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ABSTRACT

The inviscid instabilty of a longitudinal vortex structure within a steady boundary layer is

investigated. The instability has wavelength comparable with the boundary layer thickness so

that a quasi-parallel approach to the instability problem can be justified. The generalization

of the Rayleigh equation to such a flow is obtained and solved for the case when the vortex

structure is induced by curvature. Two distinct modes of instability are found; these modes

correspond with experimental observations on the breakdown process for G6rtler vortices.
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1. Introduction

Our concern is with the unsteady three-dimensional breakdown of longitudinal vortices

in incompressible boundary layers. Though we shall concentrate on the situation where

the vortices are induced by streamline curvature, our analysis is equally relevant to the

later stages of boundary layer transition as described recently by Hall and Smith (1990).

It is well-known that both steady and unsteady boundary layers are susceptible to the

so-called G6rtler vortex instability mechanism; this mechanism is identical to the Taylor

vortex instability investigated by Taylor (1923). The latter instability is usually associated

with the flow between rotating concentric cylinders but the terminology is equally relevant

to, for example, the centrifugal instability of pressure gradient flows in channels, Dean

(1928), or that of a Stokes layer on a torsionally or laterally oscillating cylinder, Seminara

and Hall (1975), Honji (1982), Hall (1984). The main distinguishing feature of the G6rtler

vortex is that it is a mechanism which is opeational in a spatially varying flow. However,

a formal inviscid spatial instability analysis of G6rtler vortices in growing boundary layers,

Denier, Hall and Seddougui (1990), shows that nonparallel effects are important only when

viscous effects are taken into account. Moreover, the inviscid stability problem for G6rtler

vortices has an exact solution which clearly points to the importance of viscous effects for

the most rapidly growing mode at high G6rtler numbers.

We shall now discuss briefly some relevant experimental and theoretical results con-

cerning the growth and breakdown of G6rtler vortices in curved boundary layers; a more

detailed account of that work can be found in Hall (1990). Perhaps the first experimen-

tal evidence for the existence of the instability mechanism predicted by G6rtler (1940) is
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due to Lieppmann (1943, 1945), but the first detailed experimental investigation of the

instability was described by Bippes (1972). More lately significant contributions have

been made by Aihara and Kohama (1981), and Swearingen and Blackwelder (1987). In

the early stages of the vortices development the disturbance field is steady and takes the

form of spanwise periodic counter-rotating vortices. Significantly these initial stages ap-

pear extremely sensitive to the upstream flow and often the initial periodicity of the flow

is fixed by some type of forcing mechanism at the wall. However, it is known from the

work of Hall (1990), Denier, Hall and Seddougui (1990) that both free-stream disturbances

and wall roughness are both possible causes of the initial vortex growth. After the initial

onset of the instability flow visualization and hot wire measurements show that a finite

amplitude state, evolving in the flow direction, is generated as the boundary layer grows.

At some stage further downstream this steady state undergoes a secondary instability to

a three-dimensional time-dependent disturbance. Sometimes this instability leads to an

unsteady wavy vortex flow of the type which causes the unsteady breakdown of Taylor

vortices in the circumferential flow between cylinders of almost the same radius. In other

situations the breakdown leaves the vortex boundaries flat but causes the generation of

horseshoe vortices typical of the later stages of flat plate boundary layer transition. Thus

it would appear that there are at least two distinct modes of instability of longitudinal vor-

tex structures. In fact Tollmien-Schlichting waves can also be involved in the breakdown

process if the wall curvature in the experimental facility is sufficiently small to postpone

the onset of G6rtler vortices to high enough Reynolds numbers where Tollmien-Schlichting

waves are unstable.
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A theoretical description of the onset of a wavy vortex structure in Gbrtler vortex

flows has been given by Hall and Seddougui (1989). That calculation is appropriate to

small wavelength vortices where non-pacallel effects are not important but nevertheless

the results found by Hall imd Seddougui were consistent with the experimental observa-

tions of Peerhossaini and Wesfreid (1988a,b). In particular Hall and Seddougui showed

that two wavy vortex modes are possible in small wavelength G6rtler vortices; in particular

these modes are localized in the normal direction in thin shear layers above and below the

region of vortex activity as described by Hall and Lakin (1988). At 0(1) vortex wavelengths

the linear and nonlinear stages of vortex growth are described by non-parallel effects, Hall

(1983, 1988), thus the mode identified by Hall and Seddougui is not easily investigated in

this regime because it leads to a three-dimensional, unsteady Navier Stokes calculation.

However it would be extremely surprising if the wavy mode instability based on a three-

dimensional unsteady G6rtler vortex was not in operation at 0(1) vortex wavelengths. In

this paper we shall concentrate on the question of whether some of the experimentally

observed breakdown routes of G6rtler vortices owe their origin to an inviscid instability

mechanism. Interestingly enough, in their convincing theoretical description of the onset

of wavy Taylor vortex flows Davey, DiPrima and Stuart (1968) suggested that the wavy

vortex mode might well be of inviscid origin. Indeed, recent work by Bassom and Sed-

dougui (1990), who investigated more fully the wavy vortex spectrum found by Hall and

Seddougui, shows that some of the wavy modes are certainly of inviscid character. From

the theoretical point of view the fact that 0(1) wavelength vortices evolve in a non-parallel

manner means that the concept of a unique curve or growth rate is not tenable in the
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Gortler problem, Hall (1983, 1988). It is this property which distinguishes G6rtler vortices

from Tollmien-Schlichting waves which occur at such high Reynolds numbers that they are

adequately described by a quasi-parallel theory. This is also the main difference between

G6rtler and Taylor vortices; thus in a Taylor vortex experiment the control parameter

governing the flow is constant in the steady r, gime, in the G6rtler problem the down-

stream variable in effect plays the role of the control parameter. In the Taylor problem it

is well-known that significant changes in flow properties occur when the control parameter

is slightly increased; in the G6rtler problem the experimentalist or theoretician is not able

to restrict his attention to small increases in this parameter. For that reason it is not

surprising that careful experiments on G6rtler vortices are not as common as those on the

Taylor mechanism.

In this paper we shall in the first instance use the nonlinear scheme of Hall (1988) to

determine the evolution of finite amplitude 0(1) wavelength vortices in a curved boundary

layer. We shall then investigate the instability of the new three-dimensional state at a

given downstream position to an inviscid Rayleigh instability. These modes have spanwise

and streamwise length scales comparable with the boundary later thickness so the stability

problem formulated is a local one. The formulation of the problem and some particular

solutions are given in §2. In §3 we describe a scheme used to solve the two-dimensional

generalization of Rayleighs equation found in §2. Finally in §4 we discuss our results and

compare with experimental observations.
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2. Formulation of the problem

Consider the flow of a viscous fluid of kinematic viscosity v over a wall of variable

curvature a-'K(E-). Here a is a typical radius of curvature of the wall whilst e is a

lengthscale in the flow direction. If U0 is a typical value of the fluid speed at infinity then

we define a Reynolds number RE by

U0e
RE = -, (2.1)

V

and throughout this paper we shall consider the limit RE -4 oo with the G6rtler number

G defined by

2f ,
G = _R(2.2)
a B

held fixed. Of course it is possible to allow 1 -4 0, and RE -- oo such that G -- 0 or
a

G - o but we isolate the above limit because it is known that instability occurs first

for G = 0(1). In the absence of any longitudinal vortex structure in the flow we have

a two-dimensional steady boundary layer flow Uo(u(X, Y), V(X, Y)R- _, 0) obtained by

solving
FIx +Y = 0

Ufifx + vfy = Px + UYY

(2.3)
f=f70, Y=O

ft- U B(X), y -- 00

Here (X,Y) = (x/e,R1 ,y/e),p is the streamwise pressure gradient associated with the

flow, and UE (X) is the dimensionless free-stream speed. Now we suppose that the curvature
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of the wall induces a G6rtler vortex velocity field defined by
U _._

Uo -(X, Y, Z) = (, VR 2 , )(1 + O(RE )) +(U(X, Y, Z), V(X, Y, Z)RE'i
(2.4)

W(X,Y,Z)R B'2)(1 + O(R B.

Here Z is a dimensionless spanwise variable scaled on RS e and we assume that the

flow is periodic in the spanwise direction with wavelength A -2 If P(X,Y, Z) is the

dimensionless pressure field associated with (U, V, W) then, from Hall (1988), we see that

the system of equations to determine the vortex field and induced mean flow is

Ux + VY + Wz =0

UYY + Uzz - V r = &Ux + UUx + vUr + Q1,
(2.5a, b,c)

Vyy + Vzz - GKUU - Py = FnVx + UVx + vVy + VVy + Q2,

WYY + Wzz - Pz = zWx + VWy + Q 3 ,

where
Q1 = UUx + VUY + WUz,

Q2 = UVX + VVy + WVz + 1GKU2, (2.6a, b,c)
2

Q3 = UWx + VWY + VWY + WWZ.

The above equations are to be solved subject to

U=V=W=O, Y=O,

(2.7 a, b)
U-40, V- *V(X), W--O, Y- +oo.

where V(X) is a function of X to be determined. The most notable feature of the above

system is that Px does not appear in the streamwise momentum equation so that the

vortex equations are parabolic in X. The nonlinear Gbrtler vortex equations (2.5) were

solved by Hall (1988) and the reader is referred to that paper for a discussion of an

appropriate numerical scheme for their solution. We shall discuss the results of such a
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nonlinear calculation in the next section. Now let us turn to the possible instability of a

nonlinear vortex flow to an inviscid travelling wave disturbance.

It is well known that inviscid disturbances vary in the streamwise direction on the

lengthscale RE I f so that their wavelength is comparable with the boundary layer thickness.

In addition the timescale for an inviscid disturbance is U5 'R so that we perturb the

basic state by writir.g

V-= u + A(u(X,Y,X),v(X,Y,Z),w(W,Y,Z))exp{iR! O(X,T)}, (2.8)

where T = and A is taken to be sufficiently small for linearization to be a valid proce-

dure. Finally we take the corresponding pressure perturbation to be AP(X, Y, Z)pU 2 expliR2 (X, T'

where p is the fluid density. If we now write a = Ox iac = -OT then we find that, in the

limit RE -* oo, the zeroth order disturbance equations at the local position X arc

iaU + Vy + Wz =0,

ia U - c}U + VtJ = -iaP,

(2.9)
ia{U - c}V = -Py,

ia{J - c}W + WTz = -Pz,

where C = Fi + U , is the total downstream velocity field associated with the basic state in

the prcsence of a longitudinal vortex field. Since viscous effects are negligible away frorm

the wall (and any position where U = c) the appropriate boundary conditions for (2.9) are

V=0, Y=0, oo. (2.10)

Since the basic state about which we are performing an inviscid instability analysis is non-

parallel it is not clear whether we should seek temporally or spatially growing modes. Here
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we shall concentrate on the temporal case and therefore seek eigenvalues of (2.9 - 2.10)

with a real and c complex. Our primary aim is to find the fastest growing modes so we

shall not seek eigenvalues appropriate to the neutral case with a and c real. A discussion

of the critical layer structure of (2.9) when a and c are real can be found in Horseman

(1990); essentially it is unchanged from that of the simpler situation when U7 is a function

of Y alone. In general (2.9 - 2.10) must be solved numerically; with this fact in mind it is

convenient to eliminate U, V, W to give the pressure equation

02 2 2 } 2U Py 2Uz Pz 0. (2.11)
+5yZ2 a+jP i - U-c C- c

This equation must be solved subject to the conditions

Py =0, Y=0, P---*0, Y -*c, (2.12)

and P must, of course, be periodic in Z. For a G6rtler vortex flow U may be written as

00

U = Uo(X, Y) + CTU, (X, Y) cos nkZ, (2.13)
1

so that (2.11) has solutions of the form

00

P = 3 P,,(X,Y)sinnkZ,

00 o(2.14a, b)

and P = Po(X,Y) + _ P,,(X,Y)cosnkZ.
1

We refer to the above modes as 'odd' and 'even' respectively and we note that the odd

mode leads to the 'wavy' vortex boundaries observed experimentally. In contrast the even

mode corresponds to a time-dependent state in which the vortex boundaries remain flat,
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we conjecture that this mode leads to horseshoe vortices. As mentioned in the introduc-

tion there is experimental evidence for both of these modes. Furthermore we note that

subharmonic modes are also possible but, since there is no experimental evidence for the

importance of these modes, we do not investigate that possibility here.

The detailed calculations which we made were for the situation when uE = 1 so that

in the absence of a vortex field all inviscid disturbances are stable. However other basic

states are of practical relevance and we note that pressure gradient driven boundary layers

can be inviscidly unstable in the absence of a vortex field. There is in fact one situation

where some analytical progress can be made with (2.11 - 2.12); we refer to the case when

the spanwise wavenumber k of the vortex is small. In this situation it is reasonable to

expect that the inviscid disturbance behaves in a quasi-parallel manner in the spanwise

direction. In that case we can drop the dependence of P with respect to Z and then P

satisfies the ordinary differential equation

2 Cy P = 0. (2.15)P~r -a2P U - c

This is the Rayleigh pressure equation appropriate to a uni-directional flow with C a

function of Y alone and we can think of the wav:speed c as a function of the slow spanwise

variable € kZ. Intuitively we expect that the disturbance will concentrate itself where it

is most unstable; thus for a given ,alue of a suppose that c c , O. 0, 0, < 0 at a
C 1z (9Z2

point Z = Z*. In fact for U appropriate to a Grtler vortex, see (2.13) above, it is easy to

show that kZ* = (2n + 1)7r for n = 1,2,3, .... Moreover, these positions correspond to the
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cell boundaries where upwelling occurs. In order for us to determine the precise structure

of the inviscid disturbance near Z = Z* it is necessary for us to define

P = k [Z - Z' (2.16)

and expand P in the form

P = Po(-I,Y) + kP(4,Y) +.... (2.17)

In the neighbourhood of Z" U expands as

U = U6 (Y) + k2 [Z - Z-12 UI.(Y) + ... , (2.18)

where we note that the O(k) term in this expansion is absent because c* has a local

maximum at Z = Z*. Finally we expand the eigenvalue c in the form

c = co + kc + .... (2.19)

If the above expansions are substituted into (2.11 - 2.12) and terms of order k0 , k are

equated we obtain
02po a2PO-  2U6y OPo =

Oy 2  U5 - co 9Y (2.20a)

=OY 0, Y - 0, PO = 0, Y -+ 00.

02p _a 2 p- 2U6y OPi = 2U6 D2 U_Y U92p
aY 2  U6 -cOY 9 UO-co U6Y U6 -co IJ 2

+ (U~~6%)2 1POY(2.20b)+ 2U( r clObY
+U -C)

The system (2.20a) is of course the local Rayleigh problem to determine the eigenvalue

co = cO(a) whilst (2.20b) is an inhomogeneous version of (2.20a) and therefore only has a

solution if a solvability condition is satisfied. The solution of(2.20a) can be written

Po = A(-P)Po(Y), (2.21)
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and the solvability condition on (2.20b) yields

A" + Aoc 1 A - A( 2 A = 0. (2.22)

Here the constants A0 and A1 are given by

2 vo - P (Y)Qo(Y'dY

f: P6(Y)Qo(Y)dY

(2.23a, b)

2 f: POQO(Y)dY

f: P6(Y)Qo(Y)dY

where 00 is the function adjoint to the eigensolution Po(Y).The solutions of the linear

amplitude equation (2.22) which decay when 141 -oo are

1 .a.

A = A,,(Y) = U(-n - 2,Al2'Y),n = 0,1,2. (2.24)

where U(-n - 1, A "IfY) is a parabolic cylinder function; the complex correction to the

wavespeed is then given by

-cI - -n - 1 (2.25)

22A

Thus we have an infinite sequence of unstable eigenvalues; since Z = Z* is the most

unstable point we know that for any vortex flow AO and A1 are such that XA'/AO has

negative imaginary part so that the n = 0 mode is the most unstable.

Hence in the small vortex wavenumber limit we see that Rayleigh modes occur at the

spanwise locations where the flow is most unstable in a quasi-parallel sense. Alternatively,

the structure described above is relevant for 0(1) vortex wavenumbers when the inviscid

wavenumber a is large. Furthermore we note that in the situation described above the
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instability is associated with the inflexional nature of the velocty profile U in the Y

direction. Now we turn to the question of whether it is possible to determine an asymptotic

structure associated with the inflexional nature of U in the Z direction.

It is, of course, clear that the basic downstream velocity component will have inflex-

ional points in the Z direction at a given value of Y. However, these profiles will only

lead to an inviscid instability if the latter mode can respond in a quasi-parallel manner

t3 the inflexional profiles in the spanwise direction. In order for this to be the case the

basic the flow must vary more quickly in the spanwise direction than iii the normal one.

Since the normal variation of the basic state is fixed by the boundary layer thickness the

only possibility then is to look at the situation when the vortex wavenumber is large. In

that limit, based on the asymptotic structure of Hall(1982a,b), HJl and Lakin (1988) have

given an asymptotic description of the vortex driven mean state. Essentially the boundary

layer is split into three regimes. In the main part of the boundary layer a finite amplitude

vortex drives a mean flow and U expands as

UT = UO(X,Y) + k-m Ui(X,Y)coskZ +... (2.26)

We stress that Uo is driven by the vortex and has no relationship with the mean state

which would exist in the absence of a vortex. The vortex function U1 is found to vanish at

two positions Y1 and Y2 satisfying 0 < Y1 < Y2 < oo. Below Y and above Y2 the boundary

layer equations apply and there is no vortex flow. In fact the vortex activity is reduced to

zero in the shear layers of thickness k- I centred on Y1 and Y2.

Suppose then that we seek a solution of (2.11 - 2.12) appropriate to the velocity field

U given by (2.26) in the limit k -- oo. At a given value of Y the function U has an inflexion
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point where kZ = (n + -)7r for n = 0, 1..... Let us now seek a localized solution of (2.11 -

2.12) centred on some position Y Y with Y1 < Y < Y2 . Since the instability, if present,

must be assoiated with the O(k- 1 ) term in (2.26) we require U - c = (k-1). Thus we

write
c = + k--'e +

(2.27a, b)
a=&k+..

The local eigenvalue problem at Y then reduces to

,92p (2.28)
2 2  P+ CUI(F) cos 2 -ci = ,

which has solutions with cl complex. However, the vertical structure of p corresponds to

a second order turning point when described by a WKB expansion only if Uoy (Y) = 0. In

that situation the inviscid disturbance is trapped in a layer of depth k- and the vertical

structure is then expressible in terms of parabolic cylinder functions. However, Hall and

Lakin found that for GZrtler vortex flows Uo is a monotonically increasing function of Y

in the region of vortex activity so the above type of localized mode cannot occur when a

flow of the type (2.26) is driven by wall curvature; nevertheless we expect that this type

of mode is physically relevant in other situations.

In the absence of a turning point for Co a WKB description of the vertical structure

of the inviscid mode for k >> 1 suggests that any localized mode should have its vertical

structure described by Airy functions, Walton (1978), Soward and Jones (1982). For the

flow given by (2.26) this suggests that the inviscid modes should be confined in a layer of

depth k- 1. Interestingly enough this means that the inviscid mode has by - Oz and the
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eigenfunction then satisfies a partial differential equation again. More precisely if we look

for a mode trapped near = Y and write

C = k{Y -}, 2 = kZ,

then, if the expansions (2.27) are retained, the zeroth order approximation to (2.12) be-

comes

92p 2P 22U6(Y)P P 2 _1() sin 2Pi
cos - + = 0 (2.29)

.%2 922(U'(Y?) + Ui(Y) CsZ - C, U6(?) + U1 (F) Cos 2- C,

which must be solved subject to periodicity in 2 and JP --4 0, (f -"* o. As yet we

have found no solutions of this eigenvalue problem but further investigations are being

carried out. However it is interesting to note that (2.29) is applicable to the inviscid

stability problem for a general velocity field consisting of a spanwise periodic velocity field

superimposed on a linear shear flow. Thus, if unstable solutions of (2.29) can be found,

they are of relevance to a wide class of shear flows.

The only other alternative localized structure for the inviscid mode in the large

wavenumber limit would be one which takes account of the localized structure of the

mean state near Y = Y1 ,Y2 . As mentioned above the vortex activity of the mean state

decays to zero in layers of depth k- near Y1, Y'2. In fact U in these layers expands as

U = Uoo + ka{Y - Y,}Uol + k{Uo2(k[Y - Y])

+ U03(kI[Y - Y,]) cos2}

+ ... ,ji = 1, 2.

The mean shear term proportional to U0 1 again prevents a localized inviscid mode structure

based on parabolic cylinder functions. In fact, Hall and Seddougui (1989) show that the
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basic state in the shear layers at Y1 , Y2 is susceptible to a (viscous) wavy vortex mode of

instability. Thus we conclude that, unless unstable solutions of (2.29) can be found, there

are no vertically localized eigenfunctions associated with the highly inflexional velocity

profiles in the spanwise direction.
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3. A numerical scheme for the solution of the generalized Rayleigh pressure

equation

A suitable scheme to integrate the nonlinear Gbrtler vortex equations (2.5 has been

described by Hall (1988) so we assume that U, the total downstream velocity component, is

known and outline a scheme to solve (2.11). For computational purposes it is convenient to

restrict Z in (2.11) to one half of a vortex wavelength and determine boundary conditions

at Z = 0, 7r/k appropriate to the odd and even modes (2.14a,b). From (2.14) it is easy to

show that appropriate conditions for the odd and even modes are

Odd modes Py = 0, Y =0, P--+0, Y---*oo,

(3.1)

P=O, Z=O, 7r/k, J

Even modes Py = 0, Y = 0, P -- 0, Y -*oo,

(3.2)

Pz =0, Z = o, 7r/k.

For convenience we define the functions F, G by

F- -2Uy , G -2Uz (3.3a, b),U -c U - C

and we define a grid in the Z, Y directions by writing

(j-1) 7r
Zj = (M - 1) k = ( j - 1)b,j = 1,2. .. ,M,

Y (i-) Y. = (i - 1)h,n = 1,2,. .. ,N.

(N-i1)

Thus b and h are the step lengths in the Z and Y directions respectively. Suppose then

that Pj, denotes P evaluated at (Z,Y) = (Zj, Yj ) . We now define the vector _ by

= 1 I, where P. = I I for j = 1,N.

NPM
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and if the derivatives in (2.11) are approximated using central differences it follows that

the discretized form of (2.11) becomes

SBIC,,A2B2C2 0

0 ... =0 (3.4)

0 AN-BN

Here A1 , Ci are diagonal matrices defined by

I ...J Ia ,F C-i P , + (3 .ao , b)

whilst Bi is defined by

2  2  2 1 G,

2 2 a2)((i+G ) 0

1- +- "..

In order to take care of the boundary conditions at Y = 0 the matrix C1 is redefined by

writing

C1 = Cl + A 1 .

If the system of linear equations (3.4) has a noitrivial solution then we have an eigenvalue

c = c(a) of (2.11 - 2.12). The system (3.4) is of block tri-diagonal form and so we can

make use of this structure to speed up the calculations. In fact we solved a modified form

of (3.4) by first replacing the boundary condition at Y = 0 by

Py=1, Y=0.
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This leads to an inhomogeneous form of (3.4) which can be solved for using a standard

block tri-diagonal solver. Having solved this system we then iterate on c until

1/ 1 /p2dZ' I O
0 1 1YIr=0 -*0

In effect this enables us to satisfy the boundary condition Py = 0, Y = 0. Solutions of

(3.4) obtained in this way were checked by backsubstitution into that equation. Typically

we found that it is necessary to use 600 points in the Y direction and 60 in the spanwise

direction in order to calculate growth rates correct to two significant figures. However we

shall be more precise about the parameter values used in the following section.

4. Results and Discussion

Our primary aim is to see if we can explain theoretically the experimentally observed

description of the unsteady breakdown of steady longitudinal vortices induced by wall

curvature. In particular we will focus on the experiments of Swearingen and Blackwelder

(1987) who have given a detailed quantitative description of the breakdown process. Firstly

we shll give results which indicate that the nonlinear vortex calculations of the type dis-

cussed by Hall (1988) do indeed capture the essential details of the steady evolution of

vortices as measured by Swearingen and Blackwelder (1987).

The experiments of Swearingen and Blackwelder were performed in a wind tunnel with

a concave section of radius of curvature 320 cm and a free stream speed of 500 cm/sec.

We note that in this configuration Tollmien-Schlichting waves are stable in the regime

where G6rtler vortices develop. The vortices wei, visualized by smoke and velocity fields

were measured by a hot wire. In Figure (4.1) we compare our results for the displacement
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thickness and wall shear obtained using the numerical scheme of Hall (1988) with the

experimental results of Swearingen and Blackwelder for the case of a vortex of wavelength

1.8 cm. The calculations were started at a distance of 10 cm. along the wall and the

vortex amplitude was estimated from the experimental observation. In order to compare

with experimental observations we have computed the wall shear and the displacement

thickness in the low and high speed regions. We see that the computations predict the

same kind of trends as observed experimentally upto a distance of 100 cm. from the leading

edge. Beyond that position the calculations diverge from the observations and in fact at

a distance of about 120 cm. from the leading edge the computations predict reversed flow

and are therefore no longer valid. However, we believe that the reason why the calculations

and observations diverge beyond x = 120 cm. is that by this stage the vortex state has

suffered a bifurcation to a three-dimensional time-dependent state. Below we shall show

conclusively that this breakdown is due to the instability mechanisms discussed in §2.

Before discussing our results for the breakdown problem we will point out some relevant

details of experimental observations concerning breakdown.

We refer first to Figures 14a,b,c of Swearingen and Blackwelder which show smoke

visualizations of the breakdown process for G6rtler vortices. The visualizations correspond

to an initial vortex state of wavelength 2.3 cm. and show conclusively that there are at

least two types of breakdown which can occur. Firstly there is a sinuous or varicose

mode in which the vortex boundaries become wavy in the manner typical of secondary

instabilities of Taylor vortex flows. The second mechanism leaves the vortex boundaries

flat and the smoke patterns indicate the presence of a horseshoe vortex typical of the
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later stages of transition in a flat plate boundary layer. We shall show below that the

theory of §2 can describe both types of process and that the horseshoe and vortex modes

are to be associated with the even and odd modes of the inviscid stability equations.

We further note that previous investigations, e.g. Bippes (1972), Aihara and Koyama

(1981), have identified the two breakdown processes discussed above; we concentrate on

the experiments of Swearingen and Blackwelder because the latter authors give the most

detailed measurements in the breakdown regime. Finally, before discussing our results,

we note that Swearingen and Blackwelder reported that the sinuous mode was the most

preferred mechanism in their experiments. The downstream wavelength of this mode is

estimated to be about 4.2 cm. from Figure 14c of Swearingen and Blackwelder. The latter

authors give a value of about 130 Hz for the measured frequency of this mode.

In order to generate a basic state to be used as a basis for the theory of §2 we

considered the configuration discussed above which we recall corresponds to a spanwise

wavelength of about 2.3 cm. The linearized G6rtler vortex equations were integrated for

x = 30 cm. to x = 60 cm. using the initial condition (3.1) of Hall (1983). At x =

60 cm. the nonlinear terms were switched on and the initial rms value of the vortex was

estimated from Figure 17 of Swearingen and Blackwelder. In Figure (4.2) we show contours

of constant C at x = 70, 80, 90, 100 cm. We see that these Figures agree qualitatively

with Figure 11 of Swearingen and Blackwelder. At x = 100 cm. the calculated contours do

not show the pronounced 'mushroom' structure shown in the experimental results but we

note here that improved agreement with the experimental results can be found by 'tuning'

the position where nonlinear effects are switched on. More precisely the increased vortex

20



activity observed experimentally can be predicted if nonlinear effects are switched on well

beyond x = 60 cm. However we do not pursue this type of optimization procedure because

it is, of course, not justified since there is certainly vortex activity at x = 60 cm.

Our calculations were almost exclusively for the basic state discussed above for x = 100

cm.; this restriction was necessary because of the computational expense of the solution of

(2.11 - 2.12). In order to calculate the eigenvalues of that system to the graphical accuracy

of the figures which follow we used 600 points in the vertical direction with a step length

k = 0.25 and 60 points in the spanwise direction (for wavelength).

In the first instance we consider the odd modes of instability associated with (2.11

- 2.12). In Figure (4.3a) we show aci as a function of a for the two most unstable odd

modes at x = 100 cm. We note that since eigenvalues of (2.11) occur in complex conjugate

pairs the eigenvalues shown do indeed correspond to unstable disturbances. Also shown

is the only unstable mode we were able to locate at x = 80 cm. We see that the fastest

growing mode at x = 100 cm. occurs when a , .037 and this corresponds to a downstream

wavelength of aiout 3 cm. Since the odd mode leads to wavy vortex boundaries this mode

corresponds to the varicose mode of Swearingen and Blackwelder. Thus the predicted

downstream wavelength of about 3 cm. corresponds to an experimentally observed value

of about 4.2 cm. Figure (4.3b) shows the frequency of these modes as functions of a,

the fastest growing mode corresponding to a = .037 corresponds to a freque-Dcy of 110

Hz; again this compares favourablv with the experimentally measured value of 130 Hz.

Later we shall point out why it would be unreasonable, or fortuitous, to obtain better
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agreement with the experimental results. Now let us turn to the even solutions of the

pressure disturbance equations.

In Figure (4.4a) we show the growth rate of the first two unstable even modes at x

- 100 cm.; we note that no unstable modes were found at x = 80 cm. The corresponding

frequencies of these modes are shown in Figure (4.4b). A significant result is that at x =

100 cm. the fastest growing odd mode has a growth rate twice as large as that of the fastest

growing even mode. This is entirely consistent with the observations of Swearingen and

Blackwelder who found that the sinuous mode was the most easily excited mode during

transition.

We now consider the flowfields associated v .. n the fastest growing even and odd modes

at x = 100 cm. The velocity eigenfunction associated with the solution was normalized

such that the maximum value of lvI was unity in each case. Figures (4.5a,b) show contours

of constant Jul, lvi in the Y, Z plane for the fastest growing even mode whilst Figures

(4.6a,b) show the corresponding functions for the fastest growing odd mode. We see that

in each case the downstream velocity component is an order of magnitude larger than

the Y component. Again we see in each case that the downstream velocity field is much

more concentrated than the normal one. Indeed the downstream velocity components are

concentrated in the flowfield in the region where C - c is small; in other words the inviscid

mode localizes itself in a region which would develop into a critical layer in the neutral

case. A major difference between the Jul structure for the even and odd modes is that the

even mode spans the position where upwelling occurs.
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The velocity fields shown in Figures (4.5b,4.6b) are to be compared with Figure 16 of

Swearingen and Blackwelder at x = 100cm. we note that the experimental results show the

flowfield over two wavelengths and that the position Z = 1.15 in our work corresponds to

z = 1.15, -1.15cm in the experiments. The calculations for both modes produce a velocity

field concentrated in the region where the experiments produced the most significant dis-

turbances. In fact the odd mode shown in Figure (4.6b) closely resembles the experimental

results away hom the wall. Since the theory we have developea is inviscid we cannot hope

to capture the experimentally observed disturbance structure close to the wall.

Our calculations suggest that each mode is unstable for a finite band of wavenumbers;

probably the lower end of this range is at zero wavenumber. The numerical scheme we

used fails if the wavespeed is real in which case there exists a critical layer in the flow,

see Horseman(1990). Indeed if any of the growth rate curves are followed towards the

horizontal axis (2.11) becomes progressively more expensive to solve since the equation

is tending to become singular. For that reason we did not attempt to search for neutral

modes by calculating unstable modes at smaller and smaller growth rates; clearly any

attempt to find the neutral modes must be based on a scheme which takes account of the

disturbance structure at the critical layer. Since our main aim was to show that G6rtler

vortex flows are inviscidly unstable we choose not to tackle the neutral case though the

required structure at the critical layer is given in Horseman(1990).

Finally we close with a few words concerning the agreement of our results with the

experimental observations. Essentially we wish to explain why it would be unreasonable

to expect agreement better than that found above. The reason why we believe that this
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is the case is that the nonlinear G6rtler vortex uquations are parabolic in X. This means

that the vortex flow at a given location depends on its upstream history so that the finite

amplitude vortex which we calculated as a basis for the stability calculations would be

altered if the position where it was inserted into the flow was changed. We recall that the

finite amplitude state we calculated was introduced into the flow 60cmn from the leading

edge. If this position is varied we find that the agreement between the calculations and

experiments shown in Figure (4.1) can be tuned to obtain optimum agreement. Typically

we find that the flow properties shown in Figure (4.1) vary by about 10% if the initial

position of the vortex is pushed back as far as say 20cm from the leading edge. Some

limited calculations of the stability problem for flows calculated with these different initial

vortex locations indicated a similar change in magnitude of the growth rates. Of course we

could fix the initial vortex location so as to optimise the agreement between the basic state

calculated numerically and that found experimentally. We choose not to do that because

there is no justification for such a procedure; indeed it might be argued that the inherent

nonuniqueness of the G6rtler problem is present in the experiments as well. However it can

be said that the calculations we have carried out strikingly reproduce several key features of

the experiments; to further optimise the agreeraent between theory and experiment would

require an inordinate amount of computer time to reproduce features of an experiment

which might itself no be precisely reproducible.

The authors wish to thank SERC and USAF for support for part of the work reported

on above. Further thanks are due to ICASE where part of this work was carried out by

one of us (PH).
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Figure (4.3a) The growth rates of the two most unstable odd modes at

x = 100cm. Also shown is the only unstable mode found at x - 80cm.
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Figure (4.3b) The frequencies of the odd modes at x = 80, 100cm.
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Figure (4.4a) The growth rates of the two most unstable even modes at

x - 100cm.
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Figure (4.4b) The frequencies of the even modes at 100cm.
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