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1 Introduction
" This report will address the effect of a “f)ump/in the turbulence spectrum on
the propagation of a laser beam. The motivation for this work is as follows: In con-
ventional treatments on the effect of turbulence on laser propagation, it is usually
assumed that the turbulence can be described by a spectral density which represents
a cascade of energy from long wavelength modes down to shorter wavelength modes.
The most common assumption is that of the Kolmogorov model, where in the “in-
ertial” range of the spectrum (between a minimum wavenumber kg, and maximum
wavenumber ki, corresponding to the maximum size Lo and minimum size Iy of the
turbulent eddies) the spectral density decreases as k=(3¢+2)/3 (in d dimensions). In
some media however, a source for injecting energy into the turbulent spectrum at a
particular discrete wavelength (or over a range of wavelengths) may be present: for
example, this is the case in a turbulent plasma where an instability may be grow-
ing over a range of wavelengths. The presence of such an energy source will thus
produce a “bump” in the turbulence spectrum, as shown schematlcally in Fig.1. " As
we shall see below, the spectrum can then be viewed as this “bump superimposed
upon the background natural cascade: that is, the spectrum can be analyzed as the
sum of a cascade spectrum and the “bump” spectrum, and the effects of each on the
propagation of the beam can thus be analyzed separately. | T '«
This report is organized as follows. In Section 2 we will briefly review the math-
ematical formalism that will be used to analyze the statistical features of the effect
of turbulence on laser propagation. In Section 3, this formalism will be applied to
the case where the turbulence is described by a spectral density which is a “bump”
at some finite wave number k;. Section 3.2 will treat the idealized (but analytically
tractable) case where the “bump” is a §-function; the effect of a “bump” of finite
width is studied numerically in Section 3.3. Finally, the superposition of a “bump”
on a cascade-type spectrum is considered in Section 3.4. One important conclusion
which results from this study is that in three dimensions, even if the amplitude of
the “bump” component of the spectrum is much smaller than the amplitude of the
cascade component (for example, by ten orders of magnitude), if the scalelength of
the turbulence represented by the “bump” is much smaller than the scalelengtl of
the cascade turbulence (say four orders of magnitude smaller), then almost all - f the
power in the spectrum is due to the “bump” component. Furthermore, in tl.is case,
the effects of the turbulence on the beam are in effect determined by the “buinp” com-
ponent, and the existence of the cascade component (which may represent turbulence
at very large scalelengths) can be ignored.
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Figure 1. Example of a turbulence spectrum with a “bump” superimposed
on a cascade.




2 Preliminaries

In this Section we will briefly review the mathematical constructions required to
analyze the statistical effects of a turbulent medium on the propagation of a laser
beam. For simplicity, we will assume that the problem is two-dimensional: the beam
(with wavenumber k) is taken to be propagating in the z-direction, with a transverse
beam profile ¥(z) on the z-axis. The extension of mathematical expressions to three
dimensions is straightforward, and the main results are not changed. Furthermore,
we shall assume throughout this article that the laser wavelength A\ = 2 /kg is much
shorter than any scalelength of variation of the medium (.e., the minimum size lo of
the turbulent eddies) so that we are working in the eikonal (or WKB) regime.

If the disturbance of the beam due to the turbulent medium is small over a propa-
gation distance z, the beam can be thought of as a bundle of rays propagating roughly
parallel to the z-direction. The phase shift ¢ along a ray propagating at the trans-
verse location z caused by the turbulent perturbations 8NV (z, z) in the media’s index
of refraction is therefore

é(z) = ko /0 d2' 8N(z, ) (1)

In this expression, ¢ is the phase shift induced by a single realization of the turbulence,
characterized by 8NV.

2.1 Turbulence and Phase Correlation Functions

A statistical analysis of the effect of the turbulence on beam propagation is based
on averages of characteristic quantities (such as this phase shift) over an ensemble
of realizations of the turbulence. Denoting this average by the angle brackets (-),
we assume that the turbulent fluctuations have zero mean, (N(z,z)) = 0, so that
the mean phase shift from (1) also vanishes. The correlation function of the phase is
defined as

Ro(lzc —'|;2) = ((2)d(z)) = k2 /0 " dz' d2" (8N(z, 2)6N (', "))
_ kg /Oz dz' dz" RN (\/(x/ _ x)2 + (z” _ 21)2) (2)

Here we have assumed that the turbulence is isotropic and homogeneous: the re-
fractive index correlation function Ry depends only the the spatial separation of the
two points (x,2’) and (2’,2"”). In this case, the phase correlation function depends
only on the separation |z — z'| on the transverse z-axis (and the propagation distance
z). Because of this assumption, this expression can be simplified: changing variables
sy =2 —1x,5, = 2" — 2/, it can be recast as

Ro(lse|;2) = K2 /0 dz' /_' ds, R (\/sg n sg) (3)
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The area in (2’,s,)-space over which the integral is to be performed is shown in
Fig.2a: here, the integral in the s,-direction is to be performed with 2’ fixed, and
then 2z’ is varied. Changing this order of integration requires changing the limits of
integration: holding s. fixed, first integrate 2z’ from —s, to z (for s, < 0), or from 0
to z — s, (for s, > 0), and then vary s, from —z to z (see Fig.2b).

0 z

Rs(lsz|;2) = kg/ ds, dZ' Ry (\/sg—i—sz)
B [Cds, [ de Ry (Voz+s2) 4
+ko A z N\ szt 55 (4)

The integrals over z’ can now be performed; then letting s, — —s, in the first integral,
the two integrals can be combined to give

Rolls:l;2) =288 [ ds. (2 = 5.) By (12 + 52) )

We note that this is an exact expression for the relationship between the correla-
tion function R, of the wave phase and the correlation function Ry of the refractive
index fluctuations, based only on the definition (1) for the phase shift. In practice,
however, Ry typically decays to zero over some correlation distance Lo (often called
the outer scale of the turbulence), and this distance is much less than the propa-
gation distance of interest (Lo < z). In this case, the maximum value of s, that
contributes to the integral (for fixed s,) is about Lo, so that z — s, = z is a very good
approximation. Taking this term outside the integral then, we have

Rallssl2) ~ 263z [~ ds. B (/o7 + 1) (6)

where the same approximation allows us to extend the limit of integration to infinity.

2.2 Turbulence and Phase Spectral Densities

The spectral density of a homogeneous, isotropic random process (such as the
turbulent index of refraction or the induced phase shift of the laser beam) is defined as
the Fourier transform of the correlation function. For the two-dimensional turbulence

we have
SN(kzy kz) = /dsz ds, Rn <"SZ‘+SZ> e-ikzsfe—ikzsz
2 .
= /sds RN(S)/ d e—tkscos?
0
Snk) = 2r [ sds Ru(s) Jo(ks) )




(b) z

Figure 2. Area over which (z/, s,) integrals to be performed in (3).
{(a) Original order of integration. (b). Inverted order of integration.




Since the turbulence is homogeneous and isotropic in physical space, it is isotropic in
k-space as well. The inverse of (7) is similar:

dk, dk, -
Rn(sz,8,) = o (;r SN (y/kﬁ—kk?) etkesz gikes:

— k dk 3 o d_a_ tkscos 8
- / o Sn(k) 2 ¢
kdk
Bn(s) = | 5= Sn(k) Jo(ks) (8)

In practice, the spectral density is often the more fundamental quantity in the
sense that a turbulence model is typically specified by postulating the form of the
spectral density Sy. One reason for this is that it can be shown that the spectral
density of a physically realizable random process must be non-negative. Thus, spec-
ifying a model for the correlation function By may prodiuce by construction (7) a
spectral density which does not satisfy this criterion; beginning with a form for Sy
avoids this problem, and the correlation function can then be constructed froin (8).

The spectral density associated with the one-dimensional phase correlation func-
tion is defined by

Saks) = [ dso Ry(jsa]) e

Rofs) = [ 5Z Sy(ks) e (9
T
Note that since the phase fluctuations are a one-dimensional random process (in
this two-dimensional propagation model), the Fourier transforms in (9) are one-
dimensional (as opposed to those in (7,8) for the two-dimensional random process
of the refractive index fluctuations).
Since the phase correlation function and refractive index correlation function are
related by (5), a relation between their associated spectral densities can 2iso be found.
This is most easily achieved by introducing the first line of (8) into (2) to obtain

B [ de'de” By (st + (7 — )
o ), 4 Ry \/sx+(z 2"

z dk, dk
= B[ arar [T
°Jo e 2% 27

Ry(s2)

SN(k) eik,s,eikz(z”—z’) (10)

The integrals over 2’ and z” can be performed giving

dk, dk . (sink,z/2\*
_1.2_2 T z thrsy z
Ry(s) = ki= 5r o Sn(k) e (——kzz/Q ) (11)
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Finally, performing the Fourier iransform of both sides to obtain S4(k,) (as in (9))
the result is )

Ss(ks) = k32* %’;—z Sn(k) (%) (12)
This expression could be obtained beginning with (5) as well.

The interpretation of (12) is that the spectral density of the phase fluctirations
on the transverse z-axis is just the spectral density of the two-dimensional refractive
index fluctuations projected onto the z-axis, but filtered so that only turbulent pertur-
bations with wavelengths in the direction of propagation (the z-direction) comparable
to the propagation distance z contribute. Two nbservations are immediate. First, if
the spectral density of the turbulence Sy 1s non-negative (as it must be to describe
a physically realizable random process), then (12) clearly shows that the phase spec-
trum Sy is non-negative (note that this relation follows exactly irom the premise (1)
for the wave phase shift). This fact is extremely important in practice, where-the
so-called phase-screen method is often used to numerically propagate the laser beam
through a turbulent medium. In that method, the wave is propagated as though in a
uniform non-turbulent medium a distance z between “phase-shifting screens” which
represent the effect of the turbulence; on each “screen”, the wave 3(z) is modulated
by a factor exp(i¢(z;z)), where ¢(z; z) is a random phase function. The phase func-
tion ¢(z;z) is generated by first constructing its Fourier transform ¢(k,;z) from a
Gaussian random distribution with variance Sg(k;) at each k,, and then transform-
ing this into z-space. It is straightforward to show that this method will produce the
correct phase statistics (i.e., the specified spectral density and correlation function
of the phase) over an ensemble of a large number of phase screens. This method
therefore inherently requires that S4(k;) be non-negative, since its value at each k, is
used as the variance of a probability distribution. As we have seen above, this qual-
ity is guaranteed by first specifying the spectral density Sy of the refractive index
fluctuations to be non-negative, and then constructing Sy from (12).

The integral in (12) presents no particular problem for numerical computation,
and in fact should be quite easy to evaluate in most cases of interest since the “filter
function” [sink.z/2/(k.2/2)]? falls off rapidly (its first zero is at k, = 27/z). Our
second observation, however, is that if Sy is slowly varying in the vicinity of k£, = 0
(for all k;) then (12) can be approximated by setting k, = 0 in the argument of Sy
and performing the integral only over the “filter function” to obtain

Stf’(kl‘) = kgz SN(k:c,kz = 0) (13)

Again we see that Sy > 0 if Sy is. The only requirement for (13) to hold is that
Sn varies slowly in the k,-direction in the vicinity k,z/2 < = for all values of &;;
thus, only wavelengths in the direction of propagation comparable to z are admitted,
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and their contribution is approximated by a flat distribution at the k, = 0 value. It
is furthermore quite simple to show that while the inverse Fourier transform of the
exact relation (12) yields (5) (as expected), the inverse transform of the approximate
relation (13) produces the approximation (6); thus, the approximations leading to
both (6) and (13) from (5) and (12), respectively, are consistent.

As a final note, one can relate the level of the phase fluctuations to the level of
the refractive index fluctuations. These quantities (which have heen ussumed to be
independent of location) are defined as

il

(6N7)
(¢°)
Using (8) and (9), the value of either correlation function Ry or Ry at the origin

given by an integral over the associated spectral density. Thus, using the approxinate
form (13) we have '

Rn(0) (14)
R4(0) (15)

dk
2y — — =
(¢°) = Rs(0)= | o= Se(kz)
dk,
= Kz [ SSn(kek: = 0)
= K2z (6N?) ¢ (16)

The one-dimensional integral over Sy defines the integral scalelength ¢; of the turbu-
lence.

2.3 Average Intensity

We conclude this Section with a discussion of the effect of a random medium
(characterized by a spectral density for the refractive index fluctuations) on the in-
tensity profile of a laser beam. In the absence of turbulence (or other effects of the
medium, such as thermal blooming), a coherent beam of initial radius rq will spread
due to natural diffraction according to

r%2) 1 ( z )2
M Sy T
" +1(m (17)

where L = kor? is called the Rayleigh length of the beam.* This spreading can be
viewed as the coherent interference of a bundle of rays propagating within »n angle

*This ~xpression is for two-dimensional propagation (in three dimensions, the factor of 1/4 be-
comes unity). In this way, Lp is the same in both two and three dimensions, for a given initial radius
(or half-width) ro (defined by (26) in both cases); the difference then is that in two dimensions the
width will double in a distance z = v/12L g, while in three dimensiors the area will double at z = Lg.




0 = ky/ko ~ (koro)~" of the z-axis, where the transverse wavenumber k; is inversely
proportional to the initial beam radius. In a turbulent medium, however, we see from
(1) that the phase along each ray develops a random component depending on its
path through the randomly fluctuating index of refraction. Thus, if the level of the
refractive index fluctuations is large enough, or the propagation distancc long enough
(so that the phase fluctuations are large enough), the effects of these random phase
shifts in the the interference of the rays will begin to be seen. Two major effects are a
loss of transverse beam coherence, and beam broadening due to the turbulence. The
loss of coherence is manifested by a loss of smoothness in the transverse intensity
profile; the intensity develops “spikes” so that it appears to have broken up into
smaller-diameter “beamlets”. Beam broadening can be thought of either as the result
of a non-coherent, mostly forward scattering of the rays off of the turbulent refractive
index fluctuations, or as a result of the more rapid natural broadening of the smaller-
diameter beamlets (with smaller Rayleigh lengths) produced by the loss of coherence.

Due to the randomness in the turbulence, it is impossible to predict the evo-
lution of the laser intensity profile as it propagates through a single realization of
the turbulence. However, over many realizations of the turbulence governed by a
spectral density Sy (or, over many laser shots through an ever-fluctuating medium),
predictions can be made regarding the average behavior of the beam intensity and its
characteristics (such as its width or coherence length). For example, a prediction for
the ensemble-averaged wave intensity (I(z,z)) = ([#(z, z)|*) can be derived! based
on a modified Huygens principle:

(I(z,z)) = -2% / ds Mr(s/2; z) M(s; z) e~ thoss/2 (18)
Here, the turbulence modulation correlation function Mr(s; z) is defined as
Mr(s; 2) = (e=3?) gmié(=2)y (19)
while the amplitude correlation M4(s;z) is
Ma(s; 2) = /dx Y(z + 15,0)9(z — Ls,0) o=/ (20)

It can be shown! that if the random phase shift ¢(z,2) is a Gaussian random
variable at each z, then the turbulence modulation correlation function becomes

Mrp(s;z) = e™(#*) gFols) (21)

where ($?) is the level of the phase fluctuations (16) and R,(s) is the phase correlation
function. We note that since Mr(0;z) = I, the total power in the beam (i.e., the
integral of (18) over z) remains constant as it propagates in z.
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For an initial Gaussian amplitude profile
P(z,0) = %207 (22)
the amplitude function M4(s;z) is
My(s;z) = /7o e~ Re o (2)/422 (23)
where
20\ = 2 z°
g (Z) =0 1+ k—ga_‘; (24)

Note that in the absence of turbulence ({¢?) = 0), Mr(s; z) is unity so that (23) in
(18) yields the correct expression for the propagation of a Gaussian pulse in vacuum:

I(z,2) = —— e~=17°(2) (25)

a(2)

Furthermore, (24) clearly shows the effect of natural diffraction as stated in (17), with
r(z) = o(2)/V2.

One use of the expression (18) is to compute the degree of beam broadening due
to turbulence. Defining the width r of the beam to be

ri(z) = (26)

one can show! that the width grows as!

r?(z) 1/ 2z\? z\3
=1 —f — - 9
ré t 4 (LR) + (LT) (27)
Here, the turbulent broadening length Lt is defined as
- rofi
Lr = [ﬂ&-(&N?)] 2%

in terms of the level of refractive index fluctuations (8N?2), the integral scalelength ¢;
of the turbulence (16), and the transverse scalelength of the turbulence ¢;:

2mn? /dk k2w (k)
(77) [k Su(k)

tAs in (17), the factor of 1/4 becomes unity in three dimensions, and the length Ly is the same
in both two and three dimensions for a given radius (or half-width) rg.

(29)
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Comparing (27) with (17), we see that if the turbulent broadening length is compa-
rable to or less than the Rayleigh length, then turbulent broadening will dominate
that due to natural diffraction, and the beam will broaden much more rapidly with
the propagation distance.

The relation (18) describes the mean evolution of the laser intensity (averaged over
many laser shots through different realizations of the turbulence). An expression can

2):

also be derived! for the mean evolution of the wave spectrum, (I(k, 2)) = (‘w(k, z)
de |- 2 .
(I(k,2) = [ 5 (%, 0)|" Mr(k — &;2) (30)

where )(k, z) is the Fourier transform of 4(z, z) and My is the Fourier transform of
My
My(k; 2) = /ds Mr(s; z) e~k (31)

In the absence of turbulence, Mr(s;z) = 1 so that Mr(k;z) = 2né(k); thus we
see that, as expected, the wave spectrum from (30) does not change as the wave
propagates in vacuum. Scattering of the wave by turbulent fluctuations will produce
changes in the spectrum, primarily by causing a shift to larger and larger transverse
wavenumbers; this then is the mechanism for a broadening of the wave spectrum due
to turbulence.

11




3 The Effect of a “Bump” in the Spectrum

In this Section we will use the mathematical formalism of the preceding Section
to analyze the effect of a “bump” in the turbulence spectrum on the propagation of
a laser beam.

3.1 Discussion of Superposition

We first assume that we are given an isotropic two-dimensional turbulence spec-
trum Sy(k) (depending only on the magnitude of & = /k2 + k2) similar to that
shown in Fig.1. Such a spectrum can be assumed to be a superposition of a “bump”
spectrum S,(\?) on a natural cascade spectrum S,(\f), or

Sn(k) = SP (k) + SP(k) (32)

Since all the expressions involving the spectral density in the preceding Section (such

as the Fourier transforms in (7-9) and the relations between the phase and turbulence

spectra (12,13)) are linear in the spectral density, it would appear that we could treat

each component of the spectrum (S and S} independently and then linearly
superpose the results.

Consider, however, what this means in terms of the numerical phase-screen method.

As briefly described in Section 2.2, this method is based on first constructing a random

phase shift ¢(k) at each value of k from a Gaussian random probability distribution

with the value of Sy(k) as the variance. The justification for this comes from the

following considerations. From (9) we have (with k,—k)

' ! dk thk(z—z'
By(le = 2'l) = ($(2)¢(a")) = | 5 So(k) € K= (33)
Now perforfning the Fourier transform over z and z’ we obtain
A G dk :
A CYa R4 — t —iklz k"' Bt A tk(z—2")
BV (K1) = [ dods’ e e [ 5,0 ¢
= 2m Sy(k")6(K — k") (34)

This shows that a homogeneous random process (such as the phase ¢(z)) is charac-
terized by a Fourier transform ng(k) which i1s an independent random variable with
variance S4(k) at each k.

Now suppose we have the case as in (32) where the spectrum Sy (constructed from
Swn by either of the linear relations (12) or (13)) is

Ss(k) = SE(k) + SO (k) (35)
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To consider the effects of each component of the spectrum separately and then su-
perpose the results means that we should be able to separately construct a phase
shift ¢.(x) (from é.(k) using Sg)(k) as a variance) and a phase shift ¢,(z) (from
éu(k) using S((bb)(k) as a variance) and then add them together for a total phase shift
#(z) = d.(x) + ¢s(z) which has the statistics (over an ensemble of phase screen real-

izations) of the total spectrum S,. In k-space this means that (34) must hold with
d(k) = (k) + @(k) and Sy given by (35). Expanding the left-hand side gives

(p(k)g*(K)) = ([f%c(k) + du(k)B2(K) + 43 (K)])
= (ge(k)2(K")) + (Bu(k) G5 (k"))
+H{Bo(k) B3 (k")) + (ds(k)B2(K))
= 2r[SY (k) + SPU(K) 6(k — F')

B (k) G5 (k) + (Bo(k) g2 (k")) (36)

Thus we see that for the effects of each component of the spectrum to be treated
separately and then superimposed requires that the cross-correlation of the phase
shifts generated by each component of the spectrum vanishes. This means that we
must assume much more than simply that the spectrum can be decomposed into the
sum of two (or more) components as in (32) or (35) (as any spectrum obviously can
be); we must furthermore assume that each component of the spectrum represents an
independent random process. Fortunately, for the physical situation we are addressing,
each component does represent an independent source of turbulence: S,(\f) (and hence
Sg,c)) represents a natural cascade of turbulent energy from long to short wavelengths,

whereas S,(\j’) (and S g’)) describe the turbulent energy distribution among modes being
driven by an instability.

3.2 Analysis of a é-function “Bump” Component

With the assumption of the statistical independence of the “bump” component
of the spectrum, we now proceed to analyze its effect on laser propagation. We
begin with an example of the simplest type of “bump” in the turbulence spectrum:
a 6-function “spike” at a single wavenumber k,

SO(k) = 2r 6N? 710- §(k — ky) (37)

Here, as we again assume two-dimensional turbulence, k = |/k2 + k2, and the factor
of 2r/k is appropriate for normalization. This can be seen by inserting (37) into
(8) to obtain the corresponding spatial correlation function of the refractive index
fluctuations

RY(s) = 6N2 Jo(kss) (38)

13




with the level of the fluctuations given by (6N?) = §N¢ (using (14)).
In order to construct the phase spectrum induced by this turbulent spectrum we
first use the exact relation (12) to find

dk,

ink,z/2\*
Sy(ks) = k322/ 5y 2“5/\’3%5(/6—’%) <M> (39)

k,z/2

The integral is trivially computed to give

_ 2
Sg’)(kx) _ 2k2z26N2 [ sin [k} — k22/2 (40)
SR — k2 \ k2= k22/2

A plot of S;b) is shown in Fig.3, where the parameters used are ko = 6.28cm™! (car-
rier wavelength of lcm), z = 10m (propagation distance of 10m), and &, = 6.28m™!
(fluctuations at 1m wavelength). Although these parameter values are not of inter-
est for laser propagation over long distances, the plot serves to illustrate the general
features of this phase spectrum. It is obvious that, as one may have expected, the
phase fluctuations are greatest for wavenumbers near, but below k;, the wavenum-
ber of the turbulent fluctuations. For k, = k;, the phase spectrum is singular (as is
S©(k = ky)), while for k, > k; there are no phase fluctuations at all.

Although Sd(,b) is non-negative for all k., it oscillates with increasing frequency as

k. approaches k; from below. The zeroes k,, of Sg’)(k,) are easily determined to be

k,€=k3—n2(27”)2 OSnS% (a1)
which have a separation of approximately Ak, & 4nw2/(ky2?). Thus, as k,z becomes
large, the oscillations in SS’) become more rapid. This has the following consequence:
given k, and z, the value of Sg’) at 0 < k; < ky can be computed from (40). However,

for large kyz (as is our usual case of interest), the value of Sg’) at a fixed k, is very
sensitive to the value of z. Indeed, changing z by an amount of roughly 27 /k; can
change the value of Sg,b) from a maximum of 8k26NZ/(kZ — k2)3/2 down to zero. In
practice, this means that changing a propagation distance of tens to thousands of
kilometers by as little as a meter could change the phase fluctuation spectrum at any
given wavenumber k, < kj.

The presence of these rapid oscillations in S(b), together with the fact that the
phase fluctuations become singular at &, = k, suggest that the only important fluctua-
tions are those at k. = ky. Thus, it appears we are justified in using the approximation
(13) for the phase spectrum induced by the é-function “bump” or

1
|z |
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S, (k)/(8N?)  (m?)

Figure 3. Plot of the exact phase spectrum (40) induced by a é-function in
the turbulence spectrum.
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Even though a singular phase spectrum (such as either (40) or (42)) introduces some
degree of difficulty into the numerical phase-screen method (where the value of Sib)
1s to be used as a variance for a probability distribution), the approximate expression
(42) does permit theoretical analysis. Furthermore, we shall see in the next Section
that an analysis of the effect of such a “spike”, based on the use of (42), is useful in
predicting the effect of a narrow but finite “bump” in the turbulence spectrum.

Taking (42) for the phase spectrum, we can trivially compute the phase correlation
function to be

dk .
RY(s,) = ~ 2 k2z 6N? — iy kl §(|ks| — ky) =5

2k2
ks

ONZ cos kys, (43)

Thus, the level of the phase fluctuations induced by the “bump” is

(68 = 222 g (14)

and by (16), the integral scalelength of the turbulence is

2 &

l; =
kb T

(43)
where £, = 2x/k, is the size of the turbulent eddies corresponding to the “bump”
wavenumber k;. As one would expect, the infinitesimally narrow phase spectrum
(42) corresponds to a phase correlation function which has infinite range. A realistic
“bump” phase spectrum will always have some finite width Ak and will therefore
correspond to a correlation function which decays over a distance proportional to
(Ak)~1; as long as the propagation distance z of interest is much greater than this
decay length, we are justified in using the results of this analysis based on (42).

To investigate the effects of such a “bump” on the propagation of a laser beamn, we
consider the predictions for the ensemble-averaged wave intensity (I(z,z)) and wave
spectrum (I(k, z)) given by (18) and (30) of Section 2.3, respectively. We assume
that the beam has an initial Gaussian wave profile (as given by (22)) so that the
amplitude correlation M4(s;2) is given by (23). For the phase correlation function
(43) then, the ensemble-averaged wave intensity is
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n=1

Clearly, this result reduces to the vacuum propagation result (25) in the absence
of turbulence (since the Bessel functions satisfy Io(0) = 1 and I,(0) = 0 for n # 0).
If only the leading term (proportional to Ip) were present, the mean influence of
the turbulence would be just a pure damping (by a factor of Io({$?)) exp(—(4?))) of
the vacuum propagation result (although this would not conserve the beam power).
Besides damping the wave intensity near the beam axis (at z = 0), however, the tur-
bulence causes the beam to spread over and above that caused by natural diffraction,
and it develops intensity maxima off-axis at the transverse locations +z, given by

To(z) = §—k—0z (47)

A plot of this result is shown in Fig. 4a, where it is compared with the vacuum
propagation profile. For the purpose of illustration, we have chosen the following
parameters

ko = 6280cm™! (A = 10um)

c = 1.0m = ro=0.7Tlm

ky = 6.28m™" (£ = 1m)

z = 1000km
(¢2) = 314 = 8N =2.5x10""" from (44) (48)

With these values, the intensity peaks (47) are seen to be spaced at five meter inter-
vals. With the use of Bessel function summation identities, one can easily show that
the integral of the intensity (46) over z is indeed equal to its value at z = 0.

The prediction for the ensemble-averaged wave spectrum (I,(k, z)) produced by

the turbulence (30) requires the Fourier transform (31) of the turbulence modulation
Mt or

Mr(k:z) = /ds o= (#2) (88 coskys ,~iks
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Figure 4. Plot of the predicted enseml'e-averaged intensity produced by
a é-function in the turbulence spectrum, with parameters given by (48).
Vacuum propagation result shown by lighter curve. (a) Spatial intensity.
(b) Wave spectrum.
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= e’(d’g)/ds e ke [10((¢§)) +2 i_o: In((¢g))cos(7lkb5)]

= 2r e D Io((42)) 6(k)

+ 3 L(82) [6(k — nks) + 6(k + nks)]}  (49)

n=1
With the Fourier transform (k,0) of the initial Gaussian profile (22)
P(k,0) = V2ro e **/? (50)
the form of (49) permits the trivial evaluation of (30) to give

(Iy(k,2)) = 2mo? e‘(“’g){jo(((ﬁ)) o—K2o?
+ i L({$8) [e'(k‘k")2”2 + e‘(k+kn)2a2]} (51)

Again, this result reduces to the vacuum expression (the square of (50)) in the absence
of turbulence, and the leading term damps this value in the presence of turbulence.
Like the spatial intensity (46), the wave spectrum is also spread by the turbulence,
and develops sidebands at harmonics %k, of the turbulence “bump” wavenumber k;:

kn = nkb (52)

A plot of this result is shown in Fig. 4b, for the same parameters (48).
Finally, one can compute from (46) the evolution of the width of the beam as it
propagates As defined in (26) we have

2 1 2 X
ri(z) = TE/dx z* (Iy(z; 2))

o?(2) —(¢2) o~ 2 2

S PR ) IR ) (53)
n=1

Here we have computed the Gaussian integrals and have again used the Bessel function

summation rule. Since by (47) the intensity peaks at 4z, are proportional to n, we

use the Bessel function generating function to find

Yo ntl(t) = Ltet (54)
n=1
so that we have
2 2 2,2 (42
2 g - k3z* (¢t)
= —11 2
rla) = 5 ( +kga4)+ 4k 2
o? 22 23k 6NE
= 3 [1 + e — ] (55)

19




where we have used the relation (44) between (¢?) and 8NZ2. Identifying from (55) the
initial width ro = o//2, this expression is exactly that given in (27) (indicating the
cubic growth of the beam width due to turbulence) with the turbulent broadening

length Lt given by
5 11/3 9 1/3
LT = [ o :| _ [ 7‘()eb ] (56)

kyONE T8NZ
We note that this definition coincides precisely with the definition (28); it is trivial
to compute from (37) that the transverse scalelength £, (defined by (29)) is exactly
¢y, and from (45) we have £; = £,/n. For the parameters (48) above, L7 = 234km
while the Rayleigh length is Lg = kgrl = 314km; thus in this case, it is clear that the
turbulent broadening dominates over natural diffraction, as borne out by IFig. 4.

3.3 Numerical Simulation for a Gaussian “Bump”

A numerical simulation of propagation through a turbulent medium characterized
by the singular spectral density (37) (or corresponding singular phase spectrum (40)
or (42)) using the phase-screen technique is difficult in that it utilizes fast Fourier
transform methods. Therefore, we have considered a spectral density “bump” of the
form

2 27,2
SO (k) = _'f&vg e~ (k=ko)?/x (57)

with the hope that if the width « is small compared with the “bump” wavenumber k,
then the results of the previous Section will apply. We therefore assume the following
to hold

ky =2rn/b k =2n /Ly
kb >K = Lo > &, (58)
where the inverse of the k-space width of the spectral density gives the range (or
outer scale) Lg of the spatial correlation function. In the numerical simulations, we
will use the values
6y = 1m (ky =6.28m™?)
Ly = 30m (k=0.2lm™") (59)
A plot of S}f,’) with these parameters is shown in Fig. 5a.
In the regime (58), the two-dimensional Fourier transform (8) can be approximated

analytically to give

R (s) ~ 6NZ Jo(kys) (60)

which is the same as that for the é-function “bump” (38). The exact transform
(computed numerically) shown in Fig. 5c behaves like (60) for small s, but is observed
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to decay much faster than Jy; indeed, the correlation function in this case should
exhibit a much shorter range (~ Lo) than the cerrelation function corresponding to
a é-function, due to the finite width of the spectral density.

As we have justified in the preceding Sections, we take the spectral density for the
phase fluctuaiions to be approximated by (13) or

(k) = e Su(ha, k. = 0) = K= 20T oG o=tk (1)

for which the phase correlation function is

2k2z

k SN2 e™"*52/4 cos kys, (62)
b

B (s:) =
This is plotted in Fig. 5d. Again, this form is similar to /43) for the §-function spectral
density, but now explicitly exhibits a correlation decay over the length Lo = 27 /.
The level of phase fluctuations (¢?) and the integral scalelength ¢; are the same as
those (44.,45) for the §-function

2 4
%ﬂwziaz—:f (63)

(¢h) = R(0) = = 5

while the transverse scalelength ¢; (from (29) using (57)) is

V26, Lo

J& 1 2L?
for Lo > ¢,.

As in the previous Section, we would like to be able to construct the predic-
tions (46) and (51) for the ensemble-averaged wave intensity and wave spectrum for
this type of spectral “bump”. Even though this is not possible analytically, we can
construct these quantities numerically. Furthermore, with the non-singular spectral
density (61) we can use the phase-screen method to numerically simulate the prop-
agation of a laser beam through a realization of the turbulence described by (57).
Simulating the propagation of a number of shots thirough an ensemble of realizations
of the turbulence and averaging over the final intensities and wave spectra will al-
low us to check the predictions based on a numerical construction of {Iy(z,z)) and
(Is(k, z)) from (62), as well as the predictions given in the previous Section based on

ft = ~ gb (64)

a 6-function spectral “bump”.

Our numerical results are shown in Fig. 6. Using the parameters given in (48,59),
the intensity of a beam propagated through a single realization of the turbulence is
shown in Fig. 6a. The wave intensity clearly shows the effect of the loss of coher-
ence due the turbulence: it has developed “spikes” (or “beamlets™) and has spread
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Figure 6. Numerical simulation of propagation through a single realization
of Gaussian “bump” turbulence, with parameters given by (48,59), compared
with prediction based on (62) (smooth dark curve) and vacuum result (light
curve). (a) Intensity. (b) Wave spectrum.




much more than the vacuum result (shown by the lighter curve). The prediction for
the ensemble-averaged intensity (shown by the smooth dark curve) was numerically
constructed from (18) using the Gaussian “bump” phase correlation function (62);
this prediction compares quite favorably with that shown in Fig. 4a based on the
§-function “bump”. The wave spectrum after propagation through a single turbu-
lence realization (shown if Fig. 6b) has clearly developed maxima at harmonics of
the “bump” wavenumber k;, and again, the ensemble-average prediction numerically
constructed for the Gaussian “bump” case is very similar to the analytical form for
the é-function case shown in Fig. 4b.

An ensemble average over 100 shots (propagation through 100 realizations of the
turbulence, averaged numerically) is shown in Fig. 7. Now the numerical ensemble
average is much smoother than the single-realization result of Fig. 6 (the “spikes” or
“beamlets” have been smoothed out by averaging, as to be expected), but the effect
of the turbulence producing increased beam spreading is still evident. However, it
is also interesting that the off-axis intensity maxima, as predicted by both the é-
function and Gaussian “bump” model for the ensemble-averaged intensity, do not
appear in the actual numerical results. The numerical ensemble-average does spread
just as predicted, but the result appears to wash out the off-axis maxima with a sort
of average behavior. The wave spectrum, on the other hand, very closely matches the
prediction for maxima at harmonics of the “bump” wavenumber k.

The discrepency between the numerical and predicted results can be explained as
follows: The prediction (18) is based on a theoretical analysis of a single phase-screen
step. That is, one can write down a closed-form expression for the final intensity (say,
at z = 1000km as in our example) as if it were propagated in vacuum for the first half
of the distance (i.e., 500km), multiplied by a random phase function exp(i¢(z; z))
which accounts for the turbulence over the entire distance of propagation 2, and then
propagated in vacuum the remaining distance (another 500km). Another prediction
could be generated by first multiplying by the random phase function (at z = 0) and
then propagating in vacuum the entire distance (z = 1000km). This latter analy-
sis would have produced an expression for the predicted ensemble-averaged intensity

_{I(z,2)) similar to that in (18), except for the factor of 1/2 in the argument of Mr

would be unity. Using this alternative prediction in the é-function “bump” analy-
sis of Section 3.2 would yield off-axis intensity maxima at z, = nkyz/ky (i.e., at
+10, £20. .. meters for our parameters), instead of at z, = nky(2/2)/ko (£5, £10...
meters) as in (47). Of course, in order to conserve beam power, the intensity at each
of these maxima would be lower since the profile is more spread out. With this “ini-
tial” phase-screen approach, however, the expression (30) for the wave spectrum is
unchanged; thus, the wave spectrum produced by “bump” turbulence develops max-
ima at harmonics of the “bump” wavenumber in both analyses. The interpretation
1s quite clear then: a single application of the phase-screen representing a spectral
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Figure 7. Numerical ensemble average of 100 shots through different real-
izations of Gaussian “bump” turbulence, with parameters given by (48,59),
compared with prediction based on (62) (smooth dark curve) and vacuum
result (light curve). (a) Intensity. (b) Wave spectrum.




bump at k = k&, (irregardless of where it is placed) will cause the wave spectrum to
develop peaks at harmonics +k, = £nk,. This can be thought of as a scattering
of rays to a transverse wavenumber of k,; these rays then propagate with an angle
0, = kn/ko = nky/ko to the z-axis. Now, if the phase-screen is applied at the midpoint
(z/2), then the transverse distance reached by these rays is z, = 0,2/2 = nkyz/(2ko)
(producing intensity maxima as predicted by (47)). If the phase-screen is applied at
z = 0, however, the rays propagate twice as far at the new angles 0,; this results in
intensity maxima at the more widely spaced locations of =, = nkyz/ky.

Naturally, in reality, propagation through turbulence is a continuous process, not
accurately modeled by the imposition of a single random phase-shifting screen. Nu-
merically, we simulate the propagation by using a series of intermediate phase-screens,
with the idea that as the number of phase-screens increases (with decreasing separa-
tion), the more closely the effect of continuous propagation is simulated. Note that
since by (16) the level of the phase fluctuations is proportional to the propagation
distance z, it is possible to divide the total distance z up into N phase-screen inter-
vals of length z/N (with a level of the phase fluctuations on each screen proportional
to z/N) so that the total level of the phase fluctuations remains constant as N is
increased. In this way, the influence of the turbulence on the beam (or the scattering
of the rays) becomes more gradual. The goal in the numerical phase-screen method
then is to find an optimal separation distance for the phase-screens; i.e., we want to
minimize the number of phase-screens required (to decrease the computation time)
with the property that increasing the number does not significantly change the result.
In fact, in the parameter regime we are exploring, we have found that phase-screens
separated by about 100km is sufficient, with (according to (48)) a phase fluctua-
tion level of about (¢?) = 0.3 on each phase-screen; that is the number used in the
simulation results reported in this article.

So now the discrepancy between the simulation results and the predicted ensemble-
averaged intensity is clear: at each of the ten phase-screens (located at z;), rays
are scattered to angles 8, = nky/ko, thence to propagate the remaining distance
z — z; and produce an intensity peak at (z — 2;)0, = (2 — 2z;)nky/ko. Since there are
ten values of z;, there are ten intensity peaks associated with each value of n: this
effectively smears out the off-axis intensity maxima. If the number of phase-screens
were increased (i.e., more closely approximating the actual physical propagation),
the initensity peaks would become more closely spaced, effectively becoming smeared
so that indeed no peaks are present. Thus, it appears that using ten phase screens
is enough to simulate the true continuous propagation (the smearing appears to be
complete). Furthermore, we note that while the prediction for the ensemble-averaged
intensity (based on the single mid-point phase-screen analysis) appears to be quite
accurate (in a mean sense, averaging out the off-axis intensity maxima which are not
physical); indeed, our research has shown that this prediction is much better than
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one based on a single phase-screen at z = 0. Perhaps more importantly, even though
the off-axis intensity maxima do not occur, the prediction for the growth of the beam
width in terms of Ly (depending on the “bump” parameters ¢, = ¢, /7 and €, = ¢;)
appears to be borne out by the simulations.

3.4 A “Bump” Superimposed on a Cascade

In this Section we will now consider the case of a turbulence spectral density
composed of both a cascade and a “bump” component. We therefore begin with a
spectral density Sy of the form

Sw(k) = SP(k) + SR () (65)
for which the level of refractive index fluctuations (or total power) is

d*k

(6N*) = @)

Sn(k) = (6N}) + (6N?) (66)
Since the effects on beam propagation (such as turbulent broadening) depend on the
magnitude of (6N?), it is clear from (66) that increasing the power in the “bump”
component of the spectrum (i.e., increasing (6N?)) while holding the cascade compo-
nent fixed will cause the beam to be more severely affected by the turbulence. For
example, increasing (6N?) (and thus the total (6N?)) will, by (16), increase the level
of phase fluctuations (#?) and, by (28), decrease the turbulent broadening length Lt
so that the spreading caused by the turbulence will begin to occur over a shorter
distance. Furthermore, as (6N?) is increased to levels much higher than (6N2), it is
reasonable to expect that the effect on the beam will be dominated by the turbulence
in the “bump” component. Thus, for (6N2?) > (8N?), the integral and transverse
scalelengths (which also affect both (#?) and L7) will become more representative
of the “bump” component; for a Gaussian “bump” as in the preceding Section, we
would expect £;—¢, /7 and £,—¥¢,. In this case then, for a spectral “bump” at large k&
(or short wavelength) as depicted in Fig. 1, we would expect these scalelengths to be
smaller than if the cascade component were dominant; thus, Lt is further decreased
and turbulent broadening becomes a more severe effect. Even though we have seen
in the previous Section that off-axis intensity maxima (as predicted using the single
midpoint phase-screen theory) do not occur, the prediction for the cubic growth of
the beam width in terms of Lt (depending on the “bump” parameters ¢; and ¢,) still
holds.

In order to directly compare the relative effects of the cascade component S;f,:)
and the “bump” component S,(\l,’), we can vary the magnitude of each component
while holding the total power in the turbulence spectrum (or (6N?)) fixed. We thus
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define the fraction ¢ of the total power in the “bump” component to be

_ (N (8ND)
w7

=1-q (67)

so that (6N?) by (66) is constant as ¢ is varied. Now since (65) is a linear superposition
of cascade and “bump” components, so is the phase spectrum produced by (65).
Therefore, it follows that the level of phase fluctuations is

() = Kz [ 2 su(k) = B=(en)e
— RANAE + (BN
= Kz(8N?)[qf + (1 - g}t
= KRz(SNY)[E; — q(£5 — &) (68)

As mentioned above, if the “bump” component is at larger wavenumber than the
cascade (as depicted in Fig. 1), then the scalelengths characterizing the “bump”
component (such as £ and £) will be smaller than those of the cascade component.
Thus, we see from (68) that as power is transferred into the bump component (q is
increased), the phase fluctuations measured by (¢?) are decreased (for £ > €¢). This
was previously noted by Goldring.?

While this result seems to indicate that taking energy out of the cascade and
putting it into the “bump” tends to diminish the overall effect of the turbulence, one
must remember that even though this transfer of energy decreases the magnitude of
the phase fluctuations, the fluctuations are of shorter wavelength. As the scalelength
of the phase fluctuations becomes smaller (especially, smaller than the beam width),
the loss of transverse coherence of the beam becomes more rapid. The combination of
these effects is embodied in the definition (28) of the turbulent broadening length, L,
for which one also needs to compute the transverse scalelength ¢; of the turbulence.
Thus, while the effective integral scalelength ¢; is given by (68) to be

€= gt} + (1 - o) (59)
the effective transverse scalelength is from (29)

(zt )2 A (8N, r2(6N?)¢;
/dk k2 Sy (k) /dk k2 [b”” + SOk)]

(70)

Using the first relation to define the transverse scalelength of each component sepa-
rately this becomes

ez ,
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¢<)? ¢5)2 /¢ !
(éf) [1 +(1(E€%;2§€% _ 1)} (71)

Now from (28) the turbulent broadening length is

L3 . 7‘(2) 6_12 )
’I(q) - 7{'2(5N2) (i (q

(L7)? [1 +4q (Eﬁb;zfﬁb - 1)] (72)

where L% and L% are defined in terms of the total power (6N?). Therefore we see
that if the characteristic scalelength ¢?/¢; of the cascade is greater than that for the
“bump”, then increasing the power in the “bump” (increasing ¢) will decrease the
broadening length L.

We have explored this effect numerically using the phase-screen technique to prop-
agate a beam through turbulence described by a composite spectral density such as
(65). The “bump” component S,(\l}) was taken to be the Gaussian “bump” discussed
in the previous Section, while the cascade component was modeled by a von Karman
spectrum

_k2/k2

V) = [ e (%)

In the regime kpin € k < kmaz, this spectrum behaves like the two-dimensional
Kolmogorov cascade S(k) ~ k=8/3. The inner scale I5 and outer scale L§ of the
cascade were taken to be

£ = 27/kmas = 0.5m
Ly = 2n/kpin =10m (74)

The cascade spectrum and its corresponding correlation functions are shown in Fig. 8.
The turbulence scalelengths for this cascade were computed numerically to be

£ = 29m
¢ = 51m
= ((’f)z/é’f = 9.0m (75)

For the Gaussian “bump” parameters (59), the turbulence scalelengths from (63,64)
are

(ff = 0.3m
ff = 1.0m

= (28 = 33m (76)
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Figure 8. Cascade model used in numerical simulations. (a) S,(J)(k) from
(73) with parameters (74). (b) Lug-log plot of 5(k). (¢) Spatial correlation
function RY(s). (d) Phase correlation function Rgf)(sr).
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With these values, the turbulent broadening length for the pure cascade spectrum
(¢ = 0) is L% = 330km, while for the pure “bump” spectrum (¢ = 1) itis L% = 231km.
Thus in this case, we should observe a more pronounced broadening of the beam as
energy is transferred from the cascade to the “bump”.

The beam with the parameters given in (48) was propagated using the phase-
screen method as described in previous Sections, with phase-screens located every
100km for a 1000km total propagation distance. We present here the results of nu-
merically averaging over an ensemble of 100 shots through different realizations of the
turbulence at fixed q. The numerical ensemble-averaged intensity and wave spectrum
are compared with predictions constructed numerically, by (18) and (30), using the
actual phase correlation function R, for each gq.

The effect of just the pure cascade spectrum (¢ = 0) is shown in Fig. 9. Obviously,
the beam has been broadened (in both z-space and k-space) due to the turbulence,
but not to the degree that it was broadened by the pure “bump” turbulence (¢ = 1)
as shown in Fig. 7. This is consistent with Ly for the pure cascade being larger
than that for the pure “bump” spectrum. Furthermore, the wave spectrum in this
case does not exhibit the harmonic structure characterizing that for the “bump”
case; this is presumably because the cascade spectrum is centered at k£ = 0 and is
much broader than the “bump” spectrum. Finally, it is apparent that the expressions
for the ensemble-averaged intensity (18) and wave spectrum (30), based on a single
midpoint phase-screen theory, give very accurate predictions for these quantities.

In Fig. 10 we show the composite spectral densities for ¢ = 0.325, 0.7, and 0.83.
These values were chosen because the magnitude of the “bump” component relative
to that of the cascade component (i.e., S,(\?)(k,,)/S,(\f)(O)) for these cases is 0.1, 0.5 and
1.0, respectively. The results of propagating through each of these turbulence models
are shown in Figs. 11-13. The trend toward a broader beam as ¢ increases is clear,
as predicted above. At ¢ = 0.7, the wave spectrum begins to show the harmonic
structure of the pure “bump” case; the prediction for the spatial intensity also begins
to develop off-axis maxima, although the numerical propagation results show that
these should not be present (as explained in the preceding Section). By q = 0.83, the
beam is broadened almost as much as in the pure “bump” case; indeed, by (72), the
value of L is 245km for this case, compared with 234km for the pure “bump”.
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Figure 9. Numerical ensemble average of 100 shots through different real-
izations of cascade turbulence (73,74) and Fig. 8, compared with prediction
based on (18,30) (smooth dark curve) and vacuum result (light curve).

(a) Intensity. (b) Wave spectrum.
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Figure 10. Composite spectral density as a function of ¢q. (a) ¢ = 0.325,
relative magnitude = 0.1. (b) ¢ = 0.7, relative magnitude = 0.5.
(c) ¢ = 0.83, relative magnitude = 1.0.
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Figure 11. Numerical ensemble average of 100 shots through different re-

alizations of turbulence with composite spectral density for ¢ = 0.325.
(a) Intensity. (b) Wave spectrum.
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Figure 12. Numerical ensemble average of 100 shots through different re-
alizations of turbulence with composite spectral density for ¢ = 0.7.
(a) Intensity. (b) Wave spectrum.
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Figure 13. Numerical ensemble average of 100 shots through different re-

alizations of turbulence with composite spectral density for ¢ = 0.83.
(a) Intensity. (b) Wave spectrum.
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3.5 The Effect of a “Bump” in Three Dimensions

Throughout this report we have focused for simplicity on the effects of “bump”
turbulence on propagation in two dimensions. Based on the analysis in the previous
Section, we will now comment on the effect of a “bump” superimposed on a cascade
spectrum in three dimensions. For the purpose of analytical computation, we take
the isotropic cascade spectrum to be a Gaussian

SN (k) = 50 ek /2 (77)

while the “bump” is also a Gaussian centered at the “bump” wavenumber 4,
SW (k) = Sp e~ (k—k)?/2x (78)
In these expressions, k 2 0 is the radius in the three-dimensional k-space. As in the

previous Section, the total turbulence spectrum is simply the sum of S,(J) and 5‘53).

The total power in each component of the spectrum can be computed to be

- &3k )y _ Sgli? -
k 0 k2
(6NZ) = (—;’;)-3- SO(k) ~ 2(52’>:)b3 /'; (80)

which is the three-dimensional analogy of (66). Here we have also made the assump-
tion that the “bump” component is very narrow and located at large wavenumber,
ky > ks (just as in (58)). At this point it is interesting to compare the relative power
in the two components: ,

p= (V7)) _ 9 Sp kK m (81)

(6N2) 5% K% Kk,

Consider the case where the “bump” component represents turbulence at a much
smaller scalelength than the cascade; for example, let us take the following parame-

ters:

ky = 2n/f =2r/(lm) = 6.28m™!
2r /Ly = 27 /(10m) = 0.63m™" (82)
on /L. = 2r/(10km) = 6.28 x 107*m™!

Kp

il

Ke

Thus the turbulence can be thought of as turbulent eddies in the range of £, = 1m
to Ly = 10m (produced by some instability, for example) superimposed on a cascade
of turbulence with scalelength of L. = 10km (produced by some other large-scale
mechanism). In this case, the relative power (81) becomes

0
sy

p=2x10"

(83)
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Thus, even if the magnitude S = S',(\l,))(kb) of the “bump” component is a factor of
10'% less than that of the cascade S9 = SE\C,)(O), the “bump” component still has 20
times the power of the cascade component. An example of this spectrum, with the
parameters as in (82), is shown in Fig. 14. In this case, the fraction ¢ of the total
power (6N?) = (8N?Z) + (6N?) that resides in the “bump” component is

D

= —— =095 84)
1+p (84)

q

This is a purely geometric effect of the three-dimensional k-space: while the “bump”

is narrow and of much smaller magnitude, it is located at large radius in k-space and
thus the k? volume factor works to increase the power in the “bump” component.

The effect of the “bump” component can now be assessed in terms of the turbulent
broadening length L, using (72). For this we need the characterist’c scalelengths

¢ = L. /27 =4.0x10°m & = £/2=0.5m
¢ = L./V2=70x10°m € = £,=10m (85)
= (£)2/€¢ = LJ/r/2=1.25x10*m = (£)?2/68 = 20, =2.0m

which are computed from the spectral densities using the three-dimensional versions
of (16) and (29). These values give

62 1w L.

E—ég—z—%:é §Z:6.3x103 (86)
Together with the value of ¢ = 0.95 for this example, we see that the ratio of the
relevant scalelengths is such that the turbulent broadening length (72) is decreased by
a factor of almost twenty, from the value L§ characteristic of the cascade component
to the value L% determined by the “bump” component. Thus, in this case where the
“bump” component. appears to be an insignificant contribution to the total spectrum
(as in Fig. 14), not only does almost all of the power reside in the “bump”, but it
completely determines the effects of turbulence on the beam; the “large” cascade
component can be ignored.
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Figure 14. A three-dimensional isotropic spectrum (k = |k|) with a “bump”
superimposed on a cascade (given by (77) and (78)). The parameters are
those in (82), with S = 10°m3 and SP = 1m3. In this case, 95% of the
power in the spectrum resides in the “bump” component.

39




4 Conclusions

In this report we have anlayzed the effect of a “bump”-type turbulence spectrum
on laser propagation, and we have compared our results with those produced by the
standard assumption of a cascade-type spectrum. In general, the effect of narrow
“bump” in the turbulence spectrum (at a finite wave number k) is to generate side-
bands in the wave spectrum at multiples £nk; of the “bump” wavenumber. On aver-
age, the spatial broadening of the beam behaves as predicted (by a theory based on a
modified Huygens principle) and spreads with the cube of the propagation distance;
the characteristic broadening distance Lt for this effect decreases as the scalelength
of the turbulent eddies ¢, = 2x/k; decreases and as the level of the refractive index
fluctuations (6V?) increases. On this basis we can conclude that given a cascade spec-
trum and a “bump” spectrum with the same level of fluctuations (6N?), the spectrum
with the smaller characteristic scalelength will have the greater effect on the beam
(because Lt for that spectrum will be smaller, and hence turbulence effects will be
observed over shorter propagation distances). Since by definition a cascade spectrum
is dominated by a peak at k¥ = 0 and usually decreases rapidly as some power law
at large k (representing a cascade of energy from longer to shorter wavelengths), it
is likely that the characteristic scalelength of such a spectrum will usually be larger
than that of a “bump” spectrum (which can be at any large wavenumber k, = 27 /4;);
thus, for turbulent spectra of the same strength, the “bump” spectrum would usually
have a greater effect on laser propagation.

We have also studied the combined effect of a “bump” component superimposed
on a cascade spectrum. One important conclusion which results from this study
is that in three dimensions, even if the amplitude of the “bump” component of the
spectrum is much smaller than the amplitude of the cascade component (for example,
by ten orders of magnitude), if the scalelength of the turbulence represented by the
“bump” is much smaller than the scalelength of the cascade turbulence (say four
orders of magnitude smaller), then almost all of the power in the spectrum is due to
the “bump” component. Furthermore, in this case, the effects of the turbulence on
the beam are in effect determined by the “bump” component, and the existence of
the cascade component (which may represent turbulence at very large scalelengths)
can be ignored.
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