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ABSTRACT

The problem of recoverable image resolution is investigated for the case where an imaging array
is used which array has an optical transfer function that may be described as consisting of "islands"
of nonzero value in a sea of zi~ro values. We wish to know if the missing spatial frequency information
can be provided-if, in effect, a form of (interpolative) super resolution can be achieved. The CLEAN
algorithm used by radio astronomers suggests that this should be possible. The results developed

• here indicate that this can be done, with no significant price in terms of signal-to-noise ratio to be
paid, and further show that a nonlinear algorithm, like CLEAN, is not required. The results show
that the feasibility of doing this depends on the angular size of the object being imaged. We find
that its size must be less than the inverse of the largest gap between "islands" in the array's optical
transfer function.
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1.1. Introduction and Summary

The objective of the work reported here has its origin in the desire to form a high resolution
image of a satellite in a geosynchronous orbit with ground based optical imaging equipment. Un-
derlying the willingness to express such a desire is the presumption that by the exploitation of some
technique or combination of techniques-drawn from the methodologies of adaptive optics, of white
light speckle imagery, and of other possible relevant approaches-it will be possible to circumvent
the seeming limits to resolution that are imposed by atmospheric turbulence. Once we grant such
a presumption we next encounter the problem posed by the shear physical size of the instrument
required for the task.

The nominal range involved is R = 4 x 107 m. If the imaging is to be carried out utilizing
A = 5 x 10-7 m wavelength light, and the desired linear resolution on the satellite is 6z = 0.1 m,
then the span, Smx of the imaging system's aperture must be

Sm. = RA/6z

= (4 x 107)(5 x 10-7)/(0.1)
= 200 m, (1.1)

This dimension is much too great for us to be able to even toy with the idea that imaging system
might be a conventional sort of "full aperture" imaging telescope. Clearly the imaging system design
has to be based on some sort of array concept-and a sparse array concept at that.

Once we accepted the position that the instrument design should be based on a sparse array
concept, the next matter for consideration has to do with just how sparse an array we might be able
to use. The kind of instrument and its cost would be strongly influenced by the degree of sparsity
we could tolerate.

We had initially maintained that since the resolution we sought, 6z, corresponded to a spatial
frequency, Kmax, such that

ICmax = Sm./A, (1.2)

then we would need an array pattern which provided for "coverage" of all spatial frequencies, n,
such that

ICI __max. (1.3)

By the term "coverage" we meant that the array's optical transfer function for that spatial frequency,
r(n), has a non-zero magnitude. This in turn means that for any spatial frequency, 1Z, satisfying
Eq. (1.3), there must be at least one pair of points in the "composite aperture" associated with the
entire array which points are separated by a distance S, where

S = )ZA. (1.4)

Put differently, the requirement is that for all S such that

Sl < Smax, (1.5)

there must be at least one pair of points in the array's composite aperture whose separation is equal
to S. If such a pair of points do not exist then for the spatial frequency #z = S/A, the optical transfer
function, r(tc), of the array will be zero. This would seem to imply that any information about the
satellite that is represented in its image by this spatial frequency, it, would be missing in the image
eventually developed from the array's measurements.

The consequence of this is that the minimum acceptable size of the individual elements of the
array is "tied" to the spacing of the array elements. If for example, the spacing of array elements
is in integer multiples of 2 m, then the array elements must have diameters in excess of 1 m. If
they do not, then there will be spatial frequencies for which S = r.A has a magnitude just larger
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than 1 m, for which the optical transfer function would be zero-and this, we argued, would result
in images of little utility--strongly "defaced" by the absence of significant portions of the spatial
frequency spectrum. The implications of this seemed to be two-fold. First, a great deal of physical
aperture area (i.e., a great deal of glass) would have to be provided. Second, unless we were
prepared to consider a very large number of separate array elements, the aperture diameter of the
individual array element would have to be considerably larger than the effective coherence diameter,
ro, imposed by atmospheric turbulence considerations. This carried with it the implication that just
as we probably would have to be able to phase the array elements to each other, so also we would
probably have to provide a wavefront distortion compensation/accommodation procedure for each
array element's aperture.

It was at this point in the consideration of this matter that Ken Johnston of NRL introduced
a quite different position. He argued that the radio astronomer's experience with the CLEAN
algorithm demonstrated that it was possible to recover very acceptable, high resolution images
starting with data from an array so sparse that for many of the spatial frequencies that were present
in the recovered image, the value of the array's optical transfer function was equal to zero. It
was not necessarily clear how/why this could be the case, but it nonetheless appeared to be true.
The practical implication of this was that with reasonably large spacing between array elements,
and thus with only a moderate number of such elements, it would be possible to use a quite small
aperture diameter for each element-providing of course that light gathering requirements did not
force the use of larger aperture diameters. In fact from a missing spatial frequencies point of view,
the individual element's aperture diameter could be small enough so that there would not be any
significant wavefront distortion within the element's aperture. This would close out the question of
whether or not any adaptive optics were unavoidably needed to compensate for wavefront distortion
in each aperture element-leaving the system design with the only unavoidable turbulence/phase
compensation problem being that of how to handle to relative phase difference between the individual
array elements. And of course, the permitted smallness of the individual array elements offered an
advantage in terms of cost and mechanical complexity.

But before we could accept all of these advantages it was necessary to understand if the CLEAN
algorithm does actually work as well as it seems to and also how/why it does so. We had to consider
the possibility that CLEAN works as well as it does for the radio astronomers only because it has
available to it an immense signal-to-noise ratio in the starting date. The available publications do
not clearly rule out this possibility. If it did rely on a very large signal-to-noise ratio it would be of
little potential utility to us in designing a sparse optical array for imaging a geosynchronous range
satellite. Also we had to understand just how sparse the array could be and still produce useful
images, i.e., how far apart from each other could the array elements be (or how few array elements
we needed to use). It was to investigate these questions that the work reported here was undertaken.

This work is reported in the various chapters following this introduction. The balance of this
introduction explains how we viewed/approached this problem, the methods we used in carry out
our investigations, and finally what we found. As a convenience to the reader we will first take up
a discussion of our work in a bit more detail.

To sum up, we found that it is possible to recover a quite satisfactory image even though
the array is so sparse that the value of its optical transfer function is equal to zero over much of
the spatial frequency domain covered by the image eventually produced. We found that this was
possible even with quite modest signal-to-noise ratio values for the basic data produced by the array;
we found that the image recovery process seems to impose little penalty in terms of signal-to-noise
ratio. Moreover, we found that there was no strict requirement that the image recovery process be
nonlinear-even though the CLEAN algorithm itself is nonlinear. We found that the size of the
individual aperture elements did not matter (except as that effects the total light gathering/shot
noise) but that what was of critical importance was the relationship between the size of the object
being imaged and the spacing between array elements. The spacing between array elements set
a critical angular dimension and the angular size of the object being imaged had to be smaller
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than that if a satisfactory image was to be recovered without imposing a severe signal-to-noise ratio
penalty.

Our conceptual approach to this problem was through the idea of super resolution. More than
two decades ago there was a flurry of activity around the concept of super resolution-a term which
can be taken as meaning, at that time, the possibility of obtaining an image containing valid data
for spatial frequency whose magnitude is above D/A (cycles/rad f.o.v) when collecting the optical
information using an imaging system whose aperture diameter is D and when working in a (narrow)
spectral band characterized by a wavelength A. The value of the optical transfer function is zero for
such large spatial frequencies, and the ability to obtain valid image data at such spatial frequencies
with such an instrument is in a rather obvious sense "super resolution". It seemed to us that, as a
practical matter, the term "super resolution" referred not so much to the magnitude of the spatial
frequency but more so to the fact that the value of the optical transfer function was equal to zero for
the spatial frequencies being considered. In 'that sense what was being accomplished by the CLEAN
algorithm working with data from a very sparse array was super resolution. The spatial frequencies
in question were not, in general, as large gs the largest covered by the array's span, but the value of
the array's optical transfer function was equal to zero for the spatial frequencies in question-and
yet valid image data was being produced by the CLEAN algorithm for these spatial frequencies.

With this putative equating of the sparse array problem to the concept of super resolution, we
were able to draw on the insight provided by Jim Harris more than 25 years ago, that to the extent
that super resolution works, it works because the object being imaged is of finite size, on a uniform
(black) background.* He showed that no two distinctly different objects of finite angular size can
have identical images. This caused us to recognize the potential significance of the finite size of
the satellite we were interested in imaging. But Harris' work was followed by a number of others
that showed that while super resolution could be achieved-in fact could be achieved by quite linear
signal processing methods-there was a tremendous signal-to-noise ratio penalty to be paid for what
was achieved.

Based on consideration of these various results we formulated an approach to investigating
what could be accomplished by processing sparse array data, which approach restricted attention to
finite size objects and to linear signal processing algorithms (at least initially). We chose to use a
spatially quantized (i.e., a sample value) formulation of the problem, rather than one based on the
use of analytic functions. (This assured us that, though we might burden the computer, the most
complex analytic operations we would have to consider were matrix manipulations.) We assumed
as a given, the matrix representing the imaging system's (i.e., the array's) point spread function-a
matrix which when multiplied by the data array (of sample values) representing the object, would
result in a data set (of sample values) representing the raw or initial image formed by the imaging
system/array. We assumed that there would be some set of random (noise) values added to this
initial image formed by the imaging system/array. (We always considered a gaussian noise with an
rms level that was the same for all pixels in the initial image.) We then posed our analysis in terms
of a linear process (i.e., an image processing matrix) to be applied to (i.e., to be multiplied by) the
data set constituting the initial image so as to produce a set of estimated values for the data set
representing the object being imaged.

When we assumed that we knew nothing of the statistics of the object being imaged then we
imposed a least square error criteria in the selection of our linear process (i.e., in the selection of our
image processing matrix). Our least square criteria was that the recovered object (image), if imaged
by the array (i.e., if multiplied by the array's optical transfer function matrix) would produce a set
of data matching the row (initial) image values as closely as possible, in a least square sense. This
lead in a direct manner from knowledge of the array's optical transfer function to formulation of a
matrix for linear processing, (i.e. matrix multiplication) of the raw (initial) image data to produce
the enhanced image. It allowed us to develop results for the mean square error in the recovered

J. L. Harris, 'Diffraction and Resolving Power" J. Opt. Soc. Am. 54 931-936 (1964).
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image as a function of the rms noise and the nominal signal level in the raw image.
We also considered the case in which we assumed that we knew something about the statistics

of the object being imaged. In this case we were able to use a minimum variance formulation of
the image processing problem. In this case also we obtained an image enhancement matrix to be
multiplied by the raw (initial) image data produced by the array, and thereby produce an enhanced
image. In this case also we developed an expression for the mean square error in the recovered image
as a function of the mean square error in the raw image and of the nominal signal level in the raw
image.

In developing this line of investigation we recognized that it might not be desirable to attempt
to recover an image containing all spatial frequencies up to the highest that the sample density (or
pixel size) could support. Accordingly we considered spatial frequency analysis of the recovered
image. We developed expressions allowing us to calculate the signal-to-noise ratio to be associated
with each spatial frequency component of thi recovered/enhanced image, and the signal-to-nose ratio
to be associated with an image enhanced for all spatial frequencies up to some cut-off frequency,
and with zero content for higher spatial frequencies. Such results were developed for both minimum
variance and least square error formulations.

Our initial work started with a two-aperture one-dimensional array, and with a three-aperture
two-dimensional array. This work along with our basic analytic formulation of the problem is
presented in Chapters 2 and 3 of this report. Unfortunately we were able to develop virtually no
useful insight from this work, and the documentation is included here partly for completeness, but
mostly as a reference for the detail of the analytic formulation-which we continued to use. We
now realize that our failure to obtain useful insight from the results of this work has to do with
the fact that the problem was not "rich" enough. The two-aperture one-dimensional array and
the three-aperture two-dimensional arrays are too simple. In subsequent work we considered multi-
aperture one-dimensional arrays. For these multi-aperture arrays the imaging process/problem was
sufficiently rich that we were able to develop considerable insight into the image enhancement/super
resolution process. (We did not pursue the two-dimensional array problem any further, considering
that the insight we got from the one dimensional array problem was equally applicable to the two-
dimensional array.) After a brief discussion of the one-dimensional array results that we obtained
with linear processing we will discuss work done with nonlinear processing algorithm; such results
are developed in Chapter 4.

As an instructive example of the results we obtained with a linear processing image enhancement
technique we present the minimum variance results obtained with the one-dimension six aperture
(non redundant) sparse array whose array pattern and optical transfer function are shown in Fig. 1.1.
We have a sparse array span denoted by D, with an optical transfer function that has non-zero values
out to a spatial frequency of D/A. The optical transfer function has islands of nonzero value with
spacing of 'D/A cycles/radf..,. in spatial frequency--out to -D/A cycles/radf.o.v., but then has

3gap of 1 D/A cycles/radr.o.v, to the next island. Between the islands, in the gaps of D/A and

,7D/A, the value of the optical transfer function is zero. We call particular attention to this transition
from a gap of AD/A to 3 D/A cycles/radf.o .v, at a spatial frequency of 13 DA cycles/radf..... We
also note that the value of the optical transfer function is zero for all spatial frequencies above D/A
cycles/radf.....

The analysis associated with this array was formulated utilizing pixel size of A/D both to
define the object and its recovered image, and to represent the (noisy) raw (initial) image formed
by the array. With this sample size we are able to consider spatial frequencies up to 2D/A. We
took as our knowledge of the object being imaged, the assumption that it was a zero-mean white
noise pattern, i.e., that there was no correlation between pixel values, that the average value of each
pixel was zero, and that the standard deviation in the value of each pixel was the same-a value
denoted by a,. We considered the noise in the array's image plane to also be zero mean white
noise with a standard deviation denoted by a,. We relate a, and ff. by presume a scale factor in
associating numerical values with the raw image data such that the matrix representing the array's
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Figure 1.1 Array Pattern and Optical Transfer Function for a Six-Element One-Dimensional
Non-Redundant Array. The spacing of the array elements, indicated by the numbers 1, 3, 6,
2, and 5 in Fig. 1.1a total to 17, which we associate with the array span, to be denoted by
D. It is to be understood as significant that the array elements are smallenough compared
to the array spacing that the value of the optical transfer function is equal to zero over much
of the spatial frequency domain of interest. We see in Fig. 1.lb that the space between the
individual "islands" of nonzero OTF value is -D/A, out to L.D/A, with oly small zero-value
regions between the islands-but there is a sigificantly larger gap of zero-value OTF betweenh 13 6
the j D/A spatial frequency island and the -f'D/ island, a gap that will be of considerable
significance in interpreting our results.

0
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point spread function would image an everywhere equal to unity infinite extent object as an every
equal to unity infinite extent raw image. For our analysis we considered the ease where the raw data
"signal-to-noise ratio" was,

SNRRAW = 20 log 1O(q',/1r), (1.6)

equal to 50.
When we calculated mean square error in each spatial frequency component of the processed

image produced by the minimum variance estimator for various size objects, we obtained the results
shown in Fig. 1.2. These results are for object sizes of 3A/D, 6A/D, 9A/D, ... , 21A/D. Examining
this figure we can see that only for the two largest objects, 18A/D and 21A/D, do we make much
error in estimating the spatial frequency components for all spatial frequencies below 13D/A, even
for spatial frequencies for which the arrays optical transfer function is equal to zero. For spatial
frequencies between TD/A and "DA, it is-only for the two smallest objects, 3A/D and 6A/D, that
acceptable results are obtained. The quality of the estimate for spatial frequencies beyond D/A falls
off quite rapidly, going out the farthest for the smallest objects.

100

10-1

10-2 \\ iII
Li

10-3

10-4
0. 1. 2.

AX/D
Figure 1.2. Spatial Frequency Component Estimation Error.

Results are shown here for the six-element sparse array depicted in Fig. 1.1, for object of size
3A/D, 6A/D, 9A/D, ... , 21A/D. Each curve represents the mean square error, Ec(sc), in our
estimate of a spatial frequency component, K, normalized with respect to the mean square value
expected for that component, Ex( ). Minimum variance estimation with *A/D sized pixels
and an initial signal-to-noise ratio, SNRRAW, of 50 dB is utilized in developing these results. It
should be noted in studying the results depicted here, that only for the 18A/D and 21A/D cases
do the curves show any " excess" noise for spatial frequencies below }-D/A--even for those
spatial frequencies for which the MTF, as shown in Fig. 1.1b, is equal to zero.
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In Fig. 1.3 we show related results, only for all object sizes from 1A/D, 2A/D, ... , to 32A/D,
and in terms of the rms error in the enhanced image. The results are shown as a function of spatial
frequency cut-off, Ko, in the enhanced image. The signal to noise ratio is defined by the equation

SNREST = 20 log1O(o;/u), (1.7)

where u denotes the standard deviation in the pixel values of the enhanced image. The results
shown in Fig. 1.3 may be considered as being obtained as a spatial frequency integral over (an
extended set of) the results shown in Fig. 1.2.

4-0 . , , I , I , , I

30.

20.

Cr

10.

0.0. 1. 2.

Figure 1.3. Enhanced Image Signal-to-Noise Ratio as a Function of Spatial Frequency Cut-off.
The results shown here may be thought of as being developed from those in Fig. 1.2 (except that
here we consider object sizes of AI/D, 2A/D, 3A/D, ... , 32A/D), by integrating over spatial
frequency up to the cut-off frequency, ro. These results correspond to the mean square error in
the estimated pixel value of the enhanced image, normalized by the variance (associated with the
object's statistics). It is to be noted that good results are obtained for object sizes up to 17A/D
(the inverse in the basic optical transfer function gap shown in Fig. 1.lb, for spatial frequency
cut-offs up to j3D/A. For cut-offs up to D/A good results are obtained only for object sizes
about up to 6X/D, about equal to the inverse of the largest gap in the optical transfer function
when considering spatial frequencies up to D/A.

It is clear from an examination of these results that there is a break in enhanced image quality
at a spatial frequency of D/A and an earlier break at "D/A for all objects except those whose size
is greater than 6A/D. Most important of all, we note that performance is seriously degraded for any
spatial frequency cut-off for objects larger than 17D/A..
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All of these results suggest to us that the critical consideration is the size of the object relative
to the inverse in the largest gap between "islands" in the optical transfer function. If we take 2D/A

as our cut-off spatial frequency, then the largest gap is AD/A-and we get good results for all
objects whose size is no greater than 17A/D. This is made quite explicit by the presentation of
the data shown in Fig. 1.4. If we take D/A as our cut-off spatial frequency, then the largest gap is

D/= -- D/A, and the only good results are for objects whose size is no greater than 6A/D. We
conclude from these results and others like it, that super resolution, i.e., the ability to develop image
data for spatial frequencies for which the value of the imaging system's optical transfer function is
zero, can be obtained by linear processing of the raw image data. The (only) requirement is that
the object be smaller than the inverse of the largest gap in the modulation transfer function, and
that we formulate our image processing algorithm with this knowledge in hand.

30.

*20.
-0

0...

rC")

cor 10.

0. 5. 10. 15. 20. 25. 30. 35.

Support (X/D)
Figure 1.4. Enhanced Image Signal-to-Noise Ratio as a Function of Object Size.

The results shown here are taken directly from Fig. 1.3, for a cut-off spatial frequency of .ID/A.
For this cut-off spatial frequency the largest gap between islands of nonzero value in the optical
transfer function shown in Fig. 1.1b, is I9D/IA. We consider it significant that the signal-to-noise
ratio does not fall-off, i.e., apparently super resolution has been "hieved so long as the object
size is no greater than the inverse of this gap.

To understand why it should be that we can apparently develop the missing data for spatial
frequencies for which the optical transfer function is zero-in essence achieving super resolution-we
undertook the study reported in Chapter 5. In this work we show that if we start with an infinite
extent white noise pattern-a pattern for which there is zero correlation between the amplitudes of
the components at two distinct spatial frequencies, no matter how close the spatial frequencies-and
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if we slice out a limited size sample of this random pattern and embed it in an infinite extent of zero
values, then we now have an infinite random pattern for which there is non-zero correlation between
different spatial frequency components! However, only if the components are for spatial frequency
components that are close enough together is the correlation substantial. We find that the concept
of spatial frequencies that are close enough together corresponds to the inverse of the difference of
the two frequencies being greater than the size of the random sample that we extracted from the
original random pattern.

We interpret this as meaning that in any finite support random pattern, spatial frequency com-
ponents are necessarily correlated if the spatial frequencies are close enough, where close enough
has to do with the inverse of the objects size. We believe that the minimum variance estimator
naturally takes advantage of this correlation. This allows it to estimate the amplitude of the un-
measured spatial frequency components, using the amplitude of the measured components as a basis
for the estimates-providing that the object is not too large to allow accurate estimation to be
done this way. Put in a different way, we would say that the correlation indicates that the missing
spatial frequencies do not contain any significant amount of new information; it's just a matter of
"spreading out" the information we do get from the measurement in a somewhat different way, and
this is what the algorithm does. It's still "super resolution" according to our definition of that term
as providing image data for spatial frequencies for which the optical transfer function is equa, to
zero-but somehow the wonder of it, of super resolution seems to be gone. Nonetheless, we shall
call it "super resolution".

It may be recalled that the CLEAN algorithm and other related algorithms possibly promising 0
super resolution were nonlinear in nature. We have thus far restricted our attention to linear
algorithms. This would seem to leave open the possibility that if we had used a suitable nonlinear
algorithm we would have been able to process larger objects. To investigate this possibility, since
the nonlinear algorithms do not lend themselves to closed form analytic treatment, as were used
in Chapter 4, we switched to a Monte Carlo approach. We developed results using a Monte Carlo
approach, and then compared those results (i.e., the rms errors) with the rms error for a linear
algorithm-namely the least square algorithm. These results are presented in Chapter 6.

We carried out Monte Carlo runs for both the CLEAN algorithm and for a least square aug-
mented by positivity requirement. In general we got essentially the same performance from the
nonlinear as from the linear algorithm. This is illustrated in Fig. 1.5. Based on this and the other
results developed in Chapter 6 we have concluded that there is no special virtue in the use of a nonlin-
ear image enhancement algorithm-though there may be practical computational advantages-and S
that for analysis of expected performance we may rely on results developed with a linear algorithm
being used for image enhancement.

But most important of all, we have concluded that Ken Johnston's suggestion is valid-that we
could use an imaging array with widely spaced array elements and small element size to image an
object in a geosynchronous orbit. Exactly how small an aperture diameter each array element can
have is no doubt going to be strongly influenced by light gathering/signal strength considerations, 0
and it may be possible to use aperture diameters small enough to avoid wavefront distortion. Cer-
tainly we now know that there is no reason to rule out the use of such small apertures on the basis
of the consequent presence of zeros in the array's optical transfer function.

Regarding the spacing between array elements we note that if we were interested in imaging
a 10 m diameter satellite in geosyrichronous orbit, working at 0.5 pm wavelength, then the basic
array element spacing parameter would be 2.0 m. If light gathering considerations did not preclude 9
it there is no reason why the size of the array elements could not be as small as 10 cm, or less.

0
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Figure 1.5. Comparison of Image Enhancement Results Using Least Square Estimation and
Using CLEAN. The continuous curve represents the analytic results obtained for least square
estimation. The dots (connected by the broken line) represent the results obtained from 40
Monte Carlo runs for each dot, for the CLEAN algorithm. It is obvious from consideration of
these results that there is no significant advantage obtained by use of a nonlinear algorithm, i.e.,
CLEAN, rather than the linear image enhancement algorithm associated with least square error
processing. (For more details regarding the results shown here the readers attention is directed
to Fig. 6.33 and the associated discussion in Chapter 6.)
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2.1. Introduction

This chapter presents the results of a preliminary investigation into the feasibility of obtaining
useful images of objects viewed through a sparse array of optical apertures. If all array of apertures
is sufficiently sparse, then the modulation transfer function (MTF) of the array will contain holes,
or regions of zero response. Thus, the Fourier transform of a noise-free image of an object will also
have corresponding regions of zero frequency response. To obtain a useful estimate of the object
intensity distribution from the image, one needs to "fill in" the missing frequency regions. We refer
to this process as (interpolative) super-resolution*. To do so, one must have constraint information
about the object. For example, if one knows the support region of the object, then theoretically,
knowledge of the fourier transform of the object intensity distribution in one region can be used to
fill in the missing information in another region (analytic continuation). A positivity constraint on
the estimate of the object intensity distribution can also be used in addition to, or instead of, the
support constraint to extend object frequency information. In this report, our primary emphasis is
on the object support constraint.

We begin in Section 2.2 by developing a discrete model of an optical system so that the system
response can be approximated with a matrix equation.

In Section 2.3 we assume we have first and second moment information about the object intensity
distribution and observation noise, and we develop a minimum-variance estimate of the object using
the support constraint only. The results indicate that the achievement of useful super-resolution
with significantly sparse arrays requires very large signal-to-noise ratios.

In Section 2.4 we investigate the implication of the addition of a positivity constraint to the
finite-support constraint. Here we assume no statistical knowledge and use a least-squares estimator

instead. Unfortunately, the nonlinear nature of the positivity constraint greatly complicates the
computation of useful object estimates, and our results to date are consequently rather limited.
However, these results indicate that positivity, when used in addition to finite support, has the
potential of significantly improving super-resolution performance.

2.2. Discrete Optical Model

The intensity distribution of a monochromatic image of a object can be described mathemati-
cally as the two-dimensional convolution of the intensity distribution of the object with the point-
spread function of the optical system. Since the spatial frequency response of any optical system
has finite support, the point-spread function is in-"nite in extent. In order to study super resolution
quantitatively, we have chosen to use a discrete matrix model of convolution. This necessitates not
only discretizing the optical model, but assuming that the point-spread function is of finite extent.
Thus, the spatial frequency response of the model will not have finite support. However, we assume
that if the extent of the point-spread function is chosen sufficiently large, truncation of the point-
spread function will have a minimal effect on the results. We will use both one and two dimensional
discrete models. The one-dimensional model, being computationally less complex, will enable the
generation of a large body of results that are easily displayed. The two-dimensional model will be
used to verify that the conclusions drawn from consideration of the one-dimensional results extend
to two dimensions.

The term "super resolution" has customarily been used to refer to the development of image/object information
associated with spatial frequencies h-gher than those that go with the largest dimension of the aperture of
the imaging system-spatial frequencies for which the imaging system's transfer function has zero value. It is
entirely consistent with this to generalize the concept of "super resolution" to the development of image/object
information for any spatia! frequency for which the imaging system's transfer function has zero value-even if the
spatial frequency is less than that associated with the largest dimension of the aperture. For a filled aperture this
generalization is an empty one, but for a sparse array imaging system this generalization represents a significant
"extension" of the basic concept of "super resolution". We may use the terms "interpolative super resolution"
and "extrapolative super resolution" to distinguish between the case 1) where we are "filling in" missing data
at spatial frequencies less than the highest the aperture can nominally provide, and 2) when we are "filling in"
missing data at spatial frequencies greater than the highest the aperture can nominally provide, respectively.

- 16-
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2.2.1 One-Dimensional Model

Let the components of the L x 1 vector z be the intensity pixels of the object line, let the
N x 1 vector y represent the image line intensity pixels, and let the N x L matrix B be the
transformation from object line to image line (its columns contain shifted versions of the system
point-spread-function). Then an image can be represented in the matrix equation

y = Bz + n, (2.1)

where n is a N x 1 noise vector. The product Bz in (1) represents convolution of the object line
with the point spread-function. Let the point spread function be h(k), where k = -K, -K +
1,... ,+1, +2,..., +K. Then the B matrix is

h(-K) - 0 ... 0
h(-K + 1) h(-K) ... 0

h(-K+ 1)

: . ... 0
h(0) i ... 0

: h(O) ... h(-K)

B = : : ... h(-K + 1) (2.2)

h(K- 1)

h(K) h(K - 1) ...
0 h(K) ... h(O)

0 0 ...
: 0 ...

: : ... h(K- 1)

0 o ... h(K)

Since B has N rows, from (2) we must have that N = L + 2K.
Now let the M x 1 vector x represent an object of finite contiguous support of length M < L

pixels located somewhere in the object line. We can write

z = Wx, (2.3)

where the L x M matrix W is of the form

0

1 0

W -1(2.4)

0

Thus, W comprises an M x M identity matrix embedded in a L x M matrix of zeros. Combining
Eq.'s (2.3) and (2.1) yields

y = BWx + n. (2.5)
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To complete the model, we need a point-spread function. To derive a point-spread function, we
first need to choose an aperture function. To represent a sparse array of apertures in one dimension
we will use a simple model of two small apertures of length d with outside spacing D, as shown
in Fig. 2.1. The corresponding modulation transfer function (MTF) is given below, where r. is the
spatial frequency variable and A is wavelength;

MTF(c) = dxw(x+ !r.A)w(x - 1cA). (2.6)

Normally A is chosen to be the area (in this case the length) of the aperture, so that the MTF
at zero spatial frequency is unity. However, we wish to "penalize" the MTF of a sparse aperture
to reflect the fact that the total energy in the image plane of a sparse array will be reduced from
that of a full array in proportion to the ratio 2d/D. We will thus set A equal to D instead of the
more conventional 2d. The resulting MTF is shown in Fig. 2.2a. Fig. 2.2b shows the MTF when
d/D = 4 (the full aperture case). We note from Fig. 2.2a that, for d < D/3, there is a region of zero
MTF over the range d/A < . < D/A -'2d/A It is this region that will bear scrutiny in performance
evaluations. Fig.'s 2.3-2.7 show the MTF on a log-log scale for various values of d/D.

w(X)

d

1 --

0

D

Figure 2.1. One-Dimensionnl Aperture Function

The point-spread function of an optical system is the inverse Fourier transform of the MTF
function. Without going into the details, one can show that the inverse Fourier transform of the
MTF shown in Fig. 2.2a is

4d2 Co, [r.(D - d) i]rsin (7rxd/A) 1 2
h, (x) = D A A j rxd/A (2.7)
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Figure 2.2. Modulation Transfer Function (MTF) for Aperture Function of Fig. 2.1.
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Figure 2.3. MTF of the Aperture of Fig. 2.1 with d/D = 0.1.

The region of zero MTF is 0.7 D/A wide.
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The region of zero MTF is 0.4 D/Ak wide.
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* The subscript c denotes that this point-spread function is the continuous version. The discrete
version of the point-spread function is found by sampling and truncating the continuous version.
Let A denote the pixel spacing in the image line. Then the discrete point spread function used in
the B matrix given by Eq. (2.2) is

h(n)= Ahc(nA), -Kn K (2.8)S0, else.

Before we go on to the two-dimensional model, we wish to discuss the evaluation of the per-
formance of a processor. Any processor we chose will have, as an observable, the image vector y.
Using y and whatever a priori information is available, the processor will form an estimate of the
object vector x. Let us call this estimate R. Let the error in the estimate be

e =x-. (2.9)

One common measure of performance is the mean-square-error, (eTe). For our purposes this measure
is not useful. It gives us no indication of how well the processor performs as a function of spatial
frequency. The performance measure we will use is the energy spectrum of the error vector. The
Fourier transform of the error vector is

(.)= Z e(n) expl-i21rnAxl, (2.10)
n

where e(n) is the n11 component of the error vector. The energy spectrum of the error vector, which
we denote by Ee(rc), is the expectation of the square of the magnitude of Z(x) as given by Eq. (2.10):

= (e(n)e(m)) exp [-i21rAx(n - m)]. (2.11)
m n

By plotting E,(K.) versus r, we will determine how well the processor performs at each spatial
frequency, thus determining its super-resolution capability. We note from Eq. (2.11) that we will
need all entries of the error correlation matrix (e eT) in the evaluation of the energy spectrum of
the error, not just the diagonal terms that are required to evaluate mean-square-error. We further
note that mean-square-error, (eTe), is the integral of the error energy spectrum:

(eTe) = A dr.E,(r.). (2.12)

2.2.2 Two-Dimensional Model

We will generalize the one-dimensional model of the previous section to develop a two-
dimensional model. We now have object and image planes, rather than lines, and a two-dimensional
point spread function. Following our notation of the previous section, let the components of the
vector z,, be the intensity pixels of the ntlh row of the object plane, let the components of the vector
y, be the intensity pixels of the nt row of the image plane, and let the matrix Bn1 represent the
influence that the It" row of the object plane has one the n"h row of the image plane. Then we can
write: = Btazi +nni (2.13)
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where n,, is an additive noise vector for the ntl' row of the image plane. Assume we truncate the
point-spread function with a square window of dimension 2K + 1 on edge, and let the discrete point-

spread function be h(m, n), where m is the row index and n is the column index. Then the B,a
matrix of Eq. (2.13) has the form

h(n- 1,-K) 0 ... 0

h(n - 1,-K + i) h(n - 1,-K) ...

: h(n- 1,-K + i).

h(n - 1, 0) 0 ... 0
: h(n- 1,0) ... h(n- 1,-K)

B~a = : : ... h(n -l,-K-t- ) .4

h(n- 1, K)

0 h(n - 1, K) ...

0 0 ... h(n- 1,0)

o 0 ... h(n - 1, K) J

Now let us assume that the object has a contiguous region of support within the object plane. Let
the components of x, be the object pixels contained within the support region on the It , line of the
object plane. Then we can write

Z, = WIx,. (2.15)
We point out that the length of xi can be, in general, different for each I (some may be of zero
length). The form of the W1 matrix is the same as that shown in Eq. (2.4). Substituting Eq. (2.15) 0
into Eq. (2.13), we have,

y, L B,Wx 1 + n,, (2.16)

now assume we have L rows in the object plane, N rows in the image plane, and let

Y2

(2.17)

YN I

X2

X= . , (2.18)

XL,
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n12

ni

n = .(2.19)

nN.

W = W2 (2.20)
WL

and

B11  B12  ... BIL

B21  B22

B =(2.21)

SBN I ... BNL

Then Eq. (2.16) can be written in matrix form:

y = BWx + n. (2.22)

We need a point-spread function to complete our model. The aperture function we will use
comprises three small circular apertures each of diam'- er d inscribed within a circle of diameter
D. This aperture function is shown in Fig. 2.8. The corresponding MTF is the two-dimensional
auto-correlation of the aperture function, which we can write as

MTF(r.c, ic) = x JJ dyw(z+ yA,y+ 1A) x w(z- k A,y- kyA). (2.23)

As in the one-dimensional model, we take A to be the area of the "full aperture", i.c. of the
circumscribing circle, rather than the area of the actual aperture. We write,

A = lirD2 . (2.24)

The continuous two-dimensional point-spread function is the inverse Fourier transform of the MTF:

h(X, y) = JJ dtc. dK, MTF(t.,, r.,) exp ji21(k.z + k,,y)). (2.25)

Finally, the discrete point-spread function, h(m, n), used in Bq. (2.14) is a sampled nd truncated
version of Eq. (2.25), which we can write as

h(m,n) = A2 h,(mAnA), -K 5mn5K (2.26)
10, else.
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Eq.'s (2.23) through (2.26) have been evaluated numerically for various values of d/D. Some exam-
ples are shown in Fig.'s 2.9 through 2.18.

To complete the model, we will compute the energy spectrum of the error. Let the estimate of
the object intensity distribution be denoted by :

xl

(2.27)

XL

where :Z1 is the estimate of the intensity distribution be denoted of the I' row of the object. The
error vector is

e =x-R
el

e2

(2.28)

eL

It is more convenient to express the error as a two-dimensional array of scalars and accordingly write

e(m, n) = (e,,).. (2.29)

The Fourier transform of the error array is

Z(/C" K.y) = E e(m, n) exp I-i2 r(mr. -+ nicy). (2.30)
in n

The energy spectrum of the error array is

= Z Z - (e(k, l)e(m, n)) exp {i27r I(m - k)Kx + (n - L)yl)]. (2.31) •
k I in n

2.3. Minimum-Variance Processor
The first processor (estimator) we will investigate is the so-called minimum variance processor. •

We assume that we have first and second moment information on the object vector x and the noise
vector n of Eq.'s (2.5) and (2.22), i.e., we know the mean vector and covariance matrices of x and
n. Since we know the mean values of x and n, and we can compute the mean value of y, we will
assume that the mean values have been subtracted out of Eq.'s (2.5) and (2.22), and our estimate
2 is the deviation of x from its mean value. In other words, we have the observation model

y = BWx + n, (2.32)
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Figure 2.9. MTF of the Aperture of Fig. 2.8 with d/D =0.05.

The image is 2 fl/A on edge. The height of the largest peak is 3(d/D) 2 =0.0075.
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Figure 2.10. Greyscale Image of the Point-Spread Function of the Aperture of Fig. 2.8 With d/D =0,05.0

The image is 32 A/fl on edge.
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Figure 2.11. MTF of the Aperture of Fig. 2.8 With d1D =0.1

The image is 2d/,\ on edge. The height of the highest peak is 3(d/D) 2 =0.03.

i. V, rn.

* U.

nw k .I

Figure 2.12. Grey-Scale Image of the Point-Spread Function of the Apertulre of Fig. 2.8 With d/D 0.1.

The image is 32 )X/D on edge.
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Figure 2.13. MTF of the Aperture of Fig. 2.8 With d1D = 0.2.

The image is 2D/A on edge. The height of the highest peak is 3 (d/D) 2  0.12.

# N

Figure 2.14. Grey-Scale Image of the Point-Spread Function of the Aperture of Fig. 2.8 With d1D =0.2.

The image is 32A/D on edge.
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Figure 2.15. MTF of the Aperture of Fig. 2.8 With d/D = .3.

The image is 2D/A on edge. The height of the highest peak is 3(d/D) 2 =0.27.

Figure 2.16. Grey-Scale Image of the Point-Spread Function of the Aperture of Fig. 2.8 With d1D =0.3.

The image is 32A/D on edge.
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Figure 2.17. MTF of the Aperture of Fig. 2.8 With d/D = 1, (Full Aperture)

The image is 2D/A on edge. The height at the peak is unity.

Figure 2.18. Grey-Scale Image of the Point Spread Function of the Full Aperture (Circle of Diameter D).

The image is 32X/D on edge.
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where all vectors in Eq. (2.32) have zero mean. We will use as an estimator a linear transformation
of the observation vector:

= Hy. (2.33)

The error vector is

* e=x-x

= x - Hy. (2.34)

We wish to choose H so as to minimize the variance of the error. Since e is zero-mean, this is
equivalent to minimizing the mean-square-error, given by

'= (e'e)

- T=(eeT). (2.35)

Let e, and x,, be the n' h components of the vectors e and x, and let h, be the nth row of H. Then
we can write:

en = Xn - Thn. (2.36)

We can see that choosing hn to minimize (e , for every n, minimizes . To minimize (C2), we
invoke the orthogonality principle (also known as the projection theorem): we choose hn so that

(eny) = 0. (2.37)

Using Eq. (2.36) in Eq. (2.37) yields the equation

(zny = (yyT-hn. (2.38)

Solving for h, we get
hn = (YY T ) - (Xy). (2.39)

Thus, the optimum H matrix, H,, has a value given by the expression

H. = (xyT)(yyT) - 1.  (2.40)

The covariance matrices in Eq. (2.40) can be computed using Eq. (2.32), yielding

(XyT) = (XXT)(BW) T , (2.41)
(yyT) = (BW)o(xcx ) (BW) + (nn'). (2.42)

In computing Eq. (2.41) and (2.42), it was assumed that this object and noise vector are uncorre-
lated. Using Eq. (2.41) and (2.42) in Eq. (2.40) yields

H. = (xxT)(BW)T [(BW)(xxT)(BWI)T + (nnr)]- l

= R,,GT [G R'.+GT " R,,,]', (2.43)

where

R. x = (XXT), (2.44)

R,,,, = (nnT), (2.45)

G = BW. (2.46)
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One can apply a matrix inversion lemma to Eq. (2.43) to show that
H,, = (GR , ,G + R-.)I@GTR, (2.47)

In order to compute the energy spectrum of the error, we need the error covariance matrix. Using
Eq. (2.34) we can write

(ee = (x (_ )H, " (2.48)

Since we have chosen H0 so that each component of the error vector is orthogonal to the observation
vector y, the second term in Eq. (2.48) must be zero. Therefore, we have

(eeT) = (eXT)
= (,XT) _ Ho(yXT). (2.49)

Using Eq.'s (2.41) and (2.44)-(2.47) in'Eq. (2.49) yields

(eeT) = R. - (GTR;'G + R))' GR;-'GRX

=(GT R,G + R-) [(GTR,,G + R-') Rx-GTRt,,,GR2 ]
= (GTR RG + R;1)-  (2.50)

To simplify computation of Eq. (2.50), we will assume that both the object and noise vectors are
white, i.e.,

= a;Is (2.51)

Rnn = anI, (2.52)

where a2 and a2 are the variances of object and noise pixels, respectively. If we define a signal-to-
noise ratio as

SNR - a'la,, (2.53)

then Eq. (2.50) can be written

(ee} = (GTG(SNR) + I)-al. (2.54)

The numerator of the SNR defined by Eq. (2.53) is referenced to the object plane and the
denominator is referenced to the image plane. Can we relate this to a similarly-defined SNR totally
referenced to the image plane? In general, the answer is no. Such an SNR would vary from pixel to
pixel. Rather than attempting to develop a suitable definition for SNR in the image plane, we will 0
instead simply make the following observation. Given a very large object of uniform intensity, the
intensity of the image is also uniform and is equal to the intensity of the object scaled by the MTF
evaluated at zero spatial frequency. One can show that the scale factor for the one-dimensional model
is 2d/D and for the two-dimensional model is 3(d/D) 2 (evaluate Eq. (2.6) and (2.23), respectively,
at zero spatial frequency).

2.3.1 Minimum-Variance Results for the One-Dimensional Case.

In order to proceed, we must choose several parameters. Two of the parameters that strongly
interact axe pixel spacing A and the length of the point-spread function (2K + 1)A. Since the

MTF of Fig. 2.2 is band-limited to the range [#cJ - D/A, a pixel spacing of A _< A (reciprocal of
the Nyquist rate) would be sufficient to avoid aliasing if we were not truncating the point-spread
function. However, truncation of the point-spread function means that the actual MTF is no longer 0

band-limited, introducing the possibility of significant distortion of the MTF from aliasing. We thus
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pick a pixel spacing of A = . which corresponds to a spatial sampling frequency of 4D/A, which is
twice the nyquist rate for the MTF of Fig. 2.2. We next choose K = 63, which yields a point-spread
function length of 31.75 A/D, sufficient to reduce aliasing to negligible levels. We will use an object
line of 32 A/D long (L = 128), allowing us to study support lengths up to 32 A/D. Having chosen
L and K, the number of pixels in the image line is fixed at N = 2L + K = 254, yielding an image
line length of 63.5 A/D.

We are now in a position to compute the energy spectrum of the error vector for various values
of SNR, support length, and d/D, using Eq. (2.54) in Eq. (2.11). The results are shown in Fig.'s 2.19
through 2.23. The energy spectrum in each figure is normalized by the total energy of the object
vector (Mo.) to remove the dependence on the variance of an object pixel (see Eq. (2.54)).

The results are rather discouraging. For example, with dID = 0.1 and SNR=104 (Fig. 2.23c),
the only support length which shows a significant amount of super-resolution is 1A/D (roughly the
size of the image of a point source through a full aperture of length D). We need to move to an
aperture with d/D = 0.3 (a not very sparse aperture) to achieve super-resolution with a significant
improvement in support length (Fig. 2.21c). Even in the case, a usable support length would be
less than 8A/D. It is clear from these results, that, despite a priori statistical knowledge, achieving
significant super-resolution performance using only a finite-support constraint on the object requires
an enormously large signal-to-noise ratio. As we shall see in the next section, the two-dimensional
case is somewhat more encouraging.

2.3.2 Minimum-Variance Results for the Two-Dimensional Case.

We will use the same parameters in the two-dimensional case as we used in the one-dimensional
case: object and image pixels !A on edge (A = '), a square object plane of 32 AID on edge, a
square image plane of 63.5 AID on edge, and a square point-spread function of 31.75 AID on edge.
Object support regions will be square with M pixels on edge (&" on edge). We can now compute
the energy spectrum for the two-dimensional model for various values of SNR, support size, and
d1D using Eq. (2.54) in Eq. (2.31), where the error vector in Eq. (2.54) in given by Eq. (2.28). Since
the energy spectrum of the error vector is now a surface, we have chosen to display the results as a
set of grey-scale images in Fig.'s 2.24-2.37. Each figure corresponds to a different aperture sparsity
(d/D), support size, and SNR. As in the one-dimensional case, the energy spectrum in each figure is
normalized by the total energy in the object (M 2o ). The worst case in each figure is a normalized
error-vector energy-spectrum of unity, corresponding to black. Normalized energy spectra below
10- 2 is displayed as white. Each figure is 4D/A on edge. The region of most interest to us is the
portion of the figures in a circle of diameter 2D/A, centered at the center of the square. To see
how the energy surface relates to the aperture MTF, refer to Fig. 2.24a. This figure corresponds
to dID = 0.1, a support size of 71. x 7 r, and SNR=102 . If we compare this figure to Fig. 2.11,
which shows the MTF corresponding to dID = 0.1, the source of the white diamond-shaped regions
in Fig. 2.24a becomes clear. Although there is some super-resolution displayed in the figure, the
resulting object estimates would probably not be useful. With an array of this sparsity, and a
support region of 7A/D on edge, we would probably need an SNR somewhere between 104 and
105 (Fig.'s 2.24c and 2.24d) to yield useful object estimates. To see how sensitive the results are
to aperture sparsity, refer to Fig. 2.28. Here, useful object estimates appear to be achievable with
a much-reduced SNR=102 if we use an aperture with dID = 0.2 (the MTF of which is shown in
Fig. 2.13).

2.4. Least-Squares Processor and Results, One-Dimensional Case, Positivity Constraint.

In computing the results of Section 2.3, we assumed knowledge of the mean and covariance
of the object and noise vectors, and we assumed only a finite-support constraint on the object. A
probably more realistic situation is one where we are presented with an image and given the MTF
of the optical system, and we are required to find the object which best explains the image in some
sense, given no statistical knowledge. Furthermore, we may wish to use both finite support and
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Figure 2.19. Normalized Energy Spectrum of The Error Vector with d1D = 0.5 (full aperture).
Curve sets (a), (b), and (c) correspond to SNR's of 102, 103, and 104, respectively. The six
curves in each curve set correspond to support lengths of (from top to bottom on the left) 1, 2,
4. 8, 16, and 32 A/fl.
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Figure 2.20, Normalized Energy Spectrum of The Error Vector with d/D = 0.4.

Curve sets (a), (b), and (c) correspond to SNR's of 102, 103, and 104, respectively. The six
curves in each curve set correspond to support lengths of (from top to bottom on the left) 1, 2,
4, 8, 16, and 32 AID.
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Figure 2.22. Normahized Energy Spectrum of The Error Vector with d1D =0.2.

Curve sets (a), (b), and (c) correspond to SNR's of 102, 103 , and 10', respectively. The six
curves in each curve set correspond to support length& of (from top to bottom on the left) 1. 2,
4, 8, 16, and 32 A/D.
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Figure 2.25. Grey-Scale Images of the Error Vector Energy Spectrum Normalized by Total Object Energy.
Support size is 4A/D x 4A/D and d1D = 0.1. Each image is 4D/A on edge. Black denotes unity0
and white denotes less than 10-2. Fig.'s (a), (b), and (c) correspond to SNR's of 102. 103, and
104, respectively.
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Figure 2.26. Grey-Scale Images of the Error Vector Energy Spectrum Normalized by Total Object Energy.

Support size is 2A/D x 2)X/D and d1D =0.1. Each image is 4D/A on edge. Black denotes unity
and white denotes less than 10-2 .Fig.'s (a), (b), and (c) correspond to SNR.'s of 102 , 103, and
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Figure 2.27. Grey-Scale Images of the Error Vector Energy Spectrum Normalized by Total Object Energy.
Support size is 1)A/D x lAID and dID = 0.1. Each image is 4D/A on edge. Black denotes unity
and white denotes less than 10-2. Fig.'s (a), (b), and (c) correspond to SNR's of 10*, 103, and
104, respectively.
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Figure 2.28. Grey-Scale Images of the Error Vector Energy Spectrum Normalized by Total Object Energy.

Support size is 7),/D x 7A/D and d1D = 0.2. Each image is 4D/A on edge. Black denotes unity
and white denotes less than 10- 2. Fig.'s (a), (b), and (c) correspond to SNR's of 102, I03, and
10', respectively.
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Figure 2.29. Grey-Scale Images of the Error Vector Energy Spectrum Normalized by Total Object Energy.
Support size is 4A/D x 4)A/D and d1D = 0.2. Each image is 4D/A on edge. Black denotes unity0
and white denotes less than 10-2. Fig.'s (a), (b), and (c) correspond to SNR's of 102, 103 , and
10', respectively.
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.0 .: ..... ..... ....

(c)
Figure 2.0. Grey-Scale Images of the Error Vector Energy Spectrum Normalized by Total Object Energy.

Support sie is 2A/D x 2A/D and diD = 0.2. Each image is 4D/A on edge Black denotes unity

and white denotes less than 0- . Fig.s (a), (b), and (c) correspond to SNR's of 0 , 0 , and

104, respectively.

- 47 -



(b)
Figure 2.31. Grey-Scale Images of the Error Vector Energy Spectrum Normalized by Total Object Energy.

Support size is IA/D x IA/D and d/D -- 0.2. Each image is 4D/A on edge. Black denotes
unity and white denotes less than 10

- 2 . Fig.'s (a) and (b) correspond to SNR's of 101 and 103,

respectively.
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Figure 2.32. Grey-Scale Images of the Error Vector Energy Spectrum Normalized by Total Object Energy.
Support size is 7A/D x 7A/D and diD = 0.3. Each image is 4D/A on edge. Black denotes unity
and white denotes less than 10- 2. Fig.'s (a), (b), and (c) correspond to SNR's of 102, I03, and
10', respectively.
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Figure 2.33. Grey-Scale Images of the Error Vector Energy Spectrum Normalized by Total Object Energy.
Support size is 4A/D x 4)./D and d1D = 0.3. Each image is 4D/A cn edge. Black denotes unity0
and white denotes less than 10-2. Fig.'s (a), (b), and (c) correspond to SNR's of 102, 103, and
10', respectively.
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Figure 2.34. Grey-Scale Images of the Error Vector Energy Spectrum Normalized by Total Object Energy.

Support size is 2)A/D x 2)A/D and d1D = 0.3. Each image is 4D/A on edge. Black denotes unity
*and white denotes less than 10-2. Fig,'s (a), (b), and (c) correspond to SNR's of 102, 103, and

104, respectively.
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(a) (b)

Figure 2.35. Grey-Scale Imiage$ of the Error Vector Energy Spectrum Normalized by Total Object Energy.Support size is 7)A/D x 7A/D and d1D = 1 .0 (full aperture). Each ima ge is 4D/A on edge. Blackdenotes unity and white denotes less than 10-2. Fic.'s (a), (b), and (c) correspond to SNR's of102, 103, and 10', respectively.
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U.:4,

Figure 2.36. Grey.Scale Image# of the Error Vector Energy Spectrum Normalized by Total Object Energy.
* Support size is 4A..D x 4)A/D and d1D =1.0 (full aperture). Each image is 4D/ 2 on edge. Black

denotes unity and white denotes less than 10-2. Fig.,$ (a), (b), and (c) correspond to SNR's of
102, 103, and 104, respectively.
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Figure 2.37. Grey-Scale Images of the Error Vector Energy Spectrum Normalized by Total Object Energy.
Support size is 2A/D x 2)A/D and d1D = 1.0(f ullaperture). Each image is 4D/A on edge. Black0
denotes unity and white denotes less than 10-2. Fig.'s (a), (b), and (c) correspond to SNR's of
102, 103, and 10', respectively.
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positivity as constraints on the allowable objects. In this section we will use a least-squares criterion
for deciding which object "best" explains the image, i.e., we pick the object vector estimate R which
minimizes

E = Ily - GiRl 2. (2.55)

Here we use the same one-dimensional optical model as that described in Section 2.2, with y the
vector of image pixels, x the vector of object pixels, and G - BW a matrix containing the system
point-spread function and the object support information. We will distinguish between two object
estimators: 5,, which minimizes Eq. (2.55) using only finite support as a constraint on the object,
and R,,, which minimizes Eq. (2.55) when the object is constrained by both finite support and
positivity. We can obtain 5, in closed form. Carrying out the operation indicated in Eq. (2.55)
yields

=(y - C (y - aR)

= Ty - 2yTG:i + TGTGR. (2.56)

The gradient of e with respect to the components of 5 is

Ve = -2GTy + 2GTGR, (2.57)

0 where here the gradient is taken to be a column vector. Setting Eq. (2.57) to zero and solving for R
yields

R'. = (GTG)-IGTy. (2.58)

Since G has full column rank [see Eq. (2.14)], GTG is nonsingular and its inverse is well defined.
The error vector with this estimate is

0 e. x - x,
X- (CTG)- Ty. (2.59)

Using y from Eq. (2.5) in Eq. (2.59), with G = BW, yields

e, = x - (GTG) -GT(Gx+n)

= (GTG)-iGTn. (2.60)

The covariance matrix of the error vector is

(e,,eT) = (GTG)-lGT(nnT)G(GTG)- i

= - (GTG)-lGTR .G(GTG) - . (2.61)

If we again assume that the noise vector is zero-mean and white, i.e.

R,, = 2 I, (2.62)

then
• (e..e.I) = i(G TG)'. (2.63)

Unfortunately, one cannot obtain Rp in closed form; one must use some numerical iteration
method for each case of an object vector and a noise vector. Therefore, to evaluate the error vector
covariance matrix when using positivity as a constraint requires a simulation. To generate object
vectors, we generated M independent Rayleigh random variables, one for each pixel. Thus, object

* intensity pixels are always positive. Noise vector were generated using independent, zero-mean,
Gaussian random variable for each pixel. An image vector y was generated using Eq. (2.5) for each
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sample object and noise vector generated. The object vector estimate, R,,, for each case, was found
using a modified gradient-search method where the components in the object vector were not allowed
to go negative. If we let x(n) be the object vector and Ri,(n) be the object vector estimate for the
nt" ' trial, then the error covariance matrix was estimated using

-"- I N

(epep= (x(n) - R,,(n)) (x(n) - R,(n) (2.64)
1= 1

Using Eq. (2.63) and (2.64) in Eq. (2.11), we can compute the energy spectrum of the error vector
with and without the positivity constraint, and compare results.

Unfortunately, at the time of this report, our results are rather meager due to difficulties with
the modified gradient search method. At this time we have results only for an object support length
of four pixels (1AID). The results are shown in Fig.'s 2.38-2.40. Again, we have normalized the
error-vector energy spectra with the total energy in the object vector (sum of the mean-square
intensity values of each pixel). Each figure contains a set of curves corresponding to one d/D ratio
(0.1 for Fig. 2.38, 0.2 for Fig. 2.39, and 0.3 for Fig. 2.40). Within each figure are three sets of
two curves each, each set corresponding to a different SNR (from bottom to top, 104 , 103, and
102, respectively). Here, SNR is defined as the ratio of the second moment of an object intensity
pixel to the second moment of a noise pixel. The solid curve in each curve-pair corresponds to the
finite-support constraint only, and the dashed curve is the result when the positivity constraint is
added. With these very limited results, it would appear that the use of a positivity constraint in
addition to the finite-support constraint may result in a significant improvement in performance.
However, we note that the amount of improvement seems to decrease as SNR increases.
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Figure 2.38. Normalized Error Vector Energy Spectrum for d/D: 0.1 and a Support Length
of IAID. The three sets of curves correspond to SNR's of (from top to bottom) 10 2 , 10 3 , and
104 . The solid and dashed curves are without and with positivity constraint, respectively.
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3.1. Introduction
In Chapter 2 we reported on some results of an investigation into the feasibility of obtaining

useful reconstruction of objects viewed through a sparse array of apertures. A requirement placed
on the reconstruction was that the highest useful spatial frequency in the reconstruction be com-
mensurate with the outer diameter of the sparse array. All of the one -demensional results contained
in Chapter 2 were restricted to the case of two fixed subapertures, a case that we now know to be of
little interest. In this chapter we present some miscellaneous two-aperture results that were obtained
subsequent to the work of Chapter 2. We report these results, without comment, for purposes of
historical completeness and the remote chance that they may be of use.

All of the results in this chapter are for the one-dimensional model described in Section 2.2.1
of Chapter 2. Section 3.2 of this chapter describes some changes made to the model subsequent to
publication of Chapter 2. Sections 3 and 4 of this chapter give results for the minimum variance
and least squares methods, respectively. Appendix B contains listings of fortran programs that, in
addition to those given in Chapter 2, were used to generate the data of this chapter.

3.2. Some Changes to the One-dimensional Model

All of the one-dimensional results of Chapter 2 were generated using the point spread function
(PSF) given by Eq.'s (2.7) and (2.8) of Chapter 2. For purposes of this chapter, we replace that
earlier PSF with two point spread functions, called hi, (n) and h2(n).

hi(n) = Att:)h,(x)l,=,, (3.1)

where A is the sample interval,

4d 2 2

h(x)LCOS 2 r%(D - d) iFsin (rxd/A) 12.2SA 1 --rxd/A (3.2)

and wt(x) is the eth of five window functions given below.
Window One (Rectangular)

WJ(X) 1, lx : kA (3.3)w0z , else.(.)

Window Two (Bartlett)

W2(X) ={- AII/kA, ee kA (3.4)w 10)= , else.

Window Three (Hanning)

_ + cos(,xlkA), Ix1:1 kA
w3(z) = 0, 2 else. (3.5)

Window Four (Hamming)

f 0.54 + 0.46 cos (7rx/kA), II1 _ kA (3.6)
w = 0, else.

Window Five (Blackman)

W(X) 0.42 +0.5 cos (Trx/kA) +0.08 cos (2 rx/kA), ele.kA (3.7) 0wz)= 0, else.

-61-

0



The PSF h2(n) is simlar to hi(n), but without a window and scaled differently.

h,(n) = DAh,(nA), In1 < oo. (3.8)

Ve point out without proof that the Fourier transform of h1(n), evaluated at the origin, is equal to
2d/D, whereas h2(n) is normalized so that its Fourier transform is unity at the origin for all values
of dID.

All results in this report are for a sample internal A of

1 A (3.9)4=T

The Fourier transform of the PSF given by hi (n) for each of the windows and various values of k
and diD is shown in Fig.'s 3.1 to 3.7.
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Figure 3.1. Fourier transform of the PSF of Eq. (3.1), k = 63,diD = 0.1. Figures (a)-(e)
correspond to window number 1-5, respectively.
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3.3. Results Using the Minimum-Variance Method

100 100

to-1 10-1

X X
Li L

10
-2  "1 10

"
-

Li Li

10" . I 1 4 .O . . , .

0. 1. 2. 0. I. 2.

KX D xX D

(a) (b)

I00

10-1

S10-2

i0-1

O0 . 2.

xX/O

Figure 3.8. Energy spectra ratios using the PSF of Eq. (3.1) with window number three,
k = 255 (corresponding to an image line length of 638 pixels or 159.5A/D), and d1d = 0.1.
Figures (a)-(c) correspond to SNIRREF of 20 dB, 30 dB, and 40 dB, respectively. The six curves
in each figure correspond to object supports of 32 X /D (solid curve), I GA/D, SAID, 4 AID, 2A/D,
and IA/D.
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Figure 3.9. Energy spectra ratios using the PSF of Eq. (3.1) with window number three, S
k = 255 (corresponding to an image line length of 638 pixels or 159.SA/D), and d/D = 0.2.
Figures (a)-(c) correspond to SNRREF of 20 dB, 30 dB, and 40 dB, respectively. The six curves
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Figure 3.10. Energy spectra ratios using the PSF of Eq. (3.1) with window number three,
k = 255 (corresponding to an image line length of 638 pixels or 159.5A/D), and diD = 0.3.
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Figure 3.11. Energy spectra ratios using the PSF of Eq. (3.1), with window number three,
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Figure 3.13. Energy spectra ratios and SNREST using the PSF of Eq (3.8), an image line
length of 1024 pixels (256A/D), and d/D = 0.1. The six curves of each figure correspond to
object supports of 32A/D (solid curve), 16,\/D,8A/D, 4A/D, 2A/D, and 1A/D. Figures (a) and
(b) correspond to SNRREF=60 dB and figures (c) and (d) correspond to SNRREF=80 dB.

- 75 -



lo , 120. .

*°so-I / , Ii / 110.-
10-2 :'100.

10-3, 90.

" 1° 'i \ II.I _0. 70.,-

1 0-7 0r 50.,o, - - ---. _ z . , ._. . .
LU Io- N-- 40. ' "-.

flS

3-. ._
10-10 20. '\

O 1 2 01. 2. 0. 1. 2.

AX/D 'AoX/I

(a) (b)

t00 _W, T 120.

1o ./ z 110.

10 - 100.
13 I / 90. --

" -,i u / M 80. .

1o 70. 1\
N 106 ~ f ~60.

'",-,- I/ .I-"-- ,I\  \\~
, o- /0-.

"LU 10.8 40. 4 0

1(8 CO)

1010N20. - \

10-1 to. - - - - -

10-12 9. 1 - 1 -1 11 1 -9 I 9 1 0.'
0. 1. 2. 0. 1. 2.

A vX/DAOI

(c) (d)

Figure 3.14. Energy spectra ratios and SNREST using the PSF of Eq (3.8), an image line
length of 1024 pixels (256A/D), and diD = 0.1. The six curves of each figure correspond to
object supports of 32X/D (solid curve), 16AD, 8X/D, 4A/D, 2A/D, and IA/D. Figures (a) and
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Figure 3.16. Energy spectra ratios and SNREST using the PSF of Eq (3.8), an image line
length of 1024 pixels (266X/D), and did = 0.2. The six curves of each figure correspond to
object supports of 32A/D (solid curve), 16A/D, SAID. 4A/ D, 2XID, and IAID. Figures (a) and
(b) correspond to SNRREF = 60dB and figures (c) and (d) correspond to SNRREF=80 dB.
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Figure 3.17. Energy spectra ratios and SNREST using the PSF of Eq (3.8), an image line
length of 1024 pixels (256A/D), and dID = 0.2. The six curves of each figure correspond to
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Figure 3.16. Energy spectra ratios and SNREST using the PSF of Eq (3.8), an image line
length of 1024 pixels (256,/D), amnd diD = 0.3. The six curves of each figure correspond to
object supports of 32A/D (solid curve), 16A/D, 8/D, 4AI/D, 2A/D, and IAID. Figures (a) and
(b) correspond to SNRREF = 20dB and figures (c) and (d) correspond to SNRREF=40 dB.
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Figure 3.19. Energy spectra ratios and SNREST using the PSF of Eq (3.8), an image line
length of 1024 r~xels (256A/D), and d/D = 0.3. The six curves of each figure correspond to
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(b) correspond to SNRpEF = 60dB and figures (c) and (d) correspond to SNRatEF=80 dB.
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Figure 3.20. Energy spectra ratios and SNREST using the PSF of Eq (3.8), an image line
length of 1024 pixels (256X/D), and d/D = 0.3. The six curves of each figure correspond to
object supports of 32A/D (solid curve), 16A/D, 8/D, 4A/D, 2A/D, and IAID. Figures (a) and
(b) correspond to SNRREF = 1OOdB and figures (c) and (d) correspond to SNRREF=120 dB.
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Figure 3.21. Energy spectra ratios and SNRrST using the PSF of Eq (3.8), an image line
length of 1024 pixels (256A/D), and d/D = 0.5. The six curves of each figure correspond to
object supports of 32A/D (solid curve), 16A/D,8A/D,4A/D,2A/D, and IA/D. Figures (a) and
(b) correspond to SNRREF = 20dB and figures (c) and (d) correspond to SNRREI=40 dB.

- 8.3 -



100 120.
to" "-/ _ 110. -

10-2- 100.
10

- 3
--- 90.

o-, 6'80.

to-0 70.

10-6 60.-
U -

1070 50.
I, zLS 10-.8 U) 40. - ... -

tO"- 30.

1010 20.
I " - I0. - '.. -' ..

1 0-12 . . .L,, I T I I r , , I , , , , 0.0
0 . 1. .. I. 2.

xX/D XoX/D

(a) (b)

100 120.

10,' / 110. -
102. / -o00.

10' 60. -

Io- 8,0.
to-, 70 .F t)

Li 10.6 -0.

1010 60 .L

O-. . 2. 0. . ,2.

* kt/D x0 X/D

(c) (d)

Figure 3.22. Energy spectra ratios and SNREs'r using the PSF of Eq (3.8), an image line
length of 1024 pixels (256./D), and d/D = 0.5. The six curves of each figure correspond to
object supports of 32A/D (solid curve), 16/D,8A/D, 4AVD,2A/D, and 1AID. Figures (a) and
(b) correspond to SNRREP' = 60dB and figures (c) and (d) correspond to SNRREF=80 dB.
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Figure 3.23. Energy spectra ratios and SNREST using the PSF of Eq (3.8), an iniage line
length of 1024 pixels (236A/D), and d1D = 0.5. The six curves of each figure correspond to
object supports of 32A/D (solid curve), 16A/D, 8A/D, 4X/D, 2A/D, and IAID. Figures (a) and
(b) correspond to SNRREF = 100 dB and figures (c) and (d) correspond to SNRREF=120 dB.
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3.4. Results Using the Least Squares Method
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Figure 3.24. Energy spectra ratios and SNREsT using the PSF of Eq. (3.1) with window num-
ber one and d1D = 0.1,k = 63 (corresponding to an image line length of 254 pixels or 63.5)/D),
and an object support of I A/D. Figures (a) and (b) correspond to SNRREF=20 dB, and figures
(c) and (d) correspond to SNRRE-=30 dB. The solid curve in each figure corresponds to the
least-squares solution with a finite support constraint only and the dashed curves correspond to
the least-squares solution with both finite support rnd positivity constraints.
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Figure 3.25. Energy spectra ratios and SNREST using the PSF of Eq. (3.1) with window num-
ber one and d/D = 0.1, k = 63 (corresponding to an image line length of 254 pixels or 63.5\/D),
and an object support of I A/D. Figures (a) and (b) correspond to SNRREF=40 dB, and figures
(c) and (d) correspond to SNRREF=50 dB. The solid curve in each figure corresponds to the
least-squares solution with a finite support constraint only and the dashed curves correspond to
the least-squares solution with both finite support and positivity constraints.
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Figure 3.26. Energy Spectra ratios and SNREST using the PSF of Eq. (3.1) with window numn-
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an object support of 1 .\/D, and SNRREF=60 dB. The solid curve in each figure corresponds to
the least-squares solution with a finite support constraint only and the dashed curves correspond
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Figure 3.27. Energy spectra ratios and SNREST using the PSF of Eq. (3.1) with window num-
ber one and diD = 0.1, k = 63 (corresponding to an image line length of 254 pixels or 63.5A/D),
and an object support of 2 AID. Figures (a) and (b) correspond to SNRREF=20 dB, and figures
(c) and (d) correspond to SNRREF=30 dB. The solid curve in each figure corresponds to the
least-squares solution with a finite support constraint only and the dashed curves correspond to
the least-squares solution with both finite support and positivity constraints.
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Figure 3.28. Energy spectra ratios and SNREST using the PSF of Eq. (3.1) with window num-
ber one and dID = 0.1, k = 63 (corresponding to an image line length of 254 pixels or 63.SA/D),
and an object support of 2 AID. Figures (a) and (b) correspond to SNRREF=40 dB, and figures
(c) and (d) correspond to SNRRLF=50 dB. The solid curve in each figure corresponds to the
least-squares solution with a finite support constraint only and the dashed curves correspond to
the least-squares solution with both finite support and positivity constraints.
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Figure 3.29. Energy spectra ratios and SNREST using the PSF of Eq. (3.1) with window num-
ber one and d/D = 0.1, k = 63 (corresponding to an image line length of 254 pixels or 63.5A/D),
and an object support of 2 A/D. Figures (a) and (b) correspond to SNRRtFF=60 dB, and figures
(c) and (d) correspond to SNRREF=70 dB. The solid curve in each figure corresponds to the
least-squares solution with a finite support constraint only and the dashed curves correspond to
the least-squares solution with both finite support and positivity constraints.
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Figure 3.30. Energy spectra ratios and SNREST using the PSF of Eq. (3.1) with window num-
ber one and diD = 0.1, k = 63 (corresponding to an image line length of 254 pixels or 63.5A/D),
and an object support of 4 A/D. Figures (a) and (b) correspond to SNRREF=20 dB, and figures
(c) and (d) correspond to SNRREF=30 dB. The solid curve in each figure corresponds to the
least-squares solution with a finite support constraint only and the dashed curves correspond to
the least-squares solution with both finite support and positivity constraints.
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Figure 3.31. Energy spectra ratios and SNREST using the PSF of Eq. (3.1) with window num-
ber one and d1D = 0.1, k = 63 (corresponding to an image line length of 254 pixels or 63.5,\/D),
and an object support of 4 AID. Figures (a) and (b) correspond to SNRREoF=4O dB, and figures
(c) and (d) correspond to SNRREF=50 dB. The solid curve in each figure corresponds to the
least-squares solution with a finite support constraint only and the dashed curves correspond to
the least-squares solution with both finite support and positivity constraints.
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Figure 3.32. Energy Spectra ratios and SNREST using the PSF of Eq. (3.1) with window num-
* ber one and d/D = 0.1, k = 63 (corresponding to an image line length of 254 pixels or 63.5,/D),

an object support of 4 AD, and SNRRFF=60 dB. The solid curve in each figure corresponds to
the least-squares solution with a finite support constraint only and the dashed curves correspond
to the least-squares solution with both finite support and positivity constraints.
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Figure 3.33. Energy spectra ratios and SNREST using the PSF of Eq. (3.1) with window
number five and d/D = 0.1, k = 511 (corresponding to an image line length of 1150 pixels or
287.5A/D), and an object support of 4 AID. Figures (a) and (b) correspond to SNRREF=20 dB,
and figures (c) and (d) correspond to SNRREF=30 dB. The solid curve in each figure corresponds
to the least-squares solution with a finite support constraint only and the dashed curves corre-
spond to the least-squares solution with both finite support and positivity constraints.
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Figure 3.34. Energy spectra ratios and SNREsT using the PSF of 
2q. (3.1) with window

number five and dID = 0.1,k = 511 (corr-sponding to an image line length of 1150 pixels or
287.5,\/D), and an object support of 4 A/D. Figures (a) and (b) correspond to SNRREp-40 dB,
and figures (c) and (d) correspond to SNRtrr=50 dB. The solid curve in each figure corresponds
to the least-squares solution with a finite supp,'t constraint only and the dashed curves corre-
spond to the least-squares solution with both finite support and positivity constraints.
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Figure 3.35. Energy spectra ratios and SNRES'T using the PSF of Eq. (3.1) with window
number three and diD = 0.1, k = 255 (corresponding to &n image line length of 638 pixels or
159.5A/D), and an object support of 8 AID. Figures (a) and (b) correspond to SNRREF=20 dB,
and figures (c) and (d) correspond to SNRRFF=30 dB. The solid curve in each figure corresponds
to the least-squares solution with a finite support constraint only and the dashed curves corre-
spond to the least-squares solution with both finite support and positivity constraints.
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Figure 3.36. Energy spectra ratios and SNREsT using the PSF of Eq. (3.1) with window

number three and d/D = 0.1, k = 255 (corresponding to an image line length of 638 pixels or
159.5,\/D), and an object support of 8 AID. Figures (a) and (b) correspond to SNRR.EF=40 dB,
and figures (c) and (d) correspond to SNRREF=50 dB. The solid curve in each figure corresponds
to the least-squares solution with a finite support constraint only and the dashed curves corre-
spond to the least-squares solution with both finite support and positivity constraints.
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Figure 3.37. Energy spectra ratios and SNREST using the PSF of Eq. (3.1) with window
number three and d/D = 0.1,k = 255 (corresponding to an image line length of 638 pixels or
159.5A/D), and an object support of 8 A/D. Figures (a) and (b) correspond to SNRREF=60 dB,
and figures (c) and (d) correspond to SNRRF,,=70 dB. The solid curve in each figure corresponds
to the least-squares solution with a finite support constraint only and the dashed curves corre-
spond to the least-squares solution with both finite support and positivity constraints.
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Chapter 4

Object Reconstruction with Sparse Arrays of
Optical Apertures.

Part I:
Linear Methods

(originally issued as TR-1070)

- 102 -



4.1. Introduction
In this report we investigate the feasibility of recovering useful images of objects from noise-

corrupted optical images formed by a very sparse array of apertures. By "useful image" we mean
an image with a resolution commensurate with the overall dimension of the array and with a noise
content low enough that the image would be considered useful. By "very sparse array" we mean an
array of apertures with aperture size very small relative to aperture spacing so that the frequency
response of the array comprises small "islands" of nonzero response-surrounded by a "sea" of zero
response.

At first, we questioned the feasibility of such a task based upon the supposition that superres-
olution is a dead issue, where here we are using the term "superresolution" rather loosely to mean
filling in missing spatial frequency information with the use of some prior knowledge of the object.
Had it not been shown that modest gains in resolution require enormous sacrifice in a signal-to-noise
(SNR) ratio? However, it was brought to our attention that radio astronomers form apparently use-
ful images from interferometric data using very sparse arrays and an algorithm called CLEAN.2 ,27

Does CLEAN have magical powers, do radio astronomers have gobs of SNR at their disposal, or is
there something about superresolution that we don't understand?

The possibility of resolving power beyond the classical limit of an idealized optical system has
long been recognized.' 9, 22 8, 20,2 1 The earliest mention of-the subject appears to be by Coleman19

in 1947. In 1952, Toraldo di Francia 22 applies the concept of super-gain in antennas to optical
systems and concludes that the classical limit of 1.22 A/D is only a practical limit and the actual
resolution is limited only by noise. He discussed a procedure for designing what he calls a "super-
resolving pupil" in which improved resolution can be obtained over a limited field by modifying the
pupil of a diffraction-limited imaging system. In 1955, the same author i approached the concept of
resolving power from the point of view of information theory. He reasoned that information is lost
when an object is transformed into an image and therefore several different objects may-produce the
same image. If two different objects produce identical images then they cannot be "resolved", and
thus this object ambiguity must have something to do with the definition of resolution. Ie gives
examples for the coherent light case. He suggests that prior knowledge could be used to reduce the
ambiguity in the object-image mapping. J. Harris 9 (1964) removes this difficulty by showing that
no two distinctly different objects of finite angular size can have identical images. To establish this
result, he uses two theorems from analytic function theory. The first theorem states that the Fourier
transform of a square-integrable function of finite support is analytic throughout the entire domain
of the spatial frequency plane. Harris then invokes analytic continuation (the second theorem) to
demonstrate that, in the absence of noise, and starting with an arbitrarily small (but finite) piece of
the Fourier transform of an object, one can find the entire Fourier traizjform (and thus the object
itself). He next uses sampling theory to develop an algorithm to extrapolate from a piece of the
Fourier transform of an object to the whole transform. The method requires solving a system of
linear equations. Unfortunately, infinite precision requires an infinite number of equations. He
applies his method to measuring the angular separation of two hypothetical point sources when the
angle is less than "the reciprocal of the spatial bandwidth of the system.

Following Harris, several researchers exploit the concept of analytic continuation to develop
algorithms for object recovery. Barnes7 (1966) uses prolate spheroidal wave functions to reconstruct
objects of finite support in a one-dimensional coherent imaging system. Frieden3 (1967) extends the
use of prolate spheroidal wave functions to the reconstruction of partially coherently or incoherently
illuminated 2-D objects of finite support. Both the methods of Barnes and Frieden require infinite
series expansions in order to achieve infinite resolution. Brown11 (1969) carries the development to
the logical next step by examining the effect of series truncation on the amount of super-resolution
achieved.

It was recognized early on that noise gums up the superresolution works. Rushforth and R. Har-
ris 10 (1968) published one of the earliest papers in optics to seriously examine the effects of noise on
superresolution performance. They looked at three types of noise in the context of a one-dimensional
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coherent system and finite object support: background, measurement, and computer round off. Us-
* ing the object recovery method of Barnes 7 and an extension of the method using Wiener filter theory,

they computed mean-square-error as a function of the degree of extension of resolution beyond the
classical limit with object support as a parameter. The paper demonstrates that even a modest
extension of resolution beyond the classical limit is very costly in terms of the noisiness of the final
image.

Lukosz5' 6 (1966, 1967) approach the subject of superresolution from a somewhat more global
viewpoint. He proposed an invariance theorem to explain the concepts underlying all super-resolution
techniques. The theorem states that it is not the spatial bandwidth of a system that is fixed, but
the number of degrees of freedom, specified by the two space-bandwidth products and the time-
bandwidth product of the optical system. Thus, one can extend any parameter of the system, e.g.,
spatial bandwidth, beyond the classical limit by proportionately reducing some other parameter,
provided some a priori information concerning the object, e.g., independence of time, is known.

A few researchers approached object restoration
from an information-theoretical standpoint. 17 ,  3 As early as 1955, Fellgett and Linfoot 23 derived
the information capacity of a two-dimensional optical system in terms of SNR, field-of-view, and
spatial bandwidth. A recent paper by Cox and Sheppard' (1987) extended the results of Fellgett
and Linfoot by including exposure time and temporal bandwidth to the expression for the informa-
tion capacity of an-optical system. They then use the invarianceof capacity to demonstrate that
any attempt to increase the spatial bandwidth of the optical system through analytic continuation
results in a reduction of the SNR in the final image. They derive an upper bound on the resolution
improvement as a function of the ratio of SNR with and without the resolution improvement. The
bound is very loose, but nonetheless demonstrates that a modest improvement in resolution can
require very large increases in signal strength.

In the research described so far, the concept of superresolution was generally thought of as
any process which extends spatial frequency knowledge of an object beyond the spatial cutoff fre-
quency of the optical system. In a series of three papers, Lannes et.a. 24 , 2 5.2 6 (1987) analyze the
problem of object restoration with missing spectral information. They view the restoration problem
to be a compromise between resolution and robustness. They develop a robustness theory that
includes object support and the distribution of regions of missing spectral information and conclude
that super-resolution extrapolation is "harder" than super-resolution interpolation. In other words,
extrapolating frequency information is "hard", but interpolating between known regions, such as
CLEAN does, may be "easier". Furthermore, they state that the robustness of the interpolation
process is increased whenever the frequency gaps are well distributed over the aperture to be syn-
thesized.

To simplify computations and interpretation of results, we decided to conduct our investigation
in one dimension. Furthermore, we chose a discrete model of the optical system so that convolution
could be simply represented as matrix multiplication. A "typical" sparse array in one dimension is
shown in Fig. 4.1. This particular array is an example of a nonredundant array, so called because
no pair of subapertures contributes the same spatial frequency region to the MTF as any other pair
(except the region in the vicinity of zero, of course). This is witnessed by noting that all "islands" of
nonzero response are of equal height (again, except for the "island" at the origin). In our studies, we
will be particularly interested in the feasibility of using the concept of finite support to "fill in" the
gaps shown in Fig. 4.1, when the subaperture size (d) is very small compared to the array size (D),
or, put another way, when the width of the "islands" in the MTF is small compared to the spacing
between islands. The results we will present were computed using nonredundant arrays of four, five
and six subapertures, shown respectively in Fig.'s 4.2, 4.3, and 4.4.* It is in no way important to
the results we present that the arrays are nonredundant. It is merely a convenience. An important
feature to note of each of the arrays is the gap between islands. Our results will show that when

* These arrays were obtained from Barakat.4

- 104-



the angular support of the object is less than the inverse of this gap, that the price, in terms of
signal-to-noise ratio, that we have to pay for using a sparse array is "moderate", and otherwise, the
price rapidly becomes "severe".

We begin in Section 4.2 with a description of the mathematical model of the image formed by our
one-dimensional discrete optical system. In Section 4.3 we define a performance measure. It remains
to pick an object recovery algorithm. There are probably at least as many recovery algorithms as
there are researchers in the filed.3 '12, 3, 4"s,6 Most of the algorithms are iterative, mainly because
of the practical limitations of the object recovery process relative to the requirements of the two
dimensional problem, but also because of the ease of incorporating prior knowledge such as positivity.
Since we have no desire to develop yet another algorithm, but rather are interested in "feasibility"
in terms of signal-to-noise ratio, we will go on the assumption that a linear transformation of the
"measurement" will probably yield performance adequate for our purposes. We thus choose two
linear object recovery methods, minimum-variance, where knowledge of the first two moments of
object intensity distribution and observation noise is assumed, and unweighted least-squares, where
no statistical knowledge is used. The minimum-variance results are presented in Section 4.4 and
those of least-squares in Section 4.5.

4.2. Discrete Optical Model (One-Dimensional)

Let the components of the L x 1 vector z be the intensity pixels of the object line, let the •
components of the N x 1 vector y represent the intensity pixels of the image line, and let the N x L
matrix B be the transformation from object line to image line (its columns contain shifted versions
of the system point-spread-function). Then an image can be represented by the matrix equation

y = Bz + n, (4.1)

where n is a N x 1 noise vector. The product Bz in Eq. (4.1) represents convolution of the object line
with the point spread-function, followed by truncation of the image. Let the point spread function
be h(k). Then the B matrix is

h(-K) h(-K - 1) ... h(-K - L + 1)
h(- + 1) h(-K) ... h(-K - L + 2) 0

h(-K + 1) ...

.. h(-K- 2)

h(0) ... h(-K- 1) 0
h(O) ... h(-K)

B= . ... h(-K + 1) (4.2)

h(K- 1) .

h(K) h(K - 1) ...

h(K + 1) h(K) ... h(O)

h(K + 2) h(K + 1) ...

h(K + 2) ...

... h(K- 1)

h(K+L-1) h(K+L-2) ... h(K)
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* Figure 4.1.
Typical nonredundant sparse array aperture function (a) and the corresponding MTF (b).
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Figure 4.2.

Spams array aperture function (a) and the corresponding MTF (b) for a nonredundant four-subaperture aray.
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* Figure 4.3.
Sparse aray aperture function (a) and the corresponding MTF (b) for a nonredundant five-subaperture array.
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Figure 4.4.
Spams array aperture function (a) and the corresponding MTF (b) for a nonredundant six-subaperture array.
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where K = (N - L)/2.
Now let the M x 1 vector x represent an object of finite contagious support of length M < L

pixels located somewhere in the object line. We can write

z = Wx, (4.3)

where the L x Al matrix IV is of the form

0

1 0

W = (4.4)

0 1

Thus, IV comprises an Al x M identity matrix embedded in a L x M matrix of zeros. Combining
Eq.'s (4.3) and (4.1) yields

y = BWx + n. (4.5)

To complete the model, we need a point-spread function. Let w(x) be an arbitrary aperture func-
Stion. The corresponding modulation transfer function (MTF) is given below, where tc is the spatial

frequency variable in units of cycles per radian and A is wavelength. We write

MTF(K) dz w(x + xA)w(x - A) (4.6)

A is chosen to be the area (in this case the length) of the aperture, so that the MTF at zero spatial
frequency is unity.

* The point-spread function of an optical system is the inverse Fourier transform of the MTF
function, or

h,(x) d MTF(t) exp[2,rizcx]. (4.7)

The subscript c denotes that this point-spread function is the continuous version. The discrete
version of the point-spread function is found by sampling and scaling the continuous version. Let 6
denote the pixel spacing in the image line. Then the discrete point spread function used in the B
matrix given by Eq. (4.2) is

h(n) = 6h,(n6); n = 0, ±1, ±2, .... (4.8)

The continuous point spread functions for the four, five, and six subaperture arrays are given in
Eq.'s (9), (10), and (11) respectively. (The reader should see Fig.'s 4.2, 4.3, and 4.4 for the corre-
sponding MTF's.) We have

* ~x=d (sin irfz ) +~ I D (4.10)

h,() __ 1 CO-[os 3 1- D (4.9)

i 15

-Z2 11- r

She d t .- + Cos [,- D (4.10)

h,(z)- d (si Jr'Xd X 1 7E= cos [,2,- D -(1 x (4.11)

i#i14
i*15
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4.3 A Performance Measure

In the sections to follow we investigate two algorithms for object recovery. In order to evaluate 0
the performance of each algorithm and to compare algorithms, we need a measure of performance
that we can apply uniformly to both algorithms. Our object recovery algorithms not only attempt
to fill in the gaps between measured spatial frequency components of the object (interpolative
super-resolution), but also to estimate the object at spatial frequencies beyond D/A (extrapolative
super-resolution), where D is the over all length of the array. Because of array geometries, our
algorithms will be performing better at recovering some spatial frequency components than others. 0
We therefore need a frequency sensitive performance measure. To this end, let x(n) be the nth pixel
of the object, i(n) be the nth pixel of an estimate of the object, and e(n) be the nth pixel of the
estimation error given by

e(n) = x(n) - 2(n), (4.12a)

or in vector notation,
e = x - x. (4.12b)0

One common measure of performance is mean-square-error, (ere). For our purposes this measure
is not useful. It gives us no indication of how well an algorithm performs as a function of spatial
frequency. Instead, the performance measure we will use is a signal-to-noise ratio (SNR) that is a
function of a spatial cutoff frequendy. The behavior of the SNR as a function of cutoff frequency
will be an indication of the spatial resolution of the sparse array. To introduce frequency sensitivity
into the performance measure, let ZKo(n), 2,,(n), and e,,.(n) be filtered versions of x(n), 2(n), and
e(n), respectively, where the filtering is ideal low-pass with cutoff frequency tzo. To explicitly define
the filtering operation, let y(n) be a sequence of pixels and g(tz) be its Fourier transform given by

g(r) = Zy(n)exp(-2,rin#c6), (4.13)
nS

where 6 is the object pixel spacing. Let f(K) be the filter transfer function given by

1, 1I 1 o (4.14)f 0, l, l. >

Then the Fourier transform of y,.(n), the filtered version of y(n), is given by

= c)f'(K). (4.15)

Thus, we have

(K) = ¢)f( ) (4.16)

= i(fz)f W (4.17)

-[i(IK) - loo)] 7(K)

= , .(10) - i,.. W .(4.18)

Let us now define a signal-to-noise ratio for the filtered estimate i,(n) as the ratio of the average
energy of the filtered object to the average energy of the filtered estimation error:

SNREST(KO) = (4.19)
F, el. (n

n 1



The angle brackets in Eq. (4.19) denote ensemble average. From Parseval's theorem we know that the
quantities inside the angle brackets in Eq. (4.19) can be written in terms of their Fourier transforms,
as follows:

1/26

X(n) =6 dt l..(tC)l2  (4.20)
n -IJ

-1/26

Ee 2 (n) = b1126 dt (t)2.  (4.21)

-1/26

We can use Eq.'s (4.13), (4.14), (4.16), and (4.18) to rewrite Eq.'s (4.20) and (4.21), yielding

1/26

* >Ix.o(n)=6 J dicl(,)12lf(,)12

-1/26

26 JdF~rcI)I12 (4.22)
0

* 1/26

Ee2(n) = b dKI(K)121f(tC)I
2

-1/26

= 26 dz IZ(,C)12. (4.23)

Replacing the quantities inside the angle-brackets in Eq. (4.19) with their corresponding expressions
given by Eq.'s (4.22) and (4.23), and bringing the angle-brackets inside the integrals, yields

fo"e dK (1II2)
SNREST(ICo) = fo* dt(j'(g)12) (4.24)

Since integrating the quantities 6(I (n) 2 ) and 6(121(K)I 2) over the spatial frequency band jnI < K0

yields, respectively, the energy in the object and estimation error over the same band, we will call
these quantities energy spectral densities or energy spectra, and use the notation

E.(,C) = 6(1p(K) 12) (4.25)

E,(r) = 6(IZ(K)12). (4.26)

So that

fo* dK E(ic) (4.27)SNRsT(:o) fo°* dxE, (x)

To compute the energy spectrum of a random sequence, we simply follow the prescription given
by Eq.'s (4.25) and (4.13). Let z be a random vector with nth component z(n). Then its energy
spectrum is given by

E.(K) = b(I.:(P) "
2
)

= 6 E z(n) exp(-2rin&))

= 6 E Z(z(n)z(m)) exp[-2wi(n - tn)xb]. (4.28)
1 m
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We note from Eq. (4.28) that we need all entries of the covariance matrix of z(n) in tile evaluation
of its energy spectrum.

4.4. Minimnm-Variance Processor
The first processor (estimator) we will investigate is the so-called minimum variance processor.

We assume that we have first and second moment information on the object vector x and the noise
vector n of Eq. (4.5), i.e., we know the mean vector and covariance matrices of x and n. Since we 0
know the mean values of x and n, and we can compute the mean value of y, we will assume that the
mean values have been subtracted out of Eq. (4.5), and our estimate R is the deviation of x from its
mean value. In other words, we have the observation model

y = BWx + n, (4.29)

where all vectors in Eq. (4.29) have zero mean. We will use as an estimator a linear transformation
of the observation vector:

5c= Hy. (4.30)

The error vector is

e=x-x
= x - Hy. (4.31)

We wish to choose H so as to minimize the variance of the error. Since e is zero-mean, this is
equivalent to minimizing the mean-square-error, given by

= (eTe)

= Tr(eeT ). (4.32)

Let e, and x, be the nth components of the vectors e and x, and let h, be the nth row of H. Then
we can write:

= - yTh (4.33)

We can see that choosing h, to minimize (e'), for every n, minimizes . To minimize (e2), we
invoke the orthogonality principle (also known as the projection theorem). We choose h so that
each component of the error is orthogonal to all components of the observation:

(eny) = 0. (4.34)

Using Eq. (4.33) in Eq. (4.34) yields the equation 0
(-Ty) = (yyT)hn. (4.35)

Solving for h, we get

hn = (yyT)-(zy). (4.36)

Thus, the optimum H matrix, H, has a value given by the expression 0

H. = (xyT)(yyT"- . (4.37)

The covariance matrices in Eq. (4.37) can be computed using Eq. (4.29), yielding

(xyT) = (xxT)(BW)T, (4.38) -

(yyT) = (BW)(xx T )(BW) T + (nnT). (4.39)
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In computing Eq.'s (4.38) and (4.39), it was assumed that the object and noise vectors are uncor-
related. Using Eq.'s (4.38) and (4.39) in Eq. (4.37) yields

H. = (xxT)(BW) T [(BW)(xxT)(BW)T + (nIT) -

= R.GT [G R..GT + R.,.], (4.40)

where

= (xxT), (4.41)
R.,= (nnT), (4.42)

G=BW. (4.43)

One can apply a matrix inversion lemma to Eq. (4.40) to show that

H = (GT R;-G +;,-)lGTR-1-. (4.44)

In order to compute the energy spectrum of the error, we need the error covariance matrix. Using
Eq. (4.31) we can write

(eeT) = (exT ) - (eyT)H T. (4.45)

Since we have chosen H0 so that each component of the error vector is orthogonal to the observation
vector y, the second term in Eq. (4.45) must be zero. Therefore, we have

(eeT) = (ex T )

= (xxT) - H0 (yxT). (4.46)

Using Eq.'s (4.38) and (4.41) - (4.44) in Eq. (4.46) yields

(eeT) R (GT R IG + R-_ 1 GTR-1GR=~ -'GR.,,RGRn n~l  ,, R -' [ (OT R-' + R-') R..- n ;.  . ]
= (GTR;'G+R~' nnT;a+;)~ Z GTZ Gnn

= (OT RG + R;),- . (4.47)

To keep things simple we will assume that both the object and noise vectors are white, i.e.,

R = ,2j, (4.48)

Rnn = o'I, (4.49)

where or; and a2 are the variances of object and noise pixels, respectively. If we define a signal-to-
noise ratio as

SNRREF =/c., (4.50)

then Eq. (4.47) can be written

(eeT ) 
- (GTG(SNRREF) + I)-. (4.51)

The numerator of the SNRREF defined by Eq. (4.50) is referenced to the object plane and the
denominator is referenced to the image plane. Can we relate this to a similarly-defined SNR totally
referenced to the image plane? In general, the answer is no. Such an SNR would vary from pixel
to pixel. Rather than attempting to develop a suitable definition for SNR in the image plane, we
will instead simply make the following observation. Given a very large object of uniform intensity,
the intensity of the image is also uniform and is equal to the intensity of the object scaled by the
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MTF evaluated at zero spatial frequency, which is unity. Thus, in the case of a very large object of
uniform intensity, the SNR of an image pixel is SNRREF.

We are now in a position to make some computations using the minimum-variance processor and
point-spread functions corresponding to the four-subaperture, five-subaperture, and six-subaperture
arrays shown in Fig.'s 4.2 - 4.4, respectively. In all cases we will use a pixel spacing b of

b = IA (4.52)

This pixel spacing corresponds to a sampling frequency of 4D/A or a Nyquist frequency of 2D/A.
This choice will allow the study of extrapolation superresolution out to a spatial frequency of 2D/A,
twice the diffraction limit of an aperture of length D. The energy spectrum of the object is computed
using Eq. (4.48) in Eq. (4.28).

E.(K) = A6o,, (4.53)

where M is the number of pixels in the object (length of x), 6 is the pixels spacing, and G- is the
variance of an individual object pixel. Note that M6 is the support of the object. We compute the
energy spectrum of the error vector using Eq. (4.51) in Eq. (4.28):

Ee(') E 6ZZ [(GTG (SNRREF)- I)1]. (4.54)

Fig. 4.5a is a plot of the ratio Ee(K)/Ez.(K) versus spatial frequency and Fig. 4.5b is a plot of
SNREST as a function of filter, cutoff frequency tzo using the four-subaperture array of Fig. 4.2
with d/D = 0.005, and SNRREF = 50dB (10log 10(o.2/0,)). There are seven curves in Fig. 4.5a
corresponding to object supports of 1A/D, 2A/D, ... , 7A/D, with larger support corresponding
to larger values of the ratio Ee(t;)/E(IC). Fig. 4.5b contains 32 curves for object supports of
1AID, 2A/D, ... , 32A/D. There are several interesting observations that can be made concerning
these figures. First, E,(#c) :< E.(tc) for all spatial frequencies tz. The reason for this is that when
the signal at a particular spatial frequency is very small compared to the noise, the minimum-
variance estimator "turns off", i.e., R goes to zero, and the error e converges to the object x. Thus,
a value of the ratio close to unity is "bad", and a value very much less than unity is "good".
The second point to note is the rapid increase in Ee(I)/Ex:(K) and rapid fall-off of SNREST for
K > D/)A, i.e., extrapolative super-resolution doesn't work (a not unexpected result). The third
point to note, and the most important, is the near uniformity of interpolative super-resolution for
object support < 5A/D. Referring to Fig. 4.2, we see that the minimum-variance algorithm is
receiving direct measurements of the object spectrum at only very narrow regions centered about
0, .:1/6D/A, ±2/6D/A, ... , D/A, but Fig. 4.5a tells us that the object estimates for support
< 5A/D contain approximately the same quality of spectral information throughout the band below
D/A as the direct measurements. Thus, the processor is "filling in the gaps" with apparent ease.
This behavior manifests itself in Fig. 4.5b also, where we see that the first five curves group together
at a near uniform SNREST of about 22dB out to x. = D/A., When object support exceeds 5A/D,
we note from Fig. 4.5a the processors inability to "fill in the gaps" between measurements and,
from Fig. 4.5b, the rapid drop in SNREST over the range n. < D/A with increasing object support.
We can illustrate this behavior rather dramatically by taking a vertical slice through Fig. 4.5b at
x. = D/A, and plotting SNREST versus object support. This result is shown in Fig. 4.6. The curve
speaks for itself. We note only that the "cliff" of Fig. 4.6 is located at a support level approximately
equal to the reciprocal of the spacing between "islands" in the MTF of Fig. 4.2. The question arises:
have we established a rule? That is, interpolative super-resolution "works" as long as object support
is less than the reciprocal of the spacing between nonzero "islands" in the array MTF. By examining
other cases, we will see that this is indeed the rule. Furthermore, we will see that even if the rule is
violated by only a small amount, severe performance penalties are the result.
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Figure 4.5.
Ratio of the energy spectrum of the error to the energy spectrum of the object versus spatial frequency JC (a) and
signal-to-noise ratio of the estimate vetsus low-pa filter cutoff frequency g. (b) using the minimum-variance processor
and the four-subaperture array with SNRREp = 50dB and dID = 0.005. The seven curves of (a) correspond to object
supports of IAID, 2A/D, ... , 7A/D, with (.()/Ez(E) larger for larger support values. There are 32 curves in (b)
corresponding to object supports of IA/D, 2A/D, ... , 32A/D, with larger SNREsT for smaller support values.
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Figure 4.6.
Signal-to-noise ratio of the estimate versus object support using the minimum-variance processor
and the four-subaperture array, with SNRanp = 50dB, d/D = 0.005, and oo = 1D/A.

Performance plots for the minimum-variance processor and the five-subaperture array of Fig. 4.3
are shown in Fig. 4.7. Again d1D = 0.005 and SNRREF = 50dB. There are again seven curves in
Fig. 4.7(a), this time corresponding to object supports of 2A/D, 4A/D, ... , 14A/D, with larger
support corresponding to larger values of E,(x)/Er(x). Fig. 4.7(b) again contains 32 curves cor-
responding to object supports of AI/D, 2X/D, ... , 32X/D. Again, note the near uniformity of
interpolative super-resolution for the first five curves of Fig. 4.7(a), this time over a spatial fre-
quency range < 0.81D/A, the "useful" range of the five-subaperture array (see Fig. 4.3(b)). In
this case, the first five curves correspond to object support < OA/D.

Performance plots for the six-subaperture array of Fig. 4.4 are shown in Fig. 4.8. The results
are so similar to those of the four and five subaperture cases that we will not further elaborate,
other than to point out that the "useful" range of spatial frequencies for good interpolative super-
resolution performance for objects of support < 15A/D is lNI _< 0.76D/A, the same as the "useful"
range for the six-subaperture array.

If we take vertical slices through the plots of Fig.'s 4.7(b) and 4.8(b) at the upper limit of the
"useful" frequency range of their corresponding arrays, x0 = 0.81D/A and X. = 0.76D/X, respec-
tively, we have the curves of Fig.'s 4.9(b) and 4.9(c). For convenience, Fig. 4.6, the corresponding
curve for the four-subaperture case, is reproduced in Fig. 4.9(a). In each case, the precipitous drop in
performance occurs at the point where object support exceeds the reciprocal of the spacing between
"islands" in the MTF for the corresponding array. One might argue that this result is "obvious"
from the sampling theorem. That is, the sparse array gives us uniformly spaced samples of the
Fourier transform of the object intensity distribution throughout the "useful" range of the array.
Thus, it should be possible to reconstruct the object intensity distribution from these samples out to
a resolution limit equal to the highest spatial frequency of the "useful" range, so long as the support
of the object is less than the reciprocal of the sample spacing. However, this argument, although a 0
useful viewpoint in developing an intuitive understanding of the results, gives no indication of how
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Signal-to-noise ratio of the estimate versus object support using the minimum-varance processor,
SNRaIkt = 50dB, and d/D = 0.005. Fig.'s (a), (b), and (c) correspond respectively, to the four-
subaperture array with go = ID/A, the five-subaperture array with go = 0.81D/A, and the
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-120-



severe the penalty is for violating the support constraint nor does it give any indication of how much
SNR loss will occur within the "useful" spatial frequency range of the array.

4.5. Unweighted Least-Squares Processor

In computing the results of Section 4.4, we assumed knowledge of the mean and covariance of
the object and noise vectors and a finite-support constraint on the object. A probably more realistic
situation is one where we are presented with an image and given the MTF of the optical system, and
we are required to find the object which best explains the image in some sense, given no statistical
knowledge. In this section we will use a least-squares criterion for deciding which object "best"
explains the image, i.e., we pick the object vector estimate R which minimizes

C= 11Y - GRII2.  (4.55)

Here we use the same one-dimensional optical model as that described in Section 4.2, with y the
vector of image pixels, x the vector of object pixels, and G = BW a matrix containing the system
point-spread function and the object support information. Carrying out the operation indicated in
Eq. (4.55) yields

c= (y - G5Z)T(y - GR)

= yTy - 2yTGR + iTGTGi" (4.56)

The gradient of c with respect to R is

Vc = -2GTy + 2GTGR, (4.57)

where here the gradient is taken to be a column vector. Setting Ac equal to zero and solving for 2
yields

= (GTG)-lGT,'.. (4.58)

Since G has full column rank, GTG is nonsingular and its inverse is well defined. The error vector
with this estimate is

e-x-x

= x - (GTG)-GTy. (4.59)

Using y from Eq. (4.5) in Eq. (4.59), with G = BW, yields

e = x - (GTG)-GT(Gx + n)

= (GTG)-'GTn. (4.60)

The covariance matrix of the error vector is

(eeT ) = (GTG)-IGT(nnT)G(GTG)-

= (GTG)-lGT&.G(OTG)- . (4.61)

As in the minimum-variance case, we will assume that the object and noise vectors are white, i.e.,

R.X = .2 I, (4.62)
Rnn = OanI, (4.63)
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and

SNRREF = a0,2/. (4.64)

Then

(eeT) = (GTG)-lo.

= (GTG(SNRREF))- u.(4.65)

We write the error covariance matrix in this way to emphasis its similarity to the error covariance
matrix for the minimum-variance processor (see Eq. (4.51)). In fact, we see that as SNRREF in-
creases the two matrices become one. In other words, for large enough SNRREF, the performance of
unweighted least-squares approaches that of minimum-variance.

We compute the energy spectrum of the error vector using Eq. (4.65) in Eq. (4.28):

E,(tz) = ba jj [(GTG(SNRREF) ) - ]mn (4.66)
m n

The energy spectrum of the object is given by Eq. (4.53). The pixel spacing we will use is

6= W D0, (4.67)

yielding a Nyquist rate of D/A. There are two reasons for changing the pixel spacing from A/D
used in the minimum-variance processor. First, we are no longer interested in studying extrapolative
super-resolution performance and thus a Nyquist rate of D/A is adequate. Second, the inclusion
of an extrapolative super-resolution region creates a very large eigenvalue spread in GTG, making
it very difficult to numerically evaluate E,(n) with the numerical precision at our disposal. This

* was not a problem with the minimum-variance processor because of the stabilizing influence of the
identity matrix in Eq. (4.54).

Except for pixel spacing, all of the results to follow were computed using the same parameters
as with the minimum-variance processor, i.e., d1D = 0.005 and SNRREF = 50dB. Ee(Z)/E(x) and
SNREST(K.O) are shown in Fig.'s 4.10, 4.11, and 4.12 using the four, five, and six-subaperture array,
respectively. Corresponding plots of SNREST versus objec, support at the appropriate value of K.
are shown in Fig. 4.13. Here we see similar features to that of the minimum-variance processor: near
uniform interpolative super-resolution with object support less than the reciprocal of the "island"
spacing in the MTF and a very rapid drop in performance when object support exceeds this value.
Note that the least-squares processor is not "smart" enough to "turn-off" when the object estimate
gets to noisy, thus allowing SNREST to drop below zero dB. For purposes of comparison, Fig. 4.14
shows the SNREST versus support curves for minimum-variance and least-squares superimposed.

4.6. Discussion
In presenting the minimum-variance and least-squares results, we have ignored certain subtleties

for the sake of clarity. For example, the number of columns in the G = BW matrix is determined by
the support of the object. How was the number of rows determined? Since the MTF in our optical
model is of finite extent, the point-spread function must be infinite, and therefore so is the image of
the object. In any practical imaging system, one obviously must truncate the image. In our model,
the number of pixels in the truncated image is determined by the number of rows of G. In general,
the larger the number of rows of G, the better is the object reconstruction. However, a point of
diminishing returns is reached whereby increasing the number of rows of G does not significantly
increase performance. At present, we have no theory to predict when this point is reached. However,
we determined imperically that an image line of length 256 AID was essentially equivalent to an
infinite image line for all the cases we have presented in this report, and that is the length that was
used for all cases.
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Figure 4.10.
Ratio of the energy spectrum of the error to the energy spectrum of the object versus spatial frequency K (a) and
signal-to-noise ratio of the estimate versus low-pass filter cutoff frequency go (b) using the unweighted least-squares
processor and the four-subaperture array with SNRRE, = 50dB and d/D = 0.005. The 32 curves of (a) correspond to
object supports of IA/D, 2X/D, ... , 32A/D, with Ee(.)/Ez(s) larger for larger support values. There are 32 curves
in (b) corresponding to object supports of 1AID, 2A/D, ... , 32A/D, with larger SNREsT for smaller support values.
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Figure 4.11.

Ratio of the energy spectrum of the error to the energy spectrum of the object Vensus spatial frequency x (a) and
signal-to-noise ratio of the estimate versus low-pass filter cutoff frequency ixo (b) using the unweighted least-squares
processor and the five-subaperture array with SNRREF = 50dB and d1D = 0.005. The 32 curves of (a) correspond to

*0 object supports of IlA/D, 2A/D, ... , 32A/D, with Ee(,K)/Eg(c) larger for larger support values. There are 32 curves
in (b) corresponding to object supports of lAID, 2A/D, ... , 32A/D, with larger SNREST for smaller support values.
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Figure 4.12.

Ratio of the energy spectrum of the error to the energy spectrum of the object versus spatial frequency i (a) and
signal-to-noise ratio of the estimate versus low-pass filter cutoff frequency no (b) using the unweighted least-squares
processor and the six-subaperture array with SNRItF = 50dB And dID = 0.005. The 32 curves of (a) correspond to
object supports of 1A/D, 2A/D, ... , 32)X/D, with E,(,c)/Ez(,c) larger for lager support values. There are 32 curves
in (b) corresponding to object supports of IA/D, 2)/D, ... , 32A/D, with larger SNREST for smaller support values.
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Figure 4.13.

Signal-to-noise ratio of the estimate versus object support using the unweighted least-squares
processor, SNRtrF = 50dB, and d/D = 0.005. Fig.'s (a), (b), and (c) correspond respectively,
to the four-subaperture array with mo = ID/,, the five-subaperture array with r 0 = 0.81D/A,
and the six-subaperture array with Po = 0.76D/A.
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Figure 4.14.

Signai-to-noise ratio of the estimate versus object support using the unweighted least-squares
processor (solid line) or the minimum-variance processor (dashed line), SNRR.F = 50dB, and
d/D = 0.005. Fig.'s (a), (b), and (c) correspond respectively, to the four-subaperture array with

o = ID/IA, the five-subaperture array with Pc. = 0.81D/A, and the six-subaperture array with
mo = 0.76D/A.
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Experiments were conducted using values of d1D other than 0.005, which is the value used
throughout this report. We found, for small values of d1D, that SNREST to the left of the "cliff"
was proportional to d1D, as long as the size of the image line was adjusted in each case so that the
image line was effectively "infinity" from a performance standpoint.

All the results presented in this report used SNRREF = 50 dB. However, many experiments were
conducted using other values of this parameter. As one would expect, SNREST tracked SNRREF. In
fact, we can see from Eq. (4.66) that SNREST with the least-squares processor is directly proportional
to SNRREF. Because of the identity matrix in Eq. (4.54), we can see that this is not the case using
the minimum-variance processor. However, at SNRREF = 50 dB and above, the effect of the identity
matrix in Eq. (4.54) is negligible for object support sizes to the left of the "cliff" edge. We can see
this from Fig. 4.14. At SNRREP below 50 dB, the identity matrix in Eq. (4.54) begins to dominate,
and minimum-variance performance is better than that of least-squares. However, at this level of
SNRREF, SNREST to the left of the "cliff" drops below 20 dB (a voltage ratio less than 10), so that
the usefulness of the object reconstruction is open to question. The conclusion is, at least for the
cases that we considered, that minimum-variance offers no apparent advantage over least-squares.

00
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Chapter 5

A Random Process with Finite Support:
Autocorrelation Function of Its Fourier Transform

and Energy and Power Spectral Densities

(originally issued as TR-1042)
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5.1. Introduction
It is a well-known property of a wide-sense stationary random process that its Fourier transform

is delta-correlated. This is not the case for the Fourier transform of a random processes with finite
support. In this report we compute the autocorrelation function of the Fourier transform of a
particular random process with finite support. Our particular process is modeled as a windowed
wide-sense-stationary random process. We use this autocorrelation function to derive the energy
spectral density and power spectral density of the process. We present the results for both continuous
(Section 5.2) and discrete (Section 5.3) random processes.

5.2. Continuous Case

5.2.1 Autocorrelation Function of Fourier Transform
Let z(r) be a wide-sense-stationary random process with zero-mean, autocorrelation function

R.(r), and power spectral density $:(t), defined by the equations

14(r) = (z(r' + r)-(r')). (5.1)

t'(n) = Jdr exp(-27ritzr)R,(r). (5.2)

We shall let
x(r) = w(r)-(r), (5.3)

where w(r) is a rectangular window function defining the support of a(r), given by

w(r) 1, Irl < £L2 (5.4)
0, else. 5

The Fourier transform of z(r) is

=() - dr (r) exp[-27rirc]

= f dr w(r)z(r) exp[-2rirt:]. (5.5)

Using Eq. (5.5), we form the correlation between two Fourier coefficients of x(r):

(i(K + Ac)i(P))= ff drdr'w(r)w(r')(z(r)?'(r'))

x exp [-21i(r - r')#c - 27rirAK]

-/Jdr dr' w(r)w(r')R. (r - r')

x exp [-2wi(r - r')x - 2xirAK]. (5.6)

Throughout this report, angle brackets denote ensemble average. We now make the following change
of variables in Eq. (5.6):

u= r- r', (5.7)
V= (r + r')/2, (5.8)
r = v + u/2, (5.9)
r= v - u/2, (5.10)

dr dr' = dudv. (5.11)

- 130 -



Then we have

(i(K + AK)i" (tz)) =]]du dv w (v + u/2) u; (v - u/2) R. (u)

x exp[-2ritu] exp [-27riAK (v + u/2)]

- J du R, (u)F(u, AK) exp [-2riu (K + Atz/2)], (5.12)
where F(u, At) = J dv w (v + u/2) w (v - u/2) exp[-2riAtcv]

(L - lul)sinc [(L - lul)AK], lul <
0,I>, (5.13)

with

sine(z) = sin(2rz)/7rx. (5.14)

Substituting Eq. (5.13) into Eq. (5.12) yields

(i(K + AK)i*(K)) = du R,(u)(L - lul)sinc[(L - IuI)AK] exp [-27riu (ic + AK/2)]. (5.15)

Given any R. (u), Eq. (5.15) can be used to numerically evaluate the correlation of Fourier coefficients
of z(r). However, if we assume that R,(u) is a "narrow" function compared to the interval ll _< L,
i.e.,

R,(u) = 0, lul > c, c .< L, (5.16)

* then Eq. (5.15) can be approximated by

(i(K + AK)i" (K)) = L sinc(LA c) J du R. (u) exp [-27riu (x + AK/2)]

= L sinc(LAKc)§, (K + AK/2). (5.17)

If z(r) is white, i.e.,
RC)= 4',6(r), (5.18)

then we have Eq. (5.17) with equality,

( + AK)i'(#)) = L sinc(LAK) Z,. (5.19)

* Note from Eq. (5.17) and (5.19) that the Fourier coefficients of x(r) are uncorrelated at AK equal
to an integer multiple of I/L, the reciprocal of the support of z(r), if R, (r) satisfies the assumption
given by Eq. (5.16).

5.2.2 Energy Spectral Density and Power Spectral Density of z(r)
The two-sided energy spectral density of any random process x(r) of finite support is given by

E(K) = (1#()12). (5.20)

If z(r) is given by Eq. (5.3), then, from Eq. (5.15), we have

* E.(K) = du R.(u)(L - Jul) exp[-2ixiux]. (5.21)
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We recognize Eq. (5.21) as the Fourier transform of the product of R,(u) with a triangle function.
We can therefore write Eq. (5.21) as the convolution of the Fourier transforms of these two functions:

E(K) = L2 2 dKI' ,(t - K')sinc2 (LW). (5.22)

The power spectral density 4,(i.) of x(r) can be defined as

-t(rc) = E.(r)/L. (5.23)

From Eq. (5.21) and (5.22) we then have

4 =(K) du R, (u)(L - Jul) exp[-2,ritz], (5.24)

or
4t ,(K) = L J d' -(: - W)sinc 2 (Li.'). (5.25)

If R,(r) satisfies the assumption given by Eq. (5.16), then the power spectral density of x(r) is
approximated by

We see from Eq. (5.26) that when the assumption given by Eq. (5.16) is satisfied, the power spectral
density of x(r) is simply the power spectral density of z(r). If z(r) is white, then we htave Eq. (5.26)
with equality, i.e.,

=( = . (5.27)

The variance of z(r) is the total power of the z(r) process given by

o-(r) = (x(r)a?(r))
= ff dKZ (:), Ir _ L/2else.(5.28)l0, else.

Using Eq. (5.24) in Eq. (5.28) yields

o,'(r) = ,(r)R,(0)

- w(r) j dwt, (tz)

= W(r)o.. (5.29)

This result follows directly from Eq. (5.3) and the fact the z(r) is wide-sense-stationary.

5.3. Discrete Case

5.3.1 Autocorrelation Function of Fourier Transform

Let z(n) be a wide-sense-stationary random sequence with zero-mean, autocorrelation sequence
R,(n), and power spectral density Oz(v), defined by the equations

R,(n) = (z(n' + n)z(n')), (5.30)

0,(V) = R.(n)exp(-2rinv). (5.31)
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We shall let
x(n) = w(n)z(n) (5.32)

where w(n) is a rectangular window sequence defining the support of x(n).

n 1, InI <_ L/20, else (5.33)

The variable v in 4D(v) above is a normalized frequency variable given by

= - (5.34)
Ks

where tzs is the sampling frequency. The Fourier transform of x(n) is

() x(n)exp[-2rinw]

00

E Z w(n)z(n)exp[-2rinv]. (5.35)
n-00

Using Eq. (5.35), we form the correlation between two fourier coefficients of x(n):

(i'(v + Av)V (v)) = E E w(m)w(n)(z(m)z'(n))
m n

x exp[-2,ri(rn - n)v - 27rimAv]

= S S w(m)w(n)R,(m - n) exp[-2ri(m - n)v]
m n

x exp[-2,rimAv]. (5.36)

Now make the following change of variables to Eq. (5.36):

k = rn - n, (5.37)

1 = m, (5.38)

n= - k, (5.39)

(i(v+ Av)i*(v)) = EEw()w(l - k)R 2 (k)exp[-2rikv]exp[-27rieAv]
k I

= E R, (k)G(k, Av) exp[-27rikv], (5.40)
k

where

G(k, AV,) = 5 ,(l)wZ( - k) exp[-2,rilAv]

= x [-riv sintlrav) - (5.41)0, Ikl> L + 1.

Substituting Eq. (5.41) into Eq. (5.40), we have

0+1 sin[rAv(L + 1 - Ikj)]
k+--- R,(k)S sin(+Ik) exp [-27rik (v + AZ /2)]. (5.42)
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Given any R,(k), Eq. (5.42) can be used to numerically evaluate the correlation of Fourier coefficients
of x(n). However, if we assume that R,(k) is a "narrow" function compared to the interval Iki _ L,
i.e.,

R,(k) = 0, IJkl > e, e < L, (5.43)
then Eq. (5.42) can be approximated by

(Y(V + Av)i'(v)) = sin [rAv(L + 1)J P, (v + Av/2). (5.44)
sin(7rAv)

If z(n) is a white sequence, i.e.,

R,(k) = -tb(k), (5.45)

where 6(k) is the Kronecker delta, then we have Eq. (5.44) with equality,

(i(v + AP)i" (v)) = sin[7rAv(L + 1)] ( + Av2). (5.46)
sin(7rAv)

We note from consideration of Eq.'s (5.44) and (5.46) that if R2 (k) satisfies the assumption given by -
Eq. (5.43) the Fourier coefficients of x(n) are uncorrelated for pairs of coefficients associated with
frequency differences equal to Av, when Av equals an integer multiple of 1/(L + 1)-a quantity
equal to the reciprocal of the support of z(n).

5.3.2 Energy Spectral Density and Power Spectral Density of z(n)
The two-sided energy spectral density of any random sequence of finite support is given by

E.(v) = (1y(V)12). (5.47)
If z(n) is given by Eq. (5.32), then, from Eq. (5.42),

L+1

Ez(v) = j R,(k)(L+l-jkI)exp[-27rikv]. (5.48)
k=-L-I 1

The power spectral density $t(v) of z(k) can be defined as

,t(v) = E:(v)IL. (5.49)

From Eq. (5.48) we have

L+1

= E R,(k)(L + 1 - jkj)exp[-2ikv]. (5.50)
k--L-1

If R,(k) satisfies the assumption given by Eq. (5.43), then the power spectral density of z(n) is
approximated by

4 v ,(V). (5.51)

If z(n) is white, then we have Eq. (5.51) with equality, i.e.,

t.(v) = §,(v). (5.52) 0
The variance of z(n) is the total power of the z(n) process given by

o,2(n) = (z(n)1)
f:In dV ,(v), I.'I < L/2

= - el (5.53)

Using Eq. (5.50) in Eq. (5.53) yields 

•

,, (,) = w(n)R.(o)
1/2

= -~n L/2 dt V

= W(n)a.. (5.54)

This result follows directly from Eq. (5.32) and the fact that z(n) is wide-sense-stationary.
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Chapter 6

Object Reconstruction with Sparse Arrays of
Optical Apertures.

Part II:
Nonlinear Methods

(originally issued as TR-1072)
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6.1 Introduction

This is the second part of Chapter 4 on the feasibility of using sparse arrays of optical apertures
to form useful images of objects. We stress "feasibility," since we have no interest in developing
algorithms. In part 128, we created a discrete one-dimensional model of an optical imaging system,
defined a performance measure, and produced results using two linear object reconstruction algo-
rithms, minimum-variance and unweighted least -squares. Using three sparse arrays we concluded
that object reconstruction with sparse arrays was indeed feasible so long as object angular support
did not exceed the inverse of the size of the gaps between "islands" in the MTF of the array.

Because the algorithms we used were linear, they were capable of producing object reconstruc-
tions with negative intensity pixels. In this chapter we explore the question as to whether adding a
positivity constraint to an object estimate has the potential of significantly improving performance.
We examine two algorithms, unweighted least-squares with a positivity constraint and an algorithm
used in radio interferometry called CLEAN. In both cases, we conclude that a positivity constraint
has marginal benefit.

Throughout this chapter we assume familiarity with Ref. 28. However, for convenience we have
included in their entirety Section 4.2 (optical model) and Section 4.3 (performance measure) of
Chapter 4 as Section 6.2 and 6.3 of this report. We have also duplicated Fig.'s.4.1 thiough 4.4 of
Chapter 4 showing three sparse arrays and there MTFs as Fig.'s 6.1 through 6.4 of this chapter.

The results for nonlinear algorithms presented in this work were all obtained using Monte Carlo
methods, i.e., simulation of a random process, taking averages over many random results. In almost
all cases, N = 40 random trials were used to provide an average-though in a few cases N < 40
random trials were used (if the computational process ran too slowly). In those cases where N < 40
was used, we formed an estimate of the variance of the average quantity of interest and used a
number of trials, N, large enough so that the accuracy of our estimate of the average quantity of
interest would not be seriously compromised.

6.2. Discrete Optical Model (One-Dimensional)

Let the components of the L x 1 vector z be the intensity pixels of the object line, let the
components of the N x 1 vector y represent the intensity pixels of the image line, and let the N x L
matrix B be the transformation from object line to image line (its columns contain shifted versions
of the system point-spread-function). Then an image can be represented by the matrix equation

y = Bz + n, (6.1)

where n is a N x 1 noise vector. The product Bz in Eq. (6.1) represents convolution of the object line
with the point spread-function, followed by truncation of the image. Let the point spread function
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* Figure 6.1.
Typical sparse array aperture function (a) and the corresponding MTF (b).
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Figure 6.2.0
Spams array aperture function (a) and the corresponding MTF (b) for an "efficient" four-subaperture array.
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* Figure 6.3.
Sparse array aperture function (a) and the corresponding MTF (b) for an "efficient" five-subaperture array.
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Figure 6.4.
Sparse array aperture function (a) and the corresponding MTF (b) for an "efficient" six-subaperture array.
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be h(k). Then the B matrix is
h(-K) h(-K - 1) . h(-K - L+ W

h(-K + 1) h(-K) ... h(-K - L + 2)

h(-K + 1)

* : .. h(-K - 2)

h(O) :.. h(-K - 1)

h(O) ... h(-K)

... h(-K + 1) (6.2)

Sh(K - 1)

h(K) h(K - 1)
h(K + 1) h(K) ... h(O)

h(K + 2) h(K + 1) ...

* : h(K + 2) ...

... h(K - 1)
h(K+L-1) h(K+L-2) ... h(K)

where K = (N - L)/2.
Now let the M x 1 vector x represent an object of finite contagious support of length M < L

* pixels located somewhere in the object line. We can write

z = Wx, (6.3)

where the L x M matrix W is of the form

0
0

w (6.4)

0 1

0

Thus, W comprises an M x M identity matrix embedded in a L x M matrix of zeros. Combining
Eq.'s (6.3) and (6.1) yields

y = BWx + n. (6.5)
To complete the model, we need a point-spread function. Let w(:) be an arbitrary aperture func-
tion. The corresponding modulation transfer function (MTF) is given below, where K is the spatial
frequency variable in units of cycles per radian and A is wavelength. We write

MTF(c) -Jd w(x + 4)w(x - 'tcA) (6.6)

A is chosen to be the area (in this case the length) of the aperture, so that the MTF at zero spatial
frequency is unity.
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The point-spread function of an optical system is the inverse Fourier transform of the MTF
function, or

h,(x) = J NdIMTF() exp[27ritcx]. (6.7)

The subscript c denotes that this point-spread function is the continuous version. The discrete
version of the point-spread function is found by sampling and scaling the continuous version. Let 6
denote the pixel spacing in the image line. Then the discrete point spread function used in the B
matrix given by Eq. (6.2) is

h(n) = 6h,(n); n = 0, ±1, ±2, .... (6.8)

The continuous point spread functions for the four, five, and six subaperture arrays are given in
Eq.'s (9), (10), and (11) respectively. (The reader should see Fig.s 6.2, 6.3, and 6.4 for the corre-
sponding MTF's.) We have 0

r 1 D (6.9)To( 2 D) \ ,=

dh(sinAzX "  2+ r.2os D (2 + d) ] (6.10)
h,(x) = 5 =1 os A

i#1o

h,(x) = - X 3 cos [,27, D ( (6.11)

i#15

6.3. A Performance Measure

In the sections to follow we investigate two algorithms for object recovery. In order to evaluate
the performance of each algorithm and to compare algorithms, we need a measure of performance
that we can apply uniformly to both algorithms. Our object recovery algorithms not only attempt
to fill in the gaps between measured spatial frequency components of the object (interpolative
super-resolution), but also to estimate the object at spatial frequencies beyond D/A (extrapolative
super-resolution), where D is the over all length of the array. Because of array geometries, our
algorithms will be performing better at recovering some spatial frequency components than others.
We therefore need a frequency sensitive performance measure. To this end, let x(n) be the nth pixel 0
of the object, 2(n) be the n th pixel of an estimate of the object, and e(n) be the nth pixel of the
estimation error given by

e(n) = x(n) - 2(n), (6.12a)

or in vector notation,
e = x - f. (6.12b) •

One common measure of performance is mean-square-error, (eTe). For our purposes this measure
is not useful. It gives us no indication of how well an algorithm performs as a function of spatial
frequency, Instead, the performance measure we will use is a signal-to-noise ratio (SNR) that is a
function of a spatial cutoff frequency. The behavior of the SNR as a function of cutoff frequency
will be an indication of the spatial resolution of the sparse array. To introduce frequency sensitivity
into the performance measure, let x.o(n), i,,(n), and e,,(n) be filtered versions of z(n), i(n), and
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e(n), respectively, where the filtering is ideal low-pass with cutoff frequency ic0 . To explicitly define
* the filtering operation, let y(n) be a sequence of pixels and vi(i) be its Fourier transform given by

"(K) = E y(n) exp(-27rinic6), (6.13)
n

where 6 is the object pixel spacing. Let 7(tc) be the filter transfer function given by

1, KI < i(
* f(K) = 0, IKI > tzo.

Then the Fourier transform of y,,o(n), the filtered version of y(n), is given by
0()= (c)f(,). (6.15)

Thus, we have

• o(hc) = 5()f( ) (6.16)

i0(K) = ?(K)f(K) (6.17)

* = () - °(t). (6.18)

Let us now define a signal-to-noise ratio for the filtered estimate 2o(n) as the ratio of the average
energy of the filtered object to the average energy of the filtered estimation error:

(2 x1.(n))
SNREST(Ko) n) (6.19)

* ( el. (n))

The angle brackets in Eq. (6.19) denote ensemble average. From Parseval's theorem we know that the
quantities inside the angle brackets in Eq. (6.19) can be written in terms of their Fourier transforms,
as follows:

1/26

* Zx (n)=6 J dr.p..(c)12  (6.20)
n-1/26

1/26

E .h(n) b J dn]'o~) 2  (6.21)

-1/26

We can use Eq.'s (6.13), (6.14), (6.16), and (6.18) to rewrite Eq.'s (6.20) and (6.21), yielding

1/26

e. (n) = 6 dK pF(K)1 2IT(r)I2

-1/26
o

26fdr. p(K)12  (6.22)

*0 Ee(n) = 6 dt i( ) 12T()l

= 261 dtz IF(,)1 2. (6.23)
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Replacing the quantities inside the angle-brackets in Eq. (6.19) with their corresponding expressions
given by Eq.'s (6.22) and (6.23), and bringing the angle-brackets inside the integrals, yields

SNREST(Ko) = d (I ,K2) (6.24)
fo o dtc(l'(ic) 6.)24

Since integrating the quantities b(li(tc) 12 ) and 6(IF(fZ)I 2) over the spatial frequency band Itzi -< t
yields, respectively, the energy in the object and estimation error over the same band, we will call
these quantities energy spectral densities or energy spectra, and use the notation

= b(p(K)12) (6.25)
E,(KC) = 6(gt(e)12). (6.26)

So that
SNREST(K o) = fog* dr. Ex(K) 

(6.27)
f* diEe(..tc)

To compute the energy spectrum of a random sequence, we simply follow the prescription given
by Eq.'s (6.25) and (6.13). Let z be a random vector with nth component z(n). Then its energy
spectrum is given by

6b z(n) exp(=27rintc)

6 E Z(z(n)z(m)) exp[-2,ri(n - m)K6]. (6.28)
nI m

We note from Eq. (6.28) that we need all entries of the covariance matrix of z(n) in the evaluation
of its energy spectrum.

6.4. Unweighted Least-Squares, Finite Support and Positivity Constraints

In Section 6.5. of Ref. 28 we used unweighted least-squares for object reconstruction, i.e., given
the observation

y = Gx + n, (6.29)

pick the object vector estimate 2 which minimizes

C= Iy - GRI12, (6.30)

where x is the object vector, n is observation noise, and the columns of G are the system point-spread-
function shifted and truncated. The finite support constraint to the solution is implicitly contained
in the dimension of the object vector x and its estimate R. To add the positivity constraint we
simply add the statement

5> 0. (6.31) 0
The object vector estimate that minimizes c of Eq. (6.30) can, of course, be obtained in closed
form. Unfortunately, this is not the case when the positivity constraint given by Eq. (6.31) is
included. One must use some numerical iteration method for each case of an object vector and a
noise vector, and perform some averaging of the results. Therefore, to evaluate the error vector
covariance matrix when using positivity as a constraint requires a simulation. To generate object
vectors, we generated independent Rayleigh random variables for each pixel. Thus, object intensity
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Figure 6.5.
Signal-to-noise ratio of the object estimate versus both assumed and actual object support
using the unweighted least-square processor without and with a positivity constraint on the
object estimate (solid line and circles, respectively). The four-subaperture array of Fig. 2 was
used with SNRREF = 50 dB, dID = 0.005, and "O -1.0D/A. There were N = 40 Monte Carlo
runs used to generate the simulation data shown here. The image data array, y, used here had
a length of 256 A/D.
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Figure 6.6
Signal-to-noise ratio of the object estimate versus both assumed and actual object support using
the unweighted least-squares processor without and with a positivity constraint on the object
estimate (solid line and circles, respectively). The five-subaperture array of Fig. 3 was used with
SNRRFF = 50 dB, diD = 0.005, and 0co = 0.81D/A. There were N = 40 Monte Carlo runs used
to generate the simulation data shown here. The image data array, y, used here had a length of
256 A/D.
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pixels were always positive. Noise vectors were generated using independent, zero-mean, Gaussian
random variables. An image vector, y, was generated using Eq. (6.29) for each sample object and
noise vector generated. The object vector estimate, i, for each case was found using an algorithm
called gradient projection2 . It is essentially the steepest descent algorithm modified to accommodate
the positivity constraint on the estimate. The algorithm is described in detail in Appendix A. If we
let x(n) be the object vector and R(n) be the object vector estimate, each for the nth random trial,
then the error covariance matrix was estimated using

N T

(eeT) = E (xn) - R(n)) (R(n) - R(n))T (6.32)
n=1

where N denotes the total number of random trials. The energy spectrum of the error vector was
computed using Eq. (6.32) in Eq. (6.28). The results were then integrated to compute SNREST,
as was done in Ref. 28. Plots of SNREST versus object support are shown in Fig.'s 6.5 through
6.7 for the four, five, and six subaperture cases, respectively. These calculations were performed
with N = 40. Note that the use of a positivity constraint tends to moderate the estimate in
those cases where the SNR is low, just as the use of statistical knowledge in the minimum-variance
processor did. However, just as in the minimum-variance case, positivity appears to be of little help
in performance improvement at SNR levels that are probably the minimum useful levels.* We also
performed simulations at SNRREF levels higher and lower than the 50 dB used to generate the results
of Fig.'s 6.5 through 6.7. However, there were no surprises in the results. At SNRREF > 50 dB the
performance in the region where support is less than the reciprocal of the gap in the MTF "island"
was the same with and without the positivity constraint. At SNRREF < 50 dB the performance
with positivity was marginally better than the performance without positivity in the same support
region, with the performance gap increasing as SNRREF is lowered. However, it is questionable
whether the performance improvement with positivity is useful at such low levels of SNREST.

The above results were obtained with assumed and actual object support the same. The question
arose as to the result if assumed object support were larger than actual object support, i.e., the
object estimate the processor is allowed to formulate has a larger support than the actual size
of the object. Until we introduced the positivity constraint, this question had no meaning. The
minimum-variance processor requires second moment information about the object, and thus its
size. Therefore, assumed and actual object size cannot be different. For unweighted least-squares
without positivity, it can be shown that performance depends only on assumed object support, and
as we have shown in Ref. 1, this must be less than the reciprocal of the gap in the MTF "islands"
for good performance. However, for the case of unweighted least-squares with positivity, the results
were somewhat surprising. We found that the critical size is neither the assumed nor actual object
support, but their average, i.e., if the average of the assumed and actual object supports is smaller
than the "gap", then SNREST will not fall off the "cliff". This result is illustrated in Fig.'s 6.8
through 6.10, corresponding to the four, five, and six subaperture arrays respectively. The same
results are shown in Fig.'s 6.11 through 6.13 with an expanded vertical scale to show more detail.
(The simulation results shown in Fig.'s 6.8, 6.9, 6.11, and 6.12 used N = 40 random trials, and the
simultion results shown in Fig.'s 6.10 and 6.13 used N = 20 random trials.) Although this feature
of positivity is interesting, it is hard to imagine a situation in which it would be useful.

6.5 CLEAN

The computational complexity of unweighted least-squares with a positivity constraint compels
one to find a less burdensome algorithm that also incorporates a positivity constraint on the object
estimate. One such algorithm is CLEAN2 , used in radio interferometry to reconstruct objects from

* Note that an SNREST of 20 dB corresponds to a "voltage" ratio of 10. S
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Figure 6.7.
Signal.to-noise ratio of the object estimate versus both assumed and actual object support
using the unweighted least-square processor without and with a positivity constraint on the
object estimate (solid line and circles, respectively). The six-subaperture array of Fig. 6.4 was
used with SNRREF = 50 dB, d/D = 0.005, and co = 0.76D/A. There were N = 40 Monte
Carlo runs used to generate the simulation data s.iown here. The image data array, y, used here
had a length of 256 AID.
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Figure 6.8.
Signal-to-noise ratio of the object estimate versus assumed object support using the unweighted
least-squares processor with a positivity constraint on the object estimate. The four-subaperture
array of-Fig. 6.2 was used with SNRREF = 50 dB,d/D = 0.005, and no = 1.OD/IA. From right
to left, the three curves correspond to actual object sizes of 2, 4, and 6 AID. There were N = 40
Monte Carlo runs used to generate the simulation data shown here. The image data array, y,
used here had a length of 256 AID.
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Figure 6.9.

Signal-to-noise ratio of the object estimate versus assumed object support using the unweighted
least-squares processor with a positivity constraint on the object estimate. The five-subaperture
array of Fig. 6.3 was used with SNRREF = 50 dB,d/D = 0.005, and ,go = 0.81D/A. From right
to left, the five curves correspond to actual object sizes of 2, 4, 6, 8, and 10 A/D. There were
N = 40 Monte Carlo runs used to generate the simulation data shown here. The image data
array, y, used here had a length of 256 A/D.
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Figure 6.10.
Signal-to-noise ratio of the object estimate versus assumed object support using the unweighted
least-squares processor with a positivity constraint on the object estimate. The six-subaperture
array of Fig. 6.4 was used with SNRitrE = 50 dB,d/D = 0.005, and rco = 0.76D/A. From right
to left, the five curves correspond to actual object sizes of 5, 8, 11, 14, and 17 AID. There were
N = 20 Monte Carlo runs used to generate the simulation data shown here. The image data
array, y, used here had a length of 256 AID.
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Signal-to-noise ratio of the object estimate versus assumed object support using the unweighited
least-squares processor with a positivity constraint on the object estimate. The four-subaperture
array of Fig. 6.2 was used with SNRRLEF =- 50 dB,d/D = 0.005, and no = 1.OD/A. From right
to left, the three curves correspond to actual object sizes of 2, 4, and 6 AID. There were N -- 40
Monte Carlo runs used to generate the simulation data shown here. Tlb image data array, y,
used here had a length of 2,56 AID.
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Figure 6.12.
Signal-to-noise ratio of the object estimate versus assumed object support using the unweighted
least-squares processor with a positivity constraint on the object estimate. The five-subaperture
array of Fig. 6.3 was used with SNRREp" = 50 dB,d/D = 0.005, and no = 0.81D/A. From right
to left, the five curves correspond to actual object sizes of 2, 4, 6, 8, and 10 AID. There were
N = 40 Monte Crlo runs used to generate the simulation data shown here The image data
array, y, used here had length of 256 AD.
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Figure 6.13.

Signal-to-noise ratio of the object estimate versus assumed object support using the unweighted
least-squares processor with a positivity constraint on the object estimate. The six-subaperture
array of Fig. 6.4 was used with SNRREF = 50 dB, d/D = 0.005, and io0 = 0.76D/A. From right
to left, the five curves correspond to actual object sizes of 5, 8, 11, 14, and 17 AID. There were
N = 20 Monte Carlo runs used to generate the simulation data shown here. The image data
array, y, used here had a length of 256 A/D.

interferometric data. Since radio interferometers certainly employ sparse arrays, we were curious as
to whether CLEAN was subject to the same limitations vis-a-vis object support and MTF gaps as
the other algorithms that we have tried. CLEAN begins with the same observation model that we
have used throughout our investigation:

y = Gx+ n, (6.33)

where x is the object vector, n is observation noise, and the columns of G are the system point-spread-
function shifted and truncated. CLEAN is an iterative attempt to solve the system of equations

y = GR, (6.34)

with the positivity constraint
_2 >0, (6.35)

where y and G are given, and 5 is unknown. If the solution exists (in our case that is equivalent to
no noise), and under the appropriate circumstances, CLEAN is capable of converging to the exact
solution. However, if there is observation noise, then CLEAN will not in general converge to the
best solution in the constrained least-squares sense, i.e., CLEAN will not minimize c of Eq. (6.30)
with the constraint given by Eq. (6.31). Furthermore, as we shall see, CLEAN does not in general
perform as well in terms of SNREST as least-squares. Details of our implementation of CLEAN are
contained in Appendix E.

Simulations using CLEAN were carried out in the same way as for unweighted least-squares with
positivity. Independent Rayleigh and Gaussian random variables were generated to create object
and noise vectors, the image vector y was computed, and CLEAN was applied to form an estimate
of the object vector. After many trials (in all cases presented in this report, we used N = 40 random 0
trials), a sample error covariance matrix was computed using Eq. (6.32).
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SNREST versus object support is plotted in Fig.'s 6.14, 6.15, and 6.16, for SNRREF =
50 dB, 60 dB, and 70 dB, respectively. The circles represent the results of simulations using CLEAN
and the solid curves are the results using unweighted least-squares. In'all cases, the four-subaperture
nonredundant array of Fig. 6.2 was used. The first characteristic to note in all three figures is that
CLEAN exhibits the same "cliff" behavior as the other algorithms we have tried; object support
must be smaller than the reciprocal of the gaps between the "islands" in the MTF or SNREST falls
off the "cliff". Also, the positivity constraint intrinsic in CLEAN moderates the object estimate at
low SNR, just as does positivity applied to unweighted least-squares or statistical knowledge in the
minimum-variance processor. Finally, we note that, to the left of the "cliff', that CLEAN tracks
least- squares with about a 14 dB performance loss. We will explore the reason for this loss shortly.
However, we will now look at the CLEAN results using the other two nonredundant arrays shown
in Fig.'s 6.3 and 6.4 and discover a limitation of CLEAN not suffered by the other algorithms we
have tried. We begin with the 5-subaperture array of Fig. 6.3 and the corresponding CLEAN results
of Fig. 6.17 with SNRREF = 50 dB. There are no surprises in this figure. The results are what
we would expect in the light of previous results. Now consider the results using SNRREF = 60 dB
shown in Fig. 6.18. We now see a considerable falloff in CLEAN performance beyond an object
support of 5A/D. The result is more exaggerated in Fig. 6.19 were SNRREF = 70 dB. The "cliff"
appears to be located at 5A/D instead of the expected location of 10 to 11 AID. For the present,
we simply point out that the MTF of the five-subaperture array has a missing "island", so that
one of the gaps is 2/llD/A, the reciprocal of which is 5.5 A/D. Now consider the results shown in
Fig.'s 6.20 through 6.22 using the six-subaperture array of Fig. 6.4. Again we have a severe loss in
performance for object support exceeding 5 AID when we would expect level performance out to
a support of 16 to 17 AID. And again, we note that the six-subaperture array has two adjacent
missing "islands" in its MTF with a corresponding gap of 3/17D/A, the reciprocal of which is 5.67
AID. Apparently, CLEAN is confused by irregularly spaced "islands" in the MTF of the array.
In other words, CLEAN appears to require that object support be less than the reciprocal of the
largest gap in the MTF of the array, even though that gap is outside the cutoff frequency used in
computing SNREST. We gain additional insight by examining the energy spectrum of the error vec-
tor when using CLEAN. Fig. 6.23 contains curves of energy spectrum versus spatial frequency using
the five-subaperture array. Note that CLEAN is successfully interpolating between "islands" in the
MTF for objects with support less than 12 AID, but the performance gradually degrades beyond a
support of 5 AID. Fig. 6.24 reveals the same behavior using the six-subaperture array. The obvious
solution is to spatially filter the observation vector y with a low-pass filter with a cutoff frequency
equal to the upper bound of the "useful range" of the array. The point-spread function used in the
CLEAN algorithm would be adjusted to reflect the "new" MTF. To demonstrate the concept while
avoiding the filtering operation, we instead created two redundant arrays with the same "island"
spacing as the nonredundant five and six subaperture arrays. These arrays and there corresponding
MTFs are shown in Fig.'s 6.25 and 6.26, respectively, and the results of the simulations are shown
in Fig.'s 6.27 through 6.32. Note that in every case we now have the behavior that we originally
expected with the nonredundant arrays.

We now refer back to one of the early observations, that the performance of CLEAN is worse
than least-squares in the region where object support is less than the reciprocal of the "gap" size
in the MTF. In an optical system using a completely filled (nonsparse) aperture, there is very little
information in the image plane about the object being imaged outside the support region of the
object. This not the case with a very sparse array. As the "sparseness" is increased, information
about the object is spread further out into the image plane, considerable beyond the region of
object support. All of this infotmation is potentially useful in a signal-to-noise ratio sense, and the
algorithm that can use it will perform better than one that cannot. However, there is usually a point
of diminishing returns, where increasing the size of the observation region will no longer significantly
improve performance because of the increased amount of observation noise. In all the results that
we have presented, both in this report and in Ref. 28, using minimum-variance and least-squares
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Figure 6.14.
Signal-to-noise ratio of the object estimate versus both assumed and actual object support
using unweighted least-squares without a positivity constraint on the object estimate (solid line)
and the CLEAN algorithm (circles). The four-subaperture array of Fig. 6.2 was used with
SNRRSFp = 50 dB, dID = 0.005, and .0 = 1.OD/A. There were N = 40 Monte Carlo runs used
to generate the simulation data shown here. The image data array, y, used here had a length of
256 AID.
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Figure 6.15.
Signal-to-noise ratio of the object estimate versus both assumed and actual object support
using unweighted least-squares without a positivity constraint on the object estimate (solid line)
and the CLEAN algorithm (circles). The four-subaperture array of Fig. 6.2 was used with
SNRREF = 60 dB, diD = 0.005, and io0 = 1.OD/A. There were N = 40 Monte Carlo runs used
to generate the simulation data shown here. The image data array, y, used here had a length of
256 AID.
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Figure 6.16.
Signal-to-noise ratio of the object estimate versus both assumed and actual object support
using unweighted least-squares without a positivity constraint on the object estimate (solid line)
and the CLEAN algorithm (circles). The four-subaperture array of Fig. 6.2 was used with
SNRREF = 70 dB,d/D = 0.005, and xo - 1.OD/A. There were N = 40 Monte Carlo runs used
to generate the simulation data shown here. The image data array, y, used here had a length of
256 AID.
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Figure 6.17.
Signal-to-noise ratio of the object estimate versus both assumed and actual object support
using unweighted least-squares without a positivity constraint on the object estimate (solid
line) and the CLEAN algorithm (circles). The five-suaperture array of Fig. 6.3 was used with
SNRREF = 50 dB, d/D = 0.005, and r.0 = 0.81D/A\. There were N = 40 Monte Carlo runs used
to generate the simulation data shown here. The image data array, y, used here had a length of
256 \ID.
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Figure 6.18.
Signal-to-noise ratio of the object estimate versus both assumed and actual object support
using unweighted least-squares without a positivity constraint on the object estimate (solid
line) and the CLEAN algorithm (circles). The five-subaperture array of Fig. 6.3 was used with
SNRREP = 60 dB,d/D = 0.005, and r.0 = 0.81D/ 9 . There were N = 40 Monte Carlo runs used
to generate the simulation data shown here. The image data array, y, used here had a length of
256 \ID.
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Figure 6.19.
Signal-to-noise ratio of the object estimate versus both assumed and actual object support
using unweighted least-squares without a positivity constraint on the object estimate (solid
line) and the CLEAN algorithm (circles). The five-subaperture array of Fig. 6.3 was used with
SNRRE" = 70 dB,d/D = 0.005, and r.0 = 0.81D/,\. There were N = 40 Monte Carlo runs used
to generate the simulation data shown here. The image data array, y, used here had a length of
256 A/D.
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Figure 6.20.
Signal-to-noise ratio of the object estimate versus both assumed and actual object support
using unweighted least-squares without a positivity constraint on the object estimate (solid
line) and the CLEAN algorithm (circles). The six-subaperture array of Fig. 6.4 was used with
SNRREF = 50 dB,d/D = 0.005, and ico = 0.76D/A. There were N = 40 Monte Carlo runs used
to generate the simulation data shown here. The image data array, y, used here had a length of
256 AID.
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Figure 6.21.
Signal-to-noise ratio of the object estimate versus both assumed and actual object support
using unweighted least-squares without a positivity constraint on the object estimate (solid
line) and the CLEAN algorithm (circles). The six-subaperture array of Fig. 6.4 was used with
SNRREF = 60 dB,d/D = 0.005, and no = 0.76D/A. There were N = 40 Monte Carlo runs used
to generate the simulation data shown here. The image data array, y, used here had a length of
256 AID.
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Figure 6.22.
Signal-to-noise ratio of the object estimate versus both assumed and actual object support
using unweighted least-squares without a positivity constraint on the object estimate (solid
line) and the CLEAN algorithm (circles). The six-subaperture array of Fig. 6.4 was used with
SNRREF = 70 dB,d/D = 0.005, and io0 = 0.76D/A. There were N = 40 Monte Carlo runs used
to generate the simulation data shown here. The image data array, y, used here had a length of
256 ,./D.

102 I

102

100

10-2

LuJ

10'3

10-1 . .1

.

,X/D

Figure 6.23.
Ratio of the energy spectrum of the error to the energy spectrum of the object versus spa-
tial frequency x using the CLEAN algorithm and the five-subaperture array of Fig. 6.3 with
SNRREI' = 70 dB and dID = 0.005. From bottom to top, the sixteen curves correspond to
object supports of lA/D, 2,\/D, ... , 12A/D, 15A/D, 20A/D, 25A/D, and 30A/D. There were
N = 40 Monte Carlo runs used to generate the simulation data shown here. The image data
array, y, used here had a length of 256 A/D.
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Figure 6.24.
Ratio of the energy spectrum of the error to the energy spectrum of the object versus spa-
tial frequency Pc using the CLEAN algorithm and the six-subaperture array of Fig. 6.4 with
SNRREF = 70 dB and diD = 0.005. From bottom to top, the twenty three curves correspond
to object supports of !.\ID, 2A/D, ... , 20A/D, 25A/D, 30A/D, and 35\/D. There were N = 40
Monte Carlo runs used to generate the simulation data shown here. The image data array, y,
used here had a length of 256 A/D.

with and without positivity, we have "allowed" the algorithm to use as much of tho image line as
was necessary in order to maximize performance. In other words, from a standpoint of performance,
one can consider the dimension of the observation vector y to be infinite. In experiments with
CLEAN, we found that the performance did not monotonically improve as the size of the image line
was increased beyond the size of the object. In fact, performance was erratic beyond that point,
changing by as much as -4 dB in the region to the left of the "cliff" in the SNREST curve. It appears
that CLEAN can not effectively utilize object information contained in the outlying region of the
image line. Accordingly, our results are approximately equivalent to what we would have gotten if
we had formulated the CLEAN algorithm to only use image measurement data from the set of pixels
at the center of the image plane and having an extent just matching the actual size of the target
object. It is as though we had limited the size of the observation vector used by CLEAN to match
the object support. This leads to the question as to how least-squares would perform compared to
CLEAN if the size of the observation vector was limited to object support for both algorithms. The
answer is contained in Fig. 6.33. There is no difference in performance. We conclude from this that
the difference in performance, for the smaller object supports, seen in Fig.'s 6.14 to 6.22 and 6.27
to 6.32 is due to the different "effective" size of the observation vectors for the two algorithms. It
is CLEAN's inability to make use of the multiplicity of copies of the image that the array produces
that causes the difference. It is not clear that this inability would manifest itself in processing radio
astronomy data.
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Figure 6.25.

Sparse array aperture function (a) and the corresponding MTP (b) for a redundant twelve- subaperture array.
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Figure 6.26.

Sparse Array aperture function (a) and the corresponding MTF (b) for a redundant eighteen-subaperture array.
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Figure 6.27.
Signal-to-noise ratio of the object estimate versus both assumed and actual object support
using unweighted least-squares without a positivity constraint on the object estimate (solid line)
and the CLEAN algorithm (circles). The twelve-subaperture array of Fig. 6.25 was used with
SNRREp = 50 dB,d/D = 0.005, and no = 1.OD/A. There were N = 40 Monte Carlo runsused
to generate the simulation data shown here. The image data array, y, used here had a length
of 256 AID for the least-squares results and a length equal to object support for the CLEAN
results.
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Figure 6.28.
Signal-to-noise ratio of the object estimate versus both assumed and actual object support
using unweighted least-squares without a positivity constraint on the object estimate (solid line)
and the CLEAN algorithm (circles). The twelve-subaperture array of Fig. 6.25 was used with
SNRREF = 60 dB, d/D = 0.005, and no = 1.OD/A. There were N = 40 Monte Carlo runs used
to generate the simulation data shown here. The image data array, y, used here had a length
of 256 A/D for the least-squares results and I3Ongth equal to object support for the CLEAN
results.
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Figure.6.29.
Signal-to-noise ratio of the object estimate versus both assumed and actual object support
using unweighted least-squares without a positivity constraint on the object estimate (solid line)
and the CLEAN algorithm (circles). The twelve-subaperture array of Fig. 6.25 was used with
SNRREF = 70 dB, d/D = 0.005, and no = 1.OD/A. Thcre were N = 40 Monte Carlo runs used
to generate the simulation data shown here. The image data array, y, used here had a length
of 256 \ID for the least-squares results and a length equal to object support for the CLEAN -
results.
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Figure 6.30.
Signal-to-noise ratio of the object estimate versus both assumed and actual object support using
unweighted least-squares without a positivity constraint on the object estimate (solid line) and
the CLEAN algorithm (circles). The eighteen supaperture array of Fig. 6.26 was used with
SNRREF = 50 dB, d/D = 0.005, and xo = 1.OD/IA. There were N = 40 Monte Carlo runs used
to generate the simulation data shown here. The image data array, y, used here had a length
of 256 \ID for the least-squares results and I(1ngth equal to object support for the CLEAN
results.
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Figure 6.31.
Signal-to-noise ratio of the object estimate versus both assumed and actual object support using
unweighted least-squares without a positivity constraint on the object estimate (solid line) and
the CLEAN algorithm (circles). The eighteen-subaperture array of Fig. 6.31 was used with
SNRRE p = 60 dB, d/D = 0.005, and go = 1.OD/A. There were N = 40 Monte Carlo runs used
to generate the simulation data shown here. The image data array, y, used here had a length
of 256 \/D for the least-squares results and a length equal to object support for the CLEAN
results. S
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Figure 8.32.
Signal-to-noise ratio of the object estimate versus both assumed and actual object support using
unweighted least-squares without a positivity constraint on the object estimate (solid line) and
the CLEAN algorithm (circles). The eighteen-subaperture array of Fig. 6.26 was used with
SNR -= 70 dB,d/D = 0.005, and ,.o = 1.OD/A. There were N = 40 Monte (,vlo runs used
to generate the simulation data shown here. The image data array, y, used here had & length
of 256 AID for the least-squares results and ld th equal to object support for the CLEAN
results.
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Figure 6.33.
Signal-to-noise ratio of the object estimate versus both assumed and actual object support
using unweighted least-squares without a positivity constraint on the object estimate (solid line)
and the CLEAN algorithm (circles). The twelve-subaperture array of Fig. 25 was used with
SNRREF = 70 dB,d/D = 0.005, and eo0 = 1.OD/,. In all cases, i.e., for both CLEAN and least-
squares results, the length of the image line was the same as the length of the object support.
There were N - 40 Monte Carlo runs used to generate the simulation data shown here.
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APPENDIX A for Chapter 2

0 Computer Listings

This appendix contains the Fortran source code of the computer programs used to generate the
data for this chapter.

I c

3 c program 2dutfakr.f
4 c
6 C
6 real*4 zl(128,128)
7 dx1.O
8 call *ight(d,zl)
9 stop

*10 end
11 c
12 c
13 c
14 subroutine eight(d,zl)
15 real*8 ha,a,b,c
16 real*4 z(64,64),z1(128,128),dx,dy
17 complexeS berr(128,128)

*18 a-0
19 b=2/3. *3.14159265
20 c=(4/3.)*3.14159265
21 do 150 jj-0,63
22 tkx-(jj-32)/32.
23 do 200 j=0,63
24 thm(j-32)/32.
2S call adder(a,a,d,tk,th,hil)
26 call. adder(b,a,d~tk,th,hh2)

027 call adder(a,b,d,tk,th,hi7)
28 call adder(a,c,d,tk,th,hb3)
29 call adder(b,c,d,tk,th,hhS)
30 call adder(c,a~d,tk,th,hh8)
31 call adder(c,b,d,tk,th,bh9)
32 if(d.eq.1)then
33 z(j+1,jj+1)ubb1

*34 elSe
35 z(j+1,jj+l)z3*eI1+hh2+h3+hh5+hh7+
36 c h1h8+hhi9
37 end if
38 200 continue
39 1S0 continue
40 call. solidplt('2dsitfdl.0',64,64,z)
41 do 205 iiul,128
42 do 205 iiiu1,128

*43 205 berr(ii,jjj)wO
44 do 210 jjuj,64
45 do 220 iiinl,64
46 berr(32+ii,32+iii)nz(ij ,iii)
47 220 continue
48 210 continue
49 dizI
50 dy=l

* I call Tft2d(berr.128,dx,dy)
52 do 300 iial.128
53 do 310 iiin1,128
54 zI(ii,iii)=real(brr(ii,iii))
55 310 continue
56 300 continue
57 call solidplt('2dpsfdl.0' ,128,128,z1)
S8 return
59 end
60 c
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61 function ha(d,de)
62 realeB he
63 ha=.Se(d*e2)e(l .57079632-asi.(d./d)-

64 c (deld)esqrt(l-(deld)**2))I.
78 5398l6

65 return
66 end
67 c
68 subroutine adder(pl ,p2,d,tk,th,hhl)

69 reale8 ha,pl,p2
70 rlz(1-d)/2*(cos(pi)-cos(p2))+th
71 r2.z(-d)/2*(sin(p1)-si(p2))+tk
72 dewsqrt(rl*C2+r2*C2)
73 it(de.le.d)then
74 hha(d,de)
75 also
76 hh=O
77 andif
78 return
79 and
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1 C2*
3 c program first.f
4 c
S c

6 paraieter(nn157 ,kk=68)
7 real*8 gx(kk),gy(kk)
8 integer idummy(l)
9 c

*10 n-157

11 m=4

12 n2-(a*C2)*(uo*2+1)/4
13 1=31
14 k=63
is d-.1

.6 ~ call bufasg(idumy.128*nem,ia)
17 call bufasg(idway,2128*128,ib)
18 call zero(idu~y(ia),nunidummy~ib) ,d,gx~gy,rn2)

S19 call bufrel(id ummy(ib))
20 call bufrel(idumy(ia))
21 call plotfl('g4',mn2,'d'.gx,'d',gy)
22 stop
23 end
24 c
25 c
26 subroutine zero(bv,n,rn,zl,d,gx,gy,im2)

0 27 real*8 bu(64,n,n),zl(128,128),gx(2),gy(m2)
28 call eight(d,zi)
29 call one(bv,n,rn,zl,d)
30 call two(gx,gy,bv,n,r,m2)
31 return
32 end
33 c
34 c
35 subroutine one(bv,n,m,zl~d)
36 reale8 zI(128,128),bw(64,rn,U)
37 do 500 juj,64
38 do 501 ii-=l,n
39 do 502 iiinl,m
40 bv(i,ii,iii)=0
41 502 continue
42 501 continue

*43 500 continue
44 do 510 i=1,64
45 do 520 iiz1,12T
46 bu(i,ii,1)xzl(64+i,ii+1)
47 520 continue
48 do 530 iii*2,m
49 do 540 iv=1,127

* 51 40 cotinu
52 530 continue
53 510 continue
54 I oetiue
55 retn
S6 an
57 c

* 58~~~~S c tog~yb~~~2
59 curutn
60 subroutie to(gxgyL) ~ 2
61 preerg(um) binm)gm2 ys),b(4n )
62 rei 8gv1)gbm~mxa)gym)b(4nm
63 do 0i i,
64 do 605 iIi,
64 do 605 iviUl,m
6 605 60Siivlu
6 jul~ iiiv

68 ia-3i
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69 do 610 ii-1,64
70 call four(bw.ii~abs(ia-ii)41 ,gl,u,n)
71 do 620 iiil1.m
72 do 630 iv-l,m

74 30 contiinue gbiiiv+lii

75 630 continue

76 610 continue

77 jg=mo(j-1)
78 igme (ia-i)
79 if(ia.ne.j)then
80 do 640 k1-1,w
81 do 650 k2=1,u
82 if(ig.gt.0)then
83 gx(iv)-gb(kl ,k2)
84 i,--ig
8s else
86 gy(abs(iu))xgb(kl ,k2)
87 jw=--iw~l
88 endif
89 650 continue
90 640 continue
91 else
92 do 645 kl=1,u
93 do 655 k2=k1,m
94 if(iv.gt.0)thenL
95 gx(iv)=gb(kl,k2)
96 ig=-iv
97 else
98 gy(abs(iv))s-gb(k1,k2)
99 iw--iu+1

100 endif
101 655 continue
102 645 continue
103 endif0
104 do 680 jx-2,u-i+1
105 jmj+1
106 jgue*(j-1)
107 iauia+1
108 igume(ia-1)
109 call four(bw,j,ia,gl,m,n)
110 if(j .ne .ia)then
III do 660 k3-1,x
112 do 670 k4wl,m
113 gb(k3,k4)xgb(k3,k4)+gl(k3,k4)
114 if(iu.gt.0)then
115 gx(iw)ngb(k3,k4)
116 iw.-iw
117 else
118 gy(abs(iv))-gb(k3,k4)
119 jws-jw+j

120 endi-f
121 670 continue
122 660 continue
123 else
124 do 665 k3z1,x
125 do 67S k4mk3,m
126 gb(k3,k4)-gb(k3,k4)+gl(k3,k4)
127 if(iw.gt.0)tben
128 gx(iw)ngb(k3,k4)
129 iw--ic
130 else
131 gy(abs(iu))ngb(k3,k4)
132 ivu-iu+1
133 endif
134 675 continue
135 665 continue0
136 endif
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137 680 continue
138 600 continue

0139 return
140 end
141 c
142 c
143 c
144 c
145 subroutine four(bv,j,i-gl'a,n)
146 realeS gl(=,m),bu(64,n,U)

0147 do 400 klx1,u
148 do 410 k2=1,u
149 gl(kl.k2)-O
150 do 420 k3-1,n
151 gl(k1,k2)'-gl(k1,k2)+bv(j ,k3,kl)ebw(i,k3,k2)
152 420 continue
153 410 continue

*154 400 continue
155 return
156 end
157 c
158 c
159 c
160 c
161 c
162 c

0163 subroutine eight(d,zl)
164 reale8 ha,a,b,c,zl(128,128)
165 real z(64,64),dx,dy
166 conplex*8 berr(128,128)
167a0
168 b=2/3.*3.1415926S
169 cu(4/3 )*3.14159265
170 do 150 jj-0,63

*171 tk--(jj-32)/32.
172 do 200 j-0,63
173 tht-j-32)/32.
174 call adder(a,a,d,tk,th,hil)
175 call adder(b,a,d,tk,th,2h2)
176 call adder(a,b,d,tk,th,hh7)
177 call adder(a,c,d,tk,th,hb3)
178 c all adder(b,c,d,tk,th,hh5)

*179 call adder(c,a,d,tk,th,hh8)
180 call adder(c,b,d,tk,th,ih9)
181 if(d.eq.1)then
182 z(j+1,jj+1)uhh1
183 else
184 z(j+1 ,jj+1)=3*hi1+b]2+b1h3+bI5+bh7+
185 c h+hh9
186 endif

*187 200 continue
188 150 continue
189 call solidplt('solidfile' ,64,64,z)

190 do 205 iiul,128
191 do 205 iiizl,128
192 205 berr(ii,iii)0O
193 do 210 iiul,64
194 do 220 iiiul,64

O195 berr(32+ii,32+iii)-z(ii,iii)
196 220 continue
197 210 continue
198 dxIl
199 dywl
200 call fft2d(berr,128,dx,dy)
201 do 300 iiul,128
202 do 310 iiiu1 1128

*203 zI(ii,iii)-real(berr(ii~iii))
204 310 continue
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206 300 continue
206 return
207 end
208 c
209 function ha(d,de)
210 reale8 ha
211 ha-.S*(dee2)e(1 .57079632-asint(de/d)-
212 c (de/d).sqrt(1-(de/d)**2))/ .78539816
213 return
214 end
215 c
216 subroutine adder(pl,p2,d,tk,th,hh)
217 real*B ha,pl,p2
218 r1-(1-d)/2*(cos(pl)-cos(p2))+th
219 r2-(1-d)/2e(sin(pl)-sin(p2))+tk
220 densqrt(rlse2+r2se2)
221 if(de.le.d)then
222 hha(d,de)
223 else
224 hh=O
225 endif
226 return
227 end
228 c
229 c



I c
2 c

*3 c program natrix4.f
4 c
S c
6 paraintter(n157,ms=8,kk=64)
7 real*8 zl(128,128).g(kk,kk) ,bu(64,nn,in)
a integer lwork(kk) ,uuork(kk)
9 c
10 n=157

*11m=
12 m2mee2
13 1=31
14 k-63
15 d1I
16 call eight(d,zl)
17 call one(bv,k,n~a,zI~d)
18 call two(g,bw,n,,u2)
19 c open(I~file'loutl)
20 srrlOOO0
21 do 120 iul,m2
22 g(i,i)-g(i,i)+1/snr
23 120 continue
24 call dminvu(g,m2,ier ,lvork,mwork)
25 do 130 iiiul,m2
26 do 140 ivxl,m2
27 g(iii~iT)ing(iii,iV)/Sr
28 140 continue
29 130 continue
30 c write(1,*)g
31 c cloae(1)
32 call ten(g,xmu2)
33 stop
34 end
35 c
36 c
37 c
38 c
39 subroutine one(bv,kz,m,z1,d)
40 realeS z1(128,128),bw(64,n,x)
41 do S00 juj,64
42 do 501 ii19 ~n

*43 do 502 ium
44 bw(i,ii,iii)0O
45 502 continue
46 501 continue
47 S00 continue
48 do 510 izl,64
49 do 520 iizl,127
s0 bw(i,ii,1)xzl(64+i,ii+1)

*I 51 20 continue
52 do 530 iiiw2,a
53 do 540 iyul,127

55S40 continuei-~iinwiii~v2ii
5S 530 continue

57 510 continue
58 return

*59 end
60 c
61 c
62 c
63 subroutine tuo(g~bw,A,IR,m2)
64 parameter(ow-8)
65 reale8 gl(n,in) gb(mm) ,g(a2,u2) ,bw(64,unm)
66 do 600 iu

*67 do 605 iu~
68 do 605 ivwl,u
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69 605 gb(iii,iv)0O
70 Jul
71 ia-i
72 do 610 i-,64
73 call four(bw,ii~abs(ia-ii)+1 ,gl,n,n)
74 do 620 iiiwl,m
75 do 630 jyj1,u

76 gb(iiipiv)azgb(iii,iv)+gl(iii~iv)
77 630 continue
78 620 continue
79 610 continue
80 j"u*(j-1)
81 igwa.(ia-i)
82 do 640 klIx,m
83 do 650 k2l1,n
84 g(jg+kl,igk2)-gb(kl ,k2)

85 g(ig~k2,jg~kI)=gb(kl ,k2)
86 650 continue
87 640 continue0
88 do 680 ix=2,u-i41
89 juj+1
90 jgu*(j-1)
91 iamia+1
92 igue*(ia-1)
93 call four(bv,j,ia,gl,m,n)
94 do 660 k3zl,x
95 do 670 k4x1,u

96 gb(k3,k4)lgb(k3,k4)+gl(k3,k4)
97 g(jg+k3 ,ig+k4)-gb(k3,k4)
98 g(ig+k4,jg+k3)-gb(k3,k4)
99 670 continue
100 660 continue
101 680 continue
102 600 continue

103 return0
104 end
105 c
106 c
107 c
108 c
109 subroutine tour(bw,j ,i,gl~xjn)
110 realeS gl(m,m),bw(64,n,x)
III do 400 k~mla 0
112 do 410 k2-1,n
113 gl(kl,k2)0O
114 do 420 k3mi,r

115 gl~ki ,k2)mgl(kl ,k2)+bw(j ,k3,kl)*bv(i,k3,k2)
116 420 continue
117 410 continue
118 400 continue

119 return0
120 end
121 c
122 c
123 c
124 c
125 c
126 c

127 subroutine eight(d,zl)
128 real*$ h&,a,b,c,zl(128,I28)
129 real z(64,64),dx,dy
130 complexeS berr(128,128)
131&n
132 bu2/3.*3 .14159265

133 cm(4/3.)*3.1
4l5 9265

134 do 150 jjuO.63

135 tku-(jj-32)/32.
136 do 200 j0,63
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137 th.(j-32)/32.
138 call adder(a,a,d,tk,th,hbM)

*139 call adder(b,a,d~tk~th~hh2)
140 call adder(a,b,d,tk,th,hh7)
141 call adder(a,c,d,tk,th,hi3)
142 call adder(b,c,d,tk,th,hhiS)
143 call adder(c,a,d,tk,th~hh8)
144 call adder(c,b,d,tk~th,hh9)
145 if(d.eq.1)then
146 z(j+1 ,jj+1)=hhl

*147 else
148 z(j+1 .jj+1)z3hhlilh2+il3+hh5+hhi7+
149 c bli8+lh9
150 endif
151 200 continue
152 150 continue
153 c call solidplt('solidfile,64,64,z)
154 do 205 ii-1128

* 15 do 205 iii1,128
156 205 berr(ij,ijj)uo
157 do 210 iiI1,64
158 do 220 iiiu1,64
159 berr(32+ii ,32+iii)z(ii.iii)
160 220 continue
161 210 continue
162 dx=1

*163 dx
164 call fft2d(berr,128,dx,dy)
165 do 300 iixl,128
166 do 310 iijzl,128
167 zI(ii~iii)mreal(berr(iiiii))
168 310 continue
169 300 continue
170 return

*171 end
172 c
173 function ka(d,de)
174 reale8 ha
175 hax.Se(d**2)*(I .57079632-asin(de/d)-
176 c (de/d)*sqrt(l-(de/d)*2))/.78539816
177 return
178 end

*179c
180 subroutine adder(pI,p2,d~tk,th,hh)
181 real*8 ha,pl,p2
182 rIu(1-d)/2*(cos(pl)-cos(p2))+th
183 r2-(1-d)/2*(sin(pl)-sin(p2))+tk
184 deusqrt(rle2+r2**2)
185 if(de.le.d0then
186 hba(d~de)

*187 elso
188 h=
189 endif
190 return
191 end
192 c
193 c
194 c fft progran

*195 subroutine ten(g,m,m3)
196 paramueter(inz8)
197 real*4 diag(15) ,bdiag(128) ,ur(128) ,vi(128) ,dd,br(mm,mm,127)
198 real*4 bi(m,in,127) ,y(128) ,sur(127,127) ,sli(16129) ,x(16129)
199 realeB gl(us,u) ,brt (=,=),.bit (m~n) ,g(x3 ,3)
200 reale4 sasur(63,63) .x2(3969) ,sli2(3969)
201 c
202 nz128

*203 nx
204 x2m2eu-1
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20S call lookup(n..r~si)
206 do 10 i-1,m
207 do 20 iisi,u
208 do 30 iii=1,w
209 do 40 j,1.mu
210 gl(iii ,iv)=g(mei-u+iii ,ueii-u+iv)
211 40 continue
212 30 continue
213 call addiag(gl,u2,diag,m)
214 canl pad(diag,m2,bdiag,n)
215 do 50 ix=l,n
216 y(ir)0O
217 S0 continue
218 ddl1
219 canl fft2(bdiag,y,n,nl,ur~wi.dd)
220 do 60 iiil1,u-1
221 br(i.ii,iii)-bdiag(iii+1)
222 br(ii,i,iii)-bdiag(iii+1)
223 bi(i,ii.iii)-y(iii+1)
224 bi(ii,i,iiiW=-y(iii+i)
225 60 continue
226 20 continue
227 10 continue
228 do 70 jml,n-1
229 do 80 iixi,m
230 do 90 iiilI,x 231 rt~i~ii)=brii~ii~6
231 brt(ii,iii~zbr(ii~iii,i)

233 90 continue
234 8o continue
235 call addiag(brt,m2,diag,m)
236 call pad(diag,2,bdiag,n)
237 call addiag(bit,m2,diag,m)
238 call pad(diag,a2,y,n)
239 ddal
240 call fft2(bdiag,y,n,nl,vr,wi,dd)
241 do 100 iixl,n-1
242 sur(i,ii)bdiag(ii+1)/m3
243 sli( (n-1)*i-(n-1)+ii)zbdiag(ii+1)/m3
244 (n1ei1+)()ei)i
245 100 continue
246 70 continue
247 iii0 0
248 do 110 im1,63
249 do 120 iia1,63
250 jjjajjj+j
251 smsur(i,ii)-sur(32*i,32+ii)
252 sli2(iii)nsmsur(i,ii)
253 x2(iii)*x(iii)
254 120 continue
255 110 continue
256 call solidplt('s24' ,127,127,sur)
257 call plotfl~ilong24' ,(n-l)**2, 'f',x,'f' ,sli)
258 call solidplt('hil,63,63,smsur)
259 call plotfl('lo',3969,'f',x2,'f'.sli2)
260 stop
261 end
262 c
263 c0
264 c
265 subroutine pad(diag,m2,bdiag,n)
266 reale4 diag(u2) .bdiag(n)
267 do 404 iul,n
268 bdiag(i)*0
269 404 continue
270 ku(n-n2+3)/2
271 do 406 i1,w20
272 bdiag(k+i-1)udiag(i)
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273 406 continue
274 return

0276 end
276 c
277 c
278 c
279 subroutine addiag(a,*2,diag,m)
280 real*4 diag(.2)
281 real*$ a(U,U)
282 do 601 i~l .2

0283 diag(D)0
284 601 continue
285 do 603 jul,m
286 do 605 iial,m
287 iiuji-i4.

288 disg(iii)udiag(iii)+a(i,ii)
289 605 continue
290 0503 continue

*291 return
292 end
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3 c program matrix5
4 c
5 c
6 paraiteor (nn2 S4 ,vmw28)
7 realeB bv(n~n,mm),rstil(,128) ,f(128)
8 reale8 g(sm,um)
9 reale4 dx,dy,d

10 c
11 nut-I
12 open(nvtjile.'out')
13 n=254
14 1=128
15 kcw(n-l)/2.
16 nl=26
17 nl2wnlI2
18 do 90 is-0,5
19 a-2ee(in+2)
20 do 100 iw1,5
21 du-.lei+.6
22 call one(bw,k,n,a,d)
23 do 110 ii=2,4
24 onrulO**ii
25 call two(bw,n,umg,anr)
26 call six(g,u,nl~retil,f,snr)
27 c call fivre(retil4f,n,u,d,nt~sr,D12)0
28 it(iu.eq.0)call plotil('sparse4' ,n12, 'd'4, 'd',retil)

29 if(im.eq.1)call plotfl()sparse8',nl2,'d','d',retil)
30 if(i.q.2)call plotil('aparsel6',n12,'d',i.'d'.retil)

31 if(im.sq.3)call plotil(Isparse32',n12.'d',i,'d',retil)
32 if(ia.*q.4)call plotfl('sparse64',n12,sd',f.'d'.retil)

33 if~Um.eq.5)call plotil('aparsel2B',n12.'d' ,f,'d',retil)

34 110 continue

35 100 continue
36 90 continue
37 close (Aut)
38 atop
39 end
40 c
41 c
42 c
43 c0
44 subroutine one(bw,k,n,u,d)
45 c subroutine to calculate bw
46 realeS bw(n,a),bk&
47 do 500 i1I,n
48 do 500 iixj~m
49 500 bw(i,ii)n0
50 Ju-k

51 do 510 iul.1+2*k

53 JuJ+1
54 510 cotinne
55 do 520 iwl,m-l
56 do 530 iin0,2*k
57 bu(1+i+i~i*1)nbw(ii+i,i)
so 530 continue
59 520 continue0
60 return
61 $nd
62 c
63 c
64 function hh(J,d)
65 reales k

6 if(j.*q.0)th*en
67 kkudo*2

66 else
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69 hm(cos( .78539816*je(1-d))*sin(.78539816*dej)/
70 c (.78539816*j))**2

*71 ni
72 return
73 end
74 c
75 c

76 subroutine two(bw,n,n,g,snr)
77 c subroutine to calculate h=(gtg)*snr + i inv
78 parameter(uu.=128)
79 reale8 bw(n,z).g(m,m)
80 integer lvork(m),nork(usO,ier
81 do 600 i=I,m
82 do 610 iixl,a
83 g(i,ii)"0
84 do 620 iiil1,A
85 g(i,ii)ug(i.ii)+bv(iii~i)ebw(iii~ii)esnr
86 620 continue
87 ifUi.sq.ii)g(i,ii)xg(i,ii)+1
88 610 continue
89 600 continue
90 call dainvw(g,m,ier~lvork,mwork)
91 return
92 end
93 c
94 c
95 c
96 subroutine :five(retil,f,n,m,d,nvt ,anr,n1l2)
97 reale8 retil(nl2),f(n2)
98 write (nwt ,890)n,u,d, sar
99 890 format(O n n I,i4,P au w l4,1 d ',fIO.S,1 sr
100 c f12.5)
101 do 900 ini,nl2/2
102 write(nvt,895)f(i) ,retil(i)

*103 895 foruat(2f2.5)
104 900 continue
105 return
106 end
107 c
108 c
109 subroutine uix(g,al,retil,f,snr)
110 complere8 berr(256,256)
lit1 real*$ g(x,m),retil(128),f(128)
112 do 200 iml,al
113 do 200 iiul,n1
114 200 berr(i,ii)=0
115 nun-)2
116 do 210 i=I,m
117 do 220 iivl,m

118 berr(n14-i,nl+ii)ug(i~ii)
*119 220 continue

120 210 continue
121 dxu1
122 dyal
123 call fft2d(berr~nl,dx~dy)
124 al2oza/2
125 ul4mal/4
126 do 230 iml,n12

*127 retil(i)ra(berr(l2+i,n2-i+2))/
128 i
129 f(i)wx/n14
130 230 continue
131 return
132 and
133 c
134 c
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1iC
2 c
3 c program matrix60
4 c
5 parameter(nnu254 ,ina128)
6 reale8 bv(nn,u) ,h(m,nn) ,retilu(128),f(128) ,X(m) ,no Cnn)
7 reale8 g(ua,u.erru(m,im),retil2(128) ,err2(un,mm)
8 r~ale8 retilc2(128),errc2(Mm,m)
9 realeB y(nn),gg(,=)

10 real*4 d.sps
11 integer*4 random
12 character dfileel6
13 c
14 ut-2
15 open(avt,file')out')
16 r=254
17 1-128
18 ku(n-l)/2.
19 print *, ;At?)
20 read s, nt
21 print a, ni?'
22 read ani
23 print a, eps?'
24 read Ceps

25 print a'b?)
26 read a, b
27 print ,'m?'
28 read a,

29 print a=au?'
30 read s, au
31 print s, 'dID?'
32 read ed
33 print ), Destination File?'
34 read adfile

36 x1=256l

37 call arandox(29)
38 call one(bw,k,n,u,d)
39 call two(bv,h,n,u,g,gg)
40 call twoS(h,n,u,err2)
41 call six(nwt,err2,m,zal,retil2,anr,mb)
42 call :ive(retil24f2,nLm,dsnwt,anr,nl2)

43 call plotfl(dfile,n12, 'd' f, 'd',retil2)
44 do 103 jal,m
45 do 101 jj=1,m
46 orru(j,jj)u0
47 orrc2(j,jj)no
48 101 continue
49 103 continue
s0 do 105 ivul,Mt
51 c print s,ivr
52 if (float(i'r)/10.0-int(iloat(iv)/10.0) Ilt. le-lO) then
53 print s, iv
54 endif
55 call thre*(x,no,U,3L~unr,bu~y~sb)
56 call four(x~h,no,erru,n,u~nt,errc2,y,bw,gg,eps,ni)
57 105 continue
58 call six(awt,erru,u,al,retilu,i,mnr,mb)

59 call live(retilu,f,n,u,d,nut,anr,nl2) 4
60 call aix(awt,errc2,a,nl,retilc2,i,snr,mb)
61 call iive(retilc2,n,u,d,nut,anr,n12)
62 call plotil(dfil.e ,n2, 'd ,t, 'd',retilu)
63 call plotfl(dlile,nl2, 'd' ,i,s'4'retilc2)
64 closebiut)
6 atop

66 end
67 C
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69 c
70 c

071 subroutine one(bw,k~n,*,d)
72 realeS bw(n,a),hh
73 do 500 i1l,n
74 do 500 ii-I,x
75 500 bw(i,ii)sO
76 j--k
77 do 510 iu1,142*k
78 bv(i.1)mh(j,d)
79 jwj+1
80 510 continue
81 do 520 i-1,m-1
82 do 530 iu,2*k
83 bw(1+ii+i,i+l)*bv(ij+i,j)
84 530 continue
85 520 continue
86 return

*87 end
88 c
89 c
90 function hh(j,d)
91 reale8 h1h
92 ii(j.eq.0)then
93 b1h=ds*2
94 also
95 h(cos( .78539816*j*(1-d))euin(.78539816.dej)/
96 c C.78539816ej))*e2
97 endif
98 return
99 end
100 C
101 C
102 subroutine two(bw,h,n,x,g,gg)

* 103 parsmeter(uu.128)
104 real*8 b~~)gam hun g~n
105 integer lwork(m),usork(uu),ier
106 do 600 1.1,.
107 do 610 iiulRa
108 g(i,ii)uo
109 do 620 iiiuI,n
110 g(i,ii)wg(i,ii)4bw(iii,i)ebw(iii,ii)

*1121 2 continiu~~
112 620 continue
113 610 continue

115 call dmavw(g,u,ier,luork,muork)
116 do 630 iw1,x
117 do 640 iial,a
lie b(i,ii)u0

*119 do 650 jjjul,a
120 )~uim~~i+~~i~b(iii
121 650 Continue
122 640 continue
123 630 continue
124 return
125 end
126 c

*127c
128 subroutine twoS(k,n,ma,err2)
129 real*$ k(x~n).*rr2(m,a)
130 do 400 im1~u
131 do 410 iia1,u
132 err2(i,ii)=0
133 do 420 iiiul,n
134 err2(i,ii)uerr2(i,ii).h(i,iii)eh(ii,iii)

*135 420 continue
136 410 continue
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137 400 continue
138 return
139 end
140 c
141 subroutine three(xn,u,n,,snr,bu,y~ub)
142 realeS u1,u2,u3,s
143 real'S xWmo(n),bv(n,m),y(n)
144 iutegere4 IIITV,raiidon
145 parameter(XITV21474836,47)
146 n2wn/2
147 do 500 jul~n2
148 3 ul-real(randouO)/NIIITV
149 it(uI.gt.1.or.ul.eq.0)goto 3
150 2 u2-real(randoO )/AIXXTV
151 it(u2.gt.1.or.u2.eq.0)goto 2

- 152 no(2*i-1)usqrt(-2elog(ul))*cos(6.2831853*u2)
153 no(2*i)uaqrt (-2elog(ul))*sin(6 .2831853*u2)
154 500 continue
155 susur/2
156 do 505 inl,n
157 4 u3wreal(randomO)/AIINTV
158 if(u3.gt.1.or.u3.eq.0)goto 4
159 x(i)nsqrt(-2elog(u3))esqrt(s)
160 505 continue
161 do 507 inub+1,u
162 XMi-O
163 507 continue
164 do 510 i1l,a
165 YWi-O
166 do 520 iiul,a
167 y(i)-y(i)+bwUi~ii)*x(ij)
168 520 continue
169 y~iwyWi~no(i)
170 510 continue
171 return
172 end
173 c
174 c
175 subroutine ifour(z,h,no,erru,nt,a~nt,errc2,y,bu,gg,eps,nti)
176 parm&*tar(mm128 ,nnw2S4)
177 realos xm ne),ruum),~~)e~ u
178 realee ec2(m),errc2(m,u) ,gg(u,u) ,gg2(u.,ui) v2(mn)
179 real*$ top(im) ,y(a),bw (n,m), z(m) ,zg(m) ,tm2(ua)0
18O reale4 eps
181 do 700 iml,m
182 tap(i)M0
183 zWi-u
184 do 710 iiul,n
18 tmpCi)mtmpMi+h(i,ii)*y(ii)
188 z(i)wz(i)4bw(ii,iDey(ii)ep
187 710 continue
188 700 continue
189 do 712 imi,.
190 do 713 iiw,u
191 if(i.*q.ii)then
192 gg2(i,ii)xl-*psegg(i,ii)
193 else
194 gg2(i,ii)-epxegg(i,ii)
195 andif
196 713 continue
197 712 continue
198 do 715 iul,p
199 eu(i)wtmpWi-XMi
200 c ii(tmp~i).gt.0.and.s(i).gt.0)tken
201 c xg~iwtm(i)
202 c else
203 c zgMi-00
204 c eadif



205 zg(i)uX(i)
206 :c2(i)-xg(i)-x(i)

*207 71S ontinue
208 jk-0
209 do 770 i,1 .ni
210 jknjk+l
211 do 740 i-I,.
212 temO
213 do 750 jiwl..
214 teuitemgg2(i~ii)*xg(ii)

*215 750 continue
216 %m2i)tm+zUi)
217 if(tm2j) .lt.0)te2(i)-O
218 740 continue
219 do 760 i1l,a
220 xg)tm2(i)
221 ec2(i)uxgU)-x(i)
222 760 continue

*223 c if(jk.eq.l00)then
224 c jkuo
225 c sum0
226 c do 745 jwl,n
227 c T2(i)u0
228 c do 746 il,.
229 c v2(i)=v2(i)+bvwi,ii)*xg(ii)
230 c46 continue

*231 c v2(i)=v2(i)-yUi)
232 c suMusuz+v2(j)**2
233 c4S continue
234 c do 775 juj,m

235 c print *,xg(i)
236 c75 continue
237 c print *,iy,sni
238 c print

*239 c ni
240 770 continue
241 c call plotfl(Itest',m,ld',xg,'d',xg)
242 do 720 1.1,.
243 do 730 iiu1,u
244 erru~i,ii)nerru(i,ii)4eu(j)eeu(ii)/nt
245 errc2(i,ii)uerrc2Ci,ii)+ec2(i)eec2(i1)/nt
246 730 continue

*247 720 COntirAU4
248 return
249 end
250 c
251 c
252 c

253 c
254 c
255 subroutine five(retil4f,n,m,d,nwt,sur,n12)
256 real*$ retil(n12) ,f(ra2)
257 write(awt,890)n,u,d,snr
258 890 foruat(' a P ,4' ,14,I d l )410.5,l snr I

259 c f16.4)
260 do 900 izl,n12/2
261 write(nwt,895)f (1),ratil(i)
262 895 format(2t12.5)

*263 900 continue
264 return
265 end
268 c
267 c
268 subroutine sixbiwt,err,u,nl,retil,i,snr,nb)
269 complexeS berr(256,256)
270 reulca err(m,m) ,retil(128) ,i(128)

*271 real*4 dx,dy
272 parameter (piu3.14159265)
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273 u
274 do 190 iml~m
275 sumuuu+orr(i~i)
276 190 continue
277 write(nvt.*)'trace *',sun
278 print *, sun
279 do 200 iulnil
280 do 200 iial,nJ.
281 200 berr(i,ii)-0
282 nl*(nl-m)/2.
283 do 210 iul~u
284 do 220 iiul,n
285 barr(nl+i.nl+ii)-err(i. ii)
286 220 continue
287 210 continue
288 dx-i
289 dynl
290 call :fft2d(berr,nl,dx,dy)
291 n12=nl/2
292 n14-n1/4
293 do 230 iml,n12
294 f(i)ureal(i)/nd4
295 retil(i)real(berr(n12+i,nl2-i+2) )/(snr*mb)
296 230 continue
297 return
298 end
299 c0
300 c
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1 c
2 c
3 c program matrix7
4 c
6 paraueter(n254 ,in128)
6 realeS bw(nn,m) .h(mm,nn) ,retilu(128) ,f(128) ,X(mu) ,no(un)
7 realeS g(in,m) ,erru(mum) ,retil2(128) ,err2 (n~m)
8 realeB ratilc2(128),errc2(m,mm)
9 real*8 y(im),gg(,=)

10 real*4 deps
*11 integer*4 rno

12 character dfile*l6
13 c
14 n=254
is 1=128
16 ku(u-l)/2.
17 print e, 'nr?'
18 read *, *

* 19 print o, 'dID!'
20 read d,
21 print e,'Destination File?'
22 read Cdfile

23 nlu2S6
24 n12n1l/2
25 do 5 i-1,6
26 u-2**(i+1)
2T 27o
28 do 10 jnl,u
29 do 11 jjnl,a
30 orru(j,jj)=0
31 arrc2(j,jj)uO
32 11 continue
33 10 continue
34 canl one(bw,k,nt,u,d)

*3S canl two(bw,h,n,]u,g,gg)
36 call %uo5(h~n,x,*rr2)
37 call six(nwt ,err2,u,nl,retil2,j,snr,mb)
38 call plotil(diile,n12, 'd',f, 'd',retil2)
39 5 continue
40 stop
41 end
42 c

*43 c
44 c
45 c
46 subroutine one(bw,k,n,u,d)
47 real*$ bw(n,a),hh
48 do 500 iul,u
49 do 500 iialom
50 500 bv~i,ii)nO

*51 ju-k
52 do 510 iul,142*k
53 bv(i,1)ubh(j,d)
54 jmj+1
55 510 continue
56 do 520 iul,m-1
57 do 530 ii=002ek

*59 530 continue
60 520 continue
61 return
62 end
63 c
64 c
6 function hh(j~d)
66 rculs$ bh

*67 if(j.oq.0)then
68 bhud**2
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69 also
70 h(cos( .78539816*j*(1-d))*sin(.78539816*d*j)/

71 c (.78639816*j))ee2
72 endif
73 return
74 end
75 c
76 c
77 subroutine tuo(bv~h,nL,u,g,gg)
78 paraeter(a128)
79 reajeB bw(nK) ,g(u,X) ,h(K,n) ,gg~u,K)
80 integer l.ork(n) ,vivork(m),ior
81 do 600 iul,m,
82 do 610 iiul,a
83 g(i,ii)uO
84 do 620 iii=I,n
85 g(i,ii).g(i,ii)+bu(iii,i)ebv(iii,ii)
86 gg(i,ii)ng(i,ii)
87 620 continue
88 610 continue
89 600 continue
90 call daizvv(g,z,isr,lwork~nwork)
91 do 630 i-luz
92 do 640 iinI,n
93 h(i,ii).0
94 do 650 iii=I,w
95 h(i~ii)uh(i,ii)+g(i~iii)ebv(iiiii)0
96 650 continue
97 640 continue
98 630 continue
99 return

100 end
101 C
102 c
103 subroutine tvoS(h,n,*,orr2)
104 reale8 h(a,n)e*rr2(w,u)
105 do 400 i1l,n
106 do 410 iiuIrn
107 err2(i,ii)0O
108 do 420 iii=l~n
109 err2(i,ii)uerr2(i,ii)+h(i,iii)eh(ii,iii)
110 420 continue
111 410 continue
112 400 continue
113 return
114 end
115 C
116 subroutine six(nvt.err,u,nl,retil,f,snr,ub)
117 complex*$ berr(2S6,256)
118 real*S err(amu) ,retil(128) ,f(I28)
119 reale4 dx,dy
120 parameter (piw3.14l59265)
121 guno
122 do 190 ixl~n
123 suunsua+err~iji)
124 190 continue
125 print s, sun
126 do 200 i1l,al
127 do 200 iiul~nl0
128 200 berr(iii)nO
129 n1-(nl-n)/2.
130 do 210 i1l,a
131 do 220 iiIul~
132 berr(n14i ~n1+ii)zerr(i~ii)
133 220 continue
134 210 continue
135 dzul
136 dyni
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137 call fft2d(berr~nl,dx,dy)
* 138 nl2wnl/2

139 nl4nnliI4
140 do 230 iwI~u12
141 fVi)-roal(i)ni4
142 retil(i)ureal(berr(n12+i~n12-i+2) )/(snrmmb)
143 230 continue
144 return
145 end
146 c
147 c

18



C

2 c
3 c program utfakr.f

4 c
5 c
6 real*4 xi,xj,xn,f,d,utf,fr(200) ,0(200)

7 integer n

8 n=200
9 xn-n

10 do 10 j-1, S

11 xi i
12 d = xj/10
13 do 20 i=O, n-I
14 xi x i
15 f x xi/xn
16 fr(i+l) = atf(d,f) + le-30
17 o(i+1) =f
18 20 continue

19 call plotfl( 'tfdta' ,200,'f' ,, 'Vf ,fr)
20 10 continue

21 end
22 c ----------------------------------------------------------------
23 FUCTIOI atf(d,f)
24 real*4 d,f,dinv,%tf,fl,f2
25 dinv z 1/d

26 if (f .1t. d) then
27 fl = 1.0 - diny*f
28 else

29 fl x 0
30 endif

31 if ((f .gt. 1-2ed) .and. (f .le. l-d)) then
32 f2 w 0.5edinv*(f-1) + 1
33 elseif ((f .gt. I-d) .and. (f .1a. 1)) then
34 f2 a 0.5*dinv*(1-f)

35 else
36 f2 x 0
37 endif
38 tf a fl + f2
39 atf = 2.0*4*dtf

40 end
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ic
2 c
3 c program second.f
4 c
5 c
6 paraaeter(kk-784)
7 reale8 g(kk,kk)
8 integer lvork(kk) ,muork(kk) ,iduny (1)
9 c

10 m28
*11 2m*

12 n3-(u2*(a2+1))/4
13 call bulasg(idummy,2e.3,ia)
14 call bufag(id uy,2em3.ib)
15 call three(g,a,2,3.idumy(ia) ,iduuuy(ib))
16 call bufrel(idusmy(ib))
17 call bufrel(iduuay(ia))
18 anraloo

*19 do 120 ilu
20 g(i,i)ag(i,i)+1/snr
21 120 continue
22 call dminvv(g,u2,ier,lvork,mvork)
23 do 130 iiixl,m2
24 do 140 ivwl3m2
25 g(iii,iv)sg(iii,iv)/Snr
26 140 continue

*27 130 continue
28 call ten(g,u,m2)
29 stop
30 end
31 c
32 subroutine three(g,m,m2,3,gx,gy)
33 reale08 g(m2,x2) ,gx(m3) ,gy(u3)
34 call readfl('g328'.n,'d',gx.'d',gy,1,1..3)
35 ivl1
36 do 600 i-I,m
37 jul

38 ia-i
39 jguo(j-1)
40 igwme(ia-1)
41 do 680 ixzl,u-i+1
42 if(ia.no.j)then

*43 do 640 kw~
44 do 650k2 zl,m
45 if(iw.gt.0)then
46 g(jgkl ,ig+k2)ugx(iu)
47 g~ig+k2,jg+kl) gx(iw)
48 iu*-iw
49 elue
so g(jg+kl ~ig+k2)ugy(-iw)

* S g(ig+k2,jg~kl)ugy(-iv)
S2 iva-iwil
S3 endif
S4 650 continue
5S 640 continue
56 Olte
S7 do 64S klulmx
S8 do 655 k2xkl,u
6 9 Si(iw.gt.0)then
60 g(jg+kl .igk2)wgx(iv)
61 g(igk2,ig+kl)ugx(iw)
62 ieu-im
63 else
64 g(jgkl ,ig~k2)ugy(-iu)
65 g(ig+k2.jg+kl)ugy(-iw)
66 iwn-iw~1

*67 ni
68 655 continue
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69 64S continue
70 endif
71 j-j+1
72 jg..*(j-1)
73 ia-ia+l
74 igme*(ia-1)
75 680 continue
76 600 continue
77 return
78 end
79 c
80 C
81 subroutine ten(g~u.s3)
82 paramter(m-28)
83 real*4 diag(55) ,bdiag(128) ,wr(128) ,wi(128) ,dd,br(m,mm,127)
84 real*4 bi(ma,m,127) .y(128) ,sur(127,127) ,sli(16129) ,x(16129)
85 roal*8 gl(vmt,i) ,brt (=n,=),bit (vm,mn) ,g(m3 ,am3)
86 real*4 inmur(63,63)

87 c real*4 x2(3969),sli2(3969)
88 c
89 n-128
90 n1=7
91 m2=2eu-1
92 call lookup(n,wr,vi)
93 do 10 iml,s
94 do 20 iiml,.
95 do 30 iiizl,u
96 do 40 ivl,u

9 8 40 continue
99 30 continue

100 call addiag(gl,u2,diag,m)
101 call pad(diag~m2,bdiag,n)
102 do 50 ixl,n

103 y(iz)=0
104 50 continue
105 ddzI
106 call ifft2(bdiag,y,n,nl~vr,vi,dd)
107 do 60 iiizl,nt-1
108 br(i,ii~iii)wbdiag(iii+1)
109 c br(ii,i,iii~zbdiag(iii+1)
110 bi(i,ii,iii)zy(iii+l)

112l 6 c oninue~ii-~iiI
113 20 continue
114 10 continue
114 d0 on70tin
116 do 0 il,m
117 do 0 iil,m
118 dor90iii,ii)bu iiii
119 brt(ii,iii)zbr(ii,iii,i)
12090 contiue~ mii~ii
121 80 continue
122 8 callnie t~2digm
123 call addiagbr,ui2diag,)
124 call paddiagbi,2,diag,u)
125 call addiagbi,2, iagn)
126 call a~igmj
127 cdalt2bigynnvrid)
128 d 100l if2i ,yn-1 ~ r~i~d
129 do 100 iinluda- i+).
130 xuri(-1 i(-ii bdagii+)/
131 xl(n-) *i-(1) +ii) bd-1)*(ii m
13210 contnu
133 70 continue
1337 ciue
135 diio 10il6
136 do 10 il,63
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137 ciiii1
138 aasur(i,ii)nsur(32+i,32+ii)

*139 c si(i~mu~~i
140 c x2(iii)nriii)
141 120 continue
142 110 continiue
143 c call solidplt('sb28' ,127,127,sur)
144 call plotfl('tlongb2aa' ,(n-1)ee2,'f',x,'f' ,sli)
145 call solidplt( ttb28a' ,63,63,smur)
146 c call plotfl('slongb2a' ,3969, 'V ,x2, 'V ,sli2)

*147 stop
148 end
149 c
150 c
151 c
152 subroutine pad(diag,u2,bdiag,n)
153 reale4 diag(u2) ,bdiag(n)
154 do 404 ilI,n
155 bdiag(i)uO
156 404 continue
IS7 k'-(n-m2+3)/2
I58 do 406 il,u2
159 bdiag(k+i-l)udiag(i)
160 406 continue
161 return
162 end

*163 c
164 c
165 c
166 subroutine addiag(a,u2,diag,s)
167 real*4 diag(m2)
168 realeB a(muu)
169 do 601 jul,&2
170 diag(i)xO

*171 601 continue
172 do 603 julmx
173 do 605 iia1,u
174 iiii-14u
176 diag(iii )wdiag(iii)+a(i, ii)
176 605 continue
177 603 continue
178 return

*179 end
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IC
2 c
3 c program slice .f
4 c
5 c
6 c this programi reads in the results of matrix4
7 c in plotfi form and reassembles spectral matrix
a C and than takes out the center to plot
9 reale4 x(16129) ,surf(127,127) ,smsur(63,63)

10 ro&le4 x2C3969) ,sli2(3969) ,sli(16129)
11 characterelO file
12 print e,)Vhat is the name of the file?'
13 read *,file
14 call readfl.(file,n,'f'.x, 'f',sli,1,1,16129)
1s i=0
16 do 10 iil1,127
17 do 20 iiiul,127
is i-i+1
19 surf(ii,iii)-sli(i)
20 20 continue
21 10 continue
22 c i0o
23 c do 30 iiul,63
24 c do 40 iiizl,63
25 c iwi+1
26 c smzurf(ii,iii)-surf(32+ii,32+iii)
27 c sli2(i)zsusurf(ii,iii)0
28 c x2(i)=x(i)
29 cO continue
30 cO continue
31 call solidplt('aolidfile' ,127,127,surf)
32 c call plotfl('smlong2',3969,'f',x2,'f',sli2)
33 stop
34 end



APPENDIX B for Chapter 3

* Computer Listings

This appendix contains the Fortran source code of the computer programs used to generate the

data for this chapter.

2ic
2 3c program eigenukr.f

4 c
5 C

6 paxaeter(n128)
7 real*B bw(115,m),f(128)

8realeS g(mn), ,rot ill (128) .roti2(128) ,gl (m'm), g2 (m,m)
9real*$ gg(min) , evoc(imma) oval (m) voc (m,m) ,val (m) ,d

10 real*4 epa
it integer*4 i,k,*mb~u~l, i~r,window
12 character dfile*l6
13 c
14 1-128
is print e# k?'
16 read ek
17 print *, 'nr?)
18 read s, any

*0 19 print C, dID?'
20 read ed
21 print C,'Window?'
22 read s, window
23 c print e,'Destination File?'
24 c read Cdfile

25 n=2*k+128
26 do 10 iu1,6
27 3 -2**(i+1)
28 umu
29 call bwmkr(bw,k,u,m,d,window)
30 call ggmkr(bw,n,a,g,gg,epa~ier)
31 c call eigenukr(m,gg,evec,eval,vec,val,gl,g2)
32 call eigenmkr(m,n,bw,evec,eval,vec,val,gl,g2)
33 call apectraaikr(gl ,u,retill,i,anr,ub)
34 call spectraukr(g2 ,a,retil2,ansrr,ub)

*35 do 20 iu,2
36 c retil2(ii)-retil2(ii)+retill (ii)
37 20 continue
38 c call plotfl(dfile,128,'d',i,'d',retil2)
39 call plotfl('teatw3k255dl.1' ,128,)d',f,'d' ,retill)
40 call plotfl( 'testw3k255d1 .2' ,128, 'd' , 'd',retil2)
41 10 continue
42 stop

*43 end
44 c
46 c
46 c
47 subroutine bvukr(bw,k,n,m,d,vindow)
48 reaiCS bv(n,a),hh,d
49 integer n~mk,uindow
s0 do 500 inl,nx

*51 do 500 iu~
52 500 bw(i,ii)0O
53 jo-k
64 do 510 iul,1+2$k
55 bw(i,1)ubh(j ,d,k,window)
56 jnj4I
S7 510 Continue
68 do 520 iwlm-1

*59 do 530 i=,*
60 bw(1+ii~i,i41)ubw(ii+i, i)
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61 530 continue
62 F20 continue
63 return
64 end
65 c
66 c
67 c
68 subroutine ggikr(bv,n,n,g,gg,eps~ier)
69 paraueter(mw128)
70 reale*S bw(n,m),g(m,m),gg(m,m)

71 realeS r(8256)
72 real*4 eps
73 integer ier
74 do 600 1=,.
75 do 610 iil1,u
76 g(i.ii)uO
77 do 620 iiil1,u
78 g(j,jj)-g(j,jj)+b(jii,j)ebs(iiiii)
79 gg(i,ii)'g(i,ii)
80 620 continue
81 610 continue
82 600 continue
83 c call squartri(r,n,g)
84 c call dsiuv(r,m,eps~ier)
85 C call trisquar(g,n,r)
86 end
87 c0
88 C
89 C
90 function hh(j,d,k,window)
91 realeB hh,d,kl,pi,pi2,jl
92 integer k,j,a,uindow
93 xxvindow
94 pim3.1415926S4
95 pi2z2opi.
96 jluj
97 klnk
98 if(j.oq.0)then
99 bliuded
100 else
101 hlicos(.78539816*dble(j)*(1-d))*sin(.78S39816*dedble(j))/
102 C (.78539816*dble(j))
103 hhhshh
104 endif
105 if (m.eq.1) then
106 hhuhh
107 elseif (a.eq.2) then
108 hbhhhe(1-abs(jl)/kl)
109 elseif (a.eq.3) then

ill elseif (a.eq.4) then
112 blihh*(0.54+0.46*coz(pi*jl/k1))
113 elSe
114 hmhh*(0.42+0.5*cos(pi*jl/kl)+0.08*cos(pi2*jl/kl))
115 endif
116 10 return
117 end
118 C
119 C0
120 c
121 subroutine spectrankr(err,n,retfl,fpsnr~mb)
122 realeB err(nm) ,retil(128),f(128) ,xii,xi,pi2
123 real*S sum(128)
124 integer p
125 p126.28318530T
126 do 10 1.1..
127 SUMMiU0.0
128 10 continue
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129 do 20 jul..
*130 do 30 i-,

131 p-abs(i-ii)*1
132 sv(p)=suu(p)+*rr(i,ii)
133 30 continue
134 20 continue
135 print *, sum(I)
136 do 50 i-1,128
137 xireal(i)2S6

*138 rtli=
139 do 60 iilI,n
140 xii-ii-1
141 retil(i)-retil(i)+sum(ii)ecos(pi2*xiiezi)
142 60 continue
143 50 continue
144 do 80 iul,128
145 f(i)ral~i)164

*146 ti'i)rtli/srA,
147 80 continue
148 return
149 end
1S0 c
151 c
152 c
153 c subroutine eigenakr(u,gg,.voc,eval,vec,val~gl ,g2)
154 subroutine eigenmkr(a,n,g,evec,eval,vec~val,gl,g2)
155 c realca gg(amu),.vec(a,m),eval(mtemp(128),x
156 realeS g(u,m) ,evec(n,m) ,eval(m) ,tezzp(128) ,x
157 real*S vc.na(),lm).2nm
158 integer m,u.Iist(128).mid
159 c
160 c call doeigen(evec,eval,gg,n)
161 call svdcup(g,n,u,eval~evec)
162 do 5 iNI'M
163 *val(i)Meval(i)*4val(i)
164 5 continue
165 xu-ld+308
166 do 10 i=1,m
167 temp(i)-eval~i)
168 10 continue
169----------------Sort indices from largest eigenvalue to smallest -

*170 do 20 xn
171 do 30 jjuj,m
172 if(z.lt.temp(ii)) then
173 ratemp(ii)
174 ljst(j)Mij
175 endif
176 30 continue

*178 ad30
179 20 continue
180----------------Order eigenvalues and eigenvector----------------------
181 do 40 iml,x
182 val(i~zeval(list(i))
183 do 50 iilu
184 vec(ii~i)=evec(ii,list(i))
185 50 continue

*186 40 continue
187----------------Find middle of dynamic range-------------------------
188 xw(log(val(m))+log(val(I)))/2d0
189 do 60 iml,z
190 if(log(val(i)).lt.x) then
191 midai
192 goto 65
193 eadif
194 60 continue
195--------------- Generate two halves of inverse matrix-------------------
196 65 do 70 jul,m
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197 do 80 ii-',
196 g1(i~ii)0d0
199 g2(i,ii)0d0
200 do 90 ijiwI,U

201 il(iii.lt.uid) then

202 g1(i,ii)=g1(i~ii)+
203 0 (ldO/val(iji))4vec(i,jii)*vcC(ii,iii)
204 else
205 52(i~ii)=g2(i~ii)+
206 0 (ldO/yul(jii))*vec(i.iii)*vec(ii-iii)

207 endif0
208 90 continue
209 80 continue
210 70 continue
211 return
212 end
213 c
214 c
215 c0
216 c subroutine avdcamp(a,u,n,UP,p,I,Y)
217 subroutine avdcinp(a,u,n,v,v)
218 implicit realeS (a-h,o-z)
219 parameter (nmax-128)
220 c dimension a(up~np) ,v(np) ,v(np,np) ,rvl(-ma)

221 dimension a(u,n) ,v(n) ,v(n,n) ,ryl (nmax)

222 g=OdO
223 scale=Od0
224 anoru=Od0
225 do 25 i-1,n
226 17-i+1

227 rvl(i)scale*g
228 g-OdO
229 s=OdO
230 sca.e=Od0
231 if (i.le.u) then
232 do 11 ki,x
233 scale-scale+abs(a(k,i))
234 11 continue
235 if (scale.ne.OdO) then
236 do 12 ki,in
237 a(k,i)-a(k,i)/scale
238 ss+a(k,i)oa(k,i)
239 12 continue
240 fa(i,i)
241 gm-sign(sqrt(s),f)
242 h-feg-s
243 a(i,i)xf-g1
244 i-f (i.ne.n) then
245 do 15 j1l,n
246 saOdO
247 do 13 kxi,z

248 9-s+&(k,i)*a(k,j)
249 13 continue
250 s/

251 do 14 k-i,m
252 a(k,j)-a(k,j)41*a(k,i)
253 14 continue
254 15 Continue
255 endif
256 do 16 k- i,vt
257 a(k,i)uscaleaa(k,i)
258 16 continue
259 endif
260 endif
261 v(i~zscale *g
262 g-OdO
263 sxOdO
264 scal**0d0
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266 if (C~em.nI(~en)the&

*266 do IT17~
267 scaleuscaleabs(a(i ,k))

268 17 continue
269 it (scalo.ne.OdO) then

270 do 18 ka1,n

271 a(i~k)wa(i,k)/scale

272 x-s~a(i,k)*a(i~k)
273 18 continue
274 -fua(i,1)1
275 g-.ip(sqrt Cs) ,f)

276 h~feg-S
277 a(i,l)-f-g
278 do 19 kul,n

279 ri (k)-a(i,k)Ih
280 19 continue

281 if (i...) then

282 do 23 jxl,n

S283 s-060
284 do 21 k1l,n

285 s1s+a(j ,k)ea(i,k)

286 21 continue

287 do 22 k=l,n

288 a(j ,k)a(j ,k)+ssrvl(k)

289 22 continue

290 23 continue

0 291 end if
292 do 24 kzl,n

293 a(i,k)-scale~a(i~k)
294 24 continue
295 endif
296 endi~f
297 anorzuar(anoru, (abs(w(i))+abs(rvl(i))))

*298 25 continue
299 do 32 in1-
300 if (i.lt.nt) then
301 if (g.ne.OdO) then
302 do 26 jul,nk
303 v(j,i)-(a(i,j)/a(i.1))/g
304 26 Continue
305 do 29 jwl~ln
306 sz~d0

*307 do 27 mlx

308 sus+a(i,k)*v(k~j)
309 27 continue
310 do 28 kml,u
311 T(k,j)-v(k,j)'3*V(ki)
312 28 continue
313 29 Continue

5314 endif
315 do 31 j-1,n
316 y(i,j)=OdO
317 ,(j~i)wOdO

318 31 continue
319 endif
320 v(j,j)=ldO
321 g'un1 Ci)
322 -

*323 32 continue
324 do 39 iwn,1,1l
325 31=1+1
326 g'~w(i)
327 if (i.lt.R) then
328 do 33 jul,n

329 a~itj)=OdO
330 33 continue
331 endif
332 if (g.ue.OdO) then
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333 g'ldO/g
334 it (incas) then
336 do 36 Jfl,%
336 sawd
337 do 34 knl..
338 e's~a~k,i)*a(k~j)
339 34 continue
340 f.(5IA(ii))*g
341 do 35 k-i,a
342 a(k,j)wa(k,j)+fea(k,i)
343 35 continue0
344 36 continue
345 eadif
346 do 37 jaimn
347 a(j~i)-a(j,i)og
348 37 continue
349 else
350 do 38 j- 1,m
351 a(j,i)-OdO0
352 38 continue
353 endif
354 a(i~i)-a(i,i)+ldO
355 39 continue
356 do 49 k'an,1,-l
357 do 48 its-1,30
358 do 41 1-k,1,-1
359 RE1-10
360 if ((abs(rvl(l))+anorm).*q.anoru) go to 2
361 if ((abs(.(nm))+anorx).eq.anoru) go to 1
362 41 continue
363 1 cmOdO
364 suldO
365 do 43 i-1,k
366 :frs~rvl(i)
367 iff ((abs(f)+anorz) .ne.anorn) then0
368 gasci)
369 h-sqrt (fef+gsg)
370 u(i)=h
371 hldO/h
372 c- (geh)
373 s-fb
374 do 42 ja1,m
375 yua(j,nn)
376 zua(J,i)
377 &Qj,mK)z(Y*c)+(zes)
378 &(j ,i)--(yss)+(Z*c)
379 42 continue
380 endif
381 43 continue
382 2 zwu(k)
383 if (l.eq.k) then
384 it (z.1t.OdO) then
385 w(k)--z
386 do 44 ja1,n
387 v(j ,k)=-v(j ,k)
388 44 continue
389 endif
390 go to 3
391 endif0
392 it (its.eq.30) pause )no convergence in 30 iterations)
393 z-Uv~)
394 nwm-k-i
395 Yw(nm)
396 g-rvl (urn)
397 h-rvl(k)
398 :f-((y-z)e (y+z)+(g-h)*(g+h))I(2dOehey)
399 gusqrt(fsf+ldO)0
400 fz((x-z)*(x+z)+h*((yI(f+sip(g,f)))-h))/r
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401 COMOO
402 s.1d0
403 do 47 j-1,mn
404 i-J*1
405 girwl M)
406 r(i)
407 hume
408 guc*g
409 Zwsqrt(f~f~h*h)
410 - rvl(j)mz
411 C-f/z
412 S.h/z
413 f- (xsc)+(gos)
414 gu-(zes)+(gc)
415 k-yos
416 YIYOc
417 do 45 nn-j~n
41: zU(m,j)

0 419 zuv(nhn,i)
420 v6n,j)x (rec)+(zeS)
421 vR~~-xs+zc
422 45 continue
423 z-sqrt(f*f~h*h)
424 w(j)Rz
425 if (z.ne.odo) then
426 zzldO/z

*427 ns
428 smhez
429 audit
430 fr (csg)+(eey)
431 x:-(Beg)+(Csy)
432 do 46 ==uim
433 y-a(n,j)
434 z-a(um,i)

*43S a(nm,j)z (yac)+(zes)
436 &(na,i)--(yes)+(z*c)
437 46 contirnue
438 47 continue
439 ryl(lWOdO
440 rvl(k)uf
441 wkm
442 48 continue
443 3 continue
444 49 continue
445 return
446 end
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Ic
2 c
3 c program gradsrch.f
4 c

6 parmeter(anu638,mm128)
7 ~~real'Sbeg m hi~n),eiu18 f12),~m n~n

9 real'S errc(m,vi) .u~n,mm)
10 realeS y(un) .gg(,m) ,d
it integere4 randm,uiudow,ctr,ni,nj ,nt,u,ub,ak,l,k,ul,a12
12 character dfil**16
13 c
14 wi2dowm3
is x-=638
16 1=128
17 k-(n-1L)/2.
is print e, 't?'
19 read eat0
20 print C, ni?'
21 read eni
22 print *, nj?'
23 read *,nj

24 print la 'b?'
25 read amb
26 print ) I)?

27 read a
28 print I ar?$
29 read * ar
30 print C, dID?'
31 read d,
32 print C,'Destination File?'
33 read Cdfile

34 zz1256
35 al2ftlI2
36 call srandou(29)
37 call bumkr(bw,u,k,n,u,d,windov)
38 call ggmkr(bw,n,a,gg)
39 call svdakr(u,n,u,w,,)
40 call bukr(h,u,w,'r,R,U)
41 do 103 jul,ma
42 do 101 jjml,m
43 erru(jjj)mO 01
44 errc(j,jj)aO
45 101 continue
46 103 Continue
47 cntr=0
48 do 105 iv1,xt:
49 c print *,iv
50 if (float(iv)/10.0-int(float(iv)/10.0) Ilt. le-lO) then
61 print *, iv
52 eudit
53 call rands(x,no.U.R~sur,bu,y,mb)
54 canl grdsrc(,hL,ao,rru,a,u,nt~errc,y,bv,gg,ni,ntj,cntr)
55 105 continue
56 print *, real(citr)*real(uj)/real(nt)
S7 call spectrainkr(.rru ,u,retilu,f mar ub)
58 call spectrainkr(errc ,m,rtilcf,i ,nr,mb)
59 call plotil(dlile ,al2, 'd',f. '4',retilu)0
60 call plotfEl(dtile,nl2, '4',f, '4',retilc)
61 stop
62 end
63 c
64 c
85 c
66 subroutine bunkr(bw~u,k,a,u,d,vindow)
67 realsB bw(a,m),u(u,m),hh,d0
68 integer*4 window
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69 do 500 iml,si
70 do 500 ii-l,m
71 S00 b.Ci~ii)-O
72 u(i,ii;-[Jd0
73 ju-k
74 do 510 i-1,1+2ek
75 b.(i,l)-hh(j ,d,k,window)
76 u(i,1)wbw(i,1)
77 juj*1
78 510 Continue

*79 do 520 lul
80 do 530 ijO0,2ek
81 bv(l+ii+i,i~i)ubv(ii~i,i)
82 u(1+ii+i,i~l)-bu(ii+i,i)
83 530 continue
84 520 continue
85 return
86 end

*87c
88 C
89 C
90 subroutine ggmkr(bw,n,n,gg)
91 paraueter(mm?128)
92 rea:l*8 bw(n,si),gg(si,s)
93 do 600 i1l,u
94 do 610 iil,i

* 95 gg(xiji)ZO
96 do 620 iii,n
97 gg(i~ii)ugg(i,ii)+bw(iii,i)ebw(iiiii)
98 gg(j,jj)xg(j~jj)

99 620 Continue
100 610 continue

11600 continue
102 return

*103 end
104 c
105 C
106 c
107 subroutine randsi(x,no,s,n,mnr,bv,y,mb)
108 C
109 C Generates random vectors x, no, and y4Vx+no. x has sib
110 c independent Rayleigh components with variance sur and a-sib0111 c zero components. no has n independent, zero mean, Gaussian
112 c components With unit Variance.
113 c
114 re&le8 ut,u2,u3,s
115 roal*8 x(i) ,no(n) ,bw(nL,m),y(n)
116 integer*4 MAZITV,random
117 parsuetr(KlAZIITVa2147483647)
118 n2an/2

*119 do 500 iln
120 3 lalureal(randosiO)/N,&ITTV
121 if(ul.gt.1.or.ul.eq.0)goto 3
122 2 u2nreal(randomO)/IIITT
123 it(u2.gt.1.or.u2.eq.0)goto 2
124 ho(2*i-1)sqrt(-2log(u))*cos(6.2831853*u2)
125 zo(2*i)msqrt (-2elog(ul))esin(6 .2831853*u2)
126 500 continue

*127 mn/
128 do 605 iftla
129 4 u3=resl(random))/AXITV
130 if(u3.gt.1.or.u3.eq.0)goto 4
131 x(i)usqrt(-2*log(u3))ssqrt(s)
132 505 continue
133 do 807 iumb+1,si
134 X(iMu

*135 S07 continue
138 do 510 ial,n
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13? YMi-0
136 do 520 ii-l,a

139 y(i)uy(i)+bw(i .ii)eX(ii)
140 520 continue
141 Y(i)'.y(i)4nko(i)
142 510 continue
143 return
144 end
145 c
146 c
147 c
148 subroutine grdsrch(x,h~no ,erru,n,mnt ,errc ,y ,bu,gg,
149 m i,nj~cntr)
150 include 'fpedefs.i'
151 parameter(is128)
152 reale8 x(m) ,no(n) ,erru(a,u) ,h(m,n) ,eu(=),zz,usq,asqold
153 realeS errc(um) ,gg(m,u) ,grad(n) ,dmsq,s(in)
154 realeS y(n),bw(n,u),z(m),xg(mm)
155 realeS alpha,beta,ss,sggs,teal,tez2
156 integer cntr,nneg,list(=) ,ni,nj ,1,n,nkt
157 nneg=O
158 msq-O
159-- ----------- Compute unconstrained solution and BDV---------------
160 do 700 i1I,u
161 xg(i)uO
162 ZWi)2
163 do 710 iizl,a
164 xg(i)-xg(i)4h(i,ii)*y(ii)
16S z(i)uz(i)+bv(ii,i)ey~ii)
166 710 continue
167 ou(i)'.xg(i)-X(i)
168 if(xg(i) .lt.0)then
169 nneg'nng+1
170 endif
17! 700 continue
172 if(nneg.eq.0) Soto 200
173--------------------Gradient Projection Algorithm----------------------
174 c ---- Disable overflow and divide-by-zero -

175 c floating point exceptions.
176 nablsmfpgetm~abls (
177 newablsnand(nabls ,not(OIVO))
178 nevablsuand(nevabls ,not (OFLOW))
179 call fpsetrnable(nevabls)
180 100 usqoldsq
181 catracntr+1
182 do 770 ivzI,nj
183 alphaul .797d+308
184 ssOdO
185 sggszOdO
186 c ---- Find active constraints and generate list---------
187 do 705 iwim 0
188 3.ist(i)0O
189 it(xg(i).e.OdO) then
190 xg(i)OdO
191 lint(i)ul
192 endif
193 705 continue
194 c ---- Compute gradient and correction vector S-----
195 c and pick step size alpha0
196 do 712 iu1,m
197 grad(i)=OdO
198 do 713 ii1l,u
199 gr,%d(i)igrad(i)4g(i~ii)*xg(ii)
200 713 continue
201 grad(i)ugrad(i)-z~i)
202 c ---- Project gradient onto active, --

203 c nonobstructing constraints.0
204 if(list(i).eq..nd.grad(i).t.OdO) then

- 201 -



205 a(i)=OdO
206 else
207 s(i)in-grad(i)
208 endif
209 c --- Determine stop size alpha: -------
210 c Detexmine minimum stop size for next constraint,
211 c Determine step size for minimum along direction S,
212 c --- Pick smaller of the two ------------
213 ifls~)n.)then
214 beta-xg(i)Igrad(i)

0215 if(beta.gt.OdO.and.beta.lt.alpha) then
216 alpha-beta
217 endif
218 endif
219 712 continue
220 do 714 ia1,m
221 s.ss+s(i)*s(i)

*222 do 716 jul~m
223 uggsusggs~s(i)*gg(i,j)ss(j)
224 716 continue
225 714 continuze
226 betauss/sggs
227 if(beta.gt.OdO.and.beta.lt.al.pha) then
228 alpha-beta
229---------------compute neow gradient and test for orthogonality-----------
230 c with the S direction.

*231 c z=d
232 c do 900 inl,m
233 c grad(i)n0d0
234 c do 901 iiulm
235 c grad(i)-grad(i)4gg(i~ii)e(xg(ii)+alphaes(ii))
238 c901 continue
237 c grad(i)-grad(i)-z(i)
238 c zz-zz+gad(i)os(i)

*239 c900 Continue
240 c print 0. 'g~s &I, zz
241--------------- End of Test-----------------------------------------
242 endif
243 c-----------------Compute new Solutio---------
244 do 740 jul ,m
245 xg(i)Mxg(i)+alph&**(i)
246 740 continue

*247 770 continue
248---------------------------Check Ily-OxIl squared-----------------------
249 msquo
250 do 780 iul,n
251 ZZM0
252 do 790 iiu1,m
253 zzZ+bW~i'ii)*xg(ii)
254 790 continue

*255 xzy(i)-zz
256 mqnmaq~tszz
257 780 continue
258 c print 0. msq
259 dusqwabe ( (naqold-msq) 0(loeeni))
260 if (dmq.gt.le+9) got. 100
261 if (iftt(dmsq).Ae.0) got. 100
262 c --- Enable Floating Point Exceptions--

* 263 Call fpstxflags(0)
264 call fpsetzmabls(nabls)
265--------------Accusulate Error Vector Outer Product and leturn-------------
266 200 do 720 i-I,.
267 print o. xg(i), grad(i). s(i)
26W teelaxg(i)-X(i)
269 do 730 11n.,
270 tM2ing(ii)-x(ii)

*271 erru(i,ii)uerru(i,ii)4eu(i)eeu(ii)/nt
272 errc(i,ii)uerrc(i~ii)+tmleteu2/nt
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273 70 cotinu

273 730 continue

275 print *, mq
276 return
277 end
278 c
279 c
280 c
281 subroutine spectraakr(err ,u,ret ii .,sr,mb)
282 rea108 err(am),retil(128) ,f(128) ,xii,xi,pi2,sum(128)
283 integer p
284 pi2n6 .283185307

285 do 10 i-1,x
286 SUM(1)u.0
287 10 continue
288 do 20 i-I,u
289 do 30 jial,a

290 puabs(i-ii)41
291 uuu(p)u(p)+err(i,ii)0
292 30 continue
293 20 continue
294 print o, suu()
295 do 50 iul,128
296 ziureal(j)/2S6
297 ratil(i)0O
298 do 60 jinlaz
299 xiuii-1
300 retil(i)mretil(i)+sum(ii)ecos(pi2*xiiexi)
301 60 continue
302 SO continue
303 do 80 im1,128
304 f(i)-real(i)/64
305 retil(i)wretil(i)/(xnr~mb)
306 80 continue
307 return0
308 and
309 c
310 c
311 c
312 function h(j,d,k~window)
313 real*$ h,d,k1,pi,pi2,j1
314 integere4 k,j,wi3%dow
315 piu3.1415926 64 0
316 p12u2*pi
317 jl.j
318 k1nk
319 if(j.eq.0)then
320 hkuded
321 e126
322 hbucos(.78539816*dble(j)C(1-d))*sin(.78539816Cdsdble(j))/
323 c (.78639816*dble(j))
324 bhubkshh
325 andil
326 if (widoweq.1) then
327 hkhkh
328 elseit (window.sq.2) then
329 )hj~uhe(I-abs(J1)/kl)

330 elsif (winday.eq.3) then
331 khh*( .5+.Secos(piejl/k1))S
332 elseif (window.eq.4) then
333 kh)wM*e0.54+0.46ecos(piejI/kI))
334 else
335 kuheC0.42.0.5ecos(pij1/kl)4O.8escos(pi2*jl/k1))
336 endif
337 10 return
338 end
339 c0
340 c
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341 c
342 subroutine hxikr(h,u,w,v,U,nL)
343 c
344 real*8 S~ ),~),vnn hnu
345 integer m~n
346 c
347 do 10 iul,n
348 do 20 jul.m
349 do 30 klI,z
350 h(i~j)=(1/u(k))*v(i,k)*u(j~k)
351 30 continue
352 20 continue
353 10 continue
354 c
355 c
356 c
357 subroutine svdukr(a,.,nt,w,y)

358 c This routine generates the SYD of an an matrix A

360 c where A a UVVtranspose, with U mxn, and V and V are
361 c nxn. U is column orthogonal, V is row and column
362 c orthogonal, and V is diagonal. U is returned in the
363 c array a. The diagonal of V is returned as the vector v.
364 c
365 implicit reajC8 (a-h,o-z)
368 parameter (umax128)

0367 dimension a(m,n),w(n),w(n,n),rvl(nmax)
368 c
369 g-OdO
370 scalcuOdO
371 anormwOdO
372 do 25 i=1,n
373 1i+1
374 rvl(i)wscal**g
375 guOdO
376 o-OdO
377 scajeuOd0
378 if (ile..0 then
379 do 11 kzi,z
380 scaleuscale+abs(a(k,i))
381 11 continue
382 if (scalene*OdO) then

*383 do 12 kai,m
384 a(k,i)za(k,i)/scale
385 auu+&(k,i)ea(k,i)
386 12 continue
387 fna(iji)
388 g-uign(sqrt (a) ,t)
389 hwfsg-s
390 a(i'i)Wf-g

* 391 if (i.Me.n then
392 do 15 jnl,n
393 SOW
394 do 13 kni,n
395 sus+a(k,i)*a(k,j)
396 13 continue
397 fua/h
398 do 14 kmima
399 &(k~j)=a(kj)+fea(k,i)
400 14 continue
401 15 Continue
402 eadif
403 do 16 ku i,.
404 a(k,i)uscaleea(k,i)
405 16 continue
406 endif

*407 ni
408 u(iDuacale eg
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409 g-OdO
410 9=OdO
411 scalemd0
412 it (~e..n.in~) then
413 do 17 k1l,n
414 scalemscale+abs(a(i,k))
415 17 continue
416 if (scale.ne.OdO) then
417 do I8 kal,n
418 a(i,k)-&(i,k)/scale
419 s-a+a(i,k)*a(i,k)
420 18 continue
421 f-a(i,l)
422 gm-sign(sqrt (u),f)
423 hm-feg-.
424 a(i,l)-f-g
425 do 19 k1l,n
426 ryl(k)-a(i,k)/h
427 19 continue
428 it (inc..) then
429 do 23 jnl..
430 u-Od0
431 do 21 kul,ni
432 s-s+a(j ,k)*a(i,k)
433 21 continue
434 do 22 k1l,n
435 a(j ,k)-a(j ,k)+servl(k)
436 22 continue
437 23 continue
438 endif
439 do 24 kal,n
440 a(i,k)=xcaleea(i,k)
441 24 continue
442 endif
443 endif
444 anornuax(anoru,(abs(u(i))+abs(rvl(i))))
445 25 continue
446 do 32 inn,1,-1
447 if (i.1t.n) then
448 if (g.ne.OdO) then
449 do 26 jul,n
450 v(J,i)m(a(i,J)/a(i,l))/g

451 26 continue
452 do 29 jnl,n
453 swOdO
454 do 27 kal,n
455 snx+a(i,k)eY(k,j)
456 27 continue
457 do 28 kul,n
458 Y(k,J)nv(k,j)+ssv(k,i)

459 28 continue
460 29 continue
461 endif
462 do 31 jul.n
463 v(i,j)OdO
484 v(j,i)uOdO
465 31 continue
466 andif
467 Y(i,i)uldO
468 g-rvl(i)
469 lni
470 32 continue
471 do 39 iun,1,-1
472 lwi41
473 guu(i)
474 if (i.lt.2) then
475 do 33 jolts
476 a(i,j)OdO
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477 33 continue
478 endif

*479 if (g.ne.0d0) then
480 g-1d0/g
481 if (i.ne.n) then
482 do 36 jzl,n
483 um0d0
484 do 34 kl1m
485 szs+&(k,i)oa(k,j)
486 34 continue
487 f~l~~)e
488 do 35 k-i,v
489 a(k,j)za(k,j)4f*a(k~i)
490 35 continue
491 36 continue
492 andif
493 do 37 jui,m
494 a(j,i)ma(j~i)*g
495 37 continue
496 else
497 do 38 j= i,u
498 a(j,i)zOdO
499 38 continue
500 endif
501 a(i,i)-a(i,i)+ldO
502 39 continue
503 do 49 kan,1,-1
504 do 48 itsul,30
505 do 41 lsk,l,-1
506 nual-1
507 if ((abs(rvl(l))+anorm).eq.anorm) go to 2
508 if ((abs(w(nm))+amoru).eq.anorm) go to 1
509 41 continue
510 I cuOdO

512 do 43 iml,k
513 fusorv1(i)
514 if ((abs(f)+anorin).ne.anoru) then
515 gaw(i)
516 hwuqrt (fof+geg)
517 W(iDuh
S16 buldO/h

* 19 c- (gsb)
520 su-(fsh)
521 do 42 Jw1,m
522 7ua(j.nu)
523 2ua(j,i)
524 a(j ,n)M(ysc)S(zss)
525 a(j,i)u-(ys)+(zsc)
526 42 continue
S 27 ni
528 43 continue
529 2 z-w(k)
530 it (l.eq.k) then
531 if (z.lt.OdO) then
532 v(k)u-z
533 do 44 Jul,%
534 v(j,k)n-v(j~k)

*535 44 continue
536 endif
537 go to 3
538 eadif
539 if (its.eq.30) pause 'no convergence in 30 iterations)
540 xuu(1)
541 auk-1
542 Ymu(VA)
543 gurri (am
544 hurvl(k)
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545 -f-((y-z)e (y+z)+(g-h)e (gh))/(2dOeh*y)
546 g-sqrt (fsf+1 do)
547 f.((x-z)*(x+z)+he((y/(f~sign(g~f)))-h))/x
548 czld0
549 su1d0
550 do 47 j-1,rm
551 iuj+1
552 g-rvl(i)
553 y-u(j)
554 huseg

556 z-sqrt (1 f+h~h)
557 ryl(j)-z
558 cwf/z
559 szh/z
560 :f- (xec)+(gos)
561 gu-(xss)+(gec)
562 haye.
563 M"yec
564 do 45 n1-,n
565 Xuv(numj)
566 z-v(na,i)
567 v(nzm,j)u (xsc)+(zes)
568 v(na,i)u-(X*s)+(Z*C)
569 45 continue
570 zusqrt (fef~hsh)
571 v(j)uz
572 it (z.ne.OdO) then
573 zuldO/z
574 cwf~z

576 *ndif
577 T- (ceg)+($eY)
578 r-Csog)+(C*Y)
579 do 46 numu
580 ya=j
581 zw&(nz,i)
582 a(nn,j)u (Y*C)+(zeS)
583 &(na,i)u-(yss)+(ZeC)
584 46 continue
585 47 continue
586 rv1(1)wOdO
587 rvi(k)wf0
588 w(k)-x
589 48 continue
590 3 continue
591 49 continue
592 return
593 end

- 207 -



I C
2 c
3 c progrant minvar .f
4 c
5 c
6 paraneter(m=128)
7 real'S bw(1150,vmz),retil(128),f(128)
8 realeS g(mn~m),d~snr
9 reale4 ops

10 integer*4 a,vindow,k,l,n,im,j,ji,jer
*11 charactor*16 fl

12 c
13 print e, k?'
14 read ak
15 print e,'Window number?'
16 read awindow
17 print e,'Destination File?'
18 read Midfle

20 n-2*k+l
21 Ops-le-6
22 do 90 inm=1,6
23 au=2ee(in+1)
24 do 100 izl,S
25 ddble(i)/ld+1
26 call buukr(bv,k,n,m,d,.indow)

*27 do 110 i-,
28 anr=10eeii
29 call tvo(bw,n,u,g,snr,ier,eps)
30 call spectramkr(g,u,retil,-f)
31 call plotfl(dfile,128, 'd',f~ 'd',retil)
32 110 continue
33 100 continue
34 90 continue

*35 stop
36 end
37 c
38 c
39 c
40 subroutine two(bv,nt,m,g,sntr,ier,*ps)
41 c subroutine to calculate hx(gtg)*snr + i inv
42 parameter(m128)

*43 realeB bw(n,m),g(.,z),r(8256),snr
44 reale4 spa
45 integer ier
46 do 600 i1l,m
47 do 610 iiul,u
48 g(i,ii)M0
49 do 620 iiizl,n
s0 g(i~ii)ug(i,ii)+bw(iii,i)*bw(iii,ii)*snr
6 1 620 continue
52 if(i.sq.ii)g(i,ii)ug(i,ii)+ld+0
53 610 continue
64 600 continue
55 call squartri(r,a,g)
56 call dsin,(r,u,epsjier)
57 call trisquar(g,a,r)
58 return

* 9 end
60 c
61 C
62 c
63 subroutine bwakx(bw,k,n,u,d,windou)
64 real*8 bw(n~u),bIh.d
65 integer n,n,k,window
66 do 500 ivl,x

*67 do 500 i-,
68 500 bw(i,ii)wO
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69 j--k
70 do 510 i=1,1+2ek
71 bv(i,1)Iiit(j ,d,k~uindow)
72 j=j+1
73 510 continue
74 do 520 i-1~-
75 do 530 iiuO,2*k
76 bu(1+ii~i,i+l)=bv(ii+i,i)
77 530 continue
78 520 continue
79 return
80 end
81 c
82 c
83 c
84 function hh(j,d,k,window)
85 real*8 hh,d,kl~pi~pi2,jl
86 integer k,j,window
87 w-vindov
88 pi-3.141592654
89 pi2=2*pi
90 j1~j
91 klzk
92 if(j.eq.0)then
93 hh=ded
94 else

95 hh-cos(.7839816dbe(j)*(l-d))*sin(.78539816.d~dble(j))/
96 c (.78S39816sdble(j))
97 hh=hh*hh
98 endif
99 if (m.*q.1) then
100 hh
101 elseif (m.eq.2) then
102 hhuchh*(l-abs(jl)/kl)

103 elseif (m.eq.3) then
104 hhhi(.5+.Secos(piejl/ki))
105 elseif (m.eq.4) then
106 hhuhhC (0.54+0.46*con(piej1/k1))
107 else
108 Iihh l*(0.42+0.*co(pi*jl/kl)+0.08ecos(pi2*jl/kl))
109 endif
110 10 return
Ill end
112 c
113 c
114 c
115 subroutine spectramkrerr,mi,retil,f)
116 realeB err(m,u) ,retil(128) ,f(128) .xii,xi~pi2,sun(128)
117 integer p
118 pi2u6.283185307

119 do 10 im1,m
120 sum(i)WO.0
121 10 continue
122 do 20 juj,u

123 do 30 iim1,m
124 psabs(i-ii)+1
125 suu(p)-sux(p)+*rr(i,ii)
126 30 continue
127 20 continue0
128 do S0 iml,128
129 xi-real(i)/256
130 retil(i)0O
131 do 60 iil,a
132 xiinii-1
133 retil(i)retil(i)+sum(ii)cos(pi2*xiiexi)
134 60 continue
135 50 continue0
138 do 80 ix1,128
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137 -~)rm()6
138 rtlirtla/bem

0139 80 continue
140 return
141 end

020



ic
2 c
3 c program snrakr.f
4 c
5 c
6 real.4 sum~anr(128),fl(128),lg10
7 real*8 f(128),*(128)
8 characterel2 filel
9 charactere14 file2

10 filelu'u6b16div5.'
11 fil*2-'anral6abl6dluS'
12 call readfl(filel//'2',nt~'d',f, 'd'.e,1,l,128)
13 lglolog(1e1)
14 guano
is do 10 i-1,128
16 SUN-SUM4e(j)
17 c snr(i)wreal(i)/ua
18 snr(i)=10*log(real(i)/suu)/lgIO
19 fl(i)-real(i)/64
20 10 continue
21 call plotfl(file2,128, 'V 4, 'V ,snr)
22 call readfl(filel//'2',n,'d',f,'d' ,e,3,1.128)
23 suu=O
24 do 20 ixl.128
25 aumUaum+4(i)
26 c snr(i)=real(i)/sum
27 znr(i)w1Oelog(r~al(i)sum)/go
28 20 continue
29 call plotfl(file2,128,'f',fl, 'f',snr)
30 call readfl(filel//'3' ,n, 'd',f.'d' ,e,1,1,128)
31 gano
32 do 30 iul,128
33 auuusum+*(i)
34 c anr(jwreal(j)/sum
3S anr(i)=10*log(real(i)/sum)/lg10
36 30 continue
37 call plotfl(file2,128,'f',fl, 'f',anr)
38 call readfl(filel//'3),n,'d',f, 'd',.,3,1,128)
39 gano
40 do 40 inl,128
41 SURMSUM+4(j)
42 c anr(i)-real(i)/ux
43 snr(i)=l0elog(real(i)/sua)/l510
44 40 continue
45 call plotfl(file2,128,'f',fl, 'V ,snr)
46 call readfl(filel//'4'.,'d',f,'d',e,1,1,128)
47 gan~o
48 do 50 iul,128
49 auauaum+*(i)
50 c snr(i)-real(i)/aun
51 snr(i)ul0elog(real(i)/sui.)/lglO
52 50 continue
53 call plotfl(iile2,128, 'f'tl, 'V ,anr)
S4 call readfl(filel//'4',n,'d'4.'ld.e,3,1,128)

56 do 60 in1,128
57 aumuu+(i)
58 C anr(1)real(W)auxt
59 snr(i)-ioelog(real(i)/suu)/lg10
60 60 continue
61 call plottl(file2,128,'f'4, 'f'.axir)
62 call readfl(filel//'S'.n,'d'4,')d,e,1,1.128)
63 ganuo
64 do 70 iul,128

68 c sar(iOureali)/a
67 mnr(i)=l0*log(real(i)/svm)/lglO
Go fl(i)*real(i)/64



69 70 continue
70 call plotfl(file2,128,'i',il,'f' ,snr)

*71 call readfl(filel//'5',n,'d',f,'d',e,3,1,128)
72 sus=0
73 do 80 i-1,128
74 suua+(i)
75 c sur(i)-ral(i)sumu
76 snr(i)ul0elog(real(i)/suu) /2Igb
77 80 continue
78 call plotfl(file2 ,128, 'V ,fl, 'i',snr)
T 9 call readfl(iilel//'6',n,'d',f,'d',e,1,1,128)
80 suu=O
81 do 90 i-1,128
82 ansua+e(j)
83 c snr(i)urehl(i)/sum
84 snr(i)wI0*log(real(i)Isua)/g1O
85 90 continue
86 call plotfl(fil.2,128. 'f',fl, 'V ,snr)
ST8 call raf~i~/;)nl;flle3118
88 su-0
89 do 100 iul,128
90 suu-suu+e(i)
91 c snr(j)-real(j)/sum
92 snr(i)=I0*log(real(i)/sum)/lglO
93 100 continue
94 call plotfl(iile2,128,'f',il, 'i',snr)

*95 call readil(iilel//'7',n,'d',f,'d',e,1,1,128)
96 sumO0
9T do 110 i1l,128
98 sum-sunm+e Uj)
99 c snr(i)ureal(i)/uz
100 snr(i)wI0*log(real(i)/um)/gO
101 110 continue
102 call plottl(iile2 ,128,'i' ,fl,'i' ,snr)

*103 call readil(iilell/'7',n,d,,d,,3,1,128)
104 suumO
105 do 120 iul,128
106 sumusum+e(i)
107 c anr(i)-real(i)/sum
108 sur(i)=loelog(real(i)/suu)/lglO
109 120 continue
110 call platfl(iile2,128,'i',il, 'i',snr)
III1 call readfl(filel//'8',n,'d',i,'d',e,1,1,128)
112 suuO
113 do 130 iml ,128
114 suawaun+e(i)
115 c anr(i).real(i)/sua
116 sar(i)zI0*log(rsal(i)/*vu)/1gO
117 130 continue
118 call plotfl(iile2,128,'f',fl, 'i',snr)

* ~~119 call rai~ie/''n''i''e3118
120 suian0
121 do 140 1.1,128
122 samnsanae(i)
123 c sar~iareal(W)/um
124 snr(i)x10.log(real(i)/svm)/lgO
125 140 con~tinue
126 call plotil(iile2,128,'f',fl, 'i',sar)

*127 stop
128 end
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C0

2c:
3 c routine svd.f
4 c
SC

6 c This routine generates the SYD decomposition of an
7 c mmn matrix A s UV~transpose. where U is am, and V
8 C and V are nxn. U is column orthogonal, V is row and
9 C column orthogonal, and V is diagonal. U is returned

10 C in the array a.
11 C
12 c
13 c
14 subroutine uvdcmp(a,a,n,w,v)
is implicit real*$ (a-h,o-z)
16 parameter (nmax-128)
17 dimension a(a,n) ,w(n) ,V(n,n) ,rvl(nmax)

19 ginOdO
20 scaleOdO
21 anormuOd0
22 do 25 i1I,n
23 lzi+1
24 rvl(i)uscaleeg
25 ginOdO
26 szOdO
27 scalemOdO
28 if (i.le.n) then
29 do I1 kni,m
30 scalonacale+abs(a(k,i))
31 11 continue
32 it (scale.ne.OdO) then
33 do 12 kaiim
34 a(k,i)aa(k,i)/scale
35 sw+a(ki)*a(k,i)
36 12 continue
37 fua(i,i)
38 ga-sign(aqrt(s) 4)
39 htf*g-s
40 a(i,i)mf-g
41 if (i.ne.n) then
42 do 15 jml,n
43 suOdO
44 do 13 kni,m
45 sus+a(k,i)*a(k,j)
46 13 continue
47 fua/h
48 do 14 kni,u
49 a(kj)=a(kj)4f*a(k,i)
50 14 continue
51 15 continue
52 adit
53 do 16 ka i,.
54 a(kji)wscaleea(k,i)
55 16 continue
56 endif
ST eadif
$8 w(i)ascalse g
59 g=OdO
60 sz~dO
61 acalowdO
62 if ((i.l. .aid.C.ne.a)) than
63 do 17 knl~a
64 scaleuscaleoaba(aUiX)
65 17 cont inue
66 it (scals.e.OdO) thea
67 do 18 kml,a

68 a(i,k)waik)/scalo
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69 s..+a(i,k)*&(i,k)
70 18 continue
71 I-a(i,1)
72 g--sign(aqrt(9),4)
73 h-feg-5
74 a(i,1)wf-g
75 do 19 k-l,n
76 rvi(k)ua(i,k)/h
77 19 continue
78 it (i.ne.m) then

*79 do 23 lu
80 xxOdO
81 do 21 kal,n.
82 uu.+&(j ,k)ea(i,k)
83 21 continue
84 do 22 k-l,n
as a(j .k)-a(j ,k)+servl (k)
86 22 continue

*87 23 continue
88 endif
89 do 24 kul,nt
90 a(i,k)xscaleea(i,k)
91 24 continue
92 endif
93 endif
94 anormax(anoru,(abs(())+abs(rvl(i))))

*95 25 continue
96 do 32 imn,l,-1
97 if (i.lt.n) then
98 it (g.n*.OdO) then
99 do 26 jul,u

100 v(j~i)=(a(i~j)/&(i.1))/g
101 26 continue
102 do 29 jnl,n

*103 md
104 do 27 kal,i
105 sue+&(i,k)sv(k~j)
106 27 continue
107 do 28 kulta
108 v(k,j)uv(k~j)+ssv(k,i)
109 28 continue
110 29 continue
ill audit
112 do 31 jul,rL
113 v(i,j)=OdO
114 v(j,i)=OdO
115 31 continue
116 endif
117 vTi,i)wldO
11e gurvl(i)
119 ii
120 32 continue
121 do 39 iwn,1,-1
122 1.i*1
123 gow(i)
124 ii (i.1t.m) then
125 do 33 jmI,z
126 a&i.j)uOdO

*127 33 continue
128 endif
129 if (g.&*.OdO) then
130 guldO/g
131 if (i.ze.A) then
132 do 36 imini
133 smOdO
134 d. 34 khula

*135 as+a(k,i)*&(k.j)
136 34 continue
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137 s/ii)e
138 do 35 k-im
139 a(k,j)-a(kj)4fea(k,i)0
140 35 continue
141 36 continue
142 endif
143 do 37 j-i,m
144 &(j,i)a&(j ,i)*g
145 37 continue
146 else
147 do 38 j= i,m
148 a(j,i)-OdO
149 38 continue
150 endif
151 a(i,i)aa(i,i)+1d0
152 39 continue
153 do 49 kwn,1,-1
154 do 48 itszl,30

155 do 41 1nk,I,-1
156 nmal-I
157 if ((&bs(rvl()+anorm).eq.anoru) go to 2
158 if ((abs(v(nm))+anorm) .eq.anorm) go to 1
159 41 continue
160 1 cxOdO
161 s:ido
162 do 43 i-1,k
163 f=ser,1(i)0
164 if ((abs(f)+anoru).ne.anorn) then
165 gpu(i)
166 hinsqrt(ff+geg)
167 v(i)-h
168 hwldO/h
169 c- (geix)
170 s=-(-f~h)
171 do 42 jzl~u
172 ysa&j,n)
173 ZiaQ,i)
174 a(j ,nmW-(Y*C)+(zes)
175 a(j,i)=-(y*s)+(zoc)
176 42 continue
177 endif
178 43 continue
179 2 z-v(k)0
180 if Mleq.k) then
181 if (z.1t.OdO) then
182 w(k)--z
183 do 44 jwl~u
184 v(j ,k)=-v(j .k)
185 44 continue
186 endif
187 go to 30
188 endif
189 if Cits.sq.30) pause 'no convergence in 30 iterations)
190 X-W(l)
191 nmuk-1
192 Yav(nm)
193 g-rvl (na)
194 hwryi~k)
195 -f-c (y-z)e(y+z)+(g-h)*(g+h) )/(2dOehey)
196 gusqrt(-fef+ldO)
197 in ((x-z) *(x+z) +he ((y/ (f+sign(g,f))) -h)) /x
198 culdO
199 suldO
200 do 47 jul,am
201 i=J4.1
202 grrvl Wi
203 Y-w(i)0
204 hmeg
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205 g0ceg
206 z-.qrt (f*f+h*h)
207 rvl(j)-z
208 Cil/z
209 h/
210 f- (xsc)+(gos)
211 g--(xss)+(g~c)
212 h-yea
213 YIYC
214 do 45 nawl,n

O215 ruy(nz,j)
216 zUw(na,i)
217 y(na,j)z (r~c)+(zes)
218 ,(na,i)o-(xea)+(z*c)
219 45 continue
220 zuaqrt(fef+h*h)
221 vWjWz
222 if (z.n*.OdO) then

*223 ld/
224 cufoz
225 suhez
226 endif
227 f(ceg)+(..y)
228 x-sg+*Y
229 do 46 ni-,u
230 yua(Im,j)

*231 mrai
232 a(nn,j)u (y*c)+(zea)
233 a(nm,i)w-(ysa)+(zec)
234 46 continue
235 47 continue
236 rvl(l)mOdO
237 rvl(k)-i
238 w(k)-x

*239 48 continue
240 3 continue
241 49 continue
242 return
243 end
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C0

3 c program ainvar2.f
4 c
5 c
6 paraneter (mmx'128)
7 real*8 bv(11S0,m),rtil(128),f(128)
8 real*8 g(=,mm),d,snr
9 real*4 eps
10 integer*4 *,nIm,2,i,ii3,ni.,ier,max,uniform,apertures
11 character*l6 df ile
12 c
13 m=1024
14 print *, snr?'
is read *,sur
16 print a, dID?'
17 read ed
18 print a, uniformity?(yesu1,now0)I
19 read euniform
20 print e,'number of apertures?)
21 read Capertures

22 print e,'Largest support?'
23 read amax
24 print a,'Destination File?'
25 read adfile
26 opsule-6
27 do 90 imul,zsax
28 a-4*im
29 call bvmkr(bw,nt,m,d,uniform,apertures)
30 call tuo(bw,n,m,g,snr,ier,eps)
31 call spectramkr(g,m,retil,f)
32 call plotfl(dfile,128,'d',f, 'd',retil)
33 90 continue
34 stop
35 end
36 c
37 c
38 c
39 subroutine two(bw,n,m,g,snr,ier,er')
40 c subroutine to calculate h-(Ctg)osnr + i inv
41 parameter(=m128)
42 reale$ bw(A,m) ,g(mum) ,r(8258) ,snr
43 re&le4 epa
44 integer ior
45 do 600 iwI~m
46 do 610 ii=I,m
47 g(i,ii)=0
48 do 620 iiia1,n
49 g(i,ii)ug(i,ii)+bw(iii,i)*bw(iii~ii)esnr
50 620 continue
51 if(i.eq.ii)g(i~ii)ug(i~ii)4ld+0
52 610 Continue
53 600 continue
54 call squartri(r,a,g)
S5 call dsinv(r,.,eps,ier)
56 call trisquar(g,ua,r)
57 return
5e end
59 c
60 c
61 c
62 subroutine bwmkr(bw ,n,m,d,uniform,aperttres)
63 reales bw(n,m),bk,d
64 integer nXmuxiform,aperturea
65 do 520 inl,u
66 do 530 iiMl,U
6T bw(i,ii)uhh((a-n)/2-ii+i,d,uziiforu,apertures)

68 30 continue
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69 520 continue
TO return

*71 end
72 c
73 c
74 c
75 function hh(j,d,uniform,apertures)
76 real*8 hh,d,pi2,di,ji,j2,xi,x2,xj,xk,xi
77 integer j,k,l,uniform,apertnres
78 c

*79 aprue

81 if(j.eq.0)then
82 bh-xkedl4dO
83 else
84 pi2=2dOeatan(ldO)
SE dl=ldO-d
86 xiJj
ST8 jluxjsdlep12
88 j2-xjedspi2/2d0
89 xlusin(j2)/j2
90 xlzxloxlsd/4d0
91 x2wOdO
92 if(uniforin.eq.1) then
93 do 10 i-I ,k-1
94 zimi

*95 x2z2+(ldO-xi/xk)*cos(xiejl/(x-d)
96 10 continue
97 hhwxl*(ldO+2dOez2)
98 elseif(uni-foru.eq.0.and.apertureu.eq.3) then
99 do 20 iml,3
100 ii
101 x2sx24cos(xieji/3d0)
102 20 continue
103 bkuxl*(ldO+2dOex2/3d0)
104 elseit(uniform.eq.0.&Ad.apertures.eq.4) then
105 do 30 iml,6
106 zimi

107 x2sx2+cos(xi*Jl/Sd0)
108 30 continue
109 hh-xle(ldO+x2/2d0)
110 elosif(uniforu.eq.0.and.aperture.q.5) then
III1 do 40 iul,11
112 if(i.eq.10) goto 40
113 zimi
114 z2wx2+cos(xijl/lldO)
115 40 continue
116 bhuxls(ldO+2dOex2/Sd0)
117 elseif(uniforu.eq.0.and.apertures.eq.6) then
118 do 50 imI,1T

*119 if(i.eq.14.or.i.eq.16) goto 50
120 zimi
121 x2ux2+cos(xieJl/17d0)
122 50 continue
123 hxl*(ldO+x2/3d0)
124 endif
125 eadif
126 return

*127 end
128 c
129 c
130 c
131 subroutine spectrakr(err,,rtiljf)
132 real*$ err(am, retil(128) ,f(128) ,xii,xi,pi2,sum(128)
133 integer p
134 p12 6 . 2 3 1 SM 7

*13S do 10 Nm
136 SUMUa~ 0.0
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137 10 continue
138 do 20 jul.u
139 do 30 ii-l,.
140 P-abs(i-ii)+1
141 suu(p)-sum(p)+err(i,ii)
142 30 continue
143 20 continue
144 do 50 i,1,128
145 xj-real(i)/256
146 retil(i)0O
147 do 60 ii-l,m
148 xi-ii-I
149 rotil(i)-retil(i)+sum(ii)*cos(pi2*xiiexi)
150 60 continue
151 50 continue
152 do 80 iu1,128
153 f(i)ureal(i)/64
154 retil(i).retil(i)/dble(s)
155 80 continue
156 return
157 end
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ic2
3 c program snrmkr2 f
4 c
5 c
6 real*4 sun,snr(128),fl(128) ,lglO,slice(32) ,count(32)
7 real*8 f(128),e(128)
8 c
9 lglO-log(le1)
10 c do 5 jul,180

*11 c d w,
12 do 5 J=1,32
13 c cafll readfl('ainvar2nl024',n.'d',f,'d',e.j,1,128)
14 c call readfl('aeamtfd00Sa6',zn,'d',i,'d',e,j.1,128)
1s call readfl('s~d005n~a6s32',n,'d',f.'d'.e,j,1.128)
16 c call readfl('s4d005ula11a32',n,'d',f,'d',e,j,1,128)
17 c call readfl('s6d005ula6s8',n,'ds,i,'d',e,j.1,128)
18 3123.0

*19 do 10 u,2
20 *unmauu+e(i)
21 snr(i)wlOalog(re&l(i)/sum)/lglO
22 fl(i)-real(i)/64
23 10 contliue
24 c call plotfl(snriztvan1024',128, 'P ,fl~ '1',,sir)
25 c call plotfl('umuwtfd5S6,128,'f',fl,'f',snr)
26 call plotfl('snra~d005uOa6' ,128,'t' ,fl,'f',snr)

*27 c callplotfl('anru4dOO~ulallP,128, 'f'41l, 'V,snr)
28 c slice(j)msur(64)
29 c slice (J)usz~r(52)
30 alice(j)nsnr(49)
31 count(j)uj
32 S continue
33 call plotfl('31cs5d051O20a ,32, 'V ,count,'i'l,slice)
34 c call plotil('slcs4dOOSulal',32,'f' ,count,'V ,slic.)

*35 c call plotfl('ulca6dOOSula6',8,'V ,count, 'V ,slic.)
36 stop
37 end
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APPENDIX C for Chapter 4

Computer Listings

This appendix contains the Fortran source code of the computer programs used to generate the

data for this chapter.

0 iC
2 c
3 c program minvar2.f
4 c
S C
6 parametr(mm128)
7 realeS bw(11S0,mm) ,retil(128) 4(128)
8 real*$ g(=,mm),d,snr
9 reale4 epa010 integere4 m,n,im,i,ii,ni,ier,max,uniforn,apertures

11 characterelO dfjle
12 c
13 nz1024
14 print *, lar?
15 read 0, snr
16 print s, 'dID?'
I7 reads, d

* 18 print s, 'uniformity?(yeawl,now0)'
19 read euniform
20 print ,'namber of apertures?'
21 read aapertures
22 print ), Largest support?'
23 read s, max
24 print s, 'Destination File?'
25 read s, dfile

*26 *sl-
27 do 90 imul,mAz
28 an4oim
29 call bwmkr(bw,n,m,d,uniform,apertures)
30 call two(bw,anm,g,sar,ier,eps)
31 call upectrmmkr(g,a,retil,f)
32 call plotfl(dfile,128, 'd',f, 'd',retil)
33 90 continue

*34 stop
35 end
36 c
37 c
38 c
39 subroutine two(bw,nmg,snr,ier,eps)
40 c subroutine to calculate hm(gtg)esnr + i iny
41 parameter(w128)

*42 realeS bu(n,m),g(m,m).r(8256),sar
43 real*4 e
44 integer ler
45 do 600 iul,U
46 do 610 iiUl,m
47 g(ijii)W0
48 do 620 iiiwl,m
49 gii~gii)b~i~~b~i~ien

* 0 620 continue
51 if~i.eq.ii)g(i,ii)=g(i,ii)+ld+0
52 610 continue
53 600 continue
54 call squartri(rmn,g)
55 call dsinv(r,m,eps,ier)
56 call trisquar(g,m,r)
S7 returm
$a5 end
59 C
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60 c
61 c
62 subroutine bmmkr(bw,n,n,d,uniform,apertures)
63 realeS bv(n,u),hh,d
64 integer n,n,uniforu,apertures
65 do 520 i-1,ii
66 do 530 iizl,u
67 bw(i,ii)-hh((.-n)/2-ii+i,d,uniform,apertures)
68 530 continue
69 520 continue
70 return
71 end
72 c
73 c
74 c
75 function hh(j,d,uniform,apertures)
76 reale8 hh,d,pi2.dl,jl,j2,xl,x2,xj,xk,xi
77 integer j~k,l,unifor,apartures
78 c
79 kmapertures
s0 xknk
81 3f(j.*q.0)then
82 hhuxked/4d0
83 else
84 pi2u2dOeatmn(ldO)
85 dlaldO-d
86 xjxj
87 jlnzjodlepi2
88 j2urjedopi2/2d0
89 xissin(j2)/j2
90 xluxl*x1*d/4d0
91 x2nOdO
92 if(uniforu.sq.1) then
93 do 10 iml,k-1
94 zimi
95 x2mx2+IldO-xi/zxk) cos(xi~jl/ (xk-IdO))
96 10 continue
97 huxl(ldO+2dOex2)
96 elseif(unitoru.eq.0.and.apertures.eq.3) then
99 do 20 iml,3

100 nimj
101 x2ux2+cos(iejl/3d0)
102 20 continue
103 bk-xl*(ldO+2dOer2/3d0)
104 elsif(uniior..eq.0.and.apertures.eq.4) then
105 do 30 iul,6
106 ximi
107 x2=x2+cos(xiejl/640)
108 30 continue
109 hhwxI*(ldO+x2/2d0)
110 elseif(uniform.eq.0.and.apertures..q.5) then
ill do 40 iul,11
112 if(i.*q.10) goto 40
113 ximi
114 z2mx2+cos(xi*jl/lldO)
115 40 continue
116 hkwxl*(1d0+2dOex2/Sd0)
117 elaslt(unifora.eq.0.aMd.apertures.eq.6) then
116 do 50 iml,17
119 if(i.*q.14.or.i.eq.15) goto 50
120 zimi
121 x2=x2+cos(xiejl/17d0)
122 50 continue
123 kxl*(ldOx2/3d0)
124 endif
125 eadif
126 return0
127 end
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129

128 c

0130c
131 subroutine spectramkr(err,u,retil 4)
132 real*$ err(.,a),retil(128),f(128) ,xii,xi,pi2,sum(128)
133 integer p
134 pi2-6 .283185307
13S do 10 jul,u

136 aUMU~i0.0
137 10 continue

0138 do 20 iml,m
139 do 30 iixl~n
140 pwabs(i-ii)+1
141 sum(p)-sum(p)+err(i,ii)
142 30 continue
143 20 continue
144 do 50 jul ,128
145 xi-rea2(i)/2S6

0146 retil(i)-O
147 do 60 iizl,u
148 xiinii-1
149 retil(i)urstil(i)+sua(ii)*cos(pi2*xii*xi)
150 60 continue
151 s0 continue
152 do 80 i1l,128
153 f(i)wrea1(i)/64
154 retil(i)uretil(i)/dble(m)
155 80 continue
156 return
157 end
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3 c program anrukr2.f
4 c
S c
6 real*4 sum,ur(128) ,f1(128) ,lglO,slice(32) ,count(32)
7 realeB f(128),e(128)
8 c
9 lgIO-log(141)

10 c do 5 j-1,180
11 c do 5 j-1,8
12 do 5 jul,32
13 c call readfl('Minvar2nl024',n,'d',f,'d',*,j,1,128)
14 c call readfl('newutfdOOSs6',n,'d'.f,'d',e,j,1,128)
1s call readfl('s5d005u~a6s32',n,'d'.f,'d',e,j,1,128)
16 c call readfl('u4d005ula11s32',',d',f,'d',e,j,1,128)
17 c call readfl('s6d005ula6s8',n,'d',f,'d'.e,j,1,128)
18 sumiu0
19 do 10 i-1,128
20 *un-sun+e(i)
21 snr(i)zlOelog~real(i)/sum)/lglO
22 fl(Dwreal(i)/64
23 10 continue
24 c call plotfl(urminvarnla240,128, 'f'.fl,'f',snr)
2S c call plotfl(urnwutidOO~s6'.128. 'V ,fl, 'V ,snr)
26 call plotfl('anrsSdOOSuOa6' ,128,'f' ,il,'f',snr)

27 c callplotfl()xnrs4d~OOulall',l28,'f',fEl,'Vl,snr)
28 c slice(j).unr(64)
29 c slice (j)usznr(52)
30 alice(j)nsnr(49)
31 count (j) NJ
32 5 continue
33 call plotil('ulcaSdOOSuOa6' ,32, 'V ,count,'f',slic.)
34 c call plotfl('alcs4dOOSulall',32, 'f',count,'f' ,xlice)
35 c call plotfl('u1ca6d005ula6' ,8,'~f,countt,'f' ,slice)
36 stop
37 end
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ic2
3 c program lsqmkr2.f
4 c
6 c
6 parmetor(maw128)
7 real*8 bw(1150,) ,f(128) ,v(in,zm) 9 v(s.)
8 realeS g(in,i),retil(12V,d
9 integere4 i,u,mb,n

10 integer*4 max,uniforuL,apertures
011 character dfile*16

12 c
13 c n=1024
14 c m-612
is print *, 'Number of pixels in image line?'
16 read s, n
17 print *9 'r? 9

18 read *,snr
19 print *, dID?'
20 read *,d

21 print *9 uniformity?(yeszl,noxO)'
22 read e, niform
23 print *,'number of aperturesl
24 read o, apertures
25 print *, 'Largest support?'
26 read s, max
27 print ). Destination File?'
28 read *9dtile
29 do 5 i1i,max
30 am*i
31 mb-rn
32 call bwmkr(bw~n,m,d,uniform, apertures)
33 call svdcap(bwnauw,y)

*34 cell gmkr(wvr,m,g)
35 call spectramkr(g,x,retil~f,sur,mb)
36 call plotfl(dfile,128.'d',f,'d'9 retil)
37 5 continue
38 stop
39 end
40 c
41 c

42 subroutine bwmkr(bv~n,m,d,uniforu,apertures)

44 real*$ bw(nmu),hh,d
45 integer U,xmuniiorm,apertures
46 do 520 i=1,a
47 do 530 iiai~u
48 bw(i,ii)uhh((m-n)/2-iiii,d,uniiorm,apertures)
49 530 continue
50 520 continue
51 return
52 end
53 c
54 c
35 c
56 subroutine pkr(u,v,n~g)
57 reale ~~)wmvmm
58 c
6 9 do 600 131,.
60 do 610 ii..
61 g(i,ii)Uy(i,ii)/s(ii)
62 610 continue
63 600 continue
64 return
65 end
66 c

*67C
68 C
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69 subroutine spectraikr(err ,x,retil,f,surx b)
70 real*$ err(u,u) ,retil(128),4(128) ,xii,xi,pi2,sum(128)
71 integer p
72 pi248dOeatan(1d0)
73 do 10 inl,m
74 sux(i)=Od0
75 10 continue
76 do 20 jul,3
77 do 30 iiuj,a
78 puabs(i-ii)+1
79 do 40 iiiul,n
80 sum(p)..su.(p)+err(i,iii)eerr(ii,iii)
81 40 continue
82 30 continue
83 20 continue
84 print o, su~)
8s do SO iul,128
86 xisreal(i)/26
8T ratil(i)=0
88 do 60 iiml,m
89 xjjujj-j

90 retil(i)'uretfl(i)+sum(ii)ecos(pi2*xiiexi)
91 60 continue
92 50 continue
93 do 80 iml,128
94 f(i)ureaJ.(i)/128
95 retil(i)uretil(i)/(snremb)
96 s0 continue
97 return
98 end

" c
100 c
101 c
102 function h(j,d,uniform,apertures)
103 re&isS bIL,d,pi,d1,j1,j2,x1,z2,xj,xk,xi
104 integer j,k,l,uniiors,apertures
105 c
106 knapertures
107 Ak
108 it(j.oq.O)tben
109 bukskd/2d0
110 also
ill pin4dOeatszt(ldO)
112 dluldO-d
113 rjej
114 jlurjedl*pi
115 J2uzj*dspi/2d0
116 xlusin(j2)/j2
117 xlnxlezlsd/2d0
118 x2nOdO
119 if(uniform.sq.1) then
120 do 10 iml,k-1
121 ziui
122 x2ux2(O-xilxk)ecos(xi*JlI(xk-ldO))
123 10 continue
124 kkax1*(1d042dOex2)
125 slosi(unitoxu.eq.0.sMd.apertures.eq.3) then
126 do 20 iml.3
127 zimi
126 x2ux2+cos(xisjl/3d0)
129 20 continue
130 hhul*(1d042d0ez2/3d0)
131 elsitf(uniforu.eq.0.mnd.apertures.eq.4) then
132 do 30 iul,6
133 xisi
134 x2sx2cos(xieJl/640)
135 30 continue
136 )akuxlo(1d0+x2/2d0)
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137 elaeif(uniform.eq.0.and.apertures.eq.5) then
*138 do 40 111

139 if(i.eq.10) goto 40
140 xi-i
141 x2.x2+cos(xi*jl/11d0)
142 40 continue
143 h-xlC(1d+2dOex2/5d0)
144 elseilf(uniforu.eq.0.and.apertures.eq.6) then
145 do 50 i-li?1

*146 if(i.*q.14.or.i.eq.15) goto 50
147 xi-i
148 x2ux2+cos(xiejl/17d0)
149 S0 continue
ISO hhwxle(ld0+x2/3d0)
151 endif
152 endif
153 return

*154 end
155 C
156c

158 c This routine generates the SYD decomposition of an
159 C am matrix A = UVtranspose. where U is mxn, and V
160 c and V are nxn. U is column orthogonal, V is row and
161 C column orthogonal, and V is diagonal. U is returned
162 c in the array a.

*163c
164 c
165
16" subroutine svdcmp(a,m,n,w,v)
167 implicit real*$ (a-h,o-z)
16 parameter (maxl128)
169 dimensionamn)wn),nn)r1(a)

*170C
171 gp040
172 scal*mOdO
173 asnormoOdO
174 do 25 iinI,n
175 lni,1
176 r,1(i~incaleeg
177 guOdO
178 xuOdO

*179 clmd
180 if Uile4.) then
161 do 11 kuima
182 scalewscale~abs(a(k,i))
183 11 continue
184 if (scalene.OdO) then
165 do 12 koi~m
186 a(k,i)=a(k,i)/scale

* 187 s'.u+&(k,i)ea(k,i)
188 12 continue
189 fua(iji)
190 g--higa(sqrt(s) 4)
191 h-fe5-s
192 a(i~i).f-g
193 if (inca) then
194 do 15 jul~a
195 suOdO
196 do 13 khula
197 *s+a(k,i)ea(k,j)
198 13 continue
199 fus/h
200 do 14 kni,u
201 a(kj)ina(kj)+fea(k,i)
202 14 continue
203 15 continue
204 adit
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205 do 16 km i~a
206 a(k,i)-scal**a(ki)
207 16 continue
208 endif
209 endif
210 V(iDuscale *g
211 -d
212 s-OdO
213 Sca~lemodo
214 if (iea)adinen)then
215 do 17 kul,n
216 scalemscale+abs(a(i~k))
217 17 continue
218 if (scaae.ne.OdO) then

219 do 18 kal,n
220 a~i,k)-a(ik)/scale
221 sua+a(i,k)sa(i,k)
222 18 continue
223 Ima(i,1)
224 go-uign(sqrt (s),f)
225 hnfeg-s
226 a(i.1)ui-g
227 do 19 kul1rn
228 rvl(k)ua(i,k)/h
229 19 continue
230 if (inema) then
231 do 23 jul,m
232 -suOdO

233 do 21 kal,nt
234 5ua+a(J ,k)ea(i,k)
235 21 continue
236 do 22 kal,a
237 a(j,k)ua(j,k)+servl(k)
238 22 continue
239 23 Continue
240 endif
241 do 24 kuln
242 &(i,k)=scale*&(i,k)
243 24 continue
244 endif
245 endif
246 anoruax(anora, (abs(w(i))4abs(rvl Ci))))
247 25 continue
248 do 32 imn,1,-1
249 if (i.lt.n) then
250 if (g.ne.OdO) then
261 do 26 jul,n
252 v(j~j)u(a(i~j)/a(i,1))/g
253 26 continue
254 do 29 jul,n
255 ssud0
256 do 27 kul,n

-257 sue+&(i,k)sv(k~j)
258 27 continue
259 do 28 kal,n
260 v(k,j)mv(k~j)+xov(k~i)
261 28 continue
262 29 continue
263 eadif
264 do 31 jul~n
265 v(i,j)OdO
266 v(j,i)-OdO
267 31 continue
268 endif

270 gr,1(i)
271 14i
272 32 continue
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273 do 39 i-n,1.-1
*274 -+

275 gzw(i)
276 if (i.lt.n) then
277 do 33 j-l,n
278 a(i,j)-Gd0
27 33 continue
280 endif
281 if (g.ne.OdO) then

*282 g=Id0/g
283 if (i.ne.n) then
284 do 36 jul,n
285 szOdO
286 do 34 kzl,n
287 s'e+a(k,i)*a(kj)
288 34 continue
289 f.(u/&(j,i))*g

*290 do 35 mu
291 a(k,j)-a(k,j)+f~a(k,i)
292 35 continue
293 36 continue
294 end if
295 do 37 j-i,u
296 a(j,i)a&(j,i)sg
297 37 continue

*298 else
299 do 38 ju i,m
300 &(j,i)=OdO
301 38 continue
302 endif
303 a(i,i)-a(i,i)+ldO
304 39 continue
305 do 49 kwn,1,-1

*306 do 48 is13
307 do 41 luk,1,-1
308 nazl-1
309 it ((abs(rv1(l))+anorm).*q.anorm) go to 2

310 it ((abs(v(rm))+anorn) .eq.&norm) go to 1

311 41 continue
312 1 c-OdO
313 s=IdO

*314 do 43 iml~k
315 fne*rvl(i)
316 it ((abs(f)+anorm).ne.anorm) then

317 guw(i)
318 hzsqrt(fsf+g*g)
319 w(i)*h
320 h=ldO/hx
321 c- (g*h)
322 e.-(ish)
323 do 42 jul..
324 ]yua(j,ra)
325 z-a(j,i)
326 a(j ,z)u(YeC)+(Z*B)
327 a(j ,i)u-(yeS)+(Z*c)
328 42 continue
329 audit

*330 43 continue
331 2 z-w(k)
332 if (1.eq.k) then
333 if (z.1t.OdO) then
334 w(k)*-z
335 do 44 jul,n
336 v(J ,k)u-Y(J ,k)
337 44 continue

*338 ui
339 go to 3
340 endif
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341 if (its.sq.30) pause 'no convergence in 30 iterations'
342 X-u(1)
343 n-k-1
344 Yvw(rm)
345 g-rvl(na)
346 h-rvl(k)
347 fn((y-z)e(y+z)+(g-h)*(g+h))/(2dOehy)
348 g-sqrt (fsf+ldO)
349 fu((x-z)e(x+z)+he((Y/(f4.ign(g,f)))-h))/x
350 cldO
351 suldO
352 do 47 jl,rm
353 iuj+1
354 gurvi(i)
355 Yuw(i)
356 h.seg
357 glceg
358 zusqrt(f~f+hsh)
359 rvl(j)-z
360 C-flz
361 Xah/z
362 In (X*c)+(g~s)
363 gu-(xss)+(gec)
364 h-Yss
365 ywyoc
366 do 45 naul,n

367 zuv(Ax,j)
368 ZUv(Ax,i)
369 v(nu,J)u (zec)+(z~s)
370 v(rm,iDu-(xes)+(zec)
371 45 continue
372 znsqrt(fef+heh)
373 wj-
374 if (z.ne.OdO) then
375 zuldO/z
376 cwf C:

377 Owhoz
378 endif
379 1- (csg)+(sy)
380 Xu-(ssg)+(c*Y)
381 do 46 maul,a
382 Yua(%R.J)
383 ZuA~NK,i)
384 a(Rnmj)= (yec)+(:.u)
385 a~mA,i)=-(7eu)+(zec)
386 46 continue
387 47 continue
388 r'vlCl)=OdO
389 rvl(k)uf
390 w(k)wx
391 48 continue
392 3 coutinue
393 49 continue
394 return
395 end
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2ic

3 c program snrmkr3.f
4 c
5 c
6 reala4 sum,snr(128),fl(128) ,l1,slice(50),cOunt(50)
7 real*8 f(128),e(128)
8 C
9 lglo-log(1.1)

*10 c do 5S-11
11 do 5 j-l,32
12 c do 5 J=l,40
13 c call readfl('a7d005ula12s32',n,'d',f,'d',e,j,l,128)
14 call readfl(2s7dOOSulal2nlm,n,'d',f,'d',e,j,1,128)
15 C call readflla7d005ula18a40',nt,'d2,f.'d',e,j,1,128)
16 c call readfl('test.lsq',n.'d',f,'d',O,j,l,128)
17 c call readfl('grdtstae',n,'d',f,'d',e,j,1,128)

*18 m-O
19 do 10 jul,128
20 sum-sum+e(i)
21 snr(i)'10*log(real(i)Isum)IglO
22 fl(j)-real(i)1128
23 10 continue
24 c call plottl('anrs7dOOSulal2',128,'f' ,fl, 'f',snr)
25 call plotfl('snr7005ull2nwm',128, 'f' , 'V lf,sn~r)

*26 c call plotfl('anrs7dOOSulal8',128, 'f' , f'f,snr)
27 c call plotfl('anrtest.laq' ,128, 'V ,fl,'f' ,snr)
28 c call plotfl('surgrdtstae' 128, 'V ,il,'f' ,snr)
29 slice(j)msnr(128)
30 count(j)-j
31 5 continue
32 c call plotil('slcs7dOOSulal2',32, 'V ,count, '±',slice)

33 call plotflC'slc700Sull2n-m',32, 'V ,count, 'f' ,slice)
*34 c call plotfl('slcs7dOOSulal8',40,'f',coflnt,'f',slice)

35 c call plotfl('alcstest.lsq' .16, 'i',count, 'V ,slice)
36 c call piotfl('alcgrdtstae' ,8,'i',count, 'f',ulic.)
37 stop
38 end
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APPENDIX D for Chapter 6

In this appendix we describe the gradient projection algorithm 2 9 as it was use( by us to im-
plement the positivity constraint on the object estimate obtained by unweighted least-squares. We
begin with a statement of the problem. Given the observation

y = Gx+n, (DI)

chose 2 to minimize
C = Ily - G II2, (D2)

with the constraining
> 0. (D3)

We begin by computing the gradient of c of Eq. (D) with respect to the object estimate R(n) at
the nth iteration:

Vc(n) = GTGR(n) - GTy. (D4)

The search for a solution proceeds along the negative gradient direction unless that direction would
violate the constraint. Consider the following iteration equation:

R(n + 1) = R(n) - aVe(n), (D5)

with
a > 0. (D6)

If a is chosen so that the above difference equation is stable, then it would converge to the uncon-
strained solution

R = (GTG)-GTy, (D7)

which is the well-known solution to the unconstrained least-squares problem. Now consider how we
might modify our algorithm in order to satisfy the positivity constraint. Assume for the moment
that all components of R(n) are nonegative. If any component of the gradient is negative, then the
corresponding component of R(n + 1) will move away from the constraint boundary and there is no
problem. If any component of the gradient is strictly positive, and the corresponding component of

• i (n) is strictly positive, then an appropriate upper bound must be placed on a so that the constraint
boundary is not crossed (that component of R(n + 1) does not go negative). For the ith component,
that bound is obviously (R(n))i/(Ve(n))i. If any component of the gradient is positive, and the
corresponding component of R(n) is zero, then that component of the gradient must be set equal to
zero. We are now in a position to define the algorithm. Let A(n) be the set of all indices of R(n)
which correspond to zero components. The value of the object estimate at iteration n + 1 is

,(n + 1) = R(n) + a(n)s(n), (D8)

where the ith component of s(n) is given by

(s(n))i = 0, i E A(n) and (Vc(n))i > 0 (D9)

sn) -(Vc(n))i, else.

We pick the step size a(n) as follows,

a(n) = min [al (n), a 2 (n)], (D1O)

where
ST sT(n)s(n) (DlI)
sT(n)GGTsT(n)'
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and

[2(n) = minn A(n) and (V(n))i > 0] ()12)L Vn))=a,>n O) =
/(Ii , •

As previously discussed, a2(n) assures that no constraint boundary is crossed. However, the step
size may still be too large, or the set of ac on Eq. (D12) may be empty. We need an additional
bound on step size. A reasonable maximum step size (and the one used in the unconstrained steepest
descent algorithm) is one in which s(n + 1) is orthogonal to s(n). It, can be shown that o (n) is that
step size.

It remains only to choose an initial estimate R(O). We chose the unconstrained solution given
by Eq. (D7) with all negative components set equal to zero.
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0
APPENDIX E for Chapter 6

In this appendix we describe the CLEAN3 algorithm as it was implemented by us to obtain the
results of Section 6.5. Let y be the observation vector given by

y = Gx + n. (El)

The columns of G are the system point-spread-function shifted and truncated, x is the object vector,and n is observation noise. Let gi be the ith column of G. In the noiseless case, we can write y as
a linear combination of the gi as follows:

y = xg, (E2)

where zi is the ith component of the object vector x. Given y and the gi, CLEAN attempts to
iteratively determine the xi.

Let y(n) be the n1 h vector of a sequence of vectors where

y(O) = y, (E3)

and let yi(n) be the ith component of y(n). Let R(n) be our estimate of x after n iterations, with
components 2i(n), with

2i(O) = 0. (E.1)

Finally, let the integer k, be the index of the maximum component of y(n) over the region of
support of x, so that yk.(n) is the maximum value. Then the following set of iteration equations
define CLEAN:

y(n + 1) = y(n) - a(n)g., (E5)

2i~~~n + ) i(n) + a(n), i = kn E6
2i(n), i 36 kn,

w h e re a (n ) is g iv e n b y a =k( (E )
a(n) = eyk(.. (E7)

9max

The notation gm.x denotes the peak value of gi, which (presumably) is independent of i. C is a gain
parameter-necessarily less than unit, and with a value of 0.4-0.5 in our work. At each iteration,
we also compute

* (n) =11 y(n) 11. (ES)

If (n + 1) > (n) than the iteration is terminated and R(n) is used as the object vector estimate.

0

0
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APPENDIX F for Chapter 6

* Computer Program Listings

This appendix contains the Fortran source code of the computer programs used to generate the

data for this chapter.

I c

32c program grdsrch6.f

4 c

6 paraneter(nn-638 ,zw128)
7 roal*8 bw(nn,m),h(m,nn) ,retilu(128) 4(128) ,x(mm),no(nn)
8 real*8 v(u,m) ,w(u) ,rru(am,ua) retilc(128) ,errc(mm,mm)
9 realeS u(un,)

10 roal*8 y(nn),gg(mu,m),d
it integer*4 randou,cntr,ni~nj,nt,u,mb~in,nneg,cntr2
12 integer*4 uniforu,apertures
13 character dfjle*16
14 c
is nzS12
16 print *, nt?'
17 read ent
I8 print C, ni?'

*19 road *,ni

20 print e, nj?'
21 read *,nj
22 print C, 'b?'
23 read e, b
24 c print ), a?'
25 c read a
26 print e, r~

027 read *,snr

28 print e, dID?'
29 read Cd

30 print C Uniformity? (yesal and now0)'
31 read C

1
uniform

32 print ?l 'umber of apertures?'
33 read Capertures

34 print ), Destination File?'
*35 read s, dilo

36 do 5 .-mb,76,6
37 call srandom(29)
38 call bumkr(bw,u,n,m,d,uniform,apertures)
39 call ggmkr(bv,n,a,gg)
40 call uvdmkr(u,n,R,u,,)
41 call bamkr(h,u,w,v,a,n)
42 do 103 jnlim

*43 do 101 jjul,m
44 orru(j,jj)u0
45 errc(j,jj)=0
46 101 Continue
47 103 continue
48 catrwo
49 cutr2=0
so print 0, 'gradsrch trials'

*51 do 105 vla
52 c print e,iv
53 if (float(iv)/10.0-int(float(ii)/i0.0) Ilt. le-lO) then
54 print s, iv
55 endif
56 call randu(r,no,U,n,snr,bw,y,ub)
57 call grdsrch(x,h,no,erru,n,m,nt,errc,y,bw~gg,ni.Tnj~cntr,
58 a neg)

*59 if(aneg.eq.O) then
so cztr2zcntr2+1
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61 endif
62 105 continue
63 print *, real(cntr)ereal(nj)/real(nt), cntr2
64 c call spectraukr(erru,m,retilu,f,snr,mb)
65 call spectramkr(errc,u,retilc,ilsnr,mb)
66 c call plotfl(dfile,128, 'd',f, 'd',retilu)
67 call plotfl(dfile,128, 'd' , 'd' ,retilc)
68 5 continue
69 stop
70 end
71 c
72 c
73 c
74 subroutine buukr(bs,u,n,m,d,uniforu,apertures)
75 reale8 bv(n,x),u(nL,u),hh,d
76 integer n,u,uniforu,apertuxes
77 do 520 i1l,n
78 do 530 uiia~
79 bv(i,ii)uhh((.-n)/2-ii+i,d,uiifor-m,apertures)
80 u(i,ii)-bw(i,ii)
81 530 continue
82 520 continue
83 return
84 end
85 C
86 c
87 c
88 function h]h(j,d,uniform,apertures)
89 real*8 hb,d,pi,di,jl,j2,x1,x2,xj,rxk,xi
90 integer J,k,l,uniforu,apertures
91 c
92 kxapertures
93 xkxk
94 if(j.eq.0)tben
9S hhurxked/2d0
96 else
97 piz4dOeatazi(ldO)
98 dluldO-d
99 xiJj

100 jiwijedlapi
101 j2uxj*d*pi/2d0
102 xlusin(j2)/j2
103 xluil cxl ed/2d0
104 x2zOdO
105 if(uniforn.eq.1) then
106 do 10 izl,k-1
107 ximi
108 x2ux2+(ldO-i/xk)ecos(xiejl/(xk-dO))
109 10 continue
110 hbuxle(ldOi2dOex2)
ill elueif(uniforu.eq.0.aid.apertures.eq.3) then
112 do 20 im1,3
113 zimi
114 x2ux2+co(xi*Jl/3d0)
115 20 continue
116 bhuxle(dO+2dOex2/3d0)
117 elseit(uniforuesq.0.and.apertures.eq.4) then
118 do 30 inl,6
119 zimi
120 x2-x2cos(xiojl/6d0)
121 30 continue
122 hh-xl*(d04x2/2d0)
123 elseif(uniforu.eq.0.and.apertures.eq.S) then
124 do 40 iul,11
125 it(i.eq.10) goto 40
126 iu
127 x2sx2+cos(xijl/lldO)
128 40 continue
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129 hxl*(1d0"+2dOer2/5d0)
130 elsoi1f(uniforu.eq.0.and.apertures.eq.6) then

*131 do 50 iII
132 if(i.eq.14.or.i.eq.IS) goto 50
133 xi-i
134 x2-x2+cos(xiejl/17d0)
135 50 continue
136 hh-xl*(IdO+x2/3d0)
137 endif
138 endif

0139 return
140 end
141 c
142 c
143 c
144 subroutine hmkr(h,u,v,v,m,n)
145 c
146 reale8 unm uu vum hun

*147 integer z,n
148 c
149 do 10 i1l,m
150 do 20 jul,n
151 h(i~j)=OdO
152 do 30 k-i,.
153 h(i,j)-h(i,j)+(1/u(k))*v(i,k)*u(j,k)
154 30 continue

*155 20 continue
156 10 continue
157 return
158 end
159 c
160 c
161 c
162 subroutine ggmkr(bw,n,m,gg)
163 c
164 realeS bw(n,x),gg(x,m)
165 do 600 jul.x
166 do 610 ijul,.
167 gg(i~ii)uO
168 do 620 iiinl,n
169 gg(itii)ugg(itii)+bw(iii,i)ebw(iii,ii)
170 620 continue

*171 610 continue
172 600 continue
173 return
174 end
175 c
176 c
177 c
178 subroutine randn(x,no,m,n,snr,bw,y,mb)

*179 c
180 c Generates random vectors x, no, and ymBVx+no. x has ub
181 c independent Rayleigh components with variance anr and rn-mb
182 c zero components. no has n independent, zero mean, Gaussian
183 c components with unit variance.
184 c
185 realeS ul,u2,u3,s
1I" rea1l8 z(.),no(u),bw(n,m),y(n)

*187 integere4 MX1Vrno
188 parameter(MIXIFTV-2147483647)
189 n2va/2
190 do 10 imi,u
191 x(i)=0d0
192 10 continue
193 do 500 i1l,u2
194 3 ul-real(randoO/M ITV

* 195 if(ul.gt.1.or.uIl.eq.0)goto 3
196 2 u2-real(randoM)/NhXETV
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197 if(u2.gt.1.or.u2.*q.0)goto 2
198 no(2*i-l)-sqrt(-2log(u))*cos(6.2831853*u2)
199 nio(2*i)3sqrt(-2elog(ul))*sin(6.2831853eu2) 4
200 500 continue
201 5ssnr/2
202 do 505 i1l,mb
203 4 u3=real(randomO))/AIXIWTV
204 if(u3.gt.1.or.u3.eq.0)goto 4
205 x(i+(m-mb)12)msqrt (-2*log(u3))esqrt(s)
206 505 continue
207 do 510 i1l,n
208 y(i)=0
209 do 520 ii=1I,u
210 y(i)y(i)+bu(i,ii)*x(ii)
211 520 continue
212 y(i)-y(i)+no(i)
213 510 continue
214 return
215 end
216 c
217 c
218 c
219 subroutine grdsrch(x,h,nQ,erru,n,m,nt,errc,y~bv,gg,
220 eni,nj,cntr,nneg)
221 include )fpedefs.f'
222 paraueter(=-128)

223 real*8 x(m) ,no(nt),erru(m,m) ,h(m,n) ,eu(um) ,zz,msq,nsqold
224 reale8 errc(m~m) ,gg(m,m) ,grad(mm) ,dmsq,s(mm)
225 reale8 y(n) ,bv(n,m) ,z(m) ,xg(mm)
226 real*8 alpha,bet&,ss ,sggs ,teml ,ten2
227 integer cntr,nmeg,list(mm),ni,nj ,K,n,nt:
228 Unegn0
229 .sq-0
230----------------Compute unconstrained solution and BW----------------
231 do 700 i1l,n
232 xg(i).0
233 ZWi)O
234 do 710 iilI,n
235 xg(i)-xg(i)+h(iii)*y(ii)
236 z(i)mz(i)4bw(ii,i)*y(ii)
237 710 continue
238 4u(i)urg(i)-x(i)
239 if(xg(i).lt.0) then0
240 nmeganxieg+1
241 endif
242 700 continue
243 if(nneg.*q.0) goto 200
244--------------------Gradient Projection Algorithm----------------------
245 c ---- Disable overflow and divide-by-zero--
246 c floating point exceptions.
247 nablswfpgetxnabls()
248 neuablsuand(nabls ,not (DIVO))
249 newablwand(newabls ,not(OFLOW))
250 call fpsetrnabls(nevabls)
251 100 .sqoldnasq
252 cntr-cutr+1
253 do 770 ivmI,nj
254 alphaul .797d+308
255 samd0
266 sggsmOdO
257 c-------------Find active constraints and generate list---------
258 do 705 iml,m
259 list(i)ZO
260 if(xg(i)le.OdO) then
261 xg(i)zOdO
262 list (i)Zl
263 endif0
264 705 continue
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265 c--------------Compute gradient and correction vector S----------
266 c and pick step size alpha

*267 do 712 iul,n
268 grad(i)=OdO
269 do 713 ii=1,m
270 grad(i)-grad~i)+gg(i,ii)*xg(ii)
271 713 continue
272 grad(i)zgrad(i)-z(i)
273 c ---- Project gradient onto active, --

274 c nonobstructing constraints.
* 275 if(list(i) .eq.l.axid.grad(i) .gt.OdO) then

276 s(i)0Od0
277 else
278 s(i)--grad(i)
279 end if
280 c --- Determine step size alpha: -------
281 c Determine minimum step size for next constraint,
282 c Determine step size for minimum along direction S,

*283 c --- Pick smaller of the two ------------
284 if(list(i).ne.1) then
285 beta-xg(i)/grad(i)
286 if(beta.gt.OdO.and.beta.lt.alpha) then
287 alphaubsta
288 endif
289 endif
290 712 continue

*291 do 714 i1I,m
292 ssss3+s(i)*s(i)
293 do 716 j-1,m
294 sggsmsggs+s(i)*gg(i,j)*s(j)
295 716 continue
296 714 continue
297 if(ss.eq.OdO) goto 300
298 betainss/sggs

*299 if(beta.gt.OdO.and.beta.1t.alpha) then
300 alpha-beta
301---------------compute new gradient and test for orthogonality-----------
302 c with the S direction.
303 c zz=OdO
304 c do 900 i=I,m
305 c grad(i)=OdO
306 c do 901 ii1l,m

*307 c grad(i)zgrad(i)+gg(i,ii)e(xg(ii)+alphaes(ii))
308 c901 continue
309 c grad(i)ugrad(i)-z(i)
310 c zz-zz+grad(i)*s(i)
311 c900 continue
312 c print *, 'gTs x), zz
313c------- End of Test -----------------------------------------
314 endif
315 c-----------------Compute new Solution ---
316 do 740 i=l,m
317 xg(i)nxg(i)+alphass(i)
318 740 continue
319 770 continue
320---------------------------Check fly-Gxll squared-----------------------
321 msquO
322 do 780 iul,n

*323 ZW
324 do 790 iiul,u
325 zznzz+b(i,ii)oxgii)
326 790 continue
327 zzuy(i)-zz
328 msqnmsq+zzozz
329 780 continue
330 c print *, msq

*331 dmsquabs((msqold-msq)*(10**ni))
332 if (dosq.gt.le+9) goto 100
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333 if (int(dusq).ne.O) goto 100
334 c --- Enable Floating Point Exceptions--
335 300 call fpsetxflags(0)
336 call fpsetxnabls(nabls)
337--------------Accumulate Error Vector Outer Product and Return------
338 200 do 720 j1I,m
339 c print *, xg(i), grad(i), sci)
340 teUImxg(i)-x(i)
341 do 730 iil,u
342 tem2xg(ii)-x(ii)
343 erru(i,ii)=erru(i,ii)+eu(i)*eu(ii)/nt
344 errc(i,ii)=errc(i,ii)4tealetem2/nt
345 730 continue
346 720 continue
347 c print *, msq, nneg
348 return
349 ind
350 c
351 c
3S2 c
353 subroutine spectramkr(err,m,retil,f,snr,mb)
354 real*8 err(m,m) ,retil(128) ,f(128) ,xii,xi,pi2,sm(128)
355 integer p
356 pi28dOeatan(dO)
357 do 10 i1l,u
358 sum(i)OdO
359 10 continue
360 do 20 i-i,.
361 do 30 iil,m
362 pzabs(i-ii)+1
363 sum(p)-suu(p)+err(i. ii)
364 30 continue
365 20 continue
366 print *, sum(1)
367 do 50 iml,128
368 xi-real(i)/256
369 ratil(i)0O
370 do 60 iiul,u
37 xii-ii-1
372 retil(i)retil(i)+sum(ii)cos(pi2*xiiexi)
373 60 continue
374 50 continue
375 do 80 ix,128
376 f(i)-real(i)/128
377 retil(i)Wretil(i)/(snrmb)
378 80 continue
379 return
380 end
381 c
382 c
383 c
384 subroutine svdmkr(a,u~n,w,v)
385 c
386 c This routine generates the SVD of an mmn matrix A
387 c where A z UV~transpose, with U mxn, and V and V are
388 c urn. U is column orthogonal, V is row and column
389 c orthogonal, and V is diagonal. U is returned in the
390 c array a. The diagonal of V is returned as the vector W.
391 c
392 implicit realeB (&-h,o-z)
393 parameter (nmax=128)
394 dimension mn)wn),nn)rl(na)
395 c
396 gzOdO
397 scaleu~d0
398 anormuOdO
399 do 25 iml,n
400 lzi+1
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401 rvl(i)necal*g
402 g-Od0
403 a-OdO
404 scalemOdO
405 if (i.le.n) then

406 do 11 k-i,x
407 .,calewscale+abs(a(k~i))
408 11 cotinue
409 it (scale.ne.OdO) then

*410 do 12 -u

411 a(k,i)-a(k,i)/scal*
412 saki)ak)
413 12 continue
414 frA(i,i)
415 gn-sip(sqrt(s),f)
416 h-fog-5
417 a(i,i)-f-g
418 if (i.ne.n) then

0419 do 15 jxl,n
420 9-OdO
421 do 13 k-i,m

422 s'zs+a(k,i)*a(k,j)
423 13 continue
424 f-s/h
425 do 14 kwi,m

* 426 a(k,j)m~a(k~j)+f~a(k,i)
427 14 continue
428 15 continue
429 endif
430 do 16 k- inm

431 a(k,i~nscale*&(k~i)
432 16 continue
433 endif
434 endif

5 435 ,(iascaie *g
436 gw.0d0
437 swOdO
438 scalemOdO
439 if ((i.le.m).aad.(i.ne.n)) then

440 do 17 k-1,n
441 scaleuscale+abs(a(i ,k))

*442 17 continue
443 if (scale.ne.OdO) then

444 do 18 kinl,n

445 a(i,k)ma(i,k)/scale
446 szu+a(i,k)*a(i,k)
447 18 continue
448 f-a(i,1)
449 g--sign(sqrt(s) ,f)
450 hwf*g-5

*451 A(i,l)-f-g
452 do 19 k.2,n
453 ry1(k)ua(i,k)/h
454 19 continue
455 if (i.ne.m) then
456 do 23 jul,m
457 smd0
458 do 21 kxl,n
459 sus+a(j,k)oa(i~k)
460 21 continue
461 do 22 knl,n

462 a(j ,k)-a(j ,k)+ser,1(k)

463 22 continue
464 23 continue
465 endif
466 do 24 kn1,n

*467 a(i,k)wscal@*&(i,k)
468 24 continue
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469 end if
470 endif
471 anozuuax(anoru,(abs(u(i))+abs(rv1(i))))
472 25 continue
473 do 32 inn,1,-1
474 if (i.lt.n) then
475 if (g.ne.0d0) then
476 do 26 j1.nu
477 vjiuaij/~~)/
478 26 continue
479 do 29 j1.~n
480 a-0d0
481 do 27 k1l,n
482 sus+a(i~k)*v(k~j)
483 27 continue
484 do 28 k-lan
485 Y(k,j)-v(k~j)+sev(k,i)
486 28 continue
487 29 continue
488 endif
489 do 31 jzl,n
490 v(i~j)0Od0
491 vQj,i)-0d0
492 31 continue
493 endif
494 v(i,i)1ld0
495 gprwl(i)
496 1i
497 32 continue
498 do 39 ixun,-1
499 l=i+1
500 g5 V(i)
501 if (i.lt.n) then
502 do 33 j1l,n
503 a(i,j)=OdO
504 33 continue
505 endif
506 if (g.ne.DdO) then
507 g-Id0/g
508 if (i.ne.n) then
509 do 36 jml,n
510 sOdO
511 do 34 k1l,m
512 assa(k,i)*a(k~j)
513 34 continue
514 f~l~~)e
515 do 35 kwi,x
516 a(k,j)xa(k,j)+fea(k,i)
517 35 continue
518 36 continue
519 endif
520 do 37 jui,m
521 &(j,i)za(j,i)*g
522 37 continue
523 else
524 do 38 jm j,a
525 a(j,i)OdO
526 38 continue 4
527 endif0
528 a(i,i)a(i,i)+ldO
529 39 continue
530 do 49 kun,1,-1
531 do 48 itsul,30
532 do 41 lnk,1,-1
533 aa-
534 it ((&bs(rv1Cl))4anorm).eq.anorm) go to 2
535 if ((abs(w(nm))+anor).*q.anorm) go to 1
536 41 continue
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537 1 c-Od0
538 m-ld0
S 39 do 43 -k
540 f-servl W)
541 if ((&bs(f)+auorm).ne.anorm) then
542 g=w(i)
543 h-sqrt(fof+geg)
544 w(i)zh
545 hxldO/h
546 c- (geh)
S47 s--(:feh)
548 do 42 jl,u
549 y7 a(j~nu)
550 z-a(j,i)
551 a(j ,nu)w(yec)e(zes)
552 a(j ,j)--(yss)+(zsc)
553 42 continue
554 edi
555 43 continue
556 2 z--v(k)
557 if (l.eq.k) then
558 if (z.1t.0d0) then
559 v(k)=-z
560 do 44 j=1,u

1-e (j,k)z-v(j,k)
662 44 continue
S 63 ni
564 go to 3
565 endif
566 if (its.sq.30) pause 'no convergence in 30 iterations'
567 X--v(1)
568 nrnk-1
569 y-v(nu)
570 grvl(un)
571 h-rvl(k)
572 f-((y-z)*(y~z)+(g-h)*(g+h) )/(2d0*hey)
573 gpsqrt (f Cf +dO)
574 f((x-z)*(x+z)+h*((y/(f+sign(g,fE)))-h))/x
575 c-ldO
576 s-ldO
577 do 47 j-l,nm
578 i-j+1
579 g-rvl(i)
580 yzu5(i)
581 hs g
582 guc*g
583 zsqrt (f*f+heh)
584 rvi(j)xz
585 caf/z
586 swhlz
587 f- (xec)+(ges)
588 g--(xes)+(gec)
589 hujes
590 YSy*c
591 do 45 nrnl,n
592 xuv(nn,j)
593 z-v(na,i)
594 v(nx,J)u (xec)+(zes)

*595 ,(u,j)n-(ze.)+(zec)
596 45 continue
597 zusqrt (fef+hel%)
598 V(j)wz
599 if (z.u*.OdO) then
600 z-ld0/z
601 cafez
602 Swhez
603 endif
604 f- (ceg)+(Ssy)
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605 X=-(sg) (c*y)
606 do 46 naml,m
607 y-a(zm,j)
608 zza(na,i)
609 a(ux,j)= (y*c)+(z*)
610 u(nx,i)-(yes)+(zec)
611 46 continue
612 47 continue
613 rvl(1)OdO
614 rvl(k)-f
615 w(k)-x
616 48 continue
617 3 continue
618 49 continue
619 return
620 end

0
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Ic

3 c program clean4.f
4 c
S c

6 parameter(n638 ,ua=28)
7 reale8 bw(nn,=m),f(128),XrC=) ,no(nn)
8 realea retilc(128),errc(,=)
9 real'S y(nn),d~eps~psf (2*nn)

10 integer*4 randoin,cntr,nt,m,mb,n
11 integere4 uniform,apertures,flag
12 character dfil*el6
13 c
14 c nwS12
1s print *, 'at?'
16 read s, nt
17 print a, eps?'
18 read e. pa

019 c print l, ab?'
20 c read 0, mb
21 c print s, ')a?'
22 c reade a
23 print a, sar?'
24 read asur
25 print a, 'dd noise? (yesu1 and nonO)'
26 read aflag

0 27 print a,'dD?'
28 read ed
29 print ), Uniformity? (yesul and no=0)'
30 read euniform
31 print a, 'umber of apertures?'
32 rad eapertures
33 print a,'Destination File?'
34 read adfile
35 do 10 i*1,23
36 if(i.lt.21) then
37 u2ei
38 else
39 m.Ci-16)alO
40 endif
41 abou
42 n
43 call orantdom(29)
44 call bwmkr(bw,psf ,n,m,d,uniforu,apertures)
45 do 103 jul,m
46 do 101 jjwI,..
47 arrc(j,jj)=0
48 101 continue
49 103 continue
so cmtr=O
051 print *, 'clean trials'

52 do 105 ivol,nt
53 c print e,jv
54 if (float(iv)/10.0-int(float(i,)/10.0) .1t. 1e-10) then
55 print o, iv
56 eadif
57 canl randm(x,no~m,n,snr,bwy,mb,flag)
5e canl cleaai(z,n,m,t,aps,errc,y,cntr,d,apertures,psi)

0 9 10S continue
60 print o, real(catr)/reul(nt)
61 call spectramkr(errc ,m~retilc,f ,snr,mb)
62 call plotfl(dtile126, 'd',f, 'd',retilc)
63 10 continue
64 stop

66 c

68 c

- 245 -



69 subroutine buukr(bw~psf~n,a,d,uniforu,apertures)
70 reale8 bw(unm).psf(2*n),hh,d
71 integer k,n,n,uniform,apertures
72 do 500 i=1,2*n
73 psf(i)-hli(i-n,d,uniform,apertures)
74 500 continue
75 do 520 i1l,n
76 do 530 jjzj,u

78 bu(i,ii)-psf(k)
79 530 continue
80 520 continue
81 return
82 and
83 c
84 c
85 c
86 function hh(j~d,uni-form,apertures)
87 real*8 hh,d~pi,dl,jl,j2,xl,x2,xj,xk,xi
88 integer j,k,l,uniforn,apertures
89 c
90 kmapertures
91 xk-k
92 if(j.eq.0)tben
93 hh-xksd/2d0
94 else
95 pi=4dO*atan(ldO)
96 dlmldO-d
97 xzjj
98 Jl-xj*dlspi
99 J2=xjedepi/2d0

100 xlusin(j2)/j2
101 xlzxlerl*d/2d0
102 x2-0d0
103 if(uniforz.eq.1) then
104 do 10 im1,k-1
105 ximi
106 x2zx2+(ldO-xi/xk)*cos(xi*Jl/(xk-ldO))
107 10 continue
108 hxls(ldO+2dOex2)
109 elseif(uniforu.q..ad.apertures.eq.3) then
110 do 20 iul,3

112 x2-x2+cos(xi*Jl/3d0)
113 20 continue
114 bltnxl*(1d0+2dOex2/3d0)
115 elseii(uniform.eq.0.and.apertures.eq.4) then
116 do 30 iul,6
117 ziul
118 z2ux2+cos(xiejl/640)
119 30 continue
120 hmlo(ldO+x2/2d0)
121 elseii(uniforu.eq.snd.apertures.eq.5) then
122 do 40 i*1111
123 iI(i.eq.10) got* 40
124 ximi
125 x2=z2+cos(xi*Jl/lldo)
126 40 continue
127 khuxle (ldO.2dOox2/64O)
128 .lseiif(uniforu.eq.0.aM.apertures.eq.6) then
129 do 50 i1l,17
130 if(i.eq.14.or.i.oq.15) goto S0
131 ximi
132 z2ox2+cos(xi*Jl/17d0)
133 50 continue
134 hkazle(1dO'z2/3d0)
135 endif
136 endif
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137 return
138 end

*139c
140 c
141 c
142 subroutine randu(x,no,m,n~snr,b,y,nb,ilag)
143 c
144 c Generates random vectors x, no, and y-B~x+no. x has mb
145 c independent Rayleigh components with variance snr and rn-mb
146 c zero components. no has ii independent, zero mean, Gaussian
147 c components with unit variance.
148 c
149 real*8 ul,u2,u3,s
150 reale8 x(m),nto(n),bw(n,m),y(n)
151 integers4 XINTV,randon,flag
152 parameter(IIITV.2147483647)
153 n2=-n/2
154 do 10 ix1,x

*15S5 ~ )-d
156 10 continue
157 do 500 i1,nx2
158 3 ul-real (random )/MAXIXTV
159 if(ul.gt.1.or.ul.eq.0)goto 3
160 2 u2real(randomO)/NAXINTV
161 if(u2.gt.1.or.u2.eq.0)goto 2
162 no(2ei-1)insqrt(-2*log(til))*cos(6 .2831853*u2)
163 no(2*i)zsqrt(-2*log(ul))*sin(6.28318S3*u2)

0164 500 continue
16S sr-anr/2
166 do 505 i=1,mb
167 4 u3resl(randomM)/XINTV
168 if(u3.gt.1.or.u3.eq.0)goto 4
169 x(i+(m-mb)/2)usqrt(-2*log(u3) )esqrt Cs)
170 505 continue
171 do 510 izl,n
172 YWi)O
173 do 520 iiu1,x
174 y(i)"y(i)+bwUi,ii)*x(ii)
175 520 continue
176 it(flag.eq.1) then
177 y(i)uy(i)4no(i)
178 endif

*179 510 continue
180 return
181 end
182 c
183 c
184 c
185 subroutine clean(x,n,a,nt,eps,.rrc,y,cnttr,d,apertures,psf)
186 c

*187 parameter(unn128)
Is8 realeB x(m) ,y(n) ,errc(u,m) ,xhat(um) ,alpha,xa,sumsq,ssold
189 realca tmp,hO,eps~psf(2*n),d
190 integer*4 cntr,zn,m,k,t ,Apertures
191 C
192 sumaq=1d37
193 xarnapertures
194 hOnxaed/2d0
195 do 10 i=1i=

0198 xhat(i)OdO
197 10 continue
198 100 ssoldxsuaq
199 catracntr+1
200 tupuy((n-&)/2+1)
201 kuC (n-) /2+1)
202 do 20 ix(&-rn)12+2.(n~a)/2
203 if(yUi).gt.tZP) then
204 tapay~i)
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205 kni
206 ondif
207 20 continue0
208 alphawepsetup/hO
209 do 30 j=1I,n
210 y(i)7y(i)-alpbaepsf(i-k+n)
211 30 continue
212 xhat(k-(n--m)/2)=xhat (k-(n-m)/2)+alpha
213 sumsq=OdO
214 do 40 j1I,n
215 sumsqzsumsq+y(i)ey(i)
216 40 continue
217 if(surasq.1t.ssold) goto 100
218 print *, ssold, sumsq
219--------------Accumulate Error Vector Outer Product and Return------
220 do 50 i=1l,u
221 teml-x(i)-xbat(i)
222 do 60 iil,m
223 tem2=x(ii)-xhat (ii)
224 errc(i,ii)errc(i,ii)+temltem2/nt
225 60 continue
226 50 continue
227 return
228 end
229
230 c
231 c
232 c
233 subroutine spectramkr(err,m,rtil,f,sr,mb)
234 real'8 err(m,m) ,retil(128) ,f(128) ,xii,xi~pi2,sum(128)
235 integer p
236 pi28dOeatan(dO)
237 do 10 jxj,m

238 BUMMi)0d0
239 10 continue
240 do 20 iml,m
241 do 30 iixl,u
242 pxabs(i-ii)41
243 sum(p)-sum(p)+err(i~ii)
244 30 continue
245 20 continue
246 print *, sum(1)

247 do 50 i=1,128
248 xinreal(i)/256
249 retil(i)=0
250 do 60 iizlpm
251 xiinii-1
252 retil(i)-retil(i)+sun(ii)*cos(pi2*xiiexi)
253 60 continue
254 50 continue
255 do 80 iul,128
256 f(iDurealI)/128
257 retil(i)-retil(i)/(mnremb)
258 80 continue
259 return
260 end
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1 c
2 c

*3 c program snrukr2.f
4 c
5 c
6 real*4 sum,snr(128),fl(128) ,1g10,slice(50),count(50)
7 realeB f(128),e(128)
8 c
9 lglOlog(lel)

10 c do 5 j-1,16
*11 do 5S=13

12 c do 5 j=1,40
13 c call readfl('s7d0OSulal2s32',n.'d',i.'d',e~j.1,128)
14 call readf:l('s7d005ula12n..'.n.'d',f,ldl,e,ji1,128)
15 c call readf]L('s7d005ula18s40',nt,d),,d,e~j,1,128)
16 c call readfl('test.lsq',nk,'d',f,'d',e,j,1,128)
17 c call readfl('grdtstae',u.')d',f,'d',e,j,1,128)
18 sun-O

*19 do 10i1,2
20 sum-sum+e(j)
21 snr(i)l10elog(r~al(i)/sum)/lglO
22 11(i)-real(i)/128
23 10 continue
24 c call plotfl('snrs7dOOSulal2' ,128, 'f'4, 'V f,snr)
25 call plotfl('snr70Sull2n.m',128, 'f'4,',lsnr)
26 c call plotfl('anrs7dOOSulal8',128, 'f',f1l 'f',snr)

*27 c call plotfl()snrtest.Isq',128,'f',f1,sfl,snr)
28 c call plotfl('snrgrdtstae' ,128, 'V ,fl,'i' ,snr)
29 slice(j)=snr(128)
30 count(j)-j
31 5 continue
32 c call plotfl('slcs7dOOSulal2',32, 'f',coutt, 'f',slice)
33 call plotfl('slc700Su112nam',32, 'V ,coun?, 'V ,slice)
34 c call plotfl('slcs7dOOSulal8',40, 'f',count, 'V ,slice)
3S c call plotfl('lslcstest.lsq',16,'f' ,count, 'V .slice)
36 c call plotfl('slcgrdtstae',8,'f' ,count~ 'f',slice)
37 stop
38 end
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