure 5-14: A Portion of a Netw~AokRpeetn atlo qimn



"109

5.5.2 Tactical Feature Models

As mentioned in the introduction, the goal of including tactical feature models

within TAPS is to raise the level of discourse available for conducting terrain analysis.

In specific, the object is to provide a vocabulary for terrain features of military interest

and allow the user to form queries using that terminology as opposed to the very

detailed constructions that GLNDB supports.

One difficulty with constructing feature models is that they seem to be heavily

context dependent; even something so basic as the concept of navigable terrain differs

according to the entity being moved (type of vehicle or personnel) and according to

echelon, where corridor width and terrain fatigue considerations come into play.

Terrain features such as suitable defensive areas have similar sources of variation, and

because of the diversity of tactical situations they are likely to be much more difficult

to define.

A. key observation about these abstract features comes from watching analysts

perform their jobs; as we mentioned in section 5.1 they are typically asked to assess the

impact of terrain on specific tactical actions. and given that information as input they

know the set of features that are required/desired. Said in a different way, terrain

features of military interest can be classified by tactical operation and terrain role. An

example (which we develop further below) is the river crossing operation also referenced

in section 5.1. Here, the operation is a crossing, and the terrain roles are crossing

point, covering force site, potential enemy force site, ingress path. egress path, and

perhaps a beach-head site, meaning a defensive site to occupy on reaching the opposite

side of the river.

In performing terrain analyses for operations of this kind, the analyst will also

know the nature (or specific type) of the vehicles, and friendly units involved. So, for a

river crossing he may be directed to find sites where no bridging equipment is required,

or he may be allowed to utilize knowledge of a particular mobile bridge. It may be that

the analyst also employs knowledge of enemy units in the area such as their



110

approximate location and nature (we haven't determined if this is a standard input of

terrain analysis). In any case, this information will have to be transported to the

tactical feature models in some form; obvious approaches are to parameterize the

models to account for the current context, to assume a particular resource pool as a

default, or to separate the models into subclasses where specific equipment and

resources are assumed.

To complete the analogy, given the tactical operation, knowledge of the current

context, and a set of terrain roles to fill, the analyst's next task is to identify terrain

regions which have the desired characteristics. In our approach, this process will be

accomplished by employing GINDB queries which in turn access the multi-attribute

feature data we are assuming available for the local terrain. (In general, the analyst has

less information to work with, and has to spend a significant amount of time inferring

information of the kind CATTS supplies). These queries will result in candidate regions

which the user can accept, prune or reject as desired. The system might also return

more than one candidate for a given terrain role, meaning that the user might wish to

apply additional criteria (via GINDB) in order to narrow the solution-set further.'

By embedding GINDB queries in parameterized models of this kind, the effect is

to automatically translate expressions for abstract features of military interest into the

right set of low level queries concerning the terrain. This approach should be of

significant benefit because:

, it allows the user to interact with the terrain analysis system in a vocabulary
that is natural, and at the right level of abstraction for the task

e it shields the user from the details of the underlying query language and
database concerning the terrain

* it provides a formalism for defining a wide variety of features, and for
sharing definitions of component features among many models

We have examined some alternatives for the design of these tactical feature

models. We discuss our current understanding of their structure below.



5.5.2.1 A Sample Tactical Feature Model

From the above discussion it is clear that tactical feature models must contain at

least the following four parts:

" the tactical operation of interest

* the terrain roles required by the operation

" a set of queries which identify regions that can fulfill those roles

" a method of specializing the queries in the model to account for the military
context (e.g., units and equipment) involved

A deliberately simplified instance of such a model is shown in figure 5-15. This

figure presents a portion of the river crossing site model mentioned above using a

hypothetical syntax for attaching queries to roles in models. The overall form is

patterned after procedures in a frame language which accept parameters and are

invoked by if-needed forms. We have introduced a new GINDB form, make-thing,

which creates an instance of an object given a terrain region (in the current

implementation, objects can only be constructed external to GINDB and then retrieved).

We have also allowed ourselves to embed GINDB requests in logical conditionals, but we

have otherwise stayed within the language capabilities described so far.

The interesting thing about this example is that it points out both the merits of

the feature model approach and a number of problems which still need to be solved. At

this stage we have explored some alternative model designs (discussed below). but have

not implemented any of the potential solutions.

On the side of merits, it is clear that a simple procedural/frame format can

capture the essence of something as complicated as this river crossing example, and is

easily parameterized to account for differing military context. In addition, the

simplicity of the example (in structure, not syntax) supports the paradigm of identifying

complex features via low level manipulations of terrain properties using a language such

as GINDB.



112

Figure 5-15: A tactical feature model for a river crossing site

Model: River-crossing-site (river equipment-to-move
bridging-equipment from-side to-side)

Role: crossing-point
Query: If equipment-to-move = 'men

then
;the site should be flat and very shallow
(make-thing crossing-point

(and (spatial-component river)
(depth 0 4)
(slope 0 2)))

else if equipment-to-move = 'tanks
then ;no bridges then tolerate 4 degrees and 6 feet

;Examine river width and bridge type if mobile
;bridges are available.

Role: enemy-force-site
Query:

;must be near crossing point on the far side of the river
;and have field of fire over it

(make-thing enemy-force-site
(and (nearby crossing-point 20)

(spatial-component h)

to-side
forested)

(and (field-of-fire h crossing-point)
(hill h)))

Role: covering-force-site
Query: ;same as above except it must be on the from-side of the

;river and have field-of-fire over the enemy-force-site
(make-thing enemy-force-site

(and (nearby crossing-point 20)

(spatial-component h)
from-side
forested)

(and (field-of-fire h enemy-force-site)

(hill h)))



11:)

However, there are additional requirements on the models in the context of TAPS.

In particular, since T.kPS is an interactive system it is reasonable to expect that the

user will supply partial information about the units and equipment involved (own and

enemy) in the tactical operation. Rather than produce no output at all, the desired

result would be for TAPS to return a region that satisfies the constraints which are

currently known. I.e., given partial input, TAPS should produce partial output. In this

approach, we can view the interactive process as a sequential refinement exercise,

moving from rough sketches of the feature of interest to the best instantiations possible.

Next, since TAPS is also a mixed initiative system, it is perfectly reasonable for

the user to supply important data in different orders. This implies that the model

instantiation code must be capable of recognizing and running those queries whose

support data is available. This argues for an expression of tactical feature models built

along the lines of a constraint processing language (in the manner of the KNOBS or

TEMPLAR systems NMillen 83, Shapiro 841) which distinguishes the following concepts;

e constraint readiness (when all the parameters of a constraint are known)

* constraint evaluation (to determine if a supplied region is acceptable)

* constraint inversion (i.e., to build regions which satisfy constraints; this is
what GINDB queries currently supply).

In this approach, we reinterpret the query forms attached to terrain roles as

constraints on the regions that can be slot fillers. We then implement an interpreter

which is tasked to watch the interaction with the user and run evaluative constraints

when the data is supplied, or run those generative versions which are ready when role

instantiation is requested.

The general form for feature models built in this image is shown in figure 5-16.

Note that this construction (with attached interpreter) addresses the mixed initiative

issues mentioned above, but also raises new questions concerning model application.

For example, in the event that more than one method (for object generation or
instantiation) becomes applicable at the same time, which one should be run? If all are



114

Figure 5-16: A Constraint Based View of Tactical Feature Models

Model: model-name(params)

Role: role-name
Role Acceptance Criteria:

constraint1
constraint2

Instantiation Methods:
method-namel: query
method-name2: query2

applied, does the system carry the multiple answers as alternative slot fillers, or is a

method introduced for extracting only the best? (This situation can arise even in the

first feature model example). Given the interactive refinement usage postulated. it

seems reasonable for the system to maintain alternative instantiations which the user

can then restrict. It would also make sense to give the system some sehse of the most

informed method, which presumably depends upon the most specific parameter data

available.

5.5.2.2 Evaluating and ranking role fillers

Another important form of interaction alluded to in the above occurs when the

user independently creates a region and asserts it to be an instantiation of some terrain

role. In this situation, it would be very desirable for TAPS to evaluate the user's choice

based on the knowledge contained in its feature models.

There are a number of ways to provide this capability. On the simple end, we can

define the ranking of a user-supplied region as the difference between it and the

system's own notion of what ought to be present. Since GINDB is well set to

manipulate individual pixels, we can cast this operation in terms of a pixel count. That

is, we run the query attached to the terrain role on the region the user supplies, and

then calculate the percentage of pixels both the model and the user find acceptable.

The percentage of agreement measures the goodness of the user's proposal.



115

This type of analysis can be expanded to factor in both agreement and,

disagreement. So, for example, when the user proposes a role filler, TAPS could run the

model based query on an area surrounding the user's input, and then weight the four

possible pairs of outcomes differently (e.g., where TA.PS accepts a pixel the user

considers invalid, or where TAPS doesn't retrieve one the user does, etc.). The

argument with this type of approach is that it is reductionist, and adds little insight

into the reasons which determine the relative value of a potential slot filler.

There are a range of approaches to candidate evaluation which provide a better

sense of well-informed judgement. The simplest among them is to build a calculus for

ranking terrain feature instantiations based on weighted production rules. We could

then write deductive expressions of the form:

(implies crossing-point (and (spatial-component river)
(depth 0 4)
(slope 0 2))

.8)

(implies crossing-point (and (spatial-component river)
(depth 0 4)
(slope 0 1))

.9)

and apply them to the region supplied by the user. The result is a ranking of

candidate regions which admittedly depends upon magic numbers, but at least those

numbers were obtained from the user.

A more satisfying solution is to employ a form of the type shown in figure 5-17.

Here, the user supplies new information which explicitly defines an ordering of

acceptance criteria, i.e., that low exposure to enemy fire is more important than the

depth of the stream at the crossing point when multiple candidates are supplied. This

approach is equivalent to the mechanism employed by TEMPLAR ( IShapiro 84.), which

partitions constraint forms into categories of hard and soft. Here, hard constraints are

mandatory requirements on any slot filler, while soft constraints are optional. The



116

Figure 5-17: Ranking Criteria for Feature Instantiations

Role: Crossing Point
Method: when-men-must-wade
Query: (and (spatial-component river)

(depth 0 4)
(slope 0 2))

Ranking Criteria:
first: exposure to enemy fire is low
second: length of crossing is short
third: depth at crossing point is less than 3 feet

candidate ultimately selected must pass all of the first type, and as many of the soft

constraints (in ranked order) as possible.

A final note is that this constraint oriented approach requires a considerable

quantity of new mechanism and should therefore be examined carefully. We plan to

explore it, along with other languages for expressing feature models in future extensions

to the BCA research. ""



117

6. Future Directions

There are two obvious directions for continuing the work described in this report.

The first is a research oriented extension aimed at completing the design and

implementation of tactical feature models, and the second is concerned with adding

breadth to the TAPS system, and bringing it into user communities within the military.

These ideas are mutually supportive, and are described in more detail below.

6.1 Tactical feature model design and development

The creation of tactical features models is the next critical step in the

development of TAPS. These models will provide a language for describing terrain

feattires of military interest (beyond the powerful, but admittedly cumbersome

vocabulary of GINDB), and form the basis for an interactive mechanism for

instantiating features in the context of a terrain analysis/planning session. Our current

ideas on the structure of tactical feature models were presented in chapter 5. The

principal tasks associated with this line of effort are listed below:

e Develop a computation model for representing tactical feature models with
the following properties: they input parameters describing the current order
of battle, they support partial descriptions of desired features, and they are
organized around the different functional roles for terrain in specific military
operations.

* Construct a mixed initiative method for instantiating feature models that
allows the user to express queries in the functional vocabulary described
above, as opposed to the GINDB syntax which is currently employed. (The
models will employ GINDB qtieries internally.)

o Build a sample library of such models, and demonstrate their use.

The benefit of this work will be a demonstrable capability to support terrain

analysts via artificial intelligence techniques, and a deeper understanding of the role

terrain reasoning cah play in supporting battalion level decision functions. As examples,

the following application tasks could be solved through use of tactical feature models in

an expanded version of TAPS:



118

* Identify the terrain sites important for a river crossing operation, given the
specific equipment and tactical scenario involved. This requires instantiating
component sites, including potential enemy positions, exact locations for
fording or bridging the river, and own force sites for securing an approach to
the river.

* Propose placement of minefields. This requires identification of choke points
within enemy avenues of approach.

o Develop.an avenue of -approach towards a-specific objective. Key terrain,
laterally inhibiting terrain, obstacles -and categories of mobility zones (by
vehicle type) are all component parts of avenues of approach. These can be
identified by queries attached to functional roles within an avenue of
approach model.

Several additional tools will have to be implemented in order to support

applications of this kind. In particular, we will need to construct a representation for

military organization and equipment which captures their capabilities, write routines for

extracting features from elevation data (direct and indirect fields of fire, ridge lines,

etc.), and develop an order of battle display. It is worth pointing out that a wide

variety of image processing techniques can be applied to manipulating elevation data.

6.2 Applications level extensions of TAPS

Based on comments we have received after demonstrating TAPS, there is a role

for pushing the current capabilities further toward practical applications. With

attention to system level issues, it would be possible to take the current display and

retrieval capabilities, increase their generality, and host them on processors designed to

increase their speed and data handling capabilities. The result would be an applications

prototype that could be employed by trained members of the terrain analysis staff. We

believe such a system would be applicable at echelon from battalion through corps, and

that it would be powerful enough to significantly impact current military processes.

To transit the TAPS system into application, several design changes are indicated.

First. the retrieval language needs to be standardized and substantially clarified, to

make terrain manipulation queries more accessible to less-than-expert users. A



possibility is to modify an existing relational language to incorporate logical operations

on terrain. Second, the host for symbolic processing (the application system) should be

separated from the host(s) which supports the terrain data and query language. By

introducing this change. we identify a separable terrain server, which opens up the

possibility for optimization as well as standardization of terrain processing requests.

Finally, since the Multiple Pane Interface has already been implemented as a stand-

aon-ecomponent,itould make sense to-explore options-for-.optimizing its performance.-

via different display and computation hardware. It operates quite efficiently at the

current time, although we are clearly pushing the limits of the Symbolics system's

display capabilities.

This applications effort would clearly benefit from a parallel research thrust,

which would provide new capabilities that could be transitioned to the development

prototype as they became available. A benefit in the reverse direction is that early

prototypes of an applied system would provide an effective host for further research

activities.



120

References

Havens 831 Havens, William & Alan Mackworth.
Representing Knowledge of the Visual World.
Computer 16(10):90-96, October, 1983.

,Kuan 841 Kuan, Darwin T., Rodney A. Brooks, James C. Zamiska, and
Mangobinda Das.
Automatic Path Planning for a Mobile Robot Using a Mixed

. - Representation of Free Space.
In Proceedings, First Conf. on AI Applications, pages 578-584.

December, 1984.

:Loberg 86a; Loberg, G.
Preliminary Report on a Knowledge Engineering Experiment.
Technical Report IR-0001, Advanced Information Processing Division,

COMM/ADP, US Army Communications-Electronics Command,
August, 1986.

,Loberg 86b] Loberg, G.
Acquiring Expertise in Operational Planning: A Beginning.
Technical Report IR-0002, Advanced Information Processing Division,

COMM/ADP, US Army Communications-Electronics Command,
August, 1986.

:Millen 83" Millen J. K., Engelman C., Scar[ E. A., Pazzani M. J.
KNOBS Architecture (Draft).
Technical Report, The MITRE Corporation, 1983.

'Payne 861 Payne, J.R., Stachnick, G.L., Rosenschein, and Shapiro. D.
Operations Monitoring Assistant System Design.
Technical Report TR-1113-1, Advanced Decision Systems, July. 1986.

:Quattromani 821
Quattromani, Anthony F.
Catalog of Wargaming and Military Simulation Models.
Technical Report, Studies, Analysis, and Gaming Agency Organization

of the Joint Chiefs of Staff, May, 1982.

"Samet 831 Samet. Hanan.
The Quadtree and Related Hierarchical Data Structures.
Technical Report TR-1329, University of 'Maryland dept. of Computer

Science, November, 1983.



121

'Samet 841 Samet, H., A. Rosenfeld, C. Shaffer, R. Nelson, Y. Huang.
Application of Hierarchical Data Structures to Geographic

Information Systems: Phase II.
Technical Report TR-1457, University of Maryland dept. of Computer

Science, November, 1984.

Shapiro 841 Shapiro, D.G., McCune, B.P, Courand. G.J., Wilber, B.M., Payne, J.R,
Kefalas, J., Hale, C.R., Finger, J., and Wilensky, R.
TE.VfPLAR (Tactical Expert Mission Planner) Design.
Technical Report TR-84-134, Rome Air Development Center, June,

1984.

'Shapiro 85a! Shapiro, Daniel G., Philip S. Marks, Jeffrey M. Abram.
Battlefield Commander's Assistant.
Technical Report TM-1058-01, Advanced Information & Decision

Systems. 201 San Antonio Circle, Suite 286, Mountain View,
California 94040-1270, May, 1985.

'Shapiro 85b Shapiro, Daniel G., Woodfill, J.
GINDB, A Geographically Intelligent Database.
Technical Report TM-1058-02, Advanced Decision Systems, 201 San

Antonio Circle, Suite 286, Mountain View, California 94040-1270,
October. 1985.

IShapiro 86" Shapiro, Daniel G., Tollander, Carl.
The Design of T.4PS.
Technical Report TM-1058-03, Advanced Decision Systems. 201 San

Antonio Circle, Suite 286, Mountain View, California 94040-1270,
August, 1986.

'Stachnick 87, Stachnick. G.L., Applebaum, L.A., Marks, P., Marsh. J., Rosenschein,
J., Schoppers, M., and Shapiro, D.
Airland Battle Management Planning Study.
Technical Report TR-1127-01, Advanced Decision Systems,, January,

1987.

(Ullman 821 Ullman, Jeffrey D.
Principles of Database Systems.
Computer Science Press, Rockville, Maryland, 1982.

,Weiler 80, Weiler, Kevin.
Polygon Comparison Using a Graph Representation.
Sigraph , 1980.



122

I. BCA Bibliography

In the process of conducting our domain survey, we collected (and e.amined) the

following documents on military theory, battalion (and other echelon) operations, and

existing application systems.

* Airland Battle 2000, Army Training and Doctrine Command, Ft Monroe,
VA 23651, Aug 1982

* Bentley, Jon L., "Multidimensional Binary Search Trees used for Associative
Searching", Comm. of ACM, Vol. 18, No. 9, September 1975, pp. 509-517.

*Bentley, Jon L., "Multidimensional Binary Search Trees in Database
Applications", IEEE Trans. on Software Engineering, Vol. SE-5, No. 4,
July 1979, pp. 333-340.

Blumenthal, D. K. and others, "An analysis of a Massed Versus a Dispersed
Attacking Ground Force in Close Combat", Lawrence Livermore National
Laboratory, 1984

* Campen, Timothy, "Application of Artificial Intelligence to -Tactical
Operations", HQ, Joint Special Operations Command

* "Conference on Command & Control Decision Aids, Vols I-VII", Rome Air
Development Center, Griffiss AFB, New York, Nov 1983

e Cooper, Dennis and others, "C2 Enhancement of CORDI'VEM", General
Research Corp., P 0 Box 6770, Santa Barbara, CA 93111, July 1983

* Lybrand, J. P., "An Analysis of the Use of Decoys in Defense Against a
Massed Attack", Lawrence Livermore National Laboratory, October 1984

e FM 7-10 (Infantry Rifle Company), Headquarters, Dept of the Army,
Washington, DC

e FM 7-20 (The Infantry Battalion), Headquarters, Dept of the Army,
Washington, DC

* FM 30-5 (Combat Intelligence), Headquarters, Dept of the Army,
Washington, DC

e FM 71-2 (The Tank and Mechanized Infantry Battalion Task Force),
Headquarters, Dept of the Army, Washington. DC



123

* Havens, William & Alan Mackworth, "Representing Knowledge of the Visual
World", Computer, Vol. 16, No. 10, October 1983, pp. 90-96.

* Intelligence Preparation of the Battlefield (TC34-3), Army Intelligence
Center and School, Ft. Hauchuca, AZ 85613

e Kuan, Darwin T., Rodney A. Brooks, James C. Zamiska, and Mangobinda
Das "Automatic Path Planning for a Mobile Robot Using a Mixed
Representation of Free Space", in Proc. of the First Conf. on Al

_ Applications, December 1984, pp. 578-584.............. ...... ....

* McKeown Jr, David., "NAPS: The Organization of a Spatial Database
System Using Imagery, Terrain, and Map Data", Carnegie-Mellon University
Report CMU-C5 - 83-136. July 1983.

Quattromani, Anthony F., "Catalog of Wargaming and Military Simulation
Models", Studies, Analysis, and Gaming Agency Organization of the Joint
Chiefs of Staff, May 1982.

e Rebane, G. J. and others, "Dynamic Displays for Tactical Planning, Vol I".
Army Research Institute for the Behavioral and Social Sciences, April 1980

e RB 101-5, U.S. Army Command and General Staff College, Fort
Leavenworth, Kansas, May 1983.

* Samet, Hanan, "The Quadtree and Related Hierarchical Data Structures",
University of Maryland Computer Science TR-1329, November 1983.

* Samet, H., A. Rosenfeld, C. Shaffer, R. Nelson, Y. Huang "Application of
Hierarchical Data Structures to Geographic Information Systems: Phase
III", U. of Md. Comp. Sci. TR-1457, November 1984.

*Thompson. G13orfge and R. Weeks, "A Common Methodology for

CORDIVEM", General Research, P 0 Box 6770, Santa Barbara, CA 93111,
July 1983

9 Weiler, Kevin, "Polygon Comparison Using a Graph Representation",
Sigraph '80, CMU.



124

I. SMAP Output

The slides attached to this appendix show the type of output it was possible to

produce with the SM.-kP system, described in section 4-9. A discussion of each slide is

provided below. Note that only three copies of this report contain a set of these color

35 millimeter slides.

---- The S.'vLkP system provided a mechanism fo' is-ly'ing" diesired subsets of CATTS

data (feature and elevation both) in user-selected combinations. In recognition of the

fact that some types of data are space filling, while other CATTS fields encode

predominantly linear features, the display menus are segregated into background and

overlay options. SMAL.P could then display any number of overlays above any single

background feature.

Slide 1: shows the groundcover background. A key describing the color coding of

each groundcover subtype appears beneath the image.

Slide 2: This slide shows roads, river, and rail lines overlayed on the groundcover

background from the previous slide. Documentation for the subtypes of each linear

feature automatically appear.

Slide 3: Countour lines computed from the elevation data are added on top of the

material in slide 2. This slide illustrates the visual clutter which results from the

attempt to display too much information simultaneously. The need for flexibility in

generating such displays was a major motivation behind SMAkP.

Slide 4: This slide shows the CATTS "obstacle" field overlayed on a different

background, which encodes a version of cross country mobility.

Slide 5: This slide shows river data overlayed on the elevation map, where the

shading from green to red encodes increasing elevation. Note that this image gives a

good feel for the landforms which was not quite present in previous pictures. It is clear

how rivers follow the natural contours or the terrain.



125

Slide 6: This image shows the result of a visibility calculation applied to a user-

selected point on the screen (here chosen to lie within a valley).

Slide 7: This image provides what can be thought of as an evaluation of the risk

associated with a particular movement path. Here, the visibility calculation used in the

previous slide has been applied to a sequence of points along the valley, and the system

then color coded the number of times outlying spots were seen. White indicates once,

blue indicates 2-3 times, and red indicates more than 3. There is a small area of red in

the lower right hand section of the image which suggests a likely spot for placement of

an enemy observer.



126

III. TAPS Output

The collection of slides attached to this appendix give some examples of the

terrain queries and display output it is possible to produce with TAPS. We describe the

content of those slides below. Please refer to section 5.3.4 for a description of the TA.PS

screen. Note that only three copies of this report contain a set of these color 35

millimeter slides.

The first few slides show the effect of different overlay modes. The two overlays

involved were produced by the following queries:

(retrieve-region (nearby deciduous 15))
(retrieve-region (nearby coniferous 15))

These correspond to envelopes (within 15 pixels) of all grid cells that are defined

in the underlying CATTS data as part of coniferous or deciduous forests.

Slide 1: Nearby-coniferous-15 is shown in solid overlay mode on -top of nearby-

deciduous-15.

Slide 2: Nearby-deciduous-15 is shown in solid overlay mode on top of Nearby-

coniferous- 15.

Slide 3: This shows the same two overlays in "stiple' mode, where only a

percentage of the pixels in each overlay are displayed. Note that 3 different types of

regions are distinguishable; purely coniferous, purely deciduous, and the regions where

both features are present. The latter show up in a tannish color, although no such color

was actually displayed (see the following slide). When different color pixels are

displayed in such close proximity, the human eye perceives an averaged color.

Slide 4: This presents a closeup of the results of stippling shown in slide 3.

Regular patterns of dots are used as a sampling pattern, and those patterns are offset in

order to prevent one sampled overlay from completely aligning with any other.



127

Slide 5: This shows the same two overlays in -hashed' mode, meaning that a

regular hashed line pattern was used to sample each overlay before display.

Slide 6: This shows a display composed of three overlays, with the forested region

in solid green on the bottom, the areas with slope between 0 and 15 degrees in the

middle (stippled blue), and the urban areas on top (stippled red). The bright green

areas are places where the forested pane shows through (i.e., where the slope is outside

the 15 degree tolerance and no cities are present), the blue green encodes forested and

acceptable slope, and the reddish tint shows location of cities. The query producing the

slope data is shown in the GINDB interaction window, and the binary image resulting

from that query is shown in the source display.

Slide 7: This slide is the same as slide 6, except that the slope-0-15 pane has been

replaced by one representing slope between 0 and 4 degrees. Note that more bright

green, shows up (fewer forested areas fit within the slope tolerance). The urban areas

also separate into bright and dull red; the dull red is in areas where slope data is also

present, the brighter red corresponds to areas where the slope is greater than 4 degrees.

Slide 8: In this slide, we have manually selected a portion of the display by

drawing on the screen. This defines a 1 bit wide feature mask (shown in the source

display) which can be used as an input into further GINDB processing. The user has

named this region "area of interest".

Slide 9: This slide shows that information from the display can be sent back into

GINDB. Here, the user formulates a query for zones of favorable traversability by

intersecting (or negating) the binary images for each of the overlays displayed in slide 7,

and the area of interest defined above. Note that the MPI binds the user-supplied

names for the overlays to the binary images they encode; in effect, this produces region

constants which can be passed into GINDB.

i2
Slide 10: This slide shows streams in the area of interest displayed over that area.

The query shown in the interaction pane also demonstrates the use of relational data



128

within GINDB. It requests all things (symbolic objects) of type stream which are in

(e.g., which overlap) the area of interest. The distinction between symbolic object and

regionis important; objects can participate in relations and carry an arbitrary set of

properties. Regions represent areas of space which are the values of certain GINDB

queries; the system itself carries no additional knowledge about their structure.

Slide 11: This slide shows the bridges over the streams returned above. Five

queries (and five overlays) were required in the current syntax, one to examine each of

the stream objects in the display. The last of these queries is shown in the interaction

pane; it requests the region near any bridge which is over the specified stream. One can

imagine this as the beginning of a more complicated terrain analysis scenario in which

th lbe user examines potential river crossing site by aplyin further-questions to'the are

of interest and the objects it contains.

Slide 12: This is a blow-up of the aggregate display in slide 11. Note that rivers

are shown over the bridge locations, which have are presented as enlarged'circles.

Slides 13-14: These slides show blow-ups of the system menus which are attached

to the different windows. Slide 13 shows operations on the overlays in the current

aggregate, and slide 14 shows the manipulations which can be performed on the display

window.

Slide 15: This slide is a detail of the system palette. The markers indicate the

color and overlay mode that will be attached to the next overlay which the user selects

via the mouse.



129

IV. Information Concerning the. TAPS Code

The code requires a Symbolics with eight bit color running release 6.1.

The information in this section assumes that You have loaded the carry-tape on

your machine, and that the BCA code is now in a directory named "1<machine-

name>:>BCA". You will find several rles at the top level of this directory as wvell as

The directories contain source and compliled code:

* <machine-name>: >bca: >data>" contains the data files for the CAkTTS
database.

*"<machine-name>:>bca:>gindb>"I contains the code for the GINDB
module.

*"<machine-name>:>bca:>mpi>11 contains the code for the Multiple-Pane
Interface.

1 "<machine-name>: >bca: >shark>,, contains the code for the SHARK
window package, which is a utility for the Multiple-Pane Interface.

There are two iles which you will have to modify, In the file "<machine-

name>: >BCA:>hosts-lisp", change the pathnames in italics in the function below to

reflect the directory locations on your host:

(defun set-BCA--host (host)
(f s set-logical-pathname-host "1BCA"1

:physical-host host
translations

(("MPI;"t 1 ">Projects >acorn-bca>mPi>"1)
("1GINDB;"11 ">projects >acorn-bca>gindb>"1)
("DATA;" 1 ">Projects > acorn-bca>data>"1)
("SHARK;" "1>Projects .>acorn-bca> shark>")

(let ((inhibit-fdefine-warnings :Just-warning))
(si:set-system-source-file 'mpi "1BCA:MI;system.lisp"1)
(si:set-system-source-file 'gindb "1BCA:GINDB;system.lisp"1)
(si:set-system-source-file 'sh "1BCA:SHARK;system.lisp"1)



130

)

In the file "<machine-name>:>BCA:>bca-init.lisp", change the pathnames in

the lines indicated in italics to reflect your local host and file locations:

(defun init-BCA )
(send terminal-jo :set-more-p nil)
(load " a:>projects >acorn-bca.>hosts . lisp")
(setsBCAyhst -acorn,,) .. .. . ... . ..
(make-system 'sh :compile :noconfirm)
(make-system 'mpi :compile :noconfirm)
(make-system 'gindb :compile :noconfirm)

(mpi :init-mpi)
(send terminal-jo :set-more-p t)

-(pkg-goto.-.gindb) .. .. ....... ..
)

Once these changes have been introduced, initialize the system with the following

command sequence:

(load "<machine-name>: >bca>bca-init. lisp")
(init-BCA) ; This will take around 5-10 minutes.

You are then ready to experiment with TAPS.

IV.1 Running the Demonstration
\Ve have created a canned demonstration which provides a good introduction to

TAPS, and is useful for explaining the capabilities of the system. The demonstration is

easy to load with the following instructions.

(load "<machine-name> : >bca>bca-ni. lisp")....---- 'C.-. c_(€& 'j -. j u-, (r-,J
(init-BCA) This will take around 5-10 minutes. , -
<FUNCTION-X> Change mouse back to monochrome screen.

Choose a lisp-listener.
(init-gindb) This will take around 15-20 minutes.
<FUNCTION-X> Change the mouse back to the color screen.



131

You should type your gindb queries to the GINDB-Listener. The sample

demonstration script is found in the file "<machine-name>:>BCA:>demo-
script.text".

Note that the menu in the upper-lefthand corner of the color screen is non-

operative at the current time.

1:

J,


