BTIC FL/Copy

he
ptical
ciences
ompany P.0. Box 1329, Placentia, California 92670 s Phone (714) 524-3622
Report No. DR-514
<
™~
™~
o0
N
N :
$ Final Report on ONR Contract No. N00014-88-C-0692 \is
) Phased Array Imaging

i _DTIC

and E LECT E
Douglas T. Sherwood NOV19 1990

the Optical Sciences Company

380 S. Placeatia, Suite J B
Placentia, CA 92670

September 1990 b s T

Final Report for Period: 1 September 88-30 April 90

Prepared for: Office of Naval Research
Department of The Navy
800 N. Quincy Street
Arlington, Va 22217-5000

K ! :Approved for public r;lgulo)
." L ‘.u.'IfibnM W'.d

D. L. FRIED ASSOCIATES, INC. dba the OPTICAL SCIENCES COMPANY

90 11 16 034

o

he
ptical
ciences

ompany P.O. Box 1329, Placentia, California 92670 = Phone (714) 524-3622

Report No. DR-514

Final Report on ONR Contract No. N00014-88-C-0692
Phased Array Imaging

David L. Fried
and
Douglas T, Sherwood

the Optical Sciences Company
380 S. Placentia, Suite J
Placentia, CA 92670

September 1990

Final Report for Period: 1 September 88-30 April 90

Prepared for: Office of Naval Research
Department of The Navy
800 N. Quincy Street
Arlington, Va 22217-5000

D. L. FRIED ASSOCIATES, INC. dba the OPTICAL SCIENCES COMPANY

\ 3 REPORT DOCUMENTATION PAGE

A R S -
1a. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS '
Unclassified None) R
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/ AVAILABILITY OF REPORT
#b. DECLASSIFICATION / DOWNGRADING SCHEDULE Unlimited
4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITQRING ORGANIZATION REPORT NUMBER(S)
DR-514 e I
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL . | 7a. NAME OF MONITORING ORGANIZATION
(If applicable) * Department of the Navy
the Optical Sciences Company 9D674 Office of Naval Research
6¢. ADDRESS (City, State, and ZIP Code) . 7b. ADDRESS (City, State, and ZIP Coye)
P. O. Box 1329 . 800 N. Quincy Street
Placentia, CA 92670 Arlington, VA 22217-5000
S
. NAME OF FUNDING /SPONSORING 8b. OFFICE SYMBOL 9. PF%CUREMEN’F INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)
- -0692
Office of Naval Research N00014 N00014-88-C-069
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
800 N. Quincy Street PROGRAM PROJECT TASK WORK UNIT

Arlington, VA 22217-5000 ELEMENT NO. NO. NO. ACCESSION NO.

®-

11. TITLE (Include Security Classification)
Final Report on ONR Contract N00014-88-C=0692, Phased Array Imaging

12. PERSONAL AUTHOR(S) David L. Fried, Douglas T. Sherwood

*13& TYPE OF REPORT 13b. TIME COVERED 14, DATE OF REPORT (Year, Month, Day) [15. PAGE COUNT
Final FROM 880901 TO _900430 9009

16. SUPPLEMENTARY NOTATION

e e i O A5 e i
I -

17. COSATI CODES " 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

‘ FIELD GROUP SUB-GROUP_ “PSsuper resolution, sparse array, CLEAN, image resolution,
noise, image processing.(RH)«&”

19. ABSTRACT (Continue on reverse if necessary and identify by block number) GW

The problem of recoverable image resolution is investigated for the case where an
imaging array is u J§Ed whlﬁu/array has an optical transfer function that may be descrxbed
as consisting of ¥islands" of nonzero value in a sea of zerd values.
the missing spatial frequency information can be prov;ded——af?'ln effect, a form of (1nter:
polative) super resolution, 3 . The CLEAN algorlthm used by radio astronomers
suggests that this should be possible. The results developed here indicate that this can
be done, with no significant price in terms of 51gna1-to—n01se ratio to be paid, and further
show that a nonlinear algorithm, like CLEAN, is not required. The results show that the
feasibility of doing this depends on the angular size of the object being imaged. We find
that its size must be less than the inverse of the largest gap between "islands" ifﬂfbﬁ»”’//

etz

array's optical transfer function. Ke.(woyds‘;m

qzo. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21, ABSTRACT SECURITY CLASSIFICATION I
&I unCLASSIFIEDAUNUMITED [SAME AS RPT. [DTIC USERS Unclassified
22a. NAME OF RESPONSIBLE INDIVIDUAL o 22b. TELEPHONE (inciude Area Code) | 22¢. OFFICE SYMBOL
i 114-024-3622 - ope74
DD FORM 1473, 83 MaR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE

_ All other editions are obsolete.

°
]

Chapter Section

1.1

2.1
22

2.3

24

3.1
3.2
3.3
34

4.1
4.2
4.3
44
4.5
4.6

5.1
5.2

5.3

6.1
6.2
6.3
6.4

22.1
222

231
23.2

5.2.1
5.2.2

5.3.1
5.3.2

Table of Contents

Title Page
ABS T RACT .. ittt ettt et eaaeeesaraeaenaannaaaan 3
Introduction and Summary...........oiiiiiiiiiiiiiii it 4
Introduction and SUMMAIYcconiiniiinriieiiiiettarrreeeanrearanans 4
Super-Resolution with Sparse Arrays of Optical Apertures:.............. 15
A Preliminary Investigation

119 00T 1 123 1) A N 16
Discrete Optical Model.........cooiiiiiii ittt iiriineaenss 16
One-Dimensional Model...........c.ooiiiiiiiiiiiiiiiiiiiiiianinaana, 17
Two-Dimensional Modelcociiiiiiiiiii i, 23
Minimum-Variance Processor.........coveiinveecernerinensenrencenas 26
Minimum-Variance Results for the One-Dimensional Case 34
Minimum-Variance Results for the Two-Dimensional Case............. 35
Least-Squares Processor and Results, One-Dimensional.............. 35
Case, Positivity Contraint

Super-Resolution with Sparse Arrays Revisited—Conclusion of 60
Two Aperture Case

Introductionocviiiiiieiiiiii ittt iei s i 61
Some Changes to the One-Dimensional Modelooveen, 61
Results Using the Minimum-Variance Methodccovnens. 70
Results Using the Least Squares Methodocvvviiiiiiiinnnnn 86
Object Reconstruction with Sparse Arrays of Optical............ 102
Apertures. Part I: Linear Methods

Introduction ... vviiuiei ittt i e i i e e ee e 103
Discrete Optical Model (One-Dimensional)ccccovvvuiiiiiiiiennn, 105
Performance Measureveuirvuurereeernstenersnrernnssnerannss 111
Minimum-Variance Processor .. .v.oiverviureiiiiiiiiiiiiiiiereaniens 113
Unweighted Least-Squares Processorcovvevviniiiviiininnnnins 121
)T T L) 122
A Random Process with Finite Support: Authorization............ 129

Function of Its Fourier Transform and Energy and Power
Spectral Densities

17 foe 1) Tl 2o 130
ContinuOuS Case. . uuuviieriiientneerreenseseeeceasensenacnssnsensons 130
Autocorrelation Function of Fourier Transform..........ccevvvnvnnen 130
Energy Spectral Density and Power Spectral Density of z(r).......... 131
Discrete Case....uvuvieeeererererreersrseasesonetesesassrsoconasssos 132
Autocorrelation Function of Fourier Transform..........ccovvvviiinnn. 132
Energy Spectral Density and Power Spectral Density of z(n) 134
Object Reconstruction with Sparse Arrays of Optical............ 135
Apertures. Part II: Nonlinear Methods

D01 do s 111429 o) A A AN NG 136
Discrete Optical Model (One-Dimensional)ccoviiviiinnnnnne, 136
A Performance Measure........ovuvevrierninrennrenrnernssoraoesnsens 142
Unweighted Least-Squares, Finite Support and Positivity 144
Constraints

-1-

6.5

CLEAN Lo i 146

REFERENCES.ttt it ciaiie i ciens 164
APPENDIX A for Chapter 2.......cuuuiieiuiiiiiiiienineneaaennnnn. 166
APPENDIX Bfor Chapter 3ccoiviiiiiiiiiiiiniiiireiienannnnn 192
APPENDIX C for Chapter 4coiiiiiiiiiiiiiiiiiiiiainna. 221
APPENDIX Dfor Chapter 6covvrniiriiiiiiiiiiiiianaannnaann. 232
APPENDIX Efor Chapter 6ccovieuieiianniiirnenanneaannn. 234
APPENDIX Ffor Chapter 6ccovuiinneiiiieinaniiiennennaann. 235
-9-

’y

ABSTRACT

The problem of recoverable image resolution is investigated for the case where an imaging array
is used which array has an optical transfer function that may be described as consisting of “islands”
of nonzero value in a sea of z:ro values. We wish to know if the missing spatial frequency information
can be provided—if, in effect, a form of (interpolative) super resolution can be achieved. The CLEAN
algorithm used by radio astronomers suggests that this should be possible. The results developed
here indicate that this can be done, with no significant price in terms of signal-to-noise ratio to be
paid, and further show that a nonlinear algorithm, like CLEAN, is not required. The results show
that the feasibility of doing this depends on the angular size of the object being imaged. We find
that its size must be less than the inverse of the largest gap between “islands” in the array’s optical

transfer function.

DTiG

ceary
INSPECTHS,

6

Accession For

NTIS GRA&I

DTIC TAB 0
Unannounced O
Justification_ ______
By

Distribution/

Avallability Codes

Dist

et

Avail and/or
Special

Chapter 1

Introduction and Summary

1.1. Introduction and Summary

The objective of the work reported here has its origin in the Jesire to form a high resolution
image of a satellile in a geosynchronous orbit with ground based optical imaging equipment. Un-
derlying the willingness to express such a desire is the presumption that by the exploitation of some
technique or combination of techniques—drawn from the methodologies of adaptive optics, of white
light speckle imagery, and of other possible relevant approaches—it will be possible to circumvent
the seeming limits to resolution that are imposed by atmospheric turbulence. Once we grant such
a presumption we next encounter the problem posed by the shear physical size of the instrument
required for the task.

The nominal range involved is R = 4 x 10" m. If the imaging is to be carried out utilizing
A = 5x 107 m wavelength light, and the desired linear resolution on the satellite is 6z = 0.1 m,
then the span, Spax of the imaging system’s aperture must be

Smax = R\/6z
= {4 x 107)(5 x 10~7)/(0.1)
=200 m, (1.1)

This dimension is much too great for us to be able to even toy with the idea that imaging system
might be a conventional sort of “full aperture” imaging telescope. Clearly the imaging system design
has to be based on some sort of array concept—and a sparse array concept at that.

Once we accepted the position that the instrument design should be based on a sparse array
concept, the next matter for consideration has to do with just how sparse an array we might be able
to use. The kind of instrument and its cost would be strongly influenced by the degree of sparsity
we could tolerate.

We had initially maintained that since the resolution we sought, 6z, corresponded to a spatial
frequency, Kmax, such that

Kmax = Smax/A, (1.2)

then we would need an array pattern which provided for “coverage” of all spatial frequencies, s,
such that
[£] £ Kmax- (1.3)

By the term “coverage” we meant that the array’s optical transfer function for that spatial frequency,
7(x), has a non-zero magnitude. This in turn means that for any spatial frequency, «, satisfying
Eq. (1.3), there must be at least one pair of points in the “composite aperture” associated with the
entire array which points are separated by a distance S, where

S==rA (1.4)
Put diflerently, the requirement is that for all S such that
|S| S Smax; (1.5)

there must be at least one pair of points in the array’s composite aperture whose separation is equal
to S. If such a pair of points do not exist then for the spatial frequency & = S/J, the optical transfer
function, r(x), of the array will be zero. This would seem to imply that any information about the
satellite that is represented in its image by this spatial frequency, &, would be missing in the image
eventually developed from the array’s measurements.

The consequence of this is that the minimum acceptable size of the individual elements of the
array is “tied” to the spacing of the array elements. If for example, the spacing of array elements
is in integer multiples of 2 m, then the array elements must have diameters in excess of 1 m. If
they do not, then there will be spatial frequencies for which S = kA has a magnitude just larger

~5-

than 1 m, for which the optical transfer function would be zero—and this, we argued, would result
in images of little utility—strongly “defaced” by the absence of significant portions of the spatial
frequency spectrum. The implications of this seemed to be two-fold. First, a great deal of physical
aperture area (i.e., a great deal of glass) would have to be provided. Second, unless we were
prepared to consider a very large number of scparate array elements, the aperture diameter of the
individual array element would have to be considerably larger than the effective coherence diameter,
ro, imposed by atmospheric turbulence considerations. This carried with it the implication that just
as we probably would have to be able to phase the array elements to each other, so also we would
probably have to provide a wavefront distortion compensation/accommodation procedure for each
array element’s aperture.

It was at this point in the consideration of this matter that Ken Johnston of NRL introduced
a quite different position. He argued that the radio astronomer’s experience with the CLEAN
algorithm demonstrated that it was possible to recover very acceptable, high resolution images
starting with data from an array so sparse that for many of the spatial frequencies that were present
in the recovered image, the value of the array’s optical transfer function was equal to zero. It
was not necessarily clear how/why this could be the case, but it nonetheless appeared to be true.
The practical implication of this was that with reasonably large spacing between array elements,
and thus with only a moderate number of such elements, it would be possible to use a quite small
aperture diameter for each element—providing of course that light gathering requirements did not
force the use of larger aperture diameters. In fact from a missing spatial frequencies point of view,
the individual element’s aperture diameter could be small enough so that there would not be any
significant wavefront distortion within the element’s aperture. This would close out the question of
whether or not any adaptive optics were unavoidably needed to compensate for wavefront distortion
in each aperture element—Ileaving the system design with the only unavoidable turbulence/phase
compensation problem being that of how to handle to relative phase difference between the individual
array elements. And of course, the permitted smallness of the individual array elements offered an
advantage in terms of cost and mechanical complexity.

But before we could accept all of these advantages it was necessary to understand if the CLEAN
algorithm does actually work as well as it seems to and also how/why it does so. We had to consider
the possibility that CLEAN works as well as it does for the radio astronomers only because it has
available to it an immense signal-to-noise ratio in the starting date. The available publications do
not clearly rule out this possibility. If it did rely on a very large signal-to-noise ratio it would be of
little potential utility to us in designing a sparse optical array for imaging a geosynchronous range
satellite. Also we had to understand just how sparse the array could be and still produce useful
images, i.e., how far apart from each other could the array elements be (or how few array elements
we needed to use). It was to investigate these questions that the work reported here was undertaken.

This work is reported in the various chapters following this introduction. The balance of this
introduction explains how we viewed/approached this problem, the methods we used in carry out
our investigations, and finally what we found. As a convenience to the reader we will first take up
a discussion of our work in a bit more detail.

To sum up, we found that it is possible to recover a quite satisfactory image even though
the array is so sparse that the value of its optical transfer function is equal to zero over much of
the spatial frequency domain covered by the image eventually produced. We found that this was
possible even with quite modest signal-to-noise ratio values for the basic data produced by the array;
we found that the image recovery process seems to impose little penalty in terms of signal-to-noise
ratio. Moreover, we found that there was no strict requirement that the image recovery process be
nonlinear—even though the CLEAN algorithm itself is nonlinear. We found that the size of the
individual aperture elements did not matter (except as that effects the total light gathering/shot
noise) but that what was of critical importance was the relationship between the size of the object
being imaged and the spacing between array elements. The spacing between array elements set
a critical angular dimension and the angular size of the object being imaged had to be smaller

-6-

than that if a satisfactory image was to be recovered without imposing a severe signal-to-noise ratio
penalty.

Our conceptual approach to this problem was through the idea of super resolution. More than
two decades ago there was a flurry of activity around the concept of super resolution—a term which
can be taken as meaning, at that time, the possibility of obtaining an image containing valid data
for spatial frequency whose magnitude is above D/ (cycles/rad f.o.v) when collecting the optical
information using an imaging system whose aperture diameter is D and when working in a (narrow)
spectral band characterized by a wavelength A. The value of the optical transfer functicn is zero for
such large spatial frequencies, and the ability to obtain valid image data at such spatial frequencies
with such an instrument is in a rather obvious sense “super resolution”. It seemed to us that, as a
practical matter, the term “super resolution” referred not so much to the magnitude of the spatial
frequency but more so to the fact that the value of the optical transfer function was equal to zero for
the spatial frequencies being considered. In‘that sense what was being accomplished by the CLEAN
algorithm working with data from a very sparse array was super resolution. The spatial frequencies
in question were not, in general, as large as the largest covered by the array’s span, but the value of
the array’s optical transfer function was equal to zero for the spatial frequencies in question—and
yet valid image data was being produced by the CLEAN algorithm for these spatial frequencies.

With this putative equating of the sparse array problem to the concept of super resolution, we
were able to draw on the insight provided by Jim Harris more than 25 years ago, that to the extent
that super resolution works, it works because the object being imaged is of finite size, on a uniform
(black) background.* He showed that no two distinctly different objects of finite angular size can
have identical images. This caused us to recognize the potential significance of the finite size of
the satellite we were interested in imaging. But Harris’ work was followed by a number of others
that showed that while super resolution could be achieved—in fact could be achieved by quite linear
signal processing methods—there was a tremendous signal-to-noise ratio penalty to be paid for what
was achieved.

Based on consideration of these various results we formulated an approach to investigating
what could be accomplished by processing sparse array data, which approach restricted attention to
finite size objects and to linear signal processing algorithms (at least initially). We chose to use a
spatially quantized (i.e., a sample value) formulation of the problem, rather than one based on the
use of analytic functions. (This assured us that, though we might burden the computer, the most
complex analytic operations we would have to consider were matrix manipulations.) We assumed
as a given, the matrix representing the imaging system’s (i.e., the array’s) point spread function—a
matrix which when multiplied by the data array (of sample values) representing the object, would
result in a data set (of sample values) representing the raw or initial image formed by the imaging
system/array. We assumed that there would be some set of random (noise) values added to this
initial image formed by the imaging system/array. (We always considered a gaussian noise with an
rms level that was the same for all pixels in the initial image.) We then posed our analysis in terms
of a linear process (i.e., an image processing matrix) to be applied to (i.e., to be multiplied by) the
data set constituting the initial image so as to produce a set of estimated values for the data set
representing the object being imaged.

When we assumed that we knew nothing of the statistics of the object being imaged then we
imposed a least square error criteria in the selection of our linear process (i.e., in the selection of our
image processing matrix). Our least square criteria was that the recovered object (image), if imaged
by the array (i.e., if multiplied by the array’s optical transfer function matrix) would produce a set
of data matching the row (initial) image values as closely as possible, in a least square sense. This
lead in a direct manner frora knowledge of the array’s optical transfer function to formulation of a
matrix for linear processing, (i.e. matrix multiplication) of the raw (initial) image data to produce
the enhanced image. It allowed us to develop results for the mean square error in the recovered

* J. L. Harris, “Diffraction and Resolving Power” J. Opt. Soc. Am. 54 931-936 (1964).

-7

image as a function of the rms noise and the nominal signal level in the raw image.

We also considered the case in which we assumed that we knew something about the statistics
of the object being imaged. In this case we were able to use a minimum variance formulation of
the image processing problem. In this case also we obtained an image enhancement matrix to be
multiplied by the raw (initial) image data produced by the array, and thereby produce an enhanced
image. In this case also we developed an expression for the mean square error in the recovered image
as a function of the mean square error in the raw image and of the nominal signal level in the raw
image.

In developing this line of investigation we recognized that it might not be desirable to attempt
to recover an image containing all spatial frequencies up to the highest that the sample density (or
pixel size) could support. Accordingly we considered spatial frequency analysis of the recovered
image. We developed expressions allowing us to calculate the signal-to-noise ratio to be associated
with each spatial frequency component of thé recovered/enhanced image, and the signal-to-nose ratio
to be associated with an image enhanced for all spatial frequencies up to some cut-off frequency,
and with zero content for higher spatial fréquencies. Such results were developed for both minimum
variance and least square error formulations.

Our initial work started with a two-aperture one-dimensional array, and with a three-aperture
two-dimensional array. This work along with our basic analytic formulation of the problem is
presented in Chapters 2 and 3 of this report. Unfortunately we were able to develop virtually no
useful insight from this work, and the documentation is included here partly for completeness, but
mostly as a reference for the detail of the analytic formulation—which we continued to use. We
now realize that our failure to obtain useful insight from the results of this work has to do with
the fact that the problem was not “rich” enough. The two-aperture one-dimensional array and
the three-aperture two-dimensional arrays are too simple. In subsequent work we considered multi-
aperture one-dimensional arrays. For these multi-aperture arrays the imaging process/problem was
sufficiently rich that we were able to develop considerable insight into the image enhancement/super
resolution process. (We did not pursue the two-dimensional array problem any further, considering
that the insight we got from the one dimensional array problem was equally applicable to the two-
dimensional array.) After a brief discussion of the one-dimensional array results that we obtained
with linear processing we will discuss work done with nonlinear processing algorithm; such results
are developed in Chapter 4.

As an instructive example of the results we obtained with a linear processing image enhancement
technique we present the minimum variance results obtained with the one-dimension six aperture
(non redundant) sparse array whose array pattern and optical transfer function are shown in Fig. 1.1.
We have a sparse array span denoted by D, with an optical transfer function that has non-zero values
out to a spatial frequency of D/A. The optical transfer function has islands of nonzero value with
spacing of 1'17D/’\ cycles/rads .. in spatial frequency—out to %D/z\ cycles/rad¢ o.v., but then has
a gap of 5D/ cycles/radro.. to the next island. Between the islands, in the gaps of fD/A and
%D//\, the value of the optical transfer function is zero. We call particular attention to this transition
from a gap of =D/ to ¥ D/X cycles/rady..y. at a spatial frequency of 3 DX cycles/radr.o.v.. We
also note that the value of the optical transfer function is zero for all spatial frequencies above D/
cycles/rads.o.y..

The analysis associated with this array was formulated utilizing pixel size of %,\/D both to
define the object and its recovered image, and to represent the (noisy) raw (initial) image formed
by the array. With this sample size we are able to consider spatial frequencies up to 2D/A. We
took as our knowledge of the object being imaged, the assumption that it was a zero-mean white
noise pattern, i.e., that there was no correlation between pixel values, that the average value of each
pixel was zero, and that the standard deviation in the value of each pixel was the same—a value
denoted by o.. We considered the noise in the array’s image plane to also be zero mean white
noise with a standard deviation denoted by o,. We relate o, and o, by presume a scale factor in
associating numerical values with the raw image data such that the matrix representing the array’s

-8-

Figure 1.1 Array Patterm and Optical Transfer Function for a Six-Element One-Dimensional
Non-Redundant Array. The spacing of the array elements, indicated by the numbers 1, 3, 6,
2, and 5 in Fig. 1.1a total to 17, which we associate with the array span, to be denoted by
D. It is to be understood as significant that the array elements are small.enough compared
to the array spacing that the value of the optical transfer function is equal to zero over much
of the spatial frequency domain of interest. We see in an 1 1b that the space between the
individual “islands” of nonzero OTF value is —D/A out to 12 D/,\ with only small zero-value
regions between the islands—but there is a slgmﬁcantly larger gap of zero-value OTF between
the 13 D/) spatial frequency island and the D/A island, a gap that will be of considerable
sngm]gcmce in interpreting our results,

point spread function would image an everywhere equal to unity infinite extent object as an every
equal to unity infinite extent raw image. For our analysis we considered the ease where the raw data
“signal-to-noise ratio” was,

SNRRAW =20 logm(a,/an), (1.6)

equal to 50.

When we calculated mean square error in each spatial frequency component of the processed
image produced by the minimum variance estimator for various size objects, we obtained the results
shown in Fig. 1.2. These results are for object sizes of 3A/D, 6A/D, 9A/D, ..., 21A/D. Examining
this figure we can see that only for the two largest objects, 18A/D and 21\/D, do we make much
error in estimating the spatial frequency components for all spatial frequencies below %D/z\, even
for spatial frequencies for which the arrays optical transfer function is equal to zero. For spatial
frequencies between {%D//\ and iwaz\, it is‘only for the two smallest objects, 3A/D and 6A/D, that
acceptable results are obtained. The quality of the estimate for spatial frequencies beyond D/ falls
off quite rapidly, going out the farthest for the smallest objects.

100 L I 1

1 Jllll

T

107!

p—-
— —
——

lllll
N
_
—
~——
L

1 1 lllllll

1072

E.GO/E ()

11 lllllll

1073

1 1 lllllll

wA/D

Figure 1.2. Spatial Frequency Component Estimation Error.

Results are shown here for the six-element sparse array depicted in Fig. 1.1, for object of size
3)\/D, 6)/D, 9)\/D, ..., 21A/D. Each curve represents the mean square error, E¢(), in our
estimate of a spatial frequency component, x, normalized with respect to the mean square value
expected for that component, Ex(x). Minimum variance estimation with }A/D sized pixels
and an initial signal-to-noise ratio, SNRraw, of 50 dB is utilized in developing these results. It
should be noted in studying the results depicted here, that only for the 18)/D and 21)2/D cases
do the curves show any “ excess” noise for spatial frequencies below }%D/A—even for those
spatial frequencies for which the MTF, as shown in Fig. 1.1b, is equal to zero.

-10-

In Fig. 1.3 we show related results, only for all object sizes from 1A/D, 2A/D, ..., to 32)/D,
and in terms of the rms error in the enhanced image. The results are shown as a function of spatial
frequency cut-off, ko, in the enhanced image. The signal to noise ratio is defined by the equation

SNREesT = 20 logo(0g/0n), (1.7)
where o7 denotes the standard deviation in the pixel values of the enhanced image. The results

shown in Fig. 1.3 may be considered as being obtained as a spatial frequency integral over (an
extended set of) the results shown in Fig. 1.2.

4'0. LR L I LI LR I LIS

SNReg; (dB)

wgA/D

Figure 1.3, Enhanced Image Signal-to-Noise Ratio as a Function of Spatial Frequency Cut-off,
The results shown here may be thought of as being developed from those in Fig. 1.2 (except that
here we consider object sizes of 10/D, 2A/D, 3X/D, ..., 32)/D), by integrating over spatial
frequency up to the cut-ofl frequency, xo. These results correspond to the mean square error in
the estimated pixel value of the enhanced image, normalized by the variance (associated with the
object’s statistics). It is to be noted that good results are obtained for object sizes up to 170/D
(the inverse in the basic optical transfer function gap shown in Fig. 1.1b, for spatial frequency
cut-offs up to ﬁ-D//\. For cut-offs up to D/ good results are obtained only for object sizes
about up to 61/D, about equal to the inverse of the largest gap in the optical transfer function
when considering spatial frequencies up to D/A.

It is clear from an examination of these results that there is a break in enhanced image quality
at a spatial frequency of D/) and an earlier break at 13D/ for all objects except those whose size
is greater than 6A/D. Most important of all, we note that performance is seriously degraded for any
spatial frequency cut-off for objects larger than 17D/A..

-11-

All of these results suggest to us that the critical consideration is the size of the object relative
to the inverse in the largest gap between “islands” in the optical transfer function. If we take }%D//\
as our cut-off spatial frequency, then the largest gap is T17D/)\—-and we get good results for all
objects whose size is no greater than 171/D. This is made quite explicit by the presentation of
the data shown in Fig. 1.4. If we take D/) as our cut-off spatial frequency, then the largest gap is
%D/A = 557D/}, and the only good results are for objects whose size is no greater than 61/D. We
conclude from these results and others like it, that super resolution, i.e., the ability to develop image
data for spatial frequencies for which the value of the imaging system’s optical transfer function is
zero, can be obtained by linear processing of the raw image data. The (only) requirement is that
the object be smaller than the inverse of the largest gap in the modulation transfer function, and

that we formulate our image processing algorithm with this knowledge in hand.

30 lllTrlI1l'Illll|llllIllllllllllllll
N
o)
v
b e —
"
Lot
=z
n 10— —
0 llllIllll'lJLL'llllllJllllllllllll

0. 5. 10. 15, 20. 25. 30. 35
Support (A/D)

Figure 1.4. Enhanced Image Signal-to-Noise Ratio as a Function of Object Size.

The results shown here are taken directly from Fig. 1.3, for a cut-off spatial frequency of -}%D/ A
For this cut-off spatial frequency the largest gap between islands of nonzero value in the optical
transfer function shown in Fig. 1.1b, is T‘,D/A. We consider it significant that the signal-to-noise
ratio does not fall-off, i.e., apparently super resolution has been achieved so long as the object
size is no greater than the inverse of this gap.

To understand why it should be that we can apparently develop the missing data for spatial
frequencies for which the optical transfer function is zero—in essence achieving super resolution—we
undertook the study reported in Chapter 5. In this work we show that if we start with an infinite
extent white noise pattern—a pattern for which there is zero correlation between the amplitudes of
the components at two distinct spatial frequencies, no matter how close the spatial frequencies—and

-12 -

if we slice out a limited size sample of this random pattern and embed it in an infinite extent of zero
values, then we now have an infinite random pattern for which there is non-zero correlation between
different spatial frequency components! However, only if the components are for spatial frequency
components that are close enough together is the correlation substantial. We find that the concept
of spatial frequencies that are close enough together corresponds to the inverse of the difference of
the two frequencies being greater than the size of the random sample that we extracted from the
original random pattern.

We interpret this as meaning that in any finite support random pattern, spatial frequency com-
ponents are necessarily correlated if the spatial frequencies are close enough, where close enough
has to do with the inverse of the objects size. We believe that the minimum variance estimator
naturally takes advantage of this correlation. This allows it to estimate the amplitude of the un-
measured spatial frequency components, using the amplitude of the measured components as a basis
for the estimates—providing that the object is not too large to allow accurate estimation to be
done this way. Put in a different way, we would say that the correlation indicates that the missing
spatial frequencies do not contain any significant amount of new information; it’s just a matter of
“spreading out” the information we do get from the measurement in a somewhat different way, and
this is what the algorithm does. It’s still “super resolution” according to our definition of that term
as providing image data for spatial frequencies for which the optical transfer function is equa: to
zero—but somehow the wonder of it, of super resolution seems to be gone. Nonetheless, we shall
call it “super resolution”.

It may be recalled that the CLEAN algorithm and other related algorithms possibly promising
super resolution were nonlinear in nature. We have thus far restricted our attention to linear
algorithms. This would seem to leave open the possibility that if we had used a suitable nonlinear
algorithm we would have been able to process larger objects. To investigate this possibility, since
the nonlinear algorithms do not lend themselves to closed form analytic treatment, as were used
in Chapter 4, we switched to a Monte Carlo approach. We developed results using a Monte Carlo
approach, and then compared those results (i.e., the rms errors) with the rms error for a linear
algorithm—namely the least square algorithm. These results are presented in Chapter 6.

We carried out Monte Carlo runs for both the CLEAN algorithm and for a least square aug-
mented by positivity requirement. In general we got essentially the same performance from the
nonlinear as from the linear algorithm. This is illustrated in Fig. 1.5. Based on this and the other
results developed in Chapter 6 we have concluded that there is no special virtue in the use of a nonlin-
ear image enhancement algorithm—though there may be practical computational advantages—and
that for analysis of expected performance we may rely on results developed with a linear algorithm
being used for image enhancement.

But most important of all, we have concluded that Ken Johnston’s suggestion is valid—that we
could use an imaging array with widely spaced array elements and small element size to image an
object in a geosynchronous orbit. Exactly how small an aperture diameter each array element can
have is no doubt going to be strongly influenced by light gathering/signal strength considerations,
and it may be possible to use aperture diameters small enough to avoid wavefront distortien. Cer-
tainly we now know that there is no reason to rule out the use of such small apertures on the basis
of the consequent presence of zeros in the array’s optical transfer function.

Regarding the spacing between array elements we note that if we were interested in imaging
a 10 m diameter satellite in geosynchronous orbit, working at 0.5 pm wavelength, then the basic
array element spacing parameter would be 2.0 m. If light gathering considerations did not preclude
it there is no reason why the size of the array elements could not be as small as 10 cm, or less.

50. TTTT TV YT iriyIritTryeryryriTyiinreT
A LN R EE B M

40. [— —

SNR.s; (dB)

_4_0 lLJ!ll|ll|llll]llllllllllllll Illllll
‘0. 5. 10. 15. 20. 25. 30. 35. 40.

Support (A/D)

Figure 1.5, Comparison of Image Enhancement Results Using Least Square Estimation and
Using CLEAN. The continuous curve represents the analytic results obtained for least square
estimation. The dots (connected by the broken line) represent the results obtained from 40
Monte Carlo runs for each dot, for the CLEAN algorithm. It is obvious from consideration of
these results that there is no significant advantage obtained by use of a nonlinear algorithm, i.e.,
CLEAN, rather than the linear image enhancement algorithm associated with least square error
processing. (For more details regarding the results shown here the readers attention is directed
to Fig. 6.33 and the associated discussion in Chapter 6.)

- 14 -

®
Q
o
¢
Chapter 2
° Arrays of Optical Apertures:

A Preliminary Investigation

(originally issued as TR-1012)

2.1. Introduction

This chapter presents the results of a preliminary investigation into the feasibility of obtaining
useful images of objects viewed through a sparse array of optical apertures. If an array of apertures
is sufficiently sparse, then the modulation transfer function (MTF) of the array will contain holes,
or regions of zero response. Thus, the Fourier transform of a noise-free image of an object will also
have corresponding regions of zero frequency response. To obtain a useful estimate of tlhe object
intensity distribution from the image, one nceds to “fill in” the missing frequency regions. We refer
to this process as (interpolative) super-resolution*. To do so, one must have constraint information
about the object. For example, if one knows the support region of the object, then theoretically,
knowledge of the fourier transform of the object intensity distribution in one region can be used to
fill in the missing information in another region (analytic continuation). A positivity constraint on
the estimate of the object intensity distribution can also be used in addition to, or instead of, the
support constraint to extend object frequency information. In this report, our primary emphasis is
on the object support constraint. .

We begin in Section 2.2 by developing a discrete model of an optical system so that the system
response can be approximated with a matrix equation.

In Section 2.3 we assume we have first and second moment information about the object intensity
distribution and observation noise, and we develop a minimum-variance estimate of the object using
the support constraint only. The results indicate that the achievement of useful super-resolution
with significantly sparse arrays requires very large signal-to-noise ratios.

In Section 2.4 we investigate the implication of the addition of a positivity constraint to the
finite-support constraint. Here we assume no statistical knowledge and use a least-squares estimator
instead. Unfortunately, the nonlinear nature of the positivity constraint greatly complicates the
computation of useful object estimates, and our results to date are consequently rather limited.
However, these results indicate that positivity, when used in addition to finite support, has the
potential of significantly improving super-resolution performance.

2.2, Discrete Optical Model

The intensity distribution of a monochromatic image of a object can be described mathemati-
cally as the two-dimensional convolution of the intensity distribution of the object with the point-
spread function of the optical system. Since the spatial frequency response of any optical system
has finite support, the point-spread function is in‘nite in extent. In order to study super resolution
quantitatively, we have chosen to use a discrete matrix model of convolution. This necessitates not
only discretizing the optical model, but assuming that the point-spread function is of finite extent.
Thus, the spatial frequency response of the model will not have finite support. However, we assume
that if the extent of the point-spread function is chosen sufficiently large, truncation of the point-
spread function will have a minimal effect on the results, We will use both one and two dimensional
discrete models. The one-dimensional model, being computationally less complex, will enable the
generation of a large body of results that are easily displayed. The two-dimensional mode] will be
used to verify that the conclusions drawn from consideration of the one-dimensional results extend
to two dimensions.

* The term “super resolution” has customarily been used to refer to the development of image/object information
associated with spatial frequencies higher than those that go with the largest dimension of the aperture of
the imaging system—spatial frequencies for which the imaging system'’s transfer function has zero value, It is
entirely consistent with this to generalize the concept of “super resolution” to the development of image/object
information for any spatia! frequency for which the imaging system’s transfer function has rero value—even if the
spatial frequency is less than that associated with the largest dimension of the aperture. For a filled aperture this
generalization is an empty one, but for a sparse array imaging system this generalization represents a significant
“extension” of the basic concept of “super resolution”. We may use the terms “interpolative super resolution”
and “extrapolative super resolution” to distinguish between the cuse 1) where we are “filling in” missing data
at spatial frequencies less than the highest the aperture can nominally provide, and 2) when we are “filling in"
missing data at spatial frequencies greuter than the highest the aperture can nominally provide, respectively.

-16 -

2.2.1 One-Dimensional Model

Let the components of the L X 1 vector z be the intensity pixels of the object line, let the
N x 1 vector y represent the image line intensity pixels, and let the N x L matrix B be the
transformation from object line to image line (its columns contain shifted versions of the system
point-spread-function). Then an image can be represented in the matrix equation

y =Bz +n, (2.1)

where n is a N x 1 noise vector. The product Bz in (1) represents convolution of the object line
with the point spread-function. Let the point spread function be h(k), where k = —K,-K +
1,...,0,+1,+2,...,+K. Then the B matrix is

" h(-K) 0 0
h(-K+1) h(-K) ... 0
T (=K +1) :
h(0) , :
h(0) ... h(-K)
B= 5 : o h(-K+1) |- (2:2)
h(K ~1) :
h(K) h(K-1) ... :
0 h(K) ... h{0)
0 0 ;
: 0 :
: : o R{K-1)
[0 0 e h(K)

Since B has N rows, from (2) we must have that N = L + 2K.
Now let the M X 1 vector x represent an object of finite contiguous support of length M < L
pixels located somewhere in the object line. We can write

z=Wx, (2.3)
where the L x M matrix W is of the form
- 0 .
1 0
W= ! ’ . (2.4)
0 ' 1
L o 0 d

Thus, W comprises an M x M identity matrix embedded in a L X M matrix of zeros. Combining
Eq.’s (2.3) and (2.1) yields
y = BWx +n. (2.5)

-17 -

To compléte the model, we need a point-spread function. To derive a point-spread function, we P
first need to choose an aperture function. To represent a sparse array of apertures in one dimension

we will use a simple model of two small apertures of length d with outside spacing D, as shown

in Fig. 2.1. The corresponding modulation transfer function (MTF) is given below, where « is the

spatial frequency variable and A is wavelength;

MTF(x) = %/d:c w(z + Led)w(z — ZeA). (2.6)

Normally A is chosen to be the area {in this case the length) of the aperture, so that the MTF

at zero spatial frequency is unity. However, we wish to “penalize” the MTF of a sparse aperture

to reflect the fact that the total energy in the image plane of a sparse array will be reduced from

that of a full array in proportion to the ratio 2d/D. We will thus set A4 equal to D instead of the

more conventional 2d. The resulting MTF is shown in Fig. 2.2a. Fig. 2.2b shows the MTF when

d/D = % (the full aperture case). We note from Fig. 2.2a that, for d < D/3, there is a region of zero PY
MTF over the range d/X < « < D/X —2d/X It is this region that will bear scrutiny in performance

evaluations. Fig.’s 2.3-2.7 show the MTF on a log-log scale for various values of d/D.

L
A wix)
d
|<—->-I o
______________ b e ;
[
o
0 X
D
oot o
o
Figure 2.1. One-Dimensional Aperture Function L]
The point-spread function of an optical system is the inverse Fourier transform of the MTF
function. Without going into the details, one can show that the inverse Fourier transform of the
MTF shown in Fig. 2.2a is
4, [=(D-d)] [sin(xzd/))]’ o
= — - . 2.7
he(z) Dx <08 [T 7zd/A (2.7)
- 18 -

A MTF (k)

2d/D

d/D

! = kA/D
0 d/D 1-24/D 1-d/D 1

(=)

A MTF KD

d/D=1/2

1 o kA/D

(b)

Figure 2.2, Modulation Transfer Function (MTF) for Aperture Function of Fig. 2.1.

MTF

MTF

0
10 T ——— Ty

1o

102

ol

- NP RN | . ol
to 10" 107 10*
¥A/D
Figure 2.3. MTF of the Aperture of Fig. 2.1 with /D = 0.1.
The region of zero MTF is 0.7 D/ wide.
’oo L] L L3] L] LR BR) I T L] L] l T LIRS

i

10— -
.) PP PN —
10 ;0" 1o

xA/D

Figure 2.4. MTF of the Aperture of Fig. 2.1 with d/D = 0.2,
The region of zero MTF is 0.4 D/A wide.

-920 -

MTF

MTF

100 ——— —————r

A

PR SR

10

1072 — —
- J
107 : N BT i ——id
107 10" 10

xA/D

Figure 2.8. MTF of the Aperture of Fig. 2.1 with d/D = 0.3.
The region of zero MTF is 0.1 D/ wide.

e
10 T ﬁf]rli‘ll T T T 1 T

10!

™7 le-vI

10t

'l'_'T"

T

T
i

. PR R B N P B
lOIO" 107 100
wA/D

Figure 2.6. MTF of the Aperture of Fig. 2.1 with d/D = 0.4.

-21-

MTF

10°

[: T
107" —
»
1072 — —~
o k
N]
- -
10-3) 2 b !J_l A1 1 1 L 4 4 vy
167 107! 100

wA/D

Figure 2.7. MTF of the Aperture of Fig. 2.1 with d/D = 0.5 (full aperture).

-22 -~

The subscript ¢ denotes that this point-spread function is the continuous version. The discrete
version of the point-spread function is found by sampling and truncating the continuous version.
Let A denote the pixel spacing in the image line. Then the discrete point spread function used in
the B matrix given by Eq. (2.2) is

h(n) = {oA’hc(nA), -K<n<K (2.8)

else.

Before we go on to the two-dimensional model, we wish to discuss the evaluation of the per-
formance of a processor. Any processor we chose will have, as an observable, the image vector y.
Using y and whatever @ prior: information is available, the processor will form an estimate of the
object vector x. Let us call this estimate X. Let the error in the estimate be

- e=x-R (2.9)

One common measure of performance is the mean-square-error, (eTe). For our purposes this measure
is not useful. It gives us no indication of how well the processor performs as a function of spatial
frequency. The performance measure we will use is the energy spectrum of the error vector. The
Fourier transform of the error vector is

ex) = Z e(n) exp|—i2rnAxk], (2.10)

n

where e(n) is the n'" component of the error vector. The energy spectrum of the error vector, which
we denote by E,(k), is the expectation of the square of the magnitude of &(x) as given by Eq. (2.10):

E.(x) = ([&(<)I*)
= Z Z(e(n)c(m)) exp [~i2wlAk(n — m]]. (2.11)

By plotting E,(x) versus &, we will determine how well the processor performs at each spatial
frequency, thus determining its super-resolution capability. We note from Eq. (2.11) that we will
need all entries of the error correlation matrix (e e”) in the evaluation of the energy spectrum of
the error, not just the diagonal terms that are required to evaluate mean-square-error. We further
note that mean-square-error, (e”e), is the integral of the error energy spectrum:

7y
ele)=A dk E,. (k). 2.12
@a=a [denim (212)

2.2.2 Two-Dimensional Model

We will generalize the one-dimensional model of the previous section to develop a two-
dimensional model. We now have object and image planes, rather than lines, and a two-dimensional
point spread function. Following our notation of the previous section, let the components of the
vector %, be the intensity pixels of the nt" row of the object plane, let the components of the vector
¥, be the intensity pixels of the nt* row of the image plane, and let the matrix By, represent the
influence that the I*" row of the object plane has one the n'" row of the image plane. Then we can
write;

Yo =_ Buz +nn, (2.13)
!

-23 -

where n,, is an additive noise vector for the n™ row of the image plane. Assume we truncate the
point-spread function with a square window of dimension 2K +1 on edge, and let the discrete point-
spread function be h(m,n), where m is the row index and n is the column index. Then the B,,
matrix of Eq. (2.13) has the form

h{n—1,~K) 0 0 1
h(n—-1,-K+1) h(n-1,-K)
: hin—1,~K +1)

hn-10) : 0
. h(n-1,0) v h{n=1,-K)
B = : : oo hln=l,~K+1)|" (2.14)

0 h(n -1, K)
0 h(n—1,0)
i 0 0 vo hln-LK) |

Now let us assume that the object has a contiguous region of support within the object plane, Let
the components of x; be the object pixels contained within the support region on the [** line of the
object plane, Then we can write

z; = Wix;. (2.15)
We point out that the length of x; can be, in general, different for each ! (some may be of zero
length). The form of the W) matrix is the same as that shown in Eq. (2.4). Substituting Eq. (2.15)
into Eq. (2.13), we have,

Yo =2 BuWix; +1,, (2.16)
1

now assume we have L rows in the object plane, N rows in the image plane, and let

Y1
Y2

y= E 1 (217)

LY
- X4
Xa

x =) (2.18)

XL

-24 -

K3

n,
nz
n=| .) (2.19)
-nN o
Ty 0
Wo
W= , , (2.20)
Lo Wy
and
By By B 7
By B
B= : . A .) (2'21)
L Byy o Byt J

Then Eq. (2.16) can be written in matrix form:
y=BWx+n. (2.22)

We need a point-spread function to complete our model. The aperture function we will use
comprises three small circular apertures each of diam«+er d inscribed within a circle of diameter
D. This aperture function is shown in Fig. 2.8, The corresponding MTF is the two-dimensional
auto-correlation of the aperture function, which we can write as

MTF (&2, ky) = }II// drdyw(z + fxz) v+ 2Ky0) X w(z = 2kad ¥ — 2k, A). (2.23)

As in the one-dimensional model, we take A to be the area of the “full aperture”, i.c. of the
circumseribing circle, rather than the area of the actual aperture, We write,

A=izD? (2.24)

e

The continuous two-dimensional point-spread function is the inverse Fourier transform of the MTF:
he(z,y) = / dez dky MTF(k,, 10y) exp [i27(kz2 + kyy))] . (2.25)

Finally, the discrete point-spread function, h(m,), used in Eq. (2.14) is a sampled 2nd truncated
version of Eq. (2.25), which we can write as

h{m,n) = {é*hc(mA, n4), e-lsfis mn< K (2.20)

- 25 -

Eq.’s (2.23) through (2.26) have been evaluated numerically for various values of d/D. Some exam-
ples are shown in Fig.’s 2.9 through 2.18.

To complete the model, we will compute the energy spectrum of the error. Let the estimate of
the object intensity distribution be denoted by %:

T
D =

(2.27)

%
Il

~

LXL]

where X; is the estimate of the intensity distribution be denoted of the {* row of the object. The
error vector is

=1.]. (2.28)

e]
It is more convenient to express the error as a two-dimensional array of scalars and accordingly write

e(m,n) = (em)n. (2.29)
The Fourier transform of the error array is

€Kz, ky) = E E e(m, n) exp [~127(mk. + nky)]. (2.30)

m n
The energy spectrum of the error array is

Ec("'x:'cy) = (lg('cz)'cu”z)
YD S elk He(m, n)) exp {i2n [(m = k)se + (n =Dk,]} . (231)
k

{ m n

i

2.3. Minimum-Variance Processor

The first processor (estimator) we will investigate is the so-called minimum variance processor.
We assume that we have first and second moment information on the object vector X and the noise
vector n of Eq.’s (2.5) and (2.22), i.e., we know the mean vector and covariance matrices of x and
n. Since we know the mean values of X and n, and we can compute the mean value of y, we will
assume that the mean values have been subtracted out of Eq.’s (2.5) and (2.22), and our estimate
X is the deviation of x from its mean value. In other words, we have the observation model

y = BWx +n, (2.32)

-926 -

Figure 2.8, Aperture Function For Two-Dimensional Model,

- 27 -

Figure 2,9. MTF of the Aperture of Fig. 2.8 with d/D = 0.05.
The image is 2 D/ on edge. The height of the largest peak is 3(d/D)3? = 0.0075.

Figure 2.10. Greyscale Image of the Point-Spread Function of the Aperture of Fig. 2.8 With d/D = 0.05.
The image is 32 A/D on edge.

- 98 -

Figure 2,11, MTF of the Aperture of Fig. 2.8 With d/D = 0.1
The image is 2d/) on edge. The height of the highest peak is 3(d/D)? = 0.08.

Figure 2.12, Grey-Scale Image of the Point-Spread Function of the Aperture of Fig. 2.8 With d/D = 0.1.
The image is 32 A/D on edge.

-929 -

SN) '/”0‘ \\
AN .
AR

(03

7/] 2
\ >
22, 0:2229\§3

Figure 2,13, MTF of the Aperture of Fig. 2.8 With d/D = 0.2,
The image is 2D/) on edge. The height of the highest peak is 3 (d/D)? = 0.12,

Figure 2.14. Grey-Scale Image of the Point-Spread Function of the Aperture of Fig. 2.8 With d/D = 0.2.
The image is 320/D on edge.

- 30 -

20\
‘\"“:‘“
X/
\\v/ "“k\'\ 0.‘ “ \\\ -

DA
'0““\; “\

Figure 2.15. MTF of the Aperture of Fig. 2.8 With d/D = 0.3.
The image is 2D/) on edge. The height of the highest peak is 3(d/D)? = 0.27.

Figure 2.16. Grey-Scale Image of the Point-Spread Function of the Aperture of Fig. 2.8 With d/D = 0.3.
The image is 321/D on edge.

- 31~

&

00 0020.02020200%5%. 6%
900, 0:0.‘:‘0’0’0’0‘:‘:‘.‘ R
S0 ISR IORIRS
: ~’t‘:.':.:.:.:.0.0’0.:’:’:‘:":’2033 * :’?:‘

Figure 2.17. MTF of the Aperture of Fig. 2.8 With d/D = 1, (Full Aperture)
The image is 2D /A on edge. The height at the peak is unity.

Figure 2.18. Grey-Scale Image of the Point Spread Function of the Full Aperture (Circle of Diameter D).
The image is 324/D on edge.

-32 -

where all vectors in Eq. (2.32) have zero mean. We will use as an estimator a linear transformation
of the observation vector:

X = Hy. (2.33)
The error vector is
e=x-3X
=x— Hy. (2.34)

We wish to choose H so as to minimize the variance of the error. Since e is zero-mean, this is
equivalent to minimizing the mean-square-error, given by

§=(eTe)
= Tr(ee?). (2.35)

Let ¢, and z,, be the n'™ components of the vectors e and X, and let h,, be the n'* row of H. Then
we can write:

en = Zn — Y hy. (2.36)

We can see that choosing h,, to minimize (cﬁ), for every n, minimizes ¢, To minimize (¢}), we
invoke the orthogonality principle (also known as the projection theorem): we choose h,, so that

(eny) =0. (2.37)

Using Eq. (2.36) in Eq. (2.37) yields the equation

(zn)') = (yyr)hn' (2'38)
Solving for h,, we get
h, = (yyT) " (zay). (2.39)
Thus, the optimum H matrix, H,, has a value given by the expression
H, = (eyT)yy™) ™% (2.40)

The covariance matrices in Eq. (2.40) can be computed using Eq. (2.32), yielding

feyT) = () (BW)T, (2.41)
(yy") = (BW)(ex) (BW) + (onT). (2.42)

In computing Eq. (2.41) and (2.42) , it was assumed that this object and noise vector are uncorre-
lated. Using Eq. (2.41) and (2.42) in Eq. (2.40) yields

H, = (xxT)(BW)T [(BW)(xxT)(BW)T + (mnT)] ™"

= RysGT (G ReeGT 4 Ru) ™ (2.43)
where
R = (xxT), (2.44)
Ryn = (nnT)’ (2.45)
G = BW. (2.46)

- 33~

One can apply a matrix inversion lemma to Eq. (2.43) to show that

H,=(GTR;}¢+R})™'GTR;) (2.47)

un nun*

In order to compute the energy spectrum of the error, we need the error covariance matrix. Using
Eq. (2.34) we can write
(eeT) = (exT) — (ey")H] . (2.48)

Since we have chosen H, so that each component of the error vector is orthogonal to the observation
vector y, the second term in Eq. (2.48) must be zero. Therefore, we have

(ee”) = (exT)
"= o) - H,(yxT). (2.49)

Using Eq.’s (2.41) and (2.44)-(2.47) in"Eq. (2.49) yields

(eeT) = Rpp — (GTR;IG + R7) ™' GTR;)GR,.
= (GTR;}G + B;) ™' (GTR; G + R}) Ree — GT R G R
= (GTR;¢+R;N) (2.50)

To simplify computation of Eq. (2.50), we will assume that both the object and noise vectors are
white, i.e,,

R, = ol (2.51)
Rpn = U?;I; (2.52)

where 02 and o2 are the variances of object and noise pixels, respectively, If we define a signal-to-
noise ratio as
SNR = 02 /02, (2.53)

then Eq. (2.50) can be written
(eeT) = (GTG(SNR) + I)~ 02, (2.54)

The numerator of the SNR defined by Eq. (2.53) is referenced to the object plane and the
denominator is referenced to the image plane. Can we relate this to a similarly-defined SNR totally
referenced to the image plane? In general, the answer is no. Such an SNR would vary from pixel to
pixel. Rather than attempting to develop a suitable definition for SNR in the image plane, we will
instead simply make the following observation. Given a very large object of uniform intensity, the
intensity of the image is also uniform and is equal to the intensity of the object scaled by the MTF
evaluated at zero spatial frequency. One can show that the scale factor for the one-dimensional model
is 2d/D and for the two-dimensional model is 3(d/D)? (evaluate Eq. (2.6) and (2.23), respectively,
at zero spatial frequency).

2.3.1 Minimum-Variance Results for the One-Dimensional Case.

In order to proceed, we must choose several parameters. Two of the parameters that strongly
interact are pixel spacing A and the length of the point-spread function (2K + 1)A. Since the
MTF of Fig. 2.2 is band-limited to the range |x] < D/), a pixel spacing of A < L4 (reciprocal of
the Nyquist rate) would be sufficient to avoid aliasing if we were not truncating the point-spread
function. However, truncation of the point-spread function means that the actual MTF is no longer
band-limited, introducing the possibility of significant distortion of the MTF from aliasing. We thus

-~ 34 -

pick a pixel spacing of A = :—%, which corresponds to a spatial sampling frequency of 4D /A, which is
twice the nyquist rate for the MTF of Fig. 2.2. We next choose K = 63, which yields a point-spread
function length of 31.75 A/ D, sufficient to reduce aliasing to negligible levels. We will use an object
line of 32 A/D long (L = 128), allowing us to study support lengths up to 32 A/D. Having chosen
L and K, the number of pixels in the image line is fixed at N = 2L + K = 254, yielding an image
line length of 63.5 A/D.

We are now in a position to compute the energy spectrum of the error vector for various values
of SNR, support length, and d/D, using Eq. (2.54) in Eq. (2.11). The results are shown in Fig.’s 2.19
through 2.23. The energy spectrum in each figure is normalized by the total energy of the object
vector (Mc2) to remove the dependence on the variance of an object pixel (see Eq. (2.54)).

The results are rather discouraging., For example, with d/D = 0.1 and SNR=10* (Fig. 2.23¢),
the only support length which shows a significant amount of super-resolution is 1A/D (roughly the
size of the image of a point source through a full aperture of length D). We need to move to an
aperture with d/D = 0.3 (a not very sparse aperture) to achieve super-resolution with a significant
improvement in support length (Fig. 2.21c). Even in the case, a usable support length would be
less than 8A/D. It is clear from these results, that, despite a priors statistical knowledge, achieving
significant super-resclution performance using only a finite-support constraint on the object requires
an enormously large signal-to-noise ratio. As we shall see in the next section, the two-dimensional
case is somewhat more encouraging.

2.8.2 Minimum-Variance Results for the Two-Dimensional Case.

We will use the same parameters in the two-dimensional case as we used in the one-dimensional
case: object and image pixels 1% on edge (A = }#), a square object plane of 32 A/D on edge, a
square image plane of 63.5 A/D on edge, and a square point-spread function of 31.75 A/D on edge.
Object support regions will be square with M pixels on edge (%f‘,— on edge). We can now compute
the energy spectrum for the two-dimensional model for various values of SNR, support size, and
d/D using Eq. (2.54) in Eq. (2.31), where the error vector in Eq. (2.54) in given by Eq. (2.28). Since
the energy spectrum of the error vector is now a surface, we have chosen to display the results as a
set of grey-scale images in Fig.'s 2.24-2.37. Each figure corresponds to a different aperture sparsity
(d/D), support size, and SNR. As in the one-dimensional case, the energy spectrum in each figure is
normalized by the total energy in the object (M202). The worst case in each figure is a normalized
error-vector energy-spectrum of unity, corresponding to black. Normalized energy spectra below
1072 is displayed as white. Each figure is 4D/) on edge. The region of most interest to us is the
portion of the figures in a circle of diameter 2D/), centered at the center of the square. To see
how the energy surface relates to the aperiure MTF, refer to Fig. 2.24a. This figure corresponds
to d/D = 0.1, a support size of 71*5 X 7%, and SNR=10%. If we compare this figure to Fig. 2.11,
which shows the MTF corresponding to d/D = 0.1, the source of the white diamond-shaped regions
in Fig. 2.24a becomes clear. Although there is some super-resolution displayed in the figure, the
resulting object estimates would probably not be useful. With an array of this sparsity, and a
support region of 7A/D on edge, we would probably need an SNR somewhere between 10* and
105 (Fig.’s 2.24c and 2.24d) to yield useful object estimates. To see how sensitive the results are
to aperture sparsity, refer to Fig. 2.28. Here, useful object estimates appear to be achievable with
a much-reduced SNR=10? if we use an aperture with d/D = 0.2 (the MTF of which is shown in
Fig. 2.13).

2.4. Least-Squares Processor and Results, One-Dimensional Case, Positivity Constraint.

In computing the results of Section 2.3, we assumed knowledge of the mean and covariance
of the object and noise vectors, and we assumed only a finite-support constraint on the object. A
probably more realistic situation is one where we are presented with an image and given the MTF
of the optical system, and we are required to find the object which best explains the image in some
sense, given no statistical knowledge. Furthermore, we may wish to use both finite support and

- 35~

2
x

E (x)/Mo

l0°E H 1] Ill'rll‘l L] L I]Ill loo:
; 3
107 — 10 |-
[—— - z o
102 |~ < R 1ot
E 3 x E
3 9 -
: 1w f
107 - — 107 -
lo-l i TEN ¥ lnnul 1 L LJ_I_ILJ lo-‘
102 101 100 10
w\/D
(a)
0
10 g L * TI TfrlT L)
107! |-
E
N X -
A 3
z o
X107 E—
x 3
~’ =
A 3
L [
1072 g~
[—o
T gy =2
102 10” 10°
xA/D
(c)

Figure 2.19. Normalired Energy Spectrum of The Error Vector with d/D = 0.5 (full aperture).

Curve sets (a), (b), and (c) correspond to SNR's of 102, 103, and 104, respectively. The six
curves in each curve set correspond to support lengths of (from top to bottom on the left) 1, 2,
4,8,16,and 32 /D,

- 36 -

10® e———— 10° ¢
107! - 107! i~
o - 3 o 3
2 [memes 1 2
X 1072 — —3 P 107 -
x E 3 x E
~ — = ~ =
v - B M -
W i 1 W -
107 - 107 -
lo-t ———l 1 llllll L M R lo-t
102 10 10° 102
xA/D
(a)
100: T 1] L) llﬁ7l L L L] I1II)E
107 -
o x 3 3
o L
= 3
P 1072 —
< E
~ o
M o
w -
107
10

Figure 2.20, Normalized Energy Spectrum of The Error Vector with d/D = 04.

® Curve sets (a), (b), and (c) correspond to SNR's of 102, 102, and 10%, respectively. The six
curves in each curve set correspond to support lengths of (from top to bottom on the left) 1, 2,
4, 8,16, and 32 A/D.

-37 -

E.(x)/ﬂo‘f

10°§ R Illllrl IOOE
107! = T/ - 167" -
==
o = z =
1072 |~ — X 10 E— —
E E x 3 3
- — g e - - —
-] W []
107 -3 107 - -3
lo-l 3 1 lIJl[lI 1 ' R R ~4]] 1'1111' -1 I RN
102 107 100 to 102 1o 100
kA/D wA/D
(a) (b)
10° ¢
107 E—
o x 3
o L
Z o
X 107 e
x E
V“ —
LL] -
10°3 —
10°¢
1072

«A/D
(¢)
Figure 2.21, Normalized Energy Spectrum of The Error Vector with d/D = 0.3.

Curve sets (a), (b), and (c) correspond to SNR's of 102, 10%, and 10%, respectively, The six
curves in each curve set correspond to support lengths of (from top to bottom on the left) 1, 2,
4,8, 16, and 82°/D.

- 38 -

‘“

2
»

E . (0)/Mo

10° T !0°E
10! — 107! e~
T o -
o [L.
) E r
2 — -2
102 : 3 10 g—
E - ~e -
- Lu =
107 - — 10° -
-b- 1 lLlllJ_l_l 1 llLJ]l- -A- N l_LLllll L BN TR
to 1072 107 10¢ to 102 107! 109
xA/D xA/D
() (b)
109 ¢
10t k-
o x 5
[3
= 3
X107 —
x 3
v" ~
L [
107
-4 1 FENNE | 1111') 2o baes
e 1072 107 10°
xA/D

(c)

Figure 2,22. Normalized Energy Spectrum of The Error Vector with ¢/D = 0.2,

Curve sets (a), (b), and (c) correspond to SNR's of 10, 10%, and 104, respectively. The six
curves in each curve set correspond to support lengths of (from top to bottom on the left) 1, 2,

4,8, 16, and 32 A/D.

-39~

2
x

E . (x)/Mo

100 10° ¢
107 10"
3 w F
- z e
1072 — X 1072 —
3 x E
. ~ =
: o ;
167 1073 ~
lo-‘ e L 1 Ililll - L l!lll 10" 1 'l i ’l!lll 1 lglJLl_Ll
102 10" 108 102 107! 100
wh/D wA/D
(a) (b)
109 ¢
107! b=
o x 3
o L
z =
X107 —
x 3
s’ —
[] ad
LIJ -
1073 -
0°l 1 R |||1]
‘ 1072 16!

«\/D
(<)
Figure 2,28, Normalized Energy Spectrum of The Error Vector with d/D = 0.1.

Curve sets (a), (b), and (c) correspond to SNR's of 102, 10%, and 104, respectively. The six
curves in each curve set correspond to support lengths of (from top to bottom on the left) 1, 2,
4,8,16,and 32 A/D.

- 40 -

(<) (@)

Figure 2,24, Grey-Scale Images of the Error Vector Energy Spectrum Normalized by Total Object Energy.

Support size is 7A/D x 72/D and d/D = 0.1. Each image is 4D/) on edge. Black denotes unity
and white denotes less than 10~2, Fig.’s (a), (b}, (c), and (d) correspond to SNR's of 102, 10°,
104, and 10°, respectively.

~-41-

(@) _ (b)

Figure 2.25. Grey-Scale Images of the Error Vector Energy Spectrum Normalized by Total Object Energy.

Support size is 43/D x 4A/D and d/D = 0.1. Each image is 4D /) on edge. Black denotes unity
and white denotes less than 10~2. Fig.'s (a), (b), and (c) correspond to SNR's of 102, 102, and
104, respectively.

— 42 ~

(¢)

Figure 2.36. Grey-Scale Images of the Error Vector Energy Spectrum Normalized by Total Object Energy.

Support size is 2A/D X 2A/D and d/D = 0.1, Each image is 4D /) on edge. Black denotes unity
and white denotes less than 10=2. Fig.’s (a), (b), and (c) correspond to SNR's of 10, 10%, and
104, respectively.

- 43 -

(a) . (b)

(c)
Figure 2.27, Grey-Scale Images of the Error Vector Energy Spectrum Normalized by Total Object Energy.

Support size is 1A/D x 10/D and d/D = 0.1, Each image is 4D /A on edge. Black denoter univy
and white denotes less than 102, Fig.'s (a), (b), and (c) correspond to SNR's of 10°, 10°, and
104, respectively.

—-44 -

(a) (b)

i
3

(<)
Figure 2.28. Grey-Scale Images of the Error Vector Energy Spectrum Normalized by Total Object Energy.

Support size is 7A/D x 7A/D and d/D = 0.2. Each image is 4D/A on edge. Black denotes unity
and white denotes less than 102, Fig.'s (a), (b), and (c) correspond to SNR’s of 103, 103, and
104, respectively.

- 45 -

Figure 2.29. Grey-Scale Images of the Error Vector Energy Spectrum Normalized by Total Object Energy.

Support size is 43/D x 40/D and d/D = 0.2. Each image is 4D/ on edge. Black denotes unity
and white denotes less than 10~2. Fig.’s (a), (b), and (c) correspond to SNR’s of 102, 10, and
104, respectively.

- 46 ~

(<)
Figure 2.30. Grey-Scale Images of the Error Vector Energy Spectrum Normalized by Total Object Energy.

Support size is 22/D x 2A/D and ¢/D = 0.2. Each image is 4D/ on edge. Black denotes unity
and white denotes less than 102, Fig.’s (a), (b}, and (c) correspond to SNR's of 102, 103, and
104, respectively.

- 47 -

()

(v)
Figure 2.31. Grey-Scale Images of the Error Vector Energy Spectrum Normalized by Total Object Energy.

Support size is 1A/D x 1A/D and d/D = 0.2. Each image is 4D /) on edge. Black denotes
unity and white denotes less than 10=2. Fig.'s (a) and (b) correspond to SNR's of 102 and 103,
respectively.

— 48 —

Tw"."ww D

(a) (b)

(¢)

Figure 2.32. Grey-Scale Images of the Error Vector Energy Spectrum Normalized by Total Object Energy.

Support size is 7A/D x 7A/D and d/D = 0.3. Each image is 4D/ on edge. Black denotes unity
and white denotes less than 10~2. Fig.’s (a), (b), and (c) correspond to SNR's of 102, 102, and
104, respectively.

- 49 -

(a) (b)

(c)
Figure 2.38. Grey-Scale Images of the Error Vector Energy Spectrum Normalized by Total Object Energy.

Support size is 42/D x 4A/D and d/D = 0.3. Each image is 4D/) cn edge. Black denotes unity
and white denotes less than 1072, Fig.’s (a), (b), and (c) correspond to SNR's of 102, 10°, and
104, respectively.

- 50 -

() (b)

(c)
Figure 2.34. Grey-Scale Images of the Error Vector Energy Spectrum Normalized by Total Object Energy.

Support size is 2X/D x 2A/D and d/D = 0.3, Each image is 4D/ on edge. Black denotes unity
and white denotes less than 10~2. Fig.’s (a), (b), and (c) correspond to SNR's of 10?, 10°, and
10%, respectively.

- 51—

(a) (b)

(c)
Figure 2.35, Grey-Scale Images of the Error Vector Energy Spectrum Normalized by Total Object Energy.

Support size is 7A/D x 7A/D and d/D = 1.0 (full aperture). Each image is 4D/ on edge. Black

denotes unity and white denotes less than 10™32, Fig.'s (a); (b), and (c) correspond to SNR's of
10%, 102, and 104, respectively,

- 52 -

(<)
Figure 2.36. Grey-Scale Images of the Error Vector Energy Spectrum Normalized by Total Object Energy.

Support size is 42/D x42/D and d/D = 1.0 (full aperture). Each image is 4D/ on edge. Black
denotes unity and white denotes less than 102, Fig.'s (a), (b), and (c) correspond to SNR's of
103, 103, and 104, respectively.

() (b)

(<)
Figure 2.37. Grey-Scale Images of the Error Vector Energy Spectrum Normalized by Total Object Energy.

Support size is 2A/D x 20 /D and d/D = 1.0(fullaperture). Each image is 4D/ on edge. Black
denotes unity and white denotes less than 102, Fig.’s (a), (b), and (c) correspond to SNR's of
102, 10%, and 104, respectively.

~54 -

positivity as constraints on the allowable objects. In this section we will use a least-squares criterion

for deciding which object “best” explains the image, i.e., we pick the object vector estimate X which
minimizes

e = |ly - GX|P. (2.55)

Here we use the same one-dimensional optical model as that described in Section 2.2, with y the
vector of image pixels, x the vector of object pixels, and G = BW a matrix containing the system
point-spread function and the object support information. We will distinguish between two object
estimators: X., which minimizes Eq. (2.55) using only finite support as a constraint on the object,
and X, which minimizes Eq. (2.55) when the object is constrained by both finite support and
positivity. We can obtain %, in closed form. Carrying out the operation indicated in Eq. (2.55)
yields

¢=(y-GR)7(y - G%)
=yTy - 297G +%TGTGR. (2.56)
The gradient of ¢ with respect to the components of % is
Ve = -2GTy + 26T G%, (2.57)

where here the gradient is taken to be a column vector. Setting Eq. (2.57) to zero and solving for X
yields

%, = (GTG)"'G7y. (2.58)

Since G has full column rank [see Eq. (2.14)], GTG is nonsingular and its inverse is well defined.
The error vector with this estimate is

e =X —X,
=x-(GTG)"*GTy. (2.59)
Using y from Eq. (2.5) in Eq. (2.59), with G = BW, yields
e, =x—(GTG)"'GT(Gx +n)

=(67G)"6¢"n. (2.60)

The covariance matrix of the error vector is
(e.€T) = (GTG)~*GT (unT)G(6T G)?
= (GTG)~*GT R.nG(GTG)™ 1. (2.61)

If we again assume that the noise vector is zero-mean and white, i.e.

Run =021, (2.62)

then
(e.eT) = o2(GTQ). . (2.63)

Unfortunately, one cannot obtain X, in closed form; one must use some numerical iteration
method for each case of an object vector and a noise vector. Therefore, to evaluate the error vector
covariance matrix when using positivity as a constraint requires a simulation. To generate object
vectors, we generated M independent Rayleigh random variables, one for each pixel. Thus, object
intensity pixels are always positive. Noise vector were generated using independent, zero-mean,
Gaussian random variable for each pixel. An image vector y was generated using Eq. (2.5) for each

-J0 -

sample object and noise vector generated. The object vector estimate, X,,, for each case, was found
using a modified gradient-search method where the components in the object vector were not allowed
to go negative. If we let x(n) be the object vector and X,,(n) be the object vector estimate for the
n'" trial, then the error covariance matrix was estimated using

N
(el = 5 3 (xln) = Ru(m) (x(n) = Rpl) (2.64)

Using Eq. (2.63) and (2.64) in Eq. (2.11), we can compute the energy spectrum of the error vector
with and without the positivity constraint, and compare results.

Unfortunately, at the time of this report, our results are rather meager due to difficulties with
the modified gradient search method. At this time we have results only for an object support length
of four pixels (1A/D). The results are shown in Fig.’s 2.38-2.40. Again, we have normalized the
error-vector energy spectra with the total energy in the object vector (sum of the mean-square
intensity values of each pixel). Each figure contains a set of curves corresponding to one d/D ratio
(0.1 for Fig. 2.38, 0.2 for Fig. 2.39, and 0.3 for Fig. 2.40). Within each figure are three sets of
two curves each, each set corresponding to a different SNR (from bottom to top, 10%, 103, and
10%, respectively). Here, SNR is defined as the ratio of the second moment of an object intensity
pixel to the second moment of a noise pixel. The solid curve in each curve-pair corresponds to the
finite-support constraint only, and the dashed curve is the result when the positivity constraint is
added. With these very limited results, it would appear that the use of a positivity constraint in
addition to the finite-support constraint may result in a significant improvement in performance.
However, we note that the amount of improvement seems to decrease as SNR increases.

-56 -

l03] T ITITI |1 L} L] L] ‘ L] LR

T 17T ' LR RL

=

102

L L I]llll’r

10!

T 31 IIIIIII

100

E (x)/M<x?>

e

T 11 llllll

107!

e — ———— —

1 IIIIIIII
12 lllllll

1072

1) Illllll

10-3 1 1 l;li!lll] 1 1 b g

1072 107 100

wA/D
Figure 2.38. Normaliged Error Vector Energy Spectrum for d/D = 0.1 and a Support Length
of 12/D. The three sets of curves correspond to SNR's of (from top to bottom) 102, 10%, and
104, The solid and dashed curves are without and with positivity constraint, respectively.

103 T L) i l T lllj R L] lil L)

1 IIll[II

102

T 1 rllllll

I —_— 2t llull

10!

LI | lllllll

100

Ee(u)/M<x2>

10!

T IIIIIHI

107

T 7 Illllll

I A | llllll

10-3] 444[1:41] 1 L] | R

107 107

wA/D
Figure 2,89, Normalized Error Vector Energy Spectrum for d/D = 0.2 and a Support Length
of 1A/D. The three sets of curves correspond to SNR's of (from top to bottom) 102, 103, and
10%. The solid and dashed curves are without and with positivity constraint, respectively.

o
©

10a T ¥ l|llll| 1 L lllTll

T Illllll
A IY

10?

T 1 llll"l

[J_uul

10!

T 73]HTII
llllll

100

Ee(x)/M<x2>

L | Illlll

107!

T T llllill

1072

T 1 Illllll

—

s —.*—
1072 3) n|v1||l 1 2 S B AR]

1072 1o 10°
wA/D

Figure 2.40. Normalized Error Vector Energy Spectrum for d/D = 0.3 and-a Support Length
of 1A/D. The three sets of curves correspond to SNR's of (from top to bottom) 102, 108, and
10%. The solid and dashed curves are without and with positivity constraint, respectively.

-50 ~

Chapter 3

Super-Resolution with Sparse
Arrays Revisited—Conclusion of
Two Aperture Case

(originally issued as TR-1052)

-60 -

3.1. Introduction

In Chapter 2 we reported on some results of an investigation into the feasibility of obtaining
useful reconstruction of objects viewed through a sparse array of apertures. A requirement placed
on the reconstruction was that the highest useful spatial frequency in the reconstruction be com-
mensurate with the outer diameter of the sparse array. All of the one -demensional results contained
in Chapter 2 were restricted to the case of two fixed subapertures, a case that we now know to be of
little interest. In this chapter we present some miscellaneous two-aperture results that were obtained
subsequent to the work of Chapter 2. We report these results, without comment, for purposes of
historical completeness and the remote chance that they may be of use.

All of the results in this chapter are for the one-dimensional model described in Section 2.2.1
of Chapter 2. Section 3.2 of this chapter describes some changes made to the model subsequent to
publication of Chapter 2. Sections 3 and 4 of this chapter give results for the minimum variance
and least squares methods, respectively. Appendix B contains listings of fortran programs that, in
addition to those given in Chapter 2, were used to generate the data of this chapter.

3.2, Some Changes to the One-dimensional Model

All of the one-dimensional results of Chapter 2 were generated using the point spread function
(PSF) given by Eq.’s (2.7) and (2.8) of Chapter 2. For purposes of this chapter, we replace that
earlier PSF with two point spread functions, called hy,(n) and ha(n).

hi(n) = Aw(z)he(z)|z=na, (3.1)
where A is the sample interval,
_4d* ,[x(D—d)] [sin(rzd/))]°
he(z) = D3 €8 [3 :c] [=) (3.2)

and we(z) is the £'» of five window functions given below.
Window One (Rectangular)

1, < kA
w@)={g 5 (53
Window Two (Bartlett)
_J1=1=z|/kA, |z| < kA
wa(z) = {0, else. (34)
Window Three (Hanning)
1,1 : 3
ws(z) = {g + 3 cos(wz/kA), LTSIe,S kA (3.5)
Window Four (Hamming)
0.54 + 0.46 kA), jzl<kA
o= (e, g2 o

Window Five (Blackman)

0.42 4 0.5 cos (wz/kA) + 0.08 cos (27z/kA), <kA
ws(z)={0, + 0.5 cos (wz/kA) + 0.08 cos (27z/kA) L:;:sle_._ (3.7)

-61 -

The PSF hy(n) is simlar to h;(n), but without a window and scaled differently.
D
ha(n) = ﬂAhc(nA), [n] < oo. (3.8)

We point out without proof that the Fourier transform of hj(n), evaluated at the origin, is equal to
2d/D, whereas hs(n) is normalized so that its Fourier transform is unity at the origin for all values

of d/D.
All results in this report are for a sample internal A of

P A

A=1iz (39)

The Fourier transform of the PSF given by h;(n) for each of the windows and various values of k
and d/D is shown in Fig.’s 3.1 to 3.7.

- 62 -

Fourier tronsform of PSF

Fourier transform of PSF

10° W 10°:ﬁ.,,..ﬁl....,”..
107 P ot 5
102 ‘3 107 j:
10°F e 10°F 3
10 - E 10" |- :
3 2 o 3
104 f- T =
3 -~ E 3
107 - L 107 3
10% - L ~ -
10" 3 10 _
m-lo"n b IO'IC-'lllllgll[!llllllll:
0. 1 2. 0. 1. 2.
xA/D xA/D
(a) (b)
10° g T w 10°’x...,1l.,l.,..,,...
107 2 1o
102 « 197
- ¢ o
107 g 10°F
0 :_5 10 k- i Tﬂ'ﬂ
o5 b @ b n
CE M T L My
167 C rr ﬂm m" < 10" -
107 - IT ‘ ¢ 107
10 |- %, 10 |-
10~ - 3 10" :r
lo-lo"x RN B A l PR S TS TN Y L :0-10:1 PERTISR BN ST] PR Y 1 IL}
2, 0. 1 2.
xA/D ®A/D

(c)

107!
1072
107
107
10°8
10
107
107
107
10710

|‘m~

Fourler bLransform of PSF

loolllI.llllIllllllIIl

PN I I R

1.
wA/D

(¢)

2,

Figure 3.1. Fourier transform of the PSF of Eq. (3.1), k = 63,d/D = 0.1. Figures (a)-(e)

correspond to window number 1—35, respectively.

- 63 -

Fourier transform of PSF

Fourier transform of PSF

100 p
10°!
107 f
107
10"
10°*
10°*
107
107
107

PIVE A

10°
107
102
107
10
e
10
107
10
10°*

Fourler tronsform of PSF

lo-lo 1
0.

(2)

t.
wA/D

2.

10° v
10"
10°?
107
10
108
107
1077
107
107

LANCINE Bu S S R B

TN SRV

'll!

1ol

| L N

—5
L

10°
10

1)ed

10
1077
107
107

TR o ad ol

Fourier tronsform of PSF

—

107

(¢

xA/D

Fourler transform of PSF

10°
107!

=
10°?
10 |
10 b
10'
yor*

’0.1
107
107

10710
0 0.

oo L

ﬁ—rthntﬁrlxxvxlxnuu

Bl I I I T B

™

M IPEPETITS IPTEPT P

e ulad b 4 idd

bl polud s ool suid

10°%9
0.

1.
xA/D

(b)

[V

1072
107

107

z||i||||ljﬁlﬁ—,|llll

NN TS I P

107¢
0.

1.
x\/D

(d)

lllllllllllilllllll

(¢)

Figure 3.2, Fouier Transform the PSF of Eq. (3.1), k¥ = 255,d/D = 0.1. Figures (2)-(¢)
correspond to window number 1-5, respectively.

- 64 -

2,

Fourier transform of PSF

Fourier transform of PSF

loofllllﬁlllllllIIllll L;_ loo‘lll*&lllll]'Tj_‘rI]ﬁrllﬁﬁ
107 |y 2 10t
10'2 < 1072 b~
107 _ e 10'32_-
. C [
10‘ YURY 'nxi £ 10‘ :E'
1075 i g 10-5'5,
107 S 10t
- 3
1o~ L 107
10" 2 10t
10-0 g)0-0&_
lo-lOllll]l)llll!llllll L._’0-10:|1|-|x|l|l_11:r|1,1_11
. 1. 2. 0. L. 2.
«A/D kA/D
(a) (b)
109] L] L L] I 1] L ¥ L) l L] L4 L] L I 1] L} i L lJ_ 10°= > T L L] |] L] L] L L] I T T 1
107 Do
1072 Ge 0'2:
5 °F
197 e 107
. « +F
107 10
s . F
10° @ 10k
10'6F 8 lo-bi‘_
- 3
107 L 107
1078 2 oo
L £
10 3 107k
lo-lOllll’!lllll!llll!l e 10'10-!'!'II!L!IJJIJ_IIIII
. 1. 2. 0. 1. 2.
wA/D xA/D
(c) (d)

Figure 3.3. Fourier transforms of the PSF of Eq. (3.1), & = 63, window number 1. Figures
(a)~(d) correspond to d/D = 0.1,0.2,0.3, and 0.5, respectively.

- 65 -

Fourier traonsform of PSF

Fourier tronsform of PSF

loolllljﬁlllllllllllll 100 Illlllllllllllllll

&

10° a 10
1072 « 107 =
107 E 1073 -
107 8 107 -
1078 g 10'5-5—

- fo] . L
107 -‘(3 106:['-

-1 L
10 k‘, 10 -

-8 et -8l
10 C 10 F
107 3 10°f
lo-lOlllllnlllllllllllll IJ.lO'lo:lll!llllllllllllll

c. 1. 2. 0, i, 2.

wA/D wA/D
(a) (b)

o 0

10=lllllilllllll'l[l'lll 10 rrxlnl|rxw[1||l

107
102
10
10"
10
107
107
107t 10
107 1o
.

lo-la 111!'111:!1‘-11111 lo-lo
0. i 2.

107
107
107
107
10°*
107
107

"

lllr1 l"n 1111 1111 "11 lnn "n le1
uir‘ '"]1 1111 Ilrr1 nn nrq lnn lnr1 T

Fourier tronsform of PSF

J!‘l!llll]l]llllllr

©

wA/D wA/D

(<) (d)

Figure 3.4. Fourier transforms of the PSF of Eq. (3.1), k = 255, window number 1. Figures
(a)~(d) correspond to d/D = 0.1,0.2,0.3, and 0.5, respectively.

- 66 -

L, 2.

Fourier transform of PSF

Fourier tronsform of PSF

100 LELEL L I LML) I LRI ¥ ' LR LI u- 100 _l T i l VT T I LI Ij T T 1
10" o 10t
-2 102 :
10 ‘6 Eg_—
107 € 1072 -
10 6 10|
o 3
107 g 10 -
10% o 10|
- -3 F
10 U
-8 b4 s b
10 C 10 E[-
10° 3 107§
10-!0||||'||||'||||'|111'L"‘10-10:1||-|1|l!|1|1||1111
0. 1. 2. 0. t. 2.
wA/D wA/D
(a) (b)
0 0
10 E! T LY T 17 L} | LR] LR]'E LL lo : 3 LENR]] | T LI} T l) LR
107 - -Y g_) 107! C
102 |- - « 107 -
107 - 4 ¢ 107
10" § 1 5 100
3 LI
3 4 ¢ 0F
= 3 o] ~
107 107
E 15 0F
10° -1
2 W E WAk
o F] g ok
107 e B 10 =
10 - - 3 10°f
lo-lo:lll!llllll!llllllll:LLlo-lo:!ll!lllllllllll!!ll
0. R 2. L. 2.
wA/D xA/D
(c) (@

Figure 3.5. Fourier transforms of the PSF of Eq. (3.1), k = 63, window number 3. Figures
(a)~(d) correspond to d/D = 0.1,0.2,0.3, and 0.5, respectively.

-67 -

Fourtier traonsform of PSF

Fourier tronsform of PSF

10°

lllllllllllllllll!‘r loolllllllllllllllllll
107!
1072

10!
102
1073
10
1075

1073
10
1078
10°¢
107

107t
1077
108

lllLJ IIIIIJ lll'lJ lllu lllllJ lllllJ llllJ IIII

107

. «W

Fourier transform of PSF

i

SN s R R e R R B R R

10 VN"W@ 107
lo-lo [I) l 'ENATETEN BN P 1: 10-!0 PR TRT S T l PRRTSRT TR T A SN
0. 1. 2. 1. 2.
¥xA\/D xA/D
(a) (b)
100 LI S T T] AL ARL LI Dt 100 T T T T [Ty

3 q L E
1ot E — g_j 107! :E'
2L 3 2F
10 5E :: (_6 10 EE
10'3? _J= £ 10-35-_
a3 4 5 10°F
10'5.;_— __.; g lo-SEr_
10 o ¢ 0
107 = = 10k (‘l-*
3 L S -
aF w:w “l_j.’: hy wF 'V H\PMJIM%
e Ul e S Tl
<o pa o) oF
lo":E __-!‘ o 109=
‘0"0-"""”ll'llllJl"-LL]O'w-"""lllJllnnl;,,,
0. . 2,) L 3.
K)\/D K)\/D
(c) (d)

Figure 3.6. Fourier transforms of the PSF of Eq. (3.1), k = 255, window number 3. Figures
(a)-(d) correspond to d/D = 0.1,0.2,0.3, and 0.5, respectively.

- 68 -~

Fourier traonsform of PSF

Fourier bransform of PSF

10°
10
1072
107

ll]llllll][l

A

107
108
10°¢

1077
107
107?

Bl s

IO'IO_IIIIlllllIl!Il
0. 1.

wxA/D

(@)

2.

10°
107!
1072
107
10
10°%
107
1077
10°®
109

llllllllllll

!lllllllllll!

T %’.\hﬁ LT NIl

IllI‘l

St ot ot b vl st bd

-z

2

Ill!l

e _lllr1 l"” l'll” lll’l1 ln]ﬂ Illr1 lllr1 IH” III” Ll

107
. 1.

xA/D

(¢)

no Ll

Fourtier tronsform of PSF

Fourier btransform of PSF

10°
107
1072
102
10
1075
107¢
10”7
1078
10°°

10-10

10°
10!
1072
1072
107
1078
10
107
1078
107?
10710

llll'llllllllllllll

L T

Illllll!llllllllll

1. 2.
wA/D

S A R I I I I I B B

(b)

vllllllllllllll

IIIIJ Ilu lllu lllu lllu llllJ 1 :

me.umm

!llll!lllllllllll!

i,
wxA/D

lur'I '"I'1 llll-‘ 11111 l"rl1 lllr1 lllr1 lllr1 T

IJ mIJ

o
o L)

(d)

Figure 3.7. Fourier transforms of the PSF of Eq. (3.1), k = 511, window number 5. Figures
(a)-(d) correspond to d/D = 0.1,0.2,0.3, and 0.5, respectively.

- 69 -

R 3

3.3. Results Using the Minimunm-Variance Methed

E.()/E ()

10° 3 10° e
] o]

0™ | 107 -3
94 ~ -

. x 4

v/

102 — N~ 107?i— —
3 ~ 3 3

] x o -

1 O - .

- v b= -

d4 w B J

10 — 167 |- —
10“ . | | -] LL! 11 l Lot 3.1 I 1 11 10" | I -] lJ 111 1 l) S B A | l 12 | S
0. 1. 2. 0. 1. 2.

wA/D wA/D
(a) (v)

10°

11 lllll

10"

1072

E_GO/E (x)

1.1 1'""'

107

21 J_lll]ll

lo-t,_lllllellllellllll

0. 1.

n

wA/D
()

Figure 3.8, Energy spectra ratios using the PSF of Eq. (3.1) with window number three,
k = 255 (corresponding to an image line length of 638 pixels or 159,5A/D), and d/D = 0.1.
Figures (a)-(c) correspond to SNRREr of 20 dB, 30 dB, and 40 dB, respectively. The six curves
in each/ﬁgure correspond to object supports of 32 A/D (solid curve), 16A/D,8\/D,4A/D,2)\/D,
and 1A/D.

-70 -

E.(x)/E ()

10°

10

1072

107

10

o= NN 7= sy 10° 1
=G E E
—3 107 —
- 7 = E
= - v‘ -
L
— — ~ 1072 —
b 3 ”~ - 3
il] x = =
b - A - -
N] v N 4
L 4 W B 4
3 E 107k E
) DU S) ' 1 i I | S N | I 1ttt -4 | S I | N SR 2 1 l 11 5 I 1!
10 —
0. 1. 2. 0. 1. 2.
wA/D wA/D
(a) (b)
10° e~ — gy
107! b~ —
~ = -
x - 3
<
" I 1
~ 1072 = —
~ E 3
x o -]
~ y n
L v]
/4
107 i —
10-& poeotoo by sy s ' PRI T IO I N
0. i. 2.

wA/D
(c)

Figure 3.9. Energy spectra ratios using the PSF of Eq. (3.1) with window number three,
k = 255 (corresponding to an image line length of 638 pixels or 159.50/D), and d/D = 0.2.
Figures (a)-(c) correspond to SNRygr of 20 dB, 30 dB, and 40 dB, respectively . The six curves
in each,ﬁgure correspond to object supports of 32 A/D (solid curve), 16A/D,8\/D,4\/D,2)\/D,
and 1\/D.

-71 -

T

E.GO/E (0O

10° - 10° E
107 -3 107! E—
i~
- x .
N
- ux b=
10-2 — ~ 10-2
3 ~
e x
-~ A
-4 ®
4w
1072 — 1073
lo-llllllll]ll!lll'llll 10"!lll|lllllllllll|ll
0. i. 2. 0 1. 2.
x\/D ®A/D
(a) (b)

10° E T .:;.:'—‘ﬂ__i
w / / _ —
i Yy
/
1Ul? // e
3 F / E
~

Lt I 1
~ 1072 = -3
~ 3 =
x — -
~r - -
v - s
L 5 4
107 —3

10-1 PRI T T I E B I PR TS S O T W
0. f. 2.

®A/D
(c)

Figure 3.10. Energy spectra ratios using the PSF of Eq. (3.1) with window number three,
k = 255 (corresponding to an image line length of 638 pixels or 159.5A/D), and d/D = 0.3.
Figures (a)-(c) correspond to SNRRgF of 20 dB, 30 dB, and 40 dB, respectively. The six curves
in each/ﬁgure correspond to object supports of 32 A/D (solid curve), 16A/D,8)/D,4A/D,2)/D,
and 10/D.

-72-

E.I/E (0

100 100 T T L] ¥ l T T ¥ L]
3 E
107! — 10!
3 3
4 = X
J ;J’x B
102 E — N 107}~
- 3 ~\ -
E 3 x F
n 1 % C
i] w —
=
107 — - 1073 =
10" 1.1 11 I | S | 1.1 I 1 1 L1 l 1 | 3. | 10" . . | l 1 .1 1 1 I L1 1 1 | 11 | I -
0. 1. 2 0. 1. 2.
wA/D wA/D
(a) (b)

10° ¢ 2
- i/ /S 3
107 é_ // //’ =
~ E 3
A e i
W -2
R 10 E
x F_ 3
o’ = -
v b -
s [-
10.3 3 —E
> E
L2 o
e
‘O-L /l 1 11 I) S B B] ' st ') S S B]
0. 1. 2.
x\/D

()

Figure 3.11, Energy spectra ratios using the PSF of Eq. (3.1), with window number three,
k = 255 (corresponding to an image line length of 638 pixels or 159.50/D), and d/D = 0.5.
Figures (a)-(c) correspond to SNRrgyp of 20 dB, 30 dB, and 40 dB, respectively. The six curves
in each figure correspond to object supports of 32 A/D (solid curve), 16A/D,8\/D,4\/D,2/D,
and 1\/D.

-73 -

E.(/E, ()

E . (I/E (0

100 ‘ 120. T T T ﬁ*l T T T T
107 .i 110, — —]
1072 _q:; 100, |— -
107 —_i 90, -]
E ~
10™ - % 80. — -]
1078 —_i ~r 70. — -
10 —!: E 60. — —
107 —_i % 50. — —
10 o 0 40, P~ —
107 —
lo-lu _:;
lo-ll _-i
10-l2 Eer v o1 4 o 1 I r oo o b 3
0. 1. 2.
wA/D
(a) (b)
120. L) l‘l LEBRAR I 1] LI] l R
110, — —
100. — —
90. — -
o 8o0.f- —
I 0. —
= 60— —]
< 50— —
pd
09}
)0-12 AR A DR N I PO S SO W A N W
0. i, 2.
wA/D
(c) (d)

Figure 3.12. Energy spectra ratios and SNRgst using the PSF of Eq. (3.8), an image line
length of 1024 pixels (256A/D), and d/D = 0.1. The six curves of each figure correspond to
object supports of 321/D (solid curve), 16A/D,8\/D,4)/D,2)/D, and 1)/D. Figures (a) and
{b) correspond to SNRRgr=20 dB and figures (c) and (d) correspond to SNRrgr=40 dB.

- T4 -

Ew)/E (v

E,GO)/E, (0

=
3
-
i1 O
13
—_! N
. -
3 8
- I
= wn
3
3
B
]o-l2|||11:|1|||||||||11"
0. l. 2.
w\/D
(a)
10°
107 —:‘_‘
1072 -
107 -
107 -— 35 ©
B
10°5 -3 3
10': —_, Q:E
0"
-
10 -
10710 _-;
107 :
10-12|||1L|1||I||l||1|r|:
0. 1. 2.
¥A/D

Figure 3.13. Energy spectra ratios and SNRgst using the PSF of Eq (3.8), an image line
length of 1024 pixels (256)\/D), and d/D = 0.1. The six curves of each figure correspond to
object supports of 32\/D (solid curve), 16A/D,8)/D,4)/D,2A/D, and 1A/D. Figures (a) and
(b) correspond to SNRrer=60 dB and figures (c) and (d) correspond to SNRrer=80 dB.

()

-75 -

120.
110.
100.

120.
110.
100,

llllllll‘llllll"l?ll

_ﬂ

—

‘_lf.lllllllllllllllll

—

E,(%)/E (%)

E . ()/7E GO

10°
107!
1072
107
107
1078
107¢
1077
107
107
1010
101t
10712

llllllllllllllll*l

L

i o ot o i b ad sl

0. L.

10°
10
1072
1072
107
10°¢
107
1077
1078
107?
1 oo
i o-ll

10712 L
0.

®A/D

(a)

llllllllllllllllll

o ad d ond bd ad ol

I,
wA/D

(c)

o Lyl

N L

SNRggy (dB)

SNRs; (dB)

120.

110.
100.

120.
110,
100.
90.
80.
70.
60.
50.
40.
30,
20.
10.

lllllllllllllllllll

| I

——

(b)

®oN/D

I*!_IIIIIFIIIIIIrIIIﬁ'

Figure 3.14. Energy spectra ratios and SNRgst using the PSF of Eq (3.8), an image line
length of 1024 pixels (256)0/D), and d/D = 0.1. The six curves of each figure correspond to
object supports of 321/D (solid curve), 16A/D,8\/D,4)/D,2)/D, and 1)/ D, Figures (a) and
(b) correspond to SNRrgr = 1004B and figures (c) and (d) correspond to SNRrpr=120 dB.

-76 -

E.(x)/E,(0)

E,<x)/E (%)

10°
107!
1072
107
107
1078
107
107
10°®
107
10-10
101t

u llu ll‘u IHIJ lllu lllI.J llld IIIIJ ll]d l|l'.J lllu 1
SNRgg; (dB)

10-!2 lll‘lllJJ_Lllll!Il
1.

xA/D

(a)

\

oadod g g g g L

lo“z lllllLlllllIllIlll

~n Lew

SNRg; (dB)

0. i,
x\/D

()

SR BT

120.
110,
100.
90.
80.
70.
60.
50.
40,

120.
110.
100,
90.
80.

Ilnlllll—llllilllli

—
—

lllllllllllll]lll‘l

Figure 3.15. Energy spectra ratios and SNRgst using the PSF of Eq (3.8), an image line
length of 1024 pixels (256A/D), and d/D = 0.2. The six curves of each figure correspond to
object supports of 320/D (solid curve), 162/D,8)/D,4A/D,2)/D, and 1)/D. Figures (a) and
{b) correspond to SNRREF = 20dB and figures (c) and (d) correspond to SNRrpr=40 dB.

-7 -

—

E,GO/E G0

E,(W/E ()

10°
107
1072
107
10~
1078
107
1077
1078
10°?
1 O’ID
10-1

110.
100. —
90. —
80. —

SNRs; (dB)

120. UIIIIIIIIIIIIIIII'I

—

10-]2IlJIl|ll|I!l!llllll
0. 1. 2.

xA/D

(a) (b)

100 120-‘[1!("]!1('1!]!']!\]

110, —
100, —
90. —
80, i—

107
1072
1073
107
1078
107¢
1077
107
107
1Q-1e
10'“

IR AT
SNR.y, (dB)

—

——t

lo-lzlllﬁllll|lll|'|14|1
0. L.

xA/D

r Lu

() (d)

Figure 3.16. Energy spectra ratios and SNRgst using the PSF of Eq (3.8), an image line
length of 1024 pixels (2561/D), and d/D = 0.2. The six curves of each figure correspond to
object supports of 320/D (solid curve), 16A/D,8\/D,4A/D,2)/D, and 1)\/D. Figures (a) and
(b) correspond to SNRrpr = 60dB and figures (c) and (a) correspond to SNRrgp=80 dB.

- 78 -

10°
10
102
107
10
1078
107
107
1078
107?
1010
1o

E,(x)/E ()

]0-I2
0.

10°
107
1072
107
10
1075
107
1077
1078
10°?
10710
1o"

E.()/E (0

‘0-12

SNRgg; (dB)

M

o Lo

i.
wA/D

(a)

\

SNRgg; (dB)

ot b b

ad

llllllllllllll|l|l

o Lu

i,
wA/D

(©)

120.
110.
100.
90.
80.
70.
60.
50.
40.
30.
20.
10.

120.
110.
100.

llIIllll1]I!l1|llll

b —

0. 1. 2.
wgA/D
(b)
r‘l T LEERLJ I L L] LR | l 13 1] L}] l L} L L 3)
— N — T~ -

0. 1. e

woA/D

(@)

Figure 3.17. Energy spectra ratios and SNRggt using the PSF of Eq (3.8), an image line
length of 1024 pixels (2561/D), and d/D = 0.2. The six curves of each figure correspond to
object supports of 32)/D (solid curve), 160/D,8)/D,4\/D,2A/D, and 1)/D. Figures (a) and
(b) correspond to SNRREF = 100dB and figures (c) and (d) correspond to SNRrpr=120 dB.

-79 -

E . ()/E (W)

£ (/E, G0

10°
107
1072
107
107
10°%
107
107
10
107
1010
101t
10-12

llll‘lllllllll'll!

bl sodal sl ool oot ot sl o st i

10°
107
1072
107
107
1078
1

107

107t
107
lo-lo
10'”

{.
wA/D

(a)

lllllllllllll!l!ll

adoad adoad adoad ad ol o g,

‘0-12
0.

1.
wA/D

(c)

[\ N

N L

SNReg; (dB)

SNR., (dB)

120.
110,
100,
Q0.
80.
10.
60.
50.
40,

120.
110,
100.
90.
80.

lllllll_lllllll]llll

— —

— —

b —

llllllrllllll[]llll’

—
——
——

0. 1 2,

wgh/D

(d)

Figure 3.18. Energy spectra ratios and SNRgst using the PSF of Eq (3.8), an image line
length of 1024 pixels (256)/D), und d/D = 0.3. The six curves of each figure correspond to
object supports of 32A/D (solid curve), 16A/D,8/D,42/D,2)/D, and 1)/D. Figures (a) and
{b) correspond to SNRReF = 204B and figures (c) and (d) correspond to SNRrgr=40 dB.

- 80 -

E./E (W

E.(O)/E (%)

10°
107
1072
107
107
1078
107t
1077
108
107
10-1¢

lo-ll
‘O-IZ TN AR RSN A A I IR T IR A L
0. L.

wA/D

o oid idod ot g gt Ll A

o L

(2)

10°
107
107
107
10
10
107
1077
10°¢
107
lo-lo

lo-ll
lo-l2|||l||llll|||l||||1

1, 2,

wA/D

(<)

SNRcg; (dB)

SNR.; (dB)

120,
110,
100.
90.
80.
0.

120.
110,
100.
90.
8C.

llllllllllﬁllllllll

111111||||||

—

\ —
\\\

~ ~— \.

—

o —
B I T |

i,
¥gA/D

(b)

IIIIIIIIIII‘

LI S |

i

—

1.
woh/D

(d)

Figure 3,19. Energy spectra ratios and SNRgsT using the PSF of Eq (3.8), an image line
length of 1024 pixels (2561/D), and d/D = 0.3. The six curves of each figure correspond fo
object supports < 321/D (solid curve), 16A/D,8\/D,42/D,2)\/D, and 1\/D. Figures (a) and
(b) correspond to SNRReF = 60dB and figures (c) and (d) correspond to SNRrer=80 dB.

-81 -

R 2

E.(x)/E, (n)

E,(0)/E (0

10°
107
1072
107
10
1078
107
1077
10°®
10°*
1 0-!0
10-“
lo-l?

Lu"u"u“

SNRg; (dB)

o et o e et Lad d ud

llllllllllllilllll

0. 1.
wA/D

oo Lin

(a)

loo L) L L IR l LR S] I 4
107 -
102 -
3 n
10 / / =
107 -
10° 1 / E
e |
107 /’:_';
1077 i .
] / .:!
10°
10" ,/"'_%
1010 .
1o ::!;
‘o-lz g b s v l NI A
0. L. 2,

wA/D
(<)

SNR.g; (dB)

120.
110.
100.

90.

80,
70.
60.
50.
40.
30.
20.
10.

— —

|l|lﬁ‘rlllll|]llll

L ~]
L ~. :\.
1.1 1 1 l 3 | - I] | S . l L1 2 l-
1. 2.

xoA/D

(b)

™ —

!llllll!’l'l!lj_llll

L 2.
%oA/D

(d)

Figure 3.20. Energy spectra ratios and SNRgst using the PSF of Eq (3.8), an image line
length of 1024 pixels (2561/D), and d/D = 0.3. The six curves of each figure correspond to
object supports of 324/D (solid curve), 160/D,8)/D,4A/D,2)/D, and 1A/ D. Figures (a) and
(b) correspond to SNRrer = 100dB and figures (c) and (d) correspond to SNRrRer=120 dB.

-82 -

E (x/7E, (n)

E.()/E, (o)

10°
107
102
107
10
1078
107
1077
107
107
10710
1071t
10712

1e°
10"
1072
10
10
1075
107
107
107
10"
10710
10-1
10712

lllllllllllil!lll]

i,
®A/D

(a)

wold od ot ot oid oid od id ad il

llll|lllllllll'lll

1.
wA/D

(©)

o L

o Lu

SNReg; (dB)

SNReg; (dB)

120.
110,
100.
90.
80.
70.
60.
50.
40.

120.
110.
100.
90.
80,

lIlllllIl'llll]llll

o—

1. 2.

®oA/D

(b)

lIll"llll]llIllllll

—

1 2.

woA/D

(d)

Figure 3.21. Energy spectra ratios and SNRgst using the PSF of Eq (3.8), an image line
length of 1024 pixels (2561/D), and d/D = 0.5. The six curves of each figure correspond to
object supports of 321/ (solid curve), 16A/D,8)/D,4)/D,2)/D, and 12/D. Figures (a) and
(b) correspond to SNRReF = 204B and figures (c) and (d) correspond to SNRrgr=40 dB.

E,(x)/E (%)

E,()/E, ()

107
1072
107
107
1078
107t
1077
1078
10°*
10-10
1o-u
lo-l?

10°
10
107
107
107
10
107

107§

107
107
1 g-'e
lo-ll
10712

llll'llllllllll!l!l

1.
wA/D

()

llllllllllllll'llll

2

1.
wA/D

(c)

SNRgg; (dB)

SNRg; (dB)

120,
110,
100.

120.
110,
100.

Q0.

llllllllllllllllll

—]
\ —
\\
R e o]
11!1'111!'1111!!1:!
1. 2.

xgh/D

(b)

lllll“l‘l“‘1]’"rl‘

1. 2.
%oh/D

(d)

Figure 3.22. Energy spectra ratios and SNRpsy using the PSF of Eq (3.8}, an image line
length of 1024 pixels (256)1/D), and d/D = 0.5. The six curves of each figure correspond to
object supports of 320/D {solid curve), 16A/D,8\/D,4)/D,2X/D, and 1)/D. Figures (a) and

(b) correspond to SNRRer = 60dB and figures (c) and (d) correspond to SNRrer=80 dB.

E.(0)/E, (%)

E.(W/E ()

100 120. L) ' L A M l LN IR SN l TV v T
107 - 110, — —
1072 i 100. —
107 __i S0.
10 E o 80
10° = I 0.
107 -3 E 60.
=1 = 50.
e 1z
1) -:! 30.
107 -3 .
107 - 20.
1071 - 10.
10-!2 ISR S A N B I ror e Loy 4o 3 0.
0. t. 2. 0 1 2.
xA/D ®oA/D
(a) (b)
loc 120. llll[lxlt[tlli
10 /q: 110,
1072 = 100.
107 = R 90.
107 d oo 80
107 32 w
-5 —_;! [, 60
1o 4 8 -
107 3 & 50
-8 q‘ 5 40
107! "'—:!" 30.
10710] 20,
~tt .q" 10
10 - .
10-!2 redf I ST TR S | l TR R AR 0.
0. 1. 2.
¥A/D
(c) (d)

Figure 3.23. Energy spectra ratios and SNRgst using the PSF of Eq (3.8), an image line
length of 1024 pixels (2567\/D), and d/D = 0.5. The six curves of each figure correspond to
object supports of 32/ D (solid curve), 16A/D, 8\/D, 42/D, 2)/D, and 1A/D. Figures (a) and
{b) correspond to SNRREF = 100 dB and figures (c) and (d) correspond to SNRrgr=120 dB.

-85~

3.4. Results Using the Least Squares Method

E (/7E (0)

E.()/E ()

107
10¢
10°
10t
10°
102
10!
10°
1o
1072
107
10

B i B B Y

LLY

lllllllllll'llJll

llTllllllllll]lﬁll

107
0. i,

wA/D
(a)

lo.’"illll'[ll]“rllfﬁ'j
10";

108
10t
10°
10?
10!
10°
10"
1072
107
10

lllllL!lllllll'lll

ml-' nu lnu 1

0-5
! 0, 1

wA/D
()

40,

30.

20.

SNReg; (dB)

40,

30.

lllllllll‘lllllllr]

o —t

T NSRS APEPUTTI BT
0. 1, 2.
®oN/D

(b)

llll.llllll‘llllll’l

) S . | IJ | B . lJ 1.2 LI S T
1, 2.
xoA/D
(@)

Figure 3.24. Energy spectra ratios and SNRgst using the PSF of Eq. (3.1) with window num-
ber onc and d/D = 0.1,k = 63 (corresponding to an image line length of 254 pixels or 63.51/D),
and an object support of 1 A/D. Figures (a) and (b) correspond to SNRrpr=20 dB, and figures
(c) and (d) correspond to SNRrepr=30 dB. The solid curve in each figure corresponds to the
Jeast-squares solution with a finite support constraint only and the dashed curves correspond to
the least-squares solution with both finite support znd positivity constraints.

- 86 -

E_GO/E (o)

E_()/E_ ()

107
10%
108
10*
10°
102
10!
10°
107
1072
107
107
1078

107
108
10%
10t
10°
102
10!
10¢
10!
1072
107
107

1078

¥ L ¥ L l ¥ T 1] 1] I 1 1 ¥ 1] I T 1 1]

~

m

)

A
[
w
w

[a g

=z

[¢9]

| . | LL | S I L1 1 l b S]
1. 2.
®A/D
(a)

P

om

e

A
[
v
W

[aef

prd

9]

llllll]lllllll]lll

1, 2,
wA/D

()

40,

30.

-20.

-30.

-40,

40,

jllll_llllllllilllll

llll'!l!l'lll]llll]

0. 1. 2.

%oA/D

(b)

Illllllli]lllllllit

lllJ'lll!llIll!!lll

0. L 2.

vgA/D

(d)

Figure 3,25. Energy spectra ratios and SNRgst using the PSF of Eq. (3.1) with window num-
ber one and d/D = 0.1,k = 63 (corresponding to an image line length of 254 pixels or 63.51/D),
and an object support of 1 A/D. Figures (a) and (b) correspond to SNRrgr=40 dB, and figures
(c) and (d) correspond to SNRrgr=50 dB. The solid curve in each figure corresponds to the
least-squares solution with a finite support constraint only and the dashed curves correspond to
the least-squares solution with both finite support and positivity constraints.

-87-

E.(w)/E ()

107 e B I 40.f1.1|.|..|.,.,|....
10t
108
10
10°
102
10!
10°
107
1072
1072

107
10_5 = s g)y I T B 3 -40, PEETTE N A B RN l PRI S S JC T ERT IR
0. 1. 2, 0. i, 2.

N B s i ey o
SNReg; (dB)

-30. — —

%A /D xoh /D
(@ (b)

Figure 3.26. Energy Spectra ratios and SNRgst using the PSF of Eq. (3.1) with window num-
ber one and d/D = 0.1,k = 63 (corresponding to an image line length of 254 pixels or 63.5A/D),
an object support of 1 A/D, and SNRrgr=60 dB. The solid curve in each figure corresponds to
the least-squares solution with a finite support constraint only and the dashed curves correspond
to the least-squares solution with both finite support and positivity constraints.

- 88 -

E.GO/E ()

E.(0/E ()

107
10%
108
10*
10°
102
10!
10°
107!
1072
107
10
107

lllllllllllllllllll

SNRgs; (dB)

I|l'!lllll)ll|lll!

0. 1 2.
xA/D

(a)

107
106
10°
10t
10°
102
10!
10°
o
1072
107
10
107

ll]llllllllliililil

SNRgs; (dB)

llll'lllllllll]llll

0. 1. 2.
wA/D

()

lllllllllllllllllll

l!ll'llllll!lllllll

0. 1, 2.
xgh/D

(b)

ll-illllllililll"f

Illlllllllli!lllll]

0. 1. 2.
woA/D

(d)

Figure 3.27. Energy spectra ratios and SNRgst using the PSF of Eq. (3.1) with window num-
ber one and d/D = 0.1,k = 63 (corresponding to an image line length of 254 pixels or 63.50/D),
and an object support of 2 A/D. Figures (a) and (b) correspond to SNRrgr=20 dB, and figures

(c) and (d) correspond to SNRrgp=30 dB. The solid curve in each

figure corresponds to the

least-squares solution with a finite support constraint only and the dashed curves correspond to
the least-squares solution with both finite support and positivity constraints.

-89 -

107|lllllllllllixj|lll

10¢
108
10t
10°
102
10!
10°
10™!
1072
107
10

E_GO/ZE (0

10-5|l|;||||1|||1111414

0. 1.
wA/D

(a)

107

108
108
10
10°
102
10!
10°
107!
1072
107
107

E_()/7E ()

10'5 | S D I) ' it 1 ') S S N) l) B S]
0

1.
wA/D

(c)

SNRgg; (dB)

SNRgg; (dB)

40. |~ -
30. — -
20, |-]

IlllllllllllllllllI

=50. |~ —
_60.1|||||111L1111|y|||
0. 1. 2.
woh/D
(b)
£0.

lllllllll'illlllllr

-40, |~ -
-50. f—- -
_60 I S I | I | 2 B B | I b 2 N T | l) 2 B T |
‘0. 1. 2.
%o\ /D
(d)

Figure 3.28. Energy spectra ratios and SNRgsT using the PSF of Eq. (3.1) with window num-
ber one and d/D = 0.1,k = 63 (corresponding to an image line length of 254 pixels or 63.51/D),
and an object support of 2 A/D. Figures (a) and (b) correspond to SNRrRep=40 dB, and figures
(c) and (d) correspond to SNRpy,r=50 dB. The solid curve in each figure corresponds to the
least-squares solution with a finite support constraint only and the dashed curves correspond to
the least-squares solution with both finite support and positivity constraints.

-90 -

E.G)/E ()

E.(x)/E ()

10?
108
10%
10
10?
102
10!
10°
107
1072
107
10
1078

llllllllll[lllll’lll

SNRg; (dB)

lll)'llJ!'llll'l!!l

0. 1. 2.
wA/D

(2)

107
10t
108
10¢
10°
102
10!
10°
107
1072
1072
107
107

IIIllllll'l‘lllIIlll

SNRes; (dB)

lllllllllllllllllll

0. i.
wA/D

(¢)

n

50.
40,

-60.

lllllllllllljlllll'

lll[lllllllllellll

0. 1. 2.
®oA/D

(b)

ll[TIlIT‘rIIllllllll

llllJJ!llllllil'll

0. 1. 2.

®oN/D

(d)

Figure 3.29. Energy spectra ratios and SNRgst using the PSF of Eq. (3.1) with window num-
ber one and d/D = 0.1,k = 63 (corresponding to an image line length of 254 pixels or 63.5)\/D),
and an object support of 2 A/D. Figures (a) and (b) correspond to SNRRer=60 dB, and figures
(c) and (d) correspond to SNRrRpr=70 dB. The solid curve in each figure corresponds to the
least-squares solution with a finite support constraint only and the dashed curves correspond to
the least-squares solution with both finite support and positivity constraints.

-91 -

EI/ZE (0

E.)/E ()

107
108
103
1ot
10°
102
10!
10°
107
1072
107
107
1075

e

10?
10®
10%
10t
10°
102
10!
10°
10"
1072
107
10

10-5 L

SNRs; (dB)

Bl B By B

lll'll]llllllll!ll

i, 2.
wA/D

(a)

0![!'[!“'].]5‘1"[

SNReg; (dB)

lll!l!ll#lllll'll;\l

0. 1. 2.
wA/D

(c)

Illlllllflllllllll‘l

e I T R A

14llllxlllllllll||||

‘0. 1. 2.

woA/D

(b)

l!lll-‘ll]lll‘]lllt

!llll!lllllllllllll

0, 1. 2.
¥oA/D

(d)

Figure 3.30. Energy spectra ratios and SNRgsT using the PSF of Eq. (3.1) with window num-
ber one and d/D = 0.1,k = 63 (corresponding to an image line length of 254 pixels or 63.5\/D),
and an object support of 4 A/D. Figures (a) and (b) correspond to SNRrer=20 dB, and figures
(c) and (d) correspond to SNRrgr=30 dB. The solid curve in each figure corresponds to the
least-squares solution with a finite support constraint only and the dashed curves correspond to
the least-squares solution with both finite support and positivity constraints.

-99 -

E.()/E ()

E_.GO/E (0

107|llllllll|lllll"" 50 11||||llll||l||lll

T

10¢ ;_— 40. — —]
108 - 30, — —
10* |-
10° |- o
102 - 3
10! g_— _______ 5
o[,, TemTTETT [aed
100y zZ
10t [4p]
1072
107 r
10 =
10-5 - 1 . 1 , | N N s 1 I 1) y y l , 3) y _60. 1 1 L L ' 1 1 L 1 l 1 -1 1 1 ' L 1 1 1
0. 1. 2, 0. L
«\/D xgA/D
(a) (b)
107 50. ulilllll‘llll]lllll
10t 40, — -]
108 30, -
10¢ 20. —
N\
10° % 10, —
102 ~ 0. —
] | o
:go B -
3 Z -20.f—
to! - O
1072 - 0. N
) 3 -40, |— —
107 i =
lo.‘ !-_ __! -50. p~ I h—
10-5"|||||11;||1|||||111" ‘60.ll'll'll"'lll"]l
0. 1. 2. 0. L. 2
w\/D ¥gA/D
(c) (d)

Figure 3.31. Energy spectra ratios and SNRgst using the PSF of Eq. (3.1) with window num-
ber one and d/D = 0.1,k = 63 (corresponding to an image line length of 254 pixels or 63.51/D),
and an object support of 4 A/D. Figures (a) and (b) correspond to SNRrgr=40 dB, and figures
(c) and (d) correspond to SNRrgr=50 dB. The solid curve in each figure corresponds to the
least-squares solution with a finite support constraint only and the dashed curves correspond to
the least-squares solution with both finite support and positivity constraints.

—-93 -

E.(x)/E ()

107

10¢
10°
10*
103
102
10
10°
10
1072
107
107

SNRgg; (dB)

=40, |—
-50. —

I#ITIIIIIIII#[LR LA

IO‘S-J_llllllllllilllllll -60_"""""""14"'

0. 1. 2. 0.
xA/D

(a)

1. 2.
xoA/D

(b)

Figure 3.32. Energy Spectra ratios and SNRgst using the PSF of Eq. (3.1) with window num-
ber one and d/D = 0.1,k = 63 (corresponding to an image line length of 254 pixels or 63.51/D),
an object support of 4 A\/D, and SNRrgr=60 dB. The solid curve in each figure corresponds to
the least-squares solution with a finite support constraint only and the dashed curves correspond
to the Jeast-squares solution with both finite support and positivity constraints.

-04 -

E.(W/E (0

E_.GO/E, G0

106 —

10"
102
10t
10®
10%
10t
102
10°

10
10°¢

TTTTEITTTITT

1072 f—

lll]lllll!‘lllll'l

SNRes; (dB)

- e o T

A

[0‘5

i.
wA/D

(a)

10"
102
101
108
10¢
10t
10?
10°
1072
107

TTTTTTTRTTETT

-
—

l‘lilllll‘lllllltl

e et

- e~

1076 =
0.

1.
xA/D

)

oCLLLIL]

pCLLLTT]

SNRgg;y (dB)

1 '
[-
187 o
o o

ATTTTTErrTd

-100.
-120,

- 140,

p.

llllllvllllll]'lll

|

=T
-
foee
x~

bl -

Pt ittt

ll!llll'llllllljj

1. 2.
woA/D

(b)

lillll]lllilil‘lll

TTT.

TIIT
’
[

e > w am e e e e e e o

l.
®oA/D

ol L LI L L]

CrTTTTTTTTT

(d)

Figure 3.33. Energy spectra ratios and SNRgsT using the PSF of Eq. (3.1) with window
number five and d/D = 0.1,k = 511 (corresponding to an image line length of 1150 pixels or
287.5)/D), and an object support of 4 A/D. Figures (a) and (b) correspond to SNRrgr=20 dB,
and figures (c) and (d) correspond to SNRrgr=30 dB. The solid curve in each figure corresponds
to the least-squares solution with a finite support constraint only and the dashed curves corre-
spond to the least-squares solution with both finite support and positivity constraints.

- 95 -

E./7E (W)

E_(w)/E ()

101
1o%
102
10'°
108
10¢
10*
102
10°
1072
107
107

lolb
loll
1012
1ot
10°
10%
10t
102
10°
107
10
107

0. 1. 2.

Illlllllllllllﬁll

ITTTTTTrrT T

JLrr gyl

SNRgg; (dB)

- - - -
S -

L
e

LllLllllllllllJlll

0. 1. 2.

xA/D
(a)

llll‘flllilillll1-

ITTTrrrrirrrietd
AN ERNIIEEE

Ll R P e -

xA/D
(c)

-100.

-120.

-140,
0.

IIIIIII#IIIIIIITII

40.
0 o

TJTTTTTTTTTT

A I |

PN S B ST

/L b

1.
xoN/D

(b)

2.

.lii]rlllll‘rirlllll

FTTrrTrrrrriTid

|lllllLl

PRI R IO N T T A

[11

Ly et

| . .

i,
%A /D

(d)

Figure 3.34. Energy spectra ratios and SNRpst using the PSF of Eq. (3.1) with window
number five and d/D = 0.1,k = 511 (corrssponding to an image line length of 1150 pixels or
287.5A/D), and an object support of 4 A/D. Figures (a) and (b) correspond to SNRrer=40 dB,
and figures (c) and (d) correspond to SNRrp+=50 dB. The solid curve in each figure corresponds
to the least-squares solution with a finite suppo.t constraint only and the dashed curves corre-
spond to the least-squares solution with both finite support and positivity constraints.

- 96 -

N

16

lo -—l. T 7 1 LER L l T 1 17 ¥ ﬁ—‘—.: 80. _: L L L]] T 1 rir 'I LN A S ' T 1.1 1_-
1o — — .60, — -
lol2 - — L0 — —
10% |— - 20. — -
2 10t - o L S, =
T 10t g4 2 -2 —
X o - & - -
S 102 4 g -0 3
w oo PTTTTEmmesestE B 80— 3
102 - - -100. - -
10-& : : -120, p— -
107 : : -140, — l h

N —; T l La s {44 |—- ‘160. PRV I W S T W [E ST U B B
1%. L 2. 0. L 2

x\/D %A /D
(a) {b)
lolb .—l’ T 1 1 I T 1 5. 1 I T 1.1 9 I LB ; L— 80 ._p LALR l L L L] l LR L) I LB f—
4

10— — 60, — -
1012 l— — 40 : :
10! ___ : 20. | _
™ lO‘: - o L R =
S 10t - 3 -0 -
N [Bl -
S 102 - o -0 -
(RN = T T S — =Z — —
[1%] 100 TTTTTT NS Tommmmee- == -80. [_
102 = 3 -100. |— —
Lo [- -120. = -
10 - - -140. = -

10-0 _1 [| S T S | l vy vy b l_I '160. B o T l '
0. 1. 2. 0. 1. 2.

x\/D %oA/D
(<) (d)

Figure 3.35. Energy spectra ratios and SNRpst using the PSF of Eq. (3.1) with window
number three and d/D = 0.1,k = 255 (corresponding to an image line length of 638 pixels or
159.54/D), and an object support of 8 A/D. Figures (a) and (b) correspond to SNRrpr=20 dB,
and figures (c) and (d) correspond to SNRrgp=30 dB. The solid curve in each figure corresponds
to the least-squares solution with a finite support constraint only and the dashed curves corre-
spond to the least-squares solution with both finite support and positivity constraints.

-97 -

E,(W/E, (o)

E /7E (w)

lolb

loll
1012
lolo
108
10
10¢
102
100
10'2 .
10" =

107

LITTTEITTTTT T

llll‘lllllllll“l"

P

lllllllllllllllll

107
0.

f.
xA/D

(a)

lolb
101
1o
1p'e
108
10¢
10
102

LITTTTETTTTTTT]

10
107t
1078

10¢ 2/ ~——
-2
10 Z 7

lllllllllllllllll

!!lllll!l!lllllll

0.

1.
wA/D

(¢

olLLLLETTET P LI I I LLrtl

oLl LI PRI by

SNRgg; (dB)

'
[
o
o

IlllT‘llllI'llllllll

[

._l 1 1 L l '] L L H l 1 1 1 1 l 1 1 1 ;_
g. i. 2.
%oA/D

(b)
.—ﬂ [K] i + & 8 9 I « & 4 ¢ l L) |_
. —' 1} 1] 1 1 1 1 1 l 1 1 ! 1 I 1 1 1 l_-
0. {. 2.

®oA/D

(@

Figure 3.36. Energy spectra ratios and SNRgst using the PSF of Eq. (3.1) with window
number three and d/D = 0.1,k = 255 (corresponding to an image line length of 638 pixels or
159.51/D), and an object support of 8 A/D. Figures (a) and (b) correspond to SNRRgr=40 dB,
and figures (c) and (d) correspond to SNRrgp=>50 dB. The solid curve in each figure corresponds
to the least-squares solution with a finite support constraint only and the dashed curves corre-

spond to the least-squares solution with both finite support and positivity constraints.

E.()/E (%)

E.()/E (0)

1o"
10t
102
100
10
10*
10*
102
10°
1072
107
107
10°®

10“
10"
102
low
108
10¢
104
102
10°
1072
107
107
107

(ITTETTETTTITT T

- -—-—

’ -

lllllllllllllllll

SNRggr (dB)

1.
xA/D

(a)

IR N AENRINANERRIINEE

Illllillllilllll

ITTTTTETTITIT o T]

LR L g

s

llllll)lllll]|'lll

SNRgg; (dB)

0. i.

wA/D
()

N"Illlllltqllllllllllllll

llllllllllllll'll

T
—
—
f—

TTTTTETTEETTTLd

ISR IR

160#Lllllllllllllllll

N

100.
120.
140.
160.

llllllllllillllll

EEREENEEE

1.
¥oA/D

(d)

Figure 3.37. Energy spectra ratios and SNRgst using the PSF of Eq. (3.1) with window
number three and d/D = 0.1,k = 255 (corresponding to an image line length of 638 pixels or
159.5A/D}, and an object support of 8 A/D. Figures (a) and (b) correspond to SNRrer=60 dB,
and figures (c) and (d) correspond to SNRrgr=70 dB. The solid curve in each figure corresponds
to the least-squares solution with a finite support constraint only and the dashed curves corre-
spond to the least-squares solution with both finite support and positivity constraints,

-99 -

oLLLLL]

I

E.(x)/E (W)

E_(x)/E_(x)

10%¢ LRI SLEL AL I T T T T] 80 [T T T T I—r YT T T T
10" |~ - 80, | ~—
1072 — — 40. -
lolB — — 20. -
10 —] a 0. — =
108 |— -4 3 20 —
10t £ 4 5 o =
102 |— —] % -60. — I
100 : ‘_—. w -80. — -~

l— — —
10-2 — ~100. — -
10" - -120. |- —
107 : -140, — I]

— — _-' 1 1\ l 1 J 1 1 i1 IJJ 1.1 l_-
10-6 'S AU USRS I IR I A S W A -160.

0. 1. 2, 0- L 2

¥\ /D %oA/D
(a (b)

10‘6 —‘l 1 LI I L L 1 ITI T L] L} l L] L] lt 80. —| T 17T l L LB [] _I LSRR ' T 41 (R
10" |- — 60. —]
1012 - 40. -
10% — — 20. |- =
10° Jz oF pou
10° }— 94 3 -2 —
10* |- R -

— — w =]
102 — g’ =60, p— h
10° — 3 5 -s.f-
102 = -] ~100. — —
10-l : ~120. - .
10] -140. p~ —]
10-8 —-; N R I N ;—- '160.0 ey v e ey LI PR W BN

0, 1. 2. : b 2

x\/D %oA/D

(e) (d)

Figure 3.38. Energy spectra ratios and SNRgsTt using the PSF of Eq. (3.1) with window
number three and d/D = 0.1,k = 255 (corresponding to an image line length of 638 pixels or
159.54/D), and an object support of 8 A/D, Figures (a) and (b) correspond to SNRrgr=80 dB,
and figures (c) and (d) correspond to SNRrpr=90 dB. The solid curve in each figure corresponds
to the least-squares solution with a finite support constraint only and the dashed curves corre-
spond to the least-squares solution with both finite support and positivity constraints.

-100 -

E,(0)/E (0

10%
1oM
10'2
1o
10*
10*
10¢
10?
10°
1072
107
107
10t

[TTTTTTTITTTITreT i

4]

llll'lllllllllllll

ll'lIllllllllllIl 80.

SNRgg; (dB)

-100.
-120.

-140.
'160 llllllll!llllllllll

2
(TTTTTTTTTIT T

Pyttt

0.

o
[

I.
woA/D

N'IllllllVlllllllllllIll

1.
wA/D

(@) (b)

Figure 3.39. Energy Spectra ratios and SNRgsT using the PSF of Eq. (3.1) with window
number three and d/D = 0.1,k = 255 (corresponding to an image line length of 638 pixels
or 159.5\/D), an object support of 8 A/D, and SNRyer=100 dB. The solid curve in each
figure corresponds to the least-squares solution with a finite support constraint only and the
dashed curves correspond to the least-squares solution with both finite support and positivity
constraints.

-101 -

Chapter 4

Object Reconstruction with Sparse Arrays of
Optical Apertures.
Part I
Linear Methods

(originally issued as TR-1070)

-102 -

4.1. Introduction

In this report we investigate the feasibility of recovering useful images of objects from noise-
corrupted optical images formed by a very sparse array of apertures. By “useful image” we mean
an image with a resolution commensurate with the overall dimension of the array and with a noise
content low enough that the image would be considered useful. By “very sparse array” we mean an
array of apertures with aperture size very small relative to aperture spacing so that the frequency
response of the array comprises small “islands” of nonzero response:surrounded by a “sea” of zero
response.

At first, we questioned the feasibility of such a task based upon the supposition that superres-
olution is a dead issue, where here we are using the term “superresolution” rather loosely. to mean
filling in missing spatial frequency information with the use of some prior knowledge of the object.
Had it not been shown that modest gains in resolution require enormous sacrifice in a signal-to-noise
(SNR) ratio? However, it was brought to our attention that radio astronomers form apparently use-
ful images from interferometric data using very sparse arrays and an algorithm called CLEAN.% %7
Does CLEAN have magical powers, do radio astronomers have gobs of SNR at their disposal, or is
there something about superresolution that we don’t understand?

The possibility of resolving power beyond the classical limit of an idealized optical system has
long been recognized.!® 22:18.20.21 The earliest mention of-the subject appears to be by Coleman?!®
in 1947. In 1952, Toraldo di Francia® applies the concept of super-gain in antennas to optical
systems and concludes that the classical limit of 1.22 A/D is only a practical limit and the actual
resolution is limited only by noise. He discussed a procedure for designing what he calls a “super-
resolving pupil” in which improved resolution can be obtained over a limited field by modifying the
pupil of a diffraction-limited imaging system. In 1955, the same author!® approached the concept of
resolving power from the point of view of information theory. He reasoned that information is lost
when an object is transformed into an image and therefore several different objects may produce the
same image. If two different objects produce identical images then they cannot be “resolved”, and
thus this object ambiguity must have something to do with the definition of resolution. He gives
examples for the coherent light case. He suggests that prior knowledge could be used to reduce the
ambiguity in the object-image mapping. J. Harris® (1964) removes this difficulty by showing that
no two distinctly different objects of finite angular size can have identical images. To establish this
result, he uses two theorems from analytic function theory. The first theorem states that the Fourier
transform of a square-integrable function of finite support is analytic throughout the entire domain
of the spatial frequency plane. Harris then invokes analytic continuation (the second theorem) to
demonstrate that, in the absence of noise, and starting with an arbitrarily small (but finite) piece of
the Fourier transform of an object, one can find the entire Fourier trausform (and thus the object
itself). He next uses sampling theory to develop an algorithm to extrapolate from a piece of the
Fourier transform of an object to the whole transform. The method requires solving a system of
linear equations. Unfortunately, infinite precision requires an infinite number of equations. He
applies his method to measuring the angular separation of two hypothetical point sources when the
angle is less than the reciprocal of the spatial bandwidth of the system.

Following Harris, several researchers exploit the concept of analytic continuation to develop
algorithms for object recovery. Barnes’ (1966) uses prolate spheroidal wave functions to reconstruct
objects of finite support in a one-dimensional coherent imaging system. Frieden® (1967) extends the
use of prolate spheroidal wave functions to the reconstruction of partially coherently or incoherently
illuminated 2-D objects of finite support. Both the methods of Barnes and Frieden require infinite
series expansions in order to achieve infinite resolution. Brown!! (1969) carries the development to
the logical next step by examining the effect of series truncation on the amount of super-resolution
achieved.

It was recognized early on that noise gums up the superresolution works. Rushforth and R. Har-
ris 1% (1968) published one of the earliest papers in optics to seriously examine the effects of noise on
superresolution performance. They looked at three types of noise in the context of a one-dimensional

- 103 -

coherent system and finite object support: background, measurement, and computer round off. Us-

ing the object recovery method of Barnes? and an extension of the method using Wiener filter theory, _

they computed mean-square-error as a function of the degree of extension of resolution beyond the
classical limit with object support as a parameter. The paper demonstrates that even a modest
extension of resolution beyond tie classical limit is very costly in terms of the noisiness of the final
image.

Lukosz®® (1966, 1967) approach the subject of superresolution from a somewhat more global
viewpoint. He proposed an invariance theorem to explain the concepts underlying all super-resolution
techniques. The theorem states that it is not the spatial bandwidth of a system that is fixed, but
the number of degrees of freedom, specified by the two space-bandwidth products and the time-
bandwidth product of the optical system. Thus, one can extend any parameter of the system, e.g.,
spatial bandwidth, bevond the classical limit by proportionately reducing some other parameter,
provided some a priori information concerning the object, e.g., independence of time, is known.

A few researchers approached object restoration
from an information-theoretical standpoint.!’!3 As early as 1955, Fellgett and Linfoot®® derived
the information capacity of a two-dimensional optical system in terms of SNR, field-of-view, and
spatial bandwidth. A recent paper by Cox and Sheppard! (1987) extended the results of Fellgett
and Linfoot by including exposure time and temporal bandwidth to the expression for the informa-
tion capacity of an-optical system. They then use the invariance of capacity to demonstrate that
any attempt to increase the spatial bandwidth of the optical system through analytic continuation
results in a reduction of the SNR in the final image. They derive an upper bound on the resolution
improvement as a function of the ratio of SNR with and without the resolution improvement. The
bound is very loose, but nonetheless demonstrates that a modest improvement in resolution can
require very large increases in signal strength.

In the research described so far, the concept of superresolution was generally thought of as
any process which extends spatial frequency knowledge of an object beyond the spatial cutoff fre-
quency of the optical system. In a series of three papers, Lannes et.al.?42526 (1087) analyze the
problem of object restoration with missing spectral information. They view the restoration problem
to be a compromise between resolution and robustness. They develop a robustness theory that
includes object support and the distribution of regions of missing spectral information and conclude
that super-resolution extrapolation is “harder” than super-resolution interpolation. In other words,
extrapolating frequency information is “hard”, but interpolating between known regions, such as
CLEAN does, may be “easiet”. Furthermore, they state that the robustness of the interpolation
process is increased whenever the frequency gaps are well distributed over the aperture to be syn-
thesized.

To simplify computations and interpretation of results, we decided to conduct our investigation
in one dimension. Furthermore, we chose a discrete model of the optical system so that convolution
could be simply represented as matrix multiplication. A “typical” sparse array in one dimension is
shown in Fig. 4.1, This particular array is an example of a nonredundant array, so called because
no pair of subapertures contributes the same spatial frequency region to the MTF as any other pair
(except the region in the vicinity of zero, of course). This is witnessed by noting that all “islands” of
nonzero response are of equal height (again, except for the “island” at the origin). In our studies, we
will be particularly interested in the feasibility of using the concept of finite support to “fill in” the
gaps shown in Fig. 4.1, when the subaperture size (d) is very small compared to the array size (D),
or, put another way, when the width of the “islands” in the MTF is small compared to the spacing
between islands. The results we will present were computed using nonredundant arrays of four, five
and six subapertures, shown respectively in Fig.’s 4.2, 4.3, and 4.4.* It is in no way important to
the results we present that the arrays are nonredundant. It is merely a convenience. An important
feature to note of each of the arrays is the gap between islands. Our results will show that when

* These arrays were obtained from Barakat.t

- 104 -

the angular support of the object is less than the inverse of this gap, that the price, in terms of
signal-to-noise ratio, that we have to pay for using a sparse array is “moderate”, and otherwise, the
price rapidly becomes “severe”.

Ve begin in Section 4.2 with a description of the mathematical model of the image formed by our
one-dimensional discrete optical system. In Section 4.3 we define a performance measure. It remains
to pick an object recovery algorithm. There are probably at least as many recovery algorithms as
there are researchers in the filed.3:12:13,14,15,16 Mgt of the algorithms are iterative, mainly because
of the practical limitations of the object recovery process relative to the requirements of the two
dimensional problem, but also because of the ease of incorporating prior knowledge such as positivity.
Since we have no desire to develop yet another algorithm, but rather are interested in “feasibility”
in terms of signal-to-noise ratio, we will go on the assumption that a linear transformation of the
“measurement” will probably yield performance adequate for our purposes. We thus choose two
linear object recovery methods, minimum-variance, where knowledge of the first two moments of
object intensity distribution and observation noise is assumed, and unweighted least-squares, where
no statistical knowledge is used. The minimum-variance results are presented in Section 4.4 and
those of least-squares in Section 4.5.

4.2. Discrete Optical Modecl (One-Dimensional)

Let the components of the L x 1 vector z be the intensity pixels of the object line, let the
components of the N x 1 vector y represent the intensity pixels of the image line, and let the N x L
matrix B be the transformation from object line to image line (its columns contain shifted versions
of the system point-spread-function). Then an image can be represented by the matrix equation

y =Bz +n, (4'1)
where nis a N x 1 noise vector. The product Bz in Eq. (4.1) represents convolution of the object line

with the point spread-function, followed by truncation of the image. Let the point spread function
be h(k). Then the B matrix is

[h(-K) h(-K~1) ... h{~K=L+1)]
h(-K +1) h(-K) ... h(-K-L+2)
h(—=K +1) '
: e h=K-2)
h(0) : ee. h(=K=1)
: h(0) e h(-K)
B= : : . R(=K+1) | (4.2)
h(K —1) : :
h(K) h(K-1) ... :
h(K +1) h(K) e h(0)
h(K +2) h(K +1) :
: h(K +2)
: : e h(K-1)
MK +L-1) H(K+L-2) ... hE)

- 105 -

l 5| 34 2.4
I

t
of Apertures

b)

Figure 4.1.
Typical nonredundant sparse array aperture function (a) and the corresponding MTF (b).

- 106 -

b)

Figure 4.2.
Sparse array aperture function (a) and the corresponding MTF (b) for a nonredundant four-subaperture array.

- 107 -

— O — ——
11 A

b)

Figure 4.3.
Sparse array aperture function (a) and the corresponding MTF (b) for a nonredundant five-subaperture array.

- 108 -

D/X

b}

Figure 4.4.
Sparse array aperture function (a) and the corresponding MTF (b) for a nonredundant six-subaperture array.

- 109 -

where K = (N - L)/2.
Now let the M x 1 vector x represent an object of finite contagious support of length M < L
pixels located somewhere in the object line. We can write

z = Wx, (4.3)
where the L x M matrix W is of the form
. 0 -
1 0
1
W= (4'4)
0 1
L 0 4

Thus, W comprises an A x Af identity matrix embedded in a L x M matrix of zeros. Combining
Eq.’s (4.3) and (4.1) yields
y = BWx+n. (4.5)

To complete the model, we need a point-spread function. Let w(z) be an arbitrary aperture func-
tion. The corresponding modulation transfer function (MTF) is given below, where & is the spatial
frequency variable in units of cycles per radian and A is wavelength. We write
MTF(k) = /d:c w(z + 1M w(z — 3rA) (4.6)

A is chosen to be the area (in this case the length) of the aperture, so that the MTF at zero spatial
frequency is unity.

The point-spread function of an optical system is the inverse Fourier transform of the MTF
function, or

he(z) = /drcMTF(n)exp[%imc]. 4.7

The subscript ¢ denotes that this point-spread function is the continuous version. The discrete
version of the point-spread function is found by sampling and scaling the continuous version. Let é
denote the pixel spacing in the image line. Then the discrete point spread function used in the B
matrix given by Eq. (4.2) is

h(n) = 6h.(né); n=0, £1, %2, ... (4.8)

The continuous point spread functions for the four, five, and six subaperture arrays are given in
Eq.’s (9), (10), and (11) respectively. (The reader should see Fig.’s 4.2, 4.3, and 4.4 for the corre-
sponding MTF’s.) We have

he(z) = ; (ﬂl%ri{) (1 +3 Ecos [1—— (1 - %) z])) 4.9)

sz
he(z) = smﬂ'yz 2 1+2 icos 25D () d)z (4.10)
B wxz 5 o X D !)

i#10
A _d sinw%z 2] i 27D 1 d 411
c(z)--x e +%‘_1 cosjizx(1-5)%| |- (4.11)

i#14

i#15

-110 -

4.3 A Performance Measure

In the sections to follow we investigate two algorithms for object recovery. In order to evaluate
the performance of each algorithm and to compare algorithms, we need a measure of performance
that we can apply uniformly to both algorithms. Our object recovery algorithms not only attempt
to fill in the gaps between measured spatial frequency components of the object (interpolative
super-resolution), but also to estimate the object at spatial frequencies beyond D/ (extrapolative
super-resolution), where D is the over all length of the array. Because of array geometries, our
algorithms will be performing better at recovering some spatial frequency components than others.
We therefore need a frequency sensitive performance measure. To this end, let z(n) be the n'® pixel
of the object, Z(n) be the nth pixel of an estimate of the object, and e(n) be the n'h pixel of the
estimation error given by

e(n) = z(n) - Z(n), (4.12a)

or in vector notation,
e=x-—X. (4.12b)

One common measure of performance is mean-square-error, {(e7e). For our purposes this measure
is not useful. It gives us no indication of how well an algorithm performs as a function of spatial
frequency. Instead, the performance measure we will use is a signal-to-noise ratio (SNR) that is a
function of a spatial cutoff frequency. The behavior of the SNR as a function of cutoff frequency
will be an indication of the spatial resolution of the sparse array. To introduce frequency sensitivity
into the performance measure, let z.,(n), Zx,(n), and ex, (n) be filtered versions of z(n), Z(n), and
e(n), respectively, where the filtering is ideal low-pass with cutoff frequency &,. To explicitly define
the filtering operation, let y(n) be a sequence of pixels and y(x) be its Fourier transform given by

y(x) = Z y(n) exp(—27inks), (4.13)

where § is the object pixel spacing. Let f(fc) be the filter transfer function given by

fo={g Wse (419
Then the Fourier transform of yx,(n), the filtered version of y(n), is given by
T, (%) = T(0) (). (4.15)
Thus, we have
Zru (k) = Z(8) () (4.16)
Z., (k) = Z(k) (%) (4.17)

~

& (k) =€) f(x)
= [3(x) - Ew)) Fw)
= Fx, (k) = Ze, (x). (4.18)

Let us now define a signal-to-noise ratio for the filtered estimate Z,(n) as the ratio of the average
energy of the filtered object to the average energy of the filtered estimation error:

(set.m)

(gaun)

-111 -

SNREsT(k,) = (4.19)

The angle brackets in Eq. (4.19) denote ensemble average. From Parseval’s theorem we know that the
quantities inside the angle brackets in Eq. (4.19) can be written in terms of their Fourier transforms,
as follows:

1/26

Tt m=s [el P (4.20)
» -1/26
1/26

T e (n) =5 / drc . ()2 (4.21)
n ~1/26
We can use Eq.’s (4.13), (4.14), (4.16), and (4.18) to rewrite Eq.’s (4.20) and (4.21), yielding
1/26
S m=6 [dBeFFP
n

-1/26

= 26 / dre [5(x) (4.22)
0

1/26

Sem=s [awPIr

~1/25
Ko
= 26 / dr 52 (4.23)
0

Replacing the quantities inside the angle-brackets in Eq. (4.19) with their corresponding expressions
given by Eq.’s (4.22) and (4.23), and bringing the angle-brackets inside the integrals, yields

o dr {[Zx[)

SNREST(NO) = W.

(4.24)

Since integrating the quantities 6(|Z(x)[*) and 6{JE(x)|?) over the spatial frequency band x| < &,
yields, respectively, the energy in the object and estimation error over the same band, we will call
these quantities energy spectral densities or energy spectra, and use the notation

E:(x) = §(|Z(x)[*) (4.25)
Eu(x) = 8(j&(x)|2). (4.26)

So that o g B
SNRs(x,) = 302 Ee(¥) (4.27)

o ds Ee(x)
To compute the energy spectrum of a random sequence, we simply follow the prescription given

by Eq.’s (4.25) and (4.13). Let z be a random vector with n*" component z(n). Then its energy
spectrum is given by

E;(x) = (<))
=6 <| Z z(n) exp(—27rinn6)l2>
=46 E Z(z(n)z(m)) exp[—27i(n — m)x6). (4.28)

-112 -

We note from Eq. (4.28) that we need all entries of the covariance matrix of z(n) in the evaluation
of its energy spectrum.

4.4. Minimum-Variance Processor

The first processor (estimator) we will investigate is the so-called minimum variance processor.
We assume that we have first and second moment information on the object vector x and the noise
vector n of Eq. (4.5), i.e., we know the mean vector and covariance matrices of x and n. Since we
know the mean values of x and n, and we can compute the mean value of y, we will assume that the
mean values have been subtracted out of Eq. (4.5), and our estimate X is the deviation of x from its
mean value. In other words, we have the observation model

y = BWx+n, (4.29)

where all vectors in Eq. (4.29) have zero mean. We will use as an estimator a linear transformation
of the observation vector:

X = Hy. (4.30)
The error vector is
e=x~-X
=x - Hy. (4.31)

We wish to choose H so as to minimize the variance of the error. Since e is zero-mean, this is
equivalent to minimizing the mean-square-error, given by

§=(e"e)
= Tr(ee”). (4.32)

Let e, and z,, be the n*h components of the vectors e and x, and let h,, be the n** row of H. Then
we can write:

en =2, -y h,. (4.33)

We can see that choosing h, to minimize (e2), for every n, minimizes £. To minimize (e2), we

invoke the orthogonality principle (also known as the projection theorem). We choose h, so that
each component of the error is orthogonal to all components of the observation:

{eny) =0. (4.34)
Using Eq. (4.33) in Eq. (4.34) yields the equation

(zny) = (yy")ha. (4.35)
Solving for h,, we get
hy = (yyT) "} zay). (4.36)
Thus, the optimum H matrix, H,, has a value given by the expression
Ho = (xyT)yy"; " (437)
The covariance matrices in Eq. (4.37) can be computed using Eq. (4.29), yielding
{xyT) = (xxT)(BW)", (4.38)
(yy") = (BW)(xx")(BW)T + (an”). (4.39)
-113 -

In computing Eq.’s (4.38) and (4.39) , it was assumed that the object and noise vectors are uncor-
related. Using Eq.’s (4.38) and (4.39) in Eq. (4.37) yields

H, = (xxT)(BW)T [(BW){xxT)(BW)T + (nuT)] ™

= R;zGT [G ReeGT + Run) ™, (4.40)
where
R.: = (xx7), (4.41)
Rap = (nn7), (4.42)
G = BW. (4.43)

One can apply a matrix inversion lemma to Eq. (4.40) to show that
H,=(GTR;}G + R;H)'GTR;}. (4.44)

In order to compute the energy spectrum of the error, we need the error covariance matrix. Using
Eq. (4.31) we can write
(eeT) = (exT) — (eyT)HT. (4.45)

Since we have chosen H), so that each component of the error vector is orthogonal to the obscrvation
vector y, the second term in Eq. (4.45) must be zero. Therefore, we have

(eeT) = (exT)
= (xxT) = H,(yxT). (4.46)

Using Eq.’s (4.38) and (4.41) - (4.44) in Eq. (4.46) yields
(ee™) = Reo — (GTR;G+ R GTR;IGR..
= (G"R;1G+R:;)) ' [(GTR;1G + RZY) Rez — GTR;AGR.)
= (GTR;}G+R;H)™. (447)
To keep things simple we will assume that both the object and noise vectors are white, i.e.,

R.. =oll, (4.48)
n=021, (4.49)
where o2 and o2 are the variances of object and noise pixels, respectively. If we define a signal-to-

noise ratio as
SNRper = 02/03, (4.50)

then Eq. (4.47) can be written
(ee”) = (GT G(SNRgr) + I)~'o?. (4.51)

The numerator of the SNRrgr defined by Eq. (4.50) is referenced to the object plane and the
denominator is referenced to the image plane. Can we relate this to a similarly-defined SNR totally
referenced to the image plane? In general, the answer is no. Such an SNR would vary from pixel
to pixel. Rather than attempting to develop a suitable definition for SNR in the image plane, we
will instead simply make the following observation. Given a very large object of uniform intensity,
the intensity of the image is also uniform and is equal to the intensity of the object scaled by the

-114 -

MTF evaluated at zero spatial frequency, which is unity. Thus, in the case of a very large object of
uniform intensity, the SNR of an image pixel is SNRRgF.

We are now in a position to make some computations using the minimum-variance processor and
point-spread functions corresponding to the four-subaperture, five-subaperture, and six-subaperture
arrays shown in Fig.’s 4.2 ~ 4.4, respectively. In all cases we will use a pixel spacing 6 of

1

b= 15 (4.52)

This pixel spacing corresponds to a sampling frequency of 4D/ or a Nyquist frequency of 2D/).
This choice will allow the study of extrapolation superresolution out to a spatial frequency of 2D/),
twice the diffraction limit of an aperture of length D. The energy spectrum of the object is computed
using Eq. (4.48) in Eq. (4.28).

E. (k) = Méd?, (4.53)

where M is the number of pixels in the object (length of x), § is the pixels spacing, and o2 is the
variance of an individual object pixel. Note that M§ is the support of the object. We compute the
energy spectrum of the error vector using Eq. (4.51) in Eq. (4.28):

E(x)=6523.% [(GTG (SNRrgr) + 1)"‘] . (4.54)

Fig. 4.5a is a plot of the ratio E,.(k)/E.(r) versus spatial frequency and Fig. 4.5b is a plot of
SNRgst as a function of filter* cutoff frequency &, using the four-subaperture array of Fig. 4.2
with d/D = 0.005, and SNRrer = 50dB (10log,o(c2/02)). There are seven curves in Fig. 4.5a
corresponding to object supports of 1A/D, 2A/D, ..., 7A/D, with larger support corresponding
to larger values of the ratio E.(x)/E:(x). Fig. 4.3b contains 32 curves for object supports of
1A/D, 2X/D, ---, 32X/ D. There are several interesting observations that can be made concerning
these figures. First, E, (k) < E.(k) for all spatial frequencies £. The reason for this is that when
the signal at a particular spatial frequency is very small compared to the noise, the minimum-
variance estimator “turns off”, i.e., X goes to zero, and the error e converges to the object x. Thus,
a value of the ratio close to unity is “bad”, and a value very much less than unity is “good”.
The second point to note is the rapid increase in E,(k)/Ez(x) and rapid fall-off of SNRgst for
& > D/), ie., extrapolative super-resolution doesn’t work (a not unexpected result). The third
point to note, and the most important, is the near uniformity of interpolative super-resolution for
object support < 5A/D. Referring to Fig. 4.2, we see that the minimum-variance algorithm is
receiving direct measurements of the object spectrum at only very narrow regions centered about
0, £1/6D/A, £2/6D/A, ..., D/, but Fig. 4.5a tells us that the object estimates for support
< 5)/D contain approximately the same quality of spectral information throughout the band below
D/X as the direct measurements. Thus, the processor is “filling in the gaps” with apparent ease.
This behavior manifests itself in Fig. 4.5b also, where we see that the first five curves group together
at a near uniform SNRgst of about 22dB out to k&, = D/A; When object support exceeds 5\/D,
we note from Fig. 4.5a the processors inability to “fill in the gaps” between measurements and,
from Fig. 4.5b, the rapid drop in SNRgst over the range , < D/X with increasing object support.
We can illustrate this behavior rather dramatically by taking a vertical slice through Fig. 4.5b at
ko = D/A, and plotting SNRgst versus object support. This result is shown in Fig. 4.6. The curve
speaks for itself. We note only that the “cliff” of Fig. 4.6 is located at a support level approximately
equal to the reciprocal of the spacing between “islands” in the MTF of Fig. 4.2. The question arises:
have we established a rule? That is, interpolative super-resolution “works” as long as object support
is less than the reciprocal of the spacing between nonzero “islands” in the array MTF. By examining
other cases, we will see that this is indeed the rule. Furthermore, we will see that even if the rule is
violated by only a small amount, severe performance penalties are the result.

-115-

10°

107!
~
xX
vx
L
~ 107
2 H
s

[}
L

1072

10-641111L||1I|1 |

0. <L 2.
wA/D
a)

4-0 ltﬁlll—ﬁl*l‘rlll—l*rrﬁll
~

(A8)

O
s

[

[#2]

w

@

pd

wn

0. 1. 2.
woA/D

b)
Figure 4.5.

Ratio of the energy spectrum of the error to the energy spectrum of the object versus spatial frequency x (a) and
signal-to-noise ratio of the estimate versus low-pass filter cutoff frequency x, (b) using the minimum-variance processor
and the four-subaperture array with SNRrgr = 50dB and d/D = 0.005. The seven curves of (a) correspond to object
supports of 1A\/D, 2\/D, ..., TA/D, with E¢(r)/Ex(x) larger for larger support values. There are 32 curves in (b)
corresponding to object supports of 10/D, 2)/D, ..., 321/ D, with larger SNRgst for smaller support values.

~ 116 -

30 TII_IIT‘II_II—IIIIIIIIlllllllllﬂl1lll

- —

SNRgs; (dB)

0 |!]ll!J_lli]_l_llLlllllJJ_llllllllll
‘0. 5. 10. 15, 20. 25. 30. 35,

Support (A/D)

Figure 4.6.

Signal-to-noise ratio of the estimate versus object support using the minimum-variance processor
and the four-subaperture array, with SNRrgr = 50dB, d/D = 0.005, and ko = 1D/,

Performance plots for the minimum-variance processor and the five-subaperture array of Fig. 4.3
are shown in Fig. 4.7. Again d/D = 0.005 and SNRrgr = 50dB. There are again seven curves in
Fig. 4.7(a), this time corresponding to object supports of 2A/D, 4A/D, ..., 140/D, with larger
support corresponding to larger values of E,.(x)/E.(x). Fig. 4.7(b) again contains 32 curves cor-
responding to object supports of 1A/D, 2)/D, .-+, 32)/D. Again, note the near uniformity of
interpolative super-resolution for the first five curves of Fig. 4.7(a), this time over a spatial fre-
quency range |&| < 0.81D/), the “useful” range of the five-subaperture array (see Fig. 4.3(b)). In
this case, the first five curves correspond to object support < 10A/D.

Performance plots for the six-subaperture array of Fig. 4.4 are shown in Fig. 4.8. The results
are so similar to those of the four and five subaperture cases that we will not further elaborate,
other than to point out that the “useful” range of spatial frequencies for good interpolative super-
resolution performance for objects of support < 15A/D is |k} < 0.76D/A, the same as the “useful”
range for the six-subaperture array.

If we take vertical slices through the plots of Fig.’s 4.7(b) and 4.8(b) at the upper limit of the
“useful” frequency range of their corresponding arrays, k, = 0.81D/A and k, = 0.76D/), respec-
tively, we have the curves of Fig.’s 4.9(b) and 4.9(c). For convenience, Fig. 4.6, the corresponding
curve for the four-subaperture case, is reproduced in Fig. 4.9(a). In each case, the precipitous drop in
performance occurs at the point where object support exceeds the reciprocal of the spacing between
“islands” in the MTF for the corresponding array. One might argue that this result is “obvious”
from the sampling theorem. That is, the sparse array gives us uniformly spaced samples of the
Fourier transform of the object intensiiy distribution throughout the “useful” range of the array.
Thus, it should be possible to reconstruct the object intensity distribution from these samples out to
a resolution limit equal to the highest spatial frequency of the “useful” range, so long as the support
of the object is less than the reciprocal of the sample spacing. However, this argument, although a
useful viewpoint in developing an intuitive understanding of the results, gives no indication of how

-117-

10°

a3
|
107! —
~ 3
x i
% *
> 1072 '—g
X e
N -
[Y] -
Ll .
1073 —
10" L1 1 141 s 1 Ll 1 1 |] 1 1
0. 1. 2.
wA\/D
a)
40. LI) I LRI) I | S R) rl L)
N\
a8
o)
~
[
)
wl
(R
=z
3]

0. 1. 2.
woA/D

b)
Figure 4.7.

Ratio of the energy spectrum of the error to the energy spectrum of the object versus spatial frequency x (a) and
signal-Lo-noise ratio of the estimate versus low-pass filter cutoff frequency £, (b) using the minimum-variance processor
and the five-subaperture array with SNRRgr = 50dB and d/D = 0.005. The seven curves of (a) correspond to object
supports of 2\/D, 4A/D, ..., 14)/D, with E¢(x)/E+(x) larger for larger support values. There are 32 curves in (b)
corresponding to object supports of 1A/D, 2A/D, ..., 321/ D, with larger SNRggT for smaller support values.

- 118 -

VanN
b-4
g
x
]
<
Ve
=
S
v
L
wA/D
a)
4‘0. | S L rlTl—l —l—'f'i]’ Tl T i 1
N
M
e
g
[
n
w
o
=
wn

b)

Figure 4.8,

Ratio of the energy spectrum of the error to the energy spectrum of the object versus spatial frequency « (a) and
signal-to-noise ratio of the estimate versus low-pass filter cutoff frequency o (b) using the minimum-variance processor
and the six-subaperture array with SNRrgr = 50dB and d/D = 0.005. The seven curves of (a) correspond to object
supports of 3A/D, 6)\/D, ..., 210/D, with E.(x)/Ez(x) larger for larger support values. There are 32 curves in (b)
corresponding to object supports of 1A/D, 2)/D, ..., 320/ D, with larger SNRgst for smaller support values.

-119 -

SNRggr (dB)

30.

20.

10.

Trlllllllllll_‘lTlllI1llll|lllllllll
IllllllllJJlllJ_Llllllllllll_lllll
‘0. 5. 10. 15, 20. 25. 30, 35,

Support (A/D)

3)

SNRe; (dB)

30.

A R KA KA KA AR A
- -
20. [-
Z
0__.,.lu..lm.l,u.lu.,l..ul...,—
0. 5. 10. 15, 20. 25 30. 35.

Support (N/D)

b)

30. IITI]IlIT‘rIIII|l|lIrIIIITT1UlIIII
a 20, +— —
<
o
[e —
]

S

n 10.— -
0 Llllll_!_lll,lj_LlllJ_LlIlllLllllllJll
‘0. 5 10, 15, 20, 25. 30. 35,

Support (A/D)

<)

Figure 4.9.

Signal-to-noise ratio of the estimate versus object support using the minimum-variance processor,
SNRpgr = 50dB, and d/D = 0,005, Fig.'s (a), (b), and (c) correspond respectively, to the four-
subaperture array with s, = 1D/, the five-subaperture array with x, = 0.81D/), and the

six-subaperture array with xo = 0.76D /).

-120 -

severe the penalty is for violating the support constraint nor does it give any indication of how much
SNR loss will occur within the “useful” spatial frequency range of the array.

4.5. Unweighted Least-Squares Processor

In computing the results of Section 4.4, we assumed knowledge of the mean and covariance of
the object and noise vectors and a finite-support constraint on the object. A probably more realistic
situation is one where we are presented with an image and given the MTF of the optical system, and
we are required to find the object which best explains the image in some sense,. given no statistical
knowledge. In this section we will use a least-squares criterion for deciding which object “best”
explains the image, i.e., we pick the object vector estimate X which minimizes

e = |ly — Gx||*. (4.55)

Here we use the same one-dimensional optical model as that described in Section 4.2, with y the
vector of image pixels, x the vector of object pixels, and G = BW a matrix containing the system
point-spread function and the object support information. Carrying out the operation indicated in
Eq. (4.55) yields

e=(y-G%)7(y - GX)
=yTy - 2yTGR + T GTGR. (4.56)

The gradient of ¢ with respect to X is
Ve=~2GTy +2GTGx%, (4.57)

where here the gradient is taken to be a column vector. Setting Ae equal to zero and solving for X

yields
%= (GTG)"'GT+. (4.58)

Since G has full column rank, GTG is nonsingular and its inverse is well defined. The error vector
with this estimate is

-X

- (GTG)"'G7y. (4.59)

e=

Using y from Eq. (4.5) in Eq. (4.59), with G = BW, yields

e=x-(GTG)"'GT(Cx +n)
= (GTG)"'GTn. (4.60)

The covariance matrix of the error vector is

(ee”) = (GTG)*GT (unT)G(GT G)™?
= (GTG)"'GT RunG(GTG)™. (4.61)

As in the minimum-variance case, we will assume that the object and noise vectors are white, i.e.,

R’lt = ”31) (4-62)
Ran = 031, (4.63)
-121-

and
SNRREF = 0':2_./0'3‘. (464)

Then

(ee”) = (GTG)™'0?
= (GTG(SNRggr)) ™ o2 (4.65)

We write the error covariance matrix in this way to emphasis its similarity to the error covariance
matrix for the minimum-variance processor (see Eq. (4.51)). In fact, we see that as SNRpgp in-
creases the two matrices become one. In other words, for large enough SNRprgr, the performance of
unweighted least-squares approaches that of minimum-variance.

We compute the energy spectrum of the error vector using Eq. (4.65) in Eq. (4.28):

Ee(k)=602Y Y [(GTG(SNRggr))™] .. - (4.66)
m n
The energy spectrum of the object is given by Eq. (4.53). The pixel spacing we will use is
§=1)/D, (4.67)

yielding a Nyquist rate of D/A. There are two reasons for changing the pixel spacing from %—A/D
used in the minimum-variance processor. First, we are no longer interested in studying extrapolative
super-resolution performance and thus a Nyquist rate of D/ is adequate. Second, the inclusion
of an extrapolative super-resolution region creates a very large eigenvalue spread in GTG, making
it very difficult to numerically evaluate E,(x) with the numerical precision at our disposal. This
was not a problem with the minimum-variance processor because of the stabilizing influence of the
identity matrix in Eq. (4.54).

Except for pixel spacing, all of the results to follow were computed using the same parameters
as with the minimum-variance processor, i.e., d/D = 0.005 and SNRrer = 50dB. E.(z)/E:(x) and
SNREsT(k,) are shown in Fig.’s 4.10, 4.11, and 4.12 using the four, five, and six-subaperture array,
respectively. Corresponding plots of SNRgst versus objec. support at the appropriate value of &,
are shown in Fig. 4.13. Here we see similar features to that of the minimum-variance processor: near
uniform interpolative super-resolution with object support less than the reciprocal of the “island”
spacing in the MTF and a very rapid drop in performance when object support exceeds this value.
Note that the least-squares processor is not “smart” enough to “turn-off” when the object estimate
gets to noisy, thus allowing SNRgst to drop below zero dB. For purposes of comparison, Fig. 4.14
shows the SNRgst versus support curves for minimum-variance and least-squares superimposed.

4.6. Discussion

In presenting the minimum-variance and least-squares results, we have ignored certain subtleties
for the sake of clarity. For example, the number of columns in the G = BW matrix is determined by
the support of the object. How was the number of rows determined? Since the MTF in our optical
model is of finite extent, the point-spread function must be infinite, and therefore so is the image of
the object. In any practical imaging system, one obviously must truncate the image. In our model,
the number of pixels in the truncated image is determined by the number of rows of G. In general,
the larger the number of rows of G, the better is the object reconstruction. However, a point of
diminishing returns is reached whereby increasing the number of rows of G does not significantly
increase performance. At present, we have no theory to predict when this point is reached. However,
we determined imperically that an image line of length 256 A/D was essentially equivalent to an
infinite image line for all the cases we have presented in this report, and that is the length that was
used for all cases.

-122 -

E.OGO/E GO

5
)1

SNRg; (dB)
3
L1

1

n

e
li_|

woA/D

b)
Figure 4.10,

Ratio of the energy spectrum of the error to the energy spectrum of the object versus spatial frequency « (a) and
signal-to-noise ratio of the estimate versus low-pass filter cutoff frequency xo {(b) using the unweighted least-squares
processor and the four-subaperture array with SNRrgr = 50dB and d/D = 0.005. The 32 curves of (a) correspond to
object supports of 10/D, 2M/D, ..., 32A/D, with E¢(x)/Ex(x) larger for larger support values. There are 32 curves
in (b} corresponding to object supports of 1A/D, 2)/D, ..., 322/D, with larger SNRgst for smaller support values.

-123 -

1o
1013
1012
10!1

E.GO/E, GO

1072 g

-170.
-80.
-90.
-100.
-110.
-120.
-130.
-140,. 1 1 Il | 1 Il 1 Il 1

SNRes; (dB)
TTTTTTTTTT]

N

©
—

woh/D

b)
Figure 4,11,

Ratio of the energy spectrum of the error to the energy spectrum of the object versus spatial frequency « (a) and
signal-to-noise ratio of the estimate versus low-pass filter cutoff frequency %o (b) using the unweighted least-squares
processor and the five-subaperture array with SNRrer = 50dB and d/D = 0.005. The 32 curves of (a) correspond to
object supports of 1A/D, 2\/D, ..., 32)/D, with E¢(x)/Ez(x) larger for larger support values. There are 32 curves
in (b) corresponding to object supports of 13/D, 2A/D, ..., 32)/D, with larger SNRgst for smaller support values,

-124 -

104
1013
102
104
]OIO
10°
10°
107
10®
10°% §
104
10° &
102
10! §
10° §
107! A
1072 3

1073 §
107

E_(W)/E ()

I)»»D;)m»»)

SNR.y (dB)

RERERERERERERE

EEERN

_11‘_0 A1 A 1 L | L 1. 1 L

o
—

xoA/D

b)
Figure 4.12,

Ratio of the energy spectrum of the error to the energy spectrum of the object versus spatial frequency x (a) and
signal-to-noise ratio of the estimate versus low-pass filter cutoff frequency %o (b) using the unweighted least-squares
processor and the six-subaperture array with SNRrgr = 50dB and d/D = 0.005. The 32 curves of (a) correspond to
object supports of 1A/D, 2)/D, ..., 32)/D, with E(x}/Ex(x) larger for larger support values. There are 32 curves
in (b) corresponding o object supports of 1A/D, 2)/D, ..., 321/D, with larger SNRpsT for smaller support values.

-125 -

SNReg; (dB)

30.

IlllllllI|IIll'll!llllllllllllllllr]ll!l

SNRg; (dB)

30.

llllllllllllll|llllllllllllllllIl!Illll

Jll)llllllllllIllllllllllll!l'l!!llllll

10. 15, 20. 25. 30. 35. 40.
Support (A/D)

LJ._lJIllllllllllllllllll]llllll]llJIllll

‘0. 5. 10. 15, 20, 25. 30. 35. 40. 0. 8.
Support (A/D)

a) b)

30.

lllllllIIIITIIIIIIIIIIIIlll!lIlll'lill]’

20,

10.

-10.

SNRes; (dB)

-20.

-30.

lllllllllllll!lll]lllljlllllll!l!lll

0. 5. 10

Support (A/D)

16, 20. 25, 30. 35, 40.

c)
Figure 4.13.

Signal-to-noise ratio of the estimate versus object support using the unweighted least-squares
processor, SNRpgp = 50dB, and d/D = 0.005. Fig.'s (a), (b), and (c) correspond respectively,
to the four-subaperture array with ko = 1D/, the five-subaperture array with xo = 0.81D/},
and the six-subaperture array with xo = 0.76D/),

- 126 -

SNRgr (dB)

AT TTTITTrI oAy T ey T T g NI T I RTIgsIrINTd 0. IRAEELRARI I REERRAREREREERERRR] TRiT [T
30. prerrprerTpTTTTprr e T e S RAAA RAAM) MMM LA RARAS LAMM LM

SNRgg (dB)

_40 lll'll"Il|lll]lllllllllllllllllllllll _4.0 llllllllllJ"lIlllllll'llll'lll!lllllll
‘0. 5. 10. 15, 20. 25. 30, 35. 40, 0. 5. 10. 15, 20. 25. 30. 35. 40.
Support (/D) Support (A/D)
a) b)

30.]llllilllllllllllll|[1ll|lllll3|lilllll

20.

10,

SNRg, (dB)

~30. I~ —

_ko JlllllllllllllIlllll]lllIll'lI!l]lllj_l

‘0. 5. 10, 15 20. 25. 30. 35, 40,
Support (A/D)

€)
Figure 4.14.
Signal-to-noise ratio of the estimate versus object support using the unweighted least-squares
processor (solid line) or the minimum-variance processor (dashed line), SNRper = 504B, and
d/D = 0.005. Fig.’s (a), (b), and (c) correspond respectively, to the four-subaperture array with

Ko = 1D/ A, the five-subaperture array with x, = 0.81D/), and the six-subaperture array with
Ko = 0.76D/).

- 127 -

Experiments were conducted using values of d/D other than 0.005, which is the value used
throughout this report. We found, for small values of d/D, that SNRgst to the left of the “cliff”
was proportional to d/D, as long as the size of the image line was adjusted in each case so that the
image line was effectively “infinity” from a performance standpoint.

All the results presented in this report used SNRrgr = 50 dB. However, many experiments were
conducted using other values of this parameter. As one would expect, SNRgst tracked SNRRer. In
fact, we can see from Eq. (4.66) that SNRgsT with the least-squares processor is directly proportional
to SNRrer. Because of the identity matrix in Eq. (4.54), we can see that this is not the case using
the minimum-variance processor. However, at SNRrgr = 50 dB and above, the effect of the identity
matrix in Eq. (4.54) is negligible for object support sizes to the left of the “cliff” edge. We can see
this from Fig. 4.14. At SNRper below 50 dB, the identity matrix in Eq. (4.54) begins to dominate,
and minimum-variance performance is better than that of least-squares. However, at this level of
SNRaer, SNResT to the left of the “cliff” drops below 20 dB (a voltage ratio less than 10), so that
the usefulness of the object reconstruction is open to question. The conclusion is, at least for the
cases that we considered, that minimum-variance offers no apparent advantage over least-squares.

Chapter 5

A Random Process with Finite Support:
Autocorrelation Function of Its Fourier Transform
and Energy and Power Spectral Densities

(originally issued as TR-1042)

-129 -

5.1. Introduction

It is a well-known property of a wide-sense stationary random process that its Fourier transform
is delta-correlated. This is not the case for the Fourier transform of a random processes with finite
support. In this report we compute the autocorrelation function of the Fourier transform of a
particular random process with finite support. Our particular process is modeled as a windowed
wide-sense-stationary random process. We use this autocorrelation function to derive the energy
spectral density and power spectral density of the process. We present the results for both continuous
(Section 5.2) and discrete (Section 5.3) random processes.

5.2. Continuous Case

5.2.1 Autocorrclation Function of Fourier Transform

Let z(r) be a wide-sense-stationary random process with zero-mean, autocorrelation function
R.(r), and power spectral density ®.(x), defined by the equations

R.(r) = (=(r' + r)=(r")), (5.1)
(k)= /dr exp(—2mixkr)R.(r). (5.2)
We shall let
2(r) = w(r)s(r), (53)
where w(r) is a rectangular window function defining the support of z(r), given by
={L Ir<L/2
w(r) = {0: else. (5.4)

The Fourier transform of z(r) is
(k) = /dr:c(r) exp[—2xirk)
= / dr w(r)z(r) exp[—2xirk]. (5.5)
Using Eq. (5.5), we form the correlation between two Fourier coefficients of z(r):
(5 + An)z" () = [[drdr'w(r)ulr)e(r)2" ()
x exp [=2xi(r — r')k — 27irAx]
.—Z/ drdr' w(r)w(r')R.(r - r')
X exp [=2xi(r — r')K — 27irAx]. (5.6)

Throughout this report, angle brackets denote ensemble average. We now make the following change
of variables in Eq. (5.6):

u=r—r, (5.7
v=(r+r')/2, (5.8)
r=v+u/2, (5.9)
r=v-uf2, (5.10)
drdr’ = dudv, (5.11)
-130 -

Then we have

(Z(e + AR)Z*(8)) = / dudvw(v+ u/2)w(v—u/2) R;(u)
x exp[—2wixku]exp [-27iAk (v + u/2)]

= /du R, (u)F(u,Ak)exp [-27iu (k + Ax/2)], (5.12)
where
F(u,Ax) = /dv w(v+ u/2)w (v — u/2) exp[—27iAxv]
= {g{' - |u|)sinc [(L - IUI)AE], }Z{ .><.. ﬁ’ (513)
with
sinc(z) = sin(xz)/7z. (5.14)

Substituting Eq. (5.13) into Eq. (5.12) yields
(Z(k+ AR)Z"(x)) = /L du R, (u)(L — |u])sinc(L — |u])Ak)exp [-27miu(k + Ax/2)). (5.15)
-L

Given any R, (u), Eq. (5.15) can be used to numerically evaluate the correlation of Fourier coeflicients
of z(r). However, if we assume that R,(u) is a “narrow” function compared to the interval |u| < L,
ie.,

R:(v)~0, |ul>¢ €<L, (5.16)
then Eq. (5.15) can be approximated by

(Z(k + Ak)Z*(k)) ~ L sinc(LAk) / du R, (u) exp [~27iu (k + Ax/2)]
~ L sinc(LAK)®; (k + AK/2). (5.17)

If z(r) is white, i.e.,
R.(r) = ®,6(r), (5.18)

then we have Eq. (5.17) with equality,

(Z(x + Ak)Z*(k)) = L sinc(LAK) ;. (5.19)
Note from Eq. (5.17) and (5.19) that the Fourier coefficients of z(r) are uncorrelated at Ax equal
to an integer multiple of 1/L, the reciprocal of the support of z(r), if R,(r) satisfies the assumption

given by Eq. (5.16).

5.2.2 Energy Spectral Density and Power Spectral Density of z(r)
The two-sided energy spectral density of any random process z(r) of finite support is given by

Ex(x) = (|Z(x)I*). (5:20)

If z(r) is given by Eq. (5.3), then, from Eq. (5.15), we have

L
E.(x)= /_ _du Ry(u)(L~) expl-2iun]. (5.21)

- 131~

We recognize Eq. (5.21) as the Fourier transform of the product of R,(u) with a triangle function.
We can therefore write Eq. (5.21) as the convolution of the Fourier transforms of these two functions:

E.(x)=L? /dx' ®,(x — &')sinc*(Lx’). (5.22)

The power spectral density ®.(«) of z(r) can be defined as
®,(xk) = Ex(x)/L. (5.23)
From Eq. (5.21) and (5.22) we then have

L
¢4@=%[¢mnmmL-Man%mq (5.24)

or
o .(x)= L/dr:’ ®(x — ')sinc?(Lk"). (5.25)

If R.(r) satisfies the assumption given by Eq. (5.16), then the power spectral density of z(r) is
approximated by

(k) = $.(). (5.26)

We see from Eq. (5.26) that when the assumption given by Eq. (5.16) is satisfied, the power spectral
density of z(r) is simply the power spectral density of z(r). If =(r) is white, then we have Eq. (5.26)
with equality, i.e.,

8,(x) = 8. (5.27)

The variance of z(r) is the total power of the z(r) process given by

o2 (r) = (2(r)z*(r))

<[, s =
Using Eq. (5.24) in Eq. (5.28) yields
o2(r) = w(r)R.(0)
= w(r) /_: drd;(x)
= w(r)o?. (5.29)

This result follows directly from Eq. (5.3) and the fact the z(r) is wide-sense-stationary.

5.3. Discrete Case

5.3.1 Autocorrelation Function of Fourier Transform

Let z(n) be a wide-sense-stationary random sequence with zero-mean, autocorrelation sequence
R;(n), and power spectral density &,(v), defined by the equations

R:(n) = (z(n' + n)z(n")), (5.30)
o.(v)= E R.(n) exp(—2minv). (5.31)
-132 -

We shall let

z(n) = w(n)z(n)
where w(n) is a rectangular window sequence defining the support of z(n).

w(n) = { 1, n|< L/2 -

0, else

The variable v in ®,(v) above is a normalized frequency variable given by

K
V=-—

Ks
where &, is the sampling frequency. The Fourier transform of z(n) is

o0

I(v) = E z(n)exp[-27xinv]
= Z w(n)z(n) exp[—2wxiny).

n==00

Using Eq. (3.35), we form the correlation between two fourier coefficients of z(n):

(E(v +Av)3*(v)) = ZZw(m)w(n) (z(m)2"(n))
x exp[—2wi(m — n)v — 27imAv)
= 3% w(m)u(n)R.(m — n)expl-2ri(m — n)]
n X exp[—27imAv).

Now make the following change of variables to Eq. (5.36):

k=m-—n,
I =m
n=]-k,
Ev+ AT (v)) = Z 2 w(l)w(l — k)R, (k) exp[—2mikv) exp[-27itAv)
k1
=D Ra(k)G(k, Av) exp[-2mikv],
k

where

G(k,Av) = " w(l)w(l — k) exp[-2milAv]
!

{exp[—-'lrzkAu]ﬂ["—ﬁ—ﬁg‘%rlkm k| <L+1

[k|>L+1.
Substituting Eq. (5.41) into Eq. (5.40), we have

pa sin[rAv(L + 1 — [k[)]

(Zv+Av)Z*(v)) = Z R.(k)) exp [-27ik (v + Av/2)].

k=-L-1

-133 -

(5.32)

(5.33)

(5.34)

(5.35)

(5.36)

(5.37)
(5.38)
(5.39)

(5.40)

(5.41)

(5.42)

Given any R,(k), Eq. (5.42) can be used to numerically evaluate the correlation of Fourier coefficients
of z(n). However, if we assume that R.(k) is a “narrow” function compared to the interval [k| < L,
ie,

R.(k) ~ 0, [k] > ¢, (LKL, (5.43)
then Eq. (5.42) can be approximated by
~ ~e sin[rAv(L + 1
(F(v + AV)Z*(v)) =~ ——-[ﬁ-u)—)]@, (v+ Av/2). (5.44)
If z(n) is a white sequence, i.e.,
R.(k) = ®,4(k), (5.45)
where §(k) is the Kronecker delta, then we have Eq. (5.44) with equality,
~ ~ sin[rAv(L +1 .
(Z(v+AV)T*(v)) = WQ, (v+Av/2). (5.46)

We note from consideration of Eq.’s (5.44) and (5.46) that if R,(k) satisfies the assumption given by
Eq. (5.43) the Fourier coefficients of z(n) are uncorrelated for pairs of coeflicients associated with
frequency differences equal to Av, when Av equals an integer multiple of 1/(L + 1)—a quantity
equal to the reciprocal of the support of z(n).

5.3.2 Energy Spectral Density and Power Spectral Density of z(n)
The iwo-sided energy spectral density of any random sequence of finite support is given by

Ee(v) = (Z(»)). (6.47)
If z(n) is given by Eq. (5.32), then, from Eq. (5.42),
L1
E:(v)= Y R.(k)(L+1- [k])exp[-2nikv). (5.48)
k=-=L=1
The power spectral density ®.(v) of z(k) can be defined as
. (v) = E:(v)/L. (5.49)
From Eq. (5.48) we have
1 L+1
() = 777 k_;_l R.(k)(L + 1 — |k]) exp[-2iky]. (5.50)

If R.(k) satisfies the assumption given by Eq. (5.43), then the power spectral density of z(n) is
approximated by

8.(v) = 8. (v). (5.51)
If z(n) is white, then we have Eq. (5.51) with equality, i.e.,
&:(v) = &, (v). (5.52)

The variance of z(n) is the total power of the z(n) process given by

oz(n) = (|=(n)[?)

{ fl{;-. dvd.(v), |’;| <L/2 (5.53)
Using Egq. (5.50) in Eq. (5.53) yields
o?(n) = w(n)R,(0)
_ y2 .
= w(n) /_ 2 avd,(v)
= w(n)ol. (5.54)

This result follows directly from Eq. (5.32) and the fact that z(n) is wide-sense-stationary.

-134 -

Chapter 6

Object Reconstruction with Sparse Arrays of

Optical Apertures.
Part II:
Nonlinear Methods

(originally issued as TR-1072)

- 135 -

6.1 Introduction

This is the second part of Chapter 4 on the feasibility of using sparse arrays of optical apertures
to form useful images of objects. We stress “feasibility,” since we have no interest in developing
algorithms. In part 1?%, we created a discrete one-dimensional model of an optical imaging system,
defined a performance measure, and produced results using two linear object reconstruction algo-
rithms, minimum-variance and unweighted least -squares. Using three sparse arrays we concluded
that object reconstruction with sparse arrays was indeed feasible so long as object angular support
did not exceed the inverse of the size of the gaps between “islands” in the MTF of the array.

Because the algorithms we used were linear, they were capable of producing object reconstruc-
tions with negative intensity pixels. In this chapter we explore the question as to whether adding a
positivity constraint to an object estimate has the potential of significantly improving performance.
We examine two algorithms, unweighted least-squares with a positivity constraint and an algorithm
used in radio interferometry called CLEAN. In both cases, we conclude that a positivity constraint
has marginal benefit.

Throughout this chapter we assume familiarity with Ref. 28. However, for convenience we have
included in their entirety Section 4.2 (optical model) and Section 4.3 (performance measure) of
Chapter 4 as Section 6.2 and 6.3 of this report. We have also duplicated Fig.’s 4.1 through 4.4 of
Chapter 4 showing three sparse arrays and there MTFs as Fig.’s 6.1 through 6.4 of this chapter.

The results for nonlinear algorithms presented in this work were all obtained using Monte Carlo
methods, i.e., simulation of a random process, taking averages over many random results. In almost
all cases, N = 40 random trials were used to provide an average—though in a few cases N < 40
random trials were used (if the computational process ran too slowly). In those cases where N < 40
was used, we formed an estimate of the variance of the average quantity of interest and used a
number of trials, N, large enough so that the accuracy of our estimate of the average quantity of
interest would not be seriously compromised.

6.2. Discrete Optical Model (One-Dimensional)

Let the components of the L x 1 vector z be the intensity pixels of the object line, let the
components of the N x 1 vector y represent the intensity pixels of the image line, and let the N x L
matrix B be the transformation from object line to image line (its columns contain shifted versions
of the system point-spread-function). Then an image can be represented by the matrix equation

y=Bz+n, (6.1)

where n is a N x 1 noise vector. The product Bz in Eq. (6.1) represents convolution of the object line
with the point spread-function, followed by truncation of the image. Let the point spread function

- 136 -

IEAEI 34 24

1
of RApertures

-2d

S A

: l._.g_-l —~ -2 oA

b)

Figure 6.1.
Typical sparse array aperture function (a) and the corresponding MTF (b).

-137-

b)

Figure 6.2,
Sparse array aperture function (a) and the corresponding MTF (b) for an “efficient” four-subaperture array.

-138 -

a)

0 I 1 D D/)\
l T

b)

Figure 6.3,
Sparse array aperture function (a) and the corresponding MTF (b) for an “efficient” five-subaperture array.

-139 -

D/)

b)

Figure 6.4.
Sparse array aperture function (a) and the corresponding MTF (b) for an “efficient” six-subaperture array.

- 140 -

be h(k). Then the B matrix is

" h(~K) h(-K-1) ... h(-K=L+1)
h(—-K +1) h(-K) ... l(-K—-L+2)
: h(-K +1) :
: : v h(=K-=2)
h(0) : vee h(=K-=1)
: h(0) h(—K)
B= : : veo R=K+1) | (6.2)
h(K - 1) :
h(K) h(K-1) ... :
h(K +1) h(K) h(0)
h(K +2) h(K +1) :
= h(K +2)
: : vee h(K-1)
(K +L~1) KHK+L-2) ... hE) |

where K = (N - L)/2.
Now let the M x 1 vector x represent an object of finite contagious support of length M < L

pixels located somewhere in the object line. We can write

z = Wx, (6.3)
where the I x M matrix W is of the form
1 0 1
1 0
1
W= . . (6.4)
0 1
L 0 .

Thus, W comprises an M x M identity matrix embedded in a L x M matrix of zeros. Combining

Eq.’s (6.3) and (6.1) yields
y = BWx+n. (6.5)

To complete the model, we need a point-spread function. Let w(z) be an arbitrary aperture func-
tion. The corresponding modulation transfer function (MTF) is given below, where & is the spatial
frequency variable in units of cycles per radian and A is wavelength. We write

MTF(x) = %/ dz w(z + §rA)w(z — 3kA) (6.6)

A is chosen to be the area (in this case the length) of the aperture, so that the MTF at zero spatial
frequency is unity.

- 141 -

The point-spread function of an optical system is the inverse Fourier transform of the MTF
function, or

he(z) = / dr MTF(x) exp[27ikx]. (6.7)

The subscript ¢ denotes that this point-spread function is the continuous version. The discrete
version of the point-spread function is found by sampling and scaling the continuous version. Let §
denote the pixel spacing in the image line. Then the discrete point spread function used in the B

matrix given by Eq. (6.2) is
h(n) = 6he(nd); n=0, %1, £2, ... (6.8)

The continuous point spread functions for the four, five, and six subaperture arrays are given in
Eq.’s (9), (10), and (11) respectively. (The reader should see Fig.s 6.2, 6.3, and 6.4 for the corre-
sponding MTF’s.) We have

. 2 6
_d sxnwf\i-z . xD d)
hc(x) = 7\- (—;;;—) (1 + 3 ;COS {1-3-]- (- B z , (69)
a\2(1
SInTAz 2 2D _ d
he(z) = (wAz) 1+5 2 cos [ll 3 (1 5% (6.10)
\ i£10
.
d sm1r"z 17 2= D d
he(z) = -X(e) 1+1% ; cos [1-1—7-3- (1——5> x] . (6.11)
\ s

6.3. A Performance Measure

In the sections to follow we investigate two algorithms for object recovery. In order to evaluate
the performance of each algorithm and to compare algorithms, we need a measure of performance
that we can apply uniformly to both algorithms. Our object recovery algorithms not only attempt
to fill in the gaps between measured spatial frequency components of the object (interpolative
super-resolution), but also to estimate the object at spatial frequencies beyond D/A (extrapolative
super-resolution), where D is the over all length of the array. Because of array geometries, our
algorithms will be performing better at recovering some spatial frequency components than others.
We therefore need a frequency sensitive performance measure. To this end, let z(n) be the nth pixel
of the object, F(n) be the n*" pixel of an estimate of the object, and e(n) be the n® pixel of the

estimation error given by
e(n) = z(n) — Z(n), (6.12a)

or in vector notation,
e=x-X. (6.12b)

One common measure of performance is mean-square-error, (eTe). For our purposes this measure
is not useful. It gives us no indication of how well an algorithm performs as a function of spatial
frequency. Instead, the performance measure we will use is a signal-to-noise ratio (SNR) that is a
function of a spatial cutoff frequency. The behavior of the SNR as a function of cutoff frequency
will be an indication of the spatial resolution of the sparse array. To introduce frequency sensitivity
into the performance measure, let z,,(n), Zx,(n), and ex, (n) be filtered versions of z(n), Z(n), and

- 142 -

e(n), respectively, where the filtering is ideal low-pass with cutoff frequency «,. To explicitly define
the filtering operation, let y(n) be a sequence of pixels and ¥(x) be its Fourier transform given by

y(x) = Z y(n) exp(—2winké), (6.13)
where 6 is the object pixel spacing. Let f(n) be the filter transfer function given by
fo={y Wse (619
Then the Fourier transform of y«_(n), the filtered version of y(n), is given by
T () = §(£) (). (6.15)
Thus, we have
Fr. (k) = E(6)](x) (6.16)
Bu(K) = E(x)F(x) (6.17)
& () = E(x) f(x)
= [3(x) - E(w)] F(x)
= B, (K) = B, (). (6.18)

Let us now define a signal-to-noise ratio for the filtered estimate Z,(n) as the ratio of the average
energy of the filtered object to the average energy of the filtered estimation error:

(Tx.m)
SNRgsT(ko) = 5———t
(5
The angle brackets in Eq. (6.19) denote ensemble average. From Parseval’s theorem we know that the
quantities inside the angle brackets in Eq. (6.19) can be written in terms of their Fourier transforms,
as follows:

(6.19)

1/26
S a2 (n) = 6 / drc |F, (1) (6.20)
n —-1/26
1/26

S e (n) =6 / dr [&s, (k). (6.21)
n —-1/26

We can use Eq.’s (6.13), (6.14), (6.16), and (6.18) to rewrite Eq.’s (6.20) and (6.21), yielding
1/26

z 22 (n)=6 / dx IE(")Plf(K)F

-1/26
Ko
= 2 / dr [E(k)? (6.22)
0

1/26

Sem=s [Pl

n -1/26

=26 /0 " dr () (6.23)

- 143 -

Replacing the quantities inside the angle-brackets in Eq. (6.19) with their corresponding expressions
given by Eq.’s (6.22) and (6.23), and bringing the angle-brackets inside the integrals, yields

[d ([RxP)
I (E R (6:24)

Since integrating the quantities §(|Z(x)|?) and §{|€(x)[?) over the spatial frequency band x| < &,
yields, respectively, the energy in the object and estimation error over the same band, we will call
these quantities energy spectral densities or energy spectra, and use the notation

SNRest(ko) =

E.(x) = 6(|Z(x)I*) (6.25)
E(x) = §([E(x)*)- (6.26)

So that o dn Bx()
SNRgst (ko) = TZTE?T) (6.27)

To compute the energy spectrum of a random sequence, we simply follow the prescription given
by Eq.’s (6.25) and (6.13). Let z be a random vector with n** component z(n). Then its energy
spectrum is given by

E:(x) = §(1(x)")
=6 <| E z(n) exp(—-27rinn&)|2>
=6 Z Z(z(n)z(m)) exp[—27i(n — m)x§). (6.28)

We note from Eq. (6.28) that we need all entries of the covariance matrix of z(n) in the evaluation
of its energy spectrum.

6.4. Unweighted Least-Squares, Finite Support and Positivity Constraints

In Section 6.5. of Ref. 28 we used unweighted least-squares for object reconstruction, i.e., given
the observation

y=Gx+n, (6.29)
pick the object vector estimate X which minimizes
e= |y - GRIP, (6.30)

where x is the object vector, n is observation noise, and the columns of G are the system point-spread-
function shifted and truncated. The finite support constraint to the solution is implicitly contained
in the dimension of the object vector x and its estimate X. To add the positivity constraint we

simply add the statement
%> 0. (6.31)

The object vector estimate that minimizes ¢ of Eq. (6.30) can, of course, be obtained in closed
form. Unfortunately, this is not the case when the positivity constraint given by Eq. (6.31) is
included. One must use some numerical iteration method for each case of an object vector and a
noise vector, and perform some averaging of the results. Therefore, to evaluate the error vector
covariance matrix when using positivity as a constraint requires a simulation. To generate object
vectors, we generated independent Rayleigh random variables for each pixel. Thus, object intensity

- 144 -

30. llll]ﬁ]llllllllllllllllllllllllllIIl

SNRes; (dB)

_40 lIllllllIIIllIIlllllIllllllll'llllI!Jll
‘0. 5. 10. 15. 20. 25. 30. 35. 40.

Support (A/D)

Figure 6.5.
Signal-to-noise ratio of the object estimate versus both assumed and actual object support
using the unweighted least-square processor without and with a positivity constraint on the
object estimate (solid line and circles, respectively). The four-subaperture array of Fig. 2 was
used with SNRRrgr = 50 dB, d/D = 0.005, and ko = 1.0D/). There were N = 40 Monte Carlo
runs used to generate the simulation data shown here. The image data array, y, used here had
a length of 256 A/D.

30. T‘illll|IIIIIIIIIIIIII!(I“I(II!ICII”

SNRgg; (dB)

_40 llllllll!lllllIl!JJl!ll|l|‘!|llll!|!l|l
‘0. 5. 10. 15, 20. 25. 30. 35. 40,

Support (A/D)

Figure 6.6

Signal-to-noise ratio of the object estimate versus both assumed and actual object support using
the unweighted least-squares processor without and with a positivity constraint on the object
estimate (solid line and circles, respectively). The five-subaperture array of Fig. 3 was used with
SNRRpgr = 50dB, d/D = 0.005, and xo = 0.81D /). There were N = 40 Monte Carlo runs used
to generate the simulation data shown here. The image data array, y, used here had a length of
256 A/D.

- 145 -

pixels were always positive. Noise vectors were generated using independent, zero-mean, Gaussian
random variables. An image vector, y, was generated using Eq. (6.29) for each sample object and
noise vector generated. The object vector estimate, X, for each case was found using an algorithm
called gradient projection?. It is essentially the steepest descent algorithm modified to accommodate
the positivity constraint on the estimate. The algorithm is described in deétail in Appendix A. If we
let x(n) be the object vector and X(n) be the object vector estimate, each for the nth random trial,
then the error covariance matrix was estimated using

N
() = 5 3 (x(n) = 2() () - X)) (632)
n=1

where N denotes the total number of random trials. The energy spectrum of the error vector was
computed using Eq. (6.32) in Eq. (6.28). The results were then integrated to compute SNRgsT,
as was done in Ref. 28. Plots of SNRgsT versus object support are shown in Fig.’s 6.5 through
6.7 for the four, five, and six subaperture cases, respectively. These calculations were performed
with N = 40. Note that the use of a positivity constraint tends to moderate the estimate in
those cases where the SNR is low, just as the use of statistical knowledge in the minimum-variance
processor did. However, just as in the minimum-variance case, positivity appears to be of little help
in performance improvement at SNR levels that are probably the minimum useful levels.* We also
performed simulations at SNRrgr levels higher and lower than the 50 dB used to generate the results
of Fig.’s 6.5 through 6.7. However, there were no surprises in the results. At SNRrgr > 50 dB the
performance in the region where support is less than the reciprocal of the gap in the MTF “island”
was the same with and without the positivity constraint. At SNRrer < 50 dB the performance
with positivity was marginally better than the performance without positivity in the same support
region, with the performance gap increasing as SNRgrer is lowered. However, it is questionable
whether the performance improvement with positivity is useful at such low levels of SNRgst.

The above results were obtained with assumed and actual object support the same. The question
arose as to the result if assumed object support were larger than actual object support, i.e., the
object estimate the processor is allowed to formulate has a larger support than the actual size
of the object. Until we introduced the positivity constraint, this question had no meaning. The
minimum-variance processor requires second moment information about the object, and thus its
size. Therefore, assumed and actual object size cannot be different. For unweighted least-squares
without positivity, it can be shown that performance depends only on assumed object support, and
as we have shown in Ref. 1, this must be less than the reciprocal of the gap in the MTF “islands”
for good performance. However, for the case of unweighted least-squares with positivity, the results
were somewhat surprising. We found that the critical size is neither the assumed nor actual object
support, but their average, i.e., if the average of the assumed and actual object supports is smaller
than the “gap”, then SNRgst will not fall off the “cliff’. This result is illustrated in Fig.’s 6.8
through 6.10, corresponding to the four, five, and six subaperture arrays respectively. The same
results are shown in Fig.’s 6.11 through 6.13 with an expanded vertical scale to show more detail.
(The simulation results shown in Fig.’s 6.8, 6.9, 6.11, and 6.12 used N = 40 random trials, and the
simultion results shown in Fig.’s 6.10 and 6.13 used N = 20 random trials.) Although this feature
of positivity is interesting, it is hard to imagine a situation in which it would be useful.

6.5 CLEAN

The computational complexity of unweighted least-squares with a positivity constraint compels
one to find a less burdensome algorithm that also incorporates a positivity constraint on the object
estimate. One such algorithm is CLEAN?, used in radio interferometry to reconstruct objects from

* Note that an SNRgsT of 20 dB corresponds to a “voltage” ratio of 10.

- 146 -

3. LRI TI1170 LR LA LR LIRS +177 TT11 1 I A REEEAREI
ol EARMY AAAL) LAAL) LA LASE] KAMM) RARM

SNRes; (dB)

-30. — —

_4_0 Ll_IJllllll_l!llllll'llll'l!ll'll!'llllll
‘0. 5. 10. 15, 20. 25. 30. 35. 40.

Support (A/D)

Figure 6.7.

Signal-to-noise ratio of the object estimate versus both assumed and actual object support
using the unweighted least-square processor without and with a positivity constraint on the
object estimate (solid line and circles, respectively). The six-subaperture array of Fig. 6.4 was
used with SNRrgr = 50 dB, d/D = 0.005, and xo = 0.76D/). There were N = 40 Monte
Carlo runs used to generate the simulation data syown here. The image data array, y, used here
had a length of 256 A\/D.

30. IAEBRERRE RERNI IRERERERERARLERA IR RENRER]
R SR LA A R B
20. —333-33339? -
7y
8 . ‘1;’\‘
- 933 —~
@
o -0 —
=z
)
-20. — —]
30. —
_40 IllIIlllllllll|lll||llIlIIIl]IllIIIIlJl

‘0. 5. 10. 15 20. 25. 30. 35. &40.
Support (A/D)

Figure 6.8,

Signal-to-noise ratio of the object estimate versus assumed object support using the unweighted
least-squares processor with a positivity constraint on the object estimate. The four-subaperture
array of -Fig. 6.2 was used with SNRrep = 50 dB,d/D = 0.005, and xo = 1.0D/X. From right
to left, the three curves correspond to actual object sizes of 2, 4, and 6 A/D. There were N = 40
Monte Carlo runs used to generate the simulation data shown here. The image data array, y,
used here had a length of 256 A/D.

- 147 -

30.

20.

10.

SNRgg; (dB)

-30.

=40,

Signal-to-noise ratio of the object estimate versus assumed object support using the unweighted
least-squares processor with a positivity constraint on the object estimate. The five-subaperture
array of Fig. 6.3 was used with SNRrgr = 50 dB,d/D = 0.005, and xo = 0.81D/A. From right
to left, the five curves correspond to actual object sizes of 2, 4, 6, 8, and 10 A/D. There were
N = 40 Monte Carlo runs used to generate the simulation data shown here, The image data

llllllllllllll[lliil!llllllllllllllllll
11
333y _]
\
\5\\)\\‘ \\ \‘
= N \\1\\ ——
I‘%
— b1 —
ll!lll!lIlllllllllllllllll!lll!lll'llll
0. 5. 10, 15, 20. 25. 30. 35. 40.

Support (A/D)

Figure 6.9,

array, ¥, used here had a length of 256 A\/D.

30.

20.

10,

SNRgg; (dB)

Signal-to-noise ratio of the object estimate versus assumed object support using the unweighted
least-squares processor with a positivity constraint on the object estimate. The six-subaperture
array of Fig. 6.4 was used with SNRper = 50 dB,d/D = 0.005, and xo = 0.76D/). From right
to Jeft, the five curves correspond to actual object sizes of 5, 8, 11, 14, and 17 A/D. There were
N = 20 Monte Carlo runs used to generate the simulation data shown here. The image data

31]1[([11]11‘!]ll‘lilllllrr‘l‘ll’i‘lll'llllll
o \% ..s.' '; 4*‘_" _._.~ ‘R —
. ,'\;_‘}: —

3;,\\5
llllllllll_llllIllllIlllllllllllllllllll
‘0. 5. 10, 15, 20, 25, 30. 35. 40.

Support (A/D)

Figure 6.10.

array, ¥, used here had a length of 256 A/D.

- 148 -

25. llllIlllll]llllllllllllllllllIllllIllll

] N
e iadutad
3,

Y
- -
v

SNReg; (dB)
N
e
[

_,__..-..—-———-0

15 lllll!‘! llll|l!!llllllllll!llllll!!!l

0. S 10. 15 20. 25. 30. 35 40.
Support (A/D)

Figure 6.11,

Signal-to-noise ratio of the object estimate versus assumed object support using the unweighted
least-squares processor with a positivity constraint on the object estimate. The four-subaperture
array of Fig. 6.2 was used with SNRrer = 50 dB,d/D = 0.005, and xo = 1.0D/A. From right
to left, the three curves correspond to actual object sizes of 2, 4, and 6 A\/D. There were N = 40
Monte Carlo runs used to generate the simulation data shown here. Th: image data array, y,
used here had a length of 256 A/D.

25. III['I!(IIIllllllli'llIIII1IIIIIII[]]II

~ 3
[ag] 2‘ ‘ ‘l\a‘?
3 v b\")--a
RN
[—— p—
[‘3 b\\ ’~*“ %_
ad 2 : : 1
Z ’\ 11 !
v *s Jl.,'

R

————————-—
e ————

15 llllllllllll 1.x1 ll_l'LlllIlllllllllI|lll
‘0. 5. 10. 15. 20. 25. 30. 35. 4O0.

Support (A/D)

Figure 6,12,

Signal-to-noise ratio of the object estimate versus assumed object support using the unweighted
least-squares processor with a positivity constraint on the object estimate. The five-subaperture
array of Fig. 6.3 was used with SNRrer = 50 dB,d/D = 0.005, and xo = 0.81D/X, From right
to left, the five curves correspond to actual object sizes of 2, 4, 6, 8, and 10 A/D. There were
N = 40 Monte Carlo runs used to generate the simulation data shown here. The image data
array, ¥, used here had a length of 256 A/D.

- 149 -

25. llllll'll'lllllllllIIlllIll'lIlllllllll
?
\
\
~ \1 1\
m VRS N -
\ 2 2}
3 \ \3~, L
\ \ \'g:'?
3. \ - —
5 20.— Rk S +e
w N
o AN
p i
w You
A T B T
R T B
' R
R T S T
'O T T B
[I | LI |
[N T | t
15 "'ll'll'l'."Il"lq!l‘llJll"l'l'l"llll'

0. 5. 10. 15, 20. 25. 30. 35. 40.
Support (A/D)

Figure 6.13.

Signal-to-noise ratio of the object estimate versus assumed object support using the unweighted
least-squares processor with a positivity constraint on the object estimate. The six-subaperture
array of Fig. 6.4 was used with SNRrgr = 50 dB,d/D = 0.005, and xo = 0.76D/). From right
to left, the five curves correspond to actual object sizes of 5, 8, 11, 14, and 17 A/D. There were

N = 20 Monte Carlo runs used to generate the simulation data shown here. The image data
array, ¥, used here had a length of 256 A\/D.

interferometric data. Since radio interferometers certainly employ sparse arrays, we were curious as
to whether CLEAN was subject to the same limitations vis-a-vis object support and MTF gaps as

the other algorithms that we have tried. CLEAN begins with the same observation model that we
have used throughout our investigation:

y=Gx+n, (6.33)

where x is the object vector, n is observation noise, and the columns of G are the system point-spread-
function shifted and truncated. CLEAN is an iterative attempt to solve the system of equations

y = GX, (6.34)

with the positivity constraint
x>0, (6.35)
where y and G are given, and X is unknown. If the solution exists (in our case that is equivalent to
no noise), and under the appropriate circumstances, CLEAN is capable of converging to the exact
solution. However, if there is observation noise, then CLEAN will not in general converge to the
best solution in the constrained least-squares sense, i.e., CLEAN will not minimize ¢ of Eq. (6.30)
with the constraint given by Eq. (6.31). Furthermore, as we shall see, CLEAN does not in general
perform as well in terms of SNRgst as least-squares. Details of our implementation of CLEAN are

contained in Appendix E.

Simulations using CLEAN were carried out in the same way as for unweighted least-squares with
positivity. Independent Rayleigh and Gaussian random variables were generated to create object
and noise vectors, the image vector y was computed, and CLEAN was applied to form an estimate

of the object vector. After many trials (in all cases presented in this report, we used N = 40 random
trials), a sample error covariance matrix was computed using Eq. (6.32).

- 150 -

SNRgst versus object support is plotted in Fig’s 6.14, 6.15, and 6.16, for SNRrer =
50 dB, 60 dB, and 70 dB, respectively. The circles represent the results of simulations using CLEAN
and the solid curves are the results using unweighted least-squares. In-all cases, the four-subaperture
nonredundant array of Fig. 6.2 was used. The first characteristic to note in all three figures is that
CLEAN exhibits the same “cliff”” behavior as the other algorithms we have tried; object support
must be smaller than the reciprocal of the gaps between the “islands” in the MTF or SNRgs falls
off the “cliff”. Also, the positivity constraint intrinsic in CLEAN moderates the object estimate at
low SNR, just as does positivity applied to unweighted least-squares or statistical knowledge in the
minimum-variance processor. Finally, we note that, to the left of the “cliff”, that CLEAN tracks
least- squares with about a 14 dB performance loss. We will explore the reason for this loss shortly.
However, we will now look at the CLEAN results using the other two nonredundant arrays shown
in Fig.’s 6.3 and 6.4 and discover a limitation of CLEAN not suffered by the other algorithms we
have tried. We begin with the 5-subaperture array of Fig. 6.3 and the corresponding CLEAN results
of Fig. 6.17 with SNRrgr = 50 dB. There are no surprises in this figure. The results are what
we would expect in the light of previous results. Now consider the results using SNRpgp = 60 dB
shown in Fig. 6.18. We now see a considerable fallofl in CLEAN performance beyond an object
support of 5A/D. The result is more exaggerated in Fig. 6.19 were SNRrgr = 70 dB. The “clifi”
appears to be located at 5A/D instead of the expected location of 10 to 11 A/D. For the present,
we simply point out that the MTF of the five-subaperture array has a missing “island”, so that
one of the gaps is 2/11D/), the reciprocal of which is 5.5 A/D. Now consider the results shown in
Fig.’s 6.20 through 6.22 using the six-subaperture array of Fig. 6.4. Again we have a severe loss in
performance for object support exceeding 5 A/D when we would expect level performance out to
a support of 16 to 17 A/D. And again, we note that the six-subaperture array has two adjacent
missing “islands” in its MTF with a corresponding gap of 3/17D/A, the reciprocal of which is 5.67
A/D. Apparently, CLEAN is confused by irregularly spaced “islands” in the MTF of the array.
In other words, CLEAN appears to require that object support be less than the reciprocal of the
largest gap in the MTF of the array, even though that gap is outside the cutoff frequency used in
computing SNRgst. We gain additional insight by examining the energy spectrum of the error vec-
tor when using CLEAN. Fig. 6.23 contains curves of energy spectrum versus spatial frequency using
the five-subaperture array. Note that CLEAN is successfully interpolating between “islands” in the
MTF for objects with support less than 12 A/D, but the performance gradually degrades beyond a
support of 5 A/D. Fig. 6.24 reveals the same behavior using the six-subaperture array. The obvious
solution is to spatially filter the observation vector y with a low-pass filter with a cutoff frequency
equal to the upper bound of the “useful range” of the array. The point-spread function used in the
CLEAN algorithm would be adjusted to reflect the “new” MTF. To demonstrate the concept while
avoiding the filtering operation, we instead created two redundant arrays with the same “island”
spacing as the nonredundant five and six subaperture arrays. These arrays and there corresponding
MTFs are shown in Fig.’s 6.25 and 6.26, respectively, and the results of the simulations are shown
in Fig.’s 6.27 through 6.32. Note that in every case we now have the behavior that we originally
expected with the nonredundant arrays.

We now refer back to one of the early observations, that the performance of CLEAN is worse
than least-squares in the region where object support is less than the reciprocal of the “gap” size
in the MTF. In an optical system using a completely filled (nonsparse) aperture, there is very little
information in the image plane about the object being imaged outside the support region of the
object. This not the case with a very sparse array. As the “sparseness” is increased, information
about the object is spread further out into the image plane, considerable beyond the region of
object support. All of this information is potentially useful in a signal-to-noise ratio sense, and the
algorithm that can use it will perform better than one that cannot. However, there is usually a point
of diminishing returns, where increasing the size of the observation region will no longer significantly
improve performance because of the increased amount of observation noise. In all the results that
we have presented, both in this report and in Ref. 28, using minimum-variance and least-squares

- 151 -

50. lilllll—llllIIIIIIIIIIIIIII‘ITIIIIIIIllll

40. — —

30. — —]

SNRcg; (dB)

_40 JJIIIIIII[!!I!'IIIlIllllIlllllJlllIllll

‘0. 5. 10. 15. 20. 25. 230. 35. 40,
Support (A/D)

Figure 6.14.

Signal-to-noise ratio of the object estimate versus both assumed and actual object support
using unweighted least-squares without a positivity constraint on the object estimate (solid line)
and the CLEAN algorithm (circles). The four-subaperture array of Fig. 6.2 was used with
SNRpzsr = 50 dB,d/D = 0.005, and xo = 1.0D/). There were N = 40 Monte Carlo runs used
to generate the simulation data shown here. The image data array, y, used here had a length of
256 A/D.

50. lllllll'lIlll]lllil'lllllllllllllllllli

40. [—
30.
20,
10.

0.

SNRgg; (dB)

-10.
-20.

-30.

_40 lllll!ll!'l!!llll] llllllllllllllllllll
0. 5. 10. 15, 20, 25. 30. 35. 40,

Support (A/D)

Figure 6.15.
Signal-to-noise ratio of the object estimate versus both assumed and actual object support
using unweighted least-squares without a positivity constraint on the object estimate (solid line)
and the CLEAN algorithm (circles). The four-subaperture array of Fig. 6.2 was used with
SNRREgr = 60 dB,d/D = 0.005, and o = 1.0D/)A. There were N = 40 Monte Carlo runs used
to generate the simulation data shown here. The image data array, y, used here had a length of
256 A\/D.

- 152 -

50. IIIllIIlIIllllIIII']IIITII1I—IIITI111111

SNRgg; (dB)

_40 lllllllllllllllllll Il'llllllllllllllll

‘0. 5. 10. 15. 20. 25. 30. 35. 40.
Support (A/D)

Figure 6.16.

Signal-to-noise ratio of the object estimate versus both assumed and actual object support
using unweighted least-squares without a positivity constraint on the object estimate (solid line)
and the CLEAN algorithm (circles). The four-subaperture array of Fig. 6.2 was used with
SNRrEr = 70 dB,d/D = 0.005, and xo = 1.0D/). There were N = 40 Monte Carlo runs used
to generate the simulation data shown here. The image data array, y, used here had a length of
256 A/D.

50. llllIlll(llllllillilllilllllllllll]llll

40. — -]
30. — —
20,
10.

0.

SNRg; (dB)

-10.
-20.

-30.

_40 lllllllll||lIIIIlJllllll'llllI!!!l'!ll!
‘0. 5. 10. 15, 20. 25. 30. 35. 40.

Support (/D)

Figure 6.17.
Signal-to-noise ratio of the object estimate versus both assumed and actual object support
using unweighted least-squares without a positivity constraint on the object estimate (solid
line) and the CLEAN algorithm (circies). The five-subaperture array of Fig. 6.3 was used with
SNRRer = 50 dB,d/D = 0.005, and xp = 0.81D/\. There were N = 40 Monte Carlo runs used
to generate the simulation data shown here. The image data array, y, used here had a length of
256 A\/D.

- 153 -

50. llllllllIIIIIIIIlllllllllllllllllIIIIII

SNRes; (dB)

-30. —

_40 llllIl!llllllllllllllllllllllll!l!l!lll
‘0. 5. 10. 15, 20. 25. 30. 35. %0,

Support (A\/D)

Figure 6.18,

Signal-to-noise ratio of the object estimate versus both assumed and actual object support
using unweighted least-squares without a positivity constraint on the object estimate (solid
line) and the CLEAN algorithm (circles). The five-subaperture array of Fig. 6.3 was used with
SNRREr = 60 dB,d/D = 0.005, and ko = 0.81D/)\. There were N = 40 Monte Carlo runs used
to generate the simulation data shown here. The image data array, y, used here had a length of
256 A/D.

50. IR R AR ER AR R AL RN R R AR
(SN A B BN A BN

40,
30.
20.
10,

0.

SNRgs; (dB)

-10.
-20, — —
-30, —

_40 lIllI!lllIl|!Ill!lll!l!LlJlllllllllllll
‘0. 5. 10. 15. 20. 25. 30. 35. 4O.

Support (\/D)

Figure 6.19.

Signal-to-noise ratio of the object estimate versus both assumed and actual object support
using unweighted least-squares without a positivity constraint on the object estimate (solid
line) and the CLEAN algorithm (circles). The five-subaperture array of Fig. 6.3 was used with
SNRRgFr = 70 dB,d/D = 0.005, and xo = 0.81D/). There were N = 40 Monte Catlo runs used
to generate the simulation data shown here. The image data array, y, used here had a length of
256 \/D.

- 154 -

50. TPyt iy Ty IrTiigirrryeveeyvrsy
AR AR RN RARAE BN BN

40. — —

20. — -]
a

335533353
10. — 33335

0. “~3._

SNRgs; (dB)

-30. — —

_[,YO II!Ill|ll|!Il!|lll!]lllllll!!l!llllllll
‘0. 5. 10. 15. 20. 25. 30. 35. 4G,

Support (A\/D)

Figure 6.20.
Signal-to-noise ratio of the object estimate versus both assumed and actual object support
using unweighted least-squares without a positivity constraint on the object estimate (solid
line) and the CLEAN algorithm (circles). The six-subaperture array of Fig. 6.4 was used with
SNRREeF = 50 dB,d/D = 0.005, and ko = 0.76D /). There were N = 40 Monte Carlo runs used
to generate the simulation data shown here. The image data array, y, used here had a length of
256 A/D.

50. III‘II‘II‘I(IIIlll.Illilllillllllllbllll'l

40, — -
30.
20. —
10.

0.

SNR.g; (dB)

-10. — -
-20. — —
-30. [— —

_40 l!Illllllll!lllllll|l|l!|llll|ll!l|!!ll
‘0. 5. 10. 15. 20. 25. 30. 35. 40.

Support (A/D)

Figure 6.21,
Signal-to-noise ratio of the object estimate versus both assumed and actual object support
using unweighted least-squares without a positivity constraint on the object estimate (solid
line) and the CLEAN algorithm (circles). The six-subaperture array of Fig. 6.4 was used with
SNRpgr = 60 dB,d/D = 0.005, and kg = 0.76D /). There were N = 40 Monte Carlo runs used
to generate the simulation data shown here. The image data array, y, used here had a length of
256 A/D.

- 155 -

B AL AR ARt LR ARRAE AN LR M

SNRgs; (dB)

0.— [
-10. — —
-20. |- —
-30. — —
PN P T TP POV O P A

0. 5. 10. 15. 20. 25. 30. 35. 40.
Support (A/D)

Figure 6.22.

Signal-to-noise ratio of the object estimate versus both assumed and actual object support
using unweighted least-squares without a positivity constraint on the object estimate (solid
line) and the CLEAN algorithm (circles). The six-subaperture array of Fig. 6.4 was used with
SNRRer = 70 dB,d/D = 0.005, and g = 0.76D /). There were N = 40 Monte Carlo runs used
to generate the simulation data shown here. The image data array, y, used here had a length of
256 \/D.

E./E (0

wA/D

Figure 6.23.
Ratio of the energy spectrum of the error to the energy spectrum of the object versus spa-
tial frequency x using the CLEAN algorithm and the five-subaperture array of Fig. 6.3 with
SNRRer = 70 dB and d/D = 0.005. From bottom to top, the sixteen curves correspond to
object supports of 1A/D, 2A/D, ---, 120/D, 15X/D, 200/D, 25X/D, and 30A/D. There were
N = 40 Monte Carlo runs used to generate the simulation data shown here. The image data
array, y, used here had a length of 256 A/D.

- 156 -

£, (0)/E (%)

xA/D

Figure 6.24.

Ratio of the energy spectrum of the error to the energy spectrum of the object versus spa-
tial frequency x using the CLEAN algorithm and the six-subaperture array of Fig. 6.4 with
SNRpzr = 70 dB and d/D = 0.005. From bottom to top, the twenty three curves correspond
to object supports of 12/D, 2)/D, -+., 200/D, 25)/D, 30\/D, and 35A/D. There were N = 40
Monte Carlo runs used to generate the simulation data shown here. The image data array, y,
used here had a length of 256 A/D.

with and without positivity, we have “allowed” the algorithm to use as much of the image line as
was necessary in order to maximize performance. In other words, from a standpoint of performance,
one can consider the dimension of the observation vector y to be infinite. In experiments with
CLEAN, we found that the performance did not monotonically improve as the size of the image line
was increased beyond the size of the object. In fact, performance was erratic beyond that point,
changing by as much as £4 dB in the region to the left of the “cliff” in the SNRggt curve. It appears
that CLEAN can not effectively utilize object information contained in the outlying region of the
image line. Accordingly, our results are approximately equivalent to what we would have gotten if
we had formulated the CLEAN algorithm to only use image measurement data from the set of pixels
at the center of the image plane and having an extent just matching the actual size of the target
object. It is as though we had limited the size of the observation vector used by CLEAN to match
the object support. This leads to the question as to how least-squares would perform compared to
CLEAN if the size of the observation vector was limited to object support for both algorithms. The
answer is contained in Fig. 6.33. There is no difference in performance. We conclude from this that
the difference in performance, for the smaller object supports, seen in Fig.’s 6.14 to 6.22 and 6.27
to 6.32 is due to the different “effective” size of the observation vectors for the two algorithms. It
is CLEAN’s inability to make use of the multiplicity of copies of the image that the array produces
that causes the difference. It is not clear that this inability would manifest itself in processing radio
astronomy data.

- 157 -

(@

J /\/\/\AAA[

D/X

(b)

Figure 6.25.

Sparse array aperture function (a) and the corresponding MTF (b) for a redundant twelve- subaperture array.

- 158 -

(b)

Figure 6.26.

Sparse Array aperture function (a) and the corresponding MTF (b} for a redundant eighteen-subaperture array.

- 159 -

50. llllIlllllllllllll]lllllrll!lllllllllll

40. f— —

SNR.; (dB)

-30. — —

_40 l!llI'!lIIllllI!!lllllllllllllllll'llll
0. 5. 10. 15. 20. 25. 30. 35. &0

Support (A/D)

Figure 6.27.

Signal-to-noise ratio of the object estimate versus both assumed and actual object support
using unweighted least-squares without a positivity constraint on the object estimate (solid line)
and the CLEAN algorithm (circles). The twelve-subaperture array of Fig. 6.25 was used with
SNRRgr = 50 dB,d/D = 0.005, and xo = 1.0D/). There were N = 40 Monte Carlo runs used
to generate the simulation data shown here. The image data array, y, used here had a length
of 256 A/D for the least-squares results and a length equal to object support for the CLEAN
results.

50. IRERERE RERARE EREARE LR BEREEBLELE EERAE LR
AR AR SR R RN R
40.

30.
20.
10.

0.

SNRes; (dB)

-10. — -

-30. — —

_40 llll|IllIIIllIIIIll!!!lllllllllllllllll
‘0. 5. 10. 15 20. 25. 30. 35. 40.

Support (A/D)

Figure 6.28.

Signal-to-noise ratio of the object estimate versus both assumed and actual object support
using unweighted Jeast-squares without a positivity constraint on the object estimate (solid line)
and the CLEAN algorithm (circles). The twelve-subaperture array of Fig. 6.25 was used with
SNRggr = 60 dB,d/D = 0.005, and k¢ = 1.0D/). There were N = 40 Monte Carlo runs used
to generate the simulation data shown here. The image data array, y, used here had a length
of 256 A/D for the least-squares results and 34gngth equal to object support for the CLEAN
results.

50. LAl LER R LIRS LRARERAREI LLOL IR S TTT1T LI
| RN AR R R
40. I— —
13-39933993-\, .
30. — ' —]
S 20 ' -
O 5 h
~ 10, — Sl —
I ~~s"‘-J-
|) -]
'
vy -10. — —
-20. |— —
-30. — —
_LO lIllIllllIl'lll!lll'll!l!lll!ll!ll"ll!

0. 5. 10. 15. 20. 25. 230. 35. 0.
Support (A/D)

Figure-6.29.

Signal-to-noise ratio of the object estimate versus both assumed and actual object support
using unweighted least-squares without a positivity constraint on the object estimate {solid line)
and the CLEAN algorithm (circles). The twelve-subaperture array of Fig. 6.25 was used with
SNRRgr = 70 dB, d/D = 0.005, and k¢ = 1.0D/A. There were N = 40 Monte Carlo runs used
to generate the simulation data shown here. The image data array, y, used here had a length
of 256 A/D for the least-squares results and a length equal to object support for the CLEAN -
results.

S.IIIII‘IT il IR R} L LB IR R R | RR] it
0. P T T
40, — —

30.

N
20. 32932%9335533399
\

to. - 5,

0. —

SNRcg; (dB)

...10. - —

-30. [— —

_40 IlllIIlllll|l||llllllIlllllllllllllllll
‘0. 5. 10. 15. 20. 25, 30. 35. 40.

Support (A/D)

Figure 6.30.

Signal-to-noise ratio of the object estimate versus both assumed and actual object support using
unweighted least-squares without a positivity constraint on the object estimate (solid line) and
the CLEAN algorithm (circles). The eighteen supaperture array of Fig. 6.26 was used with
SNRRrgr = 50 dB,d/D = 0.005, and xo = 1.0D/). There were N = 40 Monte Carlo runs used
to generate the simulation data shown here. The image data array, y, used here had a length
of 256 A/D for the least-squares results and 4d¢ngth equal to object support for the CLEAN
results.

ITII]IIIIIIIIIIIIII'IIIIIIIIIIIIIIIIIIII
40, -
=
30. ’3'39?;393})-333-39‘

o 20— \

© »

> 0 .

o BT

w — pu—

% 0.

n -10.— -
-20. — —
-30. — —
_40 !lI!IlI|IlllII|!Q!IIIl!l'!lJJl!!llIl!ll

0. 5. 10. 15, 20, 25. 30. 35. 40,
Support (A/D)

Figure 6.31.

Signal-to-noise ratio of the object estimate versus both assumed and actual object support using
unweighted least-squares without a positivity constraint on the cbject estimate (solid line) and
the CLEAN algorithm (circles). The eighteen-subaperture amray of Fig. 6.31 was used with
SNRREr = 60 dB,d/D = 0.005, and xo = 1.0D/\. There were N = 40 Monte Carlo runs used
to generate the simulation data shown here. The image data array, y, used here had a Jength
of 256 A/D for the least-squares results and a length equal to object support for the CLEAN
results,

50. 11 A LRRAERARRI lllllll’lllllll]lllllllll
40. -133'9”;993»;)3-:0
1
30. - '
1
o 20 \
D >
~ 10— '\a--__.___a —
s
%? 0. —
n 10— —
-20. — —
-30. — —
_40 l!llllIll|Lllllllllllllll_lll_illllJlLLll

‘0. 5. 10. 15, 20. 25, 30, 35. 40,
Support (A/D)

Figure 6.32,
Signal-to-noise ratio of the object estimate versus both assumed and actual object support using
unweighted least-squares without a positivity constraint on the object estimate (solid line) and
the CLEAN algorithm (circles). The eighteen-subaperture array of Fig. 6.26 was used with
SNRRrer = 70 dB,d/D = 0.005, and x9 = 1.0D/). There were N = 40 Monte Carlo runs used
to generate the simulation data shown here, The image data array, y, used here had a length
of 256 A/D for the least-squares results and gdongth equal to object support for the CLEAN
results.

SO. llIlllIIIIIIIIllllllllllIllllIlllllllll

_40 ll!l'l!!lllIll‘lllll'l!llll!' ll|l!!l
'0. 5. 10. 15. 20. 25. 30. 35. 40,

Support (A/D)

Figure 6.33.

Signal-to-noise ratio of the object estimate versus both assumed and actual object support
using unweighted least-squares without a positivity constraint on the object estimate (solid line)
and the CLEAN algorithm (circles). The twelve-subaperture array of Fig. 25 was used with
SNRrer = 70 dB,d/D = 0.005, and xp = 1.0D/). In all cases, i.e., for both CLEAN and least-
squares results, the length of the image line was the same as the length of the object support.
There were N = 40 Monte Carlo runs used to generate the simulation data shown here.

- 163 -

REFERENCES

1.
2.

3.

11.
12.
13.

14,
15.

16.
17.
18.
19.

20.
21.

22.

23.
24,

25.

26.
27.

28.

I.J. Cox and C. J. R. Sheppard, “Information Capacity and Resolution in an Optical System,”
J. Opt. Soc. Am. A 3, 1152-1158 (1987).

A. R. Thompson, J. M. Moran, and G. W. Swenson, Jr., Interferometry and Synthesis in Radio
Astronomy, John Wiley and Sons, New York (1986).

R. W. Schafer, R. M. Mersereau, and M. A. Richards, “Constrained Iterative Restoration Al-
gorithms,” Proc. IEEE 69, 432-450 (1981).

. R. Barakat, “Dilute Aperture Diffraction Imagery and Object Reconstruction,” Opt. Eng. 29,

131-139 (1990).

. W. Lukosz, “Optical Systems with Resolving Power Exceeding the Classical Limit,”

J. Opt. Soc. Am. 56, 1463-1472 (1966).

. W. Lukosz, “Optical Systems with Resolving Power Exceeding the Classical Limit II,”

J. Opt. Soc. Am. 57, 932-941 (1967).

. C. V. Barnes, “Object Restoration in a Diffraction-Limited Imaging System,” J. Opt. Soc. Am.

56, 575-578 (1966).

. B. R. Frieden, “Band-Unlimited Reconstruciton of Optical Objects and Spectra,”

J. Opt. Soc. Am. 57, 1013-1019 (1967).

. J. L. Harris, “Diffraction and Resolving Power,” J. Opt. Soc. Am. 54, 931-936 (1964).
. C. K. Rushforth and R. W. Harris, “Restoration, Resolution, and Noise,” J. Opt. Soc. Am. 58,

539-545 (1968).

H. A. Brown, “Effect of Truncation on Image Enhancement by Prolate Spheroidal Functions,”
J. Opt. Soc. Am. 59, 228-229 (1969).

G. T. Herman and D. Ro, “Image Recovery Using Iterative Data Refinement with Relaxation,”
Opt. Eng. 29, 513-523 (1990).

J. R. Fienup, “Reconstruciton of an Object From the Modulus of Its Fourier Transform,”
Opt. Lett. 3, 27-29 (1978).

J. R. Fienup, “Phase Retrieval Algorithms: A Comparison,” Appl. Opt. 21, 2758-2769 (1982).
S. J. Reeves and R. M. Mersereau, “Optimal Estimation of the Regularization Parameter and
Stabilizing Functional ior Regularized Image Restoration,” Opt. Eng. 29, 446-454 (1990).

R. Barakat, “Phase Retrieval in Two Dimensions,” RADC-TR-88-251, 26-67 (1988).

F. T. S. Yu, Optics and Information Theory, John Wiley and Sons, New York, 141-168 (1976).
G. Toraldo di Francia, “Resolving Power and Information,” J. Opt. Soc. Am. 45, 497 (1955).
H. S. Coleman and M. F. Coleman, “Theoretical Resolution Angles for Point and Line Test
Objects in the Presence of a Luminous Background,” J. Opt. Soc. Am. 37, 572 (1947).

V. Ranchi, Optics, The Science of Vision, New York University Press, New York, (1957).

V. Ranchi, “Resolving Power of Calculated and Detected Images,” J. Opt. Soc. Am. 51, 458
(1961).

G. Toraldo di Francia, Nuovo Cimento Suppl. 3 IX, 426-438 (1952).

P. B. Fellgett and E. H. Linfoot, Proc. R. Soc. London Ser. A 247, 369-407 (1955).

A. Lannes, S. Roques, and M. J. Casanove, “Stabilized Reconstruction in Signal and Image
Processing; Part I: Partial Deconvolution and Spectral Extrapolation with Limited Field,”
J. Mod. Opt. 34, 161-226 (1987).

A. Lannes, M, J. Casanove, and S. Roques, “Stabilized Reconstruction in Signal and Image
Processing; Part II: Iterative Reconstruction With and Without Constraint. Interactive Imple-
mentation,” J. Mod. Opt. 34, 321-370 (1987).

A. Lannes, S. Roques, and M. J. Casanove, “Resolution and Robustness in Image Processing:
A New Regularization Principle,” J. Opt. Soc. Am. 4, 189-199 (1987).

J. A. Roberts, Editor, Indirect Imaging, Proceedings of an International Symposium, Sydney
Australia, 30 August to 2 September 1983, Cambridge University Press, London (1984).

D. T. Sherwood and D. L. Fried, “Object Reconstruction with Sparse Arrays of Optical Aper-
tures. Part I, Linear Methods,” (tOSC Report No. TR-1070, May 1990).

- 164 -

29. R. L. Fox, Optimization Methods for Engineering Design, Addison-Wesley, Reading Mas-
sachusetts, 1971, p. 196.

- 165 -

APPENDIX A for Chapter 2
Computer Listings

This appendix contains the Fortran source code of the computer programs used to generate the
data for this chapter.

1 ¢
2 c
3 ¢ program 2dmtfmkr.f
4 c
5 ¢
6 reals4 z1(128,128)
7 d=1.0
8 call eight(d,z1)
9 stop
10 end
11 ¢
12 ¢
13 ¢
14 subroutine eight(d,z1)
15 reals8 ha,a,b,c
16 reals4 z(64,64),z1(128,128),dx,dy
17 complex+8 berr(128,128)
18 a=0
19 b=2/3.%3.14159265
20 c=(4/3.)+3.14159265
21 do 150 jj=0,63
22 tk=-(33j-32)/32.
23 do 200 j=0,63
24 th=(3-32)/32.
25 call adder(a,a,d,tk,th,hhl)
26 call adder(b,a,d,tk,th,hh2)
27 call adder(a,b,d,tk,th,hh7)
28 call adder{(a,c,d,tk,th,hh3)
29 call adder(b,c,d,tk,th,hhS5)
30 call adder(c,a,d,tk,th,hh8)
31 call adder(c,b,d,tk,th,hh9)
32 if(d.eq.1)then
33 z(j+1,jj+1)=hh1
34 else
35 2(j+1,jj+1)=3¢«hh1+hh2+hh3+hh5+hh7+
36 c hh8+hh9
37 endif
38 200 continue
39 150 continue
40 call solidplt(’2dmt£d1.0’,64,64,z)
41 do 205 ii=1,128
42 do 205 iii=1,128
43 20S berr(ii,iii)=0
44 do 210 ii=1i,64
45 do 220 iii=1,64
46 berr(32+4ii,32+iii)=z(ii,iii)
47 220 continue
48 210 continue
49 dx=1
50 dy=1
51 call ££t2d(berr,128,dx,dy)
52 do 300 ii=1,128
53 do 310 iii=1,128
54 z1(ii,iii)=real(berr(ii,iii))
§5 310 continue
56 300 continue
57 call solidplt(’2dpsfd1.0’,128,128,21)
58 return
59 end
60 ¢

- 166 -

function ha(d,de)

reals8 ha
ha=.Se(de+2)+(1.57079632-asin(de/d)~
(de/d) ssqrt (1-(de/d)»+2))/.78539816
return

end

subroutine adder(pi,p2,d,tk,th,hh)
reale8 ha,pl,p2
ri=(1-d)/2¢(cos(p1)-cos(p2))+th
r2=(1-d)/2¢(sin(p1)-sin(p2)) +tk
de=sqrt(riss2+r2¢+2)
if(de.le.d)then

hh=ha(d,de)

else

hh=0

endif

return

end

- 167 -

DONOONEWN»

o6 o0o6aon

502
501
500

520

540
530
510

4]

605

program first.f

parameter (nn=157 ,kk=68)
reals8 gx(kk),gy(kk)
integer idummy(1)

n=157
=4
m2=(mes2)+(mes2+1) /4
=31
k=63
d=.1
call bufasg(idummy,128*nsm,ia)
call bufasg(idummy,b2+128+128,ib)
call zero(idusmy(ia),n,m,idwmy(ib),d,gx,gy,n2)
call bufrel(idummy(ib))
call bufrel(idummy(ia))
call plotfl(’gi4’,m2,’d’,gx,’d’,gy)
stop
end

subroutine zero(bw,n,m,z1,d,gx,gy,m2)
real*8 bw(64,n,m),z1(128,128),gx(m2),gy(m2)
call eight(d,z1)

call one{bw,n,m,z1,d)

call two(gx,gy,bvw,n,m,m2)

return

end

subroutine one(bw,n,m,z1,d)
reals8 z1(128,128),bu(64,n,m)
do 500 i=1,64
do 501 ii=i,n
do 502 iii=1i,m
bu(i,ii,iii)=0
continue
continue
continue
do 510 i=1,64
do 520 ii=1,127
bw(i,ii,1)=z1(64+i,ii+1)
continue
do 530 iii=2,m
do 540 iv=1,127
be(i,iii+iv-1,iii)=bu(i,iii+iv-2,3ii-1)
continue
continue
continue
return
end

subroutine two(gx,gy,bw,n,m,m2)
parameter (mw=4)
realss gl(un,-n),gb(un,ln).sx(nz),gy(m2),bw(64,n,m)
ivxl
do 600 i=1i,m

do 605 iii=1i,m

do 605 iv=i,m

gb(iii,iv)=0
j=1
ia=i

- 168 -

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
13§
136

630
620
610

650

655
645

670
660

675
665

do 610 ii=1,64

call four(bw,ii,abs(ia-ii)+1,gl,m,n)

do 620 iii=1,=s
do 630 iv=l,m

gb(iii,iv)=gb(iii,iv)+gl(iii,iv)

continue
continue
continue
jg==me (5-1)
ig=m+(ia-1)
if(ia.ne.j)then
do 640 ki=i ,m
do 650 k2=1,m
if(iv.gt.0)then
gx(iv)=gb(k1,k2)
iw=-ig
else

gy(abs (iw))=gb(k1,k2)

jv=-iw+t
endif
continue
continue
else
do 645 ki=1,m
do 655 k2=ki,m
if(iw.gt.0)then
gx(iv)=gb(k1,k2)
iv=-iwv
else

gy(abs (iw))=gb(k1,k2)

iwv=-iv+l
endif
continue
continue
endif
do 680 ix=2,m-i+l
j=it1
jgmme(j-1)
iamia+l

igems(ia-1)

call four(bw,j,ia,gl,m,n)

if(j.ne.ia)then
do 660 k3=1,m
do 670 k4=1,m

gb(k3,k4)»gb(k3,k4)+gl(k3,k4)

if(iw.gt.0)then
gx(iw)=gb(k3,k4)
ivx-iw

else

gy(abs(iv))=gb(k3,k4)

iws-in+l
endif
continue
continue
olse
do 665 k3=1,m
do 675 k4=k3,m

gb(k3,k4)=gb(k3,k4)+g1(k3,Xk4)

if(iw.gt.0)then
gx(iw)=gb(k3,k4)
iw=-iv

else

gy (abs(iw)) =gb(k3,k4)

ivs-jwtl
endif
continue
continue
endif

137 680 continue
138 600 continue
139 return
140 end
141 ¢
142 ¢
143 ¢
144 ¢
145 subroutine four(bw,j,i,gl,m,n)
146 reals8 gl(m,m),bw(64,n,m)
147 do 400 k1x=1,m
148 do 410 kx2=1,m
149 gl(kx1,k2)=0
150 do 420 k3=1 ,n
151 g1(k1,k2)=g1(k1,k2)+bu(j,k3,k1)sbw (i, k3,k2)
152 420 continue
153 410 continue
154 400 continue
185 return
156 end
187 ¢
158 ¢
159 ¢
160 ¢
161 ¢
162 ¢
163 subroutine eight(d,z1)
164 reale*8 ha,a,b,c,z1(128,128)
165 real z(64,64),dx,dy
166 complex+8 berr(128,128)
167 a=0
168 b=2/3.#3,14159265
169 cx(4/3.)+3.14159265
170 do 150 jj=0,63
171 tk=-(jj-32)/32.
172 do 200 j=0,63
173 thx(j-32)/32.
174 call adder(a,a,d,tk,th,hhl)
175 call adder(b,a,d,tk,th,hh2)
176 call adder(a,b,d,tk,th,hh7)
177 call adder(a,c,d,tk,th,hh3)
178 call adder(b,c,d,tk,th,hh5)
179 call adder(c,a,d,tk,th,hhr8)
180 call adder(c,b,d,tk,th,hh9)
181 if(d.eq.1)then
182 z(j+1,jj+1)=hn1
183 else
184 z(j+1,jj+1)=3*¢hh1+hh2+hh3+hhS+hh7+
185 c hh8+hh9
186 endif
187 200 continue
188 150 continue
189 call solidplt(’solidfile’,64,64,2)
190 do 205 ii=1,128
191 do 205 iii=1,128
192 205 berr(ii,iii)=0
193 do 210 ii=1,64
194 do 220 iii=1,64
198 berr(32+ii,32+iii)=z(ii,iii)
196 220 continue
197 210 continue
198 dx=1
199 dy=1
200 call ££t2d(berr,128,dx,dy)
201 do 300 ii=1,128
202 do 310 iii=1,128
203 z1(ii,iil)=real (berr(ii,iii))
204 310 continue
- 170 -

205 300

207
208 c
209
210
211
212
213
214
215 ¢
216
217
218
219
220
221
222
223
224
225
226
227
228 ¢
229 ¢

continue
return
end

function ha(d,de)

real*8 ha
ha=.5¢(d+*2)+(1.57079632-asin(de/d)-
(de/d)*sqrt(1-(de/d)*»+2))/.78539816
return

end

subroutine adder(pi,p2,d,tk,th,hh)
reals8 ha,pl,p2
r1=(1-d)/2¢(cos(p1)-cos(p2))+th
r2=(1-d)/2+(sin(p1)-sin(p2))+tk
dexsqrt(ris¢2+r2e+2)
if(de.le.d)then

hh=ha(d,de)

else

hh=0

endif

return

end

-171 -

1 ¢

2 ¢

3 ¢ program matrix4.f

4 ¢

5 ¢

6 parameter (nn=157 ,5m=8,kk=64)
7 reals8 z1(128,128),g(kk,kk) ,bu(64,nn,mm)
8 integer lwork(kk),mwork(kk)
9 ¢

10 n=157

11 m=8

12 n2=mss2

13 1=31

14 k=63

15 d=1

16 call eight(d,z1)

17 call one(bw,k,n,m,z1,d)

18 call two(g,bw,n,m,m2)

19 ¢ open(1,file=’out1’)

20 snxx10000

21 do 120 ix1,m2

22 g(i,i)=g(i,i)+1/snr

23 120 continune

24 call dminve(g,m2,ier,lvork,mvoxk)
25 do 130 iiiw=i,m2

26 do 140 iv=1,m2

27 g(iii,iv)=g(iii,iv)/snr
28 140 continue

29 130 continue

30 ¢ write(1,*)g

31 ¢ close(1)

32 call ten(g,m,n2)

33 stop

34 end

35 ¢

36 ¢

37 ¢

38 ¢

39 subroutine one(bw,k,n,m,z1,d)
40 reals8 21(128,128),bw(64,n,m)
41 do 500 i=1,64

42 do 501 ii=g,n

43 do 502 iii=i,m

44 bw(i,ii,iii)=0

45 502 continue

46 501 continue

47 500 continue

48 do 510 i=1,64

49 do 520 ii=1,127

50 bu(i,ii,1)=z1(64+i,ii+1)
51 520 continue

52 do 530 iii=2,m

53 do 540 iv=1,127

54 be(d,iii+iv-1,iii)=bw(i,ili+iv-2,iii-1)
55 540 continue

56 530 continue

57 510 continue

58 return

59 end

60 ¢

61 ¢

62 ¢

63 subroutine two(g,bw,n,m,m2)
64 parameter (mm=8)

65 reales gl(mm,mm),gb(mm,mm),g(n2,m2),bw(64,n,n)
68 do 600 i={,m

67 do 605 iii=i,m

68 do 605 ivwi,m

-172 -

69 605 gh(iii,iv)=0

70 j=1

71 ia=i

72 do 610 ii=1,64

73 call four(bw,ii,abs(ia-ii)+1,gl,m,n)
74 do 620 iii=i,m

75 do 630 iv=1l,m

76 gb(iii,iv)=gb(iii,iv)+gl(iii,iv)
77 630 continue

78 620 continue

79 610 continue

80 jgme (j-1)

81 ig=me (ia-1)

82 do 640 ki=1,m

83 do 650 k2=1,m

84 g(jgtkl,ig+k2)=gb(k1,k2)
85 glig+tk2, jg+k1)=gb(k1, k2)
86 650 continue

87 640 continue

88 do 680 ix=2,m-i+1

89 j=j+1

90 jgeme(j-1)

91 ia=ia+l

92 ig=ms(ia-1)

93 call four(bw,j,ia,gl,m,n)
94 do 660 k3=i,m

95 do 670 k4=1,m

96 gb(k3,k4)-gb(k3,k4)+gl(k3,k4)
97 g(jg+k3,ig+k4)=gb(k3,x4)
98 g(iyk4,jg¢k3)=gb(k3,k4)
99 670 continue

100 660 continue

101 680 continue

102 600 continue

103 return

104 end

105 ¢

106 ¢

107 ¢

108 ¢

109 subroutine four(bw,j,i,gl,m,n)
110 realss gl(m,m),bu(64,n,m)
111 do 400 ki=i m

112 do 410 k2=1,m

113 g1(x1,x2)=0

114 do 420 k3=1{,n

11§ gl(k1,k2)=gl (ki k2)+bu(j X3,k1)*bu (i, k3,k2)
116 420 continue

117 410 continue

118 400 continue

119 return

120 end

121 ¢

122 ¢

123 ¢

124 ¢

125 ¢

126 ¢

127 subroutine eight(d,z1)
128 reals8 ha,a,b,c,z1(128,128)
129 real z(64,64),dx,dy
130 complexs8 berr(128,128)
131 a=0

132 bH=2/3.#3.14159265

133 c=(4/3.)*3.14159265
134 do 150 jj=0,63

135 tk=-(jj-32)/32.

136 do 200 j=0,63

-173 -

137 th=(j-32)/32.

138 call adder(a,a,d,tk,th,hhi)

139 call adder(b,a,d,tk,th,hh2)

140 call adder(a,b,d,tk,th,hh7)

141 call adder(a,c,d,tk,th,hh3)

142 call adder(b,c,d,tk,th,hhS)

143 call adder(c,a,d,tk,th,hh8)

144 call adder(c,b,d,tk,th,hh9)

145 if(d.eq.1)then

146 z(j+1,jj+1)=hh1

147 else

148 z(j+1,3jj+1)=3+hh1+hh2+hh3+hh5+hh7+
149 c hh8+hk9

150 endif

151 200 continue

152 150 continue

153 ¢ call solidplt(’solidfile’,64,64,2)
154 do 205 ii=1,128

155 do 205 iii=1,128

156 20S berr(ii,iii)=0

157 do 210 ii=1,64

158 do 220 iii=1,64

159 berr(32+ii,32+iii)=z(ii,iia)

160 220 continue

161 210 continue

162 dx=1

163 dy=1

164 call fft2d(berr,128,dx,dy)

165 do 300 ii=1,128

166 do 310 iii=1,128

167 z1(ii,iii)=real(bexrr(ii,iii))
168 310 continue

169 300 continue

170 return

171 end

172 ¢

173 function ha(d,de)

174 reals8 ha

175 ha=,5e(d**2)*(1.57079632-asin(de/d)~
176 c (de/d)#sqrt(1~(de/d)*+2))/.78539816
177 return

178 end

179 ¢

180 subroutine adder(pi,p2,d,tk,th,hh)
181 real*8 ha,pi,p2

182 ri=(1-d)/2#(cos(p1)-cos{(p2))+th
183 r2=(1-d)/2¢(sin(p1)-sin(p2))+tk
184 de=gqrt(ries2+r2+s2)

185 if(de.le.d)then

186 hh=ha(d,de)

187 else

188 hh=0

188 endif

190 return

191 end

192 ¢

193 ¢

194 ¢ fft program

195 subroutine ten(g,m,n3)

196 parameter (mm=8)

197 xeals4 diag(15),bdiag(128),vr(128),vi(128),dd,br(m,mm,127)
198 reals4 bi(mm,mm,127),y(128),sur(127,127),s1i(16129),x(16129)
199 reals8 gl(mm,mm),brt(sm,m),bit(mm,m),g(n3,n3)
200 reals4 smsur(63,63),x2(3969),81i2(3969)
201 ¢

202 n=128

203 nl=7

204 n2=2ewm-1

-174 -

205

207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
238
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265

267
268
269
270
271
272

40

50

20
10

g8

100
70

120
110

o

404

.

call lookup(n,wr,ui)
do 10 i=1l,m
do 20 ii=i,m
do 30 iii=1,m
do 40 iv=i,m
gl(iii,iv)=g(mei-wtiii, meii-mtiv)
continue
continue
call addiag(gl,m2,diag,m)
call pad(diag,m2,bdiag,n)
do 50 ix=1,n
y(ix)=0
continue
dd=1
call fft2(bdiag,y,n,nl,er,vi,dd)
do 60 iii=1,n-1
br(i,ii,iii)=bdiag(iii+1)
br(ii,i,iii)=bdiag(iii+1)
bii,ii,iii)=y(iii+1)
bi(ii,i,iii)=~y(iii+1)
continue
continue
continue
do 70 i=1,n-1
do 80 iix1l,m
do 90 iii={,m

continue
continne
call addiag(brt,m2,diag,m)
call pad(diag,m2,bdiag,n)
call addiag(bit,m2,diag,m)
call pad(diag,m2,y,n)
dd=1
call ££t2(bdiag,y,n,nl,wx,vi,dd)
do 100 iix1,n-1
sur(i,ii)=bdiag(ii+1)/m3
s1i((n-1)*i-(n-1)+ii)=bdiag(ii+1)/uw3
x((n-1)*(i~1)+ii)=(n-1)*«(i~1)+ii
continue
continue
iii=0
do 110 i=1,63
do 120 ii=1,63
smsur(i,ii)=sur(32+i,32+ii)
81i2(iii)=smsur(i,ii)
x2(iii)=x(iii)
continue
continue
call solidplt(’s24’,127,127,sur)
call plotfl(’long24’,(n~1)e+2,7£’,x,7f?,s1i)
call solidplt(’hi?,63,63,smsur)
call plotfl(’lo’,3969,’f’,x2.’f’,81i2)
stop
end

subroutine pad(diag,m2,bdiag,n)
reals4 diag(m2),bdiag(n)
do 404 i=1,n
bdiag(i)=0
continue
k={n-m2+3)/2
do 406 ix=1,m2
bdiag(k+i-1)=diag(i)

- 175 -

273

601

continue
return
end

subroutine addiag(a,m2,diag,m)
real+4 diag(m2)
real*s a(m,m)
do 601 ix1,m2
diag(i)=0
continue
do 603 i=1 . m
do 605 ii=1i,m
iiimi-iiim
diag(iii)=diag(iii)+a(3,ii)
continue
continue
return
end

- 176 -

1
2
3
4
5
6
7
8
9

ao0ooo0ao0n

110
100

0o o000

500

510

520

program matrix$

parameter(nn=254,wm=128)

real*8 bu(nn,mm),retil(128),£(128)
reals8 g(mm,mm)

reals4 dx,dy,d

nut=1
open(nwt,file=’out’)
n=254
1=x128
k=(n-1)/2.
nl=256
nl2=nl/2
do 90 im=0,§
n=2¢s(im+2)
do 100 i=1,$§
dn-,1%i+.6
call one(bw,k,n,m,d)
do 110 ii=2,4
snr=10%¢ii
call two(bw,n,m,g,snr)
call six{(g,m,nl,retil,?,snr)
call five(retil,f,n,m,d,nwt,snr,n12)
if(im.eq.0)cadl plottl(’spnrno",n12,’d’,f,’d’,rctil)
if(im.eq.1)call plotf1(’sparse8’,n12,7d?,f,7d? ,retil)
if(im.0q.2)call plottl(’spaxscls’,n12,’d’,£.’d’,rcti1)
if(im.eq.3)call plotfl(’lpa:1032’,n12,’d’,!,’d’,rctil)
if(im.eq.4)cald plottl(’lplxnosl',nlz,’d’,f,’d’,rctil)
if(im,eq.5)call plottl(’spnrsol28’,n12,’d’,1,’d’,rctil)
continue
continue
continue
close(nwt)
stop
ond

subroutine one(bw,k,n,x,d)
subroutine to calculate bw
reale8 bu(n,m) ,hh
do 500 i=t,n
do 500 iix1,m
be(i,ii)=0
J=-x
do 510 im1,1+2¢k
be(i,1)=hh(j,d)
i=in
continne
do 520 i=i,m-1
do 5§30 ii=0,2¢k
bu(1+iiei,iet)=bu(iiei,i)
continue
continue
return
end

function hh(j,d)
reale8 hh
if(j.eq.0)then
hhxndes2

else

- 177 -

118
119

620

610

o

890

895
900

200

220
210

230

<

hh=(cos(.78539816%j+(1-d))+sin(.78539816+d+j)/
(.78539816%j)) ¢»2

endif

return

end

subroutine two(bw,n,m,g,snr)
subroutine to calculate h=(gtg)e*snr + i inv
parameter (mm=128)
reals8 bu(n,m),g(m,m)
integer lwork(mm) ,mvork(um),ier
do 600 i={,m
do 610 iix1,m
g(i,ii)=0
do 620 iii=1,n
continue
if(i.eq.ii)g(d,ii)=g(i,ii)+1
continue
continue
call deinve(g,m,ier,lvork,mwork)
return
end

subroutine five(retil,f,n,m,d,nvt,snr,nl2)

reale8 retil(nl2),f(nl2)
write(nvt,890)n,n,d,snr

format(? n = ?,i4,’ m = 7 ,i4,? d = ?,£10.5,’ snr = 7,

£12.5)

do 900 i={,nl12/2
write(nut,895)1(i),retid (i)
format(2£12.5)

continue

return

ond

subroutine six(g,m,nl,retil,f,snx)
complex+*8 berr(256,256)
reals8 g(m,m),retil(128),£(128)
do 200 i=1i,nl
do 200 ii=1,nl
berr(i,ii)=o
ni=(nl-m)/2.
do 210 i=i,m
do 220 ii=i,m
berr(ni+i,n1+ii)=g(i,ii)
continue
continue
dx=g
dysi
call f£t2d(berr,nl,dx,dy)
nl2snl/2
nl4=nl/4
do 230 i={,n12
retil(i)=real (berr(nl2+i,n12-i+2))/n
=i
2(i)=x/nl4
continue
return
end

- 178 -

O 000

WONON AWM~

48 101
49 103

57 105

67 ¢
68 ¢

program matrix6

parameter (nn=254 ,mmx128)

reals8 bu(nn,mm) ,h(mm,nn),retilu(128),£(128),x(mm) ,no(nn)
reals*8 g(mm,mm),erru(mm,mm),retil2(128),err2(mm,mm)
reale8 retilc2(128),errc2(wm,mm)

reals8 y(nn),gg(mm,mm)

reale4 d,eps

integer+*4 random

character dfiles16

net=2
open(nvt,file=’out’)
n=254

1=128

x=(n-1)/2.

print *, nt?)

read *, nt

print », ’ni??

read ¢, ni

print *, ’eps?’
Tead *, eps
print =, mb??
read *, mb
print *, 'm?’
read ¢, m
print =, ’snr?’
read =, snr
print «, d4/Dp7?
read *, d
print =, ’Destination File?’
read », dfile
nl=256
nl2=nl/2
call srandom(29)
call one(bw X,n,m,d)
call two(bw,h,n,m,g,g8)
call two5(h,n,m,exrxr2)
call six(nwt,exrr2,m,nl,retil2,f,snr,mb)
call) five(retil2,f2,n,m,d,nwt,snr,nl2)
call plotfl(dfile,nl2,’d’?,?,?d?,retil2)
do 103 j=1,m

do 101 jj=i,m

exru(j,jji=o

exrc2(j,jj)=0

continue
continue
do 105 iv=l ,nt

print ¢,iv

if (float(iv)/10.0-int(float(iv)/10.0) .1t. 1e-10) then

print ¢, iv

endif

call three(x,no,m,n,snr,bv,y,ubd)

call four(x,h,no,errs,n,m,nt,errc2,y,bs,gg,eps,ni)
continue
call six(nwt,erru,m,nl,retilu,f,snr,mb)
call five(retilu,f,n,m,d,nwt,snr,nl2)
call six(nwt,exrrc2,m,nl,retilc2,f,snr,mdb)
call five(retilc2,f,n,m,d,nwt,snr,n12)
call plotfl{dfile,nl2,’d?,f,’d?,retilu)
call plotfl(dfile,nl2,’d’,f,’d?, retilc2)
close(nwt)
stop
end

-179 -

510

530
520

620
610

650

630

0o

420
410

subroutine one(bw,k,n,m,d)
realss8 bw(n,m) ,hh
do 500 i=1,n
do 500 iiwi,m
be(i,ii)=0
="k
do 510 i=1,142ek
bw(i,1)=hh(j,d)
j=j+1 v
continue
do 520 i=1 m-1
do 530 ii=0,2ek
bu(1+ii+i,i+1)=bw(ii+i,i)
continue
continue
return
end

function hh(j,d)

reals*8 hh \

if(j.eq.0)then

hh=des2

else
hh=(cos(.78539816+j#(1-d))#sin(.78539816+d+j)/
(.78539816¢j))»s2

endif

return

end

subroutine two(bw,h,n,m,g,gg)
parameter (mm=128)
reals8 be(n,m),g(n,n),hin,n),gg(n,n)
integer lwork(mm) ,mwork(mm),ier
do 600 i=i,m
do 610 ii=i,m
g(i,ii)=0
do 820 iii=i,n
gld,ii)mg(i,id)+bw(iii, 1) obw(iii,ii)
gg(i,ii)=g(d,ii)
continue
continue
continue
call dainvw(g,m,ier,lvork,mvork)
do 630 i=t ,m
do 640 iiwi,n
h(i,ii)=0
do 650 iii=1,m
(i, i1)=n(d,11)+g(d,iid) ebu (31, ii4)
continue
continue
continue
return
end

subroutine twoS(h,n,m,err2)
realsd h(m,n),err2(m,m)
do 400 i=y m
do 410 iiwi{,m
oxx2(i,ii)=0
do 420 iii=i,n
orr2(i,ii)merr2(i,ii)+n(i,iii)oh(ii,iii)
continue
continue

- 180 -

137

139
140
141
142
143
144
145
146
147
148
149
150
151
152
1583
154
156
156
157
158
159

161
162

400

c

3

2

500

505

507

§20

510

710
700

713
712

noonoon

continue
return
end

subrontine three(x,no,m,n,snr,bw,y,ndb)
reals8 ui,u2,ul,s
reals8 x(m),no(n),bw(n,m),y(n)
integere4 MAXINTV,random
parameter (MAXINTV=2147483647)
n2=n/2
do 500 i=1,n2
uisreal (random())/MAXINTV
if(ul.gt.1.0r.ul.eq.0)goto 3
u2=real (random()) /MAXINTV
if(u2.gt.1.07.u2.0q.0)gotc 2
no(2¢i-1)=sqrt(-2slog(ul))+cos(6.2831853+u2)
no(2¢i)=sqrt(~2+1log(ul))+sin(6.2831853+u2)
continue
s=snx/2
do 508 i=i.,m
udsreal (random()) /MAXINTV
if(u3.gt.1.0r.u3.eq.0)goto 4
x(i)=sqrt(-2+1log(u3))*sqrt(s)
continue
do 507 i=mb+i,m
x(i)=0
continue
do 510 i=1,n
y(i)=0
do 520 ii=i ,m
y{i)=y(i)+bw(i,ii)ex(ii)
continue
y(i)»y(i)+no(i)
continue
return
end

subroutine four(x,h,no,erru,n,m,nt,erxc2,y,bw,gg,eps,ni)
paraneter (mm=128,nn=254)
reals8 x(m),no(n) ,exru(m,m),h(m,n),eu(mm),sum
Teales8 ec2(mm),exrc2(m,m) ,gg(m,m),gg2 (o, mm) ,v2(nn)
reales tap(mm),y(n),bw(n,m),z(um),xg(ma),ten2(mm)
Teals4 eps
do 700 i=i{,m
tmp(i)=0
z(i)=0
do 710 ii=1,n
tup (1) =tmp(i)+h(i,ii)sy(ii)
2(i)=z(i)+bw(ii,i)ey(ii)vaps
continue
continue
do 712 i=1i,m
do T13 liwi . m
i2(i.eq.ii)then
gg2(i,ii)=1-epssgg(i,ii)
else
gg2(1,ii)=-epaegg(i,ii)
endit
continue
continue
do 715 isi,m»
eu(i)=tap(i)-~x(i)
if(tmp(i).gt.0.and.z(i).gt.0)then
xg(i)=tmp(i)
olse
xg(i)=0
endif

- 181 -

225
226
227
228
229
230

715

750

730
720

ano0oo0oaon

890

895

xg(i)=x(i)
ec2(i)=xg(i)-x(i)
continue
k=0
do 770 iv=1 mi
il
do 740 i=l,m
tem=0
do 750 iix1,m
tem=temtgg2(i,ii)exg(ii)
continue
tem2(i)>tem+z(i)
if(tem2(i).1t.0)tem2(i)=0
continue
do 760 i=i,m
xg(i)=tem2(i)
0c2(i)=xg(i)-x(i)
continue
i?(jk.eq.100) then
jk=0
sum=0
do 745 i=1,n
v2(i)=0
do 746 ii=1,m
v2(i)=v2(i)+bu(i,ii)exg(ii)
continue
v2(i)=v2(i)-y(3i)
sumssuntv2(i)=e2
continue
do 775 i=1,m
print *,xg(i)
continue
print *,iv,sum
print
endif
continue
call plotfl(’test’,m,’d?,xg,?d’,xg)
do 720 i=i.,m
do 730 iixi,m
erru(i,ii)=erru(i,ii)+eu(i)seun(ii)/nt
exrc2(i,ii)=errc2(i,ii)+ec2(i)sec2(ii)/nt
continune
continue
return
end

subroutine five(retil,f,n,m,d,nwt,snr,nl2)
reals8 retil(n12),£{n12)
write(nvwt,890)n,m,d,snr
format(’ n = ?,i4,’ m = 7,i4,? d = ?,710.5,? snr = ?,
1£16.4)

do 900 i=1,n12/2

write(nwt,895)£(i) ,retil(i)
format(2£12.5)

continue

return

end

subroutine six(nwt,exrr,m,nl,retil,f,snr,mb)
complexe8 berr(256,256)

reals8 orr(m,m),retil(128),£(128)

reale4 dx,dy

parameter (pi=3.14159265)

-182 -

273
274
275
276

278
279
280
281
282
283
284
285
286
287

289
290
291
292
293
294
295
296
297
298
299
300

190

200

220

210

230

c
[

sum=0

do 190 i=1,m
sum=sum+erx(i,i)

continue

vrite(nvut,*)’trace = ’,sum

print *, sum

do 200 i=1,nl

do 200 ii=1,nl
berr(i,ii)=0

ni=(nl-m)/2.

do 210 i=i,m

do 220 ii=i,m
berr(ni+i,n1+ii)=err(i,ii)
continue

continue

dx=1

dy=1

call fft2d(berr,nl,dx,dy)

nl2m=nl/2

nl4=nl/4

do 230 i=1,nl2
£(i)=real(i)/nl4
retil(i)=real(berr(nl2+i,n12-i+2))/(snremd)

continue

return

end

- 183 -

OCONONEWN R

0O 000

11
10

o000

500

510

530
520

program matrix?

parameter (nn=254 ,mm=128)

reals8 bw(nn,mm) ,h(mm,nn),retilu(128),£(128),x(mm) ,no(nn)
reals8 g(mm,mm),exrru(am,mm),retil2(128),exrr2 (mm,mm)
reals8 retilc2(128),errc2(mm,mm)

reals8 y(nn),gg(mm,mn)

reals4 d,eps

integer+4 random

character dfile*16

n=254
1=128
k=(n-1)/2.
print =, Jgnr?’
read *, snr
print =, 2d/D7?
read ¢+, d
print ¢, ’Destination File?’
read *, dfile
n1=256
nl2=nl/2
do § i=1,6
m=2se(i+1)
mb=m
do 10 j=i,m
do 11 jj=i,m
erru(j,jj)=0
errc2(j,jj)=o0
continue
continue
call one(bv,k,n,m,d)
call two(bw.h,n,m,g,g8)
call two5(h.n,m,err2)
call six(nwt,err2,m,nl,xetil2,f,snr,mb)
call plotfl(dfile,nl2,’d’,f,’d?,retil2)
continue
stop
end

subroutine one(bw,k,n,m,d)
real*8 bw(n,m),hh
do SO0 i=i,n
do 500 iix1,m
be(i,ii)=0
ik
do 510 i=mf, 142¢k
be(i,1)=hh(j,d)
j=jn1
continue
do 520 i=},m-1
do 530 ii=0,2¢k
be(i+iiei,iv1)=bu(iisi,i)
continue
continue
return
ond

function hh(j,d)
rc21%8 hh
i£(j.eq.0)then
hh=dee2

- 184 -

620
610

420
410

190

220
210

else
hh=(cos(.78539816#j+(1-d))»sin(.78539816%d¢j)/
(.78539816%j))#s2

endif

return

end

subroutine two(bw,h,n,m,g,gg)
parameter (mm=128)
reals8 bw(n,m),g(m,m),h(m,n),ggm,n)
integer lwork(mm) ,mvork(mm),ier
do 600 i={,m
do 610 ii=i,m
g(i,ii)=0
do 620 iii=i,n
ggli,ii)=g(i,ii)
continue
continue
continue
call dminve(g,m,ier,lvork,mvork)
do 630 i=1,m
do 640 ii=i,n
h(i,ii)=0
do 650 iii=i,m
continue
continue
continue
return
end

subroutine two5(h,n,m,err2)

reals8 h(m,n),err2(m,m)

do 400 i=1,m

do 410 ii=i{,m
oxr2(i,ii)=0
do 420 iii=1,n

orx2(i,ii)=err2(i,ii)+h(i,iii)*h(ii,iii)

continue

continue

continue

return

end

subroutine six(nwt,err,m,nl,retil,f,snx,mb)
complex*8 berr(256,256)
reals8 err(m,m),retil(128),7(128)
reals4 dr,dy
parameter (pi=3,14159265)
sum=0
do 190 i=1,m
sumssunterr(i,i)
continue
print ¢, sum
do 200 i=1,ml
do 200 ii=i,nl
bexr(i,ii)=0
ni=(nl-m)/2,
do 210 il ,m
do 220 ii=i,m
berr(ni+i,n1+ii)=err(i,ii)
continue
continue

dx=1
dy=1

- 185 -

137
138
139
140
141
142
143 230
144
145
146 ¢
147 ¢

call f££t2d(berr,nl,dx,dy)

nl2ml/2

nlé=nl/4

do 230 i=1,nl12

£(i)=real(i)/nl4
retil(i)=real(berr(nl12+i,nl2-i+2))/(snremb)
continue

return

end

- 186 -

WA NdWN

00 0600aO0

20

10

program mtfmkr.f

reale*4 xi,xj,m,f,d,mtf,£r(200),0(200)
integer n
n = 200
Xn = n
do 10 j=1, §
xj = 3
d = xj/10
do 20 i»0, n-1
xi=i
f = xi/xm
fr(i+1) = mtf(d,f) + 1e-30
o(i+l) = f
continue
call plotfl(’mtfdtz?,200,’f?,0,’f? ,fx)
continue
end

FUECTIOR mtf(d,f)
real*4 4,f,dinv,mtf £1,£2
dinv = 1/d
if (£ .1t. d) then
£1 = 1,0 - dinysf
else
11 = 0
endif

if ((£ .gt. 1~2¢d) .and. (f .le. 1-d)) then

£2 = 0,5+dinve(f-1) + 1

elseif ((£ .gt. 1-d) .and. (£ .le. 1)) then

£2 = 0,5+dinve(1~f)
else
f2=0
endif
ntf = £1 + £2
utf = 2,0edeatf
snd

-187-

OO0 06000

DO~ e WN -

21 120

26 240

54 650
56 640

program second.f

parameter(kk=784)
real*8 g(kk,kk)
integer lvork(kk) ,mwork(kk),idummy(1)

=28

m2=mes2

ni=(m2¢(m2+1))/4

call bufasg(idummy,2+m3,ia)
call bufasg(idummy,2em3,ib)
call three(g,m,m2,m3,idummy(ia),idummy(ib))
call bufrel(idummy(idb))
call bufrel{idummy(ia))
snr=100

do 120 i=i,m2
gli,i)=g(i,i)+1/snr
continue

call dminve(g,m2,ier,lvork,mvork)
do 130 iii=1,m2
do 140 iv=1,m2

g(iii,iv)=g(iii,iv)/snr

continue

continue

call ten(g,m,m2)

stop

end

subroutine three(g,m,m2,m3,gx,gy)
reals8 g(m2,m2),gx(m3),gy(m3)
call readf1(’g328’,n,’d’,gx,’d’,gy,1,1,m3)
jo=1
do 600 i=1,m
j=1
ia=i
jg=me (j-1)
ige=me (ia-1)
do 680 ix=i ,m-i+i
if(ia.ne.j)then
do 640 ki=1,m
do 650 k2 = 1,m
if(iw.gt.0)then
g(ig+xl,ig+k2)=gx(iw)
glig+k2,jg+k1)=gx(iv)
iws-iw
else
g(ig+xt,ig+k2)=gy(-iw)
g{ig+x2,jg+k1)=gy(-iw)
iv=-iwel
endif
continue
continue
else
do 645 ki=i.m
do 655 k2nki,m
if(iv.gt.0)then
gligtkl,ig+k2)=gx(iw)
glig+k2,ig+k1)=gx(iv)
iws-iv
else
g(jg+kl,ig+k2)=gy(-iv)
gligrk2, jg+ki)=gy(-iv)
iws-jwél
endif
continue

- 188~

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

645 continue
endif
j=j+1
jg=me(j-1)
ia=jia+l
ig=me (ia-1)

680 continue

600 continue

return
end

c

¢

subroutine ten(g,m,m3)
parameter (mm=28)
reals4 diag(S5),bdiag(128),ur(128),vi(128),dd,br (mm,xm,127)
reale4 bi(mm,mm,127),y(128),sur(127,127),81i(16129),x(16129)
realss gl(mm,mm),brt(mm,mm),bit(wm,m),g(n3,n3)
real+4 smsur(63,63)

c realed x2(3969),81i2(3969)

n=128
=7
n2=2em-1
call lookup(n,wr,wi)
do 10 i=1,m
do 20 ii=i,m
do 30 iii=i,m
do 40 iv=1l,m
gliii,iv)=g(mei-m+iii,meii-n+iv)
40 continue
30 continue
call addiag(gl,m2,diag,m)
call pad(diag,m2,bdiag,n)
do 50 ix=1,n
y{ix)=0
50 continue
dd=1
call ££t2(bdiag,y,n,nl,vr,vi,dd)
do 60 iii=l, n-1
c br(ii,i,iii)=bdiag(iii+1)
bi(i,ii,iii)=y(iii+1)
bi(ii,i,iii)=-y(iii+1)
continue
continue
continue
do 70 i=i,n-1
do 80 ii=1,m
do 90 iiixi,m
bre(ii,iii)=br(ii,iii,i)
bit(ii,iii)=bi(ii,dii,i)
continue
continue
call addiag(brt,m2,diag,m)
call pad(diag,m2,bdiag,n)
call addiag(bit,m2,diag,m)
call pad(diag,m2,y,n)
dd=1
call fft2(bdiag,y,n,nl,vr,vi,dd)
do 100 ii=1,n-1
sur(i,ii)=bdiag(ii+1)/m3
s1i((n~1)*i-(n-1)+ii)=bdiag(ii+1)/m3
x((n~1)*(i-1)+ii)=(n-1)*(i-1)+ii
100 continue
70 continue
iii=0
do 110 i=1,63
do 120 ii=1,63

588"

88

- 189 -

139

120
110

O

404

406

n o

601

605
603

iii=jjiiet
snsur(i,ii)=sur(32+i,32+ii)
sli2(iii)=smsur(i,ii)
x2(iii)=x(iii)

continue

continue

call solidplt(’sb28?,127,127 ,sur)

call plotfl(’tlongb28a’,(n-1)s#2,’£’ x,’f? ,51i)
call solidplt(’ttb28a’?,63,63,smsur)

call plotfl(’slongb28’,3969,’f?,x2,£?,81i2)
stop

end

subroutine pad(diag,m2,bdiag,n)
reale4 diag(m2),bdiag(n)
do 404 i=1,n
bdiag(i)=0
continue
k=(n-m2+3)/2
do 406 izl ,m2
bdiag(k+i-1)=diag(i)
continue
return
end

subroutine addiag(a,m2,diag,m)

reale4 diag(m2)

reals8 a(m,m)

do 601 i=1,m2

diag(i)=o

continue

do 603 i=i,m

do 605 ii=1,m
iji=j-iiém
diag{iij)=diag(iii)+a(i,ii)
continue

continue

return

end

- 190 -

WO~ bW~

aao0oo0oo0o0o0an

[X3
© o

O 000000 K

00
(==

a

program slice.f

this program reads in the results of matrix4
in plotfl form and reassembles spectral matrix
and then takes out the center to plot
reale4 x(16129),surf(127,127),smsur(63,63)
reale4 x2(3969),51i2(3969),s1i(16129)
character+10 file
print #,’What is the name of the file?’
read ¢ ,file
call readfl(file,n,’f’,x,’f’,sli,1,1,16129)
i=0
do 10 ii=1,127
do 20 iii=1,127

i=i+g

continue
continue
i=0
do 30 ii=1,63
do 40 iii=1,63
i=iel
smsurf(ii,iii)=surf(32+ii,32+iii)

x2(i)=x(i)

continue
continue
call solidplt(?solidfile’,127,127,surf)
call plotfl(’smlong2’,3969,f’,x2,%f?,s1i2)
stop
end

APPENDIX B for Chapter 3
Computer Listings
This appendix contains the Fortran source code of the computer programs used to generate the
data for this chapter.
1 ¢
2 ¢
. 3 ¢ program eigenmkr.f
4 c
5 ¢
6 parameter (m=128)
7 real+*8 bu(1150,mm),£(128)
8 realss8 g(mm,mm),retil1(128),retil2(128),g1 (mm,mm),g2(mm,mm)
9 reals8 gg(mm,mm),evec(mm,mm),eval(mm),vec(mm,m),val(m),d
10 reale4 eps
. 11 integer*4 i,k,m,mb,n,l,ier,window
12 character dfile+16
13 ¢
14 1=128
15 print =, k7’
16 read *, k
17 print *, ’snr??
18 read *, snr
] 19 print *, 'd/D7?
20 read *, 4
21 print *, ’Window?’
22 read *, window
23 ¢ print ¢, ’Destination File?’
24 ¢ read «, dfile
25 n=2¢k+128
26 do 10 i=1,6
o a7 m=2+s(i41)
28 mb=m
29 call bwmkr(bw,k,n,m,d,window)
30 call ggmkr(bw,n,m,g,gg,eps,ier)
31 ¢ call eigenmkr(m,gg,evec,eval,vec,val,gl,g2)
32 call eigenmkr{m,n,bw,evec,eval,vec,val,gl,g2)
33 call spectramkr(gi,m,retill,f,snr,nb)
34 call spectramkr(g2,m,retil2,f,snr,mb)
o 35 do 20 ii=1,128
36 ¢ Tetil2(ii)=retil2(ii)+retil1(ii)
37 20 continue
38 ¢ call plotfi(dfile,128,%d?,f,?d?,retil2)
39 call plotfl(’testw3k25541.1°,128,d’,1,°d’ ,retill)
40 call plotfl(’testw3k255d1.27,128,°d?,2,7d’,retil2)
41 10 continune
42 stop
. 43 end
44 c
45 c
468 ¢
47 subroutine bwmkr(bw,k,n,m,d,window)
48 reals8 bu(n,m),hh,d
49 integer n,m,k,vindov
80 do 500 i={,n
o 51 do 500 ii=1,m
52 500 du(i,ii)=0
53 jo-x
54 do 510 i=1,1+2¢k
§5 bw{i,1)=hh(j,d,k,vindow)
56 jmj*e .
§7 S510 continue
58 do 520 i=1,m-1
o 59 do 530 ii=0,2¢k
60 bu(1+iiei,ivl)=bu(ii+i,i)
-192 -
®

continue
‘continue i
return L]
end

subroutine ggmkr(bw,n,m,g,gg,eps,ier)
parameter (mm=128)
reals8 bw(n,m),g(m,m),gg(m,m) .
reals8 r(8256)
reals4 eps
integer ier
do 600 i=1i,m

do 610 ii=i,m

g(i,ii)=0

do 620 iii=1,n

ge(i,ii)=g(i,ii)

continue

continue
continue
call squartxi(r,m,g)
call dsinv(r,m,eps,ier)
call trisquar(g,m,xr)

end
o

function hh(j,d,k,window)

realss8 hk,d,k1,pi,pi2,j1

integer k,j,m,vindow

m*window

pi=3.141592654

pi2=2epi .

ji=j

ki=k

if(j.eq.0)then
hh=dsd

else
hh=cos(,78533816+dble(j)*(1~d))*sin(.78539816+d+dble(j))/
(.78539816+dble(j))

hh=hhehh ®
endif
if (m.eq.1) then
hh=hh
elseif (m.eq.2) then
hh=hhs(1-abs(j1)/k1)

elseif (m.eq.3) then
hh=hhe(.5+, 5¢cos(pi*j1/k1))

elseif (m.eq.4) then)
hh=hh#(0.5440.46%cos (pis*j1/k1))

else
hh=hhe (0,42+0.5¢cos(pi*j1/k1)+0.08cos(pi2*j1/k1))

endif

return

end

subroutine spectramkr(err,m,retil,f,snr,mb)
real*8 err(m,m),retil(128),£(128),xii,xi,pi2
real*8 sum(128)
integer p
pi2=6.283185307
do 10 i=1 ,m
sum(i)=0.0 o
continue

- 193 -

129 do 20 i=1 ,m

130 do 30 ii=i,m

131 p=abs(i-ii)+1

132 sum(p)=sum(p)+err(i,ii)

133 30 continue

134 20 continue

135 print +, sum(1)

136 do 50 i=1,128

137 xi*real(i)/256

138 retil(i)=0

139 do 60 ii=i,m

140 xii=ii~1

141 rotil(i)=retil(i)+sum(ii)scos(pi2exiiexi)
142 60 continue .
143 50 continne

144 do 80 i=1,128

145 f(i)=real(i)/64

146 retil(i)=retil(i)/(snxemb)

147 80 continue

148 return

149 end

150 ¢

151 ¢

152 ¢

183 ¢ subroutine eigenmkr(m,gg,evec,eval, vec,val,gl,g2)
154 subroutine eigenmkr(m,n,g,evec,eval,vec,val,gl,g2)
155 ¢ Teals8 gg(m,m),evec(m,m),eval(m),temp(128),x
156 reals8 g(m,m),evec(m,m),eval(m),temp(128),x
157 realss vec(m,m),val(m),gi{m,m),g2(m,m)

158 integer m,n,list(128),mid

189 ¢

160 ¢ call dmeigen(evec,eval,gg,m)

161 call svdcmp(g,n,m,eval,evec)

162 de 5 i=l,m

163 eval(i)=eval(i)seval(i)

i 5 continue

165 x=-14+308

166 do 10 i=i ,m

167 temp(i)=eval(i)

168 10 continue

169 ¢ cemcemccee- Sort indices from largest eigenvaiue to smallest ------
170 do 20 i=1i,m

171 do 30 ii=1,m

172 if(x.1t,temp(ii)) then

173 x=temp(ii)

174 list(i)=ii

1786 endif

176 30 continue

177 tewp(list(i))=0d0

178 x=-1d+308

179 20 continue

180 ¢ =-=emmmeee- Order eigenvalues and eigenvectors
181 do 40 i=i m

182 val(i)=eval(list(i))

183 do 50 ii=i m

184 vec(ii,i)=evec(ii,list(i))

185 50 continue

186 40 continue

187 ¢ -ew-we=—ee- Find middle of dynamic range

188 x=(log(val(m))+log(val(1)))/2d0

189 do 60 i=1i,m

190 if(log(val(i)).1t.x) then

191 mid=i

192 goto 65

193 endif

194 60 continue

195 ¢ ~=emmmewee- Generate two halves of inverse matrix =----v--=wr=ve---
196 65 do 70 i=i m

-194-

217
218
219
220
221
222
223
224
225
226
227
228
229

231
232
233
234
235
236
237

239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262

264

388

aanao

11

12

13

14
15

16

do 80 ii=i,m
g1(i,ii)=0do N
g2(i,ii)=0d0
do 90 iii=1,m
if(iii.1lt.mid) then
g1(i,ii)=g1(i,ii)+
(lqolval(iii))?vec(i,iii)'vec(11,111)

else
&2@i,ii1)=g2(4,ii)+
(1d0/val(iii))evec(i,iii)esvec(ii,iii)
endif
continue
continue
continue
return

end

subroutine svdcmp(a,m,n,mp,np,v,v)
subroutine svdcap(a,m,n,s,v)
implicit reales (a-h,o-z)

parameter (mmax=128)

dimension a(np,np),v(np),v(np,np),rvi(nnax)
dimension a(m,n),w(n),v(n,n),rvi(nmax)
g=040
scale=0d0
anorm=0d0
do 25 i=1,n
=i+l
rvi(i)=scalesg
g=0d0
s=0d0
scale=0d0
if (i.le.m) then
do 11 k=i,m
scale=scaletabs(a(k,i))
continue
if (scale.ne.0d0) then
do 12 k=i,m
a(k,i)=a(k,i)/scale
s=s+a(k,i)*a(k,i)
continue
=a(i,i)
g=-sign(sqrt(s),f)
h=fsg-s
a(a,i)=f-g
if (i.ne.n) then
do 15 j=1,n
s=0d0
do 13 k*i,m
s=g+a(k,i)+a(k,j)
continue
f=g/h
do 14 k=i,m
a(x,j)=alk,j)+f+a(k,i)
continue
continue
endif
do 16 k= i,m
a(k,i)=scalesa(k,i)
continue
endif
endif
w(i)=scale *g
g=0d0
sx0d0
scale=0d0

-~ 195 -

268
269
270
mn
272
2713
274
215
276

278
279

281
282

284
285
286
287

289
290
291
292
293
294
295

297
298
299

301
302
303

305
306

308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332

17

18

19

21

24

25

26

27

28
29

31

32

if ((i.le.m).and.(i.ne.n)) then
do 17 k=1,n
scale=scaletabs(a(i X))
continue
if (scale.ne.0d0) then

do 18 k=1,n
a(i,x)=a(i, k)/scale
s=s+a(i,X)*ali k)
continue
f=a(i,1)
g=-sign(aqxt(s) 1)
h=feg-s
a(i,l)=f-g
do 19 k=1,n
rvi(x)=a(i, k) /h
continue
if (i.ne.m) then
do 23 j=1,m
s=0d0
do 21 x=1,n
s=s+a(j,k)%a(i, k)
continue
do 22 x=1,n
a(j,K)=a(j,x)+sexvi(k)
continue
continue
endif
do 24 k=1,n
a(i,k)=scale*a(i,k)
continue
endif
endif
anorwmmax (anorm, (abs (w(i))+abs(xv1(i))))
continue
do 32 i=n,i,-1
if (i.1t.n) then
if (g.ne.0d0) then
do 26 j=l,n
v(j,i)=(a(i,§)/a(i,1))/g
continue
do 29 j=1,n
s=0d0
do 27 k=1,n
s=s+a(i, X)*v(k,])
continue
do 28 k=1,n
vik,j)=v(k,j)*s*v(k,i)
continue
continue
endif
do 31 j=1,n
v(i,j)=040
v(j,1)=0a0
continue
endif
v(i,i)=140
g=rvi(i)
1=i
continue
do 39 i=n,1,-1
1=i+t
g=w(i)
if (i.1t.n) then
do 33 j=1,n
a(i,j)=0do
continue
endif
if (g.ne.0d0) then

- 196 -

88

39

42

g=140/g
if (i.me.n) then
do 36 j=1,n
s=040
do 34 k=1.m §
s=s+a(k,i)ea(k,j)
continue
t=(s/a(i,i))eg
do 36 k=i,m
alk,jI=a(k, j)+fea(k,i)
continue
continue
endif
do 37 j=i,m
a(j,i)=a(j,i)eg
continue
else
do 38 j= i,m
a(j,i)=0d0
continne
endif
a(i,i)=a(i,i)+1d0
continue
do 49 k=n,1,-1
do 48 its=1,30
do 41 1=k,1,-1
ne=1l~1
it ((abs(rvi(1l))+anorm).eq.anorm)

go to 2

if ((abs(v(nm))+anorm).eq.anorm) go to 1

continue
c=040
sx1d0
do 43 i=l k
f=gorvi(i)
iz ((abs(f)+anorm).ne.anorm) then
g=w (i)
h=saqrt (f+f+geg)
w(i)=h
h=140/h
c= (gsh)
s=~(f+h)
do 42 j=i,m
y=a(j,nm)
z=a(j,1)
a(j,nm)=(ysc)+(zes)
a(j,i)=-(yss)+(z9c)
continue
endif
continue
z=g(k)
if (1.eq.k) then
if (z.1t.040) then
w(k)=-z
do 44 j=i,n
v(j,X)=-v(j,X)
continue
endif
go to 3
endif

if (its.eq.30) pause ’no convergence in 30 iterations’

x=w(1)
nw=k-1
y=v(nm)
g=rvi(nm)
h=rvi(k)

2=((y-z) s (y+z)+(g-h) *(g+h))/ (2d0sh+y)

g=sqrt (f+£+140)

£=((x-z)*(x+z)+he ((y/(£+sign(g,£)))-h))/x

-197 -

446

45

46
47

48

49

c=140
s=1d0"
do 47 j=1,m
- i=jen
g=rvi(i)
y=u(i)
h=geg
g=c*g
z=pqrt (fef+heh)
rvi(j)=z
c=f/z
s=h/z
£= (xec)+(ges)
g=-(x¢s)+(gec)
h=yeg
y=ysc
do 45 nm=i ,n
x»v(nm,j)
z=v(nm,i)
v(nm,j)= (xec)+(z*s)
v(nm,i)=-(xes)+(z*c)
continue
z=sqrt(f+L+hsh)
w(j)=z
if (z.ne.0d0) then
z=1d0/z
c=fez
s=h*z
andif
£= (cog)+(ssy)
x=-(seg)+(cey)
do 46 nm=1,m
y=a(nm,j)
z=a(nm,i)
a(om,j)= (ysc)+(zes)
a(nm,i)=-(y+s)+(z*c)
continue
continue
rv1(1)=0d0
rvi(k)=f
w(k)=x
continue
continue
continue
return
end

- 198 -

OoO~NON bW M

00000

105

program gradsrch.f

parameter (nn=638 ,:m*=128)

reals8 ba(nn,mm) ,h(mm,nn),retilu(128),£(128) ,x(mm) ,no(nn)
reals8 v(mm,mm),v(mm),erru(mm,mm),retilc(128),exr2 (mm,mm)
reale8 errc(mm,mm),u(nn,mm)

reale8 y(nn),gg(mm,m),d

integer+*4 random,window,cntr,ni,nj,nt,m,mb,n,),k,nl,n12
character dfiles16

window=3
n=638
1=128
k=(n-1)/2.
print =, 'nt??
read *, nt
print ¢, ’ni?’
read &, ni
print ¢, 'nj??
read *, nj
print *, 'md??
read *, md
print *, a7’
read *, m
print *, ’snr??
read =, snr
print *, ’4/D7?
read =, d
print *, ’Destination File??
read », dfile
n1=256
nl2=nl/2
call srandom(29)
call bwmkr(bw,u,X,n,m,d,vindow)
call ggmkr(bw,n,m,gg)
call svdekr(u,n,m,w,¥)
call hmkr(h,u,w,v,m,n)
do 103 j=1,mm
do 101 jj=1,mm
exru(j,jj)=o
errc(j,jj)=o0
continne
continue
cntr=0
do 105 iv=i ,nt
print *,iv
if (float(iv)/10.0-int(float(iv)/10.0) .1lt. 1e-10) then
print =, iv
endif
call randm(x,no,m,n,snr,bw,y,ndb)
call grdsrch(x,h,no,erru,n,m,nt,errc,y,bv,gg,ni,nj,cntx)
continue
print », real(cntr)sreal(nj)/real(nt)
call spectramkr(erru,m,retilu,f,snr,mb)
call spectramkr{errc,m,retilc,f,snr,mb)
call plotfl(dfile,nl2,’d’,f,’d’,retilu)
call plotfl(dfile,nl2,’d’,f,’d’,xetilc)
stop
end

subroutine bwmkr(bw,u,k,n,m,d,vindow)
reals8 bw(n,m),u(n,m),hh,d
integers4 window

- 199 -

103

105
106
107

109
110
111
112
113

510

530
520

4}

620
610
600

a o

o000 on

500

505

07

do 500 i=1i m

do 500 ii=i.,m
be(i,ii)=040
u(i,ii;=0d0

=k

do 510 i=1,6142¢k
be(i,1)=hh(j,d,k,vindow)
u(i,1)=be(i,1)

j=jv1

continue

do 520 i=1 ,m-1

do 5§30 ii=0,2¢k
bu(1+ii+i,it1)=bu(ii+i,i)
u(i+ii+i,i+1)=bu(ii+i,i)
continue

continue

return

end

subroutine ggmkr(be,n,m,gg)

parameter (mm=128)

real+8 bw(n,m),gglm,m)

do 600 i=i,m

do 610 ii=1,m
ggli,ii)=0
do 620 iii=1,n
gg(i,ii)=g(i,ii)
continue

continue

continue

return

end

subroutine randm(x,no,m,n,snr,bw,y,mdb)

Generates random vectors x, no, and y=BWx+no. x has md
independent Rayleigh components with variance snr and m-md
zero components. no has n independent, zero mean, Gaussian
components with unit variance,

reale8 ul,u2,ud,s
reals8 x(m),no(n),bw(n,m),y(n)
integer*4 MAXINTV,random
parameter (MAXINTV=2147483647)
n2=n/2

do 500 i=1,n2

ui=real (zandom()) /MAXINTYV
if(ul.gt.1.0r.ul.eq.0)goto 3
u2=real (random())/MAXINTV
if(u2.gt.1.0r.u2.eq.0)goto 2
no(2¢i-1)=sqrt(-2¢log(ut))*cos(6.2831853+u2)
no(2¢i)=sqrt (-2¢1og{ul))*sin(6.2831853+u2)
continue

s=gnr/2
do 505 i=1,m

u3s=real (random()) /KAXINTV
if(u3.gt.1.0r.uld.eq.0)goto 4
x(i)=sqrt(-2¢log(uld)) *sqrt(s)
continue

do 507 iwmb+i,m

x(i)=0

continue

do 510 i=1,n

- 200 -

y(i)=0
do $20 jii=1,m
y@E)»y(i)+bu(i,ii)ex(ii)

520 continue
y(i)=y(i)+a0(i)

510 continue
return
end

c

c

c
subroutine grdsrch(x,h,no,erxu,n,m,nt,erxc,y,bv,gg,

. ni,nj,catr)

include ’fpedefs.f’®
parameter (sm=128)

reales8 x(m),no(n),erru(m,m),h(m,n) ,eu(mm) ,zz,msq,nsqold
reale8 errc(m,m),gg(m,m),grad(wm),dusq,s(mm)
reals8 y(n),bv(n,m),z(mm) ,xg(mm)
real*8 alpha,beta,ss,sggs,tenl,ten2
integer cntr,nneg,list(mm),ni,nj,m,n,nt
nneg=0
msq=0
C mosmesemeoo- Compute unconstrained solution and B¥y ----~---v-----
do 700 i=1i,m
xg(i)=0
z(i)=0
do 710 ii=1i,n
xg(i)=xg(i)+h(i,ii)»y(ii)
z(i)=z(i)+bu(ii,i)»y(ii)

710 continue

eu(i)=xg(i)-x(i)

if(xg(i).1t.0)then

nneg*nneg+li

endif
700 continue

if(nneg.eq.0) goto 200
[Gradient Projection Algorithm -
c meemee- Disable overflow and divide-by-zero ---
c floating point exceptions.

nabls=fpgetmabls()

nevabls=and (nabls ,not{DIVO))
nevabls=and(newabls,not (OFLOW))
call fpsetxnabls(newabls)
100 msqold=msq
catrscntr+l
do 770 iv=1,nj
alpha=1.797d+308
88»0d0
sggs=0d0
c meeeee- Find active constraints and generate list ----=---
do 705 i=1,m
list(i)=0
if(xg(i).1e¢.0d40) then
xg(i)=0d0
list(i)=1
endif
708 continue
€ mmemeee- Compute gradient and correction vector § =—-=-===~-
c and pick step size alpha
do 712 i={ m
grad(i)=0d0
do 713 ii=l,m
srad (i) =grad(i)+gg(i,ii) »xg(ii)

713 continue

grad(i)=grad(i)-z(i)
< =-~~ Project gradient onto active, -
c nonobstructing constraints.

if(list(i).eq.1.and.grad(i).gt.0d0) then

-201 -

205 s(1)=0d0

206 else

207 s(i)=-grad(i)

208 endif

209 ¢ eee-- Determine step size alpha: = —=-cessesmmmeeeeo
210 ¢ Detexmine minimum step size for next comstraint,
211 c Determine step size for minimum along direction S,
212 ¢ eemme- Pick smaller of the two

213 if(list(i).ne.1) then

214 beta=xg(i)/grad(i)

215 if(beta.gt.0d0.and.beta.1t . alpha) then
216 alpha=beta

217 endif

218 endif

219 712 continue

220 do 714 i=1,m

221 ss=sg+s(i)es (i)

222 do 716 j*i,m

223 sggs=sggs+s (i) egg(i,j)*s(j)

224 716 continue

225 714 continue

226 beta=ss/sggs

227 if(beta.gt.0d0.and.beta .1t .alpha) then

228 alpha=beta

229 ¢ messsecenees compute new gradient and test for orthogonality ~-~----==-
230 ¢ with the S direction.

231 ¢ zz=0d0

232 ¢ do 900 i=1,m

233 ¢ grad(i)=0do

234 ¢ do 901 ii=i,m

238 ¢ grad(i)=grad(i)+gg(i,ii)*(xg(ii)+alphaes(ii))
236 <901 continue

237 ¢ grad(i)=grad(i)-z(i)

238 ¢ zzuzz+grad (i) es(i)

238 ¢900 continue

240 ¢ print e, 'gTs =?, zz

241 ¢ ~--wemmemeee End of Test

242 endit

243 ¢ -==e-eecece= Compute new Solution ~-~=~--
244 do 740 i=1,m

245 xg(1)mxg(i)+alphaes(i)

246 740 continue

247 Tr0 continue

248 ¢ Check ||y-Gx|| squared

249 nsq=0

250 do 780 i=1,n

251 zz%0

252 do 790 ii=i,m

253 zz=2z+bw(d,ii) exg(ii)

254 790 continue

255 zzwy(i)-zz

256 RSQUMIQERT LT

257 780 continue

258 ¢ print », msq

259 dnsq=abs ((msqold-msq)e(10seni))

260 if (dmsq.gt.1e+9) goto 100

261 if (int(dmsq) .ne.0) gote 100

262 ¢ -==== Enable Floating Point Exceptions ---
263 call fpsetxflags(0)

264 call fpsetmmabls(nabls)

266 ¢ ==oe- ~=== Accumulate Error Vector Outer Product and Retura we-=cr=ceve=
266 200 do 720 i=f,m

267 print ¢, xg(i), grad(i), s(i)

2068 teminxg(i)-x(i)

269 do 730 ii=i,m

2710 tem2mxg(ii)~x(ii)

amn erru(i,ii)=exru(i,ii)+eu(idseu(ii)/nt

2 errc(i,ii)merrc(i,ii)+temioten2/nt

-202 -

273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289

291
292
293
294
295
296
297
298
299
300
301
302
303

305
308
307
308
309
310
311
312
a3
314
315
316
n7
318
319
320
N
322
323
324
326
326
327
328
329

kO

332

338

337

730
720

a oo

10

g8

o

10

continue
continue
print ¢, msq
return
end

subroutine spectramkr(err,m,retil,f,snr,mb)
reals8 err(m,m),retil(128),£(128),xii,xi,pi2,sum(128)
integer p
pi2=6.283185307
do 10 i=1,m

sum(i)=0.0
continue
do 20 i=i,m

do 30 ii=i ,m

p=abs(i-ii)+1

sum(p) =sum(p)+err(i,ii)

continue
continue
print ¢, sum(1)
do 50 i=1,128

xi=real(i)/256

retil(i)=0

do 60 ii=i,m

xii=ii-1

retil(i)=retil(i)+sum(ii)*cos(pi2exiiexi)
continue
continue
do 80 i=1,128

£(i)=real(i)/64

retil(i)=retil(i)/(snr+=d)
continue
return
end

function hh(j,d, Xk,window)
reals8 hh,d,ki,pi,pi2,j1
integers4 k,j,window
pi=3.141592654
pi2=2epi
j1=j
ki=k
i2(j.eq.0)then
hh=ded
DY
Rh=cos(.78539816¢dble(j)*(1~d))sin(.78539816¢dedble(j))/
(.78539816+dble(3))
hh=hhehh
endif
if (wvindow.eq.1) them
hh=hh
elseif (window.eq.2) then
hh=hhe (1-abs(j1)/k1)
elseif (windov.eq.3) then
hh=hhe(.5+.6ecos(pirj1/k1))
elseif (windov.eq.4) then
hh=hhe (0.54+0.46%cos(pisj1/k1))
else
hh=hhe (0.42+0.5¢cos(pi®j1/k1)+0.08¢cos(pi2sj1/k1))
endif

Teturn
end

341
342
343
344
345
346
347
348
349
350
351

1

12

13

14
15

16

subroutine hmkr(h,u,w,v,m,n)

real+*8 u{m,n),v(n),v(n,n) ,h(n,m)
integer m,n

do 10 i=1,n
do 20 j=i,m
do 30 k=i ,n
h(i,j)=(1/w(k))ev(i k)*u(j,k)
continue
continue
continue

subroutine svdmkr(a,m,n,w,v)

This routine generates the SVD of an mxn matrix i

vwhere 1 = UNVtranspose, with U mxn, and V and ¥ are
nxn. U is column orthogonal, V is row and column
orthogonal, and ¥ is diagonal. U is returned in the
array a. The diagonal of W is returned as the vector w.

implicit real*8 (a-h,o0-z)
parameter (nmax=128)
dimension a(m,n),w(n),v(n,n),rvi(nmax)

g=0d0
scale=»0d0
anoxrm=0d0
do 25 i={,n
1=i+1
rvi(i)sscalesg
g=0d0
#=0d0
scale=0d0
if (i.le.m) then
do 11 k=i,m
scale=scale+abs(a(k,i))
continue
it (scale.ne.0d0) then
do 12 k=i ,m
alk,i)=a(k,i)/scale
ssg+a(k,i)va(k,i)
continue
f=a(i, i)
g=-sign(sqrt(s),t)
h=feg-s
a(i,i)=t-g
if (i.ne.n) then
do 15 j=1,n
s=0d0
do 13 k=i,m
s=s+a(k,i)sa(k,j)
continue
fug/h
do 14 kvi,m
a(k, j)=alk,j)+foa(k,i)
continue
continue
endif
do 16 k= i,m
a(k,i)sscalesa(k,i)
continue
endif

endif
w(i)=scale g

409
410
411
412
413
414
415
416
417
418
419
420
421
422
423

. 424

425
426
427
428
429
430
431
432
433
434

17

18

19

21

22
23

24

25

26

7

28

3

32

g=0d0
=040
scale=0d0
if ((i.le.m).and.(i.ne.n)) then
do 17 k=1,n
scale=scale+abs(a(i, k))
continue
if (scale.ne.0d0) then
do 18 k=1,n
a(i,k)=a(i, k)/scale
s=s+a(i, k) *a(i,k)
continue
£=a(i,l)
g=-sign(sqrt(s),r)
h=feg-s
a(i,l)=f-g
do 19 k=1,n
rvi(k)=a(i,k)/h
continue
if (i.ne.m) then
do 23 j=1,m
s=0d0
do 21 k=1l,n
s=s+a(j,k)*a(i, k)
continue
do 22 k=1,n
a(j,k)=a(j,k)+s*rvi(k)
continue
continue
endif
do 24 k=1,n
a(i,k)=scalesa(i,k)
continue
endif
endif?
anorm=max{anorm, (abs (v (i))+abs(rvi{i})))
continue
do 32 i=n,i,-1
if (i.1t.n) then
if (g.ne.0d0) then
do 26 j=1,n
v(j,i)=(a(di,j)/a(i, 1) /g
continue
do 29 j=1,n
=040
do 27 k=1,n
sug+a(i, k)ev(k,j)
continue
do 28 Xk=1,n
v(k, j)=v(k,j)+sev(Xk,i)
continue
continue
endif
do 31 j=1,n
v(i,j)=0d0
v(j,1)=0d0
continue
endif
v(i,i)=1d0
gervi(i)
1=i
continue
do 39 i=n,1,-1
=i+t
goe(i)
if (i.1t.n) then
do 33 j=l,n
a(i,j)=o0d0

477 33 continue

478 endif

479 if (g.ne.0d0) then

480 g=140/g

481 if (i.ne.n) then

482 do 36 j=1,n

483 s=040

484 do 34 k=1,m

485 s=s+a(k,i)*a(k,j)
486 34 continue

487 =(s/a(i,i))*g

488 do 35 k=i,m

489 a(k,j)=alk,jl+f*a(k,i)
490 35 continue

491 36 continue

492 endift

493 do 37 j=i,m

494 a(j,i)=a(j,i)*g

495 37 continue

496 else

497 do 38 j= i,m

498 a(j,i)=0do

499 38 continue

500 endif

501 a(i,i)=a(i,i)+1d0

502 39 continue

503 do 49 k=n,1,-1

504 do 48 its=1,30

508 do 41 1=k,1,-1

506 nm=]-1

§07 it ((abs(rvi(1l))+anorm).eq.anorm) go to 2
508 it (Cabs(w(nm))+anorm) .eq.anorm) go to 1
509 41 continue

510 1 c»0d0

511 s=1d0

512 do 43 i=} Xk

513 fxgervi(i)

514 it ((abs(f)+anorm).ne.anorm) then
515 gew(i)

516 hegqrt (fes+geg)

517 w(i)=h

518 hw1d0/h

519 c= (geh)

520 s=-(feh)

521 do 42 j=1i,m

522 y=a(j,nm)

523 z=a(j,i)

524 a(j,m)=(ysc)+(zea)
528 a(j,i)==(yes)+(zsc)
526 42 continune

527 endif

528 43 continue

§29 2 zww (k)

530 if (1.eq.k) then

531 if (2.1t.0d0) then

832 w(k)=-z

533 do 44 j=1,n

5§34 v(j,X)=-v(j,x)

536 44 continue

538 endif

537 go to 3

538 endif

539 it (its.eq.30) pause ’no convergence in 30 iterations?
540 x=u(1)

541 nask-1

642 y=e(nm)

543 g=zvl(nm)

544 h=rvi(k)

- 206 -

545
546
547
548
549
550
551
§52
583
554
555
5§56
557
§58
559
560
561
5§62

564
565

567
568

45

48

49

£=((y-z)* (y+z)+(g-h) *(g+h))/(2d0shey)
g=sqrt (f+£+140)
f=((x-z)*(x+z)+he ((y/(£+sign(g,£)))-h))/x
c=1d0
s*1d40
do 47 jx=1,nm
i=jel
g=rvi(i)
y=u(i)
h=geg
g=c*g
z=gqrt (fef+heh)
rvi(jl=z
cxf/z
s=h/z
= (xec)+(ges)
g=-(xes8)+(g*c)
h=yss
y=ysc
do 45 nm=1,n
x=v(nm,j)
z=v(nm,i)
vinm,j)= (xec)+(z¢s)
vinm,i)=~(x*s)+(z*c)
continue
z=sqrt(f+f+h+h)
w(j)=z
if (z.ne.0d0) then
z=1d0/z
cefez
s=hez
endif
2= (cog)+(sey)
xn-(geg)+{cry)
do 46 nm=i ,m
y=a(nm,j)
z=a(nm,i)
a(nm,j)= (ysc)+(z+s)
a(nm,i)=-(y*s)+(zvc)
continue
continue
rvi(1)=0d0
rvi(k)=t
w(k)=x
continue
continue
continue
return
end

- 207 -

WoONN b WN -

ao0oo00aoan

110
100

620

610

;]

500

program minvar.f

parameterx (mm=128)

reals8 bw(1150,mm) ,retil(128),£(128)
reals8 g(mm,mm),d,snr

reale*4 eps

integer*4 m,vindow,k,1,n,im,i,ii,ier
character+*16 dfile

print ¢, k7’
read », k
print *, ’Window number?’
read *, wvindow
print *, ’Destination File?’
read ¢, dfile
1=128
n=2sk+]
eps=ie~6
do 90 im=1,6

m=2e¢s (im+1)

do 100 i=1,5

d=dble(i)/1d+1

call bemkr(bv,k,n,m,d,vindow)

do 110 ii=2,4

snr=10ssii
call tvo(bw,n,m,g,snr,ier,eps)
call spectramkr(g,m,retil,f)
call plotfl(dfile,128,?d’,f,’d’ ,xetil)

continue

continue
continue
stop
end

subroutine two(bw,n,m,g,snx,iex,eps)

subroutine to calculate hx(gtgl)esnr + i inv
parameter (mm=128)
real*8 bu(n,m),g(m,m),x(8256),snr
reale4d eops

integer ier
do 600 i=i,m

do 610 ii=i,m

g(i,ii)=0

do 620 iii=i,n

gli,ii)=g(i,i1)+bu(iii,i)*bw(iii,ii)*snr
continue

if(i.eq.ii)g(i,ii)=g(i,ii)+1d+0

continue

continue

call squartri(r,m,g)

call dsinv(r,m,eps,ier)

call trisquar(g,m,x)
Teturn

ond

subroutine bwmkr(bw,k,n,»,d,window)
reale8 bw(n,m) hh,d
integer n,m, k,virdow
do 500 i=1i,n
do 500 ii=1,m
be(i,ii)=0

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

135
136

510

530
520

(4]

10

0

10

38

j=-k

do 510 i=1,142¢k
be(i,1)=hh(j,d,k,vindow)
=+

continue

do $20 ixi,m-1

do 530 ii=0,2+k
be(1+ii+i,i+1)=be(ii+i,i)
continue

continue

return

end

function hh(j,d,k,vindow)

reals$ hh,d, ki,pi,pi2,j1

integer k,j,m,vindow

m=window

Ppi=3.141592654

pi2=2pi

j1=3

ki=k

i£(j.eq.0)then

hh=d«d

else
hh=cos(.78539816%dble(j)»(1-d))*sin(.78539816+d*dble(j))/
(.78539816+dble())

hh=hhshh

endif

if (m.eq.1) then
hh=hh

elseif (m.eq.2) then
hhxhhe (1-abs(j1)/k1)

elseif (m.eq.3) then
hh=hhe{.5+.5+cos(pi*ji/ki})
elseif (m.eq.4) then
hh=hh* (0.54+0.46%cos(pisj1/k1))
else
hh=hh#(0.42+40.5%cos(pi*j1/k1)+0.08scos(pi2«j1/k1))

endif

Teturn

end

subroutine spectramkr(err,m,retil, f)
reals8 exrr(m,m),retil(128),£(128),xii,xi,pi2,sum(128)
integer p
pi2=6,283185307
do 10 ixi ,m
sum(i)=0.0
continue
do 20 i=i,m
do 30 ii=i,m
p=abs(i-ii)+1
sun(p)=sum(p)+err(i,ii)
continue
continne
do 50 i=1,128
xiwreal(i)/256
retil(i)=0
do 60 ii=1,m
xii=ii-1
retil(i)=retil(i)+sum(ii)*cos(pi2exiiexi)
continue
continue
do 80 i=1,128

-209 -

137
138
139
140
141

£{i)=real(i)/64
retil(i)=retil(i)/dble(m}

continue

return

end

DO NTAWN -

00000

20

50

program snrmkr.f

real*4 sum,snr(128),£1(128),1g10
reals8 £(128),e(128)
characters12 filel
charactersi4 file2
filel='mi6mb1641w5.
file2=’snrm16mb16d185°
call readfl(file1//’2’,n,’d’,f,’d’,e,1,1,128)
1g10=1log(ie1)
sumx=0
do 10 i=1,128
sun=sumte (i)
snr(i)=real(i)/sum
snr(i)=10¢log(real (i)/sum)/1g10
f1(i)=real(i)/64
continue
call plotfl(file2,128,’f’,f1,’f?, snr)
call readfl(filet//?2’,n,’d’,f,’d’,e,3,1,128)
sum=0
do 20 i=1,128
sum=sumte (i)
snr(i)=real(i)/sum
snr(i)=10¢log(real(i)/sum)/1g10
continue
call plotfl(file2,128,°f’ £1,’f?, snr)
call readfl(file1//’3?,n,’d?,f,’d?,e,1,1,128)
sum=0
do 30 i=1,128
sum=sumte (i)
snx{i)=real(i)/sum
snr(i)=10slog(real(i)/sum)/1g10
continue
call plotfl(file2,128,’f?, £1,’f?,snr)
call raldfl(fileil/’3’,n,’d’,f,’d’,0,3,1,128)
sum=0
do 40 i=1,128
sum=sum+e (i)
sar(i)=real(i)/sum
snr(i)=10slog(real(i)/sum)/1g10
continue
call plotfl(file2,128,°¢’,f1,’f? snx)
call readfl(file1//’4?,n,’d?,£,7d?,¢,1,1,128)
sum=0
do 50 i=1,128
sun=gum+e (i)
snr(i)=real(i)/sum
snr(i)=10slog(real(i)/sum)/1g10
continue
call plotfl(file2,128,°f?,£1,'f? snr)
call readfl(file1//’4’,r,’d’,f,?d?,e,3,1,128)
sum=0
do 60 i=1,128
sum=gumte (i)
sar(i)=real(i)/sun
snr(i)=10slog(real(i)/sum)/1g10
continue
call plotfl(file2,128,°f’,21,°f?, ,snr)
call readfl(file1//’5?,m,’d?,f,’d?,e,1,1,128)
sum=0
do 70 i=1,128
sumssumte (i)
sar(i)=real (i)/sum
snr(i)=10slog(real(i)/sun)/1g10
£1(i)=real(i)/64

- 211 -

70

100

110

120

130

140

continue
call plotfl(file2,128,’f’,f1,’f’ snr)
call readfl(filei//’5’,n,’d?,f,’d?,e,3,1,128)
sum=0
do 80 i=1,128
sum=sum+e (i)
snr(i)=real(i)/sum
snr(i)=10¢log(real(i)/sun) /1g10
continue
call plotfl(file2,128,’f?,f1,°f?,snr)
call readfl(file1//’6’,n,%d’,f,’d?,e,1,1,128)
sum=0
do 90 i=1,128
sum=sumte (i)
snr(i)=real(i)/sum
snr(i)=10vlog(real(i)/sum)/1g10
continue
call plotfl(file2,128,°f’,£f1,7£’, snx)
call readfl(file1//’6’,n,’d’,f,’d’,¢,3,1,128)
sum=0
do 100 i=1,128
sum=sum+e (i)
snr(i)=real (i)/sum
snr(i)=10+log(real(i)/sum) /1g10
continue
call plotfl(file2,128,’f?,f1,’f’,snr)
call readfl(filei//’7?,n,’d?,f,’d’,e,1,1,128)
sum=0
do 110 i=1,128
sum=sum+e (i)
snr(i)=real(i)/sum
snr(i)=10¢1log(real(i)/sun)/1g10
continue
call plotfl(file2,128,2¢’ 1, 7f’ snr)
call readfl(file1//’7?,n,’d’,f,’d?,¢,3,1,128)
sum=0
do 120 i=1,128
sum=sun+e (i)
snr{i)=real(i)/sun
snr(i)=10¢log(real(i)/sum)/1g10
continue
call plotfl(file2,128,°f?,f1,7f? snx)
call readfl(file1//’8?,n,’d?,£,%d?,¢,1,1,128)
sum=0
do 130 i=1,128
sum=sumte (i)
snr(i)=real(i)/sum
snr(i)=10¢log(real(i)/sum) /1510
continue
call plotfl(file2,128,°f?,f1,’1? ,snr)
call readfl(file1//'8?,n,’d?,f,%d?,¢,3,1,128)
sun=0
do 140 i=1,128
sum=gum+e (i)
sar(i)=real(i)/sum
snr(i)=10elog(real(i)/sum)/1g10
continue
call plotf1(file2,128,7¢£7 11,7’ ,anx)
stop
end

-212 -

WOk WN -

O 000000000000

11

14
15

16

17

routine svd.f

This routine generates the SVD decomposition of an
mxn matrix A = UWVtranspose, vwhere U is mmm, and V
and ¥ are nxn. U is column orthogonal, V is row and
column orthogonal, and W is diagonal. U is returned
in the array a.

subroutine svdcmp(a,®=,n,v,v)

implicit reals8 (a~h,o-z)

parameter (nmax=128)

dimension a(m,n),v(n),v(n,n),rvi(nmax)

g=0d40
scale=0d0
anorm=0d0
do 25 i=1,n
1=i+1
rvi(i)=scalesg
g=0d0
s=0d0
scale=0d0
if (i.le.m) then
do 11 k=i ,m
scalemscaletadbs(a(k,i))
continue
if (scale.ne.0d0) then
do 12 k=i,m
a(k,i)=a(k,i)/scale
s=g+a(k,i)ealk,i)
continue
t=a(i,i)
g=-sign(sqrt(s),f)
hafeg-s
a(i,i)=t~g
if (i.ne.n) then
do 15 j=l,n
s»0d0
do 13 k=i,m
s=s+a(k,i)sa(k,j)
continue
fug/h
do 14 k=i ,m
a(k, jI=a(k,j)+sea(k,i)
continue
continue
endift
do 16 k= i,m
alk,i)=scaleva(k,i)
continue
endif
endif
w(i)=scale og
g=040
2040
scale=0d0
it ((i.le.m).and.(i.ne.n)) then
do 17 k=1,n
scale=gcale+ads(a(i k)
continue
if (scale.ne.0d0) thea
do 18 k=1,n
a(i,x)=a(i,k)/scale

-213-

18

19

21

22

24

25

26

27

28
29

31

32

s=s+a(i,k)*a(i,k)
continue
f=a(i,l)
g=-sign(sqrt(s),1)
h=feg-g
a(i,l)=f-g
do 19 k=1,n
rvi(k)=a(i,k)/h
continue
if (i.ne.m) then
do 23 j=l,m
s=0d0
do 21 k=1,n
s=s+a(j,k)*a(i,k)
continue
do 22 x=1,n
a(j,x)=a(j,k)+s*xrvi(k)
continue
continue
endif
do 24 k=1,n
a(i,k)=scalesa(i, k)
continue
endif
endif
anorm*max (anorm, (abs(w(i))+abs(rvi(i))))
continue
do 32 i=n,1,-1
if (i.1t.n) then
if (g.ne.0d0) then
do 26 j=1l,n
v(j,i)=(a(i,j)/a(i,1))/g
continue
do 29 j=l,n
=040
do 27 k=1,n
s=s+a(i,X)sv(k,]j)
continue
do 28 k=1,n
v(k,j)=v(k,j)+sev(k,1i)
continue
continue
endif
do 31 j=1,n
v(i,j)=o0do
v(j,1)=0d0
continue
endif
v(i,1)=1d0
g=rvi(i)
1=j
continue
do 39 imn,1,~1
1=i+t
gov(i)
it (i.1t.n) then
do 33 j=1l,n
a(i,j)=0d0
continue
endif
if (g.ne.0d0) then
g=140/g
if (i.me.n) then
do 38 j=1,n
=040
do M k=1l,m
ssgtalk,i)sa(k,j)
continue

137

139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
156
156
157
158
159
160
161

37

39

42

t=(s/a(i,i))sg
do 35 k=i,m
alk,j)=alk,j)+fea(k,i)
continue
continue
endif
do 37 j=i,m
a(j,i)=a(j,i)sg
continue
else
do 38 j=i,m
a(j,i)=0d40
continue
endif
a(i,i)=a(i,i)+1d0

continue
do 49 k=n,1,-1

do 48 its=1,30
do 41 1%k,1,-1
ra=l-~1
if ((abs(rvi(1l))+anorm).eq.anorm) go to 2
if ((abs(w(nm))+anorm).eq.anorm) go to 1
continue
c=0d0
s=140
do 43 i=1,k
f=servi(i)
if ((abs(f)+anorm).ne.anorm) then
g=u(i)
h=gqrt (fef+geg)
w(i)=h
h=1d0/h
c= (g*h)
s=-(fsh)
do 42 j=1,m
y*a(j,nm)
z=a(j,i)
a(j,nm)=(ysc)+(zes)
a(j,i)=-(y*s)+(2+c)
continue
endif
continue
z=u(k)
if (1.eq.k) then
if (z.1t.0d0) then
w(k)=-z
do 44 j=i,n
v(j,X)=-v(j X}
continue
endif
go to 3
endif
if (its.eq.30) pause ’no convergence in 30 iterations’
x=u(1)
nmek=-1
y=u(nm)
g=rvi(nm)
h=rvi(k)
2= ((y-z)*(y+z)+(g-h) *{g+h))/ (2d0shry)
g=sqrt (£+£+41d0)
£a((x-z)* (x+z) +he ((y/(f+sign(g,£)))-h))/x
c=1d0
s=1d0
do 47 j=1,nm
imjel
g=rvi(i)
y=u(i)
h=seg

205 g=cg

® 206 z=sqrt (fsf+heh)
207 rvi(j)=z
208 c=t/z
209 s»h/z
210 = (xec)+(ges)
211 g=-(xss8)+(gec)
212 h=yss
213 y=ysc
. 214 do 45 nm=1,n
215 xsv(nm,j)
216 z=v(nm,i)
217 vinm,j)= (x*c)+(z+s)
218 v(nm,i)=~(xes)+(z%c)
219 45 continue
220 z=sqrt (£sf+hsh)
221 v(j)=z
o 222 if (z.ne.0d0) then
223 z=1d0/z
224 c=fez
228 s=hez
226 endif
227 = (ceg)+(sey)
228 x=~-(geg)+(cey)
229 do 46 nm=1 ,m
Py 230 y=a(nm,j)
231 z=a(nm,i)
232 alnm,j)= (yec)+(zes)
233 a(nm,i)=-(y*ss)+(zec)
234 46 continue
235 47 continue
236 rvi(1)=0d0
237 rvi(k)=t
. 238 w(k)=x
239 48 continue
240 3 continue
241 49 continue
242 return
243 end
®
e
@
@
- 216 -
®

1 c

2 c

3 ¢ program minvar2.f .
4 c

5 ¢

6 parameter (mm=128)

7 real#*8 bw(1150,mm),retil(128),£(128)

8 real+8 g(wm,mm),d,snr

9 reals4 eps

10 integer*4 m,n,im,i,ii,ni,ier,max,uniform,apertures .
11 character¢i6 dfile

12 ¢

13 n=1024

14 print *, ’snr?’

15 read &, snr

16 print s, ’d/D7?

17 read », ¢

18 print =, ’uniformity?(yes=1,no=0)’ ®
19 read *, uniform

20 print », ’number of apertures?’

21 read #, aperturss

22 print =, ’Largest support??

23 read *, max

24 print *, ’Destination File??

28 read s, dfile

26 eps=le-6 .
27 do 90 im=1,max

28 n=d¢in

29 call bwmkr(bv,n,m,d,uniform,apertures)

30 call two(bw,n,m,g,snr,ier,eps)

31 call spectramkr(g,m,retil,f)

32 call plotfl(dfile,128,%d?,f,7d’,retil)

33 %0 continue

34 astop

3s end .
36 ¢

37 ¢

38 ¢

39 subroutine two(bw,n,m,g,snr,ier,ers)

40 ¢ subroutine to calculate h=(gtg)esnr + i inv

41 paraneter (mm=128)

42 reals8 bu(n,m),g(m,m),r(8256),snr

43 Teales4 aps .
44 integer ier

45 do 600 i=1,m

46 do 610 ii=i,m

47 gli,i1)=0

48 do 620 iii=1,n

49 g(i,ii)=g(i,i1)+bu(iii,i)ebu(iii,ii)esnr

50 620 continue .
51 if(i.eq.ii)g(i,i1)mg(d,ii)+1d+0

§2 610 continue

53 600 continue

54 call squartri(r,m,g)

55 call dsinv(r,m,eps,ier)

56 call trisquar(g,m,r)

57 return

&8 ond

59 ¢ ‘
60 ¢
61 ¢

62 subroutine bwmkr(bv,n,m,d,uniform,apertvres)

63 reale8 bw(n,m),hh,d

¢4 integer n,m,uniform,apertures

65 do $20 i=1.,n

66 do §30 ii=t,m

67 bw(i,ii)shh((m-n)/2-ii+i,d,uniform,apertures) |
68 8§30 continue

- 217~

-y
w
(4]

96 10

102 20

115 40

[
[
©
0

continue
return
ond

function hh(j,d,uniform,apertures)
reals8 hh,d,pi2,d1,j1,j2,x1,x2,xj,xk,xi
integer j,k,1,uniform,apertures

k=xapertures
xk=k
if(j.eq.0)then
hh=xksd/4d0
else
pi2=2d0¢atan(1d0)
d1=1d0-d
xj=j
ji=xjediepi2
j2=xjedepi2/2d0
x1=8in(j2)/j2
x1=x1ex1+d/4d0
x2=0d40
if(uniform.eq.1) then
do 10 i=1,k-1
xim=i
x2=x2+(1d0-xi/xk) *cos(xi*j1/(xk-1d0))
continne
hh=x1s(1d0+2d0*x2)
elseif (uniform.eq.0.and.apertures.eq.3) then
do 20 i=1,3
xi=i
x2=x2+cos(xisj1/340)
continue
hh=x1%(140+2d0%x2/340)
elseif (uniform.eq.0.and.apertures.eq.4) then
do 30 i=1,6
ximi
x2=x2+cos(xisj1/640)
continue
hhwxis(1d0+x2/2d0)
elseif (uniform.eq.0.and.apertures.eq.5) then
do 40 i=1,11
if(i.eq.10) goto 40
xi=i
x2=x2+cos(x3sj1/1130)
continue
hh=x1¢(1d0+240%x2/540)
elseif (uniform.eq.0.and.apertures.eq.6) then
do 50 i=1,17
if(i.eq.14.0r.i.eq.15) goto 50
xi=i
x2=x2+cos(xiv*j1/17d0)
continue
hhex1s(140+x2/340)
endif
endif
return
end

subroutine spectramkr(err,m,retil,f)

realed orr(m,m),retil(128),2(128),xii,xi,pi2,sun(128)
integex p

pi2=6.283185307

do 10 im1,m

sun(i)=0.0

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
1583
154
155
156
157

10

continue

do 20 i=i,m

do 30 ii=i,m
prabs(i-ii)+1
sum(p)=sum(p)+err(i,ii)
continue

continue

do 50 i=1,128
xiwxeal (i) /256
retil(i)=0

do 60 ii=1,m
xii=ii-1
retil{i)=retil(i)+sum(ii)*cos(pi2exiisxi)
continue

continue

do 80 i=1,128
f(i)=real(i)/64
retil(i)=retil(i)/dble(m)

continue

return

end

-219 -

1 ¢
2 ¢
3 ¢ program snrmkr2 f
4 c
5 ¢
6 real#4 sum,snr(128),f1(128),1g10,s1ice(32),count(32)
7 reals8 £(128),e(128)
8 ¢
9 1g10=1log(1e1)
. 10 ¢ do 5 j=1,180
11 ¢ do 5 j=1,8
12 do 5 j=1,32
13 ¢ call readfl(’minvar2n1024’,n,’d’,f,’d’,e,j,1,128)
14 ¢ call readfl(’newmtfd00586?,n,’d’,f,?d?,e,j,1,128)
15 call readfl(’s5d005u0a6s32?,n,’d’,f,’d?,e,j,1,128)
16 ¢ call readfl1(’s4d005uiai1s32’,n,’d?,f,’d’,e,j,1,128)
17 ¢ call readfl(’s6d4005ula6s8?,n,’d’,f,’d’,e,j,1,128)
18 sum=0
. 19 do 10 i=1,128
20 sum=sumte (i)
21 snr(i)=10+log(real(i)/sum)/1g10
22 £1(i)=real(i)/64
23 10 continue
24 ¢ call plotfl1(’snrminvarni024’,128,°f? ,£1,’f’ enr)
25 ¢ call plotfl(’snraowmtfd005s6’,128,°f? ,f1,°£? ,enrx)
26 call plotfl(’snrs5d005u0a6’,128,°£’,£1,7f?,snx)
. 27 ¢ call plotfl(’snrs4d0OSulall’?,128,°f? ,£1,7¢’ snr)
28 ¢ slice(j)=snr(64)
29 ¢ slice(j)=snr(52)
30 slice(j)=snr(49)
31 count(j)=j
32 § continue
33 call plotfl(’slcs5d005u0a6’,32,f?,count,’f’,slice)
34 c call plotfl(’slcs4d005uiall?,32,’2?,count,’t?,slice)
. 5 ¢ call plotfl(’slcs6d005ulaé’,8,’f?,count, ¥’ ,slice)
3¢ stop

end

APPENDIX C for Chapter 4

Computer Listings

This appendix contains the Fortran source code of the computer programs used to generate the
data for this chapter.

1 ¢
. 2 c
3 ¢ program minvar2.f
4 c
5 ¢
6 parameter (max128)
7 reals8 bw(1150,mm),retil(128),£(128)
8 reale8 g(mm,mm),d,snr
9 Teale4 ops
. 10 integer*4 m,n,im,i,ii,ni,ier,max,uniform,apertures
11 character+16 dfile
12 ¢
13 n=1024
14 print *, ’‘snr??
15 read ¢, snr
16 print s, 1d/D7?
17 Tead ¢, d
) 18 print ¢, ‘uniformity?(yes=1,no=0)’
19 read ¢, uniform
20 print ¢, ’‘number of apertures?’
21 read *, apertures
22 print ¢, Largest support?’
23 read *, max
24 print ¢, Destination File??
25 read », dfile
‘ 26 eps=ie-6
27 do 90 im=1,max
28 nudein
29 call bwakr(bw,n,m,d,uniform,apertures)
30 call two(bw,n,m,g,snx,iexr,eps)
31 call spectramkr(g,m,retil,?)
32 call plotfl(afile,128,7d?,2,%d?,retil)
33 % continue
. 34 stop
35 end
36 ¢
7 ¢
38 ¢
39 subroutine two(bw,n,m,g,snr,ier,eps)
40 ¢ subroutine to calculate h=(gtglesnr + i inv
41 parameter (mm=128)
. 42 realed du(n,m),g(m,m),x({8256) ,snr
43 reals4d eps
44 integer ierx
45 do 600 iwi,m
46 do 610 ii»1,m
47 gli,ii)=0
48 do 620 iii=1,a
49 g(i,i1)mg(i,id)+bw(iii,i)obu(iid, ii)esnr
o 50 620 continue
51 i1(i.eq.ii)g(i,ii)=g(i,ii)+1d+0
52 610 continue
53 600 continue
54 call squartri(r,s,g)
55 call dsinv(r,m,eps,ier)
56 call trisquar(g,m,r)
57 retura
® 58 end
58 ¢

- 221 -

103

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
12§
126
127

5§30
§20

0o

20

40

subroutine bumkr(bw,n,m,d,uniform,apertures)

reals8 bu(n,m),hh,d

integer n,m,uniform,apertures

do 520 i=1i,n

do 530 ii=1,m
bu(i,ii)=hh((m-n)/2-ii+i,d,uniform,apertures)
continue

continue

return

end

function hh(j,d,uniform,apertures)
reals8 hh,d,pi2,d1,j1,52,x1,x2,xj,xk,xi
integer j,k,1,uniform,apertures

k=apertures
xkxk
if(j.eq.0)then
hh=xks+d/440
else
pi2=2dOeatan(140)
di=1d0-d
xj=j
jimxjediepi2
j2=xjedepi2/2d0
x1=gin(j2)/j2
xi=x1sx1%d/4d0
x2%040
if(uniform.eq.1) then
do 10 i=1 k-1
xi=i
x2mx2+(140~xi/xk)scos{xi*j1/(xk-1d0))
continue
hh=x1#(1d0+2d0¢x2)
elseif (mniform.eq.0.and.apertures.eq.3) then
do 20 i=1,3
xi=i
x2=x2+cos(xi*j1/3d40)
continue
hh=x1e(1d0+2d0*x2/34d0)
elseif(uniform.eq.0.and.apertures.eq.4) then
do 30 i=1,6
xis=i
x2=x2+cos(xi*j1/640)
continue
hh=x1e(1d0+x2/220)
elseif(uniform.eq.0.and.apertures.eq.5) then
do 40 iwg,11
if(i.eq.10) goto 40
xi=i
x2mx2+cos(xi*j1/1140)
continue
hhwx1e(140+2d0+x2/5d0)
elseif(uniform.eq.0,.and.apertures.eq.6) then
do 50 i={,17
if(i.eq.14.0r.i.eq.15) goto 50
xi=i
x2=x2+cos(xi*j1/17d0)
continue
hh=x1e¢(1d0+x2/340)
endit
endit
return
end

- 222 -

128
129
130
131
132
133
134
135
136
137
138
139
140
i41
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

(1]

10

50

subroutine spectramkr(err,m,retil,f)
real*s err(m,m),retil(128),£(128),xii,xi,pi2,sum(128)
integer p
pi2=6,283185307
do 10 i=i,m
sum(i)=0.0
continue
do 20 i=1i,m
do 30 iixi,m
p=abs(i-ii)+1
sum(p)=sum(p)+err(i,ii)
continue
continue
do 50 i=1,128
xi=real(i)/256
retil(i)=0
do 60 ii=l ,m
xii=ii-1
retil(i)=retil(i)+sum(ii)ecos(pi2exiisxi)
continue
continue
do 80 i=1,128
£(i)=real(i)/64
retil(i)=retil(i)/dble(m)
continue
return
end

OO WNM

o0 000

program snrmkr2.f

real+4 sum,snr(128),£1(128),1g10,s1lice(32),count(32)
reals8 £(128),e(128)

1gi0=log(1el)
do 5 j=1,180
do 5 j=1,8
do 5 j=1,32
call readfl(’minvar2n1024’,n,’d’,f,’d’,e,j,1,128)
call readfl{(’newmtfd005s6’,n,’d’,f,’d?,e¢,j,1,128)
call readfl(’s5d005u0a6832°,n,’d? ,f,?d?,e,j,1,128)
call readf1(’s4d005utaiis32?,n,’d’,f,’d?,e,j,1,128)
call readf1(’s6d005ula6s8’,n,’d’,£,’d?,e,j,1,128)
sun=0
do 10 i=1,128
sum=guarte (i)
snr(i)=10+log(real(i)/sum)/1g10
£1(i)=real(i)/64
continue
call plotfl(’snrminvarn1024’,128,’¢’ 21,71’ snr)
call plotfl(’snrnwmtfd00Ss6’,128,°¢7,£1,°2’,snr)
call plotfl(’snrs5d005u0a6?,128,7£7,71,7£?,snr)
call plotfl1(’snrs4d0OSuiaii’,128,°f?,f1,’2?,snr)
slice(j)=snr(64)
slice(j)=snr(52)
slice(j)=snx(49)
count(j)=j
continue
call plotf1(’slcs5d005u0a6?,32,7f? ,count,’f?,slice)
call plotfl(’slcs4d005uia11?,32,¢? ,count,’t’,slice)
call plotfl(’slca6d005ula6?,8,’%? count,’f? ,slice)
stop
end

1
2
3
4
5
6
7
8
9

o 0606o06a0

(]

530
520

;]

610

program lsqmkr2.f

parameter (mm=128)

reals8 bw(1150,mm),£(128) ,v (mm,mm) ,w (mm)
realss g(mm,mm),retil(12e’,d

integers4{ i,m,mb,n

integer*4 max,uniform,apertures
character dfile*16

n=1024
n=512
print =, ’Bumber of pixels in image line?’
read ¢, n
print =, ’snr??
read ¢, snr
print =, *d/D??
read =, d
print &, ’uniformity?(yes=1,nox0)’
read », uniform
print *, ’‘number of apertures?’
read *, apertures
print =, ’Largest support??
Tead *, max
print », ’Destination File??
read o, dfile
do 5§ i=1,max
n=2ei
nb=n
call bwmkr(bv,n,m,d,unifors,apertures)
call svdemp(be,n,m,w,v)
call gmkr(w,v,m,g)
call spectramkr(g,m,retil,?,snr,md)
call plotfi(dfile,128,’d?,f,7d’,retil)
continue
stop
end

subroutine bwmkr(bw,n,m,d,uniform,apertures)

realss buw(n,m),hh,d

integer n,m,uniform,apertures

do 520 i=i,n

do 530 iim=l,m
be(i,ii)=hh({m-n)/2-ii+i,d,uniform,apertures)
continue

continue

Yetura

end

subroutine gukr(w,v,m,g)
reales g(m,n) ,v(n),v(m,n)

do 600 i=i,m

do 610 ii=i,m
g(i,it)mv(i,ii)/w(ii)
continue

continue

Teturn
end

10

40

20

10

subroutine spectramkr(err,m,retil,f, snr,mb)
reals8 err(m,m),retil(128),£(128),xii,xi,pi2,sum(128)
integer p
pi2=8d0satan(1d0)
do 10 i=1,m

sum(i)=0d0
continue
do 20 i=1,m

do 30 ii=i,m

prabs(i-ii)+1

do 40 iii=i ,m

continue

continue
continue
print », sua(1)
do 50 i=1,128

xi=real (i) /256

retil(i)=o0

do 60 ii=i,m

xii=iji-1

retil(i)=retil(i)+sum(ii)ecos(pi2exiisxi)
continue
continue
do 80 i=1,128

f£(i)=real(i)/128
retil(i)=retil(i)/(snremd)
continue
return
end

function hh(j,d,uniform,apertures)
reals8 hh,d,pi,d1,j1,32,x3,2x2,xj,xk,xi
integer j,k,l,uniform,apertures

ksapertures
xksk
i£(j.eq.0)then
hhwxked/2d0
else
pi=4doesatan(1d0)
d1=140-d
xj*j
jimxjedispi
jamxjedepi/240
x1=sin(j2)/j2
x1=x1sx1d/2d40
x2=040
if(uniform.eq.1) then
do 10 i={ k-1
xi=i
x23x2+(130-xi/xk) scos(xi*j1/(xk-1d0))
continue
hh=xe(1d0+2d00x2)
elseif(uniform.eq.0.and,apertures.eq.3) then
do 20 i=3,3
xi=i
x2=x2+cos(xi*j1/340)
continue
hhex10(1d042d00x2/340)
elseif(uniform.eq.0.and .apertures.eq.4) then
do 30 i=1,6
xi=i
x2=x2+cos(xis*j1/640)
comtinue
hh=x1s(1d0+x2/240)

- 226 -

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
1583
154
155
156

50

OO0 600000000

11

12

13

14
15

elseif(uniform.eq.0.and.apertures.eq.5) then
do 40 i=1,11
if(i.eq.10) goto 40
xi=i
x2=x2+cos(xi*j1/1140)
continue
hh=x1+(1d0+2d0*x2/5d0)
elseif(uniform.eq.0.and.apertures.eq.6) then
do 50 i=1,17
if(i.eq.14.0r.i.eq.15) goto 50
xi=j
x2=x2+cos(xisj1/1740)
continue
hh>x1#(1d0+x2/340)
endif
endif
return
ond

This routine generates the SVD decomposition of an
mxn matrix A = UWVtranspose, where U is mxm, and V
and ¥ are nm., U is column orthogonal, V is row and
column orthogonal, and W is diagonal. U is returned
in the array a.

subroutine svdcmp(a,m,n,v,v)

implicit realss (a-h,o-z)

parameter (nmax=128)

dimension a(m,n),w(n),v(n,n),rvi(;max)

g=0d0
scale»0d0
anorm»0d0
do 2§ imi,n
1=i+g
zvi(i)msscalesg
g=0d0
s=0d0
scale»0d0
if (i.le.m) then
do 11 k=i,m
scalesscale+ads{a(k,i))
continue
if (scale.ne.0d0) then
do 12 k»i,m
a(k,i)=a(k,i)/scale
ses+a(k,i)sa(k,i)
continue
t=a(i,1)
g=-sign(sqrt(s) 1)
hetfeg-s
a(i,i)=t-g
if (i.me.n) then
do 18 j=1,n
8=040
do 13 kwi,m
s=s+a(k,i)sa(k,j)
continue
fes/h
do 14 k=i,m
a(k, jd)=a(k,j)+f+a(k,i)
continue

continue
endif

207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
" 227
228

16

17

18

19

21

22
23

24

25

26

27

3

do 16 k= i,m
alk,i)=scalesa(k,i)
continue
endif
endif
w(i)=scale g
g=040
s=0d0
scale=0d0
if ((i.le.m).and.(i.ne.n)) then
do 17 kx1,n
scale=scale+abs(a(i,k))
continue
if (scale.ne.0d0) then
do 18 k=1,n
ali,k)=a(i, k)/scale
s=g+a(i,k)»a(i, k)
continue
£=a(i,1)
g=-sign(sqrt(s) 1)
hufeg-s
a(i,1)=f-g
do 19 k=1,n
rvi(k)=a(i,x)/h
continue
it (i.ne.m) then
do 23 j*1l,m
s=0d0
do 21 k=1,n
s=s+a(j X)sa(i, k)
continue
do 22 k=1,n
a(j,x)=a(j, x)+ssrvi(k)
continue
continue
endit
do 24 k=l,n
a(i,k)=scale*a(i,X)
continue
endif
endif
anormwmax (anorm, (abs(w(i))+abs(xv1(i))))
continue
do 32 i=n,1,-1
if (1.1t.n) then
if (g.ne.0d0) then
do 26 j=1,n
v(j,i)=(ali,j)/ali, 1)) /g
continne
do 29 j=l,n
8040
do 27 k=1,n
s=s+a(i,X)ev(k,]j)
continue
do 28 x=1,n
v(k,j)mv(k,j)+sev(k,i)
continue
continue
endif
do 31 j*l,n
v(i,j)=0d0
v(j,1)=0d0
continue
endif
v(i,i)=1d0
g=rvi(i)
=i
continue

273 do 39 i=n,1,-1

® 274 1=
275 g=v(i)
276 if (i.1t.n) then
277 do 33 j=1,n
278 ali,§)=0d0
279 33 continue
280 endif
281 if (g.ne.0d0) then

([282 g=140/g
283 if (i.ne.n) then
284 do 36 j=1,n
285 32040
286 do M4 k=1,m
287 s=g+a(k,i)sa(k,j)
288 34 continue
289 f=(s/a(i,i))*g

® 290 do 35 k=i,m
291 a(k,j)=a(k, j)+fsa(k,i)
292 35 continue
293 36 continue
294 endif
295 do 37 j=i,m
296 a(j,i)=a(j,i)eg

' . 297 37 continue

. 298 else

| 299 do 38 j= i,m

| 300 a(j,i)=0d0

‘ 301 38 continue

‘ 302 endif

| 303 a(i,i)=a(i,i)+1d0

| 304 39 continue
3085 do 49 k¥n,1,-1

L] 306 do 48 its=1,30
307 do 41 1=k,1,-1
308 nm=l~1
309 if ((abs(rvi(1))+anorm).eq.anorm) go to 2
310 iz ((abs(u(nm))+anorm) .eq.anorm) go to 1
311 41 continue
312 1 ¢=0d0
313 s=1d0

® 314 do 43 i=1,k
316 fngervi (i)
316 it ((abs(f£)+anorm) .ne.anorm) then
317 g=w(i)
318 h=sqre(fef+geg)
319 w(i)=h
320 h=*1d0/h
321 c= (gsh)

¢ 322 s=-(f*h)
323 do 42 j=i,m
324 y=a(j,nm)
325 z=a(j,1)
326 a(j,nm)=(ysc)+(z¢s)
327 a(j,i)=-(y*s)+(z¢c)
328 42 continue
329 endif

] 330 43 continue
a3 2 zsw(k)
332 if (1.eq.X) then
333 if (z.1t.0d0) then
334 w(k)=-2
335 do 44 j=1,n
336 v(j,K)=-v(j,X)
337 44 continue

[) 338 endif
339 go to 3
340 endif

- 229 -

341 if (its.eq.30) pause ’no convergence in 30 iterations’
342 x=u(1)

343 nm=k-1

344 y=v(nm)

345 g=rvi(nm)

346 h=rvi(k)

347 f=((y-z)*(y+z)+(g-h)#(g+h))/ (2d0+hey)
348 g=sqrt (fe£+1d0)

349 £x((x-z) ¢ (x+z)+h+ ((y/(£+sign(g,£)))~h))/x
350 c=1d40

351 s*1d0

352 do 47 j=1,nm

363 injee

354 g=rvi(i)

358 y=u(i)

356 h=ssg

357 g=ceg

358 zmgqrt(fef+heh)

359 rvi(j)=z

360 c=f/z

361 s=h/z

362 = (xec)+(ges)

363 g=-(x+s)+(gec)

364 h=yes

365 yrysc

366 do 45 na=i,n

367 x=v(nm,j)

368 zuy(nm,i)

369 vinm,j)= (xec)+(zes)
370 v(nm,i)=-(xeg)+{zec)
371 45 continue

arz zugqre(fef+heh)

ar3 w(§=z

374 if (2.ne.0d0) then
k)£ z=1d0/z

376 culez

kigd suhez

ars endif

are = (cog)+(sry)

380 xz-(sog)+(cey)

381 do 46 nm~i ,m

3s2 y=a(nm,3)

3s3 z=a(nm,i)

384 a(nm,j)= (ysc)+(zes)
ass a(nm,i)=-(yes)+(zec)
388 46 continue

387 47 continue

388 rv1(1)=040

389 rvi(k)=t

390 w(k)=x

391 48 continue

392 3 coktinue

393 49 continue

394 return

395 end

~230 -

WO,k W=

o0 a0 o0

programx snimkr3.f

Teale4 sum,snr(128),£1(128),1g10,s1ice(50),count(50)
reals8 £(128),e(128)

1g10=log(lel)
do § j=1,16
do § j=1,32
do 5 j=1,40
call readfl(’s7d005ulai2s32’,n,’d’,f,’d’,e,j,1,128)
call readfl(’s7d005uiai2n=w’,n,’d’,f,’d’,e,j,1,128)
call readfl(’s7d00Suial8s40’,n,’d’,f,’d’,e,j,1,128)
call readfl(’test.lsq’,n,’d’,f,’d’,e,j,1,128)
call readfl(’grdtstae’,n,’d’,f,’d’,e,j,1,128)
sum=0
do 10 i=1,128
sum=sum+e (i)
snr(i)=10¢log(real(i)/sum)/1g10
£1(i)=real(i)/128
continue
call plotfl(’snrs7d005ula12?,128,’£7,f1,°f’,snx)
call plotfl(’snr7005n112n=n’,128,’f’,fi,’f’,snr)
call plotfl(’snrs7d005u1a18’,128,7f’,f1,°f?,snr)
call plotfl(’snrtest.lsq’,128,7f?,£1,7f) snr)
call plotfl(’snrgrdtstae',128,’f’,£1,’f’,snr)
slice(j)=snx(128)
count (j)=j
continue
call plotfl(’slcs?dOOSnln!?’,32,’f’,count,’f’,slico)
call plotfl('31c7005n112n=n’,32,’f’,count,’f’,slico)
call plotfl(’slcs?dOOSutnia’,40,’f’,connt,’f’,slice)
call plot!l(’slcntest.lsq’,16,’1’,connt.’t’,slicc)
call pietfl(’slcgrdtstae’,8,’f’ count,’f’,slice)
stop
ond

- 231 -

APPENDIX D for Chapter 6

In this appendix we describe the gradient projection algorithm®® as it was used by us to im-
plement the positivity constraint on the object estimate obtained by unweighted least-squares. We
begin with a statement of the problem. Given the observation

y=Gx+n, (D1)
chose X to minimize
A2
¢ = lly - G&IF, (D2)
with the constraining
£>0. (D3)

We begin by computing the gradient of € of Eq. (D1) with respect to the object estimate X(n) at
the n'® iteration:

Ve(n) = GTGx(n) - GTy. (D4)

The search for a solution proceeds along the negative gradient direction unless that direction would
violate the constraint. Consider the following iteration equation:

X(n +1) = X(n) — aVe(n), (D5)

with
a>0. (D6)

If o is chosen so that the above difference equation is stable, then it would converge to the uncon-
strained solution

x=(GTG)'GTy, (D7)
which is the well-known solution to the unconstrained least-squares problem. Now consider how we
might modify our algorithm in order to satisfy the positivity constraint. Assume for the moment
that all components of X(n) are nonegative. If any component of the gradient is negative, then the
corresponding component of ¥(n + 1) will move away from the constraint boundary and there is no
problem. If any component of the gradient. is strictly positive, and the corresponding component of
X(n) is strictly positive, then an appropriate upper bound must be placed on « so that the constraint
boundary is not crossed (that component of X(n+ 1) does not go negative). For the i*h component,
that bound is obviously (X(n));/(Ve(n));. If any component of the gradient is positive, and the
corresponding component of X(n) is zero, then that component of the gradient must be set equal to
zero. We are now in a position to define the algorithm. Let A(n) be the set of all indices of X(n)
which correspond to zero components. The value of the object estimate at iteration n + 1 is

%(n +1) = X(n) + a(n)s(n), (D8)
where the i*" component of s(n) is given by

(= { 0 G o) ol (9 >0 .

We pick the step size a(n) as follows,
a(n) = min [oy(n), a2(n)], (D10)
where

s7(n)s(n)

ay(n) = TRICCTST(n)’ (D11)

-232 -

and

az(n) = 21'11;‘:) [a,- = %(%)%;,i € A(n)and (Ve(n)); > 0] . (D12)
As previously discussed, aa(n) assures that no constraint boundary is crossed. However, the step
size may still be too large, or the set of o; on Eq. (D12) may be empty. We need an additional
bound on step size. A reasonable maximum step size (and the one used in the unconstrained stecpest
descent algorithm) is one in which s(n + 1) is orthogonal to s(n). It can be shown that aq(n) is that
step size.

It remains only to choose an initial estimate X(0). We chose the unconstrained solution given
by Eq. (D7) with all negative components set equal to zero.

-233 -

APPENDIX E for Chapter 6

In this appendix we describe the CLEAN? algorithm as it was implemented by us to obtain the
results of Section 6.5. Let y be the observation vector given by

y=Gx+n. (E1)

The columns of G are the system point-spread-function shifted and truncated, x is the object vector,
and n is observation noise. Let g; be the it column of G. In the noiseless case, we can write y as
a linear combination of the g; as follows:

y= Zzigia (E2)

where z; is the i*" component of the object vector x. Given y and the g;, CLEAN attempts to
iteratively determine the z;.
Let y(n) be the n'* vector of a sequence of vectors where

y(0) =y, (E3)

and let y;(n) be the ith component of y(n). Let X(n) be our estimate of x after n iterations, with
components Z;(n), with
z;(0)=0. (E4)

Finally, let the integer k, be the index of the maximum component of y(n) over the region of
support of x, so that yx,(n) is the maximum value. Then the following set of iteration equations
define CLEAN:

y(n+1) =y(n) - a(n)gr,, (ES)
sern={5000 i3t

where a(n) is given by
a(n) = e%rln(:x'l—)-. (ET)

The notation gmax denotes the peak value of g;, which (presumably) is independent of i. ¢ is a gain
parameter—necessarily less than unit, and with a value of 0.4-0.5 in our work. At each iteration,

we also compute
&(n) =[ly(n) |- (E8)

If £(n 4+ 1) > &(n) than the iteration is terminated and X(n) is used as the object vector estimate.

-234 -

APPENDIX F for Chapter 6

Computer Program Listings

This appendix contains the Fortran source code of the computer programs used to generate the
data for this chapter.

i ¢

2 ¢

3 ¢ program grdsrch6.f

4 ¢

5 ¢

6 parameter (nn=638,m=128)

7 reals8 bw(nn,mm) ,h(mm,nr),retilu(128),£(128) ,x(mm) ,no(nn)
8 reals8 v(mm,mm),w(mm),erru(mm,mm),retilc(128),errc(mm,mm)
9 real*s8 u(nn,mm)

10 real®8 y(nn),gg(mm,mm),d

11 integer*4 random,catr,ni,nj,nt,m,ub,n,nneg,cntr2
12 integer¢4 uniform,apertures

13 character dfiles16

14 ¢

15 n=512

16 print *, 'nt??

17 read *, nt

18 print *, ni??

19 read *, ni

20 print =, nj?’

21 read *, nj

22 print =, 'mb??

23 read *, md

24 c print *, 'm??

25 ¢ read *, m

26 print =, ‘gnr?’

FXg read ¢, snr

28 print s, 4/D7?

29 read v, d

30 print ¢, ’Uniformity? (yes=1 and no=0)’
K} read *, uniform

32 print ¢, ’Number of apertures?’

33 xead *, apertures

34 print ¢, ’Destination File?’

3s read ¢, dfile

36 do 5 w*mb,76,6

ar call srandom(29)

as call bwmkr(bw,u,n,m,d,uniform,apertures)
39 call ggmkr{bw,n,m,gg)

40 call svdamkr(u,n,m,w,v)

41 call hmkz(h,u,w,v,m,n)

42 do 103 j=1,mm

43 do 101 jj=1,mm

4“4 exrru(j,jj)=o

45 errc(j,jjI=o

46 101 continue

47 103 continue

48 catr=0

49 catr2=0

§0 print s, ’gradsrch trials’

51 do 105 ivsi nt

52 ¢ print ¢,iv

53 if (float(iv)/10.0-int(float(iv)/10.0) .1t. 1e-10) then
54 print s, iv

55 endif

56 call randm(x,no,m,n,snr,bw,y,mb)

57 call grdsrch{x,h,no,erxru,n,n,nt,errc,y,bv,gg,ni,nj,cntr,
58 . nneg)

59 if(nneg.eq.0) then

60 entr2scntr2+l

-235 -

128

105

a

530
520

[}

10

20

40

endif

continue

print *, real(cntr)sreal(nj)/real(nt}, cntr2

call spectramkr(erru,m,retilu,f,snr,mb)

call spectramkr(errc,m,retilc,f,snr,mb)

call plotfi(dfile,128,°d’,f,’d’,retilu)

call plotfl(dfile,128,'d’,f,7d’,retilc)
continune

stop

end

subroutine bumkr(be,u,n,m,d,uniform,apertures)

reals8 bu(n,m),u(n,m),hh,d

integer n,m,uniform,apertures

do 520 i=1,n

do 530 ii=i,m
bu(i,ii)=hh((m~-n)/2-ii+i,d,uniform,apertures)
u(i,ii)=bw(i,ii)

continue

continue

return

end

function hh(j,d,uniform,apertures)
real*8 hh,d,pi,d1,j1,j2,x1,x2,xj,xk,xi
integer j,k,1,uniform,apertures

kxapertures
xk=k
if(j.eq.0)then
hhxxksd/240
else
pi=4d0+atan(1d0)
d1=1d0-d
xj=j
ji=xjediepi
j2=xjedspi/2do
x1=gin(j2)/j2
x1=x1sx1+d/2d0
x220d0
if(uniform.eq.1) then
do 10 i=1,k-1
xi=i
x28x2+(1d0~xi/xk) scos(xisj1/(xk=-1230))
continue
hh=x1+(1d0+2d0*x2)
elseif (uniform.eq.0.and.apertures.eq.3) then
do 20 i=1,3
xi=i
x2=x2+cos(xisj1/340)
continue
hh=x1»(1d0+2d0+x2/3d0)
elseif (uniform.eq.0.and.apertures.eq.4) then
do 30 i=1,6
xi=ji
x2=x2+cos(xi*j1/640)
continue
hh=x1*(1d0+x2/2d0)
elseif(uniform.eq.0.and.apertures.eq.5) then
do 40 i=1,11
if(i.eq.10) goto 40
xi=i
x2=x2+cos(xirj1/1140)
continue

- 236 -

129
130
131
132
133
134
13§
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162

164
165
166
167
168
169
170
171
172
173
174
178
176
177
178
179
180
181
182

184
185

187
188
189

191
192
193
194
195
1968

50

(4]

20
10

[41]

620
610
600

o0

OO0 06aon

10

hhx=x1e(1d0+2d0¢x2/540)

elseif (uniform.eq.0.and.apertures.eq.6) then

do 50 i=1,17
if(i.eq.14.0r.i.eq.15) goto 50
xixi
x2=x2+cos(xi*j1/17d0)

continue

hh=x1+(1d0+x2/340)

endif
endif
return

end

subroutine hmkr(h,u,v,v,m,n)

reals8 u(n,m),v(m),v(m,m) ,h(m,n)
integer m,n

do 10 i=i m
do 20 j=i,n
h(i,j)=0d0
do 30 k={ ,m
h(i,3)=h(i,j)+(1/a(K))*ev (i, K)su(j, k)
continue
continue
continue
return
end

subroutine ggmkr(bw,n,m,gg)

real*8 bw(n,m),gg(m,m)
do 600 i=1i,m
do 610 ii=i,m
ggli,ii)=0
do 620 iii=i,n

continue
continue
continue
return
end

subroutine randm(x,no,m,n,snr,bv,y,mdb)

Generates random vectors x, no, and y=BWx+no. x has mb
independent Rayleigh components with variance snr and m-mb
Zero components. no has n independent, zero mean, Gaussian
components vith unit variance.

reals8 ui,u2,ul,s
reale8 x(m),no(n),bw(n,m),y(n)
integers4 MAXINTV,random
parameter (MAXTNTV=2147483647)
n2=n/2
do 10 i={,m

x(i)=0d0

continue

do 500 i=i,n2
uisreal(random())/MAXINTV
if(ui.gt.1.0r.ul.eq.0)goto 3
u2=real (random()) /MAXINTV

- 237 -

197
198
199

201
202
203
204
206
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262

264

$00

§0S

520

§10

(4]

710

100

705

------------ Gradient Projection Algorithm

if(u2.gt.1.0r.u2.eq.0)goto 2
no(2+i-1)=sqrt(-2¢log(ul))*cos (6.2831853+u2)
no(2+i)=sqrt (-2¢log(ul))*sin(6.2831853+u2)
continue
s=snr/2
do 505 i=1,mdb
u3=real (random())/MAXINTV
if(u3.gt.1.0r.u3.eq.0)goto 4
x(i+(m-mb) /2)=sqrt (-2+1log(u3))«sqrt(s)
continue
do 510 i=1,n
y(i)=0
do 520 ii=1i,m
y(i)=y(i)+bw(i,ii)»x(ii)
continue
y(i)=y(i)+no (i)
continue
return
end

subroutine grdsrch(x,h,ne,erru,n,m,nt,errc,y,bw,gg,
ni,nj,cntr,nneg)

include ’fpedefs.f’

parameter (mm=128)

real*8 x(m),no(n),erru(m,m),h(m,n),eu(mm),zz,msq,msqold

real*8 errc(m,m),gg(m,m),grad(mm),dnsq,s(mm)

reals8 y(n),bv(n,m),z(mm) ,xg(mm)

real+*8 alpha,beta,ss,sggs,teml,tem2

integer cntr,nneg,list(mm),ni,nj,m,n,nt

nneg=0

msg=0

-------- Compute unconstrained solution and BNy ------m-=-ee--

do 700 i=i,m

xg(i)=0

z(i)=0

do 710 ii=i,n
xg(i)=xg(i)+h(i,ii)ey(ii)
z(i)=z(i)+bw(ii,i)»y(ii)
continue

eu(i)=xg(i)-x(i)

if(xg(i) .1t.0) then
nneg*nneg+l

endif

continue

if(nneg.eq.0) goto 200

------ Disable overflow and divide-by-zero ---
floating point exceptions.

nabls=fpgetxnabls()
nevabls=and(nabls,not(DIVO))
newabls=and(newabls,not (OFLOW))
call fpsetrnabls(newabls)
msqold=msq

cntr=cntr+i

do 770 iv=i nj

alpha=1,797d+308

s3=040

sggs=0d0

------- Find active constraints and generate list --------

do 705 i=i ,m
list(i)=0
if(xg(i) .1¢.0d40) then
xg(i)=0d0
list(i)=1
endif
continue

- 238 -

268 ¢ @ ----———- Compute gradient and correction vector § --~------

266 c and pick step size alpha

267 do 712 ixi)m

268 grad(i)=040

269 do 713 ii=1,m

270 grad(i)=grad(i)+gg(i,ii)sxg(ii)

271 713 continue

272 grad(i)=grad(i)-z(i)

273 ¢ ~-== Project gradient onto active, ——=-
274 c nonobstructing constraints.
275 if(Qist(i).eq.1.and.grad(i).gt.0d0) then
276 s(i)=0d0

277 else

2718 s(i)=-grad(i)

279 endif

280 ¢ eee-- Determine step size alpha: = = ~emmmoosemosee
281 ¢ Determine minimum step size for next constraint,
282 ¢ Determine step size for minimum along direction S,
283 ¢ =e===- Pick smaller of the two

284 if(Llist(i).ne.1) then

285 betaxxg(i)/grad(i)

286 if(beta.gt.0d0.and.beta.1t.alpha) then
287 alphaxbeta

288 endif

289 endif

290 712 continue

291 do 714 i=1,m

292 ss=ss+s(i)es(i)

283 do 716 j=1,m

294 sgge=sgge+s (i) *gg (i, j)*s(j)

295 716 continue

296 714 continue

297 if(ss.eq.0d0) goto 300

298 beta=ss/sggs

299 if(beta.gt.0d0.and. . beta.lt.alpha) then
300 alpha=beta

301 ¢ =~crmmesemse- compute new gradient and test for orthogonality -==-w=-=---
302 ¢ with the S direction.

303 ¢ z2=0d0

304 ¢ do 900 i=1i,m

305 ¢ grad(i)=0d0

306 c do 901 ii=i,m

307 ¢ grad(i)=grad(i)+gg(i,ii)»(xg(ii)+alphass(ii))
308 ¢901 continue

309 ¢ grad(i)=grad(i)-z(i)

310 ¢ zz=zz+grad(i)*s(i)

311 ¢900 continue

312 ¢ print s, 'gTs =7, zz

313 ¢ =--=-=<=-~~- End of Test

314 endif

315 ¢ ————— we=== Compute new Solution ===---
316 do 740 ix=1,m

317 xg(i)=xg(i)+alphass(i)

318 740 continue

319 770 continue

320 ¢ Check |ly-Gxl| squared
321 nsq0

322 do 780 i=i,n

323 zz2»0

324 do 790 ii=i,m

328 zz=zz4bu(i,ii)*xg(ii)

326 790 continue

327 zz=y(i)-zz

328 nSqeMsq+zzezz

329 780 continune

330 ¢ print s, msq

331 dusqeabs ((nsqold-msq)*(10%4ni))

332 if (dmsq.gt.ie+9) goto 100

- 239 -

333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365

367
368
369
370
an
372
373
374
3715
376
37T
378
3719
380
381
382

384
385
386
387
388
389
390
391
392
393
394
395

397
398
399
400

730
720

;)

20

oo

ano00ono0nao0

if (int(dmsq).ne.0) goto 100

----- Enable Floating Point Exceptions ---
call fpsetxflags(0)

call fpsetxnabls(nabls)

--------- Accumulate Error Vector Outer Product and Return =~----

do 720 i=1,m
print =, xg(i), grad(i), s(i)
temix=xg(i)-x(i)
do 730 ii=i,m
tem2=xg(ii)-x(ii)
erru(i,ii)=erru(i,ii)+eu(i)seu(ii)/nt
errc(i,ii)=errc(i,ii)+temistem2/nt
continue
continue
print *, msq, nneg
return
«nd

subroutine spectramkr{err,m,retil,f,snr,mb)
reals8 err(m,m),retil(128),f(128),xii,xi,pi2,sum(128)
integer p
pi2=8d0*atan(140)
do 10 i=i,m
sum(i)=0d0
continue
do 20 i=1,m
do 30 ii=t,m
p=abs(i-iil+1
sun(p)=sum(p)+err(i,ii)
continue
continue
print ¢, sum(1)
do 50 i=1,128
xi=real(i)/256
retil(i)=0
do 60 ii=i m
xii=ii-1
retil(i)=retil(i)+sum(ii)+cos(piz2exiisxi)
continue
continue
do 80 i=1,128
£(i)=real(i)/128
retil(i)=retil(i)/(snr+mb)
continue
return
end

subroutine svdmkr(a,m,n,v,v)

This routine generates the SVD of an mxn matrix 4

where A = UW¥Vitranspose, with U mxn, and V and W are
nxn. U is column orthogonal, V is rov and column
orthogonal, and ¥ is diagonal. U is returned in the
array a. The diagonal of W is returned as the vector w.

implicit reals8 (a-h,o0-z)
parameter (nmax=128)
dimension a(m,n),w(n),v(n,n),xvi(nmax)

g=0d0
scalen0do
anora=0d0
do 25 i=1,n
1=i+1

401
402
403
404
405
406
407
408

410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433

435
436
437

439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463

465
466
467
468

11

12

13

14
15

16

17

18

19

21

22
23

24

rvi(i)=scalesg
£=0d0
=040

scale=0d0
if (i.le.m) then
do 11 k=i,m
scale=scale+abs(a(k,i))
continue
if (scale.ne.0d0) then
do 12 k=i,m
a(k,i)=a(k,i)/scale
s=s+alk,i)sa(k,i)
continue
f=a(i,i)
g=-sign(sqrt(s) ,f)
h=fsg-s
a(i,i)=f-g
if (i.ne.n) then
do 15 j=l,n
52040
do 13 k=i,m
s=s+a(k,i)*a(k,j)
continue
f=g/h
do 14 k=i,m
a(k,j)=alk,j)+f+alk,i)
continue
continue
endif
do 16 k= i,m
a(k,i)=scalesa(k,i)
continue
endif
endif
w(i)=scaie *g
g*0d0
s=0d0
scale=0d0
if ((i.le.m).and.(i.ne.n)) then
do 17 k=1,n
scale=scale+abs(a(i X))
continue
if (scale.ne.0d0) then
do 18 k=1,n
ali,x)=a(i,k)/scale
s=s+a(i, k) *a(i,k)
continue
f=a(i,l)
g=-sign(sqrt(s),f)
h=feg-s
a(i,l)=t-g
do 19 k=1,n
rvi(k)=a(i,k)/h
continue
if (i.ne.m) then
do 23 j*1,m
s=0d0
do 21 k»1,n
s=s+a(j,x)*a(i, k)
continue
do 22 k=1,n
a(j,x)=a(j k) +servi(k)
continue
continue
endif
do 24 k=1,n
a(i,k)=scale*a(i, k)
continue

-241 -

469
470
471
472
473
474
475
476
477
478
479
480
481
482
483

485
486
487
488
489

491
492
493
494
495
496
497
498
499

501
502
503
504
505
506
507
508
509
§10
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529

531
532
533
534
535
536

25

26

27

28
29

31

32

37

39

41

endif
endif

anorm=max (anorm, (abs (v (i))+abs(rv1(i))))

continue
do 32 i=n,1,-1
if (i.lt.n) then
if (g.ne.0d0) then
do 26 j=1,n
v(j,i)=(a(i,j)/a(i,1))/g
continue
do 29 j=1,n
s=0d0
do 27 k=1,n
s=s+a(i,k)sv(k,j)
continue
do 28 k=1,n
v(k,j)=v(k,j)+sev(k,i)
continue
continue
endif
do 31 j=1,n
v(i,j)=040
v(j,1i)=0d0
continue
endif
v(i,i)=1d0
g=rvi(i)
1=i
continue
do 39 i=n,1,-1
1=i+1
g=u(i)
if (i.1t.n) then
do 33 j=1,n
a(i,j)=0d0
continue
endif
if (g.ne.0d0) then
g=140/g
if (i.ne.n) then
do 36 j=l,n
5=0d0
do 34 k=1,m
s=s+a(k,i)va(k,j)
continue
t=(s/a(i,i))eg
do 35 k=i,m
a(k,j)=a(k,j)+fea(k,i)
continue
continue
endif
do 37 j=i,m
a(j,i)=a(j,i)*g
continue
else
do 38 j= i,m
a(j,1i)=0d0
continue
endif
a(i,i)=a(i,i)+1d0
continue
do 49 k=n,1,-1
do 48 its=1,30
do 41 1=k,1,-1
nm=l~-1
if ((abs(xrvi(1l))+anorm).eq.anorm)

go to 2

if ((abs(w(nm))+anorm).eq.anorm) go to 1

continue

-242 -

537

539
540
541
542
543
544
545
546
547
548
549
550
551
552
583
554
§55
556
§57
558
559
560

562
563
564
565
566
567
568
569
570
571
572
573
§74
5§75
576
577
578
579
580
581
582
583
584
585
586
587
588
589
5§90
591
5§92
593
594
595

597
598
599

601
602
603
604

1

42

43

44

45

c=0d0

s=1d0
do 43 i=]1 k
fxgervi (i)
if ((abs(f)+anorm).ne.anorm) then
g=u(i)
h=sqrt (fef4geg)
w(i)=h
h=1d0/h
c= (ge*h)
s=-(f*h)
do 42 j=1,m
y=a(j,nm)
z=a(j,i)
a(j,nm)=(yec)+(zes)
a(j,i)=-(yss)+(zec)
continue
endif
continue
z=u (k)
if (1.eq.k) then
if (2.1t.0d0) then
v(k)=-z
do 44 j=1,n
v(j,K)==v(j,K)
continue
endif
go to 3
endif
if (its.eq.30) pause ’no convergence in 30 iteratioms’
x=w(1)
nm=k-1
y=v(nm)
g=xvi(nm)
h=rvi(k)
1=((y-z)s(y+z)+(g-h) *(g+h))/ (2d0«h+y)
g=sqrt (£+£+1d0)
£=((x~z)*(x+z)+h* ((y/ (f+sign(g,£)))-h)) /x
c=1d0
s=1d0
do 47 j=1,nm
i=j+1
g=xvi(i)
y=u(i)
hxgeg
g=c*g
z=sqrt(f+f+heh)
Tvi(j)=z
c=f/z
sxh/z
£x (xec)+(ges)
g=~(x*s8)+(gec)
h=yss
yRy*c
do 45 nm=1l.,n
x=v(nm,j)
z=v(nm,i)
v(nm,j)= (xec)+(z+s)
v(nm,i)=-(xe8)+(z%c)
continue
z=sqrt (f*Lf+heh)
w(j)=z
it (z.ne.0d0) then
z=1d0/z
cxfsz
s=hez
endif
= (ceg)+(sey)

- 243 -

605

607
608
609
610
611
612
613
614
615
616
617
618
619
620

48

49

x=~(geg)+(cry)
do 46 nm=1i m
y=a(nm, j)
z=a(nm,i)
a(nm,j)= (y*c)+(z+s)
a(nm,i)=-(y*s)+(z*c)
continue
continue
rvi(1)=0d0
rvi(k)=f
w(k)=x
continue
continue
continue
return
ond

- 9244 -

1
2
3
4
5
6
7
8
9

0oo0n0aaon

o000

101
103

105

10

]

program cleand.f

parameter (nn=638 ,m=128)

reals8 bw(nn,mm),f(128),x(mm),no(nn)
real+8 retilc(128),errc (wm,mm)
reals8 y(nn),d,eps,psf(2¢nn)
integers4 random,cntr,nt,m,mb,n
integer*4 uniform,apertures,flag
character dfiles16

n=512
print *, 'nt??
read », nt
print =, Jeps?’
read ¢, eps
print », ’'md??
read *, md
print s, ‘'m?’
read *, m
print ¢, ‘snr??
read *, snr
print s, ’Add noise? (yes=1 and no=0)’
read *, flag
print =, ’d/D7?
read », d
print =, ‘Uniformity? (yes=1 and no=0)’
read *, uniform
print &, Number of apertures??
read *, apertures
print *, 'Destination File??
read , dfile
do 10 i=1,23
i£(i.1t.21) then
n=2ei
else
n=(3-16)+10
endit
nbem
nem
¢all srandom(29)
call bwmkr(bw,psf,n,m,d,uniform,apertures)
do 103 j=i,mm
do 101 jj=1,mm
errc(j,jj)=o
continue
continune
entr=0
print ¢, clean trials’
do 105 ivsi,nt
print = iv
it (float(iv)/10.0-int(float(iv)/10.0) .1lt. 1¢~10) then
print =, iv
endif
call randm(x,no,m,n,sar,bw,y,mb,flag)
call clean(x,n,m,nt,eps,errc,y,cntr,d,apertures,pst)
continue
print », real(catr)/real(nt)
call spectramkr{errc,m,retilc,f,sar,mdb)
call plotfl(dfile,128,7d?,2,°d?,retilc)
continue
stop
end

- 245 -

500

530
520

0

20

subroutine bwmkr(bw,psf,n,m,d,uniform,apertures)
reals8 bw(n,m),psf(2en),hh,d
integer k,n,m,uniform,apertures
do 500 i=1,2¢n
psf(i)=hh(i-n,d,uniform,apertures)
continue
do 520 i=1i,n

do 530 iix1,m

k=(m-n)/2-ii+i+n

bw(i,ii)=psf(k)

continue
continue
return
end

function hh(j,d,uniform,apertures)
reals8 hh,d,pi,d1,j1,j2,x1,x2,xj,xk,xi
integer j,k,l,uniform,apertures

k=apertures
xk=k
i£(j.eq.0)then
hh=xk+d/24d0
else
pi=4dO«atan(1d0)
di=140-4
xj=j
ji=xjsdispi
j2=xjedepi/2d0
x1=sin(3j2)/j2
x1=x1ex1+d/240
x2=0d0
if(uniform.eq.1) then
do 10 i=1,k-1
xi=i
x2=x2+(1d0-xi/xk) *cos(xi*j1/(xk-1d0))
continue
hh=x1s(1d0+2d0*x2)
elseif(uniform.eq.0.and.apertures.eq.3) then
do 20 i=1,3
xi=i
x2=x2+cos(xi*j1/3d0)
continue
hhx=x1e(1d042d0*x2/3d0)
elseif(uniform.eq.0.and.apertures.eq.4) then
do 30 i=1,6
xi=i
x2=x2+cos(xi*j1/640)
continue
Rh=x1¢(140+x2/2d0)
elseif (uniform.eq.0.and.apertures.eq.5) then
do 40 i=1,11
if(i.eq.10) goto 40
xi=i
x2=x2+cos(xi*j1/1140)
continue
hh=x1#(1d0+2d0+x2/540)
elseif(uniform.eq.0,and.apertures.eq.6) then
do 50 i=1,17
if(i.eq.14.0r.i.0q.15) goto 50
ximi
22%x2+cos(xi*j1/1740)
continue
hh=x1+(1d0+x2/340)
endif
endif

137 return

138 end

139 ¢

140 ¢

141 ¢

142 subroutine randm(x,no,m,n,snr,bv,y,mb,flag)
143 ¢

144 ¢ Generates random vectors x, no, and y=BWx+no. x has mb
145 ¢ independent Rayleigh components with variance snr and m-mb
146 ¢ Zero components. no has n independent, zero meanr, Gaussian
147 ¢ components with unit variance.

148 ¢

149 real+*8 ui,u2,u3,s

150 realsg x(m),no(n),bw(n,m),y(n)

151 integer+«4 MAXINTV,random,flag

152 parameter (MAXINTV=2147483647)

183 n2=n/2

154 do 10 i=1,m

155 x(i)=040

156 10 continue

157 do 500 i=1,n2

158 3 ui=real (random())/MAXINTV

159 if(ul.gt.1.or.ul.eq.0)goto 3

160 2 u2=real (random()) /MAXINTV

161 if(u2.gt.1.0r.u2.eq.0)goto 2

162 no(2#i-1)=sqrt(-2+log(ni))*cos(6,.2831853+u2)
163 no(2¢i)=sqrt(-2slog(ul))*sin(6.2831853*u2)
164 500 continue

165 s=snr/2

166 do 505 i=1{,mb

167 4 u3=real(random())/MAXINTV

168 if(u3.gt.1.0r.u3.eq.0)goto 4

169 x(i+(m-mb)/2)*sqrt (-2¢log(ul))*sqrt(s)

170 SOS continue

171 do 510 i=1i,n

172 y(i)=0

173 do 520 ii=i,m

174 y(i)ny(i)+bw(i,ii)#x(ii)

175 520 continue

176 if(flag.eq.1) then

177 y(i)=y(i)4no(i)

178 endif

179 510 continue

180 return

181 end

182 ¢

183 ¢

184 ¢

185 subroutine clean(x,n,m,nt,eps,errc,y,cntx,d,apertures,ps?)
186 ¢

187 parameter (mm=128)

188 reals8 x(m),y(n),errc(m,m),xhat(am),alpha,xa,sunsq,ssold
189 reals8 tmp,hO,eps,psf(2en),d

190 integer*4 cntr,n,m,k,nt,ipertures

191 ¢

192 sumsq=1d37

193 xa=apertures

194 hO=xasd/240

195 do 10 i=1,mm

196 xhat (i)=040

197 10 continue

198 100 ssold=sumsq

199 cntr=cntr+l

200 tup=y((n-m)/2+1)

201 x=((n-n)/2+1)

202 do 20 i=(n-m)/2+2,(n+m)/2

203 i2(y(i).gt.txp) then

204 tmp=y (1)

- 247 -

205

207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
289
260

20

40

4]

10

20

k=i
endif
continue
alphazeps*tmp/hO
do 30 i=i,n

y(i)=y(i)-alpha*psf(i-k+n)

continue

xhat (k~(n-m)/2)=xhat (k~(n-m)/2) +alpha

sumsq=0d40

do 40 i=i,n
sumsq=sumsq+y(i)*y (i)

continue

if (sumsq.1lt.ssold) goto 1

print =, ssold, sumsq

====w~==== jAccumulate Error Vector Outer Product and Return

do 50 i=i,m

temi=x(i)-xhat(i)

do 60 ii=i,m
tem2=x(ii)-xhat(ii)

errc(i,ii)=exrc(i,ii)+temistem2/nt

continue
continue
return
end

subroutine spectramkr(err,m,retil,f,snr,mb)
reals8 err(m,m),revil(128),£(128),xii, xi,pi2,sum(128)

integer p
pi2=8d0+atan(1d0)
do 10 ixi,m
sun(i)=0d0
continue
do 20 i=1 ,m
do 30 ii=1,m
prabs(i-ii)+1
sum(p)=sum(p)+err(i,ii)
continue
continue
print *, sum(1)
do 50 i=1,128
xi=real(i)/256
retil(i)=0
do 60 ii=i,m
xii=ii-1

retil(i)=retil (i)+sum(ii)scos(pi2exiiexi)

continue
continue

do 80 i=1,128
£(i)=real(i)/128

00

retil(i)=retil(i)/(snremb)

continue
return
end

- 248 -

RN BWN-H

60000

10

o0

program snrmkr2.f

real#s4 sum,snr(128),£1(128),1g10,s1ice(50),count(50)
reals8 £(128),e(128)

1g10=1og(1e1)
do 5 j=1,16
do § j=1,32
do § j=1,40
call readfl(’s7d005ulal2s32?,n,’d’,f,%d?,e,j,1,128)
call roadfl(’s7d005n1a12n-’,n,’d’,f,’d’,e,j,1,128)
call !eadfl(’s7d005u1a16340’,n,’d’,f,’d’,e,j,1,128)
call readfl(’test.lsq’,n,’d?,f,’d’,e,j,1,128)
call readfl(’grdtstae’,n,’d’,f,’d’,e,j,1,128)
sum=0
do 10 ix1,128
sum=sum+te (i)
snx(i)=10slog(real(i)/sum)/1g10
f1(i)=real(i)/128
continue
call plotfl(’snrs7d005ula12’,128,°£?,£1, €’ ,snr)
call plotfl(’snx7005uli2n=m?,128,°£’,£1,°£7,snx)
call plotfl(’snrs7d0O5ula18’,128,°f?,£1,f?, snx)
call plotfl(’snrtest.lsq’,128,£?,£1,'f? snr)
call plotfl(’snrgrdtstae’,128,f?,£1,7f?,snx)
slice(j)=snr(128)
count(j)=j
continue
call plotfl(’slcs7d005utai2?,32,’f?,count,’f?,slice)
call plotf1(’s1c7005uli2n*m?,32,’f?,count,*f?,slice)
call plotfl(’slca7d005uia18?,40,’f? ,count,’f’,slice)
call plot£l{’slcstest.lsq?,16,’2?,count,’#?,slice)
call plottl(’slcgtdtstao’,a,’f’,count,’f’,slicc)
stop
end

- 249 ~

