AD-A228 771

THIE

TECHNICAL
COOPERATION
PROGRAM

REQUIREMENTS ENGINEERING
AND RAPID PROTOTYPING WORKSHOP

PROCEEDINGS

Sheraton Hotel and Conference Center
Eatontown, NJ

November 14-16, 1989 |

DISTRIBUTION STATEMENT & '
Approved for public releasey:
* Diarbution Unanited .. ELECTE
il * 0CT 17 1930

Hosted by

U.S. Army Communications- Electronics Command
Center for Software Engineering

Disclaimer

The citation of trade names and names of
manufacturers in this report is not to be construed
as official Government endorsement or approval of
commercial products or services referenced herein.

This page is intentionally left blank.

Ferm Aggroved
REPORT DOCUMENTATION PAGE OMS oa. 07960388
T4. REPORT SECURITY CLASSHCATION 1o, RESTRICTWE MARUNGS
UXCLASSIFIED ’
Za. SECURTY CLIISHICATION AUTHORT 3. DSTRBUTION / AVARABKITY OF REPORT
au ¥ Approved for Public EKelease
0. DECLASSF~ATIONI DT ~NGRADING SCHEDRKE Distribution Uniimited
& PERFORMANG CAGAKIATION REAORT NUMSERIS) S. MOMTONNG OAGAMZIATION REPOKT MNUSMSERS)
-0103400000100
65 MAME OF FERFORMING ORGANZATION 6. OFFICE SYMBOL | 7a. NAME OF MONMTORNG ORGAMIZATION
CECOM Center for Software O sowicabie)
See 6¢
6. ADDRESS (Cey, Scase., ang 2IP Coow) - - 7. ADORESS (Cty. Sia0e, ans 2P Code)
Commander, US Army MatiMlectm
Commend, ATIN: AMSEL-RD-SE-ASTI-SE
Fort Momnmouth, XJ 07703
82 NAME OF FUNOIKG /SPONSORNG 80. OFFICE SYMBOL | 5. PROCUBREMENT IS TRUMENT IDENTIHCATION MUMBER
T ORGANZATION Of appiicable)
ME
8 ADORESS (Grry, Sczate. anc 2P Cooe) 10. SOURCE OF FUNDING MUMBERS
PROGRAM PROECT - [TASK WORK UNTE
ELEPAENT §O. | NO. NO. ra:mn- NO.
11. TINLE (inciuoe Secunty Clasufication)
TICP 3 ts Enoineering and id Prototvning ¥ i
12. PERSONAL AUTHOALS) Barlan Black (Editor), Alan Davis, Raywond Yeh, Winston Royce,
1 ton
i3a. 7YPz OF RzPORT 13b. 74 COVERED 14. DATE OF RcPORT (Year, Montn, Day) |i5. PAGE COUNT
. r fachit Nov 89 1016 Nov 89 90-05-01 256
16. SUPPLEMENTARY IDTATION / A
, '\@_)
2. COSAT! CODES 18. SUIECT TERMS {Contnue On reverse 1f necessary and sdenuty Dy DIOCK aumber)
FIELD | GROUP | SUS-GROUP Software Requirements, System Requirements, ‘Software
12 0% : ~+ Methodology Requirements Engineering, Rapid Prototyping

1S. ABSTRACT (Contnue on reverse d block number)
On 14~16 November 1989, he U Center for Software Engineering hosted the TICP

Workshop on Requirements Engineer and Rapid Prototyping. This event wvas sponsored by

the Technical Cooperation Program (TIGR) The workshop’s forty-nine international
participants met to share current information on the field, to identify and clarify the most
pressing issues, and to provide recommendativns to DoD for management, development, and
research relating to Requirements Engineering. \'Ihe workshop provided a forum for thirteen
technical presentation. Participants divided into ‘thtee working groups for small-group
interaction. These preceedings docunent the preuntntions and findings of this

workshop and its working groups. | - ,
- N s

2G. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
Funcrassipiepmunuinited [same a5 reT O onic users 1 UNCLASSIFIED
22a. NAME OF RESPONSIELE INDIVIDUAL 22b. TELEPHONE (inciuce Area Code) | 22¢. OFFICE SYMBOL
HARLAN H. BLACK . _AHSEL—RD-SE-»AST-SE
DD Form 1473, JUN 86 Previous ecitions are opsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

This page is intentionally left blank.

v

FOREWORD

The TTCP Technical Panel on Software Engincering (XTP-2) is gratcful o the US. Army
Communicaticns-Electronics Cominand {CECOM), especially the Center for Software Engincering,
for providing the resources and dedicated efforts which made this Workshop possitie. It was quite
evident from the excitement of the participants, the dynamics that occurred. and the smoothness by
which the sessions proceeded that ex:ensive planning and preparation went into the efforts of hosting
the Workshop. In addition, the Panel extends its gratitude to the General Chairperson, the
Workshop Coordinator, Working Group Chairpersons, and all the participants who worked long and
Iate to make the outcome successful in every way. We are hopeful that the effort was as beneficial
for all the participants as it was for the Panel Members.

Fulfillment of the Workshop objectives (to survey, evaluate and promote the usc of requirements
engineering and rapid prototyping for improving the quality of requirements for mission-critical
defense systems) led to development of issues and recommendations, for the member TICP
Governments, in both management and technical areas. These are under review and in some areas
appropriate actions are already underway.

Recognizing the importance and the potential of achieving major improvements in requirements
engineering ard rapid prototyping, the participants strongly suggested a follow-up workshop within
the next few years. The TTCP Panel will closely monitor future developments in this area, and will

fully consider this suggestion.
@ @%

seph C. Batz
Chairman, TTCP XTP-2

Accession For

<

NTIS GRA&I -
DTIC TAB 4
Unannounced 0
Justification |
By.

Distribution/

Avallability Codes

Avail and/or
Dist Special

. ! }

This page is intentionally left blank.
l

vi

TTCP Workshop on Requirements Engineering and Rapid Prototyping
November 14 -16, 1989
Sheraton Eatontown Hotel and Conference Center

Route 35 and Industrial Way East
Eatontown, NJ 07724

Workshop Leaders

Mr. George Sumrall Workshop Chairperson

Mr. Harlan Black Workshop Coordinator

Dr. Alan M. Davis Working Group I Chairperson
"Requirements Development Process™

Dr. Raymond T. Yeh Working Group II Chairperson
"Requirements Engineering Methodology,
Languages, and Tools"

Dr. Winston W. Royce Working Group III Chairperson
"Rapid Prototyping and Knowledge Based
Techniques”

The Technical Cooperation Program
Technical Panel Number 2 on Software Engineering (XTP-2)

Mr. Joseph Batz, United States National Leader and Chairperson
Mr. Jean-Claude Labbe, Canadian National Leader

Mr. Michael J. Looney, United Kingdom National Leader

Mr. Steven Landherr, Australian National Leader

Dr. Martin I. Wolfe, United States Army, CECOM

Mr. Larry Tubbs, United States Army, SDC

Mr. Phillip Andrews, United States Navy, SNWSC

Mr. Thomas P. Conrad, United States Navy, NUSC

Mr. Samuel DeNitto, United States Air Force, RADC
Mr. Charles Krueger, United States Air Force, AFWAL

vii

This page is intentionally left blank.

TABLE OF CONTENTS

EXECUTIVE SUMMARYceuieenneneeceneeceeanssancacascsanncnnnans 1
11 Introductioncccitieiieenirerenncicntecncacnoseanns 3
1.2 The Requirements Engineering Processcccoevvivineennne. 3
13 Requirements Engineering Methodology, Tools, and Languages 4
14 Knowledge-Based Techniques and Rapid Prototyping 4
1.5 Recommendations and Conclusionscociiiniiennnnn. 5
WORKSHOP CHARGE . ..cc.venneinireneennieniseneensanncencnsnnnnans 7
WORKSHOP PROCEEDINGS . . «ovvuieuneeneerieresaneeesssscsscnsssans 11
31 Introductionc.0iuieeiiiiiniiiiieinienteiennncncnans 13
32 Working Group 1:

Requirements Engineering Process 00va... 15
321 General Information L il 15
3.2.1.1 Working Group Participantsccoiiiiiiiiiiiii.. 15
3212 Roadmap: A Guide to Working Group 1 Activities 15
3213 Working Group Assignmentscoiiiiiiiiiiiennnnnn. 16
322 Introduction oot e e et 16
323 ISSUeS . i i i 17
3231 Uncertainty and Change are Difficult to Cope With 18
3232 Multiple Stakeholders Make it Difficult to Reach Closure 23
3233 We Do Not Know How to Track Progress in Requirements

Developmentcooiiiniiiiiiii ittt 26
324 Conclusion e e e ettt et e e 28
324.1 Management and Trainingo it i 28
3242 Developmentttt i i i 28
3243 Research i 29
325 L 15 29
33 Working Group 2:

Requirements Engineering Methodology, Tools, and Languages 31
331 General Informationo i il i 31
33.11 Working Group Participantscciiiiiiiiiiiinnnannn. 31
33.1.2 Roadmap: A Guide to Working Group 2 Activities 31
33.13 Working Group AsSignmentsc.ceuiiiiiininnennnenenn. 32
332 Introductionot e e 32
33.21 MajorIssuescooiiiiiiiiiii i e e 33
3322 Major Recommendationsccoviuiiiiiiiiniininnen.. 34

ix

333 Methods and Tools Support for the Requirements Process
333.1 Context Analysisccoeiioiiiiiaanannnn..
3332 Objective Analysisccooiieiieiiannnnnn..
3333 Requirements Determination S
3334 Requirements Analysis L.,
3335 Synthesisciuinirii i e
3.33.6 Validationciiieiiniiiiiiiiiiiaann.
333.7 Activities Across All Phases
334 Requirements Languages
3341 Requirements Language Problems and Issues...........
3342 Requirements Language Objectives
3343 Language Tablec.coiiiiiiiiiia.,
3344 Requirements Language Recommendations
335 Glossary . ..oooviniiiii it
34 Working Group 3:

Rapid Prototyping and Knowledge-Based Techniques
34.1 General Informationl
34.1.1 Working Group Participants
34.1.2 Roadmap: A Guide to Working Group 3 Activities
342 Introduction............ o i
3.4.2.1 Definitions and Problem Domain
3422 Working Group Approach ,
343 IsSUes .. it i e
343.1 Knowledge-Based Techniques
3432 Rapid Prototypingcociiiiiiiiiiiiiet.
344 Recommendations oo,
344.1 Recommendations for Knowledge-Based Techniques
3.44.2 Recommendations for Rapid Prototyping
3.4.5 L€ (a7
3.4.6 Referenced Documentsc.ovviiniivnnnn..
35 Recominendations and Conclusions
351 DoD Policy Changes.ccovviiiiiiiii..
352 Government Acquisition Personnel Training.
3.53 Requirements Validation.
3.54 Measuring Requirements Related Attributes and Progress.
3.5.5 Non-Functional Requirements.
3.5.6 Requirements Trade-off Analysis.
3.5.7 Requirements Traceability.
3.5.8 Multiple Stakeholder Issues.
359 Technology Application.
BIBLIOGRAPHY v ivvviitenrniionensnnsssacnonsasensnsnnes

...........

...........

...........

...........

...........

...........

...........

...........

...........

...........

...........

...........

...........

...........

...........

...........

...........

...........

...........

...........

...........

...........

...........

...........

ooooooooooo

...........

...........

...........

oooooooooo

ooooooooooo

ooooooooooo

...........

...........

ooooooooooo

R R R R R . A T

LIST OF APPENDICIES

APPENDIX A ... i it a ettt Workshop Agenda
APPENDIX B ..ottt ittt tae e eaaiaaanannn Attendee Directory
APPENDIX C. .ottt ieeeaaaaannn Letters from Chairpersons
APPENDIXD, Technical Presentation Vu-Graphs

LIST OF FIGURES

Figure 1. Interrelationships between Stakeholders in the Development of a Typical Military
R] 1 PP 67

APPENDIX C

Figure 1. An Integrated View of Requirements Engineering C-5

Figure 2. A System of Requirements Languagesccovveeneeunnnnn C-6

LIST OF TABLES

Table 1. Activities, methods, and toc's for context analysis 36
Table 2. Activities, methods, and tools for objective analysis 38
Table 3. Activities, methods, and tools for requirements determination 41
Table 4. Activities, methods, and tools for requirements analysis 43
Table 5. Activities, methods, and tools for synthesis 45
Table 6. Activities, methods, and tools forvalidation 46
Table 7. Activities, methods, and tools applicable to several generic requirements
BCHIVIEIES .+ v vttt ettt it e et e 48
Table 8. Ideal requirements language objectivesottt 55

xi

This page is intentionally left blank.

xii

1

EXECUTIVE SUMMARY

This page is intentionally left blank.

1.2

EXECUTIVE SUMMARY

Introduction

For both commercial and military computzr-based systems, it is rare that the true nceds of
all stakeholders are fully stated and understood from the outset, nor are the requirements that
are understood always agreed upon by all parties. In addition, requirements that have been
documented are sometimes subject to interpretation by both users and developers. Even
when requirements have been baselined, developers have difficulty in anticipating, controlling,
and managing changes to the baseline.

These problems are a result of the lack of a well-defined Requirements Engineering (RE)
discipline which, in turn, results in cost overruns, schedule slippages, poor quality, and systems
that fail to satisfy mission needs.

The US Army CECOM Center for Software Engineering hosted the Requirements
Engineering and Rapid Prototyping Workshop in Eatontown, NJ on November 14-16 1989.
This event was sponsored by The Technical Cooperation Program’s (TTCP) Panel on
Software Engineering.

Many of the workshop’s forty-nine participants are leading experts in Requirements and
Software Engineering. They met to share current information on the field, to identify and
clarify the most pressing issues, and to provide recommendations to Department of Defense
(DoD) for management, development, and research relating to Requirements Engineering.

These Proceedings document the presentations and findings of the workshop and its three
working groups.

The Requirements Engineering Process
Chairperson: Dr. Alan M. Davis

The group identified the following issues as having the highest priority: coping with
requirements uncertainty and change; validating requirements; achieving consensus among
multiple stakeholders; and measuring/tracking progress in requirements development.

The group members recommended the following for management: use an evolutionary
acquisition approach; make personnel and stakeholders aware of acquisition alternatives and
related technologies such as prototyping; involve all stakeholders in requirements
determination and validation; orient acquisition and incentives around requirements
"progress"; introduce risk-based requirements related decision making (multi-attribute utility,
cost-benefit, Pareto optimization, etc.); and reduce barriers to developer-user interaction.

1.3

1.4

For development, they recommended that requirements be frozen in small incremental builds
and that more testbeds be developed to validate interoperability earlier in the requircments
process.

Finally, for research they recommended developing the following technologies and disciplines:
requirements partitioning;change management; formalspecification; multi-stakeholder process
support; requirements normalization; process models; measurement techniques for
requirements progress; tools and techniques to capture merits/trade-offs among requirements;
and the selection of the appropriate acquisition and requirements technique for a given
project.

Requirements Engineering Methodology, Tools, and Languages
Chairperson: Dr. Raymond T. Yeh

This group identified the following policy and management related issues: a lack of
management awareness of the significance and importance of Requirements Engineering; and
a lack of recognition that this discipline must be supported throughout a system’s life cycle.

For development and research, they focussed on the following issues: the capture of
requirements related information; non-functional requirements (the ‘ilities"); tool and
technology integration; technology insertion for existing systems; and the measurement of key
requirements process parameters.

The working group recommended the following for policy and management: adopt and
support a requirements-centered development life cycle model; educate and train personnel
in Requirements Engineering; establish a Requirements Engineering information/consultation
center; and reallocate currently available research funds to support Requirements
Engineering, spending less resources on downstream software activities (i.e., concentrate more
resources on identifying and confirming what is to be built, rather than on how to build it).

For development and research, they recommended developing the foliowing: a wide spectrum
language which supports acquisition, representation, and reuse of requirements information;
methods to capture, integrate, and measure non-functional requirements; an integrated
environment of Requirements Engineering tools; methods and tools which support reverse
engineering of current system’s requirements documentation; requirements validation
techniques; new approaches for requirements trade-off analysis; and metrics which support
modern Requirements Engineering practices.

Knowledge-Based Techniques and Rapid Prototyping

Chairperson: Dr. Winston W. Royce

This group analyzed two specific aspects of Requirements Engineering: knowledge-based
techniques and rapid prototypying.

1.5

The group identified the following issues which relate to knowledge-based techniques: the use
of Knowledge Based Approaches (KBA) and their application to real systems; the risks and
benefits of using KBA’s for Requirements Engineering; the nature of a KBA specific software
development process model; and the identification of existing knowledge-based technology.

The following were the group’s management and policy recommendations: adopt policy and
models that allow for incremental, evolutionary development and which accommodate KBA;
invest in knowledge base development early in the acquisition phase; and reuse knowledge
bases in related projects, to amortize investments across many projects.

For KBA development, they recommended learning from past KBA experience and trying
KBA in a large, real project.

Research recommendations were: experiment using KBA for verification and validation (V
& V); research KBA knowledge acquisition and management, especially in light of existing
methodologies and tools; and research knowledge base models with advanced degrees of
expressiveness.

Rapid prototyping issues that were identified were: participants and products in the
prototyping process; standards and current practices; and uses, properties, and examples of
prototyping systems and tools.

Management, policy and development recommendations for rapid prototyping were as follows:
train personnel in the prototyping approach; modify the development stages and time frames
to be supportive of prototyping; define the objectives of requirements/design reviews which
use prototyping products; support competitive prototyping efforts; and consider acquisition
models that include prototyping.

Finally, recommendations for research programs were proposed for the following:
requirements traceability; validation of non-functional requirements; automatic
prototype-to-documentation generation; stakeholder communication; legal issues; and lessons
learned from prior prototyping efforts.

Recommendations and Conclusions

The workshop produced many valuable insights and recommendations. These insights and
recommendations are fully documented in these Proceedings. It is important to note that
although the three groups worked independently, a number of recommendations were
common to the three groups. Every group saw the need for the DoD to change policy to
accommodate evolutionary acquisition. The groups also saw the need for increased training
for Government acquisition personnel to make them more aware of Requirements
Engineering issues and techniques. Every group saw the need for additional emphasis and
research in requirements validation. Most of the participants recognized the need for
additional research in defining and using methods of measuring attributes and progress in the

Requirements Engineering process. Most identified the need for further work in specifying
non-functional requirements. It was recommended that tools and techniques be developed
which aid in identifying merits and trade-offs among requirements. Additional research in
requirements traceability was also suggested. It was also recommended that continued special
emphasis be given to multiple stakeholder issues as the Requirements Engineering process
evolves. Finally, and most obviously, it was concluded that it is not enough to merely develop
technologies. We must apply them as well.

2

WORKSHOP CHARGE

This page is intentionally left blank.

WORKSHOP CHARGE

By: George E. Sumrall, Workshop Chairperson

Computer technology as we know it today is barely forty years old. We have made
tremendous strides, in both hardware and software. Back in the early days, computers were
the size of a wall and often filled a room. Now, you can hold one in your hand. With
products like dBase or Lotus, you can store, manage, and exploit a wealth of data on a
common home computer.

With the great strides that the commercial world has made in these technologies, the public,
ourselves included, has great expectations for our software-intensive defense systems. There
have been some successes; and there have been some problems. Many of these problems are
identified in a report by the House Subcommittee on Investigations and Oversight of the
House Committee on Science, Space, and Technology, entitled "Bugs in the Program”,
September, 1989. All too often, software is delivered late, and/or with cost overrun, and/or
does not work the way it is supposed to, and/or doesn’t do what the user wanted. According
to the report, we end up paying twice for the software - once to develop it and again to make
it work the way it was supposed to.

On the surface, it looks like those who are developing software for Mission Critical Defense
Systems (MCDSs) are falling short, compared to those who develop commercial software
products. But, there is a big difference:

. Software for Defense Systems is usually developed to meet "a user’s needs", which are
stated in the requirements specification,

. whereas, the primary requirements of a commercial product are usually that it offer
a general capability, and that it be marketable. The concept of developing software
to "meet the requirement” usually does not exist.

The Department of Defense is probably our country’s largest buyer/developer of customer
software. Our software is evaluated on the battlefield, not the marketplace. Our
requirements are completely driven by the user. In manner that is timely for a given program
we must capture and translate our customer’s needs into a system that helps him do his job
better, faster, safer.

Many times, our users do not know how to express what it is that they want or they are not
able to know what they really need, during the time that we allocate for recording their
requirements. It is not their fault. A typical user’s job is to do his job, not to describe it, and
not to describe it in a language that is understandable to a software developer. Because of
the complexity and newness of the systems that we deal with, the user may be overwhelmed.
After acquisition commitments, he often comes back with latent insights on how the proposed
automated system can better help him. These new requirements are sometimes derived from
subsequent experience with home computer technology. Sometimes, new requirements are

driven by changing battlefield realities. Let’s stop blaming the user for changing requirements
and find a way of developing systems and software despite an incomplete and changing set
of requirements.

In reality, not a lot of attention has been given to the requirements problem. (I believe that
the last workshop of this nature took place in Columbia, Maryland, in 1982.).

That is why we are here. In this room, we have a group of people who recognize that there
is a problem, who have thought about it, and have even done something about it.

My hope for us is to bring our individual efforts into focus and try to chart our course for the
future.

If you have any solutions now, let us know. If we are marching in the wrong direction, let
us know. Let us know where we should concentrate our efforts over the next 2-3 years. That
is our job over the next 2 days.

10

3

WORKSHOP PROCEEDINGS

11

This page is intentionally left blank.

3.1

WORKSHOP PROCEEDINGS

Introduction

By the year 2000, it is projected that the total United States (US) software production costs,
which have been growing exponentially, will reach $400 billion. By that time, the Department
of Defense’s (DoD’s) annual investment will be $63 billion.

Software procurement, development, and maintenance are critical. Software is frequently
cited as the reason for many systems being late, over budget, and not fully functional.

As much as fifty-five (55) percent of system errors are introduced during the requirements
definition phase. This is when the needs of those who will ultimately be affected by the
system are captured and re-written in a condensed form for solicitation and then later
translated into a form that is best understood by those who develop the software.

Research has demonstrated that the cost of solving requirements-related problems increases
drastically with the time it takes to detect an error. In a typical sample project, the estimated
cost to fix a software problem (in the requirements phase) increased from a factor of two (2)
to a factor of two-hundred (200), when a requirements-related problem was not noticed until
the system was completed and installed.

For commercial and military computer-based systems alike, experience has shown that,
especially for large and complex system developments, it is rare that the true needs of all
stakeholders are fully stated and understood from the outset. Furthermore, even the
requirements that are understood are not always agreed upon by all parties. To complicate
matters more, requirements that have been documented are sometimes subject to
interpretation by both users and developers. In addition to these problems, once
requirements have been baselined, there are difficulties associated with anticipating,
controlling, and managing changes to the baseline.

The above is a result of the lack of a well-defined Requirements Engineering (RE) discipline
which, in turn, results in cost overruns, schedule slippages, poor quality, and systems that fail
to satisfy mission needs.

Requirements-related problems are industry wide, not unique to the military. Requirements
must not be merely addressed. They must be engineered. Accurate and timely requirements
formulation and management is a skill, yet to be perfected.

On November 14-16 1989, the US Army Communications Electronics Command (CECOM)
Center for Software Engineering (CSE) hosted the Requirements Engineering and Rapid
Prototyping Workshop in Eatontown, NJ. This event was sponsored by The Technical
Cooperation Program’s (TTCP’s) XTP-2 Panel on Software Engineering.

13

The CECOM Center for Software Engineering is the Center of Excellence for software
engineering support to designated Army Mission Critical Defense Systems (MCDSs). It
provides software engineering and support for communication and electronics systems, from
initial system concept through development, deployment, and field sustainment. The CECOM
CSE is committed to worldwide US Army readiness.

The TICP is a formal arrangement for mutual sharing of research and development
resources/tasks established by member country foreign and defense ministries. Member
countries include Australia, Canada, New Zealand, the United Kingdom, and the United
States. Within the structure of the TTCP, there are eleven (11) subgroups made up of
forty-four (44) working panels and twenty-two (22) action groups. The TTCP/XTP-2 Panel
is concerned with the creation and life cycle support of software for defense-related
applications.

Many of the workshop’s forty-nine (49) international participants are leading experts in
Requirements and Software Engineering. They met to share current information on the field,
to identify and clarify the most pressing issues, and to provide recommendations to DoD for
management, development, and research relating to Requirements Engineering.

The workshop provided a forum for thirteen (13) technical presentations by leaders in the
field. The workshop participants divided into three (3) working groups for small-group
interaction on central issues. One working group addressed the Requirements Engineering
process and was chaired by Dr. Alan Davis. Another dealt with requirements engineering
methodologies, languages, and tools, chaired by Dr. Raymond Yeh. The third, chaired by Dr.
Winston Royce, focussed on two (2) specific aspects of Requirements Engineering,
knowledge-based approaches and rapid prototyping.

The workshop was chaired by Mr. George Sumrall and was coordinated by Mr. Harlan Black,
both from the CECOM Center for Software Engineering. Mr. Black is responsible for the
Center’s efforts in Requirements Engineering.

These Proceedings document the presentations and findings of this workshop and its working
groups.

14

32 Working Group 1:

Requirements Engineering Process

Edited by: Dr. Alan M. Davis, Working Group Chair

3.2.1 General Information

3.21.1 Working Group Participants

NAME

Andriole, Stephen J.
Batz, Joseph

Black, Harlan
Charette, Robert N.
Davis, Alan M.
Deutsch, Michael
Fink, Robert C.
Fountain, Harrison
Harris Jr., Donald C.
Menell, Raymond
Overmyer, Scott P.
Podracky, Mark A.
Schlosser, Edward H.
Toher, James

White, Douglas A

EMPLOYER

George Mason University

DoD Software and Computer Technology
CECOM Center for Software Engineering
ITABHI Corporation

George Mason University
Carnegie-Mellon University SEI
Performance Resources, Inc.

Naval Postgraduate School

US Army Air Defense Artiliery School
CECOM Center for Software Engineering
Contel Technology Center

Digital Fantacies Limited

Lockheed Software Technology Center
SD-SCICON

Rome Air Development Center

3212 Roadmap: A Guide to Working Group 1 Activities

This report on the activities of Working Group 1 is divided into four parts. The
introduction identifies seven key issues ce:icerning the requirements engineering process.

COUNTRY

USA
USA
USA
USA
USA
USA
USA
USA
USA
USA
USA
USA
USA
England
USA

This is followed by a section on four (4) of the most critical issues, containing for each

issue an analysis, assumptions, impact, and recommendations. A conclusion summarizes
the recommendations for management and training, development, and research. This is

followed by a glossary of key terms.

15

3213

3.2.2

Working Group Assignments
Three (3) subgroups were formed to address the foremost critical issues. Subgroup 1
addressed issue 1. Subgroup 2 addressed issues 2 and 4. Subgroup 3 addressed issue 3.
Issues 5 through 7 were not further analyzed. The members of the working group and
their subgroup assignments were the following distinguished individuals:
Subgroup 1 Subgroup 2 Subgroup 3
Batz, Joseph Davis, Alan M. Andriole, Stephen J.
Black, Harlan Deutsch, Michael Harris, Donald C.
Charette, Robert N. * Fountain, Harrison Menell, Raymond
Fink, Robert C. Overmyer, Scott P. * Podracky, Mark A.
White, Douglas A. Toher, James Schlosser, Edward H. *
* Subgroup Chairperson
Introduction

The first of the three working groups at the Workshop addressed issues relating to the
requirements engineering process. A requirements engineering process defines:

* Each of the individual steps to create and enhance requirements,

* The partial ordering of those steps, and

* The overall flow of information among those steps.

The entire process is independent of the methods and tools utilized in any of those steps.

Working Group 1 identified seven key issues about the requirements engineering process.
In decreasing order of importance, they are:

1. Uncertainty and change are difficult to cope with.

The real user needs are rarely well understood prior to system deployment. They
are certainly not well understood during the early development phases when we
must "baseline” the requirements. The result is that our perception of the
requirements constantly changes throughout the development process.

2. Validation of requirements is critical to project success.

The validation of a to-be-established baseline traditionally entails a detailed
comparison of that to-be-established baseline with a previously established baseline.
In practice, that previously established baseline is usually the requirements
specification. Thus, for example, we verify the design documentation by comparing
it with the requirements. Using this traditional definition of validation, we now

16

3.23

have a significant problem with respect to validating the requirements: To what do
we compare the requirements? The current practice is to have a customer sign off
on the requirements; this is contractually acceptable, but not sutficient in achieving
true validation. The best available technique today might be the use of a

prototype.
Multiple stakeholders make it difficult to reach closure.

Many individuals with many diverse backgrounds have a stake in the success of a
project. Most have opinions concerning what the requirements are. How can we
accommodate all these diverse goals?

We do not know how to track progress in requirements development.

We all know of the famous "99% syndrome" in software development (i.e., it takes
25% of the time to complete the first 99% of the work, and 75% of the time to
complete the last 1%). How can we prevent this in the software requirements
specification (SRS)? The industry norm today is that we simply declare the SRS
complete when it looks like it’s time to move on to design.

Different processes are needed for different problems.

There does not exist a universal process model for requirements. Each class of
problem requires a different model.

Systems/Software/Requirements/Design distinction is unclear.

There is little uniformity in the industry concerning the use of the terms “system
requirements,” "software requirements," "system design," "software design," and
"specifications." But it is more than a semantic problem. During each of the
phases, developers regularly violate the bounds of their phase. This may or may

not be detrimental, but it must be understood.

The existing inventory of systems needs to be retrofitted to new requirements
engineering technology.

There is a large active community of people studying and performing "reverse
engineering" to the huge inventory of existing software systems. These people are
primarily retrofitting code quality into systems built before good coding principles
became well understood. As we learn more and more about proper requirements
practices, does it make sense to retrofit existing systems with this quality?

Issues

The following four (4) subsections address the first four issues described above. Three
(3) subgroups were formed to address them. Work on the last three was deferred, due
to time constraints.

17

3231

Uncertainty and Change are Difficult to Cope With

During the requirements engineering process, we are repeatedly faced with uncertainty.

Are the requirements correct? Do they accurately reflect real needs? Can a system be
built that satisfies these requirements? Is it possible to validate that a system meets these
requirements? We are also constantly presented with changes. User needs change. Our
perception of user needs changes. Designers discover unsatisfiable requirements. Both
uncertainty and change introduce significant risk into the system development and
acquisition process. One means of reducing the risks associated with uncertainty and
change is evolutionary acquisition. In this approach, we acquire a system in increments.
Each increment is an improved superset of the previous increment’s requirements driven
by changing needs. Determination of these additional needs can be accomplished through
avariety of evolutionary requirements engineering approaches including rapid prototyping.
Evolutionary requirements engineering runs counter to the defense system acquisition
"culture”. The current belief that all system requirements can be specified at one time is
deeply embedded in DoD standards and acquisition policy.

Unfortunately, premature freezing of requirements specifications may lead to:

* An incomplete understanding of true system requirements (both functional and
non-functional).

* An incomplete understanding of engineering and political tradeoffs.
. The addition of non-essential/unnecessary requirements.

* The inability to respond adequately to external changes which occur in the
operational context.

The last item is of critical importance. DoD systems are expected to respond to a wide
variety of changing circumstances, some within DoD’s control, and most not. These
circumstances create new system requirements unforeseen, indeed even unpredictable, at
the outset of system acquisition. These requirements are driven by political circumstances
(e.g., changes in the threat or in domestic funding), changes in military doctrine, increased
user insight, and changing technology. The result is that:

. Systems are 3-5 generations behind currently available technology

* Systems cannot change quickly enough to meet new requirements dictated by new
operational contexts.

. Many systems exhibit poor quality, are over budget, are late, and/or fail to support
the required mission.

An evolutionary acquisition process will mitigate these problems considerably. The first
phase of an evolutionary acquisition process defines the set of acceptable requirements
which can be partitioned into an incremental build of the system. The acceptable set of
requirements consists of all requirements which are perceived as being necessary (although

18

323.1.1

some requirements may be better understood than others). This acceptable set is called
the evolutionary framework. Using Joint Application Development (JAD),
rapid-prototyping, mock-ups, etc., a partitioned subset of well-understood requirements
(i.e., generally the requirements with the minimal uncertainty) is constructed. -Once this
set of requirements are defined, the second phase of the evolutionary process occurs.

The requirements of an evolutionary framework are used to build an increment of the
system. An appropriate process model is applied to further refine the requirements. Each
increment is a superset of the previous increment. The evolutionary requirements activity
continues through the life of the system, until the need for evolution diminishes to near
zero. Along the way, rapid prototypes are used to validate prospective requirements prior
to the next build. This helps to reduce uncertainty and change, and thus risk.

Sub-Issues

There are several management and technical sub-issues that affect the feasibility of
evolutionary acquisition. The management sub-issues are as follows:

. Current acquisition regulations and system and software engineering standards such
as MIL-STD-490A and DOD-STD-2167A, encourage the early binding of
requirements.

. Who manages the evolutionary requirements activity? There needs to be significant
cooperation here between contractor and Government personnel. Only the
Government can adequately represent the needs of the user community. Only the
contractor can understand the design implications of requirements evolution.

* The acquisition agency must be aware that the evolutionary requirements
engineering activity is on-going, and as such, will require funding and deliverable
schedules which are subject to change. Government personnel may perceive this
approach as open-ended and counter to effective cost control, schedule control, and
other resource controls.

The technical sub-issues are as follows:
* How can we partition requirements into builds that make technical sense?

* The initial partition of requirements must be "correct enough"” to serve as a proper
foundation for later builds. It (and the initial few partitions) also must be of a
sufficient breath and depth to gain support by the sponsoring activity. A partition
which is "too small" for example, may not show "progress” in the eyes of the
acquisition agency.

* We must use methodologies and tools which will support incremental acquisition.
Methods such as defined within the U.S. Navy Research Laboratory's Software Cost
Reduction Project is an example. This issue is related to the sub-issue concerning
DOD-STD-2167A.

19

323.1.2

323.1.3

32314

Assumptions

The following are the assumptions made:

* The evolutionary acquisition approach is assumed to be a more effective and lower
risk approach than other current approaches, although no real proof is available to
support this assumption.

* Partitions are subsets of the entire set of requirements. Increments are the portions
of the prototype that implement corresponding requirements partitions. Partitions
and their resultant increments must occur within a short time-frame to minimize
changes to the next partition and increment.

. Initially, and at each subsequent stage, a stable set of requirements can be
established and partitioned.

* All stakeholders will be involved in the partition of requirements into increments.
Impacts
If the evolutionary acquisition approach is implemented, we believe:

. Uncertainty concerning requirements will be reduced because uncertainty is
addressed incrementally.

* Expectations will be more realistic.

* The final system will more closely meet expectations.
. Risk will be sharply reduced.

Recommendations

* Management and Training.

- Make changes to acquisition policies, acquisition regulations, and DoD
standards to facilitate evolutionary acquisition.

- Educate contracting officers and their technical representatives on this
evolutionary acquisition approach. Emphasize that system requirements
cannot be fully defined a priori, and that requirements engineering is
continuous throughout the life of the system.

20

32315

3.23.1.6

Development

- For each incremental build of a given software process or (in DoD terms)
Computer Software Configuration Item (CSCI), the corresponding defined
partition must remain frozen during the implementation of that build.

Research

- Research is required on techniques for defining acceptable partitions of
requirements.

- Research is required to determine if the evolutionary acquisition approach is
more effective than others.

- Research is required to determine how to define partitions in such a way that
they can tolerate the inevitable changes that will occur.

Validation of Requirements is Critical to Project Success

The ability to determine whether documented requirements are an accurate reflection of
actual requirements (i.e., the real user needs) is crucial to the success of any software
development effort. Often requirements content is heuristic and judgmental. Many of
the system issues addressed by requirements have no apparent right answers. In most
cases, it is impossible to understand the real requirements without the presence of a
working system in the users’ hands. Since most acquisitions do not include up-front
prototypes, most requirements are not validated in any way until after system deployment.
An acquisition strategy involving prototyping provides an early system on which multiple
stakeholders can base a decision concerning system suitability.

The validation process involves identifying the guarantors and developing validation
statements. For any single system there can be many guarantors and validation statements
of varying rigor and credence.

Sub-Issues

The goal of requirements validation is to reconcile documented requirements against a
referent or set of referents. Realization of this goal substantially reduces the risk of later
breakage of the software or hardware architectures caused by inaccurate or incomplete

requirements. This goal is often complicated by the absence of a referent. The sub-issues
are:

* What can be done to validate requirements when no referent exists?

* How can we validate the requirements against an existent referent?

21

32317

3.23.1.8

3.23.1.8

Assumptions

The following are the assumptions made:

* Requirements validation is possible.

* The end user is the principal stakeholder. The relative importance of any
stakeholders is contingent upon project constraints and the point at which the

stakeholder enters the lifecycle process.

J In practice, systems are often, if not always, accepted without validated
requirements.

. Validation is a dynamic process which, in concept, may never end.

Impacts

The impacts of requirements validation are:

. decreased likelihood of cost overruns

* elimination or reduction of rework and schedule slips

. lower risk of development (management, schedule, cost, etc.)

. more effective systems.

Recommendations

¢ Management and Training
- Remove excessive DoD barriers to contractor contact with users.
- Update acquisition policies to support evolutionary life cycles.
- Increase awareness of prototyping methodologies.

. Development

- Develop standardized models for interdisciplinary user/customer/contractor
approach to requirements validation.

- Construct widespread test beds (e.g., Army Interoperability Network -- AIN)
and associated data bases in more applications areas.

22

3232

3.2.3.2.1

] Research

- Perform research into automating the synthesis of design from requirements.

Develop practical formal requirements methods.
Multiple Stakeholders Make it Difficult to Reach Closure

A software-intensive military system typically is employed by many users in a variety of
situations and contexts. These users, situations, and contexts all provide different
viewpoints for determining system requirements. Many other players also have important
stakes in the success of the system: testers, developers, managers, acquisition personnel,
configuration management personnel, quality assurance personnel, maintenance personnel,
etc. The current DoD requirements process often fails to include some of these
viewpoints. Conflicts among the different viewpoints and among the requirements based
on them is often unrecognized or inadequately resolved. All of this leads to requirements
that are incomplete, inconsistent, unrealistic, or misunderstood, resulting in poor quality
systems delivered late and over budget.

Sub-Issues

System stakeholders can be classified as those who:
a. Affect the system

b. Are affected by the system

c. Both affect and are affected by the system

Potential stakeholders include end-users, proponents, funders, program managers, builders,
testers, and system maintainers, Viewpoints of military end-users are a function of their
level or echelon, the unit mission or function, and their experience with
automation/computerization. Proponents for military systems are charge:! with developing
mission requirements, representing the end-user’s viewpoint throughout the development
process, and defining system requirements. Organizations which approve/control funding
clearly are stakeholders in the system requirements. Program managers, their support
staffs, and their contractors who build systems must interpret and modify requirements
which are often vague, inconsistent, and incomplete. Organizations which maintain and
extend the system have a significant stake in the system during most of its lifetime.

Three (3) sub-issues relate to the multiple stakeholders, the multiple system contexts, and
the development life cycle phases:

* How can we resolve the disparate, possibly conflicting, needs and views of the
multiplicity of stakeholders?

23

How can we resolve the disparate needs resulting from classes of users who must
operate with the system in multiple contexts? The users of a system typically
emanate from multiple organizations. These organizations have different missions
and different battlefield environments.

How can we resolve the needs and views considering that they are changing
constantly over time? They change constantly because the membership of the
stakeholder group changes, the individual people themselves change as they learn
and grow, and the requirements specification is used in different ways.

3.23.22 Assumptions

3.23.2.3

32324

None Identified.

Impacts

Reconciliation of stakeholders viewpoints would result in:

Significantly decreased risk of user dissatisfaction

Less cost overruns and schedule slippages

Increased productivity (stakeholder satisfaction per dollar)
Increased trust among stakeholders

Decreased risk of project cancellation

Recommendations

Reconciling divergent requirements perspectives of multiple stakeholders is a difficult
problem. It will require the cooperative efforts of individuals representing all significant
viewpoints. We have proposed three (3) approaches. They are ordered from the easiest
to implement to the most difficult to implement. Their order also corresponds to the
order from the least positive impact to the most positive impact.

Develop and document a procedure to evaluate and rank the importance of
requirements based on who the supportive stakeholder is.

Expand the above procedure to evaluate and rank the importance of requirements

based on the motivations and purposes expressed by the supportive stakeholder as
well as on who the stakeholder is.

24

. Develop and document a procedure that can be used to capture the complete set
of requirements, as follows:

- Identify and define all significant viewpoints and stakeholders
- Determine and define requirements for each viewpoint

- Communicate viewpoints and requirements to all stakeholders
- Jointly evaluate requirements

- Negotiate a reasonable requirements envelope

- Test the requirements envelope continually

- Iterate through all activities until system retirement

This process must include all stakeholders and their requirements. Effective
communication of the viewpoints and requirements depends upon a combination of good
documentation and face-to-face refinement. Requirements should be evaluated jointly
with respect to priority, volatility, consistency, feasibility. The concept of a "requirements
envelope” is key. We believe that a single, completely consistent requirements set may
be unattainable in many cases. It may also result in overly constrained requirements,
leading towards a less adaptable system architecture. The goal is to achieve a consensus
requirements envelope that reduces, but does not eliminate, variety and inconsistency.
A good requirements envelope will focus the requirements sufficiently to satisfy current
requirement perceptions without overly constraining them. The requirements envelope
should include measures of priority and volatility. The process should test the
requirements envelope continually, by testing, simulation, prototyping, and partial system
deliveries.

Further specific recommendations are:
. Management and Training
- Acknowledge the importance of multiple requirements perspectives.
Management should require formal recognition of multiple stakeholders
requirements perspectives, and expand the requirements analysis and

prototyping phases to include these.

- Enhance life cycle models to accommodate deeper requirements analysis and
modeling of the interrelationships among requirements.

25

3233

3.2.3.3.1

e Development

- Develop a set of software tools to support "multiple stakeholder requirements
perspectives” analysis. The tools should consist of user taxonomies of
organizations, and methods for conducting requirements trade-off analysis.

- Apply the new methods and tools developed above to real applications.

* Research

- Develop models to capture multiple stakeholder requirements.

- Develop and apply new methods for trade-off among competing and
conflicting requirements. Risk-based decision techniques such as
multi-attribute utility, classic cost-benefit, and Pareto optimization techniques,
among others, can be used in this arena.

We Do Not Know How to Track Progress in Requirements Development

Progress metrics for the requirements process differ markedly from production oriented
process metrics because there is no clear end point. Requirements engineering is a
continuing process based on exploration and discovery, often creating unexpected
iterations. Nonetheless, some subjective oriented indicators of progress are possible.
Sub-Issues

The following sub-issues bear on the problem:

* A technical feasibility indicator for implementing a requirements set is a desirable
measure.

* A cost/schedule feasibility indicator for a requirements set is a desirable measure.

* The contractual/political environment does not accept that exploratory processes
have a built-in level of backtracking and iteration.

* Weare dealing with a judgmental, discovery driven process with no clear end-point.

* Progress is not necessarily monotonic. Time/schedule is, therefore, often a poor
metric.

26

3.23.3.2 Assumptions

32333

The following assumptions are made:

Progress can be observed, but not necessarily measured in an objective fashion.
An agreeable metric of progress is possible.
Progress is not necessarily a linear or well-behaved function.

Risk (as to technological feasibility and cost/schedule) can be assessed periodically
and thereafter monitored.

impacts

The impacts of measuring requirements progress are:

An appropriate definition of progress that can substantially reduce risk

Measurable progress observations that aid/feed the requirements development and
validation process

Weli-thought out, accurate requirements

Reduction of arbitrary and/or autocratic decisions concerning the completion of the
requirements baseline

Decriminalization of early problem recognition and correction.

3.2.3.3.4 Recommendations

Management and Training

- Current contracts often encourage the early freezing of requirements and
discourage subsequent changes to those requirements. Award fee structures
on contracts should be modified to encourage the creation and timeliness of
requirements specifications.

- Develop a team approach to help reduce unrealistic expectations on the part
of the user/customer.

- Educate program managers and team members that "changing your mind" as
a result of new information is acceptable.

- Train Government program managers in the use of acquisition models that
employ prototyping.

27

* Development

- Apply the new metrics developed above on actual projects.

- Develop an explicit requirements validation plan for every project.
* Research

- Develop and use effective metrics to measure requirements progress and
completion.

- Develop more rigorous risk assessment and risk management techniques.
3.24 Conclusion
In this section, we summarize the recommendations of Working Group 1:
3241 Management and Training
* Change acquisition policies to accommodate evolutionary acquisition.

* Educate all stakeholders on various acquisition alternatives such as the evolutionary
acquisition model.

* Train all stakeholders on the value and role of prototyping in the system life cycle.
. Involve all stakeholders in requirements:
- Determination
- Validation
. Realign incentives/milestones to more easily capture requirements "progress”.
. Introduce risk-based decision making.
d Reduce DoD barriers to developer-user interaction.
3242 Development
. Freeze requirements in small incremental builds.

. Develop more testbeds like AIN to validate interoperability earlier in the
development process.

3243

3.25

Research

Develop new techniques to isolate acceptable requirements partitions.

Develop new techniques to accommodate change in requirements and designs.
Develop and refine practical formal requirements techniques.

Define a multi-stakeholder requirements process.

Develop thorough understanding of requirements "normalization.” Somewhat
analogous to database normalization, this envisioned technique would enable two
sets of requirements to be shown to be equivalent.

Define and understand requirements process models.

Define and understand models of requirements progress.

Perform experiments to determine what conditions make evolutionary acquisition
and prototyping practical.

Develop tools/techniques to capture merits/tradeoffs among requirements.

Glossary

Requirements Specification - A requirements specification is a document containing all the
requirements for a system.

A requirements specification is complete if everything that all the eventual
stakeholders (customers, users, etc.) want is specified.

A requirements specification is consistent if no two subsets of requirements conflict.

A requirements specification is unambiguous if every one of its requirements has
only one possible interpretation.

Guarantor - The guarantor is the group of stakeholders who are the final authority on the
sanctioning of the requirements and the validation statements.

Prototype - A prototype is a partial implementation of a system constructed primarily to
enable customers, users, or developers to learn more about a problem or its solution.

Referent - A referent is a baseline (such as a requirements specification document) to
which we compare the requirements for validation.

Stakeholder - A stakeholder is an individual, group, organization or system which can
influence or be influenced by the computer system.

29

Validation Principle - A validation principle is the accepted warrant that is appealed to
in order to justify the validation process.

Validation Statements - Validation statements constitute the rationale or proof that

connects the requirements to their referent. Some participants maintained that a
complete proof for a requirements set is impossible.

30

33

3.3.1

3.3.1.1

33.1.2

Working Group 2:

Requirements Engineering Methodology, Tools, and Languages

Edited by: Dr. Raymond T. Yeh, Working Group Chair, with Dr. William Gilmore.

General Information

Working Group Participants

NAME EMPLOYER COUNTRY
Comer, Edward R. Software Productivity Solutions, Inc. . USA
Fisher, Gary E. National Institute of Standards and Technology USA
Gilmore, William International Software Systems, Inc. USA
Hamilton, Margaret Hamilton Technologies, Inc. USA
Harris, Robert L. Wright Patterson Air Force Base USA
Hsia, Pei University of Texas at Arlington USA
Labbe, Jean-Claude Defence Research Establishment (Valcartier) Canada
Larson, Aaron Honeywell/Systems and Research Center USA
Looney, Michael J. Admiralty Research Establishment England
Manley, Gary Naval Postgraduate School USA
Marks, Walter CECOM Center for Software Engineering USA
Ng, Peter New Jersey Institute of Technology USA
Racine, Glenn E. AIRMICS USA
Rzepka, William Rome Air Development Center USA
Samson, Donaldine Sonex Enterprises, Inc. USA
Singer, Carl A. Bellcore USA
Tanik, Murat M. Southern Methodist University USA
Yeh, Raymond T. International Software Systems, Inc. USA

Roadmap: A Guide to Working Group 2 Activities

This report on the activities of Working Group 2 consists of four parts. The introduction
presents the group’s approach of dividing into four subgroups, one each for methodology,
tools, languages, and integration. It summarizes the major issues the working group
addressed as well as the major recommendations it proposed, covering policy and
management, development, and research. Next follows a section on methods and tools,
which addresses the six interdependent subprocesses that, according to the group, best
describe the requirements engineering process. For each subprocess, discussion is
provided on the activities, methods, and tools that apply to it; an analysis of the problems
and issues that occur within it; and recommendations. Activities across all subprocesses
are addressed at the end of this section. The language section follows, focussing on
problems and issues, objectives, features of existing languages, and recommendations. The
report concludes with a glossary of key terms.

31

3.3.1.3

3.3.2

Working Group Assignments

The distinguished participants of Working Group 2 are divided into the following

subgroups:
Methodology Tools Languages Integration
Gilmore, William Comer, Edward R. Fisher, Gary E. Comer, Edward R.

Harris, Robert L. Looney, Michael J. Hamilton, Margaret* Gilmore, William

Hsia, Pei* Manley, Gary Labbe, Jean-Claude Samson, Donaldine
Ng, Peter Marks, Walter Larson, Aaron Yeh, Raymond T.*
Samson, Donaldine Racine, Glenn E. Tanik, Murat M.

Singer, Carl A. Rzepka, William#*

*Subgroup chairperson.

Acknowledgment: The whole group wishes to thank COMCON, Inc., especially Diane
Alexander, for their extensive support and technical contributions.

Introduction

Requirements engineering is a new, vital frontier for software research. Several
organizations are researching and developing requirements engineering processes. These
processes are only practical and cost-effective when supported by the appropriate
methodologies, language, and tools. Many software engineering tools and methodologies
have been developed to solve parts of the software engineering problem. But the
methodologies, languages, and tools for software requirements have not received adequate
emphasis in an integrated sense for a complete requirements process.

Requirements engineering methodologies, languages, and tools are support mechanisms
for any requirements engineering process. The objective of Working Group 2 was to
investigate specific mechanisms relating to a full spectrum of activities within the
requirements engineering process.

Working Group 2 initially assumed that the requirements process is extensive over time
and in level of detail, ie., it may include generations of systems and broad domain
analysis, as well as detailed systems specifications concerning user needs. Furthermore,
it was assumed that the process is intertwined with the overall system evolution and has
the following six generic sub-processes:

1. Context Analysis - analysis of problem space and application domain; deals with
description of problems only, not solutions.

2. Objective Analysis - analysis of the solution space, and system objectives for life
time use.

32

3.3.21

3. Requirements Determination - specification of characteristics the system must meet
to satisfy user needs.

4. Requirements Analysis - analysis of expressed requirements; includes related
refinement, elaboration, and correction.

5. Synthesis - formation of a cohesive specification from the detailed analyses; involves
integration of partitioned analyses occurring due to problem complexity and
breadth.

6. Validation - ensuring that the expressed requirements match real user needs and
constraints.

These six generic requirements sub-processes do not necessarily occur sequentially, and
are interdependent. Furthermore, the support mechanisms, which are methodology, tools,
and languages, are interdependent.

The Working Group 2 approach was to break into individual analysis groups, one each
for methodology, tools, and languages, and a fourth specifically for integration.
Intermittent synthesis occurred by collective meetings and was catalyzed by the integration
subgroup.

In order to analyze the support mechanisms, the subgroups were tasked with identifying
specific activities associated with each sub-process, and identifying specific support
mechanisms for these activities and sub-processes. Some of the activities, such as
prototyping, span more than one sub-process. Detailed analyses for each sub-process are
presented in individual sub-sections in this report.

The language analysis is presented in a separate section because the Language subgroup
felt that language support integrates with the other areas in a broad way. The Language
subgroup analyzed requirements for a common requirements language schema.

Major Issues

The following major issues surfaced during subgroup analysis and synthesis:

. Policy and Management Issues:

- There is lack of widespread awareness of the importance of requirements
engineering, especially in management and acquisition offices.

- There is a lack of emphasis for the requirements process throughout the life
cycle, and for its related policy and funding support.

- There is general unawareness that requirements engineering is vital to system
success, and hence to national security and economic vitality.

33

e Development and Research Issue

- Currently used languages and methods fail to capture requirements
information to effectively enable system evolution.

- Lack of understanding of the so-called "non-functional" requirements -
performance, reliability, maintainability, security, safety, etc.

- Tools are not integrated to support the widespread needs of the requirements
process.

- Lack of effective means to salvage large investment in current, large software
systems.

- Lack of understanding of what to measure and how to measure key
requirements process parameters.

3322 Major Recommendations
Major recommendations developed by Working Group 2 are as follows:
. Policy and Management Issues

- Change acquisition policies and management practice to support a
requirements - centered development life cycle model.

- Increase training of management/acquisition personnel in requirements
engineering,

- Establish an information/consultation center on requirements engineering
(process, methods, tools, and metrics).

- Reallocate currently available funds supporting downstream software activities
to requirements engineering activities, (i.e., concentrate more resources on
identifying and confirming what is to be built, rather than on how to build it).

. Development and Research Recommendations:

- Develop wide spectrum language to support acquisition, representation, and
reuse of requirements information and its related knowledge.

- Develop methods to capture, integrate, and measure the so-called
non-functional requirements.

- Develop an integrated environment of requirements engineering tools.

- Develop methods and tools to support reverse engineering of current systems
that are able to be modernized.

34

3.3.3

3.3.31

3.3.3.1.1

- Determine and develop meaningful metrics supporting modern requirements
engineering practice.

Methods and Tools Support for the Requirements Process

This section presents the detailed results of analyzing the six generic requirements
sub-processes. Each sub-process was analyzed for the following:

* The detailed activities that are components of that subprocess, methods for
performing the activities, software tools that assist in performing the activities
(presented in a table and related discussion);

* Problems and issues concerning methods and tools; and
. Recommendations and research areas concerning the methods and tools.
Recall that the six generic requirements engineering subprocesses are:

Context Analysis

Objective Analysis
Requirements Determination
Requirements Analysis
Synthesis

Validation

Context Analysis

Context analysis involves analysis of the problem space and application domain of a
potential system to be developed. It deals with description of problems only, not
solutions. (See Table 1.)

Discussion

Context analysis is a general activity under which four major sub-activities were identified.
Requirements are those defined and derived from the "setting" within which the system
must operate.

Identification of the problem space boundaries is important for understanding the
environmental constraints under which systems will be developed, operated, and evolved.
Methods for performing this activity include document reviews (mission, scenerios, and
higher-level requirement statements of existing systems), interviews with potential users,
market analysis, and policy guidelines. People involved include decision-makers and
potential users. System environment identification also includes the physical, functional,
economic, social, and cultural parameters that will be associated with or that affect
requirements,

35

Table 1. Activities, methods, and tools for context analysis
“

Activities identify problem space boundaries:
political
cultural
legal
resources (material, human, informational, financial)
organizational policies and procedures
technological scope

Needs identification:
identify market needs and trends
threat assessment
problems with current systems
identify the common needs of different organizations

Application modeling
enterprise modeling
mission modeling
identify information resources

Postulating solutions

Methods Interview
Document Reviews
Conceptual Modeling
Delphi
Group Decision Support
Analysis
Surveying Current Systems
Observation
Role-Playing
Walk-through
Gaming

Tools Concept Modeling Tools, e.g.:
P-Tech

Knewledge Engineering Tools, e.g.:
Expert System Shells, Prolog

Enterprise Modeling, e.g.:
Entity-Relationship Models, Activity Models, Behavior Models

Simulation Models

A second major sub-activity involves needs identification. This includes interviews with
users of existing systems, customer questionnaires, reviews of official needs documents and
statements of needs from customers, and market surveys. Support methods also include
"Delphi", modeling, and critiquing of existing systems.

A third major sub-activity identified is application modeling. This involves spelling out
those effects governed by the surrounding user’s community that will atfect requirements.

36

33.3.1.2

3.3.3.1.3

3.3.3.2

3.3.3.2.1

It may involve modeling the general user requirements at a meta-system level, using
enterprise modeling tools. Such models should project future changes. Personal
interviews and review of materials concerning the user’s environments provide
information. Participants include the customer/user. How the system will be maintained
is an important consideration that feeds this activity. The system should be considered
from the viewpoint of the business and its procedures and structure/organization. This
leads to consideration of the "business" working methods and related ramifications in
terms of need/change.

A fourth major activity is postulating solutions. It is performed not so much to identify
solutions as to help clarify the problem. This activity may involve surveying technology,
conceptual modeling, and gaming. Concept modeling and simulation tools support this
activity.

Problems and Issues

The context analysis phase requires the management of many pieces of informal
information. This information is dynamic and unstable and so it requires flexible tools.

The problems with these can be generally categorized as being too removed from those
specifying the requirements and being too complex for them to make good use of the
capabilities. The information being captured is in a large number of cases too general or
informal. Most of the tools are static and require extensive resources both in terms of
manpower and computers to simulate "world models" and provide meaningful outputs
rather than the obvious.

Recommendations and Research Areas

This relatively infant sub-process needs extensive modeling in a number of areas to
provide a base of support. Initially it should be supported by R&D. Modeling will involve
knowledge acquisition and representation, and utilize common structured knowledge.
Further research is needed regarding elicitation techniques.

Further support for multiple domain analyses is also needed, and these should model
adaptation, change, what-if scenarios, and sensitivity analyses.

Objective Analysis

Objective analysis involves analysis of the solution space, and system objectives for lifetime
use. (See Table 2.)

Discussion

This activity focuses on defining the "mission-level” requirements of a system. Definition
as to how the system will satisfy user needs over the long-term is captured and refined.
Therefore, the activities listed in Table 2 are intended to focus on defining (and later
revising) the high-level, long-term objectives that the system, and all aspects related to its
evolution, should satisfy.

37

Table 2. Activities, methods, and tools for objective analysis
(- - -

Activities Define specific problem to be solved
Define system/environment boundary and interface

Define life cycle profile:
length of use
expected breadth of use
desired Return On Investment

Define user profile:
frequency of use
education/experience of user

Identify non-functional requirements:
necessary reliability, security, performance, etc.

Identify critical success factors:
prioritize major objectives

Identify operational capabilities:
basic needed functions of the target system
determine wish lists of major objectives

Conduct feasibility analysis
physicalftechnical, financial, political, cultural

Uncertainty and risk assessments for major objectives
Perform trade-off analysis of major objectives

Methods Interview
Documention Review

Trade-off Analysis
modeling, role-playing

Build scenarios of high level system usages, possibilities
Delphi techniques
Group decision support methods

Tools Conceptual Modeling Tools
Knowledge Engineering Tools
Enterprise Modeling Tools
Security Models
Reliability Models
Formal Veritication Tools

In addition to identifying the system/boundary interface, operational capabilities, and
analyzing feasibility regarding technical, operational, and economic factors, there is other
important information to gather. There is need to identify the expected breadth of use,
and long-term time and economic scope of the new system. This includes developing a

38

33322

3.33.23

long-term plan and an acquisition scheme, including a scenario of planned yearly goals,
and a projection of the kinds of contracts to be used. It should also identify the
anticipated evolution of the new system, i.e., is the system expected to support a static or
dynamic environment. Toward this end it is particularly important to identify the critical
success factors for primary decision-makers who will use the new system (this promotes
estimates of Return on Investment (ROI) for the project, and trade-off analyses).

In addition, there is need to identify the resources for information contributing to
requirements determination. This may involve creation of a plan for who, generically,
should participate, and how to sustain continuity of expertise over the whole life cycle.

Activities also include identification of constraints, especially with respect to policy
constraints levied by government by economic realities, current market conditions, or
availability of resources. Schedule is also a constraint in terms of meeting a "window of
opportunity".

Finally, we note that non-functional requirements concern reliability, security,
maintainability, extensibility, etc. Allocation of priorities to objectives is also done. In
order to prepare for work in deciding among alternatives, evaluation criteria called
alternatives metrics must be considered.

People involved in the objective analysis process include experienced user and domain
specialists (e.g., Training and Doctrine Command (TRADOC) people in the army), system
architects (e.g., industry experts), operations research analysts, financial analysts, and
policy makers.

Applicable tools during objective analysis include those tools which were used during
context analysis. In addition, modeling tools. which help with some non-functional
requirements have been developed. For example, security models, formal verification
systems, and reliability modeling tools now exist.

Problems and Issues

In general, the problems with modeling tools here concern their limited applicability, e.g.,
security modeling addresses a very big problem but in a very narrow domain of
applicability. In addition, these modeling tools fail to scale up to realistically sized
systems. In some cases, especially the reliability models, credibility of the results is an
issue.

Recommendations and Research Areas

There needs to be R&D for how to specify non-functional requirements. In particular,
we need methods and tools to

* Support conflict resolution, e.g., maintainability vs. reliability,

. Enable specifying "degree of", e.g., quantifying, such as levels of security,

39

3.3.3.3

3.3.3.3.1

. Help identify relationships among. the "ilities",
* Model with wide applicability, e.g., scale up kinds of current modeling,

In addition, we need R&D to learn how to do more relevant workload modeling, analysis,
and simulation.

Requirements Determination

Requirements Determination involves specification of characteristics the system must meet
to satisfy user needs. (See Table 3.)

Discussion

The requirements determination activity uses and analyzes the gathered information from
context and objectives analyses (goals, objectives, and needs) to create a comprehensive
list of requirements for the system to be developed. Alternatives are identified and
evaluated. For each alternative under study, a feasibility study must be performed to
assess the ability of the sponsoring organization to develop the alternative, technically and
with respect to available resources. This activity also involves on-going revision and
evolution of such requirements.

In general, requirements can be classified as either functional or non-functional, although
there is substantial interdependence. Non-functional requirements traditionally refer to
constraints, necessities in performance and security, and the "ilities" such as quality,
reliability, availability, maintainability, etc. The satisfaction of many non-functional
requirements depends on whether and how certain functional requirements are met.

Methods focus on investigation through the building and examination of prototypes
(functional/operational) to understand the requirements in-depth. Generally, the
combined set is not easily comprehended without some form of realistic viewing or testing.
Investigation is also supported by interviews with customer/user/management-personnel
(who have been identified in the phase of context analysis), and by document review and
feedback of information among the role players.

Specification methods, such as data flow and object-oriented, help thinking through the
problem and characterizing the functional requirements for communication. Templating
supports the capture and description of non-functional requirements. The techniques of
n® charting and modeling, in association with prototyping, support trade-off analyses.

Among existing tools that deal with requirements determination are the range of currently
available requirements modeling tools which support data flow diagrams, functional
decomposition, state-transition diagrams, entity relationship diagrams, petri-nets, stimulus
response networks, etc. Other tools that are applicable here, especially for determining
the feasibility of alternatives, include model development tools for analyticai models,
simulation models and cost models. In the area of simulation models, some success has
been gained by "tuning" or "tailoring" a model to a very narrow and specific application
domain so that its results are produced with greater fidelity.

40

Table 3. Activities, methods, and tools for requirements determination
... - . |

Activities Determine system requirements
Analyze identified needs
Examine different user viewpoints
Perform transaction analysis, create scenarios
Identify, analyze data requirements
Determine functional requirements
Determine non-functional requirements

ldentify alternatives, wish lists, potential enhancements or modifications

Perform trade-off analyses
benefit for added cost
benefit for extra risk
expected lifetime, evolveability of solutions
uniqueness of solutions vs. common needs of different organizations

[dentify problems, issues, risks

Do Planning
Workload characteristics expected for the future system
Developmental constraints
Schedule and resources needed
Allocation of people and resources to tasks to be performed
Methods Prototyping
Interviewing

Specification
datz, flow, object oriented, state transition

Templating
n? Chart

Reviews with people, e.g:
discussion groups

Study and observation:
current environments, existing systems, related documents

Market the idea
Tools Requirements modeling tcols
DFD, Functional Decomposition, State Drawings, E-R Diagrams, Petri, CORE

Models
Analytical, Performance, Simulation, Cost

Mission Specific Simulations

3.3.3.3.2 Problems and Issues
There is a need to develop improved process and methods to help identily true

requirements. Problems concerning tools limitations were also identified. Specifically, cost
models are usually driven by "old" data, or as in the case of Ada projects, by aatabases

41

33333

3334

3.3.3.4.1

which simply do not have sufficient information or enough existing Ada projects for
baselining. Simulation models are fimited in scope.

Recommendations and Researcn Areas

The group recommends that research be supported to develop improved process and
methods, and to increase coupling between tools. To support coupling we should develop
a CASE database objects standard. The integrated tcols should include comprehensive
multiple-view support with consistency checking, view gencration, and support for
generation of test cases. Future simulation tools should support multiple levels of
abstraction and be able to handle changes in information easily (e.g., interactively).

Requirements Analysis

Requirements analysis involves analysis of expressed requirements; it includes related
refinement, elaboration, and correction. (See Table 4.)

Discussion

This activity focuses on improving the consistency, completeness, correctness, and
feasibility of the existing set of determined, expressed requirements for a given system.
Consistency checking looks for requirements which are in contrast or direct conflict with
others. Completeness checking looks for omissions in the cxpressed requirements that
could significantly affect developers’ ability to understand or build what is wanted.
Correctness checking examines whether the set of expressed requirements, if followed, will
result in a system which will satisfy the user and long-term needs and objectives.
Feasibility analysis looks at whether the set of expressed requirements are feasible in
terms of technology, operation, and economy.

Ir 2ddition, this activity includes evaiuation of usefulness, that is, to what degree will such
a developed system satisfy the current and future needs of the organization. Significance,
certainty, and interdependency are evaluated to help plan and prioritize work, especially
in the face of uncertainty and future requirements revision, and for support of tradeoff
analysis. Testability is evaluated both because it is needed as well as because it is a
measure of the quality of expression and understandability of the requirements.

Finally, this activity includes identification of the linkage of requirements and review of
their traceability in order to support thoroughness and consistency of future revisions of
the expressed requirements, to support testing the requirements against the actual system,
and to support maintenance of the developed system when needed changes or repairs are
desired. Several methods and associated tools apply to these activities. Many, but not all,
are listed in Table 4.

42

Table 4. Activities, methods, and tools for requirements analysis

Completeness checking
Correctness checking
compars specifications to major system cbjectives

Analyze feasibilty
physical, financial, cultural, poitical

Review testability
Review traceabilty and linkage
Evaluate significance, certainty, and interdependencies

Methods* Prototyping

Structured Analysis (including modifications, real-time extensions), e.g.:
DeMarco, JSD, SADT, Yourdon, Ward-Mellor, Hatley-Pirbai

Object-Oriented Analysis, e.g.:
001 AXES, OORA

Finte State Machines

Other specffication methods, e.g:
E-R Modsls, Operatiorial, Petii-Net, PSL/PSA, RLP, SREM, USE

Quantitative analysis, mathematical modeling
View Analysis

Ranking, weighting, prioritizing

Scenario Building

Simulations

Tools* Prototyping Tools

Requirements Modeling Tools. e.g:
Cadre, IDS

Analysis Tools/Models
consistency, completeness, performance

Specification tools, e.g:
Statemate, Dream, PAISLey, PCSL, RTRL, SSL

CORE

* Note: Most of these methods and tools are associated with languages.

For more thorough listings and descriptions of methods and tools, see (2) "Software Methodology Catalog® (U.S.
Army CECOM Center for Software Engineering 1989 D Ft. Monmouth, NJ 07703-5000); (b) "Mapping the Design
Information Representation Terrain® (Webster, D., 1988 D IEEE Computer, Vol 21, No. 12); (c) "Requirements
Engineering: A Systematic Survey of the Literatura® (King, K.N., 1987 D Software Engineering Research Center,
Georgia Institute of Technology, Atlanta, GA 30332).

3.3.3.4.2

3.33.4.3

3.3.3.5

3.3.3.5.1

Problems and Issues

Several problems with tools for the requirements analysis activity were identified. First
and foremost, there are no multi-representational tools (ones which can accomplish all
analytical aspects) currently available. Another major shortfall identified was the inability
of current tools to tailor, or fine tune, their representation. Other tools suffered
limitations as well. Consistency tools should involve balancing various models to ensure
that the processes and data identified in one model are consistent with another, e.g., Data
Flow Diagram (DFD) vs. Entity-Relationship Diagram (ERD), State Transition Diagram
(STD) vs. DFD, but such tools are limited.

Problems involving the extensibility and robustness of the tools were noted as well.
Current completeness tools are concerned with ensuring data identified is within ranges
and values at identified points, but completeness involves much more than this. Current
performance tools are concerned with evaluating selection by performing "rough checks";
they lack detail and are not supported by models. Such rough evaluations are insufficient
for yielding the analysis results needed to specify systems more completely, feasibly, and
to support satisfaction of the "ilities".

Recommendations and Research Areas

Recommendations from the requirements determination section apply to this activity. In
addition, further research into knowledge-based support tools is recommended for
requirements analysis. Prototyping tools need user interface definitions which are
transparent to implementation hardware. More robust modeling of function and
performance of proposed specifications is needed, ie., closer to actual real-world
situations. Research is needed to learn how to capture non- functional requirements to
the extent that the impact to proposed changes in a non-functional requirement can be
predicted. Finally, support for development of tools to help generate and capture
operational scenarios is recommended.

Synthesis

Synthesis involves formation of a cohesive specification from the detailed analyses; it also
involves integration of the partitioned analyses that have occurred due to problem
complexity and breadth. (See Table 5.)

Discussion

The activities here are focused on synthesizing, integrating, revising, and polishing
expressed requirements into a feasible, consistent, beneficial set.

Prototyping for synthesis involves constructing or using prototypes to check if the set of
requirements can be synthesized into a system. Similarly, simulations should mimic the
entire system, not just specific parts, to examine how well the eventual system will do the
job. Sanity checks compare sets of requirements to check if they violate one another’s
basic assumptions. Logical models are used to reveal any potential problems with the
whole set of requirements.

44

Table S.

Activities, methods, and tools for synthesis

Activities Resolve conflicts
Merge models and viewpoints
Integrate concerns
Integrate non-functional and functional requirements
Collect feedback to correct objectives and specifications

Methods Prototyping
Simulation
Sanity Check
Logical Modeling

Tools Requirements Modeling Tools
Prototyping Tools

3.3.3.5.2

3.3.3.5.3

3.3.3.6

The main emphasis of the tools should be to help the user observe the requirements at
work (i.e., in action).

Problems and Issues

The main problems center on tool deficiencies. Prototyping is not rapid enough. There
is not enough support for import/export between tools and/or models, both internal to this
activity, and between this and other major activities. In addition, there is often a
problematic issue of what to do when a user wants to keep the prototype as a part of the
real system (not throw it away after completion). Most prototypes aren’t built to be
user-robust.

Recommendations and Research Areas

Recommended research should focus on synthesis of data schemas, and rapid prototyping
via application domain reuse. More robust executable specifications are needed to
examine the logic and function of proposed behaviors in more realistic, dynamic ways.
Generally, research support for requirements synthesis tools is needed.

Validation

Validation involves ensuring that the expressed requirements match real user needs and
constraints. (See Table 6.)

45

Table 6. Activities, methods, and tools for validation
- _____________ |

Activities Collect stakeholders critiques, evaluations, reviews, and analyses.
Stakeholders are:
users
customers
developers
QA people
V&V people
Methods Walkthroughs
Reviews
Inspections

Evaluations of;
Mock-ups
Prototypes
Simulations

Testing:
testbeds
trial use
alpha, beta testing
feedback during informal development tests and integration
Tools Executable Specifications
Prototyping Tools
Simulation Models
Scenario Analysis
Testbeds

Theorem Provers

3.3.3.6.1 Discussion

Validation is critical to the requirements process. It entails examining the appropriateness
of expressed, synthesized requirements to judge and revise the system mission and
objectives, and any or all system specifications.

Validation of requirements is pot the culmination of the generic requirements process.

Rather, it is_an on-going activity.

Whereas traditionally communication with the user community has been thought to be a
critical factor only for the validation of requirements, we take exception to this view on
two counts. First, we believe that communication with the user community is a critical
factor for all the generic activities. Second, we believe that validation comes not just from

the user community, but from all the stakeholders, e.g., users, customers, developers, QA,
and V&V,

46

3.3.3.6.2

3.3.3.6.3

3.3.3.7

3.3.3.7.1

Methods emphasize collecting evaluations and experiencing the ramifications of expressed
requirements through testing, trial use, thought experiments, etc. Support of breadth of
use and examination is encouraged. Collection and assimilation of feedback is essential.
Tools that support this activity include those for prototyping, generation of executable
specifications, simulations, scenarios and testbeds. Proofs of correctness are a desirable
feature for validation with theorem provers as a potential tool.

Problems and Issues

The major problems with the tools being used are their limited applicability (they don’t
scale up to a system-wide version) and the fact that many (most) of the requirements
models are not interoperable with the validation models. This relates to the problem of
inadequate import/export capability in most tools.

Recommendations and Research Areas
Recommendations for research include the following:
. Coupling working models to real-world stimuli;

. Enabling dynamic analysis through animation of requirements statements, especially
time based analysis;

. Greater focus on long-term research, such as for theorem provers.
Activities Across All Phases

Several activities, methods, and tools were identified for most of the generic activities of
the requirements process. (See Table 7.)

Discussion

Obviously, a commonly identified activity across all activities in the requirements process
is creation and revision of some type of dictionary and/or documentation facility. This
activity is coupled with traceability to support more seamless flow between requirements
expression, development, and revision of both requirements and product. Impact analysis
closely relates to traceability, as does configuration management. These activities are
embraced by some current CASE tools, but most are limited in their applicability.

The identification of activity commonality can be deceiving. We cannot emphasize
strongly enough that while the activity, and even sometimes the method and tool
identified are the same, the focus or application of the activity is different. This is part
of the reason for identifying the generic activities - to encourage these multiple focuses.
Prototyping, for example, is an activity of trial building to investigate alternatives. "What
it is" that is being investigated varies, depending on the main generic activity. Hence, the
use and purpose of prototyping will vary. Similarly, there is variation depending on context
for recording rationale; creating and using executable specifications, simulations, and

47

Table 7. Activities, methods, and tools applicable to several generic requirements activities
L

Activities Creating and/or revising documentation

Creating/revising dictionaries
Recording and checking rationale
Traceability

Impact analysis

Configuration management

Methods Prototyping

Interviewing
Reviewing documents
Modaling

Tools Traceability Tools/Databases

Impact Analysis Tools

Document Production Tools

Data Dictionaries

Configuration Management Systems

3.3.3.7.2

models; interviewing; and acquiring feedback. The fact that the same, or closely related,
methods and tools can be used to support these activities is a great advantage and
opportunity. In the previous discussions of problems and issues we have indicated that
this opportunity is not being sufficiently seized upon. For example, limited applicability
was a commonly cited problem, as was lack of tool integration, lack of
multi-representation, and lack of extensibility and robustness.

Problems and Issues

The number one issue with regard to the requirements process in general concerns
primacy of requirements and needed education. Although it comes as no surprise to
requirements engineers, the centrality or primacy of requirements needs to be reinforced
as both a policy and a practice within the systems development life cycle. For example,
the life cycle should prohibit a systems developer from changing a few lines of code and
updating the systems design without also updating the requirements data base or certifying
that the current design or code change does not change the requirements. The way to
maintain a system is via the requircments - propose changes in the requirements data base
(see para 5.3.7.3, recommendation B.), then review them (impact analysis, engineering
review, management review), and finally forward the approved changes into design and
implementation.

48

3.3.3.7.3

Other specific problems and issues identified as applicable to all the six generic
requirements engineering subprocesses - context analysis, objective analysis, requirements
determination, requirements analysis, synthesis, validation - were as follows:

* How do you identify the entry and exit criteria for each activity, e.g., how do you
know when you’re done defining a requirement;

* Robust methods and tools for trade-off analysis is lacking.
. Insufficient consistency and completeness checking at multiple levels of abstraction;
* Lack of integration of requirements and development processes;

. Lack of clear delineation between prototyping and mock-up impairs selection of
different approaches to system validation and requirements determination;

* Lack of traceability and requirements linkage; e.g., need to identify a model to
depict the relationships and interactions among a set of requirements;

* Insufficient ability to handle rapid change and its impact on requirements;
* Impact analysis tools are limited in capability;
. Most data dictionaries are not object oriented;

. Configuration management tools are limited, control does not extend to manage
changes of each individual requirement.

Recommendations and Research Areas

Seventeen research topics were identified. Each is listed below along with explanatory
text.

1. Groupware to formulate and clarify operation concepts and critical success factors.
A number of consensus oriented, decision-support oriented, and knowledge-based
approaches towards facilitating group efforts are now surfacing. The application of
these techniques to the early activities of the requirements engineering domain
should be most beneficial.

2. Alife cycle requirements database to capture and manage attributes of individual
requirements and provide traceability. Given that

* The requirements data base is the central repository of the system
requirements,

. All changes to requirements need to use this data base to perform impact
analysis of candidate changes, and

49

. This data base must be kept current to reflect all approved changes, there is
then a premium on traceability and linkage of requirements as well as the
management of requirements attributes, such as level of importance, degree
of certainty (in the statement), potential for change, expected requirements
life span, etc. Tools and methods are crucial to facilitating, evaluating and
possibly automating these requirements data base maintenance tasks.

This recommendation can be made even stronger. To support tracing
requirements to designs to code to tests to documentation, etc., a
requirements database must be integrated with a database which spans all
development and usage activities, not merely activities which cover the
requirements aspects.

Identify a requirements model(s) to describe the interaction among requirements
to provide understanding and synthesis support. Extensive requirements
specifications are difficult to understand holistically! In addition to tracing and
linkage, as well as proximity analysis methods (such as incidence, precedence,
reachability and clustering matrices) there needs to be a better understanding of the
higher meaning of several requirements interacting together. Such synthesis of
requirements can be supported by requirements models.

Mechanism for trade-off analysis. Tools and techniques are needed to capture,
organize, and help evaluate the many trade-offs that occur in requirements
development. Intelligent impact analysis is an example.

More seamless integration between tools, and between requirements
representations, to support propagation of change. As the requirements change -
either as direct changes to an underlying data base or as changes in generated
textual or diagrammatic derivatives - all representations of the requirements must
be updated to reflect the change. Research into better linkage between
representations is needed. Correspondingly, there is need for automated tools that
link such methods as data flow, object oriented, state diagrams, text, etc., so changes
in any such representation are reflected in all representations. Other related tools
include those for automatically maintained consistency, configuration management,
and automated documentation generation.

Methods for self-consistent, rapid modification of large systems. When emergency
changes are made to mission-critical software, the requirements are often not
updated (synchronized). Better methods and automated support for maintaining
requirements data base consistency are needed to correct this problem.

Reverse engineering methods to derive requirements from existing systems. A
number of existing systems are not accurately reflected in their requirements. This
greatly limits the use and re-use of those systems. Failing to maintain
synchronization between the requircments statement and the implemented system
as the system evolves, there is a need to use reverse engineering to (re-)synchronize
them.

50

10.

11

12.

Process modeling tool for active guidance; and integration of major activities.
Managers and engineers like neatly formed boxes with clean arrows leading between
them. Unfortunately, the real world of software requirements is not that well
ordered. There is a need to determine criteria for leaving a major activity,
returning to one, and transversing among the different activities of the requirements
engineering process. Data on project statistics that correlates historical decisions
with results would be of value here.

Mechanisms and metrics for aiding selection of methodologies. How do we choose
which methodology (object oriented, data flow, state-transition, etc.) is best for any
given requirements life cycle task? Collection and publication of data on project
statistics would support this.

Hierarchical, multi-level Process Definition Language (HPDL) to facilitate
expansion of requirements including localization, decomposition and information
hiding. This tool would provide a method for several requirements engineers

(different stakeholders, each with different levels of responsibility and domains of

expertise) to identify and add detail in an orderly way in formulating a requirement.
Information hiding and multiple levels of detail are beneficial characteristics for
requirements browsing or other usage of requirements expression. For example, an
initial HPDL statement might be:

Develop a payroll accounting system
Pay hourly employee
Pay weekly employees

But "outliner" capabilities may enable other detail to be present or be added, e.g.:

Develop a payroll accounting system
Pay hourly employees

{Determine regular pay { -- decomposition }
[Sum up regular hours worked [-- still further refined by an accountant]
Muttiply by regular pay rate

Add in bonuses.)
Determine over-time pay
Calculate Deductions.}

Pay weekly employees.

Mechanisms for expressing ambiguity. There needs to be a method to purposely
express ambiguity (such as response must be fast) as a temporary place holder. A
requirements management system would then prompt a query, when it finally needs
clarification, such as: "What do you mean by 'fast’? Please provide parameters.”

Rigorous approach to consistency and completeness checking at different levels.
Although rigorous mathematical techniques exist for consistency and completeness
checking at the lowest level of requirements detail, e.g., data item/process,
techniques do not exist at any aggregate levels. In general, there needs to be
multiple levels of formalism.

51

3.3.4

3.3.4.1

13. Quantification of factors in needs identification and analysis. A number of
requirements attributes need to be quantified; methods and metrics are needed.

14. '"llities"-driven requirements engineering methods. "llities", expressed in
non-functional requirements, are either (1) those which do not directly trace to
basic operational concepts but rather to external constraints, or (2) those
requirements which, unlike functional requirements, we have not yet learned to
express formally. A number of "ilities", chief among them maintainability (or
flexibility to change), need to be built-in to requirements as special items to be
considered throughout the requirements engineering process.

15. Template and tools for identifying and describing "ilities". First a template to
identify the non-functional requirements or “ilities" (see item #14 above) in order
to keep them from falling through the cracks and then tools and/or languages to
evaluate and express these non-functional requirements are vital to this ever
important portion of the requirements data base.

16. Research into the impact of parallel processing on the requirements process.
Determine what impact, if any, parallel processing capabilities in the target
hardware has on the requirements engineering effort.

17. Develop system mock-up approaches and tools to aid requirements determination
and system validation. Mock-ups (not to be confused with prototypes) have great
utility in requirements determination and system validation. This technology needs
to be exploited via better understanding and better tools.

Requirements Languages

Requirements engineering languages are mechanisms to express and control requirements
information. A requirements engineering language can be proposed in two basic forms:

* A syntax for a specific language notation, or
* A schema for incorporating several language notations.

The approach taken by the language subgroup was to identify problems and issues with
current requirements specification languages, develop a set of objectives, and make
recommendations for developing an encompassing language schema to incorporate the
strengths of the many specific requirements language notations. The group’s activity was
focused by constructing a set of tables which related the objectives to both present day
languages and the six subprocesses in the requirements definition process. In order to
create these tables the group progressed through an actual requirements definition
process. Table 8 reflects a summary of the tables created during the group session.

Requirements Language Problems and Issues

The generic problems of system requirements are inherently due, in large degree, to the
difficulty in specifying these requirements in a formal language. English is much too

52

3.3.4.2

ambiguous and context dependent to be used for any but the most mundane requirements.
Design languages and programming languages available today are too limited to express
the range of information types and relationships needed to fully define and document
system requirements. The discovery of system failures due to errors in requirements is a
continuing nightmare.

Current problems with requirements specification languages include the following:

* Currently used languages fail to capture requirements information effectively to
support system evolution.

. Non-functional requirements cannot be adequately specified.

¢ The synchronization problem - Because requirements specifications are separate
from the systems they represent, there is no automatic way to ensure that changes
to systems are reflected in the requirements, or vice versa.

. Current languages are not expressive enough to represent diverse viewpoints.

. There are too many gaps in knowledge about requirements engineering. This leads
to gaps in the formalisms that can represent system requirements. Functionally,
requirements languages are discontinuous and incomplete across the spectrum from
concept specification to executable code specification.

* Too many facts have to be known before any requirements specification language
can be used.

Requirements Language Objectives

A comprehensive and integrated technology is needed for use in defining and
automatically developing software systems. These needs point to a wide-spectrum
requirements engineering language. Such a language should be usable to both define a
system and also support its development. Specifically, such a language should include the
ability to:

* Capture real-world definitions -- These include the definition of functions and
objects in an object-oriented environment, and the mechanisms to hide information
based on different views.

* Be inherently reliable -- Implementation-specific results are traceable to
requirements objects and changes in objects, inconsistency and logical
incompleteness are not allowed from the largest to the smallest system details (e.g.,
data flow, priority, and timing errors are eliminated).

* Maximize flexibility -- Requirements can be specified independent of platform; can

be used in various modes (e.g., prototyping, production, documentation); may exist
in multiple forms or syntaxes but have a single semantic meaning; arc generally

53

3.3.4.3

3.3.4.4

declarative and non-procedural; are portable, based on an open architecture,
modular, and can represent various levels of abstraction.

Maximize the opportunity for parallelism -- Dependent, independent, and
decision-making patterns are made explicit attributes of requirements. Finding out
about parallelism issues would not have to wait until implementation.

Maximize automation -- Automatic generation of executable and non-executable
forms of the system are supported; multiple forms of the language can be
generated; muitiple forms of documentation can be generated (e.g, 2167A
documents, FIPS 38, 7935); and automatic analysis for adherence to control
structures rules is supported.

Maximize reusability -- The language supports parameterized user extensions.
Reusability would not have to wait until after development.

Maximize productivity -- The combination of the above objectives contributes to
orders of magnitude of productivity improvements; e.g., maintenance is minimized
due to eliminatior of errors in requirements specification and the system can be
made visible in a variety of automatically generated forms for analysis from
orthogonal viewpoints.

Language Table

An analysis of the importance of specific existing requirements languages against the
objectives of an ideal requirements language is shown in Table 8, Part A. Part B of
Table 8 shows the impact of language-related objectives on the six subprocesses of the
requirements definition process. The uncertainties in these estimates are reflected in the
group’s judgement that the actual usefulness of the languages, based on real life
experiences, seemed closer than a comparison of the averages suggest.

Requirements Language Recommendations

The analysis of requirements for a wide-spectrum requirements specification language led
to the following recommendations:

The language should incorporate both non-procedural and procedural constructs.
It should require the user to enter a minimum of control and data management
information.

It should provide multiple views of the system based on environmental contexts, i.e.,
graphical for conceptual views, textual for analysis, etc., but the semantic meaning
should be constant for ail views.

The language should be exccutable for animation, simulation, and prototyping
purposes.

54

Table 8. Ideal requirements language objectives
. _____]

PART A LANGUAGE-RELATED OBJECTIVES
Current Requirements Languages 2 3 5 Average
Logic Based 2 3 3 2 1 4 25
Functional 2 3 3 3 2 4 27
Ada 2 4 3 4 2 3 3.0
Object Oriented (Smalitalk, C++, Simula) 4 4 4 2 2 5 3.5
Structured Analysis (SADT, SA/RT, etc.) 4 2 3 2 2 3 27
VDM 4 4 3 2 1 4 27
001 AXES 4 5 4) 5 5 4.6
4GL 3 3 3 1 2 4 27
PROTO _ 4 3 4 2 1 4 3.0
PART B LANGUAGE-RELATED OBJECTIVES
Requirements s‘ub-Processes 3 4 5 Average
Context Analysis 5 1 5 5 2 5 38
Objective Analysis 5 1 5 5 2 5 38
Requirements Definition 3 . 2 5 3 4 5 3.7
Requirements Analysis 3 2 5 3 5 5 3.8
Synthesis 2 5 5 2 5 5 4.0
Validation 2 5 5 2 5 5 4.0
Weighting Factors
1 = minimum effect 5 = maximum effect
Language-Related Objectives Key

1 = Captures Real-World Definitions 4 = Maximizes Opportunity for Parallelism

2 = Concentrates on Reliability 5 = Maximizes Automation

3 = Maximizes Flexibility 6 = Maximizes Reusability

Average (1-6) = Maximizes Overall Productivity

L~~~ " |

55

3.3.5

e It should minimally provide the mechanisms for defining abstract high level
coricepts, intermediate architectures, logical and physical design information, and
environmental constraints in both canonical and orthogonal forms.

Several recommendations surfaced as prescient and necessary for implementation of many
of the other recommendations:

¢ Develop knowledge representations for requircments information.
* Solve the problem of defining the so-called "non-functional” requircments.

. Map project management and control structures to system views for automatic
determination of static and dynamic resource allocation.

* Develop a wide-spectrum requirements engineering language that meets the
objectives defined in this section.

Glossary

001 AXES - Object-oriented requirements language and methodology based upon a
concept of control.

Behavioral Profotype - A prototype used to model what the system is supposed to do.
It is black-box, and exhibits responses to stimuli. It is used for concept exploration and
validation.

CORE - Controlled Requirements Engineering.

Delphi Method - In a Delphi method several people prepare estimates independently
and are then told how their estimates compare to those of the others. Next, they are
allowed to alter their estimates. This leads to an iterative technique in which many of the
estimates finally converge to a narrower range from which a single value may be chosen.
DREAM - Design Realization, Evaluation, and Modeling system.

E-R Models - Entity Relationship models.

Functional Requirements - Requirements that express behaviors expected of a system,
i.e., what the system should do.

JSD - Jackson Structured Design.
Meta-system - The set of systems that together support a given domain.

Mock-up - Material simulation of a system component used to help visualize that
component’s functionality.

56

Non-functional Requirements - Requirements that express constraints, attributes, or
qualities that systems must possess or exhibit.

OORA - Object-Oriented Requirements Analysis.

PAISLey - Process-oriented, Applicative, and Interpretable Specification language.
PCSL - Process Control Software Specification language

Petri Nets - A directed graph representation language supporting parallel design.
Prototype - An initial implementation of a component or a system. It is generally
deficient in one or more areas (e.g., performance, functionality, or robustness), but is able
to demonstrate some features of interest. Prototypes are useful for investigating system
behavior and structure. See also Behavioral Prototype and Structural Prototype.
PSL/PSA - Problem Statement Language / Problem Statement Analyzer.
Requirements Centered Development Life Cycle Model - The requirements process
serves as the command and control center for system evolution. It steers other activities
(e.g., prototyping, design, testing, validation), but requires information input from those

activities to do so.

Reverse Engineering - Getting the documentation for existing systems "in sync” with the
system’s actual implementation. This especially includes the requirements documentation.

RLP - Requirements Language Processor.

ROI - Return on investment.

RTRL - Real-Time Requirements Language.

SADT - Structured Analysis and Design Technique

Scenario - A sequence of events which occur in the system/environment setting, or only
within the system itself. A frequent use of scenarios is to depict the reaction of the
system (also an event) to one or more prior events, i.e., stimulus/response group(s).
Scheme - A way of performing a set of activities.

Simulation - An executable model or mock-up of the system, or a significant part of it,
which exhibits behavior or characteristics that aid analysis of issues. The inner mechanism
of the simulation may have little in common with the final system solution.

SREM - Software Requirements Engineering Methodology.

SSL - System Specification Language.

57

Stakeholders - Persons or organizations, by category, who are participants in the process
and who have particular needs, concerns, or responsibilities related to system definition,
development, use, or acquisition.

Structural Profotype - A prototype used to model how the system will accomplish its
black-box behavior. Thus, a structural prototype is a clear-box model. It is used to
determine feasibility, explore design alternatives, and estimate implementation and
execution costs.

USE - User Software Engineering Methodology.
Verification and Validation (V&V) - Analysis to judge whether requirements artifacts
adequately express user needs and meet other quality attributes; to judge whether the

actual needs appear to have been perceived sufficiently; and/or to judge and evaluate the
system in terms of progress toward satisfying the requirements.

58

3.4 Working Group 3:

Rapid Prototyping and Knowledge-Based Techniques

Edited by: Dr. Winston W. Royce, Working Group Chair, with Mr. Robert M. Poston.
3.4.1 General Information
3.41.1 Working Group Participants
NAME EMPLOYER COUNTRY
Bagley, David CECOM Center for Software Engineering USA
Casey, Philip US Army Training & Doctrine Command ~ USA
Conrad, Thomas P. Naval Underwater System Center USA
Greene, Cordell Kestrel Institute USA
Harris, David R. Sanders Associates, Inc. USA
Huskins, James Naval Post Graduate School USA
Johnson, W. Lewis University of Southern California USA
Little, Reed Carnegie-Mellon University (SEI) USA
Morel, Martin Le Groupe CGI Canada
Poston, Robert M. Programming Environments Inc. USA
Royce, Winston W. SoftwareFirst USA
Sobolewski, Victor C. Australian Embassy Australia
Stachowitz, Rolf Lockheed USA
Watgen, David Advanced Technology Inc. USA
3.41.2 Roadmap: A Guide to Working Group 3 Activities

This report on the activities of Working Group 3 is divided into four parts. The
introduction defines the problem domain of the two subtopics and the working group’s
approach. This is followed by an issues section, then recommendations, and finally a
glossary. The issues and recommendations sections treat the two subtopics separately.
Each issues subsection begins by posing a series of questions that the group deemed
central to the subtopic. The rest of the subsection analyzes each of the questions in turn.
The recommendations are divided into recommendations for management and policy,
development, and research.

59

3.4.2

3.4.2.1

3.4.22

Introduction
Definitions and Problem Domain

The task of Working Group 3 was to analyze two specific aspects of requirements
engineering: Knowledge-Based Approaches (KBA) and rapid prototyping.

Knowledge bases are repositories of formalized knowledge about a domain or area of
expertise. A knowledge-based approach is a technique that actively employs knowledge
bases and knowledge-based tools. KBAs may be used to facilitate and enhance
requirements engineering,

A prototype is an executable model of a proposed system. It may include only a partial
functionality of the final system. It is generally not optimized for performance and may
be written in a fourth-generation language (4GL). Uses of prototypes include
demonstration of the user interface of the system and testing of various aspects of the
future system. Rapid prototyping refers to the incremental process of building prototypes
in a relatively short amount of time.

Requirements engineering is currently a complex, error-prone, manual task. Often it is
difficult to stipulate the requirements and specifications for a system at the beginning of
a project. Yet, a thorough requirements engineering process can greatly improve product
quality as well as increase the productivity of the design and test phases and reduce the
amount of time spent on maintenance of the system. Knowledge-based approaches and
rapid prototyping can be used to strengthen and improve requirements engineering. The
task of Working Group 3 was to explore the issues involved in employing rapid
prototyping and knowledge-based approaches for requirements engineering and to develop
a set of recommendations aimed at incorporating these techniques into the software
development process.

Working Group Approach

Working Group 3 met in three sessions. Unlike the other working groups, it did not
break up into individual subgroups. During the first session, the group considered a set
of ten questions (five knowledge base questions and five rapid prototyping questions)
which had been prepared in advance by Chairperson Dr. Winston Royce. Members of
the group added their own questions to this list (for a total of twenty-one questions) and
then voted to determine which questions were most urgent. Eleven of these were
rejected as being of a lower priority, and the remaining ten questions were combined into
a set of seven questions (four knowledge base questions and three rapid prototyping
questions). For each question, one person was assigned to lead the discussion of the
question and a second person was assigned to record the responses to the question (the
scribe). The remainder of the first session was a brainstorming session in which answers
to and pertinent issues of the seven selected questions were suggested and recorded. If
the proposed ideas were in conflict, no attempt was made to reconcile the conflicts at this
time.

3.4.3

3.4.3.1

3.4.3.1.1

The second session focussed on the seven questions for a second time, with question
leaders and scribes in reversed roles. The issues and answers were elaborated on and
conflicting views were resolved. Based on these issues and answers, a set of
recommendations was developed and recorded.

The third session cleaned up any final concerns and made some minor changes to the
issues, answers and recommendations. Question leaders and scribes then met to draw up
the final issues and recommendations for each question in preparation for the 16
November presentation.

Issues

The following sections address the issues that arose while analyzing knowledge-based
techniques and rapid prototyping.

Knowledge-Based Techniques

The following questions pertaining to knowledge-based approaches to requirements
engineering were examined:

. Are knowledge-based approaches to requirements engineering useful for real
systems? What kinds of requirements engineering problems are best solved by
KBAs?

. What are the special risks of using KBAs for requirements engineering? What are
the benefits of using KBAs for requirements engineering?

. What changes are needed in the software development process -- and what features
are needed in our models of the software development process -- to exploit
knowledge-based approaches?

. What are the existing knowledge-based systems and tools?

The following sections grapple with each of these questions in turn.

The Use of KBAs and Their Application To Real Systems

In determining the usefulness of KBAs for requirements engineering, the following
observations were made:

* Size of application. The feasibility of KBAs for requirements engineering has been
established for applications ranging in size from 1000 to 30,000 requirements.
Extensions to higher ranges remain uncertain.

¢ Availability of expertise to establish knowledge base. The availability of expertise

to establish the required knowledge base varies significantly with the application
domain. Obviously, the more available the knowledge is (the human experts used

61

3.43.1.2

to build the knowledge base), the more potentially useful a KBA approach will be
to the system.

Maturity of KBA tools. Although several automated tools are available to support
KBAs, there have been relatively few experiences involving large applications.
Consequently, there is some question of tool robustness.

Skill base for using KBAs. In contrast with the expertise required for building
knowledge bases, it is unknown whether there will be need for long learning periods
prior to effective use of KBA tools. It seems to depend on the particular tool.

Quality of KBA-generated requirements. There is a definite need to develop data
on the quality of KBA-generated requirements. It has yet to be established whether
or not KBA-generated requirements are of a higher quality than "normal”
requirements. The lack of such data is an obstacle to the extended use of KBA's.

Quantification of costs/benefits. There is a definite need to develop data on costs
and benefits deriving from the use of KBAs for requirements engineering. The lack
of such data is a serious obstacle to the expanded use of KBAs in the near term.

Functional vs. non-functional requirements. While there was intuitive agreement
that KBAs are potentially useful for both functional and non-functional
requirements engineering, concern was expressed about a more fundamental
problem. There are no (known) KBAs that address non-functional requirements,
and there is a serious need for research in the realm of knowledge acquisition
regarding requirements.

Context of the knowledge. The context must be sufficiently bounded for KBAs to
be useful.

Risks and Benefits Of Using KBAs For Requirements Engineering

The following were identified as special risks of using KBAs for requirements engineering:

High cost per user ratio. If an organization is going to build a knowledge-based
system, substantial resources will be invested in the requirements analysis phase.
The resulting knowledge base is typically narrow and application dependent, with
a low probability for reusability.

Lack of skill base. There is a lack of a skill base in doing requirements engineering
and creating knowledge-based systems. This impacts system quality and cost.

Lack of suitable methodology. Knowledge-based systems are new and very complex.
Without a formal methodology, the system may be misused.

Lack of productivity metrics. There is a lack of standardized, accepted productivity

metrics which would demonstrate why it is better to use a KBA over another
approach.

62

3.43.1.3

Overdependence. Systems are not envisioned to replace human creativity and
critical thinking,

Liability. There are potential legal liability issues as to who would be accountable
for any errors in the knowledge base and the harm they may cause.

The following were identified as special benefits of using KBAs for requirements
engineering:

Reuse. The use of a knowledge base would provide corporate memory as well as
project memory. Better tracking of intra-project dependencies are facilitated by
knowledge-bases. Later, products that reuse the knowledge bases will require fewer
up-front cost and time investments. Existing knowledge bases could also be
marketable.

Better Management of Changing Requirements throughout the software life cycle.
Knowledge-based approaches provide the means to improve the integration of
requirements with other life cycle phases. They support "live" requirements, ie.
requirements that are continually being changed and upgraded throughout the
software life cycle. Knowledge-based approaches would also provide the ability to
compute the impact of changing requirements on the system and to generate
documentation from requirements.

Improved accuracy. When used properly, it was felt that knowledge-based
approaches can provide a better facility for consistency and completeness testing.
They can increase the analyzability (of performance, security, etc.) and testability
of a system. They can also provide the capability for rapid prototyping and
requirements validation.

A Software Development Process To Exploit KBAs

In order to fully exploit knowledge-based approaches, the software development process
should allow for the following:

Evolving requirements knowledge bases. In procurements it is often necessary for
requirements to evolve; therefore, the requirements knowledge base must also
evolve. In this case the process model should include an incremental knowledge
acquisition activity.

Validation and consensus of the requirements knowledge base. Validation of the
requirements KB by software builders, buyers, and users must be part of the process
model.

Development resources planning and allocations. Knowledge engineering requires
a high up-front investment to develop and analyze the knowledge base. If the
knowledge base can be reused for another system, cost and schedule will be
significantly reduced for the next system’s initial phases.

63

34314

Existing Knowledge-Based Technology

The group recommended that the following be considered as examples of knowledge-
based approaches to requirements engineering:

* ARIES
- Integrates formal/informal requirements
- Concepts as objects in knowledge base
- Formal transformation of requirements

* REFINE

- Commercial VHLL (Very High Level Language) specification language
- Specification transformation

. GIST

- Used in software factory project, ARIES
- Operational high level specification language

. EXPRESS

- VHLL specification language
- Automatic programming

. EVA (Expert System Validation Associate)

- Logic-based
- Meta knowledge-based

. Programmer’s Apprentice

- Basis for Requirements Apprentice

- Basis for KBEmacs
* T
- Commercial VHLL specification language
- Specification transformation
- Automatic verification
* KATE

- Interactive requirements analysis
- Requirements specification

3.4.3.2

KIDS

- Algorithm design
- Interactive

DRACO

- Domain level specification
- Reuse of domain knowledge

Domain-specific application development systems:

- WATSON (TELEPHONY)
- Phinix (Oil Exploration)
- VLSI router

Foreign efforts:
- ALVEY

- ESPRIT
- Sth generation efforts

Rapid Prototyping

The following questions pertaining to rapid prototyping were examined by Working
Group 3:

Who should do prototyping? What are the products of prototyping?

Do current regulations and standards discourage prototyping? What changes to the
acquisition process are needed to accommodate prototyping?

How are prototypes used? What properties should a prototype have? What are
some examples of current prototyping tools? What properties do/should they have?

Some general insights that arose during the discussion of prototyping were:

Prototyping yields a competitive edge. Contractors tend to treat prototypes as
proprietary items because the prototypes can sometimes provide an edge in further
contract competition.

The software developmant schedule must be rearranged to allow prototyping to
affect the final product. Prototyping requires that more time be allotted to the
requirements phase of development.

Can we afford to prototype? Can we afford NOT to prototype? Prototyping adds

to the start-up costs of projects. However, the group feels that this development
cost is more than justified because prototyping can reduce risks during system

65

3.4.3.2.1

development. Prototyping helps to determine the "correct” requirements from the
start, increasing the percentage of system functionality that is "built right the first
time." Also, it is far more expensive to change a requirement during advanced
development stages, compared with the cost of making the change in an earlier
phase.

Participants and Products in the Prototyping Process

Representatives from every stakeholder group which perceives a risk in the
outcome of the final system should be involved in the prototyping process. Figure 1
portrays the interrelationships between stakeholders in the development of a typical
military system.

Possible products of rapid prototyping include:

- Formal specifications

- Operational prototypes

- Representation (model) of requirements

- Validation of experimental hypotheses

3.4.3.22 Standards, Current Development Practices, and Prototyping

3.4.3.23

The DoD currently has the Software Development Standard, DoD-STD-2167A, to guide
the software development and documentation process.

Prototyping products are not recognized. The products of prototyping have not
been recognized as standard contract deliverables. This makes it difficult for an
acquisition agency to require prototyping and specify what is to be delivered.

Regulations and Standards inhibit innovations such as prototyping. Since individuals
prefer the security that compliance with a standard provides, they are reluctant to
accept deviation or change.

Design review process is not amenable to prototyping. Design reviews currently
have a well-established structure and schedule which are not compatible with the
evolutionary requirements development process.

Development times preclude effective prototyping. Time lines for current
acquisition projects do not include sufficient time in the requirements process for
effective prototyping.

Uses, Properties and Examples of Prototyping Systems and Tools

The group determined that prototypes may have one or more of the following uses and
propetties, depending on the purpose of the prototype:

66

TECHNICAL

DIRECTION
AGENT
END USER
or
USER'S REP
PROCURING
AGENCY DEVELOPER
LOGISTICS
AGENCY
SE&l
or
IVV AGENT

Figure 1. Interrelationships between stakeholders in the development of a typical military system

* Definition of an application’s data domain (model), functional decomposition, and
user interface. The prototype defines a model of the system to be built. It depicts
the components of the system: the data and the functions that comprise it, and the
user interface.

. Implementation of a subset of an application. A prototype may implement only
some of the functionality of the proposed system in order to provide a rough model
of how it will work.

* Provision of a tangible "running" system for the stakeholders. For an end user, the
prototype can provide a hands-on, interactive representation of the final system.
This type of prototype is mainly geared towards modeling the user interface. The
prototype can also aid in the refinement of requirements. It can provide a clear
demonstration of what a requirement is under at least one interpretation. This can
bring out inconsistencies beiween stakeholders’ requirements, providing a basis for
discussion and reconciliation. For the developer of the system, the prototype can
provide a tangible model of the system’s behavior.

67

3.4.4

» Allow performance bottleneck prediction within the operational system and the
development project process. A prototype can be constructed to provide a means
of predicting the likely bottlenecks in a system, using alternate designs. It is not
necessary for a prototype to be performance optimized. In fact, this may not be cost
effective.

. Reduce risk. By implementing a prototype, users, developers, and managers, all
players pictured in Figure 1, will have a clearer understanding of what functions
require greater effort to implement than expected. The risk of unforeseen delays
and uncontrolled costs will be reduced.

* Serve as a transition towards the implementation of an operational system. There
was some disagreement as to whether or not systems should be built through
successive refinement of the prototype. That is, whether systems should be
constructed with evolutionary prototyping. It was agreed that this should be decided
on a project-by-project basis.

The group recommended the following examples of prototyping tools:

. Data domain and functional decomposition tools:

- 4GL RDBMS (Fourth Generation Language Relational Database
Management Systems):

- ORACLE, UNIFY.
- Integrated CASE tools.
- Software through Pictures.
* User interface definition tools:
- Dan Bricklin’s DEMO, Skylights GX, Videoworks, Supercard, Prototyper.
- TAE Plus, Serpent, PROTO.
* Executable specification tools:
- REFINE, APS, MICROSTEDP, Statemate.
Recommendations
Recommendations are divided into those for knowledge-based techniques and those for

rapid prototyping. Each section of recommendations addresses the areas of management
and policy, development, and research.

3.441 Recommendations for Knowledge-Based Techniques
3.4.4.1.1 KBA Management and Policy Recommendations
* Formulate a new DoD software acquisition policy in order to:

- Allow for an incremental, evolutionary process. A KBA development is
typically incremental and evolutionary. Policy must sanction this methodology.

- Accommodate KBAs in the requirements engineering phase. KBAs are
resource intensive on personnel in the early phases of development.

* Develop and apply new software process model. We must gain practical experience
in developing and applying this new, evolutionary model.

. Invest in KB development early in the process. Like changes in system
requirements themselves, KBAs are less costly the earlier in a project they are
introduced.

. Reuse knowledge bases in related projects. The knowledge base developed for one
project should be useful for future projects.

. Amortize investments across many projects. Ideally this would be done in
proportion to the expected payback of each individual project.

3.4.41.2 KBA Development Recommendations
* Initiate KBA for RE on a large, real project. It is important that we gain practical
experience on a real project in order to determine where further development
effort should be directed.

- Minimize risk to the real project through use of a shadow project. This will
provide the means to collect the necessary data without negatively impacting
the main project. The use of a shadow project makes it possible to coliect
enough information to evaluate errors in the system in terms of the
requirement specifications as well as the knowledge base and the tools that
use the knowledge base.

- Use the shadow project to:

. Develop and apply quality metrics.
. Develop and apply productivity metrics.

. Perform cost and benefit analyses.

- Consider change impact analysis as a candidate for a shadow project.

69

Use previous experience with KBAs as input to future DoD standardization efforts.
Past history will enable projection and minimization of ihe most probable errors for
subsequent KBA efforts and provide a basis for standardization.

3.4.4.1.3 KBA Research Recomyendations

Extend research in verification and validation (V & V) techniques by using KBAs
to test for:

- Completeness — All the requirements are satisfied.
- Consistency —- There is no conflict among the requirements.
- Correctness — Every requirement satisfies the intended user need.

Expand research in knowledge acquisition and management for RE. We need to
know how to get the knowledge, and once we have it, figure out what to do with
it. We also need to research configuration management of knowledge across
products and projects. The KBs themselves become resources and can in fact be
treated as commercial items.

Expand research in knowledge acquisition and management in light of existing
methodologies and tools.

Extend research in more powerful models with greater expressiveness. There is a
need to cxplore formalisms to encourage completeness checking in many different
areas, such as:

- Meta-mcdels with self-knowledge. The knowledge base would have the
ability to recursively explore itself.

- Non-functional requirements. These include the so-called "ilities," such as
maintainability, reliability, security, and performance.

- Non-standard logics. For an adequate description of the possibilities, some
situations require more than two truth values.

- Non-monotonic logics. Many sets of requirements cannot admit certain new
requirements without contradicting previously valid requirements.

- Models with tolerance for inconsistency, uncertainty, etc. Projects often

begin with insufficient or contradictory information; knowledge bases have to
be able to handle these situations.

70

3.4.42

3.4.421

3.4.422

3.44.23

Recommendations for Rapid Prototyping

Rapid Prototyping Management and Policy Recommendations

Modify the development stages and time frames to be supportive of prototyping.
The development stages need to be redefined and the amount of time required to
complete each stage needs to be estimated. There may be a need for a separate
requirements development phase.

Define the objectives of requirements/design reviews for systems which use
prototyping products. The use of a prototype creates the need to clarify the
purpose of a design review.

Define the products and the uses of those products for prototyping during the
software deveiopment cycle. There is a need to specify the forms which the
products should take and the manner in which they should be used. This
information should be included within the appropriate military standard documents
and guidelines for contract deliverables.

Support competitive prototyping efforts. Contractors can, and should be able to,
compete their prototypes against each other.

Investigate alternative acquisition models. Consider, for instance, different
contractors for the prototyping effort and the objective system development.

Rapid Prototyping Development Recommendations

Develop training strategies. Develop training programs for users, user
representatives, and acquisition personnel to make them better aware of the
prototyping approach.

Rapid Prototyping Research Recommendations

Conduct research on the traceability of requirements. Requirements should be
traceable through the prototype and back into the development of the objective
system.

Conduct research on the validation of "non-functional" requirements. Prototyping
should support the validation of non-functional requirements such as reliability
(criticality, vulnerability and tolerance), maintainability, accuracy (precision),
performance, timing, speed, and reusability.

Conduct research on model documentation. Explore tools and process mechanisms

which generate prototype model documertation. These tools should automatically
document the user requirements, as demonstrated by the prototype.

71

3.45

. Conduct research on the communication of results. There needs to be a formalized
method for communicating prototyping results between the various stakeholder

groups.

¢ Conduct research on the legal issues of delivery. Contractual vehicles and
responsibilities must be clear on the delivery of prototypes. Different parties may
have different expectations of what the prototype should be, if prototypes are to be
deliverable. There is a potential for the user who does not understand the purpose
of a prototype to reject it as being a deficient system. Conversely, the uscr may
want to field the prototype instead of the originally proposed system.

. Conduct research on the insertion of prototyping technology. Rapid prototyping has
already caught on. We must learn from our experience in prototyping to better
answer such questions as where in the life cycle prototyping should be used and
what types of systems it is appropriate for.

Glossary

Knowledge Base (KB) - A repository of formalized knowledge about some domains and
areas of expertise.

Knowledge-Based Approach (KBA) - A technique that actively employs knowledge bases
and knowledge-based tools, and various programming techniques such as frames or rules.

Meta-model - As distinct from a model of a particular application, a model that, through
knowledge of itself, describes the properties of, and the relations between, any and all the
requirements statements of a system.

Monotenic logics - Logics in which the addition of new axioms does not invalidate
previously proved theorems.

Non-functional requirements - Requirements that are not directly related to a particular
function. Some examples include: reliability, availability, maintainability, security, ease of
use, ease of learning, and performance.

Non-monotonic logics - Logics that are not monotonic.

Non-standard logics - Logics with more than two truth values.

Requirements Engineering (RE) - A systematic method for devcloping quantifiable and
testable requirements.

Shadow Project - A separate, funded, research-like project that runs in parallel with, but
does not impact upon, the main project.

72

3.4.6

Referenced Documents

Barr, A. and Cohen, P., The Handbook of Artificial Intellisence, Vol. IV, New York:
Addison-Wesley, 1989.

73

3.5

3.5.1

3.5.2

Recommendations and Conclusions

The workshop produced many valuable insights and recommendations. These insights and
recommendations are fully documented in these Proceedings. It is especially important to
note the recommendations that were common to the three groups, which worked
independently.

DoD Policy Changes. Every group saw the need for DoD to change policy to
accommodate evolutionary acquisition.

. Working Group One recommended DoD "make changcs to acquisition policies and
DoD standards to facilitate evolutionary acquisition.”

. Working Group Two proposed DoD "change acquisition policies and management
practice to support a requirements-centered development life cycle model.”

* The third working group rccommended DoD “formulate a new DoD software
acquisition policy in order to allow for an incremental, evolutionary process ..."
Further DoD needs to

..modify the development stages and time frames to be
supportive of prototyping. The development stages need to be
redefined and the amount of time required to complete each
stage needs to be estimated. There may be a need for a
separate requirements development phase.

In sum, we should "consider alternative acquisition models."

Government Acquisition Personnel Training. All groups saw the need for increased
training for Government acquisition personnel to make them more aware of
Requirements Engineering issues and techniques.

. Working Group One recommended DoD "educate contracting officers and their
technical representatives on the evolutionary acquisition approach; emphasize that
system requirements can not be fully defined a priori; and that requirements
engineering is continuous throughout the life cycle of the system." DoD must
"educate program managers and team members that ’changing your mind’ as a result
of new information is acceptable." DoD must "train Government program managers
in the use of acquisition models that employ prototyping.”

. Working Group Two proposed DoD "increase training of management/acquisition
personnel in Requirements Engineering.” DoD should also "establish an
information/consultation center on requirements engineering (process, methods,
tools, and metrics.)"

74

3.5.3

3.5.4

3.5.5

The third group recommended DoD "develop training programs for users, user
representatives, and acquisition personnel to make them better aware of the
prototyping approach.”

Requirements Validation. Every group saw the need for additional emphasis and
exploration in requirements validation.

Working Group One recommended DoD “develop an explicit requirements
validation plan for every project.”

Working Group Two recommended research for “coupling working models to
real-world stimuli; enabling dynamic analysis through animation of requirements
statements, especially time based analysis; and greater focus on long-term research,
such as for theorem provers."

The third working group proposed research into how prototyping can "support the
validation of non-functional requirements such as reliability (criticality, vulnerability,
and tolerance), maintainability, accuracy (precision), performance, timing, speed,
and reusability."

Measuring Requirements Related Attributes and Progress. Most of the participants
recognized the need for additional research in defining and using methods of measuring
requirements related attributes and progress in the Requirements Engineering process.

Working Group One recommended "DoD develop and use effective metrics to
measure requirements progress and completion.”

Working Group Two saw the need for DoD to "determine and develop meaningful
metrics supporting modern requirements engineering practice. ...A number of
requirements attributes need to be quantified; methods and metrics are needed.”

Non-Functional Requirements. Most identified the need for further work in specifying
non-functional requirements.

Working Group Two emphasized in several places the need to better address
non-functional requirements. They stated DoD must

develop methods to capture, integrate, and measure the
so-called non-functional requirements. There needs to be R&D
for how to specify non-functional requirements. In particular,
we need methods and tools to: support conflici resolution, e.g.,
maintainability vs. reliability; enable specifying 'degree of, e.q.,
quantifying, such as levels of security; help identify
relationships among the 'ilities’; model with wide applicability,
8.g., scale up kinds of current modsling. ...Research is needed
to learn how to capture non-functional requirements to the
extent that the impact to proposed changes in a non-functional
requirement can be predicted.

75

3.5.6

3.5.7

3.5.8

Methods for ‘ilities’- driven engineering methods need to be developed. "A number
of ’ilities’, chief among them maintainability (or flexibility to change), need to be
built-in to requirements as special items to be considered throughout the
requirements engineering process.” DoD must develop

...first a template to identify the non-functional requirements ...
in order to keep them from falling through the cracks ... Tools
andjor languages to evaluate and express these non-functional
requirements are vital to this ever important requirements data
base.

In their language section, Working Grou;; Two proposed the need for research to
"solve the problem of defining the so-called 'non-functional’ requirements.”

Working Group Three proposed for DoD to

explore formalisms to encourage completeness checking in
many different areas such as ... non-functional requirements.
These include the so-called ‘ilities’, such as maintainability,

reliability, security, and performance. ... research how
prototyping can support the validation of non-functional
requirements ...

Requirements Trade-off Analysis. Two working groups saw the need for additional
work in requirements trade-off analysis.

Working Group One recommended "DoD develop tools/techniques to capture
merits/trade-offs among requirements."

Working Group Two stated "tools and techniques are needed to capture, organize,
and help evaluate the many trade-offs that occur in requirements development.
Intelligent impact analysis is an example.”

Requirements Traceability. Additional research in requirements traceability was also
suggested.

Working Group Two proposed a "life cycle requirements database to capture and
manage attributes of individual requirements and provide traceability".

Working Group Three emphasized the need for research, stating, "requirements
should be traceable through the prototype and back into the development of the
objective system".

Multiple Stakeholder Issues. Special emphasis was given to multiple stakeholder issues.

Working Group One devoted an entire section of its report on the need to reach
closure among multiple stakeholders.

76

3.5.9

* Working Group Three recommended the development of "formalized methods for
communicating prototype results between the various stakeholder groups.”

Technology Application. Finally, and most obviously, the workshop concluded that it
is not enough to merely research and develop technologies. DoD must constantly seek

ways to apply those technical gains in the real world.

77

This page is intentionally left blank.

4

BIBLIOGRAPHY

79

This page is intentionally left blank.

BIBLIOGRAPHY

To pursue your investigations into Requirements Engineering and Rapid Prototyping, we
recommend that you consult the following works:

Alford, M.W. "A Requirements Engineering Methodology for Real-Time Processing
Requirements,” IEEE Transactions on Software Engineering 3,1 (January, 1977): 60-69.

Boehm, B. "A Spiral Model of Software Development and Enhancement,” ACM Software
Engineering Notes 11, 4:(August, 1986): 16-24. Reprinted in IEEE Computer 21,5 (May,
1988): 61-72.

Booch, G. "Object-Oriented Development,” IEEE Transactions on Software Engineering
12,2 (February 1986): 211-221.

Charette, R. "Software Engineering Environments". McGraw-Hill, New York, 1986.

Davis, Alan M. "A Comparison of Techniques for the Specification of External Behavior
of Systems," Communications of the ACM 31,9 (September, 1988): 1098-1115.

Davis, Alan M. "Software Requirements: Analysis and Specification", Prentice-Hall,
Englewood Cliffs, NJ 1990. This book’s comprehensive bibliography with thoughtful
commentary is itself an invaluable resource.

Gehani, N. and McGettrick, A. eds. "Software Specification Techniques". Reading, Mass.
1986.

McMenamin, S. and Palmer J. "Essential Systems Analysis". Prentice-Hall, Englewood
Cliffs, NJ, 1984,

Poston, R. "Preventing Software Requirements Specification Errors with IEEE 830",
IEEE Software 2,1 (January 1985): 83-86.

Royce, Winston W. "Software Requirements Analysis: Sizing and Costing," in Practical
Strategies for Developing Large-Scale Software, edited by E. Horowitz. Addison-Wesley.
Reading, Mass. 1975, pp. 57-71.

Yeh, Raymond T. et al. "Software Requirements -- New Directions and Perspectives," in
Handbook of Software Engineering, edited by C. Vick and C. Ramamoorthy. Van
Nostrand Reinhold, New York, 1984, pp. 519-543.

Yeh, Raymond T. and Welch T. "Software Evolution: Forging a New Paradigm,” in 1987

Proceedings of the ADM/IEEE Fall Joint Computer Conference, ACM Press of
Association for Computing Machinery, 1987.

81

Yourdon, Ed. "Modern Structured Analysis". Yourdon Press. Englewood Cliffs, NJ. 1989.

Zave, P. "A Distributed Alternative to Finite State Machine Specifications,” ACM
Transactions on Programming Languages and Systems, 7,1 (January, 1985): 10-36.

82

APPENDIX A

Workshop Agenda

This page is intentionally left blank.

Workshop Agenda - Day One

Tuesday:
730 - 830

8:30- 840

8:40 - 9:10

9:10 - 9:35

9:35 - 10:00

10:00 - 10:25

10:25 - 10:45

10:45 - 11:10

November 14, 1989

Registration/Executive Continental Breakfast

Administrative Remarks/Introduction of Speakers
Mr. George Sumrall

TTCP Workshop Chairperson

CECOM Center for Software Engineering, USA

Introduction

Mr. John H. Sintic

Acting Director

CECOM Center for Software Engineering, USA

CECOM Welcoming Remarks
Mr. Robert F. Giordano
Deputy PEO, Command and Control Systems, USA

TTCP Welcoming Remarks
Mr. Joseph Batz
United States National Leader and Chairperson, XTP-2

Technical Presentation 1

Mr. James Toher

Pembroke House, United Kingdom
"The Nature of Requirements"

Technical Presentation 2

Mr. Edward Schlosser

Lockheed Software Technology Center, USA

“The Role of Requirements in the System Development Process”

Technical Presentation 3

Dr. Scott P. Overmyer

Contel Technology Center, USA
"Overview of Rapid Prototyping Systems"

Break

Technical Presentation 4

Dr. Winston W. Royce

SoftwareFirst, USA

"The Requirements Development Process - Present and Future”

PM

11:10 - 11:35

11:35 - 12:00

12:00 - 1:30
1:30 - 1:40
1:40 - 1:50
1:50 - 2:00
2:00 - 2:10
2:10 - 5:30
5:30 - 6:00
7:00

Technical Presentation 5

Dr. Alan M. Davis

George Mason University, USA
"Multiple Views of Requirements”

Technical Presentation 6

Dr. Raymond T. Yeh

International Software Systems, USA
"Framework for the Requirements Process”

Luncheon Buffet

Workshop Charge

Mr. George Sumrall

TTCP Workshop Chairperson
Working Group 1 Overview
Dr. Alan M. Davis

Working Group 1 Chairperson
Working Group 2 Overview
Dr. Raymond T. Yeh

Working Group 2 Chairperson
Working Group 3 Overview
Dr. Winston W. Royce
Working Group 3 Chairperson
Working Group Activities
Meeting - Working Group Chairpersons

Group Dinner

A

Workshop Agenda - Day Two

Wednesday November 15, 1989

73¢0- 830 Executive Continental Breakfast

8:30- 855 Technical Presentation 7
Mr. Douglas A. White
Rome Air Development Center, USA
-"Knowledge-Based Requirements Assistant"

8:55- 9:20 Technical Presentation 8
Mr. Michael Deutsch
Software Engineering Institute, USA
“Insights Into the Influence of Shared
User/Customer/Contractor Objectives on Project Success”

9:20 - 9:45 Technical Presentation 9
Mr. Reed Little
Carnegie-Mellon University, USA
"The Serpent User Interface Management System"

9:45 - 10:10 Technical Presentation 10
Dr. Robert C. Fink
Performance Resources Inc., USA

"Using Joint Application Design (JAD) Techniques to Accelerate

the Requirements Definition Process"
10:10 - 10:30 Break

10:30 - 10:55 Technical Presentation 11
Mr. Edward C. Comer
Software Productivity Solutions, USA

"Ada Box Structures for Object-Oriented Software Development”

10:55 - 11:20 Technical Presentation 12
Mr. Martin Morel
Le Groupe CGI, Canada

"A Prototyping Methodology Applied to Tactical C2 Systems"

11:20 - 11:45 Technical Presentation 13
Mr. William E. Rzepka
Rome Air Development Center, USA
"Requirements Engineering Testbed"

PM 1145- 1:15 Luncheon Buffet
1:15- 5:30 Working Group Activities
5:30- 6:00 Meeting - Working Group Chairpersons

5:30 - 9:00 Optional Working Group Activities

A-6

Workshop Agenda - Day Three

Thursday November 16, 1989

AM 730- 830 Executive Continental Breakfast
8:30- 9:30 Working Group 1 Report
9:30 - 10:30 Working Group 2 Report
10:30 - 11:00 Break
11:00 - 12:00 Working Group 3 Report
12:00 Closing Remarks

Mr. George Sumrall
TCCP Workshop Chairperson

This page is intentionally left blank.

APPENDIX B

Attendee Directory

sl il e ity et

This page is intentionally left blank.

B-2

Attendee Directory Information

Dr. Stephen J. Andriole
George Mason University

Department of Information Systems and Systems Engineering

4400 University Drive
Fairfax, Virginia 22030
(703) 764-6751

Mr. David Bagley

CECOM Center for Software Engineering
ATTN: AMSEL-RD-SE-AST-SE

Fort Monmouth, New Jersey 07703-5000
(201) 532-2081

Mr. Joseph Batz

United States National Leader and Chairperson, XTP-2

Software Engineering / DOD - DDRE (R&AT) SCT
Software and Computer Technology

3E114 The Pentagon / OUSDA

Washington, District of Columbia 20301-3081

(202) 694-0212

Mr. Harlan Black

CECOM Center for Software Engineering
US Army HQ CECOM

ATTN: AMSEL-RD-SE-AST-SE

Fort Monmouth, New Jersey 07703-5000
(201) 544-2238

Mr. Philip Casey

US Army HQ TRADOC
ATTN: ATCD-CB (Casey)
Fort Monroe, Virginia 23651
(804) 727-3271

Mr. Robert N. Charette
ITABHI Corporation

9840 Main Street / Suite 201
Fairfax, Virginia 22031
(703) 352-1566

B-3

JBATZ @ AJPO.SEL.CMU.EDU
AUTOVON #: 224-0201

FACSIMILE #: (201) 532-4129
AMSEL-RD-SE-AST@CECOM-2.ARPA
AUTOVON #: 992-2238

FACSIMILE #: (703) 352-1592

Mr. Edward R. Comer

Software Productivity Solutions, Inc.
P.O. Box 361697

Melbourne, Florida 32936-1697
(407) 984-3370

Mr. Thomas P. Conrad

Naval Underwater System Center
Code 2211 / Building 1171
Newport, Rhode Island 02841-5047
(401) 841-3353

Dr. Alan M. Davis, Working Group Chairperson
George Mason University

ISSE Department

4400 University Drive

Fairfax, Virginia 22030-4444

(703) 323-2792

Mr. Michael S. Deutsch

Hughes Aircraft Co.

c/o Software Engineering Institute
Carnegie-Mellon University
Pittsburg,Pennsylvania 15213
(412) 268-7047

Mr. Robert C. Fink
Performance Resources, Inc.
5111 Leesburg Pike / Suite 301
Falls Church, Virginia 22041
(703) 845-9600

Mr. Gary E. Fisher

NIST /NCSL

Technology Building Room B266
Gaithersburg, Maryland 20878

Mr. Harrison D. Fountain

US Naval Post Graduate School
Computer Science Department
Monterey, California 93943
(408) 646-2461

Dr. William Gilmore

International Software Systems, Inc.
9420 Research Blvd. / Suite 200
Austin, Texas 78759

(512) 338-5711

B-4

ECOMER @ AJPO.SEI.CMU.EDU

FACSIMILE #: (401) 841-4749
TCONRAD @ NUSC.ADA.ARPA
AUTOVON #: 9483353

FACSIMILE #: (703) 323-2630
ADAVIS @ GMUVAX.GMU.EDU

FACSIMILE #: (412) 268-5758

MSD@ SEL.CMU.EDU

FACSIMILE #: (703) 671-7522*

FISHER@SWE.NCSL.NIST.GOV

FACSIMILE #: (512) 338-5757
GILMORE @ISS.UUCP

Dr. Cordell Green

Kestrel Institute

3260 Hillview Avenue

Palo Alto, California 94304 GREEN@KESTREL.EDU
(415) 493-6871

Ms. Margaret Hamilton
Hasilton Technologies, Inc.

17 iaman Street

Cambridge, Massachusetts 02139
(617) 4920058

Mr. David R. Harris

Sanders Associates, Inc.

95 Canal Street, NCA1-2232
Nashua, New Hampshire 03061
(603) 885-9182

Mr. Donald C. Harris Jr.

Directorate of Combat Development

Tactical Software Division

Comdt, USAADASCH

ATTN: ATSA-CDS (Harris)

Ft. Bliss, Texas 79916-7050

(915) 568-2810/4431 AUTOVON #: 978-2444

Mr. Robert L. Harris

US Air Force

WRDC/AAAF-3 Attn: R. Harris

Wright Patterson AirForce Base, Ohio 45433-6543 AUTOVON #: 785-3947
(513) 255-3947

Dr. Pei Hsia
University of Texas Arlington
Computer Science Engineering Department

P.O. Box 19015 FACSIMILE #: (817) 273-2548
Atlington, Texas 76019 HSIA @ EVAX.ARL.UTEXAS.EDU
(817) 273-3735

Mr. James Huskins

US Naval Post Graduate School
Computer Science Department
Monterey, California 93943
(408) 646-2461

B-5

Dr. W. Lewis Johnson

University of Southern California / ISI
4676 Admiralty Way / Suite 937W
Marina del Rey, California 90291
(213) 822-1511

Mr. Jean-Claude Labbe

Defence Research Establishment, Valcartier
P.O. Box 8800

Courcelette, Quebec

Canada, GOA IRO

(418) 844-4346

Mr. Aaron Larson

Honeywell, Inc.

Systems and Research Center MN65-2100
3600 Technology Drive

Minneapolis, Minnesota 55418

(612) 782-7340

Mr. Reed Little

Software Engineering Institute
Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213
(412) 268-5792

Mr. Michael J. Looney
AXC4, BLK3, ARE(PN)
Portsmouth.

P06 4AA, UK

0705 219999 Ext. 2330

Cpt Gary W. Manley

US Naval Post Graduate School
Computer Science Department
Spanagel Hall MS:52LQ
Monterey, California 93943
(408) 544-2670

Mr. Walter Marks

CECOM Center for Software Engineering
ATTN: AMSEL-RD-SE-AST-SE

Fort Monmouth, New Jersey 07703-5000
(201) 532-2146

B-6

JOHNSON @ ISLEDU

FACSIMILE #: (418) 844-4538
LABBE @ JUPITER.DREV.DND.CA

LITTLE @ SEL.CMU.EDU

MANLEY @ CS.NPS.NAVY.MIL

AUTOVON #: 992-2146

Mr. Raymond Menell

CECOM Center for Software Engineering
ATTN: AMSEL-RD-SE-AST-SE

Fort Monmouth, New Jersey 07703-5000
(201) 532-2343

Mr. Martin Morel

Le Groupe C.G.I

5300 Boulevard Des Galeries
Quebec, P.Q.

Canada G2K 2A2

(418) 623-0101

Dr. Peter Ng
New Jersey Institute of Technology

Department of Computer & Information Science

323 Dr. Martin Luther King Blvd.
Newark, New Jersey 07102
(201) 596-3387 / 3366

Mr. Scott P. Overmyer

Contel Technology Center
1500 Conference Center Drive
P.O. Box 10814

Chantilly, Virginia 22021-3808
(703) 818-4480

Mr. Mark A. Podracky

Digital Fantacies, Ltd

2230 Gallows Road / Suite 240
Dunn Loring, Virginia 22027
(703) 698-9455

Mr. Robert M. Poston
Programming Environments Inc.
4043 State Hwy 33

Tinton Falls, New Jersey 07753
(201) 918-0110

Mr. Glenn E. Racine
AIRMICS (US Army)

115 O’Keefe Building
Georgia Tech

Atlanta, Georgia 30332-0800
(404) 894-3110

B-7

AUTOVON#: 992-2343
FACSIMILE#: (201) 532-4129

FACSIMILE #: (418) 623-4114

FACSIMILE #: (201) 596-5777
NG-P@VIENNA.NJST.EDU

OVERMYER @ CTC.CONTEL.CON

FACSIMILE #: (201) 918-0113

FACSIMILE #: (404) 894-3142
RACINE @ AIRMICS.ARMY.MIL

Dr. Winston W. Royce
SoftwareFirst

22534 Paul Revere Drive
Woodland Hills, CA 91364
(818) 887-1811

Mr. William Rzepka

Rome Air Development Center

RADC/COEE / Building 3

Griffiss Air Force Base, New York 13441-5700 RZEPKAW @ LONEX.RADC.AF.MIL
(315) 330-2762 AUTOVON #: 587-2762

Dr. Donaldine Samson

Weber State College

Ogden, Utah 84408-3804 DSAMSON @ UTAH.CC.COM
(801) 626-7189

Mr. Edward H. Schlosser

Lockheed Software Technology Center

2100 East St. Elmo Road, .

Bldg 30E, Organization 96-10

Austin, Texas 78744 SCHLOSSER @STC.LOCKHEED.COM
(512) 327-3672

Dr. Carl A. Singer

Bellcore

6 Corporate Place

Room PYA-1K282 BELLCORE @ PYUXE!SINGER
Piscataway, New Jersey 08854-4158 FACSIMILE #: (201) 562-9305
(201) 699-8951

Dr. Victor Conrad Sobolewski

Government of Australia

1601 Massachusetts Avenue NW FACSIMILE #: (202) 797-3326
Washington, District of Columbia 20036 AUSDEF @ A.ISLEDU

(202) 797-3378

Dr. Rolf Stachowitz

Lockheed

2100 E. St. Elmo Road

0/96-10, B30E FACSIMILE #: (512) 448-5728
Austin, Texas 78744 ROLF @ LOCKHEED.COM
(512) 448-5772

B-8

Mail: Dr. Rolf Stachowitz
c/o WW Royce

22534 Paul Revere Drive
Woodland Hills, Ca. 91364
(818) 887-1811

Mr. George Sumrall, Workshop Chairperson
CECOM Center for Software Engineering
ATTN: AMSEL-RD-SE-AST-SE (Sumrall)
Fort Monmouth, New Jersey 07703-5000
(201) 532-2342

Dr. Murat M. Tanik

Southern Methodist University
Computer Science Department
SMU, Dallas, Texas 75275
(214) 692-2854

Mr. James Toher
SD-SCICON
Pembroke House
Pembroke Broadway
Camberley, Surrey
GUIS 3XD, England

Mr. David H. Watjen
Advanced Technology, Inc.

2 Crystal Park

2121 Crystal Drive / Suite 200
Arlington, Virginia 22202
(703) 769-3000

Mr. Douglas A. White

US Air Force

Rome Air Development Center RADC/COES
Griffiss Air Force Base, New York 13438-5700
(315) 330-3564

Dr. Martin 1. Wolfe, Member XTP-2
CECOM Center for Software Engineeing
ATTN: AMSEL-RD-SE-AST (Wolfe)
Fort Monmouth, New Jersey 07703-5000
(201) 532-2423

B-9

FACSIMILE #: (201) 532-4129
SUMRALL @ AJPO.SEL.CMU.EDU
AUTOVON #: 992-2342

WHITE @ AIVAX.RADC.AF.MIL
AUTOVON #: 587-3564

FACSIMILE #: (201) 532-4129
MWOLFE @ A.ISLEDU
AUTOVON #: 992-2423

Dr. Raymond T. Yeh, Working Group Chairperson
International Software Systems, Inc.

9420 Research Blvd., Suite 200

Austin, Texas 78759

(512) 338-5700

B-10

FACSIMILE #: (512) 338-5757

APPENDIX C

Letters from Chairpersons

Note: The following letters were sent by each of the Working Group
Chairpersons to the workshop participants in their respective
Working Groups, prior to the workshop.

This page is intentionally left blank.

For the Participants of Working Group 1
From Dr. Alan M. Davis

Statement of Goals

The term "process" in our title implies that we will be limiting our discussion to the activities, events
and procedures that occur in the creation and evolution of system and software requirements. Given
this immense charter and the vast combined experiences of the members of this working group, it is
clear that we could probably attack any one requirements process-related topic and discuss it for
seven (7) hours. However, our goals are to cover the full spectrum of the requirements process
domain, not just to delve onto a set of specific topics. The general goal is easy: At the completion
of the second day, every group member should have a clearer, more tocused, view of all aspects of
the requirements process. Here's a strawman set of specific technical goals that we want to achieve
by the end of the second day of the workshop.

L Identify, clarify, and prioritize the issues relating to the requirements process. Note
that this is a breadth-first analysis of the requirements process domain. We will be
asking lots of questions, not necessarily answering them.

2. What are the possible positions on each of the issues that we come up with? Note
we need not agree to one position, but we do nced to agree as to what the
alternatives are.

3. Enumerate efforts to date to resolve some of the issues. What have they shown? Are
the results conclusive? What limitations do the results have?

4, What additional work needs to be completed to resolve the issues?

S. Debate and reach group consensus on one or more of the issues.

Preliminary List of Issues
1. What are requirements and requirements engineering? Do they include user needs analysis?

Problem analysis? Description of the external behavior of the system to be built/procured?
Definition of the system’s constituent components? Do they end at the beginning of the
design phase? How do they relate to the requirements changes that occur throughout the
life cycle?

2. What are the relationships among system requirements, systems design, software requirements and
the acquisition life-cycle?

3. Is there such a thing as a "perfect" requirements process? For all software? For any application
area? For any particular cffort? Must the process itself be tlexible so that the process
changes as new information is learned about the 1cquirements themselves?

C3

4, What are the constituent primitive elements that make up any requirements process? Do such
elements exist? If so, which are essential to any requirements process? Which are optional?
What are the ways of combining them to form valid requirements process models? As an
alternative, perhaps a better approach to defining all possible requirements process models
is to first define all elements of the product of any requirements process.

S. Recognizing that requirements engineering encompasses all aspects of the handling of
requirements regardless of when they occur, how does a requirements process interface with
configuration management processes that are designed to accommodate change (including
requirements changes) during development? Aré there other considerations to accommodate
inevitable changes to requirements once the requirements are baselined? When should
requirements be baselined?

6. What does it mean to validate requirements? How can it be done? When should it be done?

Suggested Reading Material
Yeh, Raymond, T., "Requirements Analysis - A Management Perspective,” pp.410-416.

Davis, Alan, M., "A Taxonomy for the Early Stages of the Software Development Life Cycle," The
Journal of Systems and Software, Vol. 8, No. 4, September, 1988, pp. 297-311.

Harel, David, "Statecharts: A Visual Formalism for Complex Systems," Science of Computer
Programming, Vol. 8, 1987, pp. 1-29.

C4

For the Participants of Working Group 2
From Dr. Raymond T. Yeh

A Brief Description of the Issues

Although much research work has been performed on requirements analysis, most published literature
is concerned with tools, methods or notations, without asking to which extent they can be used in
conjunction in order to support each other. I believe that an integrated perspective is necessary in
order to attain the goal of this workshop. The following diagram provides major areas of concern
in the requirement phase. The interrelationship between components forms the foundation for an
integrated approach.

Methodology

Process
Lenguage

\iodel

Project Monagement/Support

Figure 1. An Integrated View of Requirements
Engineering.

The requirements analysis phase itself is split into a subphase concerned with studying the
requirements of the complete system to be developed (hardware, software and organizational
environment, functional and non-functional aspects), a subphase during which the boundary between
hardware and software and organizational aspects of the new system is defined, and a set of
potentially parallel subphases during which the particular hardware requirements, software
requirements and organizational requirements are analyzed. Finally, requirements aspects to be best
addressed during later phases of the life cycle need mentioning.

cs

For each of the phases and subphases mentioned above, concrete objectives are set. Further, the
following questions need to be answered:

What information is needed as input for this phase?

How should this information be documented?

What are the exit criteria for each phase?

What are the particular steps taken and methods to be used during this subphase?

What kind of analysis should be performed on this information to verify its truth?

What tools are needed to support this phase or what are the desirable properties of

[would like to see our group with three subgroups: methodology, language, and tools. The
methodology group will be concerned with most of the questions raised above. For the language group,
I suggest to look at the possibility of a common CORE for various requirements languages as shown
in Figure 2. Is the CORE language a real language or simply a common schema, e.g., semantic net?

Daota Fiow
Diagram

ER

CORE

Diagram ’
Petri Nets

Longuage

Other Presentation Languages

Figure 2. A System of Requirements Languages

For the tools group, 1 suggest looking at the integration issues. How can various tools be effectively
integrated. Note that we have traditional tools as well as state-of-the-art tools. Clearly, this issue
is very much linked with the language issue.

Softwarefirst
22334 Pard Revere Drive
Foodlaad Hills, CA 91384
(818) 887-1811

Octager 12, 1989

T0: George Sumrail; fill Warking Group 3 Participants
FAOM: Win Royce

SUBJECT: Plan for Working Group 3, Technical Peanet on
Software £ngineenng, Novemper 14 through November {6

Werking Group 3 is assigned the task of anaiyzing prototuping and
knowiedge-based techniques as applied to requirements engineering.

We have, at mast, two days ta comptete our task. To quickiy focus on the
issues and then resoive them, | am proposing the foilowing approach. The
working group will jointly construct eight to ten well-posed questions
couering the most critical issues of our assigned subject. Thase questions.
will bs prioritized: and substantially more time will be allocated to
ansfysis of the higher priority questions. Each question wiil be anaiyzed
in two succeeding sessions. The first session wiil brainstorm ths
questions attempting to capture ail ideas (even contiicting ones} that
migat be of valus. The second session will sim at winnowing down thess
raw. passibly conflicting ideas ta a shorter, consensus-achisving set with
associated featurss. bansfits, and actions. A third ssssion is schaeduied to .
compiete our papenuork and a fourth session to report out our findings.

The four working group sessions are organized as follows:

Soltwarefirst - 1989
C-7

-2..

Session 1 A 3-1/2 hour long pianming and bramstorming
sasstan ta answer 8 to |0 questions at an ayerage rate af 15 minutes per
question,

Sessian {1: A 4 hour long concentration on ward-smithing
sharpty-honed answers to the questions based on tenefits, features, and
actions. The syerage time for each answer-creating response will be less
than 20 minutes per question.

Session 111: A 2 hour tong sessior to write up our findings. At
least one-half of our written inputs will have airesdy been done in -
reaitime during sessions | and 11.

Session tU: i 1 hour iong briefing on our findings by a working

group spokesperson to the assembled participants from all working
groups.

Succeeding sections of this plan include:
-g listing of 14 potential questions
-detailed instructions, agendas, and schedules for
sessions 1, 11, ang 11!

-instructions for preparnng the working group
summary document

The 14 potential questions listed in the naxt sections are intended to .
stimulate the pre-workshop thinking of the Werking Group |11
participants. Each participant ought to review the patential questions—
inciuded here, reword them to be more sharpty-put, or-invent their swn-
questions for consideration and bring them to Session | In 8 form ready t0 -
distribute to the other participants. The rirst item of business in Session {
will be to select a set of questions and prioritize them. This selected set
of prioritized questions will become the principal mechanism which
organizes, focuses and otherwise guides ail further deliberations of our

working group. Selecting the right set of questions is important. (I/f no
participant acts, the questions inctuded in the following section wiil serve
as the default set to quide us.)

Soltwareiirst « 1989
C-8

-3-

Why are we devoting 66 hours of our professional lives to prototyping,
and knowiedge-based approacnes to requirements engineering? Because
it it importantt The accompanying figure proposes one reascn as to why
our work is important: If there are other reasons they ought to be
uncovered during the critical nine hours of gur joint deliberations. The 8
to 10 questions which we will choase to caoncentrate on are best
answered if we 8iso understand why we sre asking them.

Keep in mind that each participant will have no more than twe minutes
per question, per session, to make his point. We must all be prepared,

focused. consensus-oriented and especially articuiate (and fast writers-
toal if we are going tc complete our assignea task.

See you in November!

Win Royce

HottwareFirst - 1989
C9

6861 - R Jaea Yoy

FINBIHOdWI ST dAsHL HiiD :1 aanfirg

AHISNANI m_.—:_ Hod
JGUWI SISIYD IHYMLIOS IHL 0INT10S InuH IM.. U INIaTIng-

SIINAIHIS ININTNDIND ‘sisHd aNI1INAIY-

SIILSAS ALITUND YIHDIH ATING 0L 114034 INILBAILON-

FINIALINOD HLIM SINILSAS AD0TONHIIL HIIH ONITHIBL- .

SSININILITIdNDD IHHmMid0s !

ZOINTHIINIINT SINIWNIHINUIY INIMIYHG INSST AHUWIHG FHL S1 LUHM i)

C-10

-4-

gggggions for Prntutgm‘ng

-What gqualities must a prototyping system have? [Uhat probiems
must it solve? In the short term? In the longer term?

-What are the bast current exampies of prototyping systems?

-How doss the software deveiopment process have ta.be-:
constructed to expioit prototyping ?

-Shouid major saftware acguisition agencies (e.g., governments)
mandate protatyping ?

-How does the user and the acquisition agency interact with the
prototyping system during deveiopment?

-Joes ths construction of protatyping systems have especiaify
difficuit development problems? (What are they? Shouid the research
community be stimuiated to help?

-ire prototuyping systems going to be easy to use? Is special
training required? fre thera technoiogy transfer probtems?

Seftwani st - 1969
C-1t

Knuwledge 8aseg ﬁggmucnes 1XBR's! tg
Rgggg;gggntg Engggeering

-What kinds of requirements engineering prodiems are best sojyed
by KBA's? In the short term? In the longer term?

-fire the undertying abstractions of KBA's too difficuit for wide=
spread usage? |s speciai training requireqd?

-iUhat kind of fanguage syntax angd semantics are needed? Can we
get it into Ada and C?

-Can farmal methods a ia theorem proving be introduced into wide~
spread practice?

-ten we achieve automatic dacument writing for producing
acquisition agency deliveranies?

-Can KBA's cause muiti-skified software development teams 1o work
together more productiveiy?

-How shauld the software devetopment process change, particuiarty
the up-front requirements engineering tasks, to eNploit KBAR’s, theorem
proving, and autaomatic document generation?

Solwaniirst - 1989
C-12

-~

1: Ty .00-5:

The first one~-haif hour will be concentrated on getting organized plus

reviewing the schedule. The following setections and assignments will be
made.

(1) CEight to ten questions wiil be selected and priaritized from Q1
(highest) to Q10 (lowest).

{2) A question-ieader will be assigned to eacht guestion. The:
principat roie of eachi question {eader is to stand up and lead the
discussion for their assigned question.

{3) A back-up to the qusstion-iesder wiil be assigned for each
question. The principal role of each back-up is to asct as a scribe {o
capture the discussion content,

The scheduie for Session | is as follows:

Getting Orgaenized 30 minutes 2:00-2:30
-figenda Discussion
-Questian Selection
-Question ieader, 8ack-up Assighment

Brainstorming
1)) 20 minutes 2:30-2:50
02~ 20 minutes 2:50-3:10
a3 15 minutes 3:10-3:23
Break 10 minutes 3:295-3:33
Brainstorming
04 10 minutes 3:35-3:45
a3 10 minutes 3:45-3:55
a6 20 minutes 3:55-4:15
Qz 20 minutes 4:15-4:35
JoltwareFirst « 1989

C-13

-7-

8reak 3 minutes 4:35-4:40
Brainstorming
Q8 13 minutes 4:40-4:55
a9 13 minutes 4:35-5:10
a0 10 minutes 3:10-5:20
Reclama any Question 10 minutes 5:20-5:30

During Session | or immediately following Session | each question-teader
and their back-ug will prepare one or twa vugraphs summanzing the

content of each brainstorming respgilse to the questions. These vugraphs™
will be needed for Session {! and the finat report.

Soltwnfirst - 1969
C-14

R —

-8-
Session 4 dnesday 1:30-5:3

Each question-ieader with the help of his back-up, wiil have prepared one
or two uvugraphs summarizing the mast interesting previous day's

brainstorms. The assigned question-ieader and back-up for Session { will
exchange rotes for Session 1.

fs in Session { each question will be addressed aone at a time. The goal of
this second pass is to sharpen the focus an each question and to fist

recommended actions as though we were omniscient and ail-powertfuf,
Our answers to eachh question shoutd take the form of:

What? i.8. features

Why? i.e. Benefits
How? .. Actions

Tha scheduie for Session {| is as follows:

Benefits, Featuras, fctions

at 23 minutes 1:30-1:55
02 25 minutes 1:55-2:20
a3 20 minutes 2:20-2:40
04 19 minutes 2:40-2:55
Break 10 minutes 2:55-3:05 °
Benefits, featuras, Actions.
s~ 10 minutas 3:05-3:15
as 25 minutes 3:15-3:40
a? 23 minutes 3:40-4:05
1}: . 20 minutes 4:05-4:25
Break 9 minutes 4:25-4:30
Benefits, features, ictions
Q9 1S minutes 4:30-4:45
Q10 1S minutes 4:45-5:00
Soltwwntirst - 1959

C-15

-J=-

Rectama any estion 20 minutes 5:00-5:20
Writing assignments and

redrafting document

autiine 10 minutes 5:20-5:30

Juring Session (1 or soon atfter the question-ieader and their back-up will

prepare cne or two vugraphs summanzing the answers in a8 features;
benefits, actions format.

Holtwarefirst - 1969
C-16

-10~

Session iil: mednesdag, 7:00-8:00

A third session in the evening wiil be required to compiete our write~-ups.

Juring the last ten minutes of Session {| writing assignments wiii have
been made.

The primary task will be for each queston-ieader and back-up to write
facing page text ta the two to four vugraphs created in Sessions | and 1.

Each participant can expect to be invotuved with writing-up two questions:

plus writing-up one mare drief sectian.

The tentative outline for our tWarking Group 3 dacument is as follows:

Document Qutline

1. Waorking Group 3 Format
-working group methodology
-satting
-participants

2. Protstyping and knowiege-hased approaches
for requirements engineering:
Problem Statement

3. Summary
3.1 Shart Term Technicai Prospacts
3.2 Longer Term Technicat Prospects
3.3 Changes in the Software geyeiopment Process
Model
3.4 Technicat Transfer Prospects
35 Supporting Research
3.8 Special Protiems
foftwanFirst - 1989

C-17

4.0
+.1
4‘2
4.10
3.

JolwarnFirst « 1989

-1 ’ -
Question Summary

a1 - yugraphs ptus facing page tent
a2

Q1g

fippendix Materiat

This document outline will be redrafted, if necessary, at the end of Session

C-18

APPENDIX D

Technical Presentation Vu-Graphs

This page is intentionally left blank.

TECHNICAL PRESENTATION VU-GRAPH REFERENCE

Mr. Joseph Batz
TTCP Welcoming Remarkscoiiiiiiiiiiiiinn i, D-1

Technical Presentation 1: Mr. James Toher
“The Nature of Requirements”t D-7

Technical Presentation 2: Mr. Edward H. Schlosser
"The Role of Requirements in the System Development Process” D-17

Technical Presentation 3: Mr. Scott P. Overmyer
"Overview of Rapid Prototyping Systems”c.iiiiiiinnnneena..., D-23

Technical Presentation 4: Dr. Winston W. Royce
"A Possible View of Requirements Engineering" D-33

Technical Presentation 5: Dr. Alan M. Davis
"Multiple Views of Requirements”ttt D-41

Technical Presentation 6: Dr. Raymond T. Yeh
"An Integrated Approach to Requirements Engineering" D-51

Technical Presentation 7: Mr. Douglas A. White
"Knowledge-Based Requirements Assistant”coovvuiineennnn.. D-63

Technical Presentation 8: Mr. Michael S. Deutsch
"Insights Into the Influence of Shared User/Customer/Contractor Objectives on
PrOjeCt SUCCESS ottt e e D-75

Technical Presentation 9: Mr. Reed Little
"The Serpent User Interface Management System”covvvvenneereen... D-83

Technical Presentation 10: Mr. Robert C. Fink
“Using Joint Application Design (JAD) Techniques to Accelerate the Requirements
Definition Process”uiet ittt i i e e e e D-95

Technical Presentation 11: Mr. Edward R. Comer
"Ada Box Structures for Object-Oriented Software Development" D-105

Technical Presentation 12: Mr. Martin Morel
"A Prototyping Methodology Applied to Tactical C2 Systems" D-119

Technical Presentation 13: Mr. William E. Rzepka
"Requirements Engineering Testbed"oviiiiiiiiinennn, D-137

This page is intentionally left blank.

D-iv

The Technical Cooperation Program

TTCP Welcoming Remarks

Mr. Joseph Batz
United States National Leader and Chairperson

D-1

THE TECHNICAL COOPERATION PROGRAM

MEMBER NATIONS

. AUSTRALIA
« CANADA
ﬁ%ﬁ ﬁ@ . NEW ZEALAND

» UNITED KINGDOM
+ UNITED STATES

ZAON
= ye
coovtiias FUNCTION \

PROGALALY

PROVIDE MECHANISMS FOR:

 Science & Technology Information Exchange
¢ Collaborative Research & Development

o Scientific Personnel Exchange *

e Science & Technology Materiel Exchange

QUID PRO QUO
GOVERNMENT TO GOVERNMENT
DEFENSE LIMITED

168 JOINT DECLARATION

TEGNEAL) . . L.
COOPERATICH U.S. President & British Prime Minister
PREGRALN

Oct. 25, 1957

“The arrangement which the nations of the free world have
made for collective defense and mutual help are based on
the recognition that the concept of national seif-
sufficiency is now out of date. The countries of the free
world are interdependent and only in genuine partnership,
by combining their resources and sharing tasks in many
fields, can progress and safety be found. For our part we
have agreed that our two countries will henceforth act in
accordance with this principle.”

¢ TRIPARTITE TECHNICAL COOPERATION PROGRAM
Canada joined U.S. & UK. immediately

¢« THE TECHNICAL COOPERATION PROGRAM
Australia - July 1965
New Zealand - October 1969

Tx8
TEAWBAL
COCCARATIGN

TTCP AIMS

+ PROVIDE KNOWLEDGE & INFORMATION ON
EACH OTHERS PROGRAMS

» AVOID UNNECESSARY DUPLICATION
AMONG PARTICIPANTS

+ PROMOTE CONCERTED JOINT EFFORTS
TO CLOSE GAPS

ENCOMPASSING
- BASIC RESEARCH
- EXPLORATORY DEVELOPMENT
- DEMOS OF ADVANCED TECH DEVELOPMENT

D-3

T8

cT:
TECHNOLOGY AREAS
L
SUBGROUPS
¢ Chemical Defense ¢ Undersea Wartare
e Aeronautics Technology » Infrared & ElectroOptical
Technology
e Radar Technology ¢ -Materials
e Electronic Warfare ¢ Communications Technology
& Information Systems
* Behavioral Sciences ¢ Convepntional Weapons
Technology

+ COMPUTING TECHNOLOGY

PANELS; ACTION GROUPS; TECH LIAISON GROUPS

Irggwmmrs \
COPORATIN COMPUTING TECHNOLOGIES @Q
SUBGROUP X (SGX)

TECHNICAL PANELS

XTP1 - Trustworthy Computing
XTP2 - Software Engineering
XTP3 - Architectures

XTP4 - Machine Intelligence

ACTION GROUPS
XAG2 - Digital Design

XAG3 - Image Information

D-4

™3

TEGLXACAL
COCPERATICN
PROCRA XTP2 - SOFTWARE ENGINEERING

L

PURPOSE: To improve the utilization of the collective
resources and capacities of the member
countries in the areas of software engineering
and software technology.

SCOPE: The creation and life-cycle support of software
- for military applications.

Includes: PROCESSES, METHODS, TOOLS for

DEFINITION SPECIFICATION PROTOTYPING
DESIGN INTEGRATION TEST
EVALUATION PORTING REUSE

DATABASE TECHNOLOGY

TRG
TEERIGAL
COCPERATICN

PROCRAD XTP2 - WORKSHOPS

» REAL TIME SYSTEMS AND ADA
Conducted June 1988, at IDA, Washington DC.
Approx. 40 participants.

+ REQUIREMENTS ENGINEERING/RAPID PROTOTYPING
Planned for November 1989, at Fort Monmouth
(Eatontown), NJ.

« SOFTWARE METRICS
Planned in 1990.

D-5

L — TTCP

PoGeGD XTP2 TASK

AIMS

e To examine the current state of methods and
tools used for requirements engineering

» To identify their deficiencies

e To recommend new or improved methods and
tools that need to be developed

D-6

Technical Presentation 1

"The Nature of Requirements"

Mr. James Toher
Pembroke House, United Kingdom

D-7

Overview

O Assignments

Consultancy, Training & R&D
Large & Complex Systems
Industry, Military & Govt

O Issues

Non-Functional Requirements
Validation
Politics

Requirements

O Functional + 'Non-Functional'
O All Interact

O NF Dominates F

D-8

Functional Requirements

The rate of decelaration will be calculated,
displayed to the driver who will compare it
with the reference speed.

On supply of retailer identification the
authorisation number will be derived.

ForAll e memberof(HCL)
Exists r memberof(Verf-Rec)
and r = PF(e)

Automatic dialling of previously stored
numbers by pressing a single key

Non-Functional

Reliabilty Materiality Criticality
Safety Security Vulnerability
Performance Risk Repairability
Timing Accuracy Timeliness
Survivability Confusion Confidentiality
Maintainability Cost Tolerance
Transportability Precision Capacity
Speed Ownership Manning
Quality of Service Interoperability Traceability
Size Usability Latency
Media Compatibility Currency

D-9

Non-Functional Requirements

O After the Final Agreement and before 11.00 a.m
the Clearing Totals must be entered on the Daily
Settlement Sheet. (Timing)

The application must cope with 50 million
different air fares. (Capacity)

When Central Control fails Local Control must
order signals (no priority) (Survivability)

Authorisation must be available 100% between
Mon-Fri (inc) during hours 8.00 a.m-5.00p.m.
(Availability)

Billing must conform to level H2 with category
D3 (External: collusive/manipulative).
(Vulnerability to Fraud)

Interactions

O Limit functions available to alleviate capacity
overload and therefore degradation of
performance. NF -> F

Increase in services available increase
confusion of driver and decreases safety
F -> NF

Increase in security encourages more usage
and increases congestion.
NF -> NF

D-10

Probleins

O NF addressed too late (if at all)

Hidden Complexity
Loss of Control

O Methods

First Class Treatment of NF
True Systems Methods

O Prototyping

Exhibiting NF Properties
Reasoning about Interactions

'Correct’ Requirements

O Validation Principle & Guarantor

O Principle

Output - OQutcome
Behaviour - Effect

Guarantor
Many Stakeholders
Validation Statements
Proof - Weak Inference

D-11

Principle

Signed off and accepted
In use for several years
Happy user

Not failed yet

The system is always the servant
of the 'business' and its needs

Is it Effective w.r.t its Guarantor

Behaviour -> Effect

AREA TRAFFIC CONTROL
improve road 1afety
reduce environmental degradation
assiss public services
provide information to road-users and other systems
provide economic benefits to the community as a whole

ELECTRONIC POINT OF SALE

increase throughput

guaranteed pricing

extra sales floor ares

improved tokem handling

reduce fraud

reduce central cash administartion

AUTOMATED TICKET BARRIERS

reduce fraud

improve traffic information
reduce staff costs

permit flexible price structure

D-12

Guarantor

User General Public
Customer Suppliers
Sponsor Beneficiaries
Maintainers Victims
Employees Managers

Operators Regulators

Problems

Legitamacy

Credibility

Methods
Behaviour/Outcome

Prototyping

Demonstration
Universal Generalisations

D-13

Politics & Culture

O Meta-Systems

O Every Situation

Three systems are present

O Every System

Changes the structures

O Every Problem -- Solution

Requires the three elements

Every Situation

O Production Systems

O Belief Systems

O Political Systems

D-14

Every System .

Can have a long timeframe

Affects most or all of the organisation
Involves substantial resources

Has the potential to lead to major changes.
Has winners and losers

Influences the political and cultural systems

Cultural Effects

Increased alienation

Changes in status

Social isolation

Challenge to values

D-15

Political Effects

Shifis in balance of power

Job losses

Span of control shifts

Shifting problems/threats
Intensity of workimachine pacing

Polarisation

Every Problem -- Solution

Heirarchies may change

Working relationships my be sirained
Sysiems of grading, premetien,
reward may become redundanmt
Demarcation issues may aller

Threats to coafidentiality

Heirarchies may change

O Requires an understanding of the three elements

Problem

Cc

Solution

P

Cc

T

X

K,

K

J

D-16

Technical Presentation 2

"The Role of Requirements
in the System Development Process"

Mr. Edward H. Schlosser
Lockheed Software Technology Center, USA

D-17

e

REQUIREMENTS
“TREE"

Wl [sw| [sw
M| {coM] | CoM

Old Approach: Allocate System Requirements
Between Hardware and Software Up Front

DESIGN "TREE"

w—ly | ockheed

Missiles & Space Company, Inc.
Soltware Technowngy Center 1233

Why?

We lack detailed knowledge up front to make
good decisions about allocating requirements
to hardware or software.

A reasonable allocation to hardware or soft.
ware may becoms inappropriate later due to
changes in needs & available technology.

All-or-nothing sliocation of a requirement to
hardware or software is often unreaiistic.

All-or-nothing allocation may limit or
prevent expioltation of complementary
hardware and software capabilities,

Don't Break Out System Requirements into
Hardware and Software Requirements Up Front

w=~ly | ockheed
Missiles & Space Company, In
Sottware Tecnaoogy Canter 1

D-18

C.
2384

Hardware/Software Differences Are Complementary

Haroware wears out & breaks.

Software goes not wear out or break.

Hardware gets out of adjustment or calibration.

Software does not get out of agjustment or
calibration.

Hardware runs fast.

Software runs stow.

Manufacturability of hardware is imited by its
complexity and by the laws of physics &
chemistry.

Reproducability of software i1s not
significantly limited by its complexity or by
the laws of physics & chemstry.

Hardware 1s often difficult to nstall &
configurs.

Software can be made largely self-instaliing &
self-configuring.

Retrofitting & upgrading hardware s often
difficult.

Retrofitting & upgrading software can be
highly automated.

User assistance and training cannot be buiit
into hargware.

User assistance & training can be built into
software.

iy | ockheed

Missiles & Space Company, inc,
12285

Sottware Tecnnoogy Center

Hardware/Software Cost Differences
Are Complementary

Developing the first copy of hardware 1s
costly.

Developing the first copy of software 1s also
costly.

Hardware 15 difficuit and costly to
manufacture to orecise tolerances.

Software 1s easy and cheap lo reproduce with
precise diqital fidelity,

Developing spectal tooling and processes to
manufacture hardware 1s costly.

Standard tooling and processes can be used 10
replicate software,

Hardware design changes often require costly
changes in tooling & manutacturing procasses.

Software design changes usually do not require
changes in tooling and processes used to
replicate software.

It is difficult & costly to make hardware
self-diagnosing.

It is easier & less coslly to make software
self-diagnosing.

The large costs of tooling for hardware
manufactuning have encouraged application

independence, standardized interfaces & reuse.

The miimal costs of tooling for software
rephcation have discouraged application
independence, standardized interfaces & reuse.

—wiy | ockheed

Missiles & Space Company, In

Sot:'ware Tecnnogy Center

D-19

C.
2288

e

Benefits from Exploiting Complementary
Characteristics of Hardware and Software

Components that exploit the compiementary capabilities of hardware and
software internally can provide greater capabilities at less cost than

all-hardware or all-sofiware components.
components should have the tfollowing desirable properties:

Early warning of failure .
Self-adjusting & seif-calibrating .
Both fast & customizable .
Self-installing & self-configuring
Self-checking & seif-diagnosing

Automated support for retrofitting

Such mixed hardware/software

Bullt-in user assistance & training

Less costly initial tooling

Less costly retooling as component

is Improved

Fewer & less costly repairs

Improved standardization & reuse

Lockheed
Missiles & Space Company, Inc
Software Tecnnogy Center 2387

Don't Break Out System Requirements into
Hardware and Software Requirements Up Front

Why?

What should we do?

We lack detailed knowledge up front to make
good decisions about sliocating requirements
to hardware or softwsre,

hardware

Defer allocating requirements to

levels of design when we know more.

or software untll lower

Allocate regquirements up front to
system components likely to contain
both hardware & software.

A reasonable aliocation to hardware or soft-
ware may become inappropriate later due to

changes in needs & available technology.

Encapsuiate allocations within low-
level system components so they can
be changed without “rippling.”

All-or-nothing allocation ot a requirement to
hardware or soitware is often unrealistlc.

Allocate tunctions which support the
requirement, some to hardware and
some to soiftware, as appropriate.

All-or-nothing allocation may limit or
prevent exploitation of complementary

hardware and software capabilities.

Share responsibility for & low-level
function between hardware & soft.
ware when they are complemsentary.

Lockheed
Missiles & Space Company, Inc
Scttware Tecnnoiogy Center 2288

New Approach: Allocate Functions Between
Hardware and Software at Lower Levels of Design

REQUIREMENTS "TREE" DESIGN "TREE®

iy | ockheed
Missiles & Space Company, Inc.
Sottwars Technoiogy Center 12389

Benefits from the New Approach

» Minimize risk of bad hardware/software allocation due to limited information

+ Minimize "ripple" effect of changes in requirements and technology

+ Avoid arbitrary "all-or-nothing” allocation to hardware or software

+ Explolt complementary capabilities of hardware and software

===y | ockheed
Missiles & Space Company, Inc.
Sottwete Technology Center 12390

D-21

This page is intentionally left blank.

D-22

Technical Presentation 3

"Overview of Rapid Prototyping Systems"

Mr. Scott P. Overmyer
Contel Technology Center, USA

D-23

COETEL I

[
0
!
i
u

A Rapid Prototyping Tool is . ..

A tool, or set of tools which allow user-computer interface
designers to QUICKLY and INEXPENSIVELY construct a high
tidelity simulation of an interactive system." To be effective, a
rapid prototype must not only convey the look, but also the feel of

a proposed system design to users, customers, and developers.

RAPI002

Vool atta] Technology
= . Center

!i
o
Iy

Goals of Rapid Prototyping

« Determine user requirements

« Communicate the design

- Exercise the design

» Collect human and system performance data
- Evaluate the design

« Market the design

RAPI0O3

e)
i
;;;;;H

L Technology
Center

Tasks in Rapid Prototyping

« Design and develop screen layouts

« Select, design and develop dialog method
« Implement applications (in some form)

- Link screens, applications and dialog

» Make rapid iterations on simulation

- Collect and analyse user and system performance data

CCE==L o™

Products of Rapid Prototyping

« "Live" user requirements specification
- Human-computer interface design

- Dialog concept

- H-C task allocation

- /0 control concept

- System and user response time requirements
- CDRL figures (screen print/plots)

- Quantitative and qualitative requirements validation criteria

RAPIDOS

Transition to the Operational System

- Throwaway rapid prototyping
- Brief final version of prototype and specs.
- Deliver prototype and specs to developers
- Monitor code and unit test
- Compare operation of prototype to that of operational
modules during integration and test

« Evolutionary prototyping
- Generate user-interface management software
from prototyping tool -or- Use prototype code
- Integrate application modules
- Make it all work together (e.g., compile and run)

General Hépid Prototyping Tool Req'ts

« Foster RAPID prototype development
- Coding is usuallytoo slow

« Allow non-programmers to learn and use

« Allow end-user interaction
- Pictures alone do not provide "feel"

« Allow integration of external applications

« Provide automated system and user performance data
collection

« Help with generation of CDRLs
- IGD's, HEDAD-O, HEPP, HEPR

RAPIDOY

<c

—— Tuh
EL Cent::m

Specific Rapid Prototyping Tool Req'ts

Screen Development
« Alphanumerics (text) display

- Grapliics display
- drawing/painting package

« Cursor or command-oriented screen construction
» Windowing

- tiled (e.g., standard viewports)

- overlapping (e.g., X Windows)

« "Object” creation/definition

RAPIDOS

Specific Rapid Prototyping Tool Req'ts

Dialogue Development

« Menus
- Static, dynamic
- Pull-down, pop-up, slug

« Forms

- Tab back and forth between fields
- Range and value checking for fields

« Command language (string parsing)

* Icons (direct manipulation)
- Objects, graphics, sliders, buttons, dials, knobs

* Voice 1/0

RAPIO0?

D-27

Specific Rapid Prototyping Tool Req'ts

Hardware and Device Support

* Input device handling
- Cursor control
- mouse, tablet, cursor keys, joystick, trackball
- Voice
- Gesture, eye maotion

> Output device handling
- Monochromatic displays .
- Color displays
- High and low resolution displays
- Auditory displays
- tone generation
- voice synthesis
- Virtual environment displays (e.g., Eyephones®)

RAPIC10

<

[

] Mgl

Specific Rapid Prototyping Tool Req'ts
Database Capability

+ Forms processing
- Data entry
- Data retrieval

« String storage
- Command
- Value (variable)
- Current state

* Help
- Context dependent
- Context free

» General data retrieval AAPION

D-28

Specific Rapid Prototyping Tool Req'ts
Integrated Application Support (for C3I prototyping)

- Geographic projection and display
- Vector, raster, video
- Geographic overlay capability
- Line and symbol display and manipulation
- Lat/Long-based calculations
- course, distance, trajectory
- zoom and pan
- satellite ground trace and/or orbit

» Graphs & plots
 Time-based simulation

- Image display & manipulation

RAPID12

c

b

ELEW

Specific Rapid Prototyping Tool Req'ts
Display and Dialogue Linkage
- State transition based linkage
- Link menu options to actions or "applications”
- Link objects to actions
- Link menu options or objects to displays
- Link time or events to actions
» Command parsing and linkage to actions
- Sequence execution

- Possible code generation, if available

RAPID13

o
RS

5 g . Center

S="= Technology

-

Specific Rapid Prototyping Tool Req'ts

Automated Data

- Keystroke recording and timestamp

- Error data
- Error type

- Error frequency

- Task/thread data

« User comments

« Sequence recording and playback

- Configuration management and iteration control

H

e
33

L e ——

Center

Technolog
=i, '

Collection

RAPID14

My Current Toolbox

« Skylights GX

- IBM PC or compatible

- VGA gravhics

- Elographics touch screen
- Dragon Systems Dragonwriter 1000 VR Board
- Microsoft Bus Mouse

« Dan Bricklin's Demo |l
- IBM PC or compatible
- Color, but alphanumeric

* TAE Plus

- UNIX (SUN 3/160)
- X Windows-based
- High-res color graphics

RAPIDIS

D-30

=="=%% Technology
= g . Center

<

G
|ll||

My Current Toolbox - Part 2

« VideoWorks Interactive
- Macintosh SE or Macintosh I
- High-res color graphics

« Hypercard
- Macintosh SE
- Monochrome

« SuperCard
- Macintosh SE or Macintosh
- Hypercard compatible
- Color
- Full-screen capabilities

« Various & sundry programming languages
- C, PASCAL, (even ADA)

RAPID16

L * 3

@'
I

i Technolo
2 gl. Center

Tool Features Matrix

m Skylights GX {DB Demo (I J TAE Plus 4.0 § VW Interactive {Hypercard JSupercard
Graphics X X X X X
Windowing X LTD X X X
Object Definition LTD LTD LTD
Menus X X X X X X
Forms X X X X
Command Parsing X LTD
lcons and Symbols X
Color X X X X X
DBMS LTD LTD LTD LTD
Applications DRAW DRAW DRAW DRAW
User Interactive X X X X X
System Generation X X X X X
Data Collection

RAPYO1?

D-31

gLEumr

LGE

Editorial and Summary
» To perform effective RAPID prototyping:
- Must be able to build and modify quickly
- Tool kit is essential
- Must present both look and feel

« Rapid prototyping is not a panacea

« Throwaway prototyping is worth doing
- Validated requirements
- Human engineered user-computer interface

« The "right" rapid prototyping tool has not yet been
built
- A multiple tool toolkit is best bet
- New tool development may be money well spent

- Acquire existing tool, and add on (good strategy)

D-32

RAPIO1S

Technical Presentation 4

"A Possible View of Requirements Engineering"

Dr. Winston W. Royce
SoftwareFirst, USA

D-33

A POSSIBLE FUTURE VIEW OF REQUIREMENTS ENGINEERING
O

* Life Cycle Process

* Requirements Engineering Phase

* The Production Artifacts Problem

* The Manager vs. Software Designer Problem

¢ The Communications Problem

\

\

LIFE CYCLE PROCESS

Requirements
Engineering

Software
Manufacturing

Operational
Validation

D-34

LIFE CYCLE PROCESS
A A S

‘ Operational
| Validation

(=1 year)

¢ Under Control Of Using (And Logistics) Command

¢ Validation Of Products

e User Achieves Confidence As Though They Built It

» Continuous (Small Scale) Change Process

LIFE CYCLE PROCESS

]

Software

5 Manufacturing |

(=3/4 year)

* Temporary Requirements Freeze

* Selection Of Computer Hardware

Operational I
Validation l

(=1 year)

* Optimization Of Performance; Use Of Efficient Procedural Language

* Concern For Correctness
* Very Short Schedule

* Fixed Price; Warrantied; Possibly Competitive
* Modest Up-front Investment For Tools And SDE'’s; SDE Can Be Closed

LIFE CYCLE PROCESS
0

Requirements | Software | Operational
Engineering Manufacturing Validation

(= 1'7, years) (=3/4 year) (=1 year)

* Requirements Changes Are Encouraged
* Software Design Independent Of Computing Platform

* Highly Automated Coding; Declarative VHLL;
Enormous Productivity

¢ Abstraction Oriented In All Things

* Prototyping; Reuse; Simulation

* Trial Deliveries Into The Field

¢ Evaluation Of Multi-competing Designs
* Cost Plus; Always Competitive

» Large Up-front Investment For Tools, SDE'’s;
SDE Must Be Open

THE PRODUCTION ARTIFACTS PROBLEM

Ogerations
oncept

Requirements T?::sxisgfgr
Engi neerns Specification

Sof tware Unvalidated
Manufacturing Product
Operational
Validation

Validated
Product

/

D-36

REQUIREMENTS PHASE

ved >
T by YRy e T

—
DT Ty A — - —
X e p::“"%?" &:‘,;.. "“‘4"‘23" et St
=2 ns g PR 0K AT 2L S S !
> o At vy Tika 2 b

*1 Requirements Generation

Risk Assessment

e) 73
A

RN R

| Prototype Building

*| Transfer
=1 Spec

5
i

.::rg}'ﬁ :
3
ol

7
P
B?A‘w‘ri“o"
enanial

Validate
Design

1

4t

g
By

N ;T;é‘::

»

N

T
™
=

EEI %

.

Y

-~

Operations Concept

—

THE MANAGER VS. SOFTWARE DESIGNER PROBLEM

[

J

Phenomenology
1

Phenomenology
M

Operating
System
N

D-37

THE MANAGER VS. SOFTWARE DESIGNER PROBLEM
e

Operations Concept

Operating
System

System Processing Harness
¢ System Communications
¢ System Control

¢ System Data Handling

QPRI xS WL I PR TS -4

f
\.

N
/

THE MANAGER VS. SOFTWARE DESIGNER PROBLEM

Operations Concept

1
Phenomenology

Operating
System

Operating
System

sssssss

System Processing Harness
* System Communications
¢ System Control

e System Data Handling

THE MANAGER VS. SOFTWARE DESIGNER PROBLEM
e ———
Operations Concept

Phenomenology Phenomenologly Operating Operating
1 Y M ‘ System System

l) 1
L ae .

RN TS SO R BN

N

System Prcicessing Il-Iamess

¢ System ?ommunications

¢ System ?ontrol

¢ System Usage

o vy) AR A T | > L |

o ////////////

(THE COMMUNICATIONS PROBLEM h
QA CM PM

f

Requirements Spec
=3 Executable Spec
Phenomenology Spec
=3 Prototype
Glueware Spec
=3 Documents
User Interface Spec

D-39

This page is intentionally left blank.

D-40

Technical Presentation 5

"Multiple Views of Requirements"

Dr. Alan M. Davis
George Mason University, USA

D-41

CLASSIC DEFINITION OF REQUIREMENTS

The activity that encompasses the definition of "what” the system is
without decribing “how" it works.

BETTER DEFINITION OF REQUIREMENTS

Alt activities up to and including the definition of the system's
external behavior

it thus includes analysis of the problem domain which clearly
precedes external behavior specification of the solution system

It thus excludes definition of any of the actual physical sub-
components of the system under specification

Note: External behavior can be described at any level of detail and
it is still requirements

D-42

MULTIPLE DIMENSIONS OF REQUIREMENTS

o Problem Analysis vs. External Behavior of Solution System
0 Levels of Abstraction
0 Multiple Views

ANALYZING PROBLEMS OR SOLUTIONS?

» What is the problem, not how are we going to soive it
- Primarily decomposition process
- Ambiguity/fuzziness
- Purely in terms of problem owners
« What is the solution system, not how wiil it work internally
- Primarily a descriptive (specification) process
- Consistency
- Springboard for design and test
= Purely in terms of users

« Understanding so you can make intelligent choices v. external
manifestation

» Problem analysis v. documenting external behavior
« Both included in requirements phase

Copyright, BTG, Inc., 1988

D-43

LEVEL OF REQUIREMENTS
ABSTRACTION

+ Communicate
+ Communicate via voice
+ Communicate via telephone system
* Provide local calls, call forwarding, long distance
+ To make a long distance call

« Lift phone

= Hear dial tone within 2 seconds

- Dial9

= Hear distinctive dial tone within 2 seconds .
+ To make a long distance cal)

- It dia! tone generator available

Then hear dial tone within 2 seconds onclock A

Else hear rearder tone within 2 seconds on clock A

EXAMPLES OF VIEWS

Copyrighe, BYG, Inc., 1988

O OO O 0 0 0 0 0 o

Asynchronous Processes/Objects
Data Structures

Data Flows

Data and Control Flows

Finite State Machines

Extended Finite State Machines
Petri Nets

Human/Machine Intertace

Hybrid

D-44

SAMPLE OF RICHNESS: DATA FLOW VIEW

rrrrrr

1
sufficient

sohey
]
]
SO00M cHoICES @ MONEY COUNT
—
soda

SAMPLE OF RICHNESS: ER VIEW

desires
\ N
dopenits returned selects
te tlaver dlapances

L / I'ndlll rerarns] Mcxm

D-45

SAMPLE OF RICHNESS: FSM VIEW

invalid coin/coin

valid coin
invalid (insutticient
coin/coin Boney) /=
valis coln/=
1oLE COLLECTING

COINS

| coin return/
coins

valid coin
(suttictent
»oney} /=
sslection(ok)/
sods, change

seuzcry
riavor

uloc:loMNH/
Fing susger

SAMPLE OF RICHNESS: OBJECT VIEW

soda customer

flavor L o e
v N
Milfe ovw —m wma = am A E e e wm e w4
dispense deposits
L selects
choose >~ _ __,__J
~ o |
Y
i S . |
~ -~
! ~a l
l RO B
~
-~
vending coin
person
value
count
hills returns
adds
changes

D-46

SAMPLE OF RICHNESS: DATA STRUCTURES VIEW

SODA SELECTIONS(3)
NAME

PRICE

MAXIMUM~COUNT

CURRENTLY<~AVAILABLE~-COUNT
COINS~ENTERED

NUMBER-OF=-NICKELS

NUMBER-OF~DIMES

NUMBER=0F-QUARTERS
DATE-OF~LAST-REGULAR-MAINTENANCE

SAMPLE OF RICHNESS: HMi VIEW

SELECTION §1 =~ COKE CLASSIC =vewemce- > PUSH
SELECTION $2 == DIET PEPSI =recacmccas > PUSH
SELECTION §) == RC COLA =cevecmummace= >
PUSH
COIN RETURN >
. PUSH

D-47

EXAMPLES OF TECHNIQUES

Technique Prob Sol'n Func Asyn Data Data FSM. En. Leveis of
Oom Dom tion Zr:‘a Stre Flow Mastr Slave Stim Feat tity HMI Abst'tion
SRD X X X 1
PAISLey X X X 1
Jso X X X 1
QORA X X X 2
DeMarco SA X X N
Ward SA X X X X X N
Hatley SA X X X L]
Y'rdon MSA X X X X N
USE X X X 1
Statemate X X X X X X N
REVS X X N
RLP X X 1
HATLEY VS. WARD

o Both Combine DFDs and FSMs
o Both Add Control Signals
o Completely Difterent Semantics

D-48

THE RESEARCH GOAL

o Enable Developers to Each Select Optimal Views for Their Aspect
of the System

o Check Any View for Internal Inconsistency, Incompieteness, and
Ambiguity

Derive Parts of One View From Another
o Check for Consistency Among Views

o Transform Views Used by One Methodology into Views Used by
Others

o '"Execute" a Subset ot Views While Observing Any One View

THE RESEARCH APPROACH

o Fully Understand Multiple View Problem
- Define Meta-Model
- Define Views in Terms of the Meta-Model

- Formally Define View Ambiguity, Inconsistency,
Incompleteness

- Formally Define Inconsistency Between Views
- Establish Derivation Capabilities
o Specify Requirements for a Requirements Environment
- Use Multiple Views
o Construct the Requirements Environment
- Database
- Single-View Checkers
- Multiple View Consistency Checkers
- Automatic View Generators

-~ The Executors
D-49

THE BEGINNINGS: A FIRST-DRAFT META-MODEL

o Object-Based
o Standing on Coad’s Shoulders(OOA)
o0 AFew Views Have Been Partially Defined
- Objects
- Structure
- Attributes
- Service Names
Semantics (i.e., Service Definitions) Still Weak

SUMMARY

Wide Spectrum of Requirements Tools/Techniques/Languages
Available

o Each ldeal for a Particular Aspect of a Problem
o Currently Little Compatibility Exists Conceptually or Physically

o ERA or Object-Oriented Meta-Models Appear to Offer Potential for
Common Underlying Representations

Representation of a Few Views/Methodologies Using an OOMM
Underway

D-50

Technical Presentation 6

"An Integrated Approach
to Requirements Engineering"

Dr. Raymond T. Yeh
International Software Systems, USA

D-51

Uncertainty
Volatility
Ambiguity
Inconsistency
Incompleteness
Infeasibility
Incorrectness

Insufficient Communication

Inherent Complexity

Lack of concerns for the entire life cycie

wor

+ Requirements Process is Intertwined with System
Creation and Evolution Process

|

Relative
Effort

Qequirements Sevetoomant,
Setermination ivaluatien, ¢c.

System Aze

« Areas of Support for Requirements Engineering
Must be Considered in an Integrated vanner

Seople

Methoaology ////
//

1. What is the purpose of this activity?

2. What information is needed?

3. Who is involved? :
4. How is the needed information obtained?

5. What to do with the information?

6. What form or language should be used to document the
new information?

7. Decision criteria as to whether to proceed?

5. YWhat tools should be used?

Definiti i Rol

Process Model a model which enables defining a specific
process.

Coracess;: a set of activities needed for a goal or purpose.
and the criteria in deciding the sequencing and
duration in the execution of those activities.

D-53

System Context:
Crgantzation/nission
Goals:

Svstem
Censtraints
Requirements Organizationat Goal

Oetermination Strustures:
Aiternatives:

System
RKequirsments

Reaquirements Analvsis/
Valtcation/Svnthesis

SwW [Oorganization
Reguirements Reauirements Recuirements

N)

Contract

A Requirements Engineering Process Mocel

ro A ctiviti

+ Context Analysis
+ Objective Analysis

+ Requirements Determination
(evaiuate aiternatives)

+ Requirements Analysis
+ Requirements Synthesis

+ Requirements Validation

D-54

Fretnocotogy |

DE

2rocess b

|
Purpese:

provide systematic plans for accompiishing
goals or implementing guiding principles.

Appreaches/fssues:

+ What principles guide the process?
For example:
» Separation of concerns

« Risk management
» Control compiexity

- What are the methods that tell you how to implement

the principles?
For example:
« Modeling + Work structure breakdown
« Conceptusi modeling « Simplfication
« Operatonal modeiing + Abstraction
(prototyping) + Partition
* Projection
People:
. L
=)
Leopie +
Burpose:

« Identify generic role-piayers (participants and
stakeholders) for the process: ¢.g., users.
buyers, sellers. developers

Approaches/fssues:

« What are role-player needs, i.e., their view of
an ideal system?

* What are role-player responsibilities {or

activities: input, communication. feedback.
judgement?

D-55

H
A2 gun
g

Srocess f

Purpose:

Provide expression and communication for and among
different peopie and different concerns,

Approaches/fssyes:
« multiple languages {or different major concerns.
disciplines, and stakeholders
« multiple interfaces

+ underiving commonality to support data.sharing. sutomated
aid of communication

¢ formal langusges for preciseness. automated checking
* more widespread use for enhanced support of

intormstion capture
L aterfaces <
Sea0n1cs, snits

/\ Ef’q"m .
2201/ Commonovreet \ gyee) .
e wwmzd .

Aytomatj tTools)

TN

\————— 2racess ,.___.-
~—iitomation
(Tools)

Purposel
Provide automated support for engineering and
management activities.
Approachesissuesi
« What israre the right tool(s) to use?

» What is a right kind of architecture
(e.g., integration platform)?

+ How do you incorporate tools into practice?

D-56

AN

» AY)
—— OPQZES Jr—

*
"

S3~3zement

Purpose:

direct and insure coordination of resources and
processes to accomplish goals

Approaches/fssyes:

+ planning and controlling allocation of resources:
financial, human, materiali. information, time;

+ measuring, monitoring, and controlling quality:
of process, product. and peopie:

« utilizing real project data for planning;

getting the users invoived

be concerned with the entire life cycle process

getting the baseline requirements

use incremental commitment

separate the concerns.

i ‘ i Within F Activi

Example - Objective Analysis
1. Purpose
» Why do they want this?
+ Do they really want what they are saying?
To make sure organizational investments (long
term goals) are not shorthanded by the short
term system goals,
2. What information is needed?
+ What problems currently exist in the organization?
(problems can be seen as the difference betwcen a
desired value and the actual achieved value on

one or more objective dimensions)

» Need to have the goal/constraints structure!

D-57

Ihgh revel
asnsgement

Scope ol goals as
seen by top management

Scope of goals as

seen

anagement

Scope of
goals as seen
on the

opec&tional

level

"
peocers

A

by miadle

Top management

(dwvisions,
depariments]

level

scope of goals as finally
agreed upon

Definition of the scope of the analysis

Lind oppctives, nevctuee
contrmnis 3na ADICCUYES and
fe131c8 meatuees | conirainiy

dvl oy

Jetermine imporlance Jgefne delermine

ol onsectives ano
conleanty

1v]

NICrAINVES 10 sansct of cach
teach coCuYe nernative

Middle management

Operational

select
terof
anerasuves

1yv

neerint
coamiices

h

Al

v)

v

LV
);)

v

<ot uprs

Y,
'.l J,S

prowect mansget

dney pot yel et

anslyss teem

(AISIVI(D)

ALY

developer
ssmetr
1701 dtaacr
pogrammer
tener
anaensnce

Sort Iy

crperis of
argasuUsIon
ButinI
PRI IYIIER

o

w

QI NET pRUrCE)

A e

1 N msten
1ovece

$ Juppret

¥ vetuyer

) Judie

Role/acuvity cclatonsiup during the OBJLCITVLS ANALYSIS phasc

D-58

Generic Questions Within Each Activity

4. How to get the needed information?
(what methods t¢. use?) -
Questionaircs, Interviews. etc.

5. What to do with the information?
(what methods. should be used to analyze the information?)

Static analysis
consistency, completeness
» Dynamic analysis
animation of gozl diagram
What if analysis.
« Verification
« Validation

6. What form or language should be used to document the
new information

7. Decision criteria as to wiether to proceed?

8. What tools should be used?

» graphical drawing tools
« simulation models of applications

OBJLCTIVES increase Increase
SUB- in¢rease number increase merease quality of
OBILCTIVIS carnings of customers nrice service personncl
Importzance 1 (9) (§)) (3) (B3]
Increase earnings 9 0 0 0
Increase number of customers S («:07) o 0
Increase price S (-07) 0 0
lacrcase 12rvice 0 3 0 t6)
Increase quatity of sales 0 2 0 (6)
negsonnel
CONSTRAINTS
importance
Size of
market s 0 “02) 0 0 0
flasticity of market 9 0 0 (-08) 0 0
Current personnel
[0 0] [(-09)
Structure of labor
market 1 Y 0 0 0 (-0 3)

Geal/sub-goal ana goal/constrainl mateix

D-59

elasticity
{ market

increase
number of
customers

increase
prices

strycture
of labor
market

fncrease

quality of
sales

personnel

fncrease
service

current
cersonnel
structure

provide
on=line

orger entry

Example of a Goal/Constraint Diagram

OBJECTIVES ncrease increase
SUD- increase number mcrease mnercase quality of
OBILCIIVES carnings of customers price service personnel
Imporiance] (9) (tn (3} 5}
Increase earnings 0 0 0 0
Increase number of cuslomers $ -07) 0 0
Increase price 5 $07) o 0
Increase service /] 8 1] (6)
locrease quanty of salcs 0 2 0 (6)
secsonact
CONSTRAINTS
importance)
Suize of
macket] 0 (-0 2) 0 0 1]
Elasticity of markel 9 0 0 (-0 8) 0 °
Lureent personncit
greente 6 0 0 0 0 (-09)
Structure of labor
macket 4 0 Y 0 0 (-0 3)

Goal/sub-goai and goal/constraint malrix

D-60

Summary

* Use integrated approach to solve problems:

 requirements process intertwines with system
evolution process

integrate different areas of concern

D-61

This page is intentionally left blank.

D-62

Technical Presentation 7

"Knowledge-Based Requirements Assistant"

Mr. Douglas A. White
Rome Air Development Center, USA

D-63

The Challenges of Air Force Software
o Computer Software Dominates the Functioning of Most Military Systems
(AF Studies Board)

o Computer Software is a problem in 7 out of 10 troubled systems.
(AFSC/PLR "Bold Stroke" Briefing)

o Cost of AF Mission Critical Software will increase by 50% by 1995,
(EIA Defense Electronics Market 10 yr forecast)

o Software was 5% of AF budget in 1986, will be 10% by 1990.
(Software Growth & Logistics, AFALC/ERC)

o Demand for Software is growing at 12%/yr; Personnel 4%f/yr; Productivity 4%/yr
(Boehm, Martin)

o Maintenance Accounts for 60-90% of Software Lifetime Costs
(Software Growth & Logistics, AFALC/ERC)

o Cost of Software Maintenance is growing by 26%/year
(V. Castor/ OUSD(R&DT)).

KNOWLEDGE-BASED SOFTWARE ASSISTANT
(KBSA)

BASIS FOR A NEW SOFTWARE PARADIGM - SHIFTING
FROM INFORMAL PEOPLE-BASED DEVELOPMENT TO
FORMALIZED COMPUTER-ASSISTED DEVELOPMENT

D-64

KBSA DEVELOPMENT PARADIGM

CECISIONS
AND
RATIONALE
FORMAL . FORMAL
INFORMAL RAEQUIREMENTS / SPECIFICATION |——ai MECHANICAL DEVELOPMENT
REQUIREMENTS ANALYSIS (PROTOTYPE) OPTIMIZATION - c eTe
- SOURCE
4 FROGRAM
VALIDATION

o Machine is "in the loop”
o All lifecycle activities machine mediated and supported

o "Corporate Memory"

o ovmmmencimecn | KBSA ARCHITECTURE

reasoning of generat apphcabedy
10 feqUIIMeNnts acauIAON.

Lifecv~le Facots

S IFICATION
1N QUINEMENIES i)“’IEC Dgnﬂ" IAPLFRPRTALICD CEREORMANCE ! TESNNA
i ALY \ L — -

Activities
Coordinator

Support Systems

- version & access controls User
- knowledge base manager Interface
- editors

- compilers

D-65

Requirements Engineering

Acquisition, analysis, and communication of system description.

System Behavior
Boundary Conditions
Trade-off Formulas
Dependencies
Definitions

TODAYS TECHNOLOGY

- M
“w .
, cOVRINEL
g BT o
INAMIETE ~

tae Aarre oo omr TIS-A /.,U//a-—

D-66

FORMAL REQUIREMENTS

Ex. Constraint:

(air-traftic-control (ako ($value (system)))

(constraint ($value ((multiplier (at* tracker initiation time)
(at® objects-tracked speed)

(at* geographic-coverage distance))))

Ex. Formula:

(SOCLE)

(multiplier (at radar-43 sweep-rate)

(at tracker-21 number-of-radar-returns-required)
(at tracker-21 initiation-time))

LargeSystem's
Requirements,
Sketchy, Vague,
Incompiete

KBRA THEME

7
Incremental | otz anon

~

kvolving

)
) '\, Yoprer et
, X2y / csalron
7 Meduny
(E- >
J' “u ‘)
'%‘ 4/ \// ,
-‘-\
) Y]

o Incremental Formalization
o Presentation Based Interface

—
System
Description
Review .

mJ

K8RA

Community
e

D-67

o Reusable Programming Knowledge
o Trade-off Analysis Support

BENEFITS

Informal - Multipie views, no format computer language, postpone
commitments
Consistent - Single knowledge representation with automated

reasoning and truth maintenance

Incremental - "Catch-as-catch-can" interpretation, associative
retrieval, critiquing, automatic completion

Reusable - Libraries of application knowledge

KBRA Control Panel

D-68

I

DOPN-OER-EFONS e asten wil wrse wTer raprts.
POVW-STILAS (e svotes shol) wniete ¢l Wing track blesh.
MVIES-&F-ATC-SVSTON the doviens of e Bwelss e & dimiey o & &rimer.
DOUSE-I-IC-TITIN Ve svetan oell (rsiuie aminiotrative fuutios.
1. COFIGAVIB-OBTER. ewrdigwration amwrsl,
o. FLOFIANIN-CINIR. cour sser-comariy of el igration esrel.
1. OFRIATVAL-JO-EVICADENLL !l camh
2. FEFV-CDERE-AICTIN wasify ewasie fustion.
3. PUFTSTOHON mmify svore edy.

the systes sheill dispieg e

ppwa

3 devices ol ibe are & and &
syRem yS wnng

Functional Decomposition ror FLIGHT-DATA-PROCESSING

.
l‘ PO 0A T AR UM 1 S, q
Cle b ra®

[

i
N_COMPARE #L1MI-# 44-10-R2DAR-0ATA {1nacxwey

3-K0R-O/amL AY §
] |
I ctmmaresiiant-oata § [ant-aant ‘
@ | OATa-ass0CIATION]

ASSIS It

Date Flow Liegram for MAINTAIN-TRACR-BLUCR |

ASSISTAN

sywoermn function ciagrem ror AREA-CONTROL-CENTER]

COMMARMCA | HBIB-ANAE COVEIN-ANTAAY T - HEITS

m5istam

D-70

Ttate Tranaition Liagram for MAINTAIN-TRACR-ELUCR

RSS1STME

i FORMULA SUILOING WINDON

FORCTOAIND- 11N OF SENIRSIEN PVE-AMEYIO6 <t (9 3 MCI) o (POREMINE:1INE O WPURE-OIIRME ==b 13 MCI} o (POUCTISIM-IIN &
sow-al Aft1am) CBur | 9198) M| S| eIl NIl GWEIIP) 00} fe5100t

s 1100
| tim-are) srammse-arae | atiievtrtre- | 1 [T [
I O - 1198 o -t

LS AT e oo

TR AR

S-ge-e Iy

el (2.9 0963 o om

) e o e

PR 12 a0 ™

] Vo ame

ARPRITR-FRS-S (6.8 2080 "o mm

] "o o

L) "o am
Gprend Gust tar Frapwd ion of B hests

nmubetary

’ [14 . \ .) L]] L}]

L}] [. ny - L] o L

] t ’ .) [— w)

[} . ’] (1,] L] ¢ wae L]
T e R

D-71

FORNULA SUILDING NINDOM

Foman,
e EEEEEIEEEEES—————————————————._1
T merac] mwer A -] SOU-A) MILIA] COST | Hama) Marant et amir) siviiol SWIIY) SWR-0) rYSTAN
| r1m-ave | sruvas-ame | Mismiire- | womrv-ae | aaveniilr | nosvemen) sanr-resens
SIS 1T o gt
T
K.

ASSISTANT DIALOGUL WINDOW --- Cootaxt: (ACTIVITY~1 PROCESSING-TIME (2.
TNEER> XGTIFICATION

L
m;..l-n e (2.8 WEC)
ﬁ w is (2.8 9EL)
ANTSTEW IR ST IONS-2 FRRCENINE-TINE io (6.5 SEC) (o (RPVEITION PRINTIC

UPSTIE-SLIPLIVE FRRCINELIAS-TINE 19 (2 SEL) <——— | SPPESITION PREXISE)

Concext Liagrem for ATC

TR

-

O—m

-~ \

L3HL]

D-72

SUMMARY

o KBRA Demonstration Model

Acquisition - multiple views, incremental formalization
Analysis - automatic critiquing & completion, reusable requirements
Communication - formal representation, requirements documents
o Identification of knowledge representation issues
Presentation, Structured Text, Evolving System Description

o Formalization of reasoning processes

Inheritance, Automatic Classification, Constraint Propagation

D-73

This page is intentionally left blank.

D-74

Technical Presentation 8

"Insights Into the Influence of Shared
User/Customer/Contractor
Objectives on Project Success"

Mr. Michael S. Deutsch
Hughes Aircraft Company, USA

D-75

Empirical Project Success Study at uaHes|
Software Engineering Institute

- Motivation: paucity of significant empirical data on
software project management process

» Goal: identify factors that discriminate between
success and non-success

- Feasibility investigation--
> General understanding

> Education

Hypothetical Model of
Project Success HUGHES

Size

Character
Aﬁ::":;::y Interfaces
Technical Constraints

Business
Performance,
Schedule

Business Constraints

CRITERION
Personnel
User Satis{action Rescurces
Techaical Dialogue
Pe:;'f)m:: 5 Mu;?::ent Scope Definition
Requirements Risk Management
Achievement Planning/Control
Interface Management
DEPENDENT PREDICTIVE
MEASURES MEASURES

D-76

Management Process Model [

User/customer/contractor

dialogue

pomnt ||| o
resources P conu-gol

Strategic risk Technical

management scope —

i definition .

and planning Physical/ Extemal
technical interface
resources management

User/Customer/ Contractor Dialogue (5]

()
» Reconciliation of multiple user needs
RERY
° Ongorng collaboratrve contacts to. assure
correct content in technical requrrements

s nW‘uc '*H"ftwn :?zi"*

o User(s) partrclpatlon in forrnal desrgn revrews

te. rnn-'.-ﬁ-b{hy Ig) tn NIRL

° Representatlon of. user(s) and contractor on

[AXXS117%4

customer s-change control board

"il"“

° Addressmg“of post deployment support approach
v v R R LA .

D-77

Exploratory Data Analysis

b -

ST o

Goal: examine feasibility of conceptual model

;*'i .‘t’\h‘}ri"(””‘i Iefﬁt (y&jf«} [3. ¢§'§u ﬂi\ai 14 P fﬁ*?-;liﬁps‘""

"Data*onis pro;ects*collected usmg‘ mformal;m

5 Vot
-wqwm i 5
.‘Cavea s-on'resul i ,'

)M’

ight: 1s*are.poun ers:forfuturezstu

“y "'w"l ;?r{’:}" -:v .,Q_(-‘."wou”' a’:(«u‘ o
ol

PLEGEA VI TR
v A AR e
2 No:statlstlcal mferences o s
'1 . | v«“,...‘ "#2’

TR AL,
S S Ty e

Technical
and
Business
Performance
Relationship

10 U o
9) . .
2 .
8_
. :
—>
TECHNICAL 5+
PERFORMANCE
] RESPONDENTS' PERCEPTION:
b « successful project
34 * unsuccess{ul p;oject
>
21
=
0 T T T 1 ! T T 1
0 2 3 4 5 6 7 8 9 10
BUSINESS PERFORMANCE

D-78

Management Power and
Project Adversity Relationship

unfevorsble 104

RESPONDENTS’ PERCEI'TION:
« successful project

] E

o unsuccessful project

PROJECT 5]
ADVERSITY

Project Performance
and
Net Turbulence
Relationship

COMPOSITE PROJECT PERFORMANCE
109 .

D-79

1
3 2 -l 0 1 2

NET TURBULENCE

Intercorrelations of Predictive
and Performance Measures

Net turbulence
Management poweroverall)
personnel resources
technical resources
user/customer/contractor dialogue
technical scope definition
strategic planning/risk management
project planning/control
external interface management
Project adversity(overail)
project size
project character
external interfaces
business constraints

technical constraints

Top Ten Management Considerations [JlHa]

Cranpenite
perimpione

i projeess

.81
0.66
0.70
0.40
0.63
0.56
0.15
0.46
0.48

-0.61

-0.19

-0.10

047

072

-0.31

Teelnai

0.65
072
0.63
0.24
0.57
0.61
040
0.66
0.62

-0.38

0.19

-0.19
-0.55
-0.50

High advervy projecis

0.79 (.81 070
0.61 0.78 0.72
0.70 0.85 0.83
0.45 0.55 0.33
0.59 0.65 0.70
0.54 0.74 049
0.12 0.44 0.54
0.40 0.77 0.74
0.42 0.48 0.58
-0.62 -058 -0.41
-0.28 0.15 0.32
-0.07 0.36 0.16
-0.54 -0.36 -0.03
-0.68 070 -0.53
-0.26 -0.35 -0.60

Laninen € omprontie Teoornmal
IR I L R Y

Binvingess

JeHe e Beotiant e oo ¢

085
0.76
0.82
0.62
0.54
0.81
0.37
073
0.39
+0.61
0.04
0.42
-0.53
+0.68
-0.28

All projects
Consideration
Expentise of initial
mantenance icam

Penadic costschedule
estumates for completion

Skills of personnel who
remained for testtransition

Reconciliation of multiple
uscr necds

How well personne! and support
requirements specified

User representation on change
control board

Expenise of development
personnel

User/customer/contractor contacts
on project iechnical content

Extemnal interface stability after
preliminary design review

Extemal interface siability before
prelimunary design review

On-roing liason with interfacing
clements/sysiems

Corrclation
0.78

067

0.66

003

0.62

0.57

0.56

0.54

0.54

0.52

0.52

High adversity projects

Consideration
How well personnel and support
requireancats specificd

Uxperuse of inital
maintenance team

Periodic cosuschedule
estimates for completion

Petiodic review and updating
of risk parameters

Skills of personnel who
remained for tesvansition

Periodic review of actual versus
planned rate of accomplishment

Expenise of development
personnel

How well system qualification
requirements spectfied

Reconciliation of multiple
user needs

Prioritization of requirements for
implement-to-schedule planning

Corrclation

088

03l

0.78

0.73

0.72

o1t

071

0.70

0.65

0.64

A S U v

D-80

Project Performance and

Business Constraints Relationship

104
9-4
8-
7
6~

COMPOSITE .
PROJECT
PERFORMANCE

R 6
.7"
16
P91

52,36
a3
7

o5

.,’

.38

1 4 1 [}
3 4 5 6

BUSINESS CONSTRAINT RATING

Key Points Summary

1 U
9 10

uniavontic

- Empirical data confirms anecdotal experience

and intuition

» Collaboration of user/customer/contractor on
technical content definition affects performance

- Technical definition uncertainty with other
uncertainties impacts performance

- Adverse projects require more sophisticated
management including requirements

D-81

This page is intentionally left blank.

Technical Presentation 9

"The Serpent User Interface Management System"

Mr. Reed Little
Carnegie-Mellon University, USA

== Cameqw Melion Unversty
=== Soitware Engineering institute

Introduction

o Problems

o Objectives

e Approach

o Use of Serpent

o Serpent Architecture

» Serpent Editor

» Transition

e Summary

89-Serpent-reed-1

S==Sw=_ Camege Meilon Unversry
== Software Engineering Institute

User Interface (Ul) Problems

o User interface accounts for large portion of life
cycle costs - in some interactive systems more
than 70%

» Impacts all aspects of the life cycle

- requirements
- development
- sustaining engineering
-- changes to user interface
-- integration of new input/output (I/0) media

89-Serpent-reed-2

D-84

% Carmegee Meon University
—==" Software Engineering Institute

Life Cycile Problems

¢ Requirements

- evolutionary, not well specified

- written specifications inadequate for conveying
"look and feel" of interface

- customers may not know what is practical

- customers may not know cost; time may be
more important than dollars

¢ Design/implementation

- very labor intensive

- inadequate existing methods and tools

- manual development time consuming and error
prone

89-Serpent-reed-3

Camegee Meiion Ureversy
—==- Software Engineering institute .

Life Cycle Problems (cont.)

o After system completed

- frequent and complex changes required
-- user interface intertwined throughout system
-- customer not able to completely comprehend
interactions until system is delivered and in
use

- difficult to take advantage of new /O media
-- use of particular hardware/software media
permeates design and implementation

89-Serpent-reed-4

D-85

l'lWIIlll

it

Camege Metion University
Software Engineering Institute

Objectives

o Make user interfaces easier to specify

e Support incremental development of user
interfaces (prototypes)

e Provide for a "bridge" between prototype and
production versions of system

o Support insertion of new I/O media during
sustaining engineering

89-Serpent-reed-5

Camege Melon Unsversty
Software Engineering Institute

Approach to Reducing Ul Problems

e Provide single tooi which supports incremental
specification and execution of interface

» Separate concern of user interface specification
and execution from rest of system concerns

e Apply non-procedural language and graphical
techniques to user interface specification

§9-Serpernt-reed-6

D-86

= 3

Camaegie Melton Unverssy
Sottware Engineering institute

The Serpent UIMS

¢ Has specialized language for user interface
specification

e Supports /O media independent applications
e Supports both prototyping and production
e Supports muitiple /O media for user interactions

o Supports ease of insertion of new /O media

89-Serpent-reed-7

Camegie Mellon Universdy
Software Engineering Institute

Serpent Use

| End user

User
interface
designer

89-Serpent-reed-8

D-87

== Cameqe Meion Urwversty

=~ Software Engineering Institute

Serpent Architecture

Application

Presentation layer

Other
110
tachnology

X
window
system

89-Serpent-reed-9

——T

= Camege Melion Unvversity
=== Software Engineering Institute

Slang, Ul Specification Language

» Based on production model

- data driven

- allows multiple threads of control

» Provides multiple views of the same data

- implemented with constraint mechanism

- re-evaluates dependent values automatically
when independent values modified

- applies to application values, /O media display
values, and local variables

89-Serpent-reed-10

D-88

—5‘ — Camecue Mekon Urrversty
—=- Software Engineering Institute

Prototyping

» Detailed knowledge of Serpent dialogue model is
not required

o Application not required
» Slang allows definition of local data
» Serpent automatically enforces constraints

e Reasonably sophisticated prototypes can be
generated, e.g., visual programming

89-Serpert-reed-11

% Camegee Mellon Uneversity
Software Engineering Institute

VISUALLY PROGRAMMABLE CALCULATOR

. 'Cﬂt +
U [oen] [-
lelete L]
(mtl /
——
t o+ mum X Disecon Lnro
‘ R |
Pecord
0
s BT
AR
e —
!.‘Q

D-89

R

-_ﬁ'_:__ Camege Melion Urvversty
=== Software Engineering Institute

Input/Output Media

o Serpent designed to simplify the integration of I/O
media

e Currently Integrated

- digital mapping system
- X11 Athena widget set

» Integrations in process

Motif

Open Look

video-based mapping system
experimental gesturing system

85-Serpent-raec-13

-——‘-;F'_.__. Cameges Melon Ursvertty
—p—

—=- Software Engineering Institute

Application
e Can be written in C or Ada

« Views Serpent as similar to database management
system

o Creates, deletes, or modifies data records

o Informed of creation, deletion, or modification of
data records by dialogue layer

§9-Serpent-reed-14

D-90

—
e~ Camegee Meiion Unsversity
—=—" Software Engineering Institute

Serpent Editor

» Layouts of user interface are best specified or
examined graphically

» Logic, dependencies, and calculations are best
specified textually

« Serpent Editor has two portions

- graphical part for examination and specification
of layout

- structure part for textual specification

o Implemented using Serpent

89-Serpent-reed-15

—
% Camegie Melon Urrversrty
——~ Software Engineering Institute

Dialowsm (2113 Pretetwe Rescus Foms

T
lrolo,n fmenmt
Incluges Latwl Tovr
[4
Vriotes hoiect List: bnamea | :
Imtiolization had I .
Termination ' 3t
Dyects @ i Horent
I] Forewouwrd Lolee
“low Lentrnlfere N
Irsewond (ol
e

LV ' [(nm 'Vkloi

D-91

—"Sl:: Camegee Meilon Uriversaty

—r

== Software Engineering institute

vidth P 5
heigt)
foregreusd coler: plack
beckgrowd colar: phiee

[tora 1 owoly I Comit TiPastore i belete |

‘ (omnerd vigoet v

e T
D

semitive H e
Justify? lwvl ' Rn-nl
aret when aaneged: l |

+
[Cowe I ferly Ii Comt Mbestorati elota |
1

—==w_ Camege Melon Unversty

—==" Software Engineering institute

o Encourage use of Serpent

Transition

* Provide close support for selected sites during

interim period

e Publicize Serpent

o Distribute via electronic media

o Commercialization

89-Seipent-reec-18

Camegwe Metion University
—= Software Engi .ering institute

Status
¢ Serpent (w/o editor) in alpha test
¢ Available for SUN and VAX (ULTRIX)

o Beta version of Serpent (including editor) available
Fall '89

89-Serpent-reed-19

é Camegre Metion Universty

—=" Software Engineering Institute

Summary

» Reduces effort for specifying/modifying user
interface

o Provides for evolutionary changes of I/O media in
fielded system

o Simplifies post deployment user interface
modifications

e Provides seamless path from prototype to fielded
system

8§9-Serpent-reed-20

D-93

This page is inientionally left blank.

D-94

Technical Presentation 10

"Using Joint Application Design (JAD)
Techniques to Accelerate the
Requirements Definition Process"

Mr. Robert C. Fink
Performance Resources, USA

D-95

THE CHANGING MARKET
ENVIRONMENT: CAUSES

* EMPHASIS ON A GLOBAL MARKETPLACE
« EC'92 - EUROPE AS ONE TRADING PARTNER
» THE FAR EAST - AGGRESSIVE COMPETITORS

* MERGERS, ACQUISITIONS - MORE BIG
PLAYERS

\ =/

Performance Resources, Inc. (c) 1989

THE CHANGING MARKET
ENVIRONMENT : EFFECTS

« INCREASED LEVEL OF ACCEPTABLE RISK
« NEED FOR COMPETITIVE ADVANTAGE
» HIGHER PRODUCTIVITY REQUIRED

» FLEXIBILITY TO ADAPT QUICKLY TO NEW
CONDITIONS

\. -,

Performance Resources, Inc. (c) 1989

D-96

THE CHANGING SYSTEMS
ENVIRONMENT

« EMPHASIS ON IMPROVED DATA
MANAGEMENT IN INFORMATION
ENGINEERING

» RELATIONAL DATA BASE PRODUCTS

« IBM'S REPOSITORY - CORPORATE DATA
RESOURCE

« SHIFT IN THE LIFE CYCLE

« TOOLS SUPPORTING LIFE CYCLE
PRODUCTIVITY

v

Performance Resources, Inc. (c) 1989

JAD:
" JOINT APPLICATION DESIGN

+ A GROUPWARE CONCEPT: TEAM-BASED TECHNIQUE
* LED BY A TRAINED FACILITATOR

» SUPPORTED BY A TRAINED ANALYST/DOCUMENTOR
+ CENTERED AROUND A WORKSHOP

« FOCUSED ON CONSENSUS-BASED DECISION-MAKING

« USED FOR ADDRESSING INFORMATION ANALYSIS/BUSINESS
MANAGEMENT ISSUES

_)

Performance Resources, Inc. (c) 1989

D-97

D=
CREASED PRODUCTIVITY

. WITHOUT JAD: AS MUCH AS 35%
LFUNCTIONAL REQUIREMENTS
BE MISSED. ADDITIONAL
S MENTS ADD NEARLY 50%
WELHEADEESS THAN 10% OF
INCTIONAEREQUIREMENTS
AISSEDZWITHFAD-AND PROTO-

12 INGEFESS THAN: 5% MISSED
MINIMAL"CODE ADDED

l
1(1!5"‘:’ ';""” b

1S Sl amse s ot el s &, ot +

5111 Lonsburg Piko Suite 301

Fells Chaneh, YA 2204} (¢) 1989, Perfonnance Resswroes, inc.
703-845-9408
r N
CHANGING FOCUS
SYSTEMS FOCUS * BUSINESS FOCUS
Technology Driven Business Decision Driven

"Back Office" Transaction Driven |"Front Office" Supported - MIS and DSS
Hardware and Software Limiting | Increased Hardware and Software Capabilitics
Single-Function and Organization |Multi-Function and Cross-Organization
Operational and Tactical Role Strategic and Competitive Edge Role

L

Performance Resources, Inc.

—

(c) 1989

D-98

\ EMERGING
SYSTEMS PROFESSIONAL

PAST

PRESENT

Computer Expert "Gurus”
Reactive to Users

Users New to Computers
Technology is all Important
Programmer/Analyst is Craftsman
Programmer/Analyst Dominates
Maintenance - Large Role

Systems Professionals are Consultants
Catalysts/Planners in Business Change
Users Have Experience with Systems
Choose Technology to Fit
Programmer/Analyst is Engineer

User - Systems Partnership
Maintenance - Decreasing Role

\. J/
Performance Resources, inc. (c) 1989
{)

PRODUCTIVITY FUS
MASTERING THE BAS

« METHODOLOGY: INFORMATION
ENGINEERING

« TOOL: CASE
« TECHNIQUE: JAD
« ENVIRONMENT: FUSION CENTER *

* The name "Fusion Center" is drawn from the U.S. Army Corps of Engineers

Management Center under the technology transfer program of the U.S. Government.
\ J

Performance Resources, Inc. (c) 1989

D-99

~ JAD EVOLUTION

FIRST GENERATION JAD NEXT GENERATION JAD

FOCUS ON PROCESS FOCUS ON DATA

TRANSACTION ORIENTATION| TRANSACTION + MIS/DSS

USER PARTICIPANTS TIGER TEAMS = BUSINESS + SYSTEMS
SCRIBE AS DOCUMENTOR DESIGN ANALYST/CASE USER

APPLICATION-LEVEL ONLY | ENTERPRISE, BUSINESS AREA, AND
APPLICATION LEVELS

USER REQUIREMENTS ONLY ggl;}!c;%EQUIREMENTS AND LOGICAL

. /
Performance Resources, Inc. {c) 1989
e)
WORKSHOP
KEY JAD MODULES
MODULE:
WORKSHOP
PREPARATION} MODULETIT:| ..
Operational] Workshop DATA ———
Guidelines | Agenda MODEL . Normalized .
TODULETI - Functional - Data Model | Access j
* |1 Famework l i
CONTEXT . :
MODEL Q/D/p-s MODULEIV: ;t:ncuonal. . T~ P
; PROCESS composition lnul:/r(f)a'gcs Menus
MODEL | DFDs
- ch)pendency 1
fagrams Workshop |
Process/Entity Closure. .
L PRV S S)
Performance Resources, Inc. (c) 1989

D-100

INDEPENDENT
DATA ANALYSIS

« Corporate Architecture as a Corporate Asset

« Elimination of Duplication

+ Shared Data - Models Within the Architecture
» Dzta Separate From Business Process

. —

Performance Resources, Inc. (c) 1989

HIERARCHICAL
PROCESS ANALYSIS

» TOP-DOWN ANALYSIS OF BUSINESS

» APPLICATIONS SUPPORT CORPORATE
BUSINESS STRATEGY

« FUTURE ORIENTATION

« FLEXIBLE MODEL TO MEET BUSINESS
CHANGES

\)

Performance Resources, Inc. (c) 1989

D-101

JAD DELIVERS

« IMPROVED ANALYSIS/DESIGN QUALITY

* REDUCED ANALYSIS/DESIGN TIME/COST

« IMPROVED OWNERSHIP OF SOLUTION

« EARLY ISSUE IDENTIFICATION/RESOLUTION

\ J

Performance Resources, Inc. (c) 1989

JAD APPLICATIONS

« CORPORATE/BUSINESS AREA ARCHITECTURES
» PROCESS ENHANCEMENT IDENTIFICATION

« USER REQUIREMENTS FOR APPLICATION

« LOGICAL DESIGN FOR APPLICATION
 PROTOTYPE REVIEW/EVALUATION

\ J/

Performance Resources, Inc. (c) 1989

D-102

e)

L

THE FUSION CENTER

» SPECIAL FACILITY DESIGNED TO SUPPORT
GROUP DECISION-MAKING

« AUTOMATED DECISION-MAKING TOOLS AND
CASE TOOLS

« TRAINED FACILITATOR AND DOCUMENTOR

« USE OF SPECIAL MATERIALS - WHITE BOARD
WALLS, COMPUTER PROJECTION, MOVABLE
FURNITURE AND WALLS

J

Performance Resources, Inc. (c) 1989

NS A LD

i 3.

EIGHT CRITICAL
SUCCESS FACTORS

EXECUTIVE-LEVEL COMMITMENT
EDUCATED SYSTEMS AND USER TEAM
EXPERIENCED FACILITATOR

CASE SUPPORT

DEFINED PROJECT OBJECTIVES
DEFINED PROJECT SCOPE

DEFINED PROJECT DELIVERABLE
LOGISTICAL RESOURCES

o

Performance Resources, inc, (c) 1989

D-103

This page is intentionally left blank.

D-104

Technical Presentation 11

"ADA Box Structures for Object-Oriented
Software Development"

Mr. Edward R. Comer
Software Productivity Solutions, USA

D-105

@ Welcome to Ada Box Structures! \

o’

Ada Box Structures provides a disciplined means
;o ah?alyze software systems in an object-oriented
ashion.

As an analysis method, Ada Box Structures
provides a rigorous framework for describing
objects from various perspectives: static and
dynamic, internal and externai.

- The box structures of black box, state box and
clear box provide different views of any object in
increasing levels of detail and with increasing
visibility into the object.

» Ada Box Structures fills a gap in object-oriented
methods by providing a rigorous method for
discovering application objects.

& y
SPS
u
/ﬁl Object-Oriented Development \

Object-Oriented
Analysis

Y

Object-Oriented
Design

Y

Object-Oriented
Programming

D-106

(’i_ﬂ Advantages of Object-Oriented Development \

Provides a single, consistent model that
requires no “great mentai leap” from
analysis to design and thus increases
traceability and maintainability

Matches the technical representation of the
software system more closely to the
conceptual view of the application

Provides a stable framework for analyzing
the problem domain and for levying
requirements

Supports implementation using abstract
data types

.

Some Definitions

~

An object is an abstract data type, which encapsuiates
data and provides a set of predefined operations to
manipulate and aceess that data.

An object class is a collection of object instances with
common attributes and a common set of operations.

An operation defines an object’s capacity for action,
response or functioning.

A stimulus is an external request for an operation made
upon an object.

Transactions are behaviorally related sequences of
stimuli and responses.

D-107

@ More Definitions

Attributes define the data pertinent to each instance of
an object. Attributes encapsulate stimulus histories.

The state of an object is determined by the values of its
attributes.

Objects may be nested, defining subobjects that
contribute to the state and behavior of a parent object.

A relation is a mapping or association between objects.

Constraints denote facts about objects that specify
behavior or limitations on behavior or state.

\

@

@ Perspectives of Objects

Being able to look at problems from ditferent
perspectives is a powerful way to reason about and
understand systems. These kinds of perspectives
aLe' of particular use in understanding and analyzing
objects:

 Static and dynamic perspectives of objects

« External and internal object perspectives,
and Iinter-subobject perspective

D-108

C

Object Perspectives

Object Model

Internal
Object Modsi

Inter-Subobject
Model

Static Dynamic
Parspective Perspective
o Stimul » Operation constraints
+ Responses * External object behavior
« Transachons External transacuon
¢ Operations models
« Atinbutes + Attnbute constraints
+ Operstional specifi-
cation of behavior
+ Subobljects * Relation constraints

« Classification structure
+ Subobject relations

* Interaction paths
+ Subobject interaction
modeis

-

The Black Box

object model.

N

Black Box

The black box view represents the external

The external object model considers only
those aspects that can be viewed from the

outside.

NNl

D-109

(ﬁl The State Box \

The state box view represents the
internal object model.

Stata Box

Object

Stimuiue Response

—— ralion -

‘ Atirtxnes '

The internal object model statically defines
the attributes of the object that the object
must remember.

_ &) .
(i)

The clear box view represents the
inter-subobject model of nested subobijects.

' Clegr Box

Stmuus

= R
il

The inter-subobject model statically defines
the subobjects that are nested within the

object, analyzes the classification structure of
objects, and defines the relations between j

/ SPS\ subobjects.

D-110

(ﬁl Box Structures Expansion \

Sises Sou :
== 1=
pufie- —
Dertvation Expension
-1
=) -
Cloar Bos
Objas
—nd The black box, state box,
and clear box provide
St behaviorally equivalent
—— views of a system or
Rosearse supsystem at increasing
levels of internal visibility.

)
\@ .

/il Box Structure Hierarchy \

First Level Black Box

Elaboration of black
box 1nto equivalent

state box and clear
box reprasentations

State Box

Clear Box

Second Level
Cuconposion H N
clear box into biack

box objects

:
L

D-111

C

Ada Box Structures:

A Framework for Systems Analysis

\

The Ada Box Structures Method provides a
framework for systems analysis. This framework
guides the integration and application of several
different analysis methods. The result of the
analyses is information, expressed in text and in
graphics, that records the understanding of the

system.

_/

Ada Box Structures

Work Product Representations

~

Bleek Bex

Cloar Box

Static Perspective

Oynamic Perspective

Candidete P Candidete
Werk Preducts Aopresontatiens Work ? Aope
Semub + Dlask boa oy om Operation consiaints « Formal senewant languess
o Sumes ol + Vrlormva stesermprne
* Dot ewas Soontcasen €
xtemael odect ¢ Surast 9 recsarad rece
Respornes : I-‘i-::.ln behavior * VT SOraNen Seewreten
: Resserae B s Forrwl spersten ssengven
Transeswens + Abgtrect blesh bon Sowr om . H
o o models Trareassen Sagrom
+ Oniest @agram
Operesone . voranans ver
+ Bamad 10 Aperasens mae
ArButee + Obiest Sagrem Attnbute constramnts Formal ouroward anguage
» Arvwnae vt Sasearee
o Dotmted a/rinne spowicaten
Operatonal o inierraes Watual POSEACsON
SO0CH0RLON Of Dohavior * Formas st spesessen
o G/ apfuans roereseniessn
Subebjects o rderted bot of sBmteecty Retason consremnts Formas earovand lerguege
o FOOIIEIVCH 04000y Bagr oM intlermal masemerie
¢ Nossd smest Gagram
- W et inletacton paihe nteracuen rmevw
N - - Il oreunan Sew Gogran
s . Boby o et
o Qe resphans Bagt oM b

D-112

(@

Selection of Representations

~

@

There are a number of important factors to consider in
selecting specific techniques:

Maturity of the technique with respect to
object-oriented specifications

Complexity of the system to be specified

Degree of detail and rigor that is desired in the
specification

Familiarity and experience of the organization
with the technique

Level of expertise of the analysis personnel
Availability of training in the technique

Availability of automated tools to support the
technique

Degree of integration possible between tools

.

(& ™

13-Step Ada Box Structures Process

\

1
i
i

]

. ldentify object operations

. Conduct transaction analysis

el { o pund 5. Discover state requirements
6. |dentity attributes
- —)| -

7. Define operational specification of behavior

Clver fag
B] ' - 8. Conduct state analysis
9. |dentity clear box subobjects
anadll e 10. Classify subobjects

Forwwae 11. Define subobjects’ relations
12. Define interaction paths

. Define object stimuli and responses

. Define informal, external object behavior

13. Conduct object interaction analysis)

D-113

(i)

Black Box Expansion

1. Detine object stimuli and
responses

2. ldentity object operations

3. Define informal, external object
behavior

4. Conduct transaction analysis

Black Box
Object
AR

Stmutss . Response
————t—{ Cperaton | -

k {sps) j
@ Black Box Expansion \

1. Detine object stimuli and responses 2, Identify object operations

L . Lonpn sovenme Lt

If
it
i
|
!

St st wmn—. 200 o wp S ey
————————tatnie] =y
a— - e ey amoemen
P e S amatmton @armtme. —r—=
vt Sy
S ———————————
vy ettt ey ey 0 @ ourrenem

p— It

3. Define informal, external object 4. Conduct transaction analysis
behavior -

Sepin
Rots quiry Biing rom user;
W QUOrY SYPSAK Vvessthen
Servl 6rTer M0sEge W LBeY;
Sies
Apply quary ® [L
Cenve & Aew Sermpanent sel
41 compeneras ung then
Servl Message 1 Use:
(]
Dlapiey SN resLs I SRMSINeNt $ot;
S0t 1Nt SIPEErere 5ot 08 140 SHlaLR Content fOF Ps
USAr'S envRANGs;

D-114

ﬁﬁ] Steps 5 - 7: \

State Box Expansion

5. Discover state requirements

6. Identify attributes
7. Define operational specification
of behavior
State Box
Object
b
Stimuius] Response
et Tperalion] -

NP %
f ﬁ_ State Box Expansion \

5. Discover state requirements 6. ldentify attributes
Ansiysie ot the 0 v coment
Aoat Guiry ovg Fum wser: " Companent lacet delrvions Seamon comoonant st conten
n.::::.mu:-r oow ’c.qm-almn Su:mmmn
[oepsprmigottponsdamepa T oot compenann ane Ubrary names UU:M.
(L xr 1] SNBSS IEN A
.rwi-:
o o emmarnt
h?rw-n—.u-—n%
o 7. Define operational specification of behavior
Read Query swning;
Perse Quary srng;
 query synian welid then
!I.mwmnwwwmm:;
Send > 90 40 User °S 9.
Geol Sassion arary soniant
Get oot

Set Now ompensnt 00110 Bo 1he set 8! 88 Compenents in Ihe Sessien strary centert
that ere aise & of e 801 CONtENT 8NA WHEsA | KON VeSS
e 1he CONBIerds sesetied 1 the Ouery ing;

It Now sarmpenent setis omaty \hen
Send Meseage 19 User "Ne sarnpeners feune®:

Eloo

Diasty Query string and number ot memoers in Aew compenent sef,
Sot Sessien sampensnt set Contert 10 D8 New Compenent 5ot
Endit;
End ¥}
k (Ps\ €ne;

D-115

/ﬁ] Steps 8 - 13:

Clear Box Expansion

~

8. Conduct state analysis

9. ldentify clear bex subobjects
10. Classify subobjects

11. Define subobjects’ relations
12. Define interaction paths

13. Conduct object interaction ClearBox

analysis ! oroct

Sumuius

FResoorse

/

@ Clear Box Expansion

\

8. Conduct state analysis 9. Identify clear box subobjects
J— = == E.—-—’. — OBt Clase Camossnare Ay wee
z’-‘__ _________ A7t hovli Qv o
e g i = e
B oo T ==
== | - - f----- T e
e - e = s = e e Se0s000 Campanory 34d Cormat
= ==L ==
S —_—— =

D-116

@ Clear Box Expansion (con't)

~

Ulwery Compurnss
r Syoun [ey ool Camaarmse

12. Define interaction paths 13. Conduct object interaction analysis

Comparant Cosmponsnd
Poet [d
Ovarapen Yenu

1:

NP

géi | [TET
& = |~ []

N

f\albrg

/ﬂ] Ada Box Structures Analysis Process

J

In the real-worid, specifications are developed
at many levels of abstraction simultaneously. The
Ada Box Structures representations allow you to
incrementally gather, annotate and verify system
specifications.

/,
®

D-117

Incremental Expansion Process

\

o] |
|
h o] Andiyss 1'7 Invertion 01
Step 1 y
Verheaton |
g g
H ~ g
3 5
T l"r Inventon O«
Step k ?
’ I Box st]

.

@

/ﬁ] Advantages of Ada Box Structures

\

+ A small set of structuring concepts used
repeatedly

+ Arigorous process with verification
» Small steps of invention

» No restrictions placed on the order of
elaboration (e.g., top-down vs. bottom-up)

+ A *“place notation” for documenting
specification details

« Directly evolvable into an Ada object-oriented
design, improving traceability and
maintainability

D-118

Technical Presentation 12

"A Prototyping Methodology
Applied to Tactical C2 Systems"

Mr. Martin Morel
Le Groupe CGI, Canada

D-119

~~ Why Prototyping is needed... = ==———m=——c—

Conventional Methodologies - impose too much responsibility on the developer with
respect to the accuracy of system development,
- Deliverables prioritize heavy documentation rather than
functioning and demonstratable software.
- User group review meetings become iess productive and
tend to be superficial as a means to gathering user
requiremants.

User's Role - Users have too little involvement in the development of the system.
- Lack a sense of "ownership” in the resulting system.
- Only “"seg" the system ance it s daveloped - no opportunity for
useful feedback during critical development stages
- System remains abstract in its early stages of design.

Developer's Role - Experiences ditficulty to accomplish his / her basic function:
-» to PRODUCE USEFUL information systems which respond
to the USER'S REQUIREMENTS.
- Work serves to feed the methodology rather than the users.
- Often has to struggle to "learn the system"”.

— Cgi -/

Engineer Command and Control Operations
Mobility / Counter - Mobility Function
Canadian Land Forces

Brief History of ECCO 2 Versions written to date using ...
Software Developments | Conventional Metliodology | |3(;|_ Technology I

Buiit with a minimum of user input
Resuiting system:

|E-R Diagram of 8 entities, on 3 pages]

|Apprcx. 10 input screens, 10 reports]

l Only a very partial coverage of the requlremcms] h

Single - user, PC Based

INever completely accepted by the users

\ Cgi _/

D-120

Log Obstacte Tasks

Maintain Resource
Descriptions

Resuit

~Requirements prior to Prototyping Approach =

- Keep up to date specifications of Obstacle - Task actvity

Maintain descriptions of different types of resources used by
Obstacle - Task types

- Production of a large amount of documentation
- Little software produced for known requirements

- Requirements analys:s has not gone In depth ... unknown

descnptions:

| copes | |pEscRiPTIONS| [STATIC QuaNTITIES |
ETC...

requirements remain

(SUMMARY)

Obstacle - Task Planning

Resource and Work Schedule
Calculatian

~=Requirements with Prototyping Approach ===

coi —

- Plan and follow Mobility / Counter - Mobility tasks in a tactical
situation. Support mult - plan operations.

Mobility Counter - Mobility

Survival General Support

- calculate work schedules and all required resource types to
carry out M/ CM tasks

ITim.] Enonnelj [Eqummem I lVehiclisJ

IMmos ”Exploswesl IFencmg ' IAccessonesl

Stores Dump Management

Orders and Map Overlays
Production

- Keep an update account of dump store contents and allocations
{inventory controt approach)

« Produce detailed mililary orders and enginger plans, maintain a
graphical representation of opstacle symools ovenays on a
terrain map.

cgi —

D-121

- E.C.C.O. Prototyping Status ———

New Objectives

- Ensure that user requirements are completely specified through the

- Use prototyping incremental approach to system's development.

Software

Documentation

prototyping process.

The Prototype becomes the System

- Current architecture phase has already defined:
I Ovar 60 input screen.ﬂ l Over 80 Data TablesJ

' Over 70 reporting funcnonﬂ ls Complex Calculational Funct:onsJ

- With the prototyping approach, the documentation gradually builds
up as the usser requirements are refined. Each component of the
system 1s documented using a data dictionary andand E - R
modeling CASE tool.

Data Modasl currently covers 60 entities, 7 modules
displayed on 18 pages

== ECCO Technological Environment se———

4GL DBMS

Multi - User O.S.

Terrain Analysis
Intertacing

Methodology

Tools

cgi —

Oracle with C interfacing

Unix

Geographical Information System on Graphic
Workstations

Protoguide - A Prototyping Methodology

Proto'SQL - Data Dictionary,
mini Configuration Management tool,

documentation generator
P
cqi

D-122

~= Protoguide (introduction === ———

What is ProtoGuide ? Prerequisites

o Development Guide 8 4th generation language
o Prototyping a Relational D.B.M.S.

o The prototype "becomes”
the system

<

Advantages Caution

o Improved user o Manage modification requests

participation o Role of participants
o Reduced development
costs

o Reduced operational costs
o Reduced duration

o Get the right system the
first time

- i Cgi _J

Overview General description of orototyping methodology
| Development phases | | Deliverables |
Phases The development is organized into phases: at the end of each

phase. specilic deliverables must be oroduced

Preliminary Study | | Architecture

Prototyping lConstruction] [InstaHation

Deliverables The deliverables consist of system components and end of phase
reports
Programs User documentation

System documentation

End of phase reports

D-123

Preliminary Actual Situation Study and evaluate actual situation
Study Definition Set objectives. define the system

| Recommendation| | Solutions. profitability. recommendation

|
Architecture | Planning | |[Plan overall develooment project |
[Organization | |Organize development project |

| Standardization | |Set development standards]

|

|

Prototyping [Demonstration | |Presentan operational prototype
| Experimentation | |Use the prototype to vaiidate it
| Specification | |Complete details for system construction |

System |__Construction { Construct according to standards and specs. |
Construction [Inspection [Verity conformity to standards and specs.

[Preparation | [Prepare installation

Installation | Verification | [Detailed veriication of correct operation
f— Installation Install for day to dg_uxsage .
[Evaluation Evaluate the system and the project

|

|

|

]
\ . cgi —
~ OVerview (Phases s ———————

Preliminary Architecture Prototyping System |nstallation
Study Construction

Installation
Verification

Preparation | |

I |

l Inspection] []

[Construction | [|

| Specitication | | 11 |

IExporimontlﬂOLI [l L J

| bemonstration | | 11 |

[Standardization | | | L | { |

I Organization] l _I L] []

[__pianning__| | R] | |

[Recommendatios | 11 1 1| J

[[_Definition | |] L L 1L]

[Actual Situation] |] | |] |
_

. (ofe]

D-124

~ QOverview (phases)

ProtoGuide Conventionai Methodology Il

Preliminary Architecture Proto- Anal- Construction Installation
Study typing ysis

G P

\\-\\w
Y. XY

\\\‘
-
SL

‘ coi —

~Overview (Prototyping vs Analysis) =m=—————mm—"
Prototyping ' Analysis

Menus ... Screens ...

(— ECCO Y\ (—_ECCO)
Minetield Type: 3423

Minefields Size..... 300sq.m.

Crate_rs Density...: { oer3 m. —
Abattis Mines Used Qly. ‘
Bridges 1231 10
Demolition 5465 5

4446 35

\ J/ \
Reports ... User Guide ...
Dump Inventory Conv. Minelields Editor Specifications
Store. Desc. Qty Power Valldations ::‘; :::'m;:%?;;o st
Mine Resource Stores Mice The mme heid type may [WMine - Trs mne type resource |
1231 Conv.Mines 13 500 Fied l;"nv“mr-mm Type code must be vadated .
o Mine he 1ype ¢ [.
5465 Scatt.Mines 50 350 Type st orat n:::';' nsty m :-mx;“

fotal densey of the mne

W Calculations ild using the mne qly
Total 230KG Densty Wnen iy, & modded, anathe bl
the total density of the stancard gensiy of the

mine fwid, The exact

feid 18 recaicuiated as
Siz0x Qty, x Densty, formuta depenas on . .

N Cgi _/

D-125

Batch Processing
Data Base Management

l
| Interactive Programs
l
|
|

Programs User Documentation
Menus I I System Overview |
] l Training Guide]
Reports | | User Guide |
| | Quick Reference Guide |
| | |

Reterence Guide

System Documentation End of Phase Reports
Development Guide I Preliminary Study |
Integrated Tests Guide | Architecture |

Installation Guide l System Construction
Maintenance Guide | Installation |

| |
| |
| Conversion Guide | [Prototyping |
| | |
l |

N Cgi _J

Preliminary | Actual Situation |
Study [Definition |
[Recommendation |

Architecture | Planning | | Summary description of programs |
[Organization |
[Standardization |

Prototyping { Demonstration | | Operational programs (function) |
| Experimentation | | Validate using real data |
[Specification | [Navigation, validation, perform.. messages |

System Construction l Build accerding to standards and specs. ,
Construction Inspection | Verity contormity to standards

[Preparation |

Installation | Verification Verily correct operation _
| Installation Install in preduction environment
| Evaluation

\ Cgi _J

D-126

Preliminary | Actual Situation |

Study ‘ Definition ,
[Recommendation |
Architecture | Planning | | Summary descriotion of reports |

| Organization |
| Standardization |

Prototyping | _Demonstration | |Selection. sorting, report data fayout |

| Experimentation | | Verify usefulness using real data |
[Specification | |Specity volumes. frequencies |

System | Construction | [Peformance |
Construction Inspection Verify conformity to standards

{ Preparation

Installation | __ Verification | Verity correct operation |
[Installation [Install in production environment |
[Evaluation
k n
cgi —

Preliminary | Actual Situation |

Study [Definition
[Recommendation |

Architecture | ___Planning |
[Organization |

[Standardization | | Specily user mterface standards

Prototyping [Demonstration | |Describe prototype's processes and data |
[Experimentation | | Verity accordance with the prototype |
[Specification | [Specity all process details |

System | _Construction |
Construction [~ Inspection | [Verity conformity with standards

[Preparation |

Installation | Verification [Verity conformity with system |
| Installation
l Evaluation

‘ coi —

—

D-127

~=ECCO Example - Menu and Screen

Preparation Material
for User Group
Meeting #1

Meeting
Notes

Material Prepared
after

User Group
Meeting #2

- Menu & Menu Documentation

- Conventional Minefieids Editor Screen

- User Group Meeting #1 - Conventional Minefields Editor

- User Group Meeting #2 - Conventional Minefields Editor

- Menu and Menu Documentation

- Conventional Minefields Editor
- User Documentation
- Developer's Documentation

DREV ~ ECCO SOFTWARK PROTOTYPR

Obstacle Menu

M\

coi —

OBSMEN -

Summry Summsary description
The chstacle mooule menu constitutes editing and Listing capahiliviss required for the
U, . O enmnsar scandard chstacle class and types, Presercly, these costacles
focus on couex wobilaty chstacls tasks, Rture reonrerant analyns sessuns will be
Tequired to expand on Cther aspects of enmnser activities.

[T Displayed Menu

(BMEN ——- Defense Research Establistmant Valcarter

m

Chstacle M

(hstacle Class Editer

D-128

DREV - ECCO SOFTWARE PROTOTYPE OBSMEN - 2
Obstacle Menu

Qptaons Sumsary descraption of menu options
This Section presencs a SuTmary descIpCion Or €3Ch Cpeion presented in the rem

(bstacle Class editor The cbstacie class editer is actually caeesed of several screens, The first of these
allows the user to define and poant to a “class® cf obstacles wmch growp together
cbstacles of a sare type. By pouming to class, the user can "expam® to a
screen whicn czains the xecafic (O data required to define an abstacle type vithin
that class, The supported cbstacle classes are: Abartis, Zeacetame, Smooe Damolition,
Craters, Ccher Demolation, Minefields, Anta~Tank Ditches and Fences.

DREV - ECCO SOFTWARE PROTOTYPE OBEOBS - 7
. Obstacle Class Editor

Screens Screans displayed during processing
ox ! CBICRS 200 Sk 2
5 g fvare Proeecype ————————
ml Mnefiold 3% entry fam 7/10.1
Type Degth Ut ¢f Consaty Placament i ef Total &
trasure Spexd Foes ersaty power
- I) S T H T T
(] (e {f) 1] M ST 3" (P8I
F1] (RA__ {8 e IH HE LT
(o L (T N) N (T I L M 1)
2L N (I) O T N (- A 1
Al RIS @D FD 0 EsID ()
2 I (T | N R (| AN [N (1
Y T D 5 N T N G TIM 1) W 1)
) (FR)__ (F8) 21 8] fEs)_ wsi_
F1] () if3] 31 ged]_ (P8l esl
) (] () (L LT HE I T
F) (e (k8] (B, (R) S (F6)_
i) (] _ () HE esh, 1881,
2R LT 1} B 1) I L] £ [F8)
(LTI 3 N - I 1 N AT L N L1

D-129

DREV - CCO SOFTHARE PROTOTYPE oprons - 7

Obstacle Class ilditor

Lsih 2oy idzer .
Screens dispiayed during processang
- A
CEEES o ECOD Softsare Protetye ———————— - C M
I_ ml Canvtahnd Minefzeld Bats enery rem o |
) e i placgrrr B3%E Sy |
(1) c 7] fone (9 !
{F1] {€Sj | —
(R3] {£3] !
if1) {Fs)_ t
(£1] (s —_— !
[£1] (£5)_ '
{1y {es)” -
i1 - —
1] .
5 o = | cabpenp ™
£5 .S o
£ (€3] _ e
(€1) i3 por
[E1] .
(1) 151 — - dzwidy
(£ {rs)
C N
ay o LV | —m&#r'm&

DREV - LCCO SOFTWARE PROTOTYPE OBEOBS =~ 7

Obstaclc Class Eclitor

Usee Geovr Neehn(: o2

Screens displayed during processing

QLS e 0D Seltr6are PreCcype ————em
ml Conventional Hune Field hotacles 7age 1711
Type Descripion Ocnsaty Mo.of Stopping Placeror laying rethod N
t/racer) Rows Power Speed W4 Type Desenaprien| Mok, ..
(E1] ()] [£3)_ {E3)_ (F5)_ {F6)_(F7) (€8] __ __ (691 ‘ -y
(7 (k2 (E31_ (F41_ (FS)_ (6] [F7] {F8) 5] — Har~ Sanm
(F1} (F2} (R2)_ R3] (FS)_ {F6)_ (€7} (£B) (£91 % Mo~ -
(F1] (2l 0217 (R (PSS (e8I (F7) [F8) (F9I T L S,
(F1) (2} (B2 IP7 (6317 (F6) (P9} (e8] (93— et X
{r1] 2] [t R G e L R N i B L (9| :
(6] (2 D 1 L R e 5 BN peed
(1) (Fl (F312 [F9)Z (FS) {F6)C (F7) (F8) lrsl.j:
(F1] {F2) (B30 (F)D (Ests (£8) 17) (e8] (P9 AV
IF} {F2) (e (M L L e ot (RN -
e Minag e fancing Equigment de-——L . A
Type Qy | e fescmgtion @y w ot
™M) vl _| My el (3l _ e
m] 2] 217 | t Gl 17 tpape O pnd
Ml w2l Mz | o) () ol LA ot
A
14 a0k 1007
‘e —
Sk —ptag . thames enl = faoulT
et op med T - T ot
S Bl Tlnormg %.k - Ms‘::’-"
. - . -~ AP~
- i Pt o
-~ ..,5}!\,
- ij ‘WTW“

D-130

DREV - ECCO SOFTWARE PROTOTYPE

Engineer Tasks Module

Summary descriptaon

Displayed Menu

2GEN — Defense Pesearcn Establisivent Valcartier
ml mneer Tasks Mooule

Courzer Mbility Tasks Edwtsr
Moy liry Tasks Edieer
Survaval Tasks Edater
Ganeral Suppert Tasks Editer

DREV -~ ECCO SOFTWARE PROTOTYPE

Engineer Tasks Module

Corter Moility Tasks
editer

spoulity Tasks Editcr

“Survival Tasks fditor

Genaral support Tasks

Sumsary descraption of senu options
This Secticn preseres 3 summacy desctirtaon O a3h cpraon presented in the meny

The cbstacle class editcr is actually camcesed of several screens, The first of these
allows the user to cefine amt poirt £o A *class® of cbstacles which qreap together
chstacles of 3 same type. By pouting to class, the user can "e:pand® to secondary screans
which corgatn the specific umur ¢ita required to cefine an costacle type witiun that
class. The suported costacle classes are: Abattis, Peacetite, Smdoe Demolaticn, Craters,
Cthar Damlution, Converticnal Minefields, Scatteracls tumefialds, Anta-Tank Ditchas,
Fences ard Booby TY208. ANCLher Genenic ctstacle type has also teen included called
“XIES”. These types are used by hicn level comnng unuts 32 o1an entire field :nes on
which enqineer councer-rooility aKTivites are to take place.

The Mohility Tasks Eiter 1s used to stecafy and dooumers the [eScurcR recuirerwts f{or
enpneer tobrlity tasks. Generally, these tasxs are classified as: costacle breachung,
COLS MACAINCE CNSTIUCLIN, SOANNG, and mver creasing,

The Survival Tasks Eciter 13 used to specrfiy and docUmert the resouroe requirerercs of
enmnser savaval tasks, Generally, Thase pertain £o gTound 1QGing ACIVILIES M a3
trenches and fortificataon,

The Gereral Support Tasks editor 13 used to specafy and cocrert the reauirwrerts cf

varicus general support actavities falling yoer the respositilities of enqunsess.
Exaples are: KD, water sroly, crvng, Lxalities conseructaon.

D-131

DREV - ECCO SOFTWARE PROTOTYPE

Counter Mobility Tasks Editor

STy

Summary Description of the Processing

e chstacle class editor 1s actually composed of several screens, The farst of these
allows the user to define and pout to a “class® of chstacles which qrowp togetrer
:bsucluotaus:mtype a{mnurqt,oclass the user can “exvang” to seconoary screens

Fences
“208S®, These types are used by high level comand wnits to plan errare field zxes an
ocourcer-mobility activites are to take place.

CHECRS ~—————— 50D Software Prototype
ml Corvertaonel Mine Field Chstaclss Page 1711
Type Description Denmity MNo.of aq.pm; Placerert. Laying Method
(/mecer) Rows Speed U4 Type
[y 2 (F3)_ (Fé4)_ (!'51__ (€6)_ [F7) (F8)_____ ({F9)____|
(F1) (20— (E3)_ (R4)_ (FSI_ (F6)_ (F7) (PO)____ (' |
(] (21— (R3] (F4)_ (FS)_ (F6]_ (F7] (F8) (£ |
(F) (€21 (E3)_ (F4)_ (FS) {F6) (F7) {F8)__ (F9)__
(1] (FR)____ — (R3)_ (F4)_ {FS)_ {F6)_ (F7) (FO)___ (F9)___|
(F1) (2] (F3)_ {F41_ (FSI_ (e6]” (F7) {FB)___ (F9)—__|
(1) [F2]__~ " (E3)_ (F4)_ (ESI_ (F6)_ (F7) tFB)____ (F9)___
() (2]~ — (€3] (P41 [FSI_ (FGI_ (7} (€8} {F9)___
(P g (F3)° (F4IC (FSI_ (€61 (€7) (PO} (FAY____|
(F) (R21___ (B3I (R4 FSI_ (RSl (F7) (F8I____ (F9}
—rem————ti1188 {i98———m—1———Foncing Equipment Used———
y | Type Xy

V] W Mm)_| M)) (0)_
] (2) V3_ |] W2) {13l
M} W) 31_ | (] (we) &3)_

DREV - ECCO SOFTWARE PROTOTYPE

Table

TTlistacte Type

{fcistacie
Jescriceion

{FJ|tnet1eid Density

{F4]thrter ot Aows 1n
Minefield

{£5]Stopping power

{FejMiretield placarent
Speed

Counter Mobility Tasks Editor

The Conwentaonal Minetislds table is used to store the basic techical specifications of
enqinser standard comventicnal minefield types, These types are assined standard codes
used to quckly and uuquely identify them wnen assigung a chstacle-task.

GR 4
The convencional minefield type code is a four character field used to tuquely dertafy
mnefield

a standand conventional configuracion, This cooe 33 encersd throuh the
“Convercacral Minefields Editor® and 1ts maintenance 1S the responsihality of the system
pilce or aomniseracor.

CGaR 20

The conventaonal munefield descriprion 18 a free tex field used to assocate a sere

descriptson of a standard corvencicnal minefield to the mnefield type code. This snert
descriprion is.then displayed wath the minefield type tn ccher parts of the B0 system
to enhance the siguficance of the mnefield type mnemouc code.

NMMER 5

The munefield density descrabes the rumber of corvercional mines placed per <qreter>> in a
standard convertional mnefield cnfiqmacin,

MMMR §

The nurbar of rows of coverticnal mnefialds that this type of minefield cbstacle type
coreains,

GRS
The stopping pover is a percantage value beteen 0 and 100 indicating the probability of
stoppang enary vehicles from passing throwch the mnefield.

HMER 6

The placerent soeed dencres the time requuired to set wp thus type of minefield cbstacle.
Uusally, this valueis epessed in terms Of SeCLIOHOUTS CF LIOCP-OUTS.

D-132

..OBEOBS -14

OBREOBS -~15

DREV - ECCO SOFTWARE PROTOTYPE OBEOBS -16

{E7Mnefield placament
Unit of Measure

TlGyng et

{Vl]Rescurce Iype

(V3] Rasource Quancaty

Counter Mobility Tasks Editor

ZER 4

The placement speed wt of Teasure 18 directly assocated with the mnefield placerent
speed. It 1S 3 ¢ character coxe used $O inicated the wnit of measure used to describe the
placement soeed (usually in sectaonhours cr crooo-tours). This code 1S vaiidated fram
the B0 "Unit Measures Table®.

C#R 10

The laying method descrides the prancple mechod used to lay the cooverticral mnes for a
qven coventacnal muefield. its values are ether mamal-surface (AS), memal-turies
CRH)), mectanical-surface (ESU), mechanical-turied OEBU).

The ahstacle resource table holds the ®type® codes of all consumnle and ron~consumble
resources required by chstacle types. Used by the Cbstacle editcrs, it defines for each
cbstacle type of a quven class (ex: Conventional Mires, Craters ecC.) the resource types
required to put that cbstacle izo place.

CGiR 4
The resource type derctes a ansumble cr non~consureble rescurce code required to place
an cbstacle. The resource type cooe is defined within @ specafic oostacle class,

NMBR S

The resource quantaty field denctes the quamtaty of a scecafic consumeble or
noneconsureble resource required to place an costacle of a @ven type. [ts value is
epressed 1n tems of the basic units of measure cefined for a quven resource.

DREV - ECCO CCDE VALUE TABLES FOR SUMMARY FORM DOCUMENTATION

ProtoSQL Form Documenter

Field attributes Key Triggers Other Triggers
A Database field a ClrB8lk A Post-Change
B Primary-key b Clrfrm B Pre-Field
C Copy field value ¢ ClxRec C Post-Field
from block £ill-in exist d Commit D Pre~Query
D Copy field value e CQuery E Post~Quewry
from field fill-in exist f CreRec F Pre-Insert
E Default value exast g DelRec G Post~Insrat
F Displayed h DupFld H Pre-Update
G Input allowad i DupRec I Post-Update
H Query allowed j EntQry J Pre-Delets
I Update allowed X ExeQry K Post-Delete
J Update if null allowed 1 Exit L Pre-Record
K Mandatory m Listval M Post-Record
L Fixed length n Menu N Pre-Block
¥ Auto skip o NxtBlk O Post-Block
N No echo P Nxtrld P Pre-Form
0 Auto help q NxtKey Q Post-Form
P Uppercase r NxtRec
Q List of values exist 3 NxtSet
R Low value exist t PrvBlk
S High value exist u Prvrid
T Help message exist v PrvRec
w Others

D-133

DREV - ECCO SOFTWARE PROTOTYPE OBEOBS =~ 1
Counter Mobility Tasks Editor

Fcrms Technical Description (partial cavprlation)

Block
fisld Type Len Field Attmnres Yey Txiggers Yey-fx ther Tmgoers

(™)
COaEVUNUVNNDG 4

s b

o s ron e

~

3995393 2988RE% 2EERREIES

~ Conclusions

Methodology

User Group Prpfilel

Required Tools

Participant's Objectives

D-134

~= Methodology as implemented in ECCO mmmmmmm—

Participant's - Once defined. the methodalogy 1s presented and
Acceptance explained 10 8ach paricipant:

Project Sponsor IUsers] Developers

Parallel Projects

User Grgup - The project sponsor appoints a core user group which has as a
specific task the responsibility ot actively participating in the
development of the system.

Technology - The implementation of the prototyping process requires the rapid

installation of proven technologies and tools such as screen

and code generation, This allows the developers to spend more

time with the users, refining requirement needs rather than struggling
with aitficult and tedious programming in the early phases of the project.

- Cgi _

Location - Basedn Canadian Forces Base Valcartier. Québec, CANADA
5th Engineer Reg. of Canada. This is the largest engineenng
base in Canada. the 2nd largest in the Canadian Land Forces

- Close proximity to the developmeant team at D.R.E.V.

Active - Actve participants rank from Major (project sponsor),
Participants Captain (engineer commandar), sargeants ang corporals

- Panticipants were chosen because they represent the
typical profile of end users and have vast experience in
enginear tactical operations.

External « A multi-level user group 1s essential to the success
tad olthe project. !t therefore also inciudes higher ranking
Partncnpants command officers to ensure that all vertical engineenng
fequirements are met,

D-135

E - R Diagram Data Modeling

Functional Decomposition Diagramming

Interactive Program Prototyping (4GL based)

Report Prototyping

Documentation Generation

Data and Component Dictionary

) cQi —
~==_ Participant's ObjectiVves = ————

Project - User's Satisfaction
- Productivity
Manager - Delivarables
- Reduced Costs
- Realistic Work Scheduie
- Meet Requirements
- Technology

Deve|oper - More accurate analysis work
- Functioning and Valid Software
- Technological Challenge
- Recognition
- improved professionsl and managerial skills

User - Get a complete and correct system the first time
- Enhanced implication in development
- Rapld contact with technology
- Rapid access to deliverables
- Concrete results
- Responsibility and ownership of system

D-136

Technical Presentation 13

“Requirements Engineering Testbed"

Mr. William E. Rzepka
Rome Air Development Center, USA

D-137

RELATIVE
cost 10
CORRECT
ERROR

WIAT ARE REQUIREMENTS?

REGUIREMENTS ARE PRECISE STATEMENTS OF NEED INTENDED

T0 CONVEY UNDERSTANDING ABOUT A DESIRED RESULT

EXTERNAL CHARACTERLSTICS
CONSTRAINTS
PERFORMANCE
RELIABILITY
SAFETY
cosr
MODEL OF WHAT IS NEEDED

STATEMENT OF PRUBLEM TO BE SOLVED

IT PAYS TO CATCH ERRORS EARLY

100,
souncts
$0p- o 184000
(R{]
o on
o BELL LASS
1}
10}
o}
(/7
Al ////
744 7
1 4 3 t 1 4
MQUIADEATS Dislak COui WIT TEST TVALUATT YT
DEBUG ANy 1t
INTEGRATE

PHASE 1M WHicK EAROR 1S DETECiED

D-138

CONTROLLED REQUIREMENTS EXPRESSION

CORE

COLLECTION

DATA STRU
ANALYSIS |

r
DATA ...[oR
ANALYSIS ANALYSIS

S T SINGLE S
VIEWPOINT VIEWPOINT | --- VIEWPOINT
ANALYSIS | ANALYS|S ANA
COMBINED VIEWPOINT ANALYSIS

y
SYSIEM
CONSTRANTS _ |

RAPID PROTOTYPING SYSTEM

* GRAPHICS/MENU INPUT

* ACTIVE REGIONS

AUDIBLE/VISUAL ALARMS

DATA BASE ACCESS
SCENARIOS
» DYNAMIC GRAPHICS

COMMUNICATIONS |
NETWORK

ANALYST
WORKFLOW

SYSTEM FUNCTION
ALLOCATION

« MENU/TEMPLATE INPUT
* QUERY OUTPUT

D-139

DATA
MODELING

+» RELATIONAL MODEL

* QUERY & UPDATE

+ PERFORMANCE
ESTIMATION

RPS
USER INTERFACE PERFORMANCE
PROTOTYPING MODELING
COMPUTER
* COLOR HW & SIW
» WORLD DATA BANK !

OCORE

CONTROLLED REQUIREMENTS EXPRESSION

ANALYSIS ANA
—5& “SNGLE SINGLE
VIEWPOINT VIEWPOINT
A ANALYSIS
COMBINED VIEWPOINT ANALYSIS

RAPID PROTOTYPING SYSTEM

/!\ —

USER INTERFACE DATA
PROTOTYPING MODELING
+COLOR » RELATIONAL MODEL
+« WORLD DATA BANK ! + QUERY & UPDATE
« 5RAPHICS/MENU INPUT » PERFORMANGE
+ ACTIVE REGIONS ESTIMATION
AUDIBLEVISUAL ALARMS
DATA BASE ACCESS
SCENARIOS
» DYNAMIC GRAPHICS

SYSTEM FUNGTION |

ALLOCATION

+ MENU/TEMPLATE INPUT

+ QUERY OUTPUT

D-140

PROTO

- OBJECTIVE
RAPIDLY SPECIFY A PROGRAM THAT EXECUTES SPECIFIC

TARGET SYSTEM FUNCTIONS

APPROACH
VERY HIGH LEVEL GRAPHICAL LANGUAGE FOR
INTERCONNECTING SOFTWARE MODULES

ENVIRONMENT SUPPORTING.
STEPWISE REFINEMENT
CONVENTIONAL PROGRAMMING
REUSE OF APPLICATION-SPECIFIC MODULES
EXECUTABLE

RET STATUS

R&D

CORE/AMALYST - SEP §7 DELIVERY

VHU. TOOLS - OCT 88 DELVERY

RPS - FEB 88 DELIVERY

RE WORKSTATION INTEGRATION . 1410-82

APPLICATIONS
COREE ANALYSIS OF RS

OFD ANALYSIS OF RS

RAPS USER INTERFACE PAOTOTYPES
AR DEFENSE SCENANO

AR DEFENSE OPERATIONS CENTER DISPLAYS
ADVANCED COMMAND AND CONTROL ENVIRONMENT

EVALUATION.
ANALYST USER COMMENTS INCORPORATED IN YERSION 2.0

RPS COMMENTS INCORPORATED IN POR AND COR
AIR DEFENSE SCENARIO PROOUCTMITY - X208
ADOC DISPLAYS PRODUCTVITY - X8

D-141

RAPID PROTOTYPING SYSTEM
TECHNOLOGY TRANSITION

MARTIN MARIETTA INTITIATIVES:

MX MISSILE BASING DETERMINATION

DMA (CLASSIFIED)
ORB (CLASSIFIED)
SMALL ICBM LAUNCH CONTROL

FTS 2000 COMM SYSTEM STUDY
NUCLEAR POWER PLANT, CAK RIDGE
BUREAU OF LAND MANAGEMENT

RADC INITIATIVES:

SOFTWARE PRODUCTIVITY CONSORTIUM
ESD/AVS C2 EVALUATION FACILITY
US ARMY CECOM
SPACE DIVISION/AEROSPACE CORP
NADC/WARFARE SYSTEMS ANALYSIS DEPT
NORAD/GRANITE SENTRY SPO

Requirements Engineering Testbed

INDIVIDUAL TOOL INTERFACE STYLES

UMMM
CORE INTERFACE PROTO INTERFACE RPS INTERFACE
A A
OCRE PROTO RPS
4 4 4
A A 9 A A 9
OOFE PROTO S
DATA DATA DATA
LOGICAL LOGICAL LOGICAL
BASE DATA BASE DATA BASE DATA

D-142

1992 REQUIREMENTS ENGINEERING TESTBED

COMMON USER INTERFACE
CORE INTERFACE PROTOINTERFACE | RPSINTERFACE

4

v A A

(00 2 = PROTO RPS

DATA DATA DATA

A 1 A

OBJECT ORIENTED DATA BASE

REED ENHANCEMENTS TO THE RPS

+ USER INTERFACE MODELING
- INTEGRATE INDIVIDUAL TOOLS INTO SINGLE INTERFACE
- PROVIDE INTEGRATED DYNAMIC CAPABILITY

+ PERFORMANCE MODELING
- PROVIDE GRAPHIC INTERFACE T MODELS

D-143

This page is intentionally left blank.

D-144

