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1. Introduction . /

This document is the final report for t.he Battlefield Commander's Assistant
o,/‘
project (BC -\)C\_v,hwk/was a three year, three man-year effort to first identify, and then

prototype an artificial intelligence based tool for supporting battalion operations. N)-\fter

ey e g5 e e A A o i o At = > s e

- a certain amount of exploratory efforts, mted terrain reasoning as the most

important (high impact) application area, and ultimately created a terrain analysis and

planning system (TAPS) prototype, which has been delivered to the sponsors.
)
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‘~ This report documents TAPS in its ~ntirety, but for completeness Ave also discuss@-S
‘e«r(Oerarly efforts in identifying potential application areas, and in exploring alternative
approaches to some of the technical problems of terrain reascning. A number of these

ideas are worth pursuing in the future, even if they were not mcorpora.ted into TAPS.

‘Pf?””’f ey bt fe C?a P é?

The outline of this report is as follows: Chapter 2 describes our efforts towards
identifying high impact application areas, Chapter 3 defines the terrain reasoning
problem we ultimately adopted, Chapter 4 describes some of our technical explorations
into that topic, Chapter 5 documents TAPS, and Chapter 6 discusses future directions.
We have added several appendices: appendix I lists documents examined in ihe BCA
literature search, appendices II and III provide 35 millimeter slides of the SMAP and
TAPS system outputs respectively (note that only 3 copies of the report have been
delivered with this material), and appendix IV gives instructions for loading and

running the TAPS system.

As a compendium of our work, much of the material in this report was obtained
by abstracting sections from earlier project technical reports. The interested reader is

referred to {Shapiro 85al, [Shapiro 83bi, and iShapiro 86} for details.
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2. Domain Survey

The first phase of the BCA project was concerned with identifying application
areas for Al technology in battalion operations. To give a sense of scope, our starting
point was the abstract system design shown in figure 2-1, which covers plan generation,
evaluation and monitoring in its entirety, as well as issues of situation assessment, data

acquisition, and order dissemination.

[n order to restrict the survey problem to a manageable level, we made the a
priori decision to focus on activities related to combat planning and then examined
battalion operations in that area. We were looking for potential applications which

were

¢ important,
o difficult or time consuming to solve by present means, and

o promising for solution by computer.

Here, an "important" problem is critical to mission success, readiness or the safety
of the battalion, while a "difficult® problem is one 'in which unsatisfactory or

suboptimal solutions are often arrived at even by competent staff.

The details of our study are a bit too lengthy to describe here, since it invol\;ed a
significant amount of interaction with staff officers at corps through battalion levels,
and caused us to examine a collection of documents about battalion operations, existing
automation, and military theory. (See {Shapiro 85a), and appendix I.) The conclusions,
however, are easy to summarize; it turns out that the response times and resource
constraints applicable at battalion level naturally emphasize terrain concerns above
situation assessment (including enemy intention analysis), logistics, complex plan
generation and execution monitoring. As a result, we selected terrain reasoning as the
critical problem to pursue, and ultimately developed the Terrain Analysis and Planning

System (TAPS) which is described later in this report.
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e tactical
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‘————-

e support
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- specify goals, constraints, strategic plans)

Man/machine
Interface
¢ user models
e explanations

o query/edit
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Battalion Commander's
Work Station Controller

Manages tools for:
o situation assessment

o plan and plan option
development

¢ plan evaluation
¢ action selection

|

Commander's Estimate
A eam—

of Situation

Situvation
Assessment

¢ own force
location/status

s enemy force
Tocation/status

s terrain/cultyral
feature info

-damage reports

e environment info

Threat Analysis

o enemy intention/
strategy analysis

¢ deception
indicators

¢ crisis alerting

Tactical Plan
Generation

sforce partitioning
e strike specification
sunit/weapon/sensor|

assignment/scheduling

¢ contingency plan

generation

Plan Evaluation

¢ coarse to fine
evaluators

° constraint'
analysis

o sensitivity
analysis (risk)

o what-if analysis
8 war-gaming

Implementation

o message
preparation

o message
. routing

o plan monitoring

e enemy force deployment strategies

Supported by system knowledge in:
¢ terrain & weather models

¢ own/enemy 0.0.8.

¢ enemy force movement/engagement tactics
o own force deployment tactics
¢ own force movement engagement tactics

Figure 2-1:

o logistics constraints

¢ sensor models

.

.

An abstract design {or a Battalion Commander’s Assistant
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This understanding of battalion level concerns was a valuable outcome of our
domain survey, and it is worth discussing in more detail. The following section tries to
illustrate the change in emphasis between battalion and corps level combat planning,

and the types of Al applications which are therefor most critical to each.

2.1 Potential application areas

It is not difficult to identify potential applications of Al in each of the areas
governed by the principal staff officers; intelligence, operations and logistics. (We omit
the personnel and political liaison roles as they are less immediately involved in combat
decision making.) With respect to intell, situation assessment in the broad sense is
clearly important; this includes identifying enemy units, their status and positions from
visual and electronic observations, and determining their intent from these particulars
given knowledge of the battle. The central function of operations is to create plans and
monitor their execution, both of which are receiving attention as Al applications at the
Corps and Division level (see [Stachnick 87}, {Payne 86}, and iLoberg 86a, Loberg 86b:).
In logistics, the problem of course is to apportion, store and assure delivery of resources
such that they match anticipated demand. Given the extremely resource intensive

nature of military operations, logistics discussions can in fact precede battle planning.

The situation assessment, planning and logistics problems occur at all echelon, but
their magnitude changes drastically with size. At Corps, the battlefield typically
occupies thousands of square kilometers, commands 50,000 men with thousands of
vehicles, and the plans govern actions for many days at a time. In contrast, a battalion
battlefield is less than 30 square kilometers, with ~500 men and a 6 to 12 hour
planning/execution cycle time. Each of these scaling factors alters the nature of the
intell, operations and logistics tasks, and therefor the type of computer support that
rnight be required. The following paragraphs expand on this statement by considering
each potential application area in turn. Some of the observations we provide have been
absirécted from our work on the Air Land Battle Management Study ( Stachnick 87)
which was tasked to compare Al planning techniques with the requirements of corps

level planning.
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As a consequence of battlefield size. corps level intell requires deep looking sensors,
many different types of sensors, and a large number of observations to gain a picture of
the current situation. There are many enemy units with a wide choice of objectives,
implying that rather global inference is necessary in order to project their intent. From
a technical perspective, these problems translate into complex hypothesis formation. and

multisensor integration tasks. Both of these will benefit from Al based automation.

In contrast, the restricted battlefield size at battalion implies a reduced need for
sensor resources in each of the dimensions of type, quantity and depth-of-field. In fact,
battalions typically operate on direct visual observation (which is not to say that they
won't be able to make use of more indirect sensors in the future). This implies that
multisensor integration is clearly not important, while the hypothesis formation problem
remains, but is greatly reduced in scope. Our domain study concluded however, that
enemy positions and likely objectives can be inferred directly from the characteristics of
the terrain given a rough knowledge of their mobility and weaponry. This was a major

piece of support for our focus on terrain reasoning.

The quantity and variety of the forces at corps suggest that the planning problem
is more complicated, although that issue is debatable: there are certainly more resources
involved and therefor more options for employing/allocating them (and attendant
coordination details), but the military command structure keeps the number of units
directly tasked roughly equivalent (e.g., three divisions to a corps, three companies to a
battalion). In addition, a maxim of military operations is that plans must be simple in
order to be executed successfully. As a result, we can expect the complexity of an

operations concept to be low, presumably regardless of echelon.

The time scale of the plans, however, has a drastic effect on their nature and on
the type of automated support which should be supplied. At corps, the size of the
battlefield and mobility of units is such that situations can only change at a moderate
rate. As a result, execution of plans at this level (i.e., operations has a certain

minimum duration which is measured in days, and it only makes sense to consider
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replanning on intervals of that order. In this environment, automated planning support

systems can clearly take on the order of hours to execute.

In addition, there are timelines to be respected in both the gathering and
processing of intelligence information, and in the planning time to be allocated to
subordirate units once the corps has completed its decision cycle. These effects imply
that corps level plans are built on information which may be up to several days old (by
the time execution begins), and that they must be abstract enough to accommodate
change in the situation before they are enacted, and of course during the period while
they are in force. As a result, corps level plans often read more like a refinement of
problems for subordinate units to solve than a collection of specific actions to perform.
It follows that automated tools which support execution monitoring and plan refinement
are critical at higher echelon (since the corps needs to detect and react to situation
changes). However, the technology of Al planning has not explored the concept of
problem refinement (vs. action selection) to any degree. This implies that applications

in plan generation and plan refinement have technical obstacles to surmount.

In contrast, battalion level planning has a very immediate nature. Situation data
is fresh, the planning itself takes a small amount of time, and the plans govern a period
that projects only small distance into the future (typically 6 to 12 hours). As a result,
the plans tend to be very specific in terms of objectives and intent, and their
success; failure is directly observable (unlike the process of monitoring at corps, which
requires projection further into an uncertain future). The implication here is that the
timeline is short enough that all planning tools will need to be quite fast, and that the

role of monitoring and plan refinement is more limited at battalion than corps.

Our domain study also observed that terrain considerations placed a great deal of
structure on battalion level plans, to the point of identifving specific tactical objectives
and subobjectives, as in the selection of key terrain within an avenue of approach, or in
the choice of river crossing sites, which requires selecting covering force sites and

estimations of enemy observation areas. In fact, in the words of one battalion
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commander we consulted, "if you know the enemy and your own capabilities, one look
at the terrain and the right course of action is obvious". (This greatly emphasized the
implementation of terrain reasoning tools before planning aides in our minds.) The
underlying reason for this specificity of terrain on planning at battalion level may be
because the areas of operation are not significantly larger than the predominant
weapons ranges; local terrain considerations therefor effect every decision of force

employment.

The potential for AI applications to battalion logistics is more simple to analyze.
At corps, the quantities of equipment and resources directly imply massive logistics
concerns.  Ability to transport tonnage strongly affects our worldwide military
capability (thus the appearance of rapid deployment forces), and once forces are in
place, the available stockpile of supplies, their allocation and prioritization in many
ways determine the potential for success of any operation. The number of vehicles is
also large enough that the effect of the equipment on the terrain also has to be
calculated. Some movements are not feasible simply because they wom‘ﬂd reduce the
environment to impassable mud. Viewing corps level logistics as a resource allocation
process, automation will need to support demand scheduling with changing priorities,

partial satisfaction and interrupts.

At battalion, most of these concerns simply go away. Battalions typically carry
several days worth of their own supplies, which means that the complexity of the
logistics chain is not at issue. Similarly, because the duration of battalion missions is
short, having the logistics base for sustained operations is more a matter for superiors.
Battalions also have a much smaller pool of owned resources to impact the force
allocation problem. As a result, battalions are much more focused on tactical

considerations.

In summary then, while battalion level situation assessment, and course of action
generation, evaluation and monitoring are all potential application areas for artificial

intelligence, the nature of the battalion level combat problem is extremely focused on
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the terrain. As a result, we selected terrain reasoning (above planning) as the critical
application area, and developed the TAPS system discussed later in this report. The

nature of the terrain reasoning problem is discussed in the following chapter.
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3. The Terrain Reasoning Problem

In our conception, the purpose of a military terrain reasoning is t¢ support tactical
decision making. From a domain point of view then, the object is to use knowledge of
the terrain to answer questions that the intelligence, logistics, or planning staff phrase,
or those requests made directly by the unit commander. It is easy to generate an
extensive list of such requests. For example;

e Sensor processing:
oIs a detection of a vehicle or unit consistent with the constraints

imposed by the underlying terrain?

o Where can we expect a vehicle or unit to deploy given our knowledge
of the terrain (and unit mobility, or tactical capability)?
o Situation Assessment:
o What pieces of terrain (including cultural features) constitute likely

enemy objectives? Likely targets? \Where is the enemy likely to be?

o Given the tactical situation and the terrain, what is the enemy likely
to do next?

o Logistics:

o What are the main supply routes in a given area?

o What is the capacity of a road network for transporting units?

e Planning:
o Where should we choose to fight (what types of terrain are most

advantageous to us and least advantageous to the enemy)’

o What tactics (singly, or in coordination) make best use of the terrain?
How should the terrain be enhanced?

o How much terrain (and which pieces) should be delegated to
subordinate units?

o What are the logical avenues of approach given our knowledge of unit
mobility, and what size force can they support?

e et et et i i
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o In economy of force operations, what is the "terrain multiplier"? How
little force can we use to impede an enemy advance down a particular
avenue!?

o In offensive operations, what are the natural barriers or objectives that
define good phase lines?

o How quickly can we expect to move over the terrain, given unit
composition and expected resistance?

o How will characteristics of the terrain affect the outcome of a battle?
o How vulnerable is a given route?

e Terrain analysis:

o Which natural features form critical terrain?

o Where should a given weapons system be deployed for maximum
effect?

o What terrain supports a particular operation, such as a river.crossing,
a helicopter landing site, or movement across a front?

o What is the trafficability through a region by vehicle platform?

o How will the terrain change through use or weather?

This list attempts to identify questions that are principally terrain oriented,
although it is clear that information about unit, vehicle, and weapons system
capabilities is also required.‘ In some cases, doctrinal knowledge about enemy choices is
relevant (e.g., in asking where the enemy is likely to go next and with what types of
units), as is information about combat modelling (for predicting conflict outcomes) and
tactical options and principles. For example, one has to know the tactical concept of
shaping battles in order to decide to deploy mines which will deny the enemy access to
a particular route. Portions of such questions (where to deploy a minefield given the

desire to restrict access to an objective) are clearly within the scope of terrain reasoning.

. The question then is to ask where terrain reasoning ends, and intelligence

P
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processing, logistics, force allocation, and tactical planning begin. It is clear that all of
these applications require information about the terrain, but that each employs a body
of specialized knowledge as well. By way of response, the extreme positions are to
support operations which only reference the primitive elevation and feature data
supplied by digitized terrain databases (with no embedded concept of military units or
their capabilities), or to expand terrain reasoning to encompass arbitrary amounts of

plan generation or situation assessment specific structures.

By this interpretation, any solution to the terrain reasoning problem will appear
ad hoc from some dimension, since the dividing lines are inexact. Our approach has
been to identify what appear to be common or important questions, and construct a
small set of knowledge bases which are required to.answer them. We include as little

specialized data as possible.

The design for the TAPS system described in chapter 5 (including both the
implemented and unimplemented portions) represents our current view of what that
terrain reasoning kernel should contain. In specific, it relies on the [ollowing types of
knowledge:

o primitive features of the terrain (both natural and cultural) such as roads,
rivers, elevation data and land usage,

¢ the mobility of equipment and military units,

o the capabilities of weapons systems in terms of range, delivery mechanism
(direct or indirect) and target types

e the command structure, composition of units, and specific resources involved
in a given scenario,

o current knowledge with respect to the order of battle, and

¢ models for features of tactical interest (which organize the above information
around questions of military interest)

. Without going too deeply into the algorithms which operate on the above

knowledge, it is clear that a range of capabilities is possible. For example, by processing
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elevation data we can compute visibility profiles, and fields of fire for specific weapons.
Given primitive terrain properties, slope and vehicle data, we can build trafficability
maps for vehicles of known types (a terrain analysis activity). Using the ability to
determine fields of fire, we can write procedural models which compute good sites for
weapons deployment. For example, a direct fire weapon should be at the top of a hill,
while certain indirect fire weapons should be out of view from their targets. near the
tops of hills to enhance range. This type of information can be used in turn to generate
expectations (for the sensor interpretation problem) concerning the probable locations of
enemy units, Some other obvious possibilities are to extract natural terrain features
from the elevation data (such as ridge lines or hilltops) or to process the local topology
(with trafficability) to identify avenues of approach and critical terrain (which has field

of fire over large portions of an avenue or avenues).

The ability to write procedural models which manipulate this data provides a
powerful capability; it allows a person to express complicated questlons about the
terrain, and to aggregate component features into a larger whole. We plan to use such
models (see section 3.5.2) to define a wide range of military features of interest
including river crossing sites (which have substructure composed of fording-points,
beach-heads, covering force sites, and potential enemy locations), helicopter landing
areas, and potential mine-field empacements. (This vocabulary for military sites is also
important as an interface mechanism.) Note that the terrain requirements for all of
these features are dependent upon the characteristics of the actual units involved. Even
simple feature-extraction questions cannot be answered without reference to these

external, non-terrain oriented properties.

We have also considered adding a tactical interpretation of interactions on the
battlefield to the terrain reasoning knowled_ge base. This information would identify
relationships of the form, unit A is attacking unit B, or that units X, Y and Z are all
involved in a particular thrust with an attached objective. The presence of this
knowledge (once encoded - and selecting the appropriate representation is an open

question) would enable a class of analyses which determine the feasibility of actions on
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the terraip”givcn the current combat situation. For example, we could predict
movement rates and anticipated strengths of engaged units (incorporating terrain effects
on maneuver and combat) or identily units able to be at a particular place at a

particular time. A representation of this kind similarly opens the door to much deeper

tactical reasoning, where we explore options for tactical actions suggested by the terrain.

At the current time we are not considering this form of data a part of a kernel terrain
reasoning system since the knowledge appears to be more specialized to plan generation

and evaluation.

It is important to include a word here about what terrain reasoning is not. By the
definition above, a terrain reasoning kernel does not contain representations or
algorithms which are highly application specific. So, for example, the system will not
model sequences of actions which compose a military plan, or provide mechanisms for
searching among the sets of tactical actions which might accomplish specific goals. The
system will, however, aid in generating and evaluating single tactical choices when they
are impacted by the terrain (which is often). Similarly, a terrain reasoHing kernel will
not maintain signal intelligence data, or field surveillance reports which are the
underpinning employed by intelligence ofﬁce‘rs to construct situation assessments. As

mentioned earlier, it would be possible for a terrain kernel to aid in sensor

. interpretation by identifying plausable areas for unit or vehicle deployment. A possible

extension is to introduce the concept of patterns of deployment (e.g., linear columns or
star-shaped radar and missile arrays) into the underlying knowledge base. This would
support the sensor interpretation problem, although we currently view the idea as too

application specific.

In summary then, the concept behind our view of terrain reasoning is that it
identifies (or examines) regions of terrain which have some set of desired properties.
These properties may relate in the broad sense to mobility or weapons characteristics, or
to the identity and position of specific units, but the end result is ultimately computed
by asking the right set of low level questions about the terrain. That is, we compile

application questions into requests which constrain the topology or primitive feature
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data in the underlying terrain. In all cases, the output is a region. or collection of

regions of terrain.

Our prototype for a terrain reasoning system is discussed in chapter 5.
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4, Background studies

The following sections describe investigations we performed durii:g the course of
the BCA contract which were ultimately not incorporated into TAPS. We discuss
several approaches for representing and manipulating physical space. as well as a
Symbolic Map Presentation system (SMAP) which gave us exposure to digitized terrain

-

data and suggested many of the architectural ideas in TAPS.

[t is important to note that the work on alternate representations was crucial in
the development of TAPS, since it led to the conclusion that no single terrain
representation was going to be sufficient. As a result, we built TAPS around an
abstract query language whose purpose was to hide representational commitments,
allowing us to deemphasize the role of any specific technique. As TAPS grows however,
it will become important to implement multiple data structures, and the studies

described below will have very tangible impact.

4.1 A Comparison of Terrain Data Representations

There are several different ways that terrain data can be represented. Each
approach has its advantages and disadvantages. In this section, we discuss digitized
data, grid oriented representations, quadtrees. and point, line and region descriptions of

terrain.

4.1.1 Digitized Terrain Data Structurcs

Digital terrain data (such as that available from the Defense Mapping Agency or
the Engineering Topographic Labs) provides a pixel level description of features in the
terrain. These maps have varying resolutions, (from 12.5 meters/pixel to 100
meters/pixel or more) and are typically obtained by manually digitizing data that was
obtained via ground or aerial surveying of the regions in question. Some automated
processing of aerial or satellite photography has also been employed. Terrain data is
stored in terms of several (usually massive) arrays, one encoding properties of the

terrain, and one for the elevation data. Digital maps provide a significant amount of
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infor_mation. ‘concerning each pixel; 64 bits in the case of CATTS files of the Fulda gap

region. Figure 4-1 gives a breakdown of the fields involved.

As can be seen from the figure, only a portion of the information is elevation data.
while the majority is concerned with characterizing the terrain in terms of its usage
type (urban, agricultural, forested, etc.), the presence/absence of significant man made
features (large and small roads, bridges, etc.), and its effect on the movement of

armored and unarmored vehicles (by velocity and type).

As a departure point for a more abstract terrain representation, digitized data of
this kind provides several advantages; it captures a great deal of significant information,
and it abstracts away a set of properties that are obviously important for a given
application (military planning in the case of CATTS). The data is easily presented

given a color bit-map display.

For application to tactical planning, this format has a number of 'disadvantages
which must be overcome; it provides more data than needed (generally presenting both
storage and computation problems), and it is inconvenient for representing features
composed of large homogeneous regions, as well as features~ known to be linear (such as
roads). Digital data also tends to lose a number of cultural features of import because

of its resolution constraints, for example; buildings, parking areas and minor roads.

4.1.2 Grid Representations

A grid is a regular tessellation of a region of terrain (usually based on square or
hexagonal tiling) in which each tile has a type and an associated set of properties. As
such, a grid is a straightforward extension of a pixel view that simply employs a more
convenient tiling size. (Grids are typically used as boards in wargames, both
computerized and manual {Quattromani 82:.) In fact, the tile properties are typically
derived by averaging over the properties of the individual pixels. For example, terrain
is often shown as "forested", "rough". and "clear", and average movement speeds are

associated with each of these classes.
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PIXEL-LEVEL TERRAIN DESCRIPTION (25 METERS/PIXEL)

]

¢ WIDE RANGE OF INFORMATION
ELEVA- | TERRAIN o\ o |CANOPY |SOIL |HYOROG-| 0BSTA-paans |RAIL= g pges| MISCEL: ESSS?RY
TION |rveg |72 101° ICLOSURE | TYPE RAPHY | CLES |,q_q] |ROADS| g4 g5 ™| LANEDUS! oy eyeny
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Figure 4-1:

CATTS Data Fields
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Grid representation often include an overlay of linear features, namely roads,
railroads and rivers. Tile access restrictions representing obstacles are also often

attached.

The principal advantage of a grid oriented view is that it reduces the quantity of
detail involved in the underlying representation, thereby simplifying the computations
over it that need to be performed. The specific addition of linear features is also more

convenient that in either the quadtree or DMA formats.

The disadvantages of grid representations are as follows. First, while they are
more abstract than pixels, they are not hierarchical, meaning that they provide no aid
for manipulating features of interest that are larger than tiles. Second, if used in
isolation, they suppress pixel level details which may be important; for example, the

specific locations of clearings within tiles that are predominantly forested.

In summary, grids share the advantage of pixel representations in-that they are
convenient, and in part solve the digital map problem concerned with overload of detail.
Their disadvantages for planning are also identical, and revolve around their non-
abstract nature. lLe., both present what can be called a syntactic picture, as opposed to
a ‘“‘semantic" view which identifies the significant features of the terrain that truly

constrain route planning and vision processing decisions.

We are not contemplating the use of a grid format to the exclusion of more

abstract representational forms.

4.1.3 Quadtrees

Quadtrees :Samet 83,_Samet. 84j are a hierarchical method for representing
features in a two dimensional array of data. They operate by successively decomposing
a known region into equal fourths, and characterizing each subpart according to the

presence or absence of a single feature.

" Figure 4-2 shows an example of a quadtree. In this breakdown, each subpart is
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labeled in one of three ways; a black node stands for a region that contains nothing but
the desired feature, a white node does not contain the feature at all, and a grey node
represents a region that has a mixed interpretation. By successively resolving grey
nodes into smaller parts, the hierarchical decomposition shown in the figure is obtained.
(If necessary, this decomposition is continued to the level of individual pixels, which

must be either “white” or “‘black.”)

The principal advantage of the quadtree approach is that it supports very fast set
manipulation operators (for taking the intersection and union of terrain areas). This
property is derived from the fact that a quadtree is a hierarchical representation
organized around the containment relation. The result, for example, is that the
intersection of two pixel level features does not need to be computed if it is known that

their enclosing regions are identical, or wholly independent.

Figure 4-3 show how the union and intersection operators are computed. In
essence, the operations are trivial if either node is either white, or black (e.g., the union
of a mixed region with a region that does not contain a feature is just the mixed
region). The only non-trivial case is where both nodes are grey, in which case the
problem is reduced to applying the same procedure at an increased level of resolution
(there is an additional complication associated with aggregating the results of that

computation).

Quadtrees also have several disadvantages. In particular,

o they must represent features in the same region of space (requiring that that
region be known in advance)

e one quadtree is required for each feature (which leads to storage
inefficiencies)

o they require a significant amount of computing time to define (since each
pixel must be classified)

o they are inefficient (in space) for certain kinds of features (notably highly
- textured ones),
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o they are not suited for modeling features with continuous. vs. binary values
(e.g., elevation data) ‘ .

o they have no localized concept of an object (i.e., objects are defined by
partitioning the total space of terrain), and

¢ they are inconvenient for describing relations between objects.

These last two points are influencing against the use of quadtrees as a

fundamental terrain oriented data structure.

4.1.4 Point, Line and Region Representations

The Engineering Topographic Laboratory has recently been engaged in the
definition of what can be called a point, line and region representation of terrain which
constitutes the beginning of an object oriented approach to managing terrain
information. This format is envisioned as a complement to standard digitized data,
which provides annotations to that data. So for example, point objects 'gc%entify features
(primarily cultural ones) which are beneath the resolution of digitized maps, but which
are nevertheless important to describe. Examples are buildings, mountain peaks, and
other significant landmarks. Linear features are roads, railroads and rivers as
mentioned above. Region features (represented as polygons) are meant to capture
homogeneous areas (such as pine forests, or lakes, etc.) whose pixels are identical in at
least some subset of their properties. This definition allows several regions to be defined
over a single geographical area (e.g., identical in ground cover type, in mobility value,

soil type, ete.).

The point, line and region representation has the advantage of both capturing
detail that can be lost in a grid or pixel format, and of abstracting away from pixel
details where appropriate. It has the disadvantage of emphasizing polygon
manipulation operations (for performing set operations on regions) which tend to be
slow unless additional representational structure is supplied. (It should be mentioned
that there are a variety of approaches for solving these computational problems,

including the approximation of concave polygons by convex ones Kuan 84, the use of

S
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‘‘polygon comparison’ techniques iWeiler 80, and the maintenance of a containment

hierarchy {Havens 83:.)

4.2 Representation and Manipulation of Shape

Spatial models provide a mechanism for representing and reasoning about the
physical shape of objects, whether they are natural, man-made, or conceptual in origin.
The survey we presented in section 4.1 indicated that several types of data structures
have been used for these purposes, primarily grid organizations and quad trees, but
concluded that neither of these were sufficient according to our criteria. Grid oriented
approaches lacked all sense of the abstraction required to construct larger, irregularly
shaped features, while quad-tree mechanisms provided fast manipulation operations but

lacked convenient presentations of objects.

Given this background, we decided to explore a polygon based approach patterned
after the point, line and region format presented in section 4.1.4. Iq _this view, the
borders of objects are represented as polygons (really vertex lists), which might be
concave or convex, and possess holes. The operations on physical shape are then cast as
polygon manipulation procedures. For example, polygon intersection is used to combine

descriptions (e.g., to find areas which are both hilly and forested), and polygon fill (a

. graphics operator) is used to display objects once they have been identified.

As mentioned in section 4.1, this polygon oriented representation has the
advantage of providing a concise (and explicit) deflinition of objects, but the
disadvantage of relying on procedures that have only been implemented in a
computationally inefficient form. We decided to work with the advantages, and

specifically address the disadvantages, as explained below.

The following subsections describe the details of spatial models: the representation
of shape, the relationships which exist between shapes, the structure generated when

shapes are instantiated in particular terrain, and the operations which manipulate them.
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1.2.1 Shape Descriptors
The following types of shape descriptors are supported in this design;

e points

o lines

o regions (polygons)
e core descriptors

¢ boundary descriptors

The first three are basically self explanatory. Their usefulness to represent types
of terrain objects is discussed in section 4.1. Core and boundary descriptors are
applications of the other primitives. A core descriptor is intended to represent the
central part of a feature and may be formed out of a point, line, or polygon. A
boundary descriptor is a polygon, and provides the most liberal definition of a feature’s
extent. These shape elements are used to support gradations in the system’s response;
for example, the question, "does this route go through the mountains" can be answered,
"yes definitely" if the route intersects the core description, and "only somewhat" if the

boundary but not the core feature overlaps the route.

We are also experimenting with the use of "point set" shape descriptors, which
are intended solely to fulfill a user interface role. They allow a user to define a feature
by scribbling on the screen with a mouse. This results in a collection of points which
can then be converted automatically into polygonal or linear regions. (There is some
possibility that point sets may offer computational efficiency {or computing intersection

operations in some situations. If true, they will be integrated in as an internal shape

type.)

Examples of shape descriptors are shown in figure 4-4. Note that the polygonal
features are approximate definitions as opposed to explicit listings of all boundary
pixels. Tnis property is both desirable from a conceptual view, and important {rom a

practical view. Since different quantities of detail are needed for specific applications,
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Figure 4-4:

Example Shape Descriptors
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we are leaving open the possibility of employing hierarchical refinements of object

shapes (from very approximate to completely detailed).

4.2.2 Spatial Relations

Spatial relations identify the physical interactions between the objects in the
terrain. They appear as links (in the semantic net sense) between the shape
representations discussed above, and are used for several purposes. First, they support
object recognition because they make the physical connectivity of terrain features
explicit (i.e., they provide a framework to match upon). Second, they allow the set
operations on shapes to be made more efficient (addressing the main problem associated

with polygon oriented representations).

The following is a list of the spatial relations we expect to maintain. Note that all
are binary predicates on shapes, and that the relations are all mutually exclusive.
Those which are not symmetric posses an inverse (hence they are listed in pairs). The
relations are also complete in the sense that the relation obtained by ap‘plying any set
operation to any two polygons is a member of the list below.

o disjoint
e overlap
e contiguous

¢ in, contains

¢ encloses, enclosed-by

Figure 4-5 shows these predicates as defined over polygons, although they also
operate, with some exceptions, on point and linear shapes. The exceptions are overlap
(which is not defined between points or points and linear shapes), in and contains
(which do not operate between points), and the encloses, enclosed-by pair (in which the
enclosing object must be a poly¢ n). The concept of enclosure here is very similar to
that of containment; enclosure {s used in situations where objects have holes. Enclosure

does not imply containment.
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It would be possible to také an alternative approach and define links for the
union, difference and intersection relations (which generate the other set operations).
and use them to connect all polygons instantiated over the terrain. This format could
indeed be used to encode the relations described above, but at the expense of clarity in
highlighting the named operations and by causing an increase in the complexity of the
network interconnecting shapes. For example, disjointness would have to be expressed
by stating that the intersection of A and B is null (also true of contiguous objects), and
that the union operation results in two distinct objects. Similarly, containment becomes
the fact that the intersection and union operators chose one polygon or the other. and
that the difference operator creates an entity with a hole in the middle. This

complexity tends to obscure the property of simplifying further polygon manipulations.

Several possible additional relations are "near", "through", "before" and "after".
Nearness implies a fuzzy distance metric which is dependent upon the scale of the
features, while the "through" relation captures the common situation in which a road
goes through a polygonal region. (Throughness between polygons would }aentify regions
that "cut across" one another.) The relations "before", and "after" address the fact
that routes, lines of advance, and avenues of approach all have a direction. These

-

relations would be helpful in answering questions of the kind, "what are the first

. obstacles encountered along the planned path?".

It should be mentioned that both the containment and enclosure links can be used
to form a hierarchy of objects in the environment, This has an important consequence
for the aprilication sysiems which rely on the terrain reasoning kernel; in specific, the
hierarchy provides a quality of abstraction in reasoning where the properties of larger
objects can be examined without regard to the details of the terrain features which they

enclose.
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The process of instantiatfing the relations discussed above creates a network of

links connecting the spatial components of objects in the terrain. It turns out that the
properties of the spatial relations allow some economy in that structure since several

obey transitive, and distributive laws. This allows some relations to be inferred, vs.

. computed and explicitly stored (see {Shapiro 85a] for details).

e

-%

Figure 4-6 shows a network of relations that might exist in a simple scene. This
network is relatively sparse (meaning that all polygons have not been compared with all
others) but it illustrates the fact that a number of additional relations can be inferred.
For example, given that th;e mountain is disjoint with the plain, an automated system
can answer "no" to the question "is the objective IN the mountains?" by inheriting the
disjointness relation. The same process can be used to realize that the infantry
battalion is also disjoint from the objective, since disjointness inherits across any
number of containments. On a similar note, two objects have no intersef:tion if they are
enclosed or contained in any shapes which are contiguou- Another prin::iple is that no
object can overlap another unless they have the same parent (containing or enclosing
shape), or unless two of their parents overlap. From a computational perspective, these

types of considerations save a great deal of effort.

In terms of knowledge acquisition, this structure of relations can be built
incrementally as new shapes are defined. We have not identified the appropriate
procedure yet, but three possible strategies come to mind. The first is to avoid all

exploratory comparisons aimed at building a classification net and only compute those

which are required. As time progresses, this should result in a network that simplifies ’

further operations. The second strategy is to determine the most useful relations on the
theory that a small initial investment will save a larger number of comparisons later;
computing the smallest existing polygon a new shape is IN or ENCLOSED-BY would at
least.'ident.ify its place in the hierarchy and allow superseding disjointness to be
inher';ted. The third strategy is to develop a minimal classification which provides the

greatest simplification when f{urther operations are required. This would involve
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Operatlons ‘on the spanal ‘component ol‘ objects, but there is an open problem 'm
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N 5- deciding what it means to intersect (etc.) the associated symbolic descriptions. That is,

. when objects are combined, what set of properties should be attached to the end result?

Some of our thoughts on this topic are discussed below.

I we consider the puhrpose of the operations on object shape, there are primitives

-- for aggregating shapes (union), identifying shared‘reglons (intersection), and noting
discrepancies (difference). If we view the semantic component of objects as attachments
to shapes (i.e., as descriptions of physical regions) then the role of object manipulation

is to compute a semantic analog whenever a spatial operation is applied. In this view,
the goal of intersecting objects is to determine the properties that still apply to the
intersected region. Similarly, the goal in union is to build a composite spatial region
and determine which properties to ascribe to the larger whole (i.e., an abstraction
process). The goal in computing difference is similar to the intent of intersection; it is

to identily the properties that apply to one object and not the other.

It is important to notice that this approach creates two types of objects which
define geographical and non-geographical concepts. Geographical objects describe
regions of terrain (a hill, a valley, an avenue of approach) and are operated on as above,
while non-geographical objects have no intrinsic terrain analog. A mortar, an infantry
babtallon, and a SAM installation are examples of the latter. Each has properties and
parts (the radar and missile components of a SAM, its range and accuracy parameters)
but these properties cannot be combined in the same way. That is, the range of a SAM
and the number of vehicles in a Tank Column cannot be intersected, although their

associated terrain regions (a SAM site, the location of the tank column) can.
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Ooject union is better illustrated in the situation depicted in figure 4-8. Here,

Senspon

three route components (all of which have similar property lists) are aggregated into a

single entity. The resultant object has the combined spatial region, its subparts are

———ripy

obvious, but there is a question as to which properties should be included. Union

i objects implies intersection of properties, meaning that the risk value of the route
' should be listed as "safe". However, the question "what is the transit speed of the
—: route?" deserves some answer other than enumerating the travel rates associated with
' its parts. The right answer is to characterize the route as a whole as go, no go or slow
'; i

:

1!_ The issue is then how to control abstraction on properties. We have .no explicit

answer at this time, although we are considering including explicit procedures in object

‘models for directing "upward inheritance” of specific properties; that is, to determine

[ JESNN

how speed, safety or other characteristics are aggregated from component parts to a

whole,

[ I
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S - The architecture of SMAP was quite srmple (see figure 4- 9) It operated on
CATTS data, which is a 25 meter resolution grid giving 64 bits of feature data and 16
1 bits of elevation data for each point, which in our ca.se covered a 10 km by 14 km area

- "of the Fulda Gap m uermany For operations, the user could requesc fields from_the

CATTS database by mousmg on menus, dlsplay them on the color screen, and mvoke

certain algorithms on t,he ‘elevation data described below.

A cummn van e - e . - .~

=

s e

With respect to the color display, SMAP employed a predefined sorting of CATTS

fields into background and overlay; space-filling CATTS fields such as soil type or

———————

ground cover were background, and non space-filling fields such as road nets, river or

obstacles were overlays. Overlay data could be placed on top of any background

-rrane aya

display (allowing the user to view road nets over soil type, for example. as a precursor |

for building traversability displays). This turned out to be quite valuable as a visual

presentation aid.

PRSP |

The user could invoke line of sight operations by clicking on any point of the

display, making it possible to correlate observability or fields of fire with selected

.
& eormed

terrain conditions. Also included was an ability to evaluate the risk of a proposed path

by essentially forming a histogram of the route's observability from different vantages.

'-I Vewsln

A final operation was a manual feature extraction capability; here, the user would

define .a particular shape as a named feature (for example, a hilltop objective) which

fos oo

could then be displayed in the context of selected backgrounds and other overlays.
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several lmportant lessonS' that mulmple overlay presentatlon was the preferred form of

A e -

terraln dlsplay, that the supportmv lmplementatron techmques were non-trivial, that

AR AL 8 AN A €A A AT w i a3 e § MM S S AREAYmE® $h % aw  we s m e m wae

terram analysrs system (calculatmg dlrect‘. and indirect field of fire from regions or

automatzcally xdentlfvma features of mlhtary mterest, was the crmcal thing to pursue.

Our development of TAPS was specrﬁcally dlrected towards l:hat abrhty A

We ultimately abandoned the implementation of SMAP for very technical reasons;
it was deeply tied to CATTS data formats, it's method for supporting multiple color
overlays required preprocessing of all terrain data, and it had very little flexibility in

terms of combining overlays, including a complete inability to select display colors.

35 millimeter slides shown output from SMAP are provided in appendix II.

.~
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Te;'reln Analysis and Planning System (TAPS).- This system ‘demonstrates methods for:
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oncluded that terra{in reasomti;waé 2 critical area to pursue.—; Specli’_xcally, T«\PS
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mteracts wnth a user “to 1dent1fy features of rmhtary lnterest i‘rom dlgltlzed map. data, :

.77 selects features appropriate for particular tactxcal actions, and evaluates the impact of

| . 77t terrain on actions proposed by the user. TjThis"défin'es‘ a system with the potential for ™" |
. helping the S2 ofﬁceg satisfy the te;"r‘ain anal_ys:i.s,' requests typically gen.erated by the SS.. ) i
) - - As such, it is not a true planning aid (which would include a representation for combat ]
x :r‘if_:;-plans, an.appreciation of time, knowledge about the resource allocatxon process, and an 3
é .. ablht); to sugges} tactical alternatives, etc.), but -rather a system which supplies the ;
ST critical ‘inforr_‘r}nqtv:lon such an aid would require. . . ’ . i
2 T !
3 5.1 The Motivation for TAPS ' :

{ In order to better define the capabilities of TAPS, it is important to examine the

'% way terrain anelysis is employed by the military in more detail. From the introduction

above it is clear that its role is to support planning, but we can motivate our approach

further by examining the tasks terrain analysis specialists are called on to perform.

R'M‘

From our observations, requests for terrain workups come in two forms; the first

et

is to produce a more or less generic analysis of the entire battle area which identifies

obstacles, cross country movement rates and weather effects on movement if special

P A S PSPV

el

weather conditions are expected to occur. (This list is not complete, and seems to differ

1 . . .
i somewhat by echelon). The result is a collection of acetate overlays which can be
created as soon as the battle area is identified, often well ahead of any specific
f .
_i engagement (years in the case of anticipated conflict areas such as Fulda). The second ;

type of terrain analysis request is motivated by the desire to support specific tactical

| SR,

actions and occurs more frequently during the operations cycle. The essential feature of

———
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rossmvs,-areas for envagmg a movxriv enemv, helncopter landmﬂr areas, mme ﬁeld e 3
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R fnendly movements etc._ ~To give a_flavor for the amount of conte‘(t, mformatlon
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bndgmg is appropriate, and the locatxons appropriate to each)

. the kmds of mobxle bridges avallable o ‘ -

. o the permanent‘l;;idge‘s already in Aplace. (a primiti\;e "terra'ln _feat,ure)

o the distance of hostile. units "(if - the- scenarlo ns move to contact, fewer - =
protectwe measures are required) - . . ... ¢

.- fasie e mmem e o 4 e s .
5 !

o the ‘defensive weaponry .available "to..the operation (given artillery,
observation over the opposite bank is less essential)

Given this input, the output of the river crossing terrain analysis is then a list of

features similar to the following:

S O O Sy A S SO P

o an identification of where to cross the river (and how - via bridges or
wading)

¢ identification of ingress paths to the river, and egress from the opposite bank
o identification of regions that provide direct fire cover to the crossing point
¢ identification of points that provide observation over the opposite bank

o identification of areas providing cover for the expected enemy (i.e.,
predications of likely enemy positions)

e a description of river bottom conditions and soil conditions leading to a
“discussion of throughput of forces (conducted more probably by army
"engineers)

" Note that the output above is expressed in terms of terrain regions thav fulfill




’--:specll'ic tactlcal purposes._.A cntlcal- pomt 1s that these can ultlrnately be cenerated by,

P T L e

‘In’ summary then, the l'unctlon of terrarn analysxs is to take an expressnon of a

T . P Y

planned operatron and translate it intoa list_ of the terrain features which can fulfill the e |

o e e s I e s e e s e PRI ——

dlfl'erent “roles i m the plan {in the case of a genenc Cross country movement anal} srs the

H e &-4 e e ® _"...__‘.... C ARG AR P STt L W e Y e DALY AT ey me Y3 e Rk cpene eww o mvame s - v s e L SN

n_otlon of a_tactical operatron has to ‘be taken somewhat loosely) Thrs is exactlv the -

- S R TTn _.l;:.e..... b s Tt i Md ee et LR AR 8 T dmine

} T capabrlxty we are addressmv throuvh our research ln the BCA project.  The TAPS - ":’:i“‘
T system (described at lenvth in thls chapter) provrdes basic support for this terrain
2= . analysis activity in terms of data : sources, query, 'and display tools. It should be clear
however, that the eventual solutron wnll also requlre models for tactrcal actions and ]

terrain l‘eatures of interest, in addition to a knowledge of the equlpment capabilities and

v

4.7 ~T:xrm-organizational units in the military domain. (Our thoughts on the structure of these |

- L e imamew wu xm -

... ... modelsis discussed in section 5.5.2.) ' ]
_2 - Whrle we hatre .a-lways targeted terrain analysis as the TAPS application, we have

" also been concerned with the underlying question about the extent to which terrain

é analysis subsumes combat planning. As such, we have a strong motivation to examine

3 realistic problems. Towards this end we examined scenarios from the military training

; literature, identified a mission and a notional battalion (with realistic equipment list) to

3 set context, and extracted some number of terrain analysis queries which were

l motivated by that scenario. The results (see {Shapiro 86]) tend to confirm our belief 1
'3} that the use of TAPS (or its successors) will strongly motivate battalion level combat

planning decisions. In addition, we feel that the TAPS capability is important to the

echelon of corps, division and brigade.

In the remainder of this chapter we describe the TAPS architecture, the Multiple
Pane Interface (or MPI), the GINDB subsystem, and the World Model. Appendix III

provides a set of color slides and a description of output obtained from TAPS. We have

omitted reproduction here of the battalion scenario and equipment descriptions

presented originally in {Shapiro 86..
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.over an underlying map.
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nalySIS or a dlgxtlzed map prov1dmg elevatlon and srmple feature data (althouch th

: later is avallable only for restricted areas of the world) The output is a collection of

e < ae -~

__” ——— acetate overlays which ldentxfy and . lnterpret 1mportant terraln reglons when placed
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TAPS suppor‘t‘s‘ the same type of I/ o) Behavior described above. For our ’p“urposes-, A

it is reasonable to rely on dmtlzed map data as 1nput (elevatron and feature data both)

and we have defined an output mechanism which supports multlple overlays “analogous

‘to (and in many ways more capable than) the acetate procedure currently employed.

This in turn provides a very convenient and powerful user interface format. With
respect to the process of terrain analysis, our basic design decision has been to view it as
an interactive feature extraction procedure in which the' user grows a database of
interesting regions by applying a series of questions to the 'underlying information
representing the terrain. To support this approach, we have introduced the concept of
feature models into TAPS, which define the component parts and constraints on terrain
regions that fulfill tactical roles. We hope to use the act of instantiating these models

as the basis for a mixed initiative interaction between the user and TAPS.

This approach gives rise to the architecture presented in figure 5-1. There are
three major components of this system; a language for constructing terrain based
queries (called GINDB for Geographically Intelligent Data Base), a display interface
(called the MPI for Multiple Pane Interface) for presenting candidate regions to the
user, and a knowledge base (labeled the World Model) that contains the tactical feature
models mentioned above in addition to data concerning the organization and equipment

of the military domain.
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' Figure 5-1: TAPS Architecture
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decxdes:to develop an avenue of approach for a heavrl} mechanlzed battallon T

.;...--. -..._.A

e T [P
SR G $5 ,-'..r.r... - e . . e 3 e aswer

baswally hxvh mobxhty, 1e., the A\D of ﬂat not forested and not urban. (GI\DB
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—— [

ansl"ﬁi?_?}!}?. by applymtr_the approprxate loclcal op‘e_ratc_)rs to ,ﬁﬁlds e_ttractec_i_*from the< T
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under ym°r CATTS data ) . After dlsplavmcr the results, he mlght extract (manuallv, by
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whlch is= between the current locatlon and the
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,-’objectwe, and store this as the ﬁrst approxnmatron to the avenue of approach in the

- database mamtamed by GIVDB ' 1\ext he might decide to reduce this area by

ellmmatmg the portlons not navngable by tanks due to weather or soil conditions. ThlS

5. . .could be accomplished by generating an overlay for the terrain regions with non-porous,

clay based soils that ar'.e' also in th_e'c*ufrent‘ avenue (a low level GINDB request) and

{ . displaying it on'top o{ __the .high' mbpmt&' "z"ohe%"}fééfie%d'_553?;&. " At this point, it would ° -
0 he possible for ‘the” user. to e'yeball‘ and then adjust this restricted avenue (again -
é. "~ . manually by drawing on the screen with the mousg, or semi-automatically by requesting
= further manipulations of the region on display via GINDB) in response to some criterion
‘ that he possesses external to the machine. An example is that the particular \.'eh'xcles
: involved might have very good traction characteristics, so only the least tractable areas
¥ near bodies of water need to be removed. At this point the analysis might progress to
‘ the more detailed step of identifying river crossing sites, which would involve
_3 instantiation of the 'river crossing site' feature model outlined in the previous chapter.

Our view is that this would proceed in stages (just like the avenue of approach scenario

described here) except that the interaction would take place using the vocabulary of the

L.—oh-‘

component parts and optional/required parameters defined by the model. Ultimately,

PR

the same type of low level terrain queries would be processed by GINDB.

l —vmw

The following sections describe the major components of this architecture in more

detail. Before continuing, we should point out that GINDB and the MPI have

| T

undergone significant implementation, while organization of the World Model lives still

very much at the level of design. Some of the most interesting technical issues in the

b aere g

projéct revolve around determining the appropriate composition of these feature models,
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-2 creating new panes manually (via the mouse). -
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-—areas where it contalns data (see ﬁgure 5 2) The resultant dxsplay 1s what the eye

P Lea wma e e

would see as the varlous l'eatures overlay one another.' The \/IPI provxdes operatlons for

o den - A — P

settmrr the color and overlay mode of md\vrdual Jpanes (e g., hashm outlmmg, etc) |

i
e

et and l'or'"reordermg the sequence in-which-the panes occur. In-addition, there are -

operators for descrxbmv the contents of 2 pane (or subset thereof), returning the form

. .“)”‘“"'used to wenerate the pane, and 1nput procedures for extractlng' data from panes and for

- - ~w

At its core, the MPI is a color graphics tool which is independent of the BCA
application. However, in the context of BCA it can be used to compose terrain displays
—l'or such things as cross country mobility (which includes obstacle, slope and soil
criteria), order‘ol' battle data over a feature map, and avenue of approach displays
A which include elevation contours, shaded areas for zones of critical terrain, and outlines

of objectives. The MPI mouse input capabilities support placement of icons, and
addition of annotations such as labeling the axis of an enemy thrust, numbering hills, or
flagging terrain alterations such as mine fields. The overlay capability can be used to
display output from terrain analysis procedures which compute new features from the

underlying data, for example, to show fields of fire on top of an order of battle display

as an aid for evaluating force positions.

5.3.1 Approach
‘As a graphics problem, there are two issues involved in constructing the MPIL

The first is to define a logical mechanism for displaying multiple features over a given

point such that they are visually distinct and overlay appropriately. The second (and
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- obvxously related):

f“"“»""‘ alysxs shows t,hat the volume of da.ta mvolved in processmg multlple overlays is tatmv

L L at t.he level of machme cycle txmes. Even for the comparatwely loose constraints of a

. research prototype, clever alﬂonthms are reqmred

.,_. T NV UR R S —

—— - ¥ It vl v mrm et erste SRR A P N e Aeia e A A SSEAR I At e i
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o Thns speed reqmrement can be 1llustrated as follows. In our formallsm, an overlay

. - o i

_ consnsts o!' a sxn¢le featuxje Wthh 1s represented as a blnary image and displayed in a
o smgle color. For the purposes of calculation, we can take 30 overlays as the practical
maximum, since visual clutter effects are clearly dominant at that level of complexity.
| Our digitized map data employs 25 meter resolution, so a 512 x 512 grid (which is 20

kilometers on a side - about twice the size of a typical battalion area of interest)

.
[V

contains ~262,000 pixels, and 30 planes carry close to 8 million bits. [f these are

accessed individually, merely touching them (reading and writing) requires ~16 seconds

B
.
[

at 1 microsecond cycle times {using 2 2 instruction loop that leaves little room for

- - additional processing). This should make it clear that any practical implementation has

[

to manipulate the overlay data cleverly, and operate fairly closely to machine specifics.

- e toa

We have solved the above efficiency problems by employing a number of
assembly-language programmer’s tricks; we reference memory 32 bits at a time and

employ the associated word packing and unpacking techniques, we have made extensive

PPN

use of microcoded operations such as bitblt, and in situations where no microcode
support was available we have written tight assembly language loops (via the system-

internal calls available in zeta-lisp). In addition, we have introduced an intermediate

SR |

data structure called the plane cube which represents paralle! bit slices of the 8-bit wide

color screen memory. The mechanics are explained in the section 5.3.5.1, but the effect

s me s

is to support extended use of bitblt. While this is an undeniably arcane implementation

decision, it appears to produce the desired speed; we expect to process the 30 overlay

-

test case in circa 2 seconds.

foemns

‘The procedure we have adopted for combining overlays is actually quite simple

(see figure 3-3). It relies on two central data abstractions; overlays and aggregates,




p ey M SN LTI
Tt T 1 geavran ¥ o T e A e 0 4 e

ALy ;«{_;l_,

PRSI ——— ———

=some: pattern representmg an overlay mode (e.o., hashed lmes, a'matrn:

Aaretirs e e T e mim e rammge—s -

of f dots, etc.)

d
——— .. . i
Fl
i
i

=t e P — vom—n o ——

ind the resultant data mask is: .wrlt.ten to ‘the color screen memorv usmg the desrred S
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regate, producmcr a multr-color dnsplav. :"-’

e ,,_ e e wina

-a~given area. by dlsplaymv some pxxels i

Thxs is done for every-overlay in t,he ags

X
SRR

A s 3 A o e m e ne e

ST It. is worth noting that thls approach lumts the possnble overlay modes to the ones '

1 .,-a.;,.» e‘cpressxble as samplmg operators. In order to answer the request "drsplay the hills over ,
e ‘i “the backvround data by tinting the background red" we would have to introduce 2

#oa -—» different type of operator which compares the color associated with the source pane to

3
¥ S

“ 'f- S the ones already on the color screen, and then 1nvokes a combmatxon functnon such as

-;»-—-w color averaging, or color wheel addition. - We have rnade provisions for incorporating

~—

thrs type of operator (called translucency) in our design, but since the obvious method

[y

'-n'vi‘l-k‘;

.

-k of implementing it (by calling 2 function on each source/destination pixel pair) is too z
=2 :
1 . . .

slow to be acceptable, and the more efficient approaches are correspondingly involved, ;
¥ we have not included the operator in our current implementation.
: s

5.3.2 Overlay Modes

e

The planned set of overlay modes are therefore as follows;

s overwrite

.---.i

¢ hashing

1 A

¢ stippling

.»-—b.-'

o borders

e-translucency

 [——

In overwrite mode, the source data is not reduced by sampling, meaning that it

 FO—

completely obscures whatever area is beneath it. Hashing is self evident, and stippling
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It is possible to produce a wide variety of overlay modes of the kind described

no s,
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above. Since they are defined solely by a-sampling pattern, they are trivial to

—; construct.

x

-i : 5.3.3 MPI Architecture

: The architecture responsible {or this behavior is shown in figure 5-4. It consists of
~§ a small collection of data abstractions whose operators are directly accessible by the
A

user. Two main abstractions are involved; overlays, which define single panes of glass

in the MPI metaphor, and aggregates which collect and order overlays and are

|

ultimately displayed. The roles of the remaining support abstractions are as follows;

; the color table manager allocates colors (really indices into the hardware supported color
: table) from the 256 member set available on the Symbolics Lisp Machine at any given
_i time, and the pattern manager defines individual overlay modes. The date source is an

abstraction representing the source of the binary images incorporated into overlays. [ts

SO

purpose is to separate the MPI from whatever system is being used to drive it, in this
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At the current txme, the operators of the overlay and aggrevate abstractions are

drrectly avallable to the user. For e\cample, on receipt of a dataset from GINDB, the

) user can defme an overlay (which amounts to. running set overlay mode and set color)

“and then display it (which uses return data source to get at the input feature map).

Since the design allows many aggregates to exist simultaneously, we have added the

overlay operation aggregates which use in order to provide the necessary indexing.

Most of the operations on aggregates are self-explanatory with the exception of

. extract new overlay and describe data in region (both of which are partially

implemented at this time). The first is the mechanism for using mouse input to create
a new overlay by drawing on the screen. The intent is to maintain a blank top pane
which is always available for creating such annotations, but is treated specially by the
architecture in two ways. First, it will have the equivalent of a simple (single color)
paint program attached to support user ‘doodling’'. Secoud, annotations to the pane
will be displayed immediately instead of processed through the multiple overlay
mechanism. This shortcut is possible (aside from being absolutely necessary from a user
interface perspective) because the annotation pane is outermost, so by definition its data
cannot be occluded by anything else (so processing for additional overlays is not

required).

The describe function is available as a‘consequence of maintaining the data source
as a separate functional object. At any time, the user can mouse on the screen, and this
operation will determine the overlays who's data is displayed over that point (there may
be more than one). The result is a list of overlays (with mnemonic name), and in our
case the GINDB queries which produced that data in the first place. Modifications on

this operation can be used to describe the features in a given region.

.

The data structures which underly these abstractions are also quite simple. Each
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Figure 5-5: MPI Architecture
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overlay contains four parts (ignoring the slots which are relevant only if one is reading

the code):

e a data source object (which contains a binary feature map)
e a color
s an overlay mode {or pattern) used to display it, and

e a patterned-bitmap, which is the displayable form of the input data after
the overlay (or sampling) pattern has been applied.

Colors are represented as numbers which we treat as indices into one of the four
color tables (which associate numbers between 0 and 235 with color specifications
manipulated by the Symbolics hardware). Patterns are bitmaps used to sample the
feature data before display. They encode hashed lines, herring-bone patterns, various

dot densities (used for stippling), and others. (See the section on overlay modes, above).

Aggregates contain two parts:

e an ordered list of overlays, and

e an image of the color screen window (initially blank) in which it is displayed.

The ordered list allows overlays to be projected on the color screen in sequence, while
the screen image provides a stable backup copy should the actual display be altered (as
it will in the painting mode when the user constructs new overlays). Note that since
each aggregate knows the overlays it contains. and each of those overlays knows its
assigned color and display source, the aggre«zate's describe data operation has access to
the information which will allow it to identily the overlay name and query responsible
for each pixel on the screen. We expect this to be a powerful user interface function,
and plan to use it heavily in comparing regions selected by the user with regions

produced by TAPS to fulfill the same goals.

The only other data structure of import at this time is the query response
structure which underlies the data source abstraction that interfaces the MPI to

GINDB. It has three parts:
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¢ a binary image encoding the GINDB result

e a list of the things returned, if any

o the query form which produced the GINDB output

The distinction here is that GINDB can return either regions or symbolic objects
(things) depending upon whether the query form was retrieve-region or retrieve-thing.
In the later case, the query response structure holds the list of objects returned (so that
the describe functions of the MPI may access them), while the binary image reflects the

spatial components of all of those objects simultaneously.

5.3.4 The User View

A stylized picture of the MPI screen (taken from our current implementation) is
shown in {igure 3-5. While the specific layout may change, the individual windows on
the screen must support the following functions;

o interacting with the data source (GINDB)

e constructing individual overlays

¢ building aggregates from overlays

o manipulating the order of overlays within aggregates

o displaying aggregates

In our case, there are 7 windows. Reading left to right and top to bottom, they

are; a color display of the current aggregate, a listing of data sources (GINDB responses)
which the user can name, a display of the current data source, a list of all the overlays
that have been defined, a listing of the overlays in the working aggregate (at the
moment, only one aggregate is allowed), a palette for selecting overlay colors and modes

(patterns), and a lisp interaction window which allows the TAPS user to converse with

GINDB. The slides in Appendix A give color examples of TAPS screens.

- The intent of this organization is to promote a work station format, in which
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Figure 5-8: MPI Screen Image
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overlays are produced, stored, and then displayed in different combinations to generate
the information the user wants to see. To support a fluid interaction s*yle, the objects
in the windows are mouseable, and we have attached the major system operations
(equivalent to operators on the data abstractions described above) to pull-down menus
on the various windows. So for example, the user can mouse a color from the palette or
a pattern, and then touch the icon for an overlay, and the overlay will be altered to
display in that fashion (note that the icon encodes the color and pattern which will be
employed). Similarly, the user can mouse the edges of the current aggregate window to
obtain a menu for aggregate operations. and then select reorder, delete overlay or
display, etc. Other miscellaneous features allow the user to name overlays, mouse on
overlays and have their data source displayed (GINDB queries), and as a special
interface with the GINDB interaction window, to mouse on overlays and have the
(unsampled) bitmap they contain entered as region constants into a query under
construction. This last feature was included in response to our observation that the
user {requently wants to compute the intersections, unions and diffefences (etc.) of
overlay panes. When the operation is generalized, the user will be able to take subsets
individual panes, or regions from the color display, and input them into GINDB as a

data source for further processing.

As our implementation progresses, we expect to add a new layer of TAPS specific
mechanisms for automatically selecting certain colors or patterns. and for controlling
screen clutter and overlay order based on a knowledge of the data involved. Several
examples come to mind; water should always default to be displayed in blue, enemy
motions in red, tactical objectives might always be shown as bordered areas, and linear
features should always occupy overlays external to area data so that they are not
obscured. In addition, text will eventually have to be treated specially so that it is
never interpreted as a terrain object, either in extraction of data for GINDB or when

describing the contents of the current screen.

BT o e et e,
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5.3.5 Implementation Details

The following subsections discuss particulars of the current MPI implementation,
as well as some modifications we plan to incorporate. In specific, we cover the
algorithm and data structures used to produce multiple overlays, the implementation of
specific overlay modes, and one alternate strategy (not employed) for the overlay
process. This discussion is somewhat detailed; it is provided for those readers who are

interacting with the MPI code, or for those whose curiosity knows no bounds.

5.3.5.1 The algorithm for computing multiple overlays

From a graphics perspective, the problem in computing overlays is to take a 1 bit
wide feature mask together with a number representing a color, and write that number
into an 8 bit array (the color screen memory) at every x,y position where the feature
mask shows data as opposed to background. This operation has to be done repetitively

(up to 30 times) and efficiently if the MPI is to be a practical tool.

The naive method of handling this problem is to loop over the bits in the mask
and bytes in the screen array, and write the appropriate number in the corresponding
place. However, given that there are 262,144 elements in .either array, the fastest loop
we could write that treated each element individually took 4 seconds to execute. This

would make computing 30 overlays a 2 minute process.

Our solution is shown in figure 5-6. The critical feature in this diagram is the
data structure called the plane cube which is composed of eight, 1 bit wide, 512 x 512
planes which represent parallel slices through the bytes of the color screen array. This
structure is used as an intermediate representation; once loaded with the appropriate

color data, the contents of the plane cube are copied into the actual color screen

memory.

The advantage of this approach is that the act of processing overlays into the
plane cube is exceptionally fast. The task of dumping the plane cube (compacting 8 one

bit arrays into one 8 bit wide array) is comparatively slow, but it only has to be

ezecuted once per aggregate display.
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The mechanism is as follows (see figure). Assume that the input feature mask is a
bit array of all ones (feature everywhere, with no background), and that the number
representing the color (say green) is decimal 2. Under these conditions, the task is to
set the second plane in the plane cube to all ones, and to zero all other planes so only
green will show. (A vertical slice through the plane cube encodes the number that will
eventually reside in color memory. Only decimal 2’s can be present above any point.)
If the color number were decimal 3, then the first and second bit planes would have to
become images of the input, and the third through eighth planes cleared instead. If we
alter the feature mask so that it is not dense, the only difference is that certain vertical
slices in the plane-cube should remain undisturbed, meaning the previous color, if any,

should be allowed to show through.

In summary, the plane cube loading task is to take every place where the data
mask shows feature, and set the vertical slice over that position in the cube to the color
number (represented in binary form). This will require setting some bits and clearing
others. Our observation is that this effect can be accomplished through a sequence of
bitblt operations; if the color bit is a one, bitblt with Inclusive-Or will set that {ayer of
the plane cube appropriately, leaving other 1's and 0% that might be present in
background areas undisturbed. If the color bit is a zero, use of bitblt with andca is
required. The truth table {or andca (shown below) will turn all feature mask 1's into
0's, and will follow the prior value in that layer of the cube whenever the feature is 0.
(The Symbolics supports all sixteen possible arguments to bitblt for comparing source

bit, destination bit, and producing the binary result).

An efficient mechanism for dumping the plane cube data into one 8 bit array is

described below:

l. Maintain a 1 bit wide mask denoting all places in the cube where any
feature (of whatever color is present).

o

. [terate over this mask treating it as a linear array of 32 bit words.

[

. Iteratively process the leading bit of the mask word, and if it is a one,
" assemble whatever color number is present at the corresponding x,v position

e
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Table 6-1: The truth table for andca

Prior value

0 1
| I l
0 o | 1t |
Feature | | l
| I I
. 1 | o | o |

- - ——

of the cube into a single byte, which is then written (see below) into the
screen array.

4. If at any time the mask word becomes zero (a single instruction test), none
of the remaining bits are considered and processing moves to the next mask
word. "

. When loading the color screen array, write it in 32 bit words vs. one byte at
a time. [f this is done, successive color bytes are loaded into a temporary
register until four bytes are assembled.

[4]]

In all of the above, array registers are used to speed up access times, {ast memory
(in this case, the control stack which is resident in the Symbolics processor as opposed
to core) is used to store temporary variables (such as the 32 bit data mask), and feature
arrays are wired down in core to prevent swapping delays. Some additional
optimizations are actually available. For example, by allocating indices into the color
table sequentially we can limit the number of planes in the plane cube which are ever
occupied. This optimization has no great effect during overlay generation (btblts are
essentially free), but it saves a large number of array relerences when dumping the
plane cube to the color screen. All of these (somewhat Herculean) methods are required

to obtain the necessary display times.

We have implemented the individual portions of this algorithm and are
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incorporating it into the MPI. Our current implementation employs a somewhat less

optimized approach.

5.3.5.2 Implementations for the Translucency Operator

Recalling the discussion of overlay modes above, the purpose of the translucency
operator is to allow the user to say, "overlay feature X on top of a multi-feature
background, and show the overlap by tinting the background towards color C". A
more general expression allows the result color to be computed as an arbitrary {unction
of the inputs, for example, by color wheel addition. Since translucency is not a unary
predicate on overlays, it does not fit in conveniently with the procedures we have
expressed so far. As a result, we have had to consider several special case mechanisms,

each of which is described below:.

Figure 3-7 defines a simple translucency problem which is helpful in the following
discussion. We refer to the binary feature (the source of the overlay data) as the source
or the feature. The display (and the data it contains) are referred to as the

destination.

In the first method, translucency is turned into a table lookup by a rather space
inefficient mechanism. See figure 5-8. Here, we take advantage of the fact that we
know the set of color indices which have been allocated for the display, and we compute
the set of possible results of overlaying the translucent pane before any pixel operations
occur. (If the data in the translucent pane happens to overlap all feature types present
on the screen, there will be twice as many colors in the resulting display.) This
information is stored in a table which associates the source color (which is either
background or blue in the example) and the destination color (up to 256 possible) with
the desired translucency result. As an efficiency trick, we make the table 256256
elements long and index it by a number which is computed by concatenating the source
and destination color indices. The array will be extremely sparse, but the index
calculation and lookup can be accomplished in a few instructions, hence the net access

speed is apparently quite high.

T I-SE N
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Figure 8-7: A Simple Translucency Problem
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TRANSLUCENCY MAPPING

COLOR TABLE AS | DIMENSIONAL ARRAY
BLACK
(BACKGROUND) 8b~_ _~8b~_
FEATURE DISPLAY
YELLOW 0 | o .
RED 0|1 1
BLUE 012 )
3
GREEN 0§3
G| 4 "(UNUSED)
PURPLE
...UNUSED... . )
310 3
311 4
312 5
3|3 .

BLUE, YELLOW => GREEN

= LOOKUP (00000011 | 00000001)

:>4

Figure 5-8: An implementation of translucency
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This method is appealing, although it has several drawbacks. First, it turns out
to be less efficient than desired because it require; accessing the binary feature map and
the color screen array in the process of computing a single overlay. As discussed earlier,
this results in computation times that are significantly higher than direct use of bitblt
on the plane-cube (we have timed this translucency method at 2.6 seconds for our 512
by 512 arrays). Second, it is wasteful of color resource, in the sense that many colors

are allocated which may or may not be used since only some feature/background

overlaps occur.

Our second approach addresses both these issues. See figure 5-9. Here, we reserve
one layer of the plane cube (say the one representing the highest order bit in each byte)
for holding 2 translucent overlay. (By dedicating one entire bit plane to this purpose,
half of the available color space becomes unavailable.) Next, we alter the color table to
reflect all possible feature combinations as before, but we do this by duplicating entries
for the existing indices with the leading bit turned on, and assigning those indices to the

appropriate color,

When we set up the color table in this fashion, the desired effect of adding a
trarslucent overlay is precompiled into the color table. We can now load the
translucent overlay into the highest order bit plane of the plane cube (a single bitblt
operation), and the chosen colors will appear without having to reference the data in
the screen array. This translates into a marked gain in efficiency, but at the cost of
half of the available color resource. Furthermore, it appears that only one translucent

overlay can ever be computed, since that highest order bit plane is now occupied.

Our solution to this problem is to repack the plane cube in an off-line manner.
That is, after the display has been produced we determine the new colors which were
actually created (not all overlaps will occur) and move them to lower addresses in the
color table (adjusting the color indices in the plane cube accordingly). We can then free
up the color indices which were not required. I less than 128 colors remain on the

screen, this once again frees the highest order layer of the plane cube, allowing

- L
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COLOR TABLE
AFTER REPACKING
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Figure 5-9: A second implementation of translucency
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translucenc); to be reapplied. We have not implemented this function, and we do not
expect it to be efficient in any way. However, it can be performed while the system is

idle and waiting for new input from the user.

The third method of implementing translucency is to change the semantics of the
operation to be "overlay feature X on feature Y and show the overlap in color C*.
Here, the inputs are both binary images, and the result is a single color, hence the

computation is vastly simplified. It can be implemented as follows:

1. Compute the intersection of the two source features.

N

. Define an overlay for the result with color C and solid overwrite mode.

3. Place this overlay outside feature X and feature Y in the aggregate, and
produce the display as before.

Since intersections can be computed via bitblt, this operation will require

negligible execution time.

5.3.5.2 An alternate overlay mechanism

From an [/O perspective, the mechanism above inputs a 1 bit array and an 8 bit

array and produces an 8 bit array as output. An alternate approach to the overlay

. metaphor is to take two 8 bit wide arrays as input (a multi-feature source and a multi-

feature destination - the display), and produce a new 8 bit display. See figure 3-10.
Given that the source data in CATTS tends to come in multi-attribute fields (e.g., one
field encoding six different road types), there is some justification from an applications

viewpoint for adopting this metaphor.

In this view the semantics of combination is isomorphic to what has been
described above. Overlay modes are still implemented as sampling [ollowed by
overwriting (except that multiple feature types are treated simultaneously), and the
translucency operator now has to admit the possibility of producing n*m new colors (for
n sou.rce and m preexisting destination feature types) instead of just 2”m. Both the

feature and destination arrays are allowed to contain background areas, which means
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that the overlay process wants to copy bytes in the input to bytes in the destination,

except when the source byte is 0 (representing background)

It is tempting to implement this operation through an analog to bitblt which we
might call byteblt. It is even worth hoping that there is microcode support for such an
operation. [t turns out that there is not, but worse, no reasonable building blocks are
available either. The closest seeming function to work from is copy-array-contents,
which is expressed in terms of bitblt, which in turn supports only bit-wise comparison
operators. There is never a moment when an entire byte is available for testing, such

that it can be copied to the destination or ignored as a whole.

We have written code which implements this metaphor (including the translucency
operator, which was translated into an extremely efficient table lookup), but were only
able to achieve 4-5 second overlay times. This in part stems from the lack of support,
but also from the volume of data; each multi-feature array is 8 times the size of the
dataset manipulated when considering binary feature images. Even copy-array-contents

on a 512 x 512 byte array is comparatively slow; it requires over 2 seconds.

After exploring this path, our intuition was that it was less flexible and less easily
implemented than the overlay metaphor we chose. In addition, we suspected that more
information would have to be manipulated to produce the same display, even though
fewer overlays (with more features apiece) would be involved. This would indicate that

equivalent processing times could never be achieved.

It is possible that this second metaphor will be incorporated into TAPS as a

technique for overlaying aggregates as opposed to individual panes.

5.4 The Geographically Intelligent Database (GINDB)

GINDB is a query language for accessing and manipulating terrain features (in our
case, information obtained from the digitized CATTS database although attachment to

CATTS is not critical). GINDB represents structured terrain objects and the oroperties
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of terrain with relations, and provides a query language over them (similar to the "non-
procedﬁral" éuery languages of the Ingres project {Ullman 82°) that makes it possible to
retrieve objects based on their descriptions, and to combine and construct regions via
any of the algebraic set manipulation operators. A mechanism for incorporating n-ary
relations between objects has also been included, and the system as a whole has been
implemented in lisp on the Symbolics 3600. It is quite efficient; typical queries require

on the order of a few seconds to compute.

GINDB should be considered as an experimental vehicle which will stabilize after
various representational possibilities have been explored. However, we have made a
serious attempt to support the functionality required by a variety of terrain reasoning
scenarios (suggested by applications at ADS to terrain analysis and military planning,
processing of tactical imagery, robot vision, and automated route planning), meaning
that the implementation functions as a prototype for a generally applicable terrain

reasoning tool.

The following sections describe the terrain storage and retrieval problem, our
major design decisions, and then the semantics of the GINDB query language, including
information about the scope of the implementation and the underlying representations.

We conclude with an appendix containing output from several demonstration senarios.

5.4.1 The Problem

The problem ‘addressed by GINDB can be expressed as follows; given a set of
terrain features in the environment, provide a facility {or retrieving them according to
their properties, and for combining them according to standard set manipulation
procedures. However, by looking at more detailed BCA scenarios, and by projecting
towards future needs (for BCA and other terrain reasoning efforts), we can impose the

following set of additional requirements;

* it must be possible to set a geographical bound on the search query

e a given search query must allow arbitrary n-ary predicates to be applied to
- the terrain regions under consideration
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o the underlying representation must allow a declarative expression of n-ary
relations

e the system must support structured terrain objects which contain an
arbitrary . amount of attached information (e.g., properties, attached
procedures, and spatial extent)

¢ the query answering process must be computationally efficient
o the representation must support point, line and region features

e the query language must not commit to any single representation for space.
In particular, it must allow for the possibility of simultaneously employing
bitmaps, line segments, quad trees, k-d trees, and polygons (see Shapiro
83aj for details). ‘

5.4.2 Approach

The main decision involved in our work on GINDB has been to adopt a relational
database approach. This implies a commitment to a particular style of query language
and mechanism for interpreting database requests, and a decision to represent the
component features of objects as relations. As a result, we have obtained excellent
retrieval efficiency and the generality associated with the relational mechanism, but at

the loss of the declarative simplicity provided by the more semantic-net oriented view.

To set up the contrast, semantic-net approaches represent objects declaratively as
single entities which can then have any number of attached parts. These objects are
then related by named links which provide a vocabulary for the interactions which the
system can represent. For example, the ISA link gives rise to a hierarchical class
structure, which in turn supports the inheritance operations that are now widely known.
As a second example, we proposed a net formalism in [Shapiro 83a that employed links
for spatial relations (containment, adjacency, enclosure, etc.) to simplify the
computation of set operations on geographical regions. In general, semantic nets will
have interpreters that supply a variety of operations to compute over the known links;
exam‘ples are demon invocation (in net languages such as FRL), object matching (in all
recognition scenarios), and representation transformation (in conceptual dependency

parsing and response generation).

 was e ¥
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In the relational database view, the representation for an object is less declarative
and more procedural {or the concept of an object as a whole is less well defined),
meaning that specific operations require more search. 3o for example, if you are given
an object ID in a semantic net, you have a package which contains the object parts
(they are primitively available). In a relational database, the object name allows you to
look up the object in a table containing all objects in the world. The answer to that
search is the relation which contains the desired information. This distinction persists
when considering relations between objects. In a semantic net, given an object you can
find the thing which it is "a kind of"* by following explicit pointer links. In the
relational view, there would be a table of ISA relations, and the process would require a

search through all known relations of that kind.

The value of the relational model comes from the generality with which it specifies
retrievals. In essence, by breaking apart objects and forming relations, any set of
properties can be used as indices to locate relevant features. Said in a different way, if
the purpose in an application is to find features which obey a (potentiaily complicated)
description, the relational view provides a natural format for making that occur. The

BCA application fits this criterion very well.

In summary, our reasons for chosing the relational approach are as follows:

¢ The BCA project is concerned both with retrieving and constructing new
objects by the fact that they exhibit certain properties. The exact set of
those properties is unknown at this time, which argues for a more
homogeneous approach which allows arbitrary descriptions to be combined.

o At the current time, the focus is on the storage, retrieval and manipulation
of regions of space, as opposed to reasoning about the objects which occupy
the terrain. Type hierarchies, inheritance, and similar domain structuring
mechanisms are not vet required.

o The primary goal has been to produce a flexible query language in a short

period of time; the relational approach has simplified that task, even though
it may not be a unique solution.

Our second major design decision has come from examining the types of objects in
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the BCA domain. In particular, we have separated the notion of a structured terrain

object with many attached properties (called a "Thing") from the concept of a region of
space which is not allowed to carry any descriptive information (called a "Spatial
Region" or "Region"). The intent here is to capture the notion that some queries result
in classifications of large terrain areas (as when forested Regions are overlayed on hilly
Regions), while others pertain to specific known Things (like finding the hilltops which
have observability over forest #12). From a computational perspective, the Things can
be expected to identify reasonably cohesive regions of space, whereas areas built from
combining arbitrary features cannot. This distinction has provided several
simplifications in the query language, and it may lead to some easy representation

choices when multiple representations for space are entertained.

The last critical design decision has been to hide the actual representation of
terrain regions from the user,_and to write the query language such that it admits any
number of potential representations. The reasons for this become clear when one looks
at the terrain representations that naturally come to mind; none |s optimal for
computing set operations over all types of terrain regions. Several in combination

might be desired.

To be specific, quad trees have significant space requirements and set up times,
but generally provide quick manipulation procedures. However, both the storage and
computational efficiency properties break down if the underlying regions are not
significantly cohesive. In addition, it is cumbersome to express individual objects (with
many attached properties) given a language that provides only binary exclusion
primitives. Polygonal representations are excellent for establishing objecthood and for
expressing relations between features, but they give rise to awkward implementations of
the set manipulation operations. This is easy to perceive when considering Region
features of the kind described above. They will tend to have complex shapes, be non-
contigluous, non-convex and include holes. This leads to manipulation operations as bad
as n**4 in the number of vertices. (The system described in the BCA annual report was

an attempt at addressing this efficiency issue.) Bitmap representations can be used to




2

represent point, line and region features, and the set manipulation operations are very
easy to express. They run in constant time _(giver'l by the maximum region size), and
are supported by all bitmap display procéssors that include a "btbit" function.
However, the representation is certainly not space efficient, and is less optimal than the

others in situations where they excel.

As a result, we have defined a query interface which is independent of the actual
representation chosen for physical space, and we have been thinking in terms of
supporting many representations simultaneously. For the current implementation
however, we avoided dealing with the attendant conversion problems and experimented

with only the bitmap view.

5.4.3 Semantics of the Query Language

5.4.3.1 Definitions
A WOREL (WORId ELement) is a2 unit square in the grid which represents the

world of the database system. The world is a rectangular grid of worels where each

worel is uniquely identified by its coordinates.
A REGION is a set of worels.

AN OBJECT is a distinct entity in the world. Generally only something which is
uniformly best thought of as a single object, such as a hilltop, is denoted as an object.

Most objects probably have an associated region called a spatial component.
A RELATION is an n-ary named relationship between objects.

When finished, the capabilities of the system are to be as f{ollows:
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define regions
update regions
delete regions

define objects
insert objects
update objects
delete objects

define relations
assert facts (that a particular relation holds between n objects)
unassert facts

query regions and objects using a "non-procedural" query language
(discussed in the the following sections)

At the current time, it is possible to define regions, to define and insert objects (in

an off-line manner), and to build an extensive set of non-procedural queries.

Additional hybrid objects might be useful. For example, (taking-a mobile robot
context) a possiblé object might be stored having a spatial component represented by a
pie slice emanating from the point from which it was s.ighted. At some later time, when
the actual location and shape of the object had been found, the original possible object
could be deleted, and the identified object inserted. The key point here is to introduce

the notion of a temporary, hypothetical object into the database.

5.4.3.2 Development of the query language

In order to explain the semantics of the proposed query language, we will develop
several example queries that operate over a few normalized relational tables representing
terrain. We use the QUEL language (developed in the INGRES project) as a point of
departure, and show the transformation of those queries into the lisp-like syntax of the

implemented language.

Initially we start with the two relations in figure 3-11, and want to answer the

following query:




Relation: properties of worels

Rttt DL D +

| x | y | property |

2 +

|35 |511|forested |

|36 |510|forested |

[37 1510/ forested |

[12 [2561hilly |

l15 | 15lobjectl |
16|/objectt |
16lobjectl |

dmmm e fmmm e ———— fomm +
| objectid | kind | otherprop |
fom o ———— Fmmm——————— fmm———————— +
lobjectl | plateau | otherval |
[object?2 [ hill | otherval2 |
pmmm———— e pmm———— +

Figure 5-11: Two relations representing the world

Query 1: Give me all plateaux which are partially in a forested, hilly area.

In Quel this becomes:

range of wi, w2, w3 1is worels
range of t 1is objects

retrieve (t.objectid)

where t.kind = "plateau”
and t.objectid = wi.property
and w2.property = "forested”
and wi.x = w2.x
and wi.y = w2.y
and w3.property = "hilly"
and wi.x = w3.x
and wi.y = w3.y

We can simplify the query a little by making a distinction between objects and regions.
that is between objects which have other properties besides being aggregations of worels.
and objects which are only aggregations of worels. The relation forested now represents
the region which is the set of worels which are forested. Figure 5-12 shows this schema.

Query 1 can now be simplified to:

i i ok
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Relation:

|35 |511]
136 1510]
137 1510
te——tm——t

Relation:

112 |2561|
et LS

'forested

hilly

Relation: spatial components of objects in the world
e Btk bl Tl DR +
[ x | y | objectid |
Rt e ittt bt +
115 | 15jobjectl |
[15 | 16lobjectt |
|16 | 16lobjectl |
R R Tttt +
Relation: objects in the world
e ——— o ————— e ——— +
| objectid | kind | otherprop |
Frr e ———— e ————— +
lobjectl | plateau | otherval |
lobject2 | nill | otherval2|
o ———— Fmmmmm————— e +
Figure 5-12: N relations representing the world
range of £ 1s forested
range of h is hilly
range of s is spatial-components
range of t is objects

retrieve (t.objectid)

where

t.kind = "platean”

and t.objectid = s.objectid
and s.x = f.x and s.y = f.y
and s.x = h.x and s.y = h.y

But suppose we want to ask the following question:
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Query 2: Give me all plateaux which are entirely in forested, hilly areas.

This has a much more complicated translation into QUEL:

range of £ is forested

range of h is hilly

range of s 1s spatial-components
range of t 1is objects

retrieve (t.objectid)
where t.kind = "plateau”
and t.objectid = s.objectid
and count(s.x, s.y where s.objectid = t,objectid)
= count(s.x, 5.y where s.objectid = t.objectid
and s.x = h.x and 5.y = h.y
and s.x =1f.y)

[
s
M
[
b=}
[=9
“
-

What is wrong here? Talking about single worels seems to be unintuitive -- let's switch

over to talking about sets of worels by introducing the following relations and

definitions.
define setofpairs(s.x, s.y) to be all pairs <x, y> from relation s

define UNION, INTERSECTION, and EMPTY-SET as usual

Queries 1 and 2 can now be reformulated as [ollows:
Query 1:

retrieve (t.objectid)
where t.kind = "plateau”
and t.objectld = s.objectid
and INTERSECTION(setoipairs(s.x, s.y),
setofpairs(f.x, {.y),
setofpairs(h.x, h.y))
<> EMPTY-SET

Query 2:

retrieve (t.objectid)
where t.kind = “platveaun” {
and t.objectid = s.objectid and
INTERSECTION(setofpairs(s.x, s.y),
sevofpairs(f.¥y, {.y),
setofpalrs(h.x, h.y))
= setofpairs(s.x, s.y)

We can simplify still more by substituting the names of the relations { and h
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range over for the expressions "setofpairs(f.x, f.y)" and "setofpairs(h.x. h.y)". and the
function spatial-component(t) for the expression "setofpairs(s.x x.y) where t.objectid =

s.objectid®. Query 2 then becomes:

retrieve (t.objectid)
where t.kind = "plateau" and
INTERSECTION(forested,
hilly,
spatial-component (t))
= spatial-component(t)

Lastly we further separate objects from regions and introduce the predicates in-region,

and entirely-in-region.
Query 1:

retrieve (t.objectid)
where t.kind = "plateau” and
in-region(t, region-that-is(forested and hilly))

Query 2:

retrieve (t.objectid)
where t.kind = "plateau” and
entirely-in-region(t, region-that-is(forested and hilly))

The following question requests the map, or set of worels that meet a certain

property;
Query 3 Show ne the region which is forested and hilly,

When translated into QUEL this becomes:

retrieve (wi.x, wi.y)

where wi.property = "forested"
and w2.property = "hilly"
and vi.x = w2.x
and wi.y = w2.y

Which, using the 2bove simplifications, can be translated to something like:

retrieve-region-that-is(forested
and hilly)

A similar, but more complicated example is to ask the question:

Query 4 Show me the region which is part of some plateau and forested.
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This becomes:

range of t 1s objects

retrieve-region-that-is(forested and spatial-component(t))
where t.kind = "plateau”

Note: by translation back to QUEL and implicit existential quantification the query

asks for all worels ir the world which are parts of plateaux such that the places are also

forested. If one asked:

Query 5: Show me the region composed of ail plateaux which are somewhat

forested,

The following query is the result:
retrieve-region-that-is (spatial-component(t))
where t.kind = "plateau"

and in-region(t, region-that-is(forested))

Finally we present translations of all of these queries into the lisp syntax
implemented within GINDB (note that the implementation uses the term "thing"
everywhere where the term "object" might be expected, thus the top level retrieval

function is "retrieve-thing", and not "retrieve-object"):

Query 1: Give me all plateaux which are partially in a {orested, hilly area.

(retrieve-thing $t (and (plateau $t)
(in-region $t (and forested hilly))))

Query 2: Give me all plateaux which are entirely in forested, hilly areas.

(retrieve-thing $t (and (plateau $t)
(entirely-in-region $t (and forested hilly))))

Query 3 Show me the region which is forested and hilly.
(retrieve-region (and forested hilly))

Query 4 Show me the region which is part of some plateau and forested.
(retrieve-region (and forested (spatial-component $t))
(plateau $t))

Query 5: Show me the region composed of all plateaux which are somewhat

forested.

AR
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(retrieve-region (spatial;component $t)
(and (plateau $t) (in-region $t forested)))

5.4.4 Language Syntax

The following is a BNF syntax for the GINDB query language:
query -> retrieve-thing
| retrieve-region
retrieve-thing -> (retrieve-thing result-expr optional-thing-predicate)
retrieve-region - > (retrieve-region region-expr optional-thing-predicate)
result-expr ->  thing-expr
| (thing-expr=)
thing-expr -> variable
| thing-constant
optional-thing-predicate ->  /* the empty expression */
| thing-predicate
thing-predicate -> predicate-expr
| (and thing-predicate thing-predicate~)
| (or thing-predicate thing-predicate—)
| (not thing-predicate)
predicate-expr ->  lisp-escape-expr
| in-region-expr
| (relation-name thing-expr-)
relation-name ->  thing-type-constant
| thing-property-constant
| thing-relation-constant
lisp-escape-expr -> (lisp lisp-expr)
lisp-expr -> general lisp ezpression, including query variables
in-region-expr -> (in-region variable region-expr)
| (entirely-in-region variable region-expr)

distance <> number
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region-expr -> region-name
| parameterized-region-name
| boundary-expr
| computed-region-expr
| computed-with-data-region-expr
| thing-spatial-component-expr
| region-constant
| (and region-expr region-expr+)
| (or region-expr region-expr+)

wmT—mmem e | (xorTregionsexpr region-expr)
| (equiv region-expr region-expr+)
| (not region-expr)
parameterized-region-name -> (slope minslope maxslope)
boundary-expr -> (bounded lowx highx lowy highy)
computed-region-expr -> (in-direction ctrx ctry direction width radius)
computed-with-data-region-expr -> (nearby region-expr radius)
thing-spatial-component-expr -> (spatial-component thing-expr)
variable -> $name
region-constant - > (region region-handle)
thing-constant -> (thing thing-handle)
thing-type-constant ->  hill
| plateau
thing-property-constant -> sandy
thing-relation-constant -> on-the-path-between
. | connecting
region-name -> forested
/¥ defined as (or coniferous deciduous)
| hilly

x f
T4
I

Most of this syntax can be understood by looking at the examples in the section
entitled "example queries". However, it is worth giving a few notes here.

The language allows the user to escape into lisp in the middle of a query in order

to apply tests to any set of things (objects) which are in the process of being examined.

‘This is accomplished by use of the form (lisp lisp-expr) as above. For example, the

predicate
(and (h1ill $x) (lisp (bigger $x 2)))
filters hill objects to see if they are larger than 2 square kilometers, where the "bigger"

predicate is written in lisp and independently accesses object parameters.

L W N FPURS

S R S SR




81

It is also possible to pass regions and objects into the query language from lisp (to
allow partial results to be stored in an application program). This is done through use
of the forms:

(thing expr)
(region expr)

Where expr is a lisp expression that produces an object of the appropriate type. For
example, the query '

(retrieve-region (and (region old-data) forested))

and’s the region stored in the lisp atom "old-data" with the forested region resident in

GINDB.

As a final note, because of the distinction we have drawn between objects and
regions, we think in terms of constructing regions and running predicates on objects.
As a result, there are a variety of region expressions which perform the following

functions;

v e

! e nearby computes the envelope of a given region, as in all worels within 3
worels of a road.

¢ bounded returns a rectangular region of the specified dimensions

——————

o in-direction returns a pie-sliced region centered on the specified x-y
coordinates, with a given angular dimension and range.

¢ slope computes the region consisting of all worels on slopes within the
bounded degree range.

o ———

Thing predicates (see predicate-expr above) filter existing objects via tests written
| in lisp, predicates on an object’s spatial component, or according to (see relation-name f
above) the type, properties, or presence of n-ary relations between an object and other

objects in the environment. Examples here are the predicates

¢ in-region which restricts an object to have a spatial component which is
partially in a designated region

¢ entirely-in-region which demands complete enclosure, and

)
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« hill which determines if an object is of type hill

¢ sandy which limits an object to have the property of being sandy

o on-the-path-between which determines if a particular relation exists,
namely that the spatial component of an object overlaps the line drawn
between two others. This form can be implemented either by a built-in
function, or by checking for the appropriate static links between component
things. As the query language develops, it will be possible for the user to

—————..—define -new relations, and-query.them-using-this-form.—---= ~- - - s e

Note: at the current time, N-ary thing predicates (such as on-the-path-between)

and thing property constants (e.g., Sandy) are not implemented.

5.4.5 Representation and Data Structures

In the current implementation, regions (and spatial components) are represented
by bitmaps (although the query language makes no commitment to that form). This
approach was used both for simplicity and as an experiment as to the effectiveness of

such a representation.

Objects are represented by Zeta-Lisp {lavors, which are the basic mechanism for
building structured objects in Zeta-lisp. They allow an arbitrary amount of attached
data, procedural embedding, and provide standard operations for inheritance through a
tangled class hierarchy. The spatial components of objects are also represented by
bitmaps. It is an open issue whether distinct flavors are to be used for distinct kinds of
object, or whether different properties of different kinds of objects will be handled by

the lisp property list mechanism.

Static relations (which are currently not implemented) will have a number of
representations. One to One relations will be represented by double linking. One to
Many and Many to One will be represented by single links one way, and lists of links
the other way. N-ary relations (with N greater than two) will be represented by more
complex relation structures with appropriate links. The intent is to separate knowledge

about the actual representation of objects from the query evaluation code, so that

LTSN,

Lo Y




e

83

different unaerlying structures can be added or substituted without upsetting the upper

layers.’

We have also introduced some special representations to optimize retrieval
performance. [n particular, since queries often request the set of objects which exist
within a given region, we have implemented a pyramid/quadtree structure which

provides the required spatial index. The presence of this structure also simplifies certain

spatial operations on objects such as determining intersection and disjunction. [t works
as follows; each object is inserted once in the structure in the smallest square of the
pyramid which completely encloses it. Given an object, the candidates for intersection
must live in the same pyramid square, or in one of the squares which are enclosed
within it. Similarly, the set of all objects which don’t intersect a given object can be
computed with reference to the pyramid (as opposed to running N intersections where
N is the number of known objects). So far, the pyramidal index has provided excellent
results, although an actual performance analysis might point to other, more efficient

organizations.

The final data structure of significance in GINDB is the "data dictionary" which
stores information about the regions, relations and object-types. This structure can be
e.2mined by looking at the lisp variables *Relations* and *Regions®*. The sum total of
objects in the environment can currently only be accessed through use of the query

language.

5.4.8 Algorithms

The semantics of our query language can be derived from relational languages, so
the same query processing algorithms are applicable. However with the addition of the
region constructs and the main-memory nature of the data-base, we have the ability to

add special forms of optimization based on the special representations we employ.

Our basic approach is to create an ad hoc lisp function that generates the results

specified by the query. This method has several advantages;
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1. The query is actually processed as a compiled procedure, rather than as an
interpreted one.

2. The resulting function can be repeatedly executed on different data, thus
avoiding the cost of planning an execution strategy.

3. Such a system may be easier to debug; since processing is partitioned into
two phases (preprocessing and execution), errors are also partitioned. In
addition, the result of preprocessing is an actual program which can be
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The outline of the algorithm used to generate the function is as follows:

First, convert query predicate to conjunctive normal form and introduce variables
for n-ary relations and thing-constants. (Thing-constants are references to actual
objects. Thing-constants are replaced by bound variables.) Then, recursively apply the
following rules, choosing from the top following each successful application of a rule

(these steps implement the query optimizations referenced above):

1. If there is a conjunct (disjunction) which has not already been satisfied in
some way, and in which all variables have already been bound. generate
code to test this conjunct. (an example would be if $x were bound to range
over all objects in the world, and one conjunct were p($x), then code for
testing p($x) could be generated). '

2. If any region expressions are free-variable free, generate code for them.
(examples would be forested, or (and forested (spatial-component $x)) where
$x is bound).

3. If there are no free variables, generate an output expression. (an example is
the query (retrieve-thing $x). After $x is bound to range over all objects in
the world, all that is left to do is produce output, that is generate code to
cons $x onto the output list).

4. If any connected (connected by n-ary relations) set of free-variables contains
no output variables, generate code for them as an existential variable. (an
example of this is (retrieve-thing $x (and (2-ary-relation $x $y) (hill $y)
(house $x))) if $x has been bound to range over houses, then $y is
disconnected from any output variable (since $x is bound and is the only
output variable). Therefore $y can be treated as an existential predicate,
and the query can be translated into the form: is there a $y such that it is a
hill and 2-ary-relation($y, $x))
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5. If any region expression contains free variables, and the f{ree variables are
disconnected from free variables in the rest of the query, build code for
generating the region which represents the union of all bindings of the
variables in the region expression. (an example of this is (retrieve-thing $x
(in-region $x (spatial-component $y))) where $y is disconnected from any
variable, and hence the region denoted by (spatial-component $y) can be
constructed).

6. Choose a variable to iterate over. The choice is done heuristically based on

related objects. The iteration can be done in a number of ways. The
broadest kind of iteration is iterating over all objects in the world. If a kind
(or type) predicate is used ((hill $x)) and it is the only element of a conjunct,
then only the kind need be iterated over (only hills need be considered). If
the variable is bound in a region expression which appears as a single
conjunct in conjunctive normal form ((in-region $x forested)), then the
variable can be bound using the pyramid structure, only iterating over those
buckets of the pyramid which overlap the specified region (forested).
Important rules of thumb are: if a relation is many to one, iterate over the
set of ones first; in an in-region expression, iterate over variables in the
region expression before the object variable.

There are a few other interesting algorithms: the blurring function for the nearby
region expression, and the test which determines if there is at least one bit set in a bit

array.

The nearby region expression, given-a region (bitmap) and a radius as input. is
intended to return a region which has grown by the radius. Every pixel that was
originally 1, should eventually be surrounded by a circle of 1 bits of the specified radius.
This is done by first or'ing the original image on itsell in a circle of radius 1, followed
by or'ing the resulting image on itself in a circle of radius 3, and so on. Example

applications of nearby are shown in the following chapter.

Given a bitarray, the "set bit function" (called "any" in the implementation)
returns true if any bit is set, false otherwise. Obviously there should be a machine
instruction to do this, but there isn't. Even an optimized loop through the array testing
for set bits takes seconds. The solution to the problem is to logarithmically or the bit-

array onto itself. effectively folding any set bits into an area which is tractable for

-the cardinalities of-the sets-the variables-range over,-and the ease-of finding — -~ =~ -
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ordinary loops and bit tests. This makes efficient use of the btblt function which is

supported in microcode.

5.4.7 Incorporating GINDB into TAPS
This section briefly discusses the additions we have made to GINDB in order to
integrate it into the context of TAPS. Most of the changes were minor, having to do

with the inclusion of new interface code, although several were substantive.

Peemrram®

[ E RSN

The following changes have been introduced:

o 3 capability to handle n-ary relations
* two new query forms for passing region and thing constants into GINDB
e an internal database for storing these newly produced items, and

¢ 2 new interface which allows GINDB to be invoked as a function, and which
returns a query response structure (QRS) that encodes its results

.

Of the above, the capability to handle n-ary relations is the most significant (in
terms of difficulty) since it required changes to many of the GINDB internals. The
issue is that the prior version of GINDB only knew about the unary relation of object
type while the bulk of the implementation was concerned with supporting the
manipulation of spatial data. Relations were implemented as simple lists of elements,

and member searches as simple enumerations. In contrast, N-ary relations are

implemented as n-tuples; this requires alterations to GINDB's code generator to

accommodate enumeration and selection of fields from those tuples.

Some operations such as logical negation also take on a new level of complexity

when applied to n-ary relations. In the unary case, the expression
(not (bridge $b))

was implemented in one of two ways; if the object $b was already bound in the
context of a larger query, then GINDB's coder produced a membership test for $b in

the sgt of bridges. If $b was not bound. then GINDB enumerated the set of all objects

A B k.




bameen

[——

oo e naer

87

and filtered each for membership in the bridge relation as above. In the n-ary case, the

e.\'f)ression
(not (bridge-over-stream $b $s))

can give rise to several meanings; one interpretation is to return the set of tuples

(bridges X streams]
- <tuples from the bridge-over-stream relation>]

which requires enumerating the elements of the two unary relations and forming

their cross product. Another interpretation is to form the set

(not <bridges from bridge-over-stream>)
X (not <streams from bridge over stream>)

which is similar to the above though less permissive (see figure 5-13); it refuses to
include tuples such as {BR4,5T2} who's members are individually referenced in the
bridge-over-stream relation. This operation is implemented by generating code that
filters the cross product of bridges and streams by removing the ones. which exactly

match tuples in the bridge-over-stream relation. This function is implemented within

GINDB.

The new query forms for passing objects and regions into GINDB are as follows:

(region region-constant-expr) ,
(thing thing-constant-expr)

where the constant expressions in the above are either

s an instance of a region or object
¢ an atom which is associated with a region or object in the GINDB database
¢ a string which is associated with a region or object in the GINDB database

o an arbitrary lisp form which produces a region or object

This flexibility was provided in order to maximally simplify use of GINDB as a function

from lisp. In particular, it is now possible to type the following sequence of requests;

.(setq foo (GINDB ' (retrieve-region coniferous)))
(GINDB * (retrieve-region (OR (region ,foo) deciduous))
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ST2

BRIDGES-OVER-STREAMS:

BR1

ST2

BR4

ST3 o

HERE, THE NEGATION OF BRIDGES-OVER-STREAMS IS:

~~BRIDGES-OVER-STREAMS:

BR2 | ST
BR2 | 'ST4
BR3 | ST1
BR3 | ST4

Figure 5-13:

A small relational data base
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The net effect of which is to pass in the results of the previous query as an

instance of a GINDB region. The syntax has proved quite helpful in use.

GINDB'’s internal database is essentially a trivial code construct for storing and
retrieving regions and objects that are developed in a given GINDB session. This

database is implemented as two association lists, where strings and atoms are allowed as

database structures will be required.

There are a number of obvious additions to GINDB which can be incorporated in
the future, but it is important to remember that our purpose is only to support the’
TAPS system as opposed to conduct R&D in the area of relational databases. As such,
these new capabilities will be introduced on an as-needed basis. A brief list of the likely

additions follows:

o the ability to pass back regions and objects from GINDB which are bounded
in size

¢ a capability to store instances of relations, objects and regions on disk (such
that they will not have to be regenerated on each session with GINDB).

e introduction of variables into the query language such that temporary results
can be bound and accessed in separate portions of a large query form (the
current syntax requires the user to repeat phrases)

¢ inclusion of various forms of meta-data into GINDB, such as

o introduction of forms attached to relations which compute instances of
those relations

o the ability for the user to define new relations on the {ly

o the ability to update relations, and have dependent relacions flagged,
or updated in turn

The first point in the above list admits to a simple correction. Currently,
whenever GINDB returns a region it occupies the entire 512 x 512 field even if the

feature is one element in size. This was done for simplicity in the first version of the
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system, and can be corrected by returning bounding boxes for regions together with the

appropriate registration information (to say where the bounding box lies). All the -

machinery is in place within GINDB to support this function, only a small effort will be

required to make the change.

The capability to store instances of GINDB objects is clearly important in order to

support a user-workstation model. At the current time, all relations, regions and"

objects which the user wishes to manipulate have to be computed each session at the
Lisp machine, meaning that no discoveries can be regarded as permanent. The
technical problem here is that it is not possible to store pointers on disk since the
addresses they reference are tied to a given lisp image. We have solved this problem in
other contexts by translated instances into a database-like record format. This will

require a little attention to detail that we have preferred to bypass in the past.

It is important to note that even though we wish to make GINDB data persistent,
we do not expect to expect to manipulate a tremendously large amount of data at any
time. This translates into the claim/hope that GINDB can remain a core-resident
database retrieval system, meaning that we can avoid the need to implement the

caching and paging schemes (etc.) which go along with disk based database systems.

We have not examined the difficulty of introducing temporary variables into the
query language beyond a cursory level of detail. It appears to be a change primarily for
the code generation portion of GINDB, and there is some possibility that query
variables would be difficult to include in the (deliberately simplistic) recursive-descent
approach the code-generator currently applies. Since the intended purpose of the
change is syntactic, the amount of energy we will devote to the problem is limited as

well.

When TAPS is exercised in a workstation mode, it is reasonable to expect that its
data will become more volatile, since new objects and relations may be produced on the
fly. The ability to support these capabilities raises a collection of ‘deep’ relational

database issues having to do with the inclusion of meta-data in a retrieval system.
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In more detail, when a new object is created it is important (from the perspective
of database completeness) to determine the relations the object ought to belong to.
This in turn requires relations to know the domain of their attributes (so that the
relevant relations can be identified), or schemas which link object types to the relations
in which they participate. In addition, in order to automatically produce new instances

of relations (new tuples given a single attribute), it will be necessary to attach methods

to_relations which perform_the appropriate search. If these methods are viewed as

constraint forms we gain the ability to update properties of objects and determine if
they still belong to a given relation. This is important in support of the general goal of

database consistency.

Without going into a long list of relational database issues and solution methods,
it should be apparent that a variety of problems arise as the data becomes more
volatile. From our perspective it is important to avoid such complications where
possible, which suggests that GINDB should be used to represent fairly static facts
about terrain features and relations between objects fixed in the terra:ln (objectives,

areas of operation, minefields and other non-moving features).

5.4.8 Example Queries

The following pages present output from the GINDB system, generated as images
of the Symbolics display. The use of GINDB is also documented in the context of our
demonstration of TAPS (see appendix III), but these examples (though with toy data)
focus more clearly on GINDB. Note that each example provides the input query,
graphical and/or textual output, and timing figures for each of the query preprocessing,

compilation, and execution stages.

The sample database contains a number of regions culled from CATTS data. and
a library of approximately 200 objects which were created solely to exercise the query
language and have no military meaning. There are four object types in this data;
letters, hills, obstacles, and unknown-objects. The first three are objects with spatial

components taken from character fonts. The last comes from a mobile robot example,

N Feaa et s
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where occlusions during sensor sweeps result in conical areas that may include unknown

obstacles.

In the material that follows, the command show was used to display the spatial

components of the objects returned by the previous query.
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5.5 The World Model

The material in this section discusses the information we expest a terrain

reasoning system to maintain about the military environment; the organization and

composition of units, the capabilities of vehicles and individual weapons systems, as well
as the capabilities of units taken as a whole. In addition, we postulate a collection of
feature models which express the characteristics that must be possessed by the terrain
intended to fulfill particular tactical purposes. The m;)t,ivation for incorporating this
knowledge into TAPS was discussed in chapter 3. In brief, we view the resulting

database as the minimal set of support for a wide body of applications.

The discussion below documents design ideas as opposed to implemented code.

5.5.1 Representation of Force Units and Equipment

In order to resolve questions concerning the use of terrain, it is important to
model the capabilities of the units, vehicles, and weapons systems which .are deployed on
the terrain. The most obvious form of representation is a system of {rames, which are
flexible templates for representing typical situations. Frame languages are a well
explored technology for manipulating class structured data, and are therefore
particularly well suited to the hierarchical structures found in military organizations.
Their ability to support deduction by inheritance provides a desirable parsimony in

representation.

It’s quite easy and natural to define units and equipment in terms of f{rames.

Consider, {or example, the following simple frame for a mechanized rifle squad,
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frame: Mech Inf Rifle Squad

slot: amo value: Mech Inf Plt

slot: members if-needed: AskFor( Mech Inf Squad Teader )
AskFor ( Assistant Squad Leader )
AskFor ( Mech Inf Gunner )
AskFor ( Mech Inf Driver )
AskFor ( Antiarmor Specilalist )
AskFor ( Automatic Rifleman , A )
AskFor ( Automatic Rifleman , B )
AskFor( Grenadier )
AskFor ( Rifleman/Sniper )

slot: vehicles value: BradleyFightingVehicle

where "amo" means "a member of", and "if-needed" refers to a program that
can be invoked to determine the value of an individual’s frame slot, if that value is not
present with the individual and is needed to answer a query, or perform a computation,
etc. "AskFor" refers to a program that queries the user for the value of a slot; it will
be invoked, typically, when a new frame is created for a new individual (i.e. instance)
of a class, We use a loose pseudo-code here for the sake of readabili_ty. Typically,

frames are specified as embedded association lists in lisp.

The utility of this form of representation can be seen from figure 5-14 (where
"amo" means "a member of", "aio" means "an individual of", and "ako" means "a
kind of"). Using this structure, it is possible to deduce properties of units which are not
expressed local to their definition. So, for example, if we want to know the area

controlled by a mechanized rifle platoon., we can look down the AMO links to discover

it is composed of squads employing Bradley fighting vehicles, and up the AJO links from.

there to the definition of a Bradley vehicle which will identify the range of its weapons

systems.

Notice also that a complete {rame database {or battalion organization and
equipment forms a "tangled" hierarchy, with a great many cross linkages (of different
link types) between frames. Mechanisms for performing inheritance through tangled

hierarchies are common in object oriented programming langauges.
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5.5.2 Tactical Feature Models

As mentioned in the introduction, the goal of including tactical feature models
within TAPS is to raise the level of discourse available for conducting terrain analysis.
In specific, the object is to provide a vocabulary for terrain features of military interest
and allow the user to form queries using that terminology as opposed to the very

detailed constructions that GINDB supports.

One difficulty with constructing feature models is that they seem to be héavii_v
context dependent; even something so basic as the concept of navigable terrain differs
according to the entity being moved (type of vehicle or personnel) and according to
echelon, where corridor width and terrain fatigue considerations come into play.
Terrain features such as suitable defensive areas have similar sources of variation. and
because of the diversity of tactical situations they are likely to be much more difficult

to define.

A key observation about these abstract features comes {rom wzit,ching analysts
perform their jobs; as we mentioned in section 5.1 they are typically asked to assess the
impact of terrain on specific tactical actions, and given that information as input they
know the set of features that are required/desired. Said in a different way, terrain
features of military interest can be classified by tactical operation and terrain role. An
example (which we develop further below) is the river crossing operation also referenced
in section 5.1. Here, the operation is a crossing, and the terrain roles are crossing
point, covering force sile, potential enemy force sile, ingress path. egress path, and
perhaps a beach-head site, meaning a defensive site to occupy on reaching the opposite

side of the river.

In performing terrain analyses for operations of this kind, the analyst will also
know the nature (or specific type) of the vehicles, and friendly units involved. So, for a
river crossing he may be directed to find sites where no bridging equipment is required,
or he may be zllowed to utilize knowledge of a particular mobile bridge. It may be that

the analyst also employs knowledge of enemy units in the area such as their

e as
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approximate location and nature (we haven't determined if this is a standard input of
terrain analysis). In any case, this information will have to be transported to the
tactical feature models in some form; obvious approaches are to parameterize the
models to account for the current context, to assume a particular resource pool as a
default, or to separate the models into subclasses where specific equipment and

resources are assumed.

To complete the analogy, given the tactical operation, knowledge of the current
context, and a set of terrain roles to fill, the analyst’s next task is to identify terrain
regions which have the desired characteristics. In our approach, this process will be
accomplished by employing GINDB queries which in turn access the multi-attribute
feature data we are assuming available for the local terrain. (In general, the analyst has
less information to work with, and has to spend a significant amount of time inferring
information of the kind CATTS supplies). These queries will result in candidate regions
which the user can accept, prune or reject as desired. The system might also return
more than one candidate for a given terrain role, meaning that the user might wish to

apply additional criteria (via GINDB) in order to narrow the solution-set further.’

By embedding GINDB queries in parameterized models of this kind, the effect is
to automatically translate expressions for abstract features of military interest into the
right set of low level queries concerning the terrain. This approach should be of

significant benefit because:

o it allows the user to interact with the terrain analysis system in a vocabulary
that is natural, and at the right level of abstraction for the task

o it shields the user from the details of the underlying query language and
database concerning the terrain

o it provides a formalism for defining a wide variety of features, and for
sharing definitions of component features among many models

We have examined some alternatives {or the design of these tactical feature

models. We discuss our current understanding of their structure below.
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5.5.2.1 A Sample Tactical Feature Model

From the above discussion it is clear that tactical feature models must contain at

least the following four parts:

e the tactical operation of interest
¢ the terrain roles required by the operation
e a set of queries which identify regions that can fulfill those roles

e a method of specializing the queries in the model to account for the military
context (e.g., units and equipment) involved

A deliberately simplified instance of such a model is shown in figure 3-15. This
figure presents a portion of the river crossing site model mentioned above using a
hypothetical syntax for attaching queries to roles in models. The overall form is
patterned after procedures in a frame language which accept parameters and are
invoked by if-needed forms. We have introduced a new GINDB form, make-thing,
which creates an instance of an object given a terrain region (in the current
implementation, objects can only be constructed external to GINDB and then retrieved).
We have also allowed ourselves to embed GINDB requests in logical conditionals, but we

have otherwise stayed within the language capabilities described so [ar.

The interesting thing about this example is that it points out both the merits of
the feature model approach and a number of problems which still need to be solved. At
this stage we have explored some alternative model designs (discussed below), but have

not implemented any of the potential solutions.

On the side of merits, it is clear that a simple procedural/{rame format can
capture the essence of something as complicated as this river crossing example, and is
easily parameterized to account for differing military context. In addition, the
simplicity of the example (in structure, not syntax) supports the paradigm of identifying

complex features via low level manipulations of terrain properties using a language such

as GINDB.

o
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Figure 6-15: A tactical feature model for a river crossing site

Model: River-crossing-site (river equipment-to-move
bridging-equipment from-side to-side)

Role: crossing-point
Query: If equipment-to-move = ’'men
then
;the site should be flat and very shallow
(make-thing crossing-point
(and (spatial-component river)
(depth 0 4)
(slope 0 2)))
else 1f equipment-to-move = ’tanks
then ;no bridges then tolerate 4 degrees and 6 feet
;Examine river width and bridge type 1f mobile
;bridges are available.

Role: enemy-force-site
Query:
;ymust be near crossing point on the far side of the river
;and have field of fire over it
(make-thing enemy-force-site
(and (nearby crossing-point 20)
(spatial-component h)
to-side
forested)
(and (field-of-fire h crossing-point)
(hill h)))

Role: covering-force-site
Query: ;same as above except 1t must be on the from-side of the
;river and have field-of-fire over the enemy-force-site
(make-thing enemy-force-site ‘
(and (nearby crossing-point 20)
(spatial-component h)
from-side
forested)
(and (field-of-fire h enemy-force-site)
(h1ll h)))

o et
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However, there are additional requiremehts on the models in the context of TAPS.
In particular, since TAPS is an interactive system it is reasonable to expect that the
user will supply partial information about the units and equipment involved (own and
enemy) in the tactical operation. Rather than produce no output at all, the desired
result would be for TAPS to return a region that satisfies the constraints which are
currently known. lLe., given partial input, TAPS should produce partial output. In this
approach, we can view the interactive process as a sequential refinement exercise,

moving from rough sketches of the feature of interest to the best instantiations possible.

Next, since TAPS is also a mixed initiative system, it is perfectly reasonable for
the user to supply important data in different orders. This implies that the model
instantiation code must be capable of recognizing and running those queries whose
support data is available. This argues for an expression of tactical feature models built
along the lines of a constraint processing language (in the manner of the KNOBS or

TEMPLAR systems {Millen 83, Shapiro 84}) which distinguishes the following concepts;

o constraint readiness (when all the parameters of a constraint are known)
e constraint evaluation (to determine if a supplied region is acceptable)

e constraint inversion (i.e., to build regions which satisfy constraints; this is
what GINDB queries currently supply).

In this approach, we reinterpret the query forms attached to terrain roles as
constraints on the regions that can be slot fillers. We then implement an interpreter
which is tasked to watch the interaction with the user and run evaluative constraints
when the data is supplied, or run those generative versions which are ready when role

instantiation is requested.

The general form for feature models built in this image is shown in figure 3-16.
Note that this construction (with attached interpreter) addresses the mixed initiative
issues mentioned above, but also raises new questions concerning mode! application.
For example, in the event that more than one method (for object generation or

instantiation) becomes applicable at the same time, which one should be run? If all are

avteear b axeas s
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Figure 6-18: A Constraint Based View of Tactical Feature Models

Model: model-néme(params)

Role: role-name

Role Acceptance Criteria:
constraintci
constraint2

Instantiation Methods:
method-namel: query
method-name2: query2

applied, does the system carry the multiple answers as alternative slot fillers, or is a
method introduced for extracting only the best? (This situation can arise even in the
first feature model example). Given the interactive refinement usage postulated, it
seems reasonable for the system to maintain alternative instantiations which the user
can then restrict. It would also make sense to give the system some sense of the most
informed method, which presumably depends upon the most specific parameter data

available.

5.5.2.2 Evaluating and ranking role fillers

Another important form of interaction alluded to in the above occurs when the
user independently creates a region and asserts it to be an instantiation of some terrain
role. In this situation, it would be very desirable for TAPS to evaluate the user’s choice

" based on the knowledge contained in its feature models.

There are a2 number of ways to 'provide this capability. On the simple end, we can
define the ranking of a user-supplied region as the difference between it and the
system’'s own notion of what ought to be present. Since GINDB is well set to
manipulate individual pixels, we can cast this operation in terms of a pixel count. That
is, we run the query attached to the terrain role on the region the user supplies, and
then calculate the percentage of pixels both the model and the user find acceptable.

The percentage of agreement measures the goodness of the user’'s proposal.
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This type of analysis can be expanded to factor in both agreement and.
disagreement. So, for example, when the user proposes a role filler, TAPS could run the
model based query on an area surrounding the user’s input, and then weight the four
possible pairs of outcomes differently (e.g., where TAPS accepts a pixel the user
considers invalid, or where TAPS doesn’t retrieve one the user does, etc.). The

argument with this type of approach is that it is reductionist, and adds little insight

into the reasons which determine the relative value of a potential slot filler.

There are a range of approaches to candidate evaluation which provide a better
sense of well-informed judgement. The simplest among them is to build a calculus for
ranking terrain feature instantiations based on weighted production rules. \We could

then write deductive expressions of the form:

(implies crossing-point (and (spatial-component river)
(depth 0 4)
(slope 0 2))
.8)

(implies crossing-point (and (spatial-component river)
(depth 0 4)
(slope 0 1))
.9)

and apply them to the region supplied by the user. The result is a ranking of
candidate regions which admittedly depends upon magic numbers, but at least those

numbers were obtained from the user.

A more satisfying solution is to employ a form of the type shown in figure 3-17.
Here, the user supplies new information which explicitly defines an ordering of
acceptance criteria, i.e., that low exposure to enemy fire is more important than the
depth of the stream at the crossing point when multiple candidates are supplied. This
approach is equivalent to the mechanism employed by TEMPLAR ( {Shapiro 84'), which
partitions constraint forms into categories of hard and soft. Here, hard constraints are

mandatory requirements on any slot filler, while soft constraints are optional. The




Figure 5-17: Ranking Criteria for Feature Instantiations

Role: Crossing Point
Method: when-men-must-wade
Query: (and (spatial-component river)
(depth 0 4)
(slope 0 2))

- Ranking Criteria:
first: exposure to enemy fire 1s low
second: length of crossing is short :
third: depth at crossing point is less than 3 feet

candidate ultimately selected must pass all of the [irst type, and as many of the soft

constraints (in ranked order) as possible.

A final note is that this constraint oriented approach requires a considerable
quantity of new mechanism and should therefore be examined carefully. We plan to
explore it, along with other languages for expressing feature models in future extensions

to the BCA research.
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6 Future Dlrectlons

There are two obvious directions for continuing the work described in this report.
The first is a research oriented extension aimed at completing the design and
implementation of tactical feature models, and the second is concerned with adding
breadth to the TAPS system, and bringing it into user communities within the military.

These ideas are mutually supportive, and are described in more detail below.

6.1 Tactical feature model design and development

The creation of tactical features models is the next critical step in the
development of TAPS. These models will provide a language for describing terrain
featlires of military interest (beyond the powerful, but admittedly cumbersome
vocabulary of GINDB), and form the basis for an interactive mechanism for
instantiating features in the context of a terrain analysis/planning session. Our current
ideas on the structure of tactical feature models were presented in chapter 5. The

principal tasks associated with this line of effort are listed below:

¢ Develop a computation model for representing tactical feature models with
the following properties: they input parameters describing the current order
of battle, they support partial descriptions of desired features, and they are
organized around the different functional roles for terrain in specific military
operations.

o Construct a mixed initiative method for instantiating feature models that
allows the user to express queries in the functional vocabulary described
above, as opposed to the GINDB syntax which is currently emplox ed. (The
models will employ GINDB queries internally.)

¢ Build a sample library of such models, and demonstrate their use.

The benefit of this work will be a demonstrable capability to support terrain
analysts via artificial intelligence techniques, and a deeper understanding of the role
terrain reasoning cah play in supporting battalion level decision functions. As examples,
the following application tasks could be solved through use of tactical feature models in

an expanded version of TAPS:

i
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J Identify the terrain sites important for a river crossing operation, given the
specific equipment and tactical scenario involved. This requires instantiating
component sites, including potential enemy positions, exact locations for
fording or bridging the river, and own force sites for securing an approach to
the river.

¢ Propose placement of minefields. This requires identification of choke points
within enemy avenues of approach.

s Develop-an avenue of-approach towards a-speciﬁé objective. Key terrain, -
laterally inhibiting terrain, obstacles -and categories of mobility zones (by
vehicle type) are all component parts of avenues of approach. These can be
identified by queries attached to functional roles within an avenue of
approach model.

Several additional tools will have to be implemented in order to support
applications of this kind. I[n particular, we will need to construct a representation for
military organization and equipment which captures their capabilities, write routines for
extracting features from elevation data (direct and indirect fields of i“gy‘e, ridge lines,
etc.), and develop an order of battle display. It is worth pointing out that a wide

variety of image processing techniques can be applied to manipulating elevation data.

6.2 Applications level extensions of TAPS

Based on comments we have received after demonstrating TAPS, there is a role
for pushing the current capabilities further toward practical applications. With
attention to system level issues, it would be possible to take the current display and
retrieval capabilities, increase their generality, and host them on processors designed to
increase their speed and data handling capabilities. The result would be an applications
prototype that could be employed by trained members of the terrain analysis staff. We
believe such a system would be applicable at echelon from battalion through corps, and

that it would be powerful enough to significantly impact current military processes.

To transit the TAPS system into application, several design changes are indicated.
First, the retrieval language needs to be standardized and substantially clarified, to

make terrain manipulation queries more accessible to less-than-expert users. A

T XiaSa e
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possibility is. to modify an existing relational languaée to incorporate logical operations
on terrain. Second, the host for symbolic processing (the application system) should be
separated from the host(s) which supports the terrain data and query language. By
introducing this change, we identify a separable terrain server, which opens up the
possibility for optimization as well as standardization of terrain processing requests.
Finally, since the Multiple Pane Interface has already been implemented as a stand-
alone component, it would make sense to-explore options_for.optimizing its performance.... ... .
via different display and computation hardware. It operates quite efficiently at the
current time, although we are clearly pushing the limits of the Symbolics system's

display capabilities.

This applications effort would clearly benefit from a parallel research thrust,
which would provide new capabilities that could be transitioned to the development
prototype as they became available. A benefit in the reverse direction is that early
prototypes of an applied system would provide an effective host for {urther research

activities.
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II. SMAP Output
The slides attached to this appendix show the type of output it was possible to
produce with the SMAP system, described in section 4-9. A discussion of each slide is

provided below. Note that only three copies of this report contain a set of these color

35 millimeter slides.

T "= The SMAP system provided a mechanism for "ciisf)'léj'ing' desired subsets of CATTS
data (feature and elevation both) in user-selected combinations. In recognition of the
fact that some types of data are space filling, while other CATTS fields encode
predominantly linear features, the display menus are segregated into background and
overlay options. SMAP could then display any number of overlays above any single

background feature.

Slide 1: shows the groundcover background. A key describing the color coding of

each groundcover subtype appears beneath the image.

Slide 2: This slide shows roads, river, and rail lines overlayed on the groundcover
background from the previous slide. Documentation for the subtypes of each linear
!

feature automatically appear.

Slide 3: Countour lines computed {rom the elevation data are added on top of the
material in slide 2. This slide illustrates the visual clutter which results from the
attempt to display too much information simultaneously. The need for flexibility in

generating such displays was a major motivation behind SMAP.

Slide 4: This slide shows the CATTS "obstacle" field overlayed on a different

background, which encodes a version of cross country mobility.

Slide 5: This slide shows river data overlayed on the elevation map, where the
shading from green to red encodes increasing elevation. Note that this image gives a
good feel for the landforms which was not quite present in previous pictures. [t is clear

how rivers follow the natural contours of the terrain.
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Slide 6: This image shows the result of a visibility calculation applied to a user-

selected point on the screen (here chosen to lie within a valley).

Slide 7: This image provides what can be thought of as an evaluation of the risk
associated with a particular movement path. Here, the visibility calculation used in the
previous slide has been applied to a sequence of points along the valley, and the system

then color coded the number of times outlymg spots were seen. White mdlcates once,

“blue indicates 2-3 t,lmes, and red 1nd1cates more than 3. There is a small area of red in

the lower right hand section of the image which suggests a likely spot for placement of

an encmy observer.




III. TAPS Output

The collection of slides attached to this appendix give some .examples of the
terrain queries and display output it is possible to produce with TAPS. We describe the
content of those slides below. Please refer to section 5.3.4 for a description of the TAPS
screen. Note that only three copies of this report contain a set of these color 33

millimeter slides.

The first few slides show the effect of different overlay modes. The two overlays

involved were produced by the following queries:

(retrieve-region (nearby deciduous 15))
(retrieve-region (nearby coniferous 15))

These correspond to envelopes (within 15 pixels) of all grid cells that are defined

in the underlying CATTS data as part of coniferous or deciduous forests.

Slide 1: Nearby-coniferous-15 is shown in solid overlay mode on top of nearby-

deciduous-15.

Slide 2: Nearby-deciduous-15 is shown in solid overlay mode on top of Nearby-

coniferous-13.

Slide 3: This shows the same two overlays in ‘stiple’ mode, where only a
percentage of the pixels in each overlay are displayed. Note that 3 different types of
regions are distinguishable; purely coniferous, purely deciduous, and the regions where
both features are present. The latter show up in a tannish color, although no such color
was actually displayed (see the following slide). When different color pixels are

displayed in such ciose proximity, the human eye perceives an averaged color.

Slide 4: This presents a closeup of the results of stippling shown in slide 3.
Regular patterns of dots are used as a sampling pattern, and those patterns are offset in

order to prevent one sampled overlay from completely aligning with any other.
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Siide 3: This shows the same two overlays in ‘hashed’ mode, meaning that a

regular hashed line pattern was used to sample each overlay before display.

Slide 6: This shows a display composed of three overlays, with the forested region
in solid green on the bottom, the areas with slope between 0 and 15 degrees in the

middle (stippled blue), and the urban areas on top (stippled red). The bright green

areas are places where the forested pane shows through {i.e., where the slope is outside

v e v S mesmmi—t o rme ke . I

the 15 degree tolerance and no cities are present), the blue green encodes forested and
acceptable slope, and the reddish tint shows location of cities. The query producing the
slope data is shown in the GINDB interaction window, and the binary image resulting

from that query is shown in the source display.

Slide 7: This slide is the same as slide 6, except that the slope-0-15 pane has been
replaced by one representing slope between 0 and 4 degrees. Note that more bright
green- shows up (fewer forested areas fit within the slope tolerance). The urban areas
also separate into bright and dull red; the dull red is in areas where slébe data is also

present, the brighter red corresponds to areas where the slope is greater than 4 degrees.

Slide 8: In this slide, we have manually selected a portion of the display by
drawing on the screen. This defines a 1 bit wide feature mask (shown in the source
display) which can be used as an input into further GINDB processing. The user has

named this region "area of interest".

Slide 9: This slide shows that information from the display can be sent back into
GINDB. Here, the user formulates a query for zones of favorable traversability by
intersecting (or negating) the binary images for each of the overlays displayed in slide 7,
and the area of interest defined above. Note that the MPI binds the user-supplied
names for the overlays to the binary images they encode; in effect, this produces region

constants which can be passed into GINDB.

Slide 10: This slide shows streams in the area of interest displayed over that area.

The query shown in the interaction pane also demonstrates the use of relational data
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within GINDB. It requests all things (symbolic objects) of type stream which are in
(e.g., which overlap) the area of interest. The distinction between symbolic object and
region-is important; objects can participate in relations and carry an arbitrary set of
properties. Regions represent areas of space which are the values of certain GINDB

queries; the system itself carries no additional knowledge about their structure.

Slide 11: This slide shows the bridges over the streams returned above. Five

queries {and five overlays) were required in the current syntax, one to examine each of

the stream objects in the display. The last of these queries is shown in the interaction
pane; it requests the region near any bridge which is over the specified stream. One can

imagine this as the beginning of a more complicated terrain analysis scenario in which

the user examines potential river crossing sites by applying further questions to the area -

of interest and the objects it contains.

Slide 12: This is 2 blow-up of the aggregate display in slide 11. Note that rivers

are shown over the bridge locations, which have are presented as enlarged circles.

Slides 13-14: These slides show blow-ups of the system menus which are attached
to the different windows. Slide 13 shows operations on the overlays in the current
aggregate, and slide 14 shows the manipulations which can be performed on the display

window.

Slide 13: This slide is a detail of the system palette. The markers indicate the
color and overlay mode that will be attached to the next overlay which the user selects

via the mouse.
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IV. Information Concerning the TAPS Code

The code requires a Symbolics with eight bit color running release 6.1.

The information in this section assumes that you have loaded the carry-tape on
vour machine, and that the BCA code is now in a directory named " <machine-

name>:>BCA". You will find several files at the top level of this directory as well as

——— N ey e s - 4 s wm e o v smmns s ewma - et w6 vmmme e ———

The directories contain source and compliled code:

e "< machine-name>:>bca:>data>" contains the data files for the CATTS
_database.

¢ "<machine-name>:>bca:>gindb>" contains the code for the GINDB ‘
module. ]

¢ "<machine-name>:>bca:>mpi>" contains the code for the Multiple-Pane

Interface.

¢ " <machine-name>:>bca:>shark>" contains the code for the SHARK 4
window package, which is a utility for the Multiple-Pane Interface. i

There are two files which you will have to modify, In the file "<machine- 1
name>:>BCA:>hosts.lisp", change the pathnames in italics in the function below to
reflect the directory locations on your host:

(defun set-BCA-host (host) !
(fs:set-logical-pathname-host "BCA" 3
:physical-host host {

:translations
* (("MPI;" " >projects >acorn-bca >mpi>") !
("GINDB;" " >projects >acorn-bca>gindb>") |
("DATA;" " >projects >acorn-bca >data>")
("SHARK;" " _>projects >acorn-bca’>shark>") \
)) ]
|

(let ((inhibit-fdefine-warnings :just-warning))
(si:set-system-source-file ’'mpi "BCA:MPI;system.lisp")
(si:set-system-source-file ’'gindb "BCA:GINDB;system.lisp")
. (si:set-system-source-file ’'sh "BCA:SHARK;system.lisp")

)

o s 2.
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In the file " <machine-name>:>BCA:>bca-init.lisp", change the pathnames in
the lines indicated in italics to reflect your local host and file locations:

(defun init-BCA ()

(send terminal-io :set-more-p nil)

(load "a:>projects >acorn-bca >hosts.lisp")
T T (set=BCA-host Macorn®) T TTTT T )

(make-system 'sh :compile :noconfirm)

(make-system ‘mpi :compile :noconfirm)

(make~system ’'gindb :compile :noconfirm)

(mpi:init-mpi)

(send terminal-io :set-more-p t)
mormmee = cen=(DKE=GOLO-2gINAD)em e - e e e Cermeer e e e = e

Once these changes have been introduced, initialize the system with the following
command sequence: ;

(load "<machine-name>:>bca>bca-init.lisp")
(init-BCA) ; This will take around 5-10 minutes.

You are then ready to experiment with TAPS.

IV.1 Running the Demonstration

We have created a canned demonstration which provides a good introduction to
TAPS, and is useful for explaining the capabilities of the system. The demonstration is

easy to load with the following instructions.

(load "<machine-name>:>bca>bca-init.lisp") — f_o\'-"“ cfeofe —¢J b ~$ (f’f*’)

(1n1t-BCA) ; This will take around 5-10 minutes. CMAON G-t bRy
<FUNCTION-X> ; Change mouse back to monochrome screen.

; Choose a lisp-listener.
(init-gindb) ; This will take around 15-20 minutes.

<FUNCTION-X> ; Change the mouse back to the color screen.

[ TN
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You should type your gindb queries to the GINDB-Listener. The sample
demonstration script is found in the file "<machine-name>:>BCA:>demo-

script.text".

Note that the menu in the upper-lefthand corner of the color screen is non-

operative at the current time.
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