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"-'> orientations and lengths) of general revolute joint manipulators is explored. First it
is noted that a manipulator may form a mobile closed kinematic chain when inter-
acting with the env*-onment, if it is redundant with respect to the task degrees of
freedom (DOFs) at the endpoint. Then it is demonstrated that if the mobile closed
chain assumes a number of configurations, then loop consistency equations permit
the manipulator and task kinematics to be calibrated simultaneously using only the
joint angle readings; endpoint sensing is not reqir..-d Example tasks include a fixed
endpoint (0 DOF task), the opening of a.dooT' l DOF task), and a point contact (3
DOF task). Identifiability cgnditi'ons are derived for these various tasks. The method
is demonstrated for-caiibration of the Utah-MIT Dextrous Hand, and is generalized
to hand-eye-cibration.

Part two focuses on the control of mechainical compliance during normal humanU - elbow joint movement. In contrast to the first half of the thesis, this part stresses the
experimental validation, rather than the formation, of control theories. Time-varying
compliance estimates are made while subjects are executing normal movement. The
estimates are made possible by the development of (1) a high performance wrist-
mounted airjet thruster and (2) novel time-varying system identification techniques.
The results indicate that the stiffness of the arm is low and is modulated during
movement. The stiffness drops as soon as the movement starts and rises just before
reaching a target. The implications of this and other findings are discussed in the
context of feedforward control, compliance control, and equilibrium point control
theories. Physiological mechanisms for stiffness modulation are also discussed.
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Abstract

The first part of this thesis investi ,-es the role of structured models in autonomous
motor learning. Any autonomcuz ystem, such as the human motor system, has only
the internal consistency of its varius sensors to rely upon for model building (learn-
ing). To study the possibility of learning structured models from internal consistency
constraints, the specific problem of learning the kinematic parameters (relative link
orientations and lengths) of general revolute joint manipulators is explored. First it
is noted that a manipulator may form a mobile closed kinematic'chain when inter-
acting with the environment, if it is redundant with respect to the task degrees of
freedom (DOFs) at the endpoint. Then it is demonstrated that if the mobile closed
chain assumes a number of configurations, then loop c'onsistency equations permit
the manipulator and task kinematics to be calibrated simultaneously using only the
joint angle readings; endpoint sensing is not required. Example ias ks include a fixed
endpoint (0 DOF task), the opening of a door (I DOF task); and a point contact (3
DOF task). Identifiability conditions are derived'for these various tasks. The method
is demonstrated for calibration of the Utah-MIT Dextr'ous Hand, and is generalized
to hand-eye calibration.

Part two focuses on the control of mechanical compliance during normal human
elbow joint movement. In contrast to the first half of the thesis, this part stresses the
experimental validation, rather than the formation, of control theories. Time-varying
compliance estimates are made while subjects are executing normal movement. The
estimates are made possible by the development of (1) a high performance wrist-
mounted airjet thruster and (2) novel time-varying system identification techniques.
The results indicate that the stiffness of the arm is low and is modulated during
movement. The stiffness drops as soon as the movement starts and rises just before
reaching a target. The implications of this and other findings are discussed in the
context of feedforward control, compliance control, and equilibrium point control
theories. Physiological mechanisms for stiffness modulation are also discussed.
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Chapter 1

Introduction

The goal of this research is to understand the control of human arm movement. The

view taken is that there are common problems involved in controlling any general

purpose arm, whether it is biological or artificial. The intention is to uncover some

of these problems, develop general methods for solving them, and infer the particular

solutions taken by the human system. Ultimately, such solutions should reflect our

motor competence, while adhering to the inherent mechanical and neural constraints.

The investigation focuses on two aspects of the human movement control prob-

lem: (1) learning kinematic sensorimotor transformations, and (2) controlling rapid

arm movements. The first is investigated by implementing and evaluating calibration

methods on robot manipulators. The goal is not so much to determine the details of

human calibration, but instead, to gain an appreciation for the difficulties involved,

and ultimately to derive appropriate experimental questions for future human stud-

ies. The second topic is investigated by experimentally determining the elbow Jont

mechanical properties during rapid movement. These time-varying mechanical prop-

erties are used to assess current theories of arm control.

1.1 Background and Significance

The control of arm movements is a deceptively difficult problem. Over the years

researchers have come up with various ideas that are likely to be relevant to an

12



Figure 1-1: Feedback control of a joint angle trajectory 0.

eventual theory of human motor control. A synopsis of some of these ideas provides

a good starting point for the work contained in this thesis. The reader familiar with

the context of this research may skip this section. It is intended to tie together the

two loosely related parts of the thesis, and follows along the lines of [1][21[3].

1.1.1 Feedback Control

Given the complexity of both our motor system and the environment, it is reasonable

to speculate that arm movements are made under strict feedback control (Figure 1-

i). Take the simple task of extending the elbow joint. Muscle spindles, Golgi tendon

organs, and joint receptors all contribute information about the actual trajectory of

the elbow joint. Under linear feedback control the torque applied by muscle activation

is made proportional (by a proportionality factor called the gain) to the differenmc

between the actual and desired arm trajectory. Historically, Merton proposed the

use of feedback control in controlling limb movements; he hypothesized that the

gamma motor neurons are controlled and the main alpha motor neurons are driven

from spindle feedback alone (see review [4]). Subsequent deafferentation studies and

fusimotor neuron recordings proved him wrong, although some form of feedback is

definitely present [4]. Before discussing the alternatives to feedback control, it is worth

considering why feedback control alone cannot suffice to explain human performance.

13



Any feedback control scheme is by definition error driven. Thus, there are two

ways to apply a greater force to speed up a movement: (1) tolerate greater errors,

and (2) increase the feedback gains.

Errors depend on the control variable

The errors that are tolerated are task specific and depend upon the choice of

the control variables. For example, in hammering in a nail the hand paths may

be variable, while the impact location must be precisely controlled. In contrast,

visually-guided pursuit requires continuous control of the hand trajectory (Sheridan

(5] provides a good summary of this literature). Compromises between these two

extremes have been observed for difficult pursuit-tracking tasks. For instance, Novas

[6] found that when he tricked subjects by partially locking the target position to

their hand movements (i.e., a "carrot on a stick" set-up) then movements were made

intermittently. Bekey [7] also noticed evidence for discrete movements in pursuit

tracking. He speculated that a visually-guided operator may be modeled as a sampled-

data control system, sampling at 2-3 Hz (see also Crossman and Goodeve [8]).

Stability, gain and phase

As the loop gain of the feedback system exceeds unity instability may result.

For example, consider the effect of the large neuronal propagation delays (spinal

feedback delay exceeds 25 ms, and visual feedback delay exceeds 100 mns [9]). For

a linear feedback control system pure delays can lead to instability as follows: if a

frequency component of the input signal (e.g., desired position) has a period of twice

the duration of the pure delay then the feedback will be 180 degrees out of phase -

effectively providing positive feedback. Such oscillations will grow if the loop gain at

that frequency is greater than one.

Linear stability ideas generalize to non-linear systems such as the motor system.

One approach is to generalize the notion of gain (using extended spaces [10]). Sta-

bility is guaranteed if the product of the loop "gains" is less than unity (small gains

theorem) [10]. Loop transformations make this theorem less conservative. A sec-

ond approach is to generalize the linear systems result that keeping the open-loop

phase shift between ±180 degrees ensures stability [11]. Stability is guaranteed for

14



the closed-loop system if both the forward path (e.g., the manipulator structure) and

the reverse path (e.g., the feed-back controller, or the environment) are dissipative

(strictly passive) [10]. This passivity theorem explains why simple proportional-plus-

derivative feedback control of manipulators works at all (without gravity).

Compliance is important

High feedback gains also compromise the need for compliance. In the event that

a manipulator runs into an unexpected object, the more compliant the manipulator

is the less likely it is to break the object (or itself). The use of force feedback from

the hand can improve the compliance of a high gain position controlled manipulator,

but force sensor delays and non-colocated actuators lead to acute stability problem..

In summary, using strict feedback control forces difficult trade-offs: speed, accu-

racy and high gains versus stability, compliance (low gains), and energy dissipation

(re passivity theorem). This is not to say that feedback control is not used by the

motor system. On the contrary, reflexes are used, and in fact can be driven to in-

stability (for example, with 8-12 Hz elbow joint perturbations; see Joyce and Rack

[12][131). The point is that the performance humans exhibit should be a result of

more than feedback control alone.

1.1.2 Pre-Planned Movements

The problems with feedback control are countered by using pre-programmed (feedfor-

ward) movements. See Figure 1-2. This was realized early on wilth the "motor tape"

idea, and has taken on various theoretical forms in robotics [141[15][1611171. The cost

of such an approach is the need for complex internal models. That is, the motor

system and the environment must be represented, knowledge of the parameters of

this representation must be learned, and appropriate feedforward trajectories must

be computed.

Of course, both feedback control and knowledge intensive planning can be com-

bined. One method is to put knowledge of the non-linear arm dynamics into the

feedback controller - as in model-referenced adaptive control [18]. Adaptive control

has been used to model the details vi the vestibular-ocular reflex (VOR) [19] (for a

15



Gd 0... edfr arr [ flr

Figure 1-2: Feedforward control of a joint angle trajectory 0. The feedforward control
attempts to invert the arm dynamics P'.
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Figure 1-3: Feedforward + feedback control of a joint angle trajectory 0.

review of the various oculomotor control models see [20]). A feedback controller may

also be used in cascade with a feedforward controller to reject unmodeled dynamics

(e.g., [16]). See Figure 1-3. Owing to the non-linear inertial and gravitational link

interactions - even at low speeds (21] - it is probable that some knowledge of the

inertial properties of the arm are used for control. In human arm movements there

is reason to believe that feedback is only used intermittently - to set-up successive

ballistic movements, and avoid instability [8].

1.1.3 Mechanical Constraints Augment Active Control

Another emerging theme in motor control research is an idea mechanical engineers

sometimes use: it is advantageou-,-s to design a mcchanical device such that its un-

controlled passive behavior is close to the desired behavior. For example, consider

McGeer's [22] passive walking machine. Inspired by a child's toy, McGeer noticed
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that walking resembles the movement of a wl .el, an " tht:s designed a 2-legged device

tha.t, emulhtes a wheel. Of course, actuator. were needed tV, make the machine more

versatile, but thc ;e actuators augmented, rather than ignored, the inherently stable

passive walking bth ,vior of the machive. In a si.milar manner, evolution of the the

human motor systen may have simplified the requirt.d control effort with mechanical

design.

In motor control and ro'notics Pumerous mechanical simpli^2ations have been no-

ticed: the human's spherical wrist and showlder joints allow potenially simple closed

form inverse kinematic solutions [1]; the redundant arm geometry aids in singularity

avoidance [23]; the use of contact friction helps in manipulation [24]; symmetry can

simplify legged locomotion [25]; and finally, the mechanical properties of the muscles

provide passive feedback control [8][26][27][281.

1.2 Scope of Thesis

The thesis concentrates on two specific problems, through which the above control

issues are investigated. The first is the control of statically positioning the hand in

space without visual guidance. This kinematic task is the most clear example of the

use of feedforward control in the motor system. There must be some internal model

(kinematic transformation) that maps hand locations into joint angles (or muscle

lengths). A major issue and the focus of this thesis is the representation and learning

of this kinematic transformation.

The investigation of kinematic learning is organized as follows: Chapter 2 discusses

the problem constraints and possible solutions. Chapter 3 presents a novel approach

to learning the kinematics of the arm. Chapter 4 presents an implementation for

calibration of the Utah-MIT Dextrous Hand. Chapter 5 generalizes Chapter 4 to

calibration of a hand-eye system. Chapter 6 discusses the relevance of the methods

presented in the previous chapters to human motor control.

The second problem investigated is the control of rapid arm movement. This

dynamic control problem has received considerable attention in both motor control

17



and robotics research; thus there are ample theories of arm control. What is missing is

experimental evidence to distinguish theories of feedforward versus feedback control,

and to understand the role of intrinsic muscle properties. Thus, the second part of

the thesis focuses on measuring the mechanical properties of the human elbow joint

during movement. These properties are used to assess current theories of arm control.

This study represents the beginning of a series of planned experiments that will

eventually investigate whole arm movements. An important contribution is the de-

velopment and verification of instrumentation and system identification methods re-

quired for these future studies.

Chapter 7 discusses the various movement control hypotheses and how mechani-

cal impedance estimates may distinguish these hypotheses. Chapter 8 discusses the

previous research with an emphasis on instrumentation methods. Chapter 9 discusses

the methodology for the present studies. Chapter 10 presents the results from elbow

joint movements. Chapter 11 assesses theories of motor control in light of Chapter

10.
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Part I

Autonomous Kinematic

Calibration
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Chapter 2

Learning Sensorimotor

Transformations

The human motor control system is distinguished from current robotic control sys-

tems by its remarkable ability to calibrate itself and adapt. Starting from clumsy

infant movements, it is able to gradually develop itself to the point where walking,

reaching, writing, playing tennis, etc., are all effortless. This adaptability entails

autonomously acquiring knowledge (internal models) of the mechanical properties

of the links, -.ctuators, sensors, and environment. While current robotics systems

may rely on an engineer to provide such knowledge, robotics systems are fast becom-

ing sufficiently complex that human-like autonomous learning will soon be essential.

Thus, both from the point of view of understanding the human motor control system,

and of designing advanced robotic systems, it has become necessary to investigate

autonomous learning.

Any autonomous system, such as the human motor control system, has only the

internal consistency of its various sensors to rely upon for model building (learning).

To develop the notion of learning from internal consistency constraints, the problem

of learning the kinematic parameters (relative link orientations and lengths) of gen-

eral revolute joint manipulators is focused on. It is demonstrated that, provided the

manipulator has sufficient redundancy, the kinematic parameters may be estimated

using only the consistency constraints among the joint angle sensors. These consis-
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tency constraints are generated by having the manipulator for.." a mobile closed-loop

kinematic chain (e.g., as may be done by opposing one's thumb to fore finger). The

method has been implemented for calibrating the Utah-MIT Dextrous Hand, and as

well extended to include autonomous camera calibration for hand-eye coordination.

2.1 Terminoiogy

It is convenient to identify each joint sensor reading (e.g., joint angle, or muscle length)

with a distance along a separate coordinate axis in a multi-dimensional space. Such

an intrinsically defined space is referred to as a joint space. Likewise, the visual

system has a intrinsic coordinate system that is referred to as retinotopic space. More

generally, the term sensor space refers to other sensory modalities. We will also use

the term to refer to the It is also useful to speak of a set of three-dimensional (3-D)

world coordinates (e.g., Cartesian coordinates) that are fixed to the body, head or

world. Such coordinates are often defined by the natural constraints of a task. This

3-D coordinate system is variably referred to as task space, hand space, or world-based

coordinates. See Figure 2-1.

The transformation.s between the various sensory modalities considered in this

part of the thesis are static, and are thus referred to as kinematic transformations

- as opposed to dynamic transformations that convert muscle forces into joint angle

trajectories.

2.2 Problem Statement

The relationship between our many sensors and muscles is non-linear and non-unique,

yet we are able to utilize information gathered from one sensory modality (e.g., vision)

to coordinate and control another (e.g., an arm) without continuous feedback. Our

ability to make transformations between sensors is what underlies observed motor

equivalence, such as our being able to write comparably with any appendage. As

Held [291 points out, this ability to transform sensory information cannot be hard-
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Figure 2-1: (a) Task space and (b) joint space.

wired at birth: the transformations must adapt (calibrate) whenever growth, injury,

or artificial manipulations occur. The central problem is to determine how calibration

of these transformations is achieved.

2.3 Representation

The answer to the question of how calibration occurs depends on the representation

of the transformations to be calibrated. The simplest representation is that of a large

memory (look-up table) that relates the sensor., in a discretized form (e.g., see [30]).

For example, the transformation that maps joint angles of my left arm into joint

angles of my right arm (when the hands are in the same location) can be represented

by remembering all points in the right arm joint space that correspond to each point

in the left arm joint space. This map is not one-to-one and requires substantial

memory - perhaps even too much for our highly parallel brain architecture. On the

related problem of determining the appropriate torques for moving the arm along a

.. ecified trajectory, ..hrc ,ave been numerous proposals to reduce the memory size:

hash tables [14], variable density table filling [17], and state-space methods [15].

On the other extreme, the transformation may be represented by structured mod-

els with parameters that reflect the mechanical constraints of the sensorimotor system
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(e.,., see [16]). This is the representation developed in this thesis. The hypothesis

is that we have a priori knowledge of the structure of our limbs and sensors. For

example, it is useful to assume:

9 rigid limbs

* revolute joints

o linear joint angle sensors

These assumptions may be refined as needed (e.g., muscle geometry may be included),

but such additional complexity would obscure, rather than clarify, the calibration

problem and so is not introduced here.

The above structural assumptions allow the development of parametric equations

representing the sensory transformations. Calibiation then proceeds by adjusting

the parameters in the model (e.g., link lengths, and orientations) until the desired

transform between any two sensory modalities is achieved.

The benefits of this approach are that less memory is needed, and more generality

and abstraction (see Section 3.4) is possible after calibration. This is because the

structure of the model itself constrains the class of possible transformations a priori.

A model-based approach also has a cost: (1) the kinematic parameter estimation

usually involves a difficult non-linear search and (2) the structures of the models of our

sensors and limbs are necessarily approximate; thus, accuracy is compromised. These

two points are not separate; model accuracy may be exchanged for complexity of

parameter estimation. For example, in camera calibration Direct Linear Transforms

(DLT's) [31) are used extensively for their ease of parameter estimation, yet the DLT

method implicitly approximates the camera model with ideal projection properties,

and it over-parameterizes the equations to make them linear.

Finally, the use of structured models does not preclude memory-based representa-

tions. Memory-based methods may be used locally to improve a structured model's

accuracy (trajectory learning) [16); or even more extreme, they may be used to ob-

viate the need to calculate inverse-kinematics. These issues are tangent to the main
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topic of calibration. In calibrating sensor transformations there is still a more subtle

problem that must now be addressed

2.4 Learning Transformations to a 3-D World

Learning transformations to task space is more difficult than learning transformations

between sensors. The difficulty is that there are not sensors that directly provide 3-D

coordinate information (or some metrical equivalent). It is not sufficient to assume

that the visual system provides task-space coordinates, for the visual system must

itself be calibrated. Thus, the methods of learning by association of input-output

pairs must be re-thought - regardless of how the transformations are represented.

2.4.1 Is there a Task Space?

The problem of learning to transform sensor data into a common abstract reference

frame (e.g., task space) is so serious that it is tempting to think that we might not

maintain such a 3-D world representation. As discussed in Chapter 6 this thought

is probably wrong. It would be hard to imagine doing the type of reasoning that

we are capable of without an internal 3-D representation of the world; without it, we

would have to reason in joint space (or retinoopic space) where distances in the world

are not preserved, rigid objects distort as they are sensed in different locations, and

kinematic redundancy turns points in the world into surfaces. Thus, short of claiming

that we do not maintain a meti :cal representation of the world (instead using only

topological properties that are preserved by the sensory transformations [32, page

49]), it must be concluded that we somehow learn transformations from our sensor

spaces to a 3-D task space.

2.4.2 Teacher Based Methods Do Not Suffice

Assuming that we do learn transformations to a 3-D task space, and assuming that

task space is distinct from joint space or retinotopic space, it is possible to re-assess
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the old dispute between memory-based and structured model-based learning - at least

for kinematics.

To learn the transformations from task space to joint space some external agent

(teacher) must provide the task-space coordinates of the hand location corresponding

to a given arm configuration (point in joint space). This requires the equivalent of

the construction of a measurement machine against which to calibrate our sensors.

Although this is a standard approach in robotics, it is an unreasonable proposition

to explain how an infant learns to transform sensory data into a common task-space

coordinate frame. Thus, black-box learning methods, such as unstructured neural

networks or memory look-up tables, do not sufnce for learning to transform data to

an abstract task space.

2.4.3 A Priori Knowledge of Physical Structure Enables

Abstraction

The situation is more promising for structured models. As mentioned, -tructured

models have a representation of the 3-D world built into them. They provide the

necessary constraints by which to compare disparate sensory information. Calibra-

tion may proceed by adjusting the parameters of the transformation models so as to

maximize the consistency amung the sensors. Once the parameters are estimated,

transformations to an abstract task space can be computed analytically. Let us see

how this might work in a very simple example.

2.5 Simple Planar Calibration Example

Consider a 3-DOF planar manipulator making a point contact with the ground. This

manipulator is redundant with respect to the point contact constraint, and thus forms

a mobile 4-bar closed linkage. See Figure 2-2. (Figure 2-2 may be viewed alternately

as a 1-DOF manipulator being tracked by a 2-DOF manipulator.) The ground is

considered to be the fourth link with a fixed length of a4. The goal is to determine

the kinematic parameters a,, a2, a3, and a4 from the joint angle readings 01, 02 and 63.
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Figure 2-2: A 3-DOF planar manipulator with a fixed point contact to ground.

The three kinematic constraint equations (at the ith configuration) may be written

as:

alcos(O') + a2COS(eO + 0') + a3COS(09 + 0' + 0') + a, = 0 (2.1)

alsin(o') + a in(o' + 0') + a~si,(o' + 0' + 0') = 0 (2.2)
4

E = 0 (2.3)
j='

Evidently, the length parameters may be scaled arbitrarily and still satisfy equations

(2.1) and ( 2.2). For this reason one link length must be defined as unity. Let a4 = 1.

To continue, each additional configuration of the mechanism provides two additional

position equations. Placing the equations from two configurations into matrix form

we have:

= C +y (2.4)
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where W_ = (a, a2  Y = (1 0 1 O)T, = , 9 and

cos(o') cos(o4) cos(q1)

sin(o) sin(44) sin(01)C 1= (2.5)
coS(qS) coS(02) coS(0b)

The least squares solution is o = (CTC)-1CT(-y). A unique solution is guaranteed

provided that the columns of C are independent. Observe that the columns of C

will only be dependent if the mechanism happens to be a parallelogram (that is,

0' = 0'). Once calibration is complete (i.e., W is determined), arbitrary positioning

of the manipulator in task space is possible with the kinematic equations (2.1) and

(2.2).

2.6 Closed-Loop Kinematic Calibration

In the next three chapters the above example will be generalized, and referred to

as closed-loop kinematic calibralion. In contrast to the planar example, the general

calibration equations are non-linear. Thus, the calibration must proceed iteratively,

starting with initial parameter estimates, and may arrive at local or multiple solutions.

It is crucial that eventually the parameters are uniquely determined by the data and

constraint equations; if they are not, they may only model the training data set

locally, and may not be of use in computing transformations to arbitrary points in

task space.

Though the calibration method will be developed strictly in the context of robotics,

the generalization to motor control should be clear from the discussion in this chapter.

After developing the method, Chapter 6 will further discuss the relevance of this

model-based approach to motor control.
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Chapter 3

Closed-Loop Kinematic

Calibration

3.1 Introduction

Kinematic calibration is important for model-based robot control [16]. We [331 and

many other authors (see review paper [34]) have developed open-loop methods that

estimate the geometric and static non-geometric kinematic parameters of open-chain

manipulators, by relying on special purpose pre-calibrated endpoint locating systems,

such as precision points or camera-based measurement systems. Section 3.2 summa-

rizes our open-loop method, which is the starting point for our new method; new

results on the identifiability of the open-loop method are also provided.

Our new method, which we call closed-loop kinematic calibration, eliminates the

need for endpoint locating systems: if a manipulator is formed into a mobile closed

kinematic chain, then its joint angle readings alone are enough to identify the kine-

matic parameters. A manipulator may form a mobile closed-loop kinematic chain if it

is redundant with respect to its endpoint constraint (task). Section 3.3 considers the

simplest endpoint constraint: the position and orientation of the endpoint are fixed

relative to the base link. For this 0-DOF task, the manipulator must be redundant

(> 7 DOFs) to form a mobile closed loop. For each loop configuration there are three

position and three orientation loop consistency equations. If the closed loop is placed
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into n configurations (with the same endpoint location), there result 6n equations

that may be solved for the unknown parameters.

An equivalent scenario is two manipulators rigidly attached together at their end-

points with a combined total of DOFs > 7. The last link of the second manipulator

may be defined as the base, and the entire closed kinematic chain may be viewed as

a single equivalent manipulator.

Section 3.4 then considers two endpoint constraints with passive degrees of free-

dom: 1) rotation about a passive revolute joint (e.g., opening a e )r), and 2) rotation

about a passive spherical joint (e.g., point contact). For constrain . on-redundant

6-DOF manipulator can form a mobile closed loop, while for constraint 2 a 4-DOF

manipulator could suffice. In general, for each passive degree of freedom introduced

into the endpoint constraint one less degree of freedom is required by the manipula-

tor. As a corollary, the geometry of the task can also be identified, for example, the

position and orientation of the revolute joint in constraint 1.

Several technicalities were overcome in developing this closed-loop method. A the-

orem was developed to determine which parameters are identifiable in the consistency

equations. We also show how the passive DOFs can be eliminated from the endpoint

constraint for the two cases studied, and mention how to do it in general. Thirdly, we

apply a Newton-like search method for the kinematic parameters, which starts from

an initial guess at the parameters. Simulations will demonstrate the convergence of

the method. Finally, the manipulator must be able to make constrained internal joint

movements, without knowing the true kinematic parameters or producing excessive

internal or endpoint forces.

Closed-loop kinematic calibration is related to mechanism synthesis [35], which

characterizes closed-loop mechanisms with one degree of mobility through relative dis-

placements of designated input and output angles. By eliminating (with difficulty)

the five unspecified DO.Fs fr the kinematic equations, a displacement equation

results that is a 16th order polynomial in the tangent half-angles of the input and

output angles [36]. A difference from mechanism synthesis is that serial-chain ma-

nipulators typically have sensors on all the joints, and so eliminating the unsensed
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Figure 3-1: A single closed-loop kinematic chain formed by a redundant manipulator
or by dual manipulators.

passive DOFs at the endpoint from the kinematic equations is considerably easier.

Portions of this work have been previously reported [37], [38], (39].

3.2 Open-loop kinematic calibration

This section presents our method for open-loop kinematic calibration (33], which

serves to set the basic concepts and mathematics from which the closed-lcop method

is derived. New results in identifiability are presented for our open-loop method; these

results apply more generally to similar methods that have appeared in the literature

(34].

3.2.1 The Kinematic Model

Both geometric and non-geometric parameters are required for kinematic calibration.

The Denavit-Hartenberg (D-H) convention [40] is employed for the geometric param-

eters (Figure 3-2). For a manipulator with n DOFs, the end effector is located by the

position vector pi and the orientation matrix R':

nP.= -j- a.,x, (U.)
j=1

n

R' 11 R,(0)R,(a') (3.2)
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Figure 3-2: Denavit-Hartenberg coordinates and tip vector b'.

where R,(O) and R,(O) are 3 x 3 rotation matrices about z and x axes by the angle

€, and the subscript c indicates that the position and orientation are computed from

the model. The superscript i refers to the configuration of the manipulator, since in

kinematic calibration it is placed into a number of configurations 0i = (0', ... ),

i= 1,... ,m. The required geometric parameters are sj, caj and aj, for links j =

1,... ,n.

The non-geometric parameters are focused at a joint, and reflect errors between

the true and measured joint angle; sources of error include backlash, gear eccentricity,

joint compliance, and joint angle offset. We model only the joint angle offset error

9? f, which needs to be identified. It is related to the actual 0 and measured Oj D-H

joint angles by O9 = Oj + O fI . All of the unknown kinematic parameters are placed

into a single vector W = (901 fs,_,), where s = (s, ... ,sn), etc.

Instead of the orientation matrix R', it is convenient to represent the orientation

by the vector r'= (¢, v,,), representing the xyz Euler angles. The computed

endpoint location = (p', r') may then be written as:

= f ) (3.3)

where the function f is derive 4rom (3.1)-(3.2). It's exact form is not required here.
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3.2.2 Iterative Identification

To estimate V_, the manipulator must be moved into an adequate number m of con-

figurations, in consideration of the large number of parameters in Vo and of statistical

averaging. At each configuration i the actual endpoint location 4 is measured. The

goal is to determine the V that best predict from the kinematic model (3.3) all of the

endpoint measurements X = (_..., _):

x =(3.4)

where (2', V),.. .,f(R, w)).

Solving for V_ from (3.4) is a nonlinear estimation problem, which can be done by

linearization and iteration:

AX = CA E  (3.5)

where C = 8F/Os. We can consider AX = (A_, ... , Ax), with Ax' = Xi- , as

the location errors. Similarly, A2 = E - . is the error in the total parameter set,

where ?0 is the current estimate and V is the corrected estimate. In A2, As = S-SO,

etc. An estimate of the parameter errors is provided by minimizing LS = (AX -

C5s)T(AX - CV), which yields

AV = (CTC)-lCTAX (3.6)

Finally, the guess at the parameters is updated as Vo = -o + Aso and the iteration

continues until AX -* 0.

The basis for linearization is the assumption that x is close to 4. Then

Ax' = x' -4 = (dx', dy' , dz', Ox', Oy' , az') (3.7)

where Ap' = (dxi, dyi, dz ) is the incremental position error and Ar' = (,x', 0 y', az')

is the incremental orientation error. When F0 is far from the final values, problems

with this approach may occur, as discussed later.
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The Jacobian C is often formed through the use of differential homogeneous trans-

formations, but to address identifiability we find the use of screw coordinates more

convenient and transparent [41], [42], [43]. rThe differential of (3.3) is

AX'= A +-EA + Aa +-ga_ = C'A_ (3.8)
ai i. Oa 6a (3)

where

and

C1

= .(3.9)

Cn

Subsequently, we use the abbreviation J = 0 /0I, as each matrix in (3.8) is a

Jacobian with respect to a particular parameter; thus J' is the ordinary Jacobian

related to joint angle displacement.

The endpoint variation Ax i can be considered an instantaneous screw displace-

ment composed of an incremental translation Api and rotation Ar i , caused by the

combined variation in all of the parameters. For example, a variation Asj contributes

Xsjz _, to Ap'. A variation Aaj contributes (A/aj)x' to Ari and (Aaj)x. x b'+, to

Api, where b+l is a vector from the jth coordinate system to the endpoint (Figure

3-2). The 0j and aj parameters are treated analogously. In total,

n

Ap t = x b AOi + z>-,Asj + x x b' +1Aa1 + x'Aaj (3.10)
j=1

n

Ar' = Zz'_,Aoj + x)Aaj (3.11)

Comparing to (3.8), it is seen that
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(J~o) = [XJ] (J') = [7i](J ). = 3.-1 3 (jJt=[X3  ×b+l]' 'i i 1 ' ixb

0 0 zj Xil

(3.12)

where the jth column of each Jacobian J' is indicated by the subscript, and represents

a screw coordinate for variation in the parameter 8i.

3.2.3 Identifiability

Next we derive several results pertaining to the identifiability of O in (3.4). First we

establish that the solution cannot be globally unique.

Theorem 1 There are at least 2' - ' solutions p to (3.4).

Proof. We presume that at least one solution y exists, because the data come from

a physical system. Additional solutions may be derived from this p. There are two

possible parameter sets per joint. For a fixed zi, the x' axis can be made to point in

opposite directions by adding 1800 onto 99; to accommodate this change, the sign is

changed on aj and aj while sj is unchanged. At the endpoint, the directions xi and

z are specified by the position requirement. Hence we have generated 2n-1 solutions

from the original solution p. 0

Though there are multiple solutions, in practice kinematic calibration starts off

with a rough estimate -0 and searches locally for a solution. Thus, the relevant

question is whether or not there is a unique solution within a small region of the

parameter space. We draw on some results from differential topology [44], [45].

Definition 1 (Locally unique) A solution i' to (3.4) is locally unique if it is the

only solution in an arbitrarily small neighborhood (ball) around W'.

In addition to uniqueness, we also want to know if a well-behaved inverse function

.T- exists to generate the solution '.
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Definition 2 (Locally identifiable) A smooth function X = F( o) is locally iden-

tifiable at ep' if (1) _' is locally unique, and (2) there ezists a smooth inverse function

'-' such that --((p))= wP.

A smooth function has continuous partial derivatives of all orders. Notice that the

existence of a smootb inverse function in part 2 of the definition does not guarantee

uniqueness (part 1).

If the number of equations equals the number of unknown parameters, then local

identifiability is equivalent to requiring that F is a local diffeomorphism. It is es-

tablished in [44] that F is a local diffeomorphism if and only if the square Jacobian

matrix C = [,9F/_ 'J is non-singular. This motivates the following results for when C

is not necessarily square. Lemma 1 is a general result that applies to all equations of

the form (3.4). Lemmas 2 and 3 are particular to the kinematic calibration problem.

Lemma 1 Let ' be a solution to (3.4). The Jacobian C has full rank if and only if

the parameters p are locally identifiable.

Proof. Assume C has full rank. Let _p be another solution to (3.4). A Taylor series

expansion relates p to Z:

F' -) = FO(') + C(2 - _p') +... (3.13)

where F(_o) = '_). If ' is in a sufficiently small neighborhood of'_', then the higher

order terms after the first differential may be neglected. Then C(_p-_) - 0. Since C

does not have a null space, then p = ', and ' is locally unique. Furthermore, there

exists a smooth inverse function F- 1, as (3.6) suffices.

Conversely, assume the parameters 5j are locally identifiable. Let F-1 be a smooth

inverse function. Differentiating F'(('()) = 'p by 'p yields [. "-'/6X][OF/8] = I.
Wr does no" haU A --

s no ave -full. rank, then there exists a vector element n of its null space.

Postmultiplying by n yields = _, a contradiction. Hence C has full rank.

If Jacobian C has dependent columns, the solution to (3.4) is not necessarily locally

unique because the higher order terms of the Taylor series expansion of Y may be
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non-zero when evaluated at an element of the null space of C. The following two

lemmas require the definition of C by (3.8); they do not hold in Section 3.3.

Lemma 2 The Jacobian C does not have full rank if and only if there ezists a constant
1, i an
inear relation among the xand zj aes, that is,

0 = Ecjz' + kxj (3.14)
j=1

for some constants cj and kj, not all zero, for all configurations i = 1,... ,m.

Proof. Part 1: Assume C does not have full rank. Then there is a constant linear

relation among the screw coordinates (3.12). Two cases must be considered. First,

if this linear relion only includes the left two'screw coordinates in (3.12), then the

same linear relation must hold in the positional component of the screws, the first

three rows that contain just the Xand z, axes. Thus (3.14) holds for some constants

cj and kj, not all zero, for all configurations i = 1,... ,m. Second, if this linear

relation includes the Lwt screws in (3.12), then this linear relation must hold in the

rotational component of the screws, the last three rows that also contain just the xi

and zj axes. Again, (3.14) holds.

Part 2: Conversely, assume (3.14) holds. Then at least the screw coordinates (Ja)j

and (J,)j have a constant linear dependence, and C does not have full rank. 0

Lemma 3 C has full rank if and only if Wp' is locally unique.

Proof. Assume C has full rank. By Lemma 1, .p' is locally identifiable and hence is

locally unique. Next assume y' is locally unique. If C did not have full rank, then

by Lemma 2 we could add (3.14) to (3.1) to change the length parameters without

affecting p'. The kinematic length parameters would not be unique, contradicting

the assumption. Hence C has full rank. 0

Theorem 2 (Identifiability) The parameters 2 are locally unidentifiable or locally

non-unique if and only if there ezist constants cj and kj, not all zero, such that
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nI

0 c' )..-ikx (3.15)0 F cjzjl + "{" j
j=1

for all configurations i = 1,... Im.

Proof. This theorem follows from Lemmas 1, 2 and 3. 0

Various categories of singularities (occurrences of (3.15)), which are generic to the

closed-loop case as well (see Section 3.3), will now be enumerated. These categories

are meant to be illustrative rather than exhaustive. Although not expressly discussed

in each category, the real problem is associated with near singular situations, which

cause intractable numerical sensitivity problems while solving for the parameters.

Singularity 1: coordinate description. In the D-H convention, when there are

two consecutive parallel joint axes, there is no unique common normal (Figure 3-2).

Parallel axes imply:

z- (3.16)

Thus (3.15) is true and the corresponding si and si+1 may not be identified alone

(although the difference si - si+1 can be identified). T . situation can be avoided

by changing the coordinate description of the parallel axes to a convention such as

Hayati's [46], which however may not be used exclusively because it too suffers from

a parameter ambiguity when two consecutive joint axes are perpendicular.

A revolute joint axis is a line vector, which is located by 4 parameters. Hence

any coordinate description with greater than 4 parameters per link is singular (unless

extra constraints are imposed). Similarly, a prismatic (linear) joint axis is a free vector

defined by only 2 orientation parameters, and coordinate descriptions with more than

2 parameters are singular.

Singularity 2: insufficient excitation. If the mechanism is not moved into a suf-

ficient number of configurations, then the data are not sufficiently exciting [47]. A

s,1n oi varLation in each parameter of o should cause an observable displacement in

the end effector. The optimal data set would maximize the observable model error

over variations in all of the parameters [48]. An impoverished data set would not

be able to distinguish changes in particular parameters, which could vary arbitrarily.
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A trivial example is an immobile joint whose axes xi, z,. x* 1 and z. 1 are always

linearly dependent.

Singularity 3: transient singularities. During the course of the iterative search, an

intermediate singular parameter set may be found even though the real mechanism

may not have singularities. Simulations show that this situation is surprisingly com-

mon when the initial guess & is not close to the true solution. Since this singularity

is associated with the algorithm, it may be avoided by the modified minimization

criteria LS' = LS + AAVTAV. In addition to minimizing the end effector tracking

error, LS' minimizes the variation in parameters so that at a potential singularity the

arbitrary parameters tend to remain fixed. Minimizing LS' yields

= (CTC + AI)-ICTAX (3.17)

Iteratively applying (3.17) results in the Levenberg-Marquardt algorithm [49], [50].

The free parameter A determines the trade-off between a straight Newton iteration

and a much slower gradient descent.

3.3 Closed-Loop Kinematic Calibration

We consider next a redundant manipulator (> 7 DOFs) rigidly attached to the ground

at its endpoint. In general, the resulting closed-loop kinematic chain is mobile, since

the fixed endpoint constrains only 6 of the DOFs of the manipulator. Our closed-loop

method makes use of this mobility to kinematically calibrate the manipulator without

endpoint sensing. The following observation is the key: the origin of coordinates can

be placed at the fixed endpoint location and can be defined to have zero orientation

and position. Hence x = , and no measurements are required because the actual

endpoint location is known and is zero (by definition).

Figure 3-3 illustrates this origin placement for a 7-DOF manipulator. The com-

bined manipulator tool and ground may be viewed as a single effective link that

connects the last to first joint of the manipulator. The end effector axes zi and xi are
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Figure 3-3: Ground link definition.

made coincident with the base coordinate axes zi and x. Note that the kinematic

parameters of the ground link must now be identified.

The mathematical development in the previous section then applies, with one

modification. As before, the mobile closed chain is moved into a number of configu-

rations. At each configuration i the endpoint error follows simply from (3.7):

Ax_ = _x = ,, z,' , o~x, &y, oz') (3.18)

where Ap'= (dcdy ,dz') is the computed position and Ar' = (Oax,,9y,Oz ) is the

computed orientation. The iterative estimation procedure cannot be applied further

without modification because the Jacobian C is singular. The position equations for

the closed loop are:
n

p' s jz'-, + ajx' = 0 (3.19)
.i=1

Hence the length parameters are linearly dependent and (3.14) is satisfied. Intuitively,

the size of the manipulator can be scaled arbitrarily and still satisfy the loop closure

equations.

To proceed with our closed-loop method, it is necessary to specify one length

parameter to scale the size of the mechanism. For example, suppose we set a, = -1.

We redefine = (a 2,...,an) and remove the first column from the Jacobian Ji,

which redefines C' in (3.8). We may then proceed as before with the parameter

identification. Similarly, if another parameter such as S3 had been specified instead,
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analogous changes in the definition of s and C' would be required. In the remainder

of this paper, we vary which parameter sets the scale for convenience.

3.3.1 Identifability

For the purposes of identifiability, we will proceed with the scaling a, = -1. The

following identifiability results are couched in terms of the choice of a,, but a different

choice would result in trivial changes to the results. Of course, it is necessary in the

actual mechanism that a, 0. We do not consider mechanisms that have all length

parameters zero (i.e., spherical mechanisms).

Theorem 1 and Lemma 1 apply intact to the closed-loop case, but Lemmas 2-3

and Theorem 2 require a slight modification. Redefine the endpoint position as

n n

PC xi - E sjz - ajx' (3.20)
j=1 j=2

Also, we must make the following definition to treat a possible exception arising

from x' being in the expression for (J'),.

Definition 3 (Type-E Special Mechanism) A single loop closed kinematic chain

is type-e if its screw coordinates in (3.12) satisfy the following exceptional relation:

n

0 E sj(J')j-aj(Ji)j q(Ji)jrj(J')j (3.21)
j=1

for all configurations i = 1,... ,m. qj and rj are arbitrary constants.

Perhaps (3.21) never occurs, but for completeness we include its possibility.

The new identifiability theorem can now be stated.

Theorem 3 (Fixed Endpoint Identifiability) For a redundant manipulator with

,kfied endpoint fo,,"ming a closed kinematic chain that is not type-e, the parameters F

are locally unidentifiable, or locally non-unique if and only if there exist constants cj
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and kj, not all zero and not all cj = sj and kj = aj , such that

n

0 = E c.z' + kx (3.22)
j=1

for all configurations i = 1,..., m. FurL.,ermore, the parameters of a type-e mecha-

nism are non-unique, if (3.22) holds for the c3 and kj restricted as above.

Proof. With the added restriction that not all cj = sj and kj = a1 Lemma 2 holds if xi

is eliminated from (3.14) by substitution of (3.20), provided that the mechanism is not

type-e. Lemma 3 holds if its proof is modified to use (3.14), with x, eliminated, and

(3.20) instead of (3.1). Alternatively, for all mechanism types local non-uniqueness

follows directly from (3.22) by adding (3.22) to (3.20) and remarking, as in the proof

to Lemma 3, that the length parameters are non-unique. This theorem then follows.

0

For type-e mechanisms the angle-dependent screw coordinates (J')j and (Ja)j in

(3.12) are linearly related by the length parameters as defined above. The orientation

component of this linear screw relation (the last 3 rows) gives (3.14) with cj = sj and

kj = a1 for all joints j = 1. n. This provides no addition information, as it is the

same as (3.20), and case 2 in part 1 of the proof to Lemma 2 cannot proceed. We do

not know if a type-e mechanism can actually occur and do not consider it further.

We now discuss two additional singularities in the closed-loop calibration proce-

dure to the three singularities in the open-loop procedure that also apply here.

Singularity 4: Inherent singularities in the mechanism. Certain mechanisms have

particular symmetries that allow the kinematics to be described in less than four

parameters per joint. It is difficult to provide a general rule for when this will happen,

but it is usually restricted to mechanisms of mobility one. A simple example is a 3-

DOF planar manipulator that makes a point contact with the ground (Figure 2-2).

If the resulting closed-loop, four-bar linkage happens to be a parallelogram, then the

opposite x axes are always parallel:

X2 = 0 (3.23)
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This satisfies the condition (3.22), and thus the lengths of the opposite sides, a2 and

a4, are not identifiable (except as a sum). Clearly, this problem may be eliminated by

having the manipulator change its endpoint location so that a parallelogram is not

formed.

Singularity 5: structural immobility. If a particular joint j is immobile, then

two consecutive joint coordinates are fixed relative to one another. This implies

that xj, zj, xj- 1, and zj_1 have a constant linear relation (satisfying (3.22)), as

these four vectors span a three dimensional space. Of course, it is not surprising

that the parameters of the links connected by the immobile joint are unidentifiable.

Conceivably a fictitious link that combined the two links could be defined and the

rest of the mechanism identified.

To proceed, it is necessary to spot immobile joints. Following the approach in

[421, we first determine whether the mechanism is totally immobile. Since the classical

mobility definition [35) does not suffice for special mechanisms, the following condition

is derived.

Lemma 4 A single-loop closed kinematic chain is mobile if and only if the columns

of the Jacobian J' are linearly dependent.

Proof. Let the screw coordinate $ represent the jth column of J'. Since J' = 0,

then

0 n 5(3.24)

All O's will be identically zero if and only if the joint screws $' are independent. 0

Next we determine whether a single joint, say joint 1, is immobile. From (3.24),
link one's instantaneous movement is " $' = -h 0 - - - - For link o:1e to

move, $' must be a linear combination of the other screws. Stated otherwise, the

space span[$'] must intersect the space span[$ ,..., $] spanned by the other screws.

The following result from linear algebra is useful [51).
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Figure 3-4: Anthropomorphic arm screw coordinate assignment.

Joint p_ (m) !I (m) ( (rad) 0_.. (rad)

1 1.694 0.837 3.774 1.100
2 1.622 - '.627 -0.553 0.080
3 1.000 -0.100 0.930 0.090
4 -0.430 -0.430 2.040 0.900
5 0.540 -0.600 -0.150 0.050
6 -0.560 -0.550 1.350 0.040
7 -1.693 0.711 -1.859 0.000

Table 3.1: 7 DOF mechanism: initial parameters.

Lemma 5 Let A and B be subspaces of a vector space V such that V = A + B, where

A + B = [v [ v = a+ b,a E A,b EB]. Then

K(AnB) = K(A) + K(B) - K(V)

where K(W) denotes the dimension of a vector space W.

For the following lemma, identify A with s-'an[$'] and B with span[$i,..., $i].

Lemma 6 Joint one will be mobile if and only if

1 + K(span[$ ,..., $']) - K(span[$',... I ]) > 0 (3.26)

Any joint's mobility may be ascertained by (3.26) with the appropriate re-numbering

of the links.

As an example, consider the mechanism formed by rigidly fixing the hand of an

anthropomorphic arm [231 relative to its shoulder (that is, imagine holding onto the
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Joint s (m) a (m) a (rad) 1_° 1 (rad)
1 1.594 0.737 3.604 0.000
2 1.722 -0.527 -0.503 0.000
3 1.000 0.000 0.530 0.000
4 -0.330 -0.330 2.300 0.000
5 0.440 -0.440 -0.900 0.000
6 -0.660 -0.550 1.200 0.000
7 -1.793 0.911 -1.459 1.825

Table 3.2: 7 DOF mechanism: calibrated parameters.

Joint s (m) g (m) a (rad) 0°' f (rad)
1 -1.694 -0.837 3.504 0.100
2 -1.822 0.627 -0.553 0.050
3 1.000 0.100 0.580 0.070
4 0.430 0.430 2.380 1.070
5 -0.540 0.540 -0.980 0.080
6 0.760 0.650 1.280 0.050
7 1.200 0.760 -1.390 0.100

8 1.200 1.500 3.800 0.100
9 0.600 -1.400 1.550 0.200
10 0.300 1.100 -1.380 0.300
11 1.300 0.600 0.880 0.900
12 -1.982 -1.839 1.772 0.400

Table 3.3: 12 DOF mechanism: initial parameters.

desk in front of you). Although this mechanism has a classical mobility of 1 (7 minus

6), the elbow joint can be shown to be immobile. Consider the upper arm as the

base link, so that $' is the screw coordinate for the elbow (Figure 3-4). Without

loss of generality, one of the three wrist joint axes may be defined to intersect the

shoulder joint. Thus the three shoulder joint axes and this wrist joint axis are linearly
dependent, and K(span[$ ,..., $']) = 5 whereas K(spanf$, $ ) = 6. Therefore

(3.26) shows tat the elbow joint is immobile. The solution to this problem is to

relax the endpoint constraint so that the elbow is mobile; for example, only maintain

a point contact with the ground, allowing arbitrary orientation of the hand. This

solution requires a reformulation of the identification equations and is taken up in
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Joint s (m) a (m) a (rad) O011 (rad)
1 -1.594 -0.737 3.604 0.000
2 -1.722 0.527 -0.503 0.000
3 1.000 0.000 0.530 0.000
4 0.330 0.330 2.300 0.000
5 -0.440 0.440 -0.900 0.000
6 0.660 0.550 1.200 0.000
7 1.100 0.660 -1.300 0.000
8 1.100 1.400 3.900 0.000
9 0.500 -1.300 1.400 0.000

10 0.200 1.000 -1.300 0.000
11 1.200 0.500 0.800 0.000
12 -1.882 -1.939 1.722 0.000

Table 3.4: 12 DOF mechanism: calibrated parameters.

Section 3.4.

3.3.2 Simulations

This section presents two simulations, one for a 7-DOF manipulator and the other

for two 6-DOF manipulators rigidly attached at their endpoints. In these and all

subsequent examples the rank of the matrix C was monitored to avoid singularities.

Further, C has full rank for the actual parameters, and thus all mechanisms are

identifiable.

Ezample 1. A 7-DOF manipulator, with actual D-H parameters in Table 3.2, was

formed into a closed loop mechanism by the end effector grasping the ground at a fixed

arbitrary position. This mechanism was simulated in 40 distinct configurations (01 =

0 to 0.5 rad). Starting with the initial guesses in Table 3.1 and with the definition

S3 = 1, the simulated joint angles were fed into the iterative Levenberg-Marquardt

algorithm, and the parameters in Table 3.2 were recovered to within four decimal

places.

Ezample 2. Two 6-DOF manipulators whose end effectors are rigidly grasping

together form the 12-DOF closed mechanism in Table 3.4. These parameters were

used to simulate the movements of this mechanism into 40 different configurations
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(Oj = 0 to 0.5 rad, j = 1 to 6). With the initial parameters given in Table 3.3 and

the simulated joint angles the calibration was performed (also 83 = 1 fixed). The

parameters in Table 3.4 were recovered to within four decimal places.

3.4 Non-Redundant Robot Calibration and Task

Geometry Estimation

Next we extend the closed-loop method to situations where the end effector contact

with the ground has some passive DOFs. Two examples, treated in detail below,

are a manipulator opening a door (a 1-DOF task) and a manipulator under point

contact (a 3-DOF task). If t is the number of task DOFs, then the mobility of the

resultant closed chain is n + t - 6. For the door-opening task, 6-DOF non-redundant

manipulators can therefore be calibrated. For the point contact task, manipulators

with as few as 4 DOFs may be calibrated. At the same time, the geometry of the

task is calibrated.

Since the passive task DOFs are unsensed, they must be eliminated from the

6 kinematic loop closure equations. Up to 5 unsensed DOFs may be eliminated

to leave at least one equation for the identification procedure. This elimination is

simple for the door opening and point contact tasks, but more difficult for arbitrary

task kinematics.

3.4.1 Point Contact

An n-DOF manipulator under point contact is equivalent to grasping a passive spher-

ical ball joint. There are 3 passive DOFs at the endpoint corresponding to orientation

that are unsensed. Hence the orientation equations in the previous calibration pro-

cedure cannot be used, but the three position equations (3.19) can. Again, define

the base origin to coincide with the endpoint position. For example, for the 6-DOF

manipulator in Figure 3-5, the position of the base coordinates (subscript -1) is coin-

cident with that of the endpoint coordinates (subscript 6). The orientation of the -1
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Figure 3-5: Coordinate description of a manipulator under point contact.

coordinates is arbitrary with respect to the 0 coordinates, so OfI and ao are taken

as arbitrary constants. Moreover, the orientation of the end effector coordinates is

arbitrary with respect to the 5 coordinates; hence as (or more generally a,) is taken

as an arbitrary constant also. Finally, it is necessary to specify one length parameter;

for the theorem below, we select ao = -1.

To incorporate just the position equations, we redefine = p' = 0 from (3.3)

and i = (d dy4,dz') from (3.7). The constant parameters 0, , a., and ao

are removed from 'p. 'Lhen X, 17, C, and C' are redefined in (3.4)-(3.5) and (3.8) to

reflect the reduced dimensions. In particular, each column of each Jacobian in (3.12)

contains only the top vector or first three rows.

Ji xi, (Ji)j = z-,, (J), = zxb, J) = x b 1  (3.27)

jj ) j+1 d

These columns are now interpreted as partial velocity vectors with respect to the

parameters instead of as screw coordinates [52). Notice that we have used up three

kinematic equations in order to eliminate the unmeasured orientation DOFs of the

endpoint. The identification procedure can then be applied as before.

As before, the identifiability of the parameters depends on the linear dependence

of the columns of the Jacobian C'. Because of the form of the coiumns in (3.27), a

stronger identifiability condition is derived than (3.15).

Theorem 4 (Point-Contact Identifiability) The parameters ' are unidentifiable
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Joint s (m) a (m) a (rad) 9oI, (rad)
0 1.694 0.837 3.600* 0.000*
1 1.622 -0.627 -0.553 0.100
2 1.000* -0.100 0.930 0.090
3 -0.430 -0.430 2.040 0.100

4 0.540 -0.600 -0.150 0.050
5 -0.560 -0.550 1.350 0.040
6 -1.693 0.711 -1.860* 1.700

Table 3.5: The initial D-H parameters of a 6-DOF manipulator under point contact.

Joint s (m) a(m) a (rad) f ° f (Tad)
0 1.594 0.737 3.600* 0.000*
1 1.722 -0.527 -0.503 0.120
2 1.000* 0.000 0.530 0.000
3 -0.330 -0.330 2.300 0.000
4 0.440 -0.440 -0.900 0.000
5 -0.660 -0.550 1.200 0.000
6 -1.793 0.911 -1.860* 1.825

Table 3.6: The actual/calibrated D-H parameters of a 6-DOF manipulator under
point contact.

if and only if there is a constant linear relation among the partial velocity vectors for

all configurations. That is, there exist constants ci, k = 1,... ,4, not all zero, such

that
n n n-1

0= Z i + + CXi + i x b(3 j jcxl b j+I
j=O j=1 j=1

for all i = m

Again, trivial modifications to the theorem can be made if a different length parameter

than a0 is fixed.

We now simulate a 6-DOF manipulator under point contact; the actual parameters

are given in Table 3.6. The arbitrary constant parameters are marked with a *, and in

particular we have chosen S2 = 1 as the fixed length parameter. This entire mechanism

was simulated in 30 distinct configurations (01,02,03 = 0 to 0.5 rad), starting with

the initial guesses in Table 3.5. The parameters in Table 3.6 were recovered to within
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Figure 3-6: The coordinate description of a manipulator connected to a hinge joint.

four decimal places.

3.4.2 Opening a Door

The hinge joints of a door define a rotary axis. Since the endpoint coordinates are

arbitrary, it is convenient to make zn coincident with the door's axis (Figure 3-6). We

also position the base coordinates at the endpoint coordinates, and let zL_1 coincide

with z'. The door hinge angle 9' measured about z'_1 is unknown, and the orientation

equation relating to this rotation must be eliminated from the calibration procedure.

To begin, the position equations are the same as before: p, = 0 from (3.3) and

Ap = (dxf, dyf, dz.) from (3.7). The endpoint orientation is given by

-- R,(x,4)P=(ay')R (O.) (3.29)

where axi and O y are infinitesimal and 8' is finite. Expanding the first column of

(3.29) and neglecting the second order terms, one finds that Of= atan2(Rc(2,,), Rc(1,,)),

where the indices denote the elements of the rotation matrix R'. The desired varia-

tions Oxi and 9yf are extracted from R'R,(Oi)T R-(axf)R,(ayf). The computed

endpoint location is then given by the 5-vector = (dxf, dy', dzf,9Ox, ay'). Thus

one kinematic equation has been used up in order to eliminate the unmeasured door

hinge angle.

As before, one length parameter needs to be specified, say a, = -1. Since zLI

aligns with the door hinge and with z,, then 8'f! and o can be arbitrarily set to

zero. o is adjusted to eliminate a, and 00"I . Finally, X, 17, C, and C' are redefined in
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Joint s (m) a (m) a (rad) OnfJ (rad)
0 1.694 0.837 3.774 *
1 1.622 -0.627 -0.553 0.080
2 1.000 -0.100 0.930 0.090
3 -0.430 -0.430 2.040 0.900
4 0.540 -0.600 -0.150 0.050
5 -0.560 -0.550 1.350 0.040
6 -1.693 0.711 -1.859 1.400

Table 3.7: The initial D-H parameters for a 6-DOF manipulator opening a door.

Joint a (m) a (m) a (rad) 8O° J (rad)
0 1.594 0.737 3.604 *
1 1.722 -0.527 -0.503 0.000
2 1.000 0.000 0.530 0.000
3 -0.330 -0.330 2.300 0.000
4 0.440 -0.440 -0.900 0.000
5 -0.660 -0.550 1.200 0.000
6 -1.793 0.911 -1.459 1.825

Table 3.8: The actual/calibrated D-H parameters of a 6-DOF manipulator opening a
door.

(3.4)-(3.5) and (3.8) to reflect the reduced dimensions of . The kinematic calibration

procedure may then be applied.

Once again, identifiability is related to the rank of C'. Theorem 3 applies to the

door-opening case, as do the various sources of parameter ambiguity discussed in the

previous sections.

Next we simulate a 6-DOF manipulator grasping a door with a hinge joint. The

D-H parameters are given in Table 3.8; arbitrary parameters are marked by a *,

including the fixed length S3 = 1. This entire mechanism was simulated in 40 distinct

configurations (01 = 0 to 0.5 rad), starting with the initial guesses in Table 3.7. The

parameters in Table 3.8 were recovered to within four decimal places.
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3.4.3 Identifying Arbitrary Task Kinematics

We now discuss how the algorithm presented for closed-loop kinematic calibration

readily generalizes to identifying arbitrary task kinematics. As mentioned earlier, the

chief difficulty is eliminating the unknown DOFs from the environment kinematics.

This may be achieved by determining the unknown DOFs in terms of the known ones

(and the kinematic parameters). For instance, in calibrating a system comprised of

a robot opening a door with a handle, both the door hinge angle and the handle

angle may be determined in terms of the known manipulator joint angles. Once all

of the DOFs are determined, the iterative identification algorithm presented above

is directly applicable to identifying the kinematic parameters. In particular, the

over-determined system of equations (3.8) may be solved by the iterative Levenberg-

Marquardt algorithm.

Determining the unknown DOFs may proceed as follows: (a) using the nominal

model of the robot, compute the location of the endpoint at a specific configuration,

then (b) notice that this endpoint also locates the endpoint of the environment kine-

matic chain, and finally (c) using the nominal kinematics of the environment calculate

the inverse kinematic solution of the endpoint position given in step (a). The result-

ing joint angles are the unknown DOFs. The inverse kinematics of step (c) must

in general be performed iteratively (for example, with t49]). Notice that a nominal

model of the kinematics is required. Each iteration of kinematic calibration algorithm

presented in Section 3.3 improves the nominal model. Thus, the above determination

of joint angles must be performed anew for each step of the kinematic calibration

iteration.

3.5 Discussion

We have presented a new kinematic calibration method that does not require end-

point measurements or precision points. By forming manipulators into mobile closed

kinematic chains, we have shown that consistency conditions in the kinematic loop

closure equations are adequate to calibrate the manipulator from joint angle readings
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alone. This closed-loop kinematic calibration method is an adaptation of an iterative

least squares algorithm used in calibrating open chain manipulators.

Identifiability of the kinematic parameters of the closed loop was reduced to in-

specting the rank of the Jacobian matrix C. Rank degeneracies were in turn studied

with the screw coordinate interpretation of the columns of the Jacobians C'. Specif-

ically, a requirement that there be no constant linear relation among the local link

xand zj axes accounts for all singularities when there are no passive DOFs. Closed

mechanism with passive DOFs must be studied on a case by case basis for identifia-

bility.

Three tasks were studied in detail: (1) fixed endpoint, (2) point contact, and (3)

opening a door. Nevertheless, the method readily generalizes to a large class of robot

tasks. The main requirement is that there be positive mobility in the closed chain; in

general, the sum of manipulator DOFs plus the passive DOFs of the endpoint con-

straint must exceed 6. Fixed endpoint constraints generally require redundant arms to

achieve positive mobility. An equivalent scenario is two manipulators rigidly attached

at their endpoints with combined DOFs greater than 6; thus two non-redundant arms

could be calibrated together. When passive endpoint constraints are allowed, single

non-redundant arms may be calibrated as well; for example, under point contact the

manipulator only requires 4 DOFs. In principle, up to 5 passive DOFs can be al-

lowed in the endpoint. For every passive DOF, one of the six kinematic loop closure

equations is used up to eliminate the unknown joint angle; this procedure is akin to

mechanism synthesis.

In our method, it is necessary to specify one length parameter to scale the mech-

anism. An independent means for measuring this parameter is required. This is a

feature of other kinematic calibration methods as well, such as those using theodolites

[53].

Another issue with our method is how to handle the forces encountered when mov-

ing the manipulator with an inaccurate kinematic model under endpoint constraints.

It is beyond the scope of this thesis to present a detailed solution, but an appropriate

force control procedure must be implemented. The task is made easier if the joint
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actuation is inherently compliant. For example, one could drive only as many joints

as there are degrees of mobility in the loop. Alternatively, one could drive all joints

using the initial guess at the kinematic parameters to calculate the constrained joint

motion, and then rely on the joint compliance to allow for error in the commanded

joint trajectories. Though more complicated, this latter method is better, as the for-

mer method could lead to the drive joints jamming at singularities. In Chapter 4 we

apply the method to calibrating two fingers of the Utah-MIT Dextrous Hand which

are rigidly attached at the endpoints to form a closed-loop mechanism with 8 DOFs

(see also [54]); the fingers are moved manually as a simple remedy in this particular

case.

Although the joint offsets _°  were the only non-geometric parameters modeled

in this chapter, in principle more complicated non-geometric joint models could be

calibrated. For example, in Chapter 4 (see also [54]) an additional scaling factor for

the joint angle sensors is required and can also be identified.

Our closed-loop method to kinematic calibration represents a departure from the

typical dichotomy found in robotics between model building and task performance.

The removal of this dichotomy may generalize to other problem areas in robotics. In

this chapter the models of the task and the manipulator are improved while performing

the task. In Chapter 5 we will show how an uncalibrated stereo vision system can

be calibrated together with an uncalibrated manipulator (see also [55]). Thus we feel

that our approach is a step towards true autonomy: no special precalibrated endpoint

measurement device - or external 'teacher' - is needed.
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Chapter 4

Closed-Loop Kinematic

Calibration of the Utah-MIT

Dextrous Hand

4.1 Introduction

The previous chapter proposed a icchnique for calibrating closed-loop kinematic

chains formed by dual or redundant manipulators. This technique differs from con-

ventional calibration schemes [34] in that it does not require special endpoint-sensing

equipment. The present work will experimentally verify this closed-loop calibration

technique by calibrating the Utah-MIT Dextrous Hand 156] [57].

Briefly, the closed-loop kinematic calibration method is described as follows. Con-

sider a finger of the hand system opposing the thumb, such that the fingertips are

rigidly connected (Figure 4-1). As each finger has four degrees of freedom (DOF) an

8-DOF closed loop is formed; this loop has in general a mobility of two. Observe

that fixing only two joint angles uniquely defines the configuration of this mechanism

(except for the possibility of multiple inverse kinematic solutions). Thus, the other

six joint angle sensors are redundant. This sensor redundancy may be exploited to

estimate the kinematic parameters. Specifically, the loop consistency equations for

a given configuration give three position and three orientation equations containing

54



Figure 4-1: Hand with two fingers opposed, adapted from [4].

the unknown kinematic parameters. Moving the fingers into different configurations

while maintaining the same contact condition provides six additional equations per

pose. Potentially these equations can be solved for the kinematic parameters, that is

provided certain identifiability conditions defined in Chapter 3 are met.

The chapter is organized as follows: (1) outline of calibration procedure, (2) ex-

perimental results, and (3) discussion of future work. Several modifications are made

to method described in Chapter 3. Initial experiments revealed that the joint angles

of the hand not only have joint offsets, but also joint scale factors that are difficult to

determine a priori. For this reason the algorithm is augmented to include the identi-

fication of these joint scale factors. Perhaps the most difficult task in any kinematic

calibration procedure is determining the initial guess at the kinematic parameters,

particularly for the base and fingertip transformations. As a partial solution to this

problem, the more accurately known parameters are fixed while the others are first

estimated. Finally, singular value decomposition provides a means of dealing with

parameter ambiguity, and also conveniently produces a measure of parameter observ-

ability.
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4.2 Method

4.2.1 Manipulator Kinematics

Geometric Parameters

Consider two fingers of the hand connected together rigidly at their tips (i.e., the

thumb opposed to a finger); see Figure 4-1. This closed kinematic chain has nf = 8

degrees of freedom. Locate a reference (base) coordinate frame coincident with the

last joint of the thumb; then number the joints ploceeding from that distal joint

to the palm, and then back out to the tip of the finger, as in Figure 4-1. Let the

4 x 4 homogeneous transformation Ai from link j to link (j - 1) be defined by the

Denavit-Hartenberg (D-H) convention[401 given.in Figure 3-2 and symbolically as:

Aj = Rot(z, O'j)Trans(z, sj)Trans(z, aj)Rot(x, aj) (4.1)

where the notation Rot(x, 0) indicates a rotation about an axis z by 0 and Trans(x, a)

indicates a translation along an axis z by a.

Since the D-H s parameter is not uniquely defined for consecutive parallel axes

the following Hayati convention[46] (see Figure 4-2) is employed for such axes (i.e.,

for joints 0, 1, 3, 5 and 6):

Aj = Rot(z, 9'j)Trans(z, sj )Rot(z, aj)Rot(y, aj) (4.2)

The position of the last link is computed by a sequence of these homogeneous trans-

formations:

T¢ = A1A 2...An, (4.3)

This homogeneous matrix representation of the endpoint is equivalent to the position

vector (3.1) and rotation matrix (3.2) representation used in Chapter 3.

The goal is to identify the geometric parameters sj, aj and aj, and also any
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Figure 4-2: Hayati coordinates, and intermediate x-axis xxj.

non-geometric parameters that may be included in the kinematic model.

Non-Geometric Parameters

The non-geometric effects on the kinematic model potentially include bearing play

and joint angle sensor error. Although parametric models of both of these processes

may be included we choose to only model joint angle sensor error. In particular, the

D-H joint angle is presumed to be related to the sensor reading as

= + O;If (4.4)

Thus, we wish to identify the constant joint angle offset ej'f , and the joint scale factor

kj. The joint scale gives the calibration factor for the measured electronic signal from

the Hall effect joint sensors.

4.2.2 Unidentifiable and Identifiable Parameters

If we try to identify all the ki there is a trivial solution k, = 0, which will satisfy any

set of joint angle data. To avoid this difficulty, fix a joint scale factor that can be

measured independently. For the hand we choose kT = 1.0. Likewise, one link length

must be known. This length defines the length scale of the closed mechanism. For

example, in Section 4.3 we set so = -1.3.

All of the potentially identifiable kinematic parameters are placed into a single
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Figure 4-3: Coordinate assignment for loop of two fingers attached at their endpoints.

vector:

Rf= ( t )aT'aTkT)T (4.5)

where s = (8 1 , $ 2 , ... )T etc.

4.2.3 Base Coordinate Assignment and Endpoint Location

The two connected fingertips may be viewed as a single effective endpoint link that

connects the most distal joint of the finger to the first joint of the kinematic chain

(i.e., the most distal joint of the thumb); see Figure 4-3. Defined as such, the endpoint

always has zero orientation and position relative to the base coordinates (i.e., those

coordinates that were defined to be aligned with the thumb's most distal joint axis).

Notice that in addition to the robot kinematic parameters we will also identify the

D-H parameters of this effective link which completes the loop.

4.2.4 Endpoint Location Error Calculation

With a sufficiently good initial parameter estimate the computed endpoint location,

T, differs only slightly from zero (the base coordinates). The endpoint error com-

putations can therefore be simplified as follows. Let the computed position (i.e.,

the fourth column of T,) be represented by (dx,, dye, dz,)T. Similarly, let the calcu-

lated orientation R, (that is, the upper left 3 x 3 matrix of Tc) be represented by
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infinitesimal xyz-Euler rotations:

1 -Ozc Oyc

R,(,)x,)R,(ay,)R,(az,) a 8z, 1 -ax0  (4.6)

-ay a 1

where the right hand side of (4.6) is computed by directly expanding the left hand side

and ignoring second order differential terms. Thus, the modeled endpoint location,

evaluated at the ith joint configuration e', is represented by a six vector:

= g(_81,.) = (dx,,dycdzc, Oyc, azc)T (4.7)

directly computed from Tc. Thus, the explicit form of (3.3) is given by (4.7).

As stated, the actual position and orientation of the endpoint is taken to be zero,

thus the endpoint error is given by (3.18).

4.2.5 Iterative Identification

Iterative identification may proceed as in Section 3.2.2.

Differential Kinematics

At the ith joint configuration 0' the first differential of (4.7) is given by a similar

relation to (3.8):

AXO = + -- As + + .Aq + a --_+ axAk (4.8)

where again Ax =0 - x and As =s- s o etc. By denoting the combined Jacobian:

C - - (4.9)

59Osaa OkJ
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equation (4.8) may be expressed more concisely as

Ax = C'A_ (4.10)

Jacobian Calculation

From (3.12) the D-H parameter Jacobian elements are:

[zi- x b' 1 o*' z _1(.1

col 2 =  ' - .

and

Co1 1 ..lS= x col = xj+1 (4.12)

The Jacobian columns for parameters of the alternate Hayati convention are found

analogously to be:

col1  - b ' _ (4.13)
-i z 0

and

coij l x x b+] colj [Yjxb+] (4.14)col 0a =, =

where xxj stands for the local x-axis just prior to the last rotation about the jth

y-axis by aj (see Figure 4-2).

In both parameter conventions the columns of the Jacobian with respect to the

joint scale factors are:

co=j [j z-×b] (4.15)
- L-

4.2.6 Data Collection and Parameter Estimation

As in the previous chapter, a series of n configurations of the actual mechanism

provides n sets of joint angle measurements 0, and 6n equations of the form (4.10).
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With the C' defined in (4.9) redefine C as

C1

c =(4.16)

A solution may be found iteratively using the parameter error estimates (3..6), and

V = WO + Aw.

As mentioned in Chapter 3, during iteration the matrix CTC may become singular

at an intermediate parameter set, even though the final parameter set does not have

a singularity. To avoid the problem the least squares criteria is modified as in Section

3.2 to be:

LS' = (AX - CAO)T(AI_ - CAE) + A(AE)T(io) (4.17)

In contrast to Chapter 3, this criteria is minimized here by using the singular value

decomposition (SVD) of C, zeroing singular values that are less that p percent of the

maximum singular value, and then implementing the generalized inverse from the

SVD matrices [58]. The value of p implicitly gives A, and it is set high (e.g., p = 5

percent) initially and reduced once convergence occurs.

If the kinematics are over-parameterized for the collected joint angle data then

C will always have zero singular values. The number of near zero singular values

indicates the number of non-independent parameters.

Two other variations of the original algorithm are as follows. T1 poorly known

parameters (base and tip transformations) are first estimated by assuming that the

finger parameters are correct. Then all parameters are allowed to freely vary, giving

the final results. Also, it is often found useful to check that the present update to the

parameters improves the endpoint positioning error. If it does not then the parameter

update is repeatedly halved, until the endpoint error improves (see [58]).
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Joint 80 f1 (rad) s (in) a (in) a (rad) k
0* 0.0000 , -1.3000 0.0000 0.0000 1.0000
1* 0.0000 -1.7000 0.0000 0.0000 1.0000
2 0.0000 0.0000 -0.4500 1.5708 1.0000

3* -1.5708-, 2.1200,, 0.4094,- 0.2080, 1.0000
4 0.0000- 2.2500-, 0.6000- -1.5708 1.0000

5* 0.0000-, 1.7000 0.0000 0.0000 1.0000
6* 0.0000 1.3000 0.0000 0.0000 1.0000
7 3.1415-, -0.5000-,- -1.0000-, -0.2618-, 1.0000

Table 4.1: 8 DOF mechanism. Initial parameters. A * indicates that the parameters
are those of the Hayati convention (with the respective units). The parameters marked
with a -, are difficult to measure and were either guessed (for link 7) or roughly
calculated from known specifications.

4.3 Experimental Results

Finger three of the hand was opposed to the thumb (finger 0) by rigidly connecting

the fingertips (screwed into a common aluminum plate). The nominal kinematic

parameters for this 8 DOF closed kinematic chain were taken from [57] and are shown

in Table 4.1. The geometric parameters (i.e., the s, a and a parameters) marked with

a , are difficult to measure independently. The joint angle offset and scale parameters

are also not well known. Those geometric parameters not marked with a - are likely

to be more accurate than parameters identified by any identification scheme relying

on the limited accuracy of the joint angle sensors.

A series of 200 configurations of the finger/thumb mechanism provided input joint

angles for the above identification algorithm. These joint angles are plotted in Figure

4-4. The joint angles for the thumb are negated so that the identified joint axes are

in the same direction as defined in [57]. Considerable care was taken to make sure

that all joints moved as much as possible.

The calibration was performed with the initial parameters givcn in Table 4.1,

the recorded joint angles, and the two fixed parameters so = -1.3 and k7 = 1.0.

Convergence of the algorithm required p = 0.5 in the SVD based pseudo-inverse, and

produced the parameters in Table 4.2.
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4.3.1 Endpoint Errors

The calibration may be assessed by measuring the error in closure between the fin-

gertips. This error is simply given by the position and orientation vector Ax' for

each pose i. Averaging, over all poses, the pre-calibration root mean square (RMS)

position error was 0.5780 in and the RMS orientation error was 0.4645 rad. After

calibration these errors are reduced to 0.0201 in and 0.0290 rad respectively.

4.3.2 Geometric Parameter Errors

As stated, the geometric parameters not marked with a , are likely to be more

accurate than the parameters identified by any identification scheme relying on the

limited accuracy of the joint angle sensors. These parameter values may be used

to check the validity of the calibration algorithm. Comparing these parameters in

Tables 4.1 and 4.2 reasonable agreement is seen. The existing miss-match could be

partly due to unmodeled kinematics such as joint wobble, and other factors caused

by machining imprecision. Also, as discussed below, certain parameters may not be

uniquely determined from the limited accuracy joint sensor readings.

4.3.3 Non-Geometric Parameter Errors

It is seen from Table 4.2 that the joint angle offsets and scale factors are an impor-

tant source of error in the kinematic model. The joint offsets marked with a ,-, are

particularly hard to measure, and indeed show the greatest error. The non-geometric

parameters that are more accessible (i.e., Ojf and kj for j = 0,1, 6) were carefully

re-measured after calibration. This post hoc measurement indicated that these non-

geometric parameters were identified more accuratcly than the initial guesses in Table

4.1.
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4.4 Parameter Identifiability

The ratio of the minimum singular value to the maximum singular value of C provides

an index of parameter identifiability. This ratio is 0.003, indicating that CTC is not

singular, but is not well conditioned. Thus, all the parameters are theoretically

identifiable, but some may be sensitive to measurement noise. As stated, to obtain

convergence all the singular values less than 0.5 percent of the maximum singular

value were zeroed. This translated into zeroing seven singular values. Thus, for this

mechanism, and for this particular joint angle data set, there are seven parameters

that are close to linearly dependent upon the other 31 parameters.

It is difficult to determine the geometrical significance of these interdependent pa-

rameters. In theory, linear relations between the instantaneous parameter variations

may be found from the null space of the Jacobian (the null space is determined by the

span of the columns of the matrix V that correspond to (near) zero singular values,

where V is part of the SVD of the Jacobian: C = UDVT). It is not clear though

how to interpret these first order relations to determine the source of the parameter

ambiguities.

Certain parameter dependencies do have a simple explanation though. For ex-

ample, consider the parameters associated with the most proximal joint of the finger

and the most proximal joint of the thumb (joints angles 3 and 4). These two almost

parallel joints are partially decoupled from the rest, in the sense that is possible to

move them without large movements of the other joints and visa versa. From the data

(Figure 4-4) it is seen that joints 2 and 3 move the least (only 0.4 rad). Roughly,

these two joints, being perpendicular to the others, move the plane of the rest of the

finger/thumb complex. The location of this plane is given by the parameters a2 and

a4 , which are measured along the common normals x2 and x4 . Unfortunately, these

two common normals stay almost parallel for all the data collected (mostly because

of the small movement ranges of the joints 2 and 3). In the extreme case where they

are fixed to being exactly parallel then the D-H distances a2 and a4 along these com-

mon normals may vary arbitrarily, as long as the difference a2 - a4 is kept the same.
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Joint 80f1 (rad) s (in) a (in) a (rad) k
.1* 0.0000 1.8050 0.5755 0.2890 N/A
0 0.1389 1.7151 1.3356 -1.5836 1.0125
1* 0.5464 1.6307 0.0292 0.0737 0.8577
2* -0.0425 1.1474 0.1745 0,1260 0.9350
3 ? ? ? ? 1.0000

Table 4.3: Identified finger parameters relative to a palm reference frame, where a *

indicates that the parameters are those of the Hayati convention (with the respective
units), and a ? means an unknown tip transformation.

Though these common normals are not exactly parallel to one another, we should

predict a sensitivity problem in separately identifying a2 and a4 from finite precision

measurements. See Chapter 3 for a more general discussion of identifiability.

The identifiability of these parameters may be improved by relaxing the endpoint

constraint to be a point contact (with the endpoint free to orient arbitrarily) instead

of a rigid contact. In the case just discussed the axes x2 and x4 would then no

longer be constrained to be nearly parallel. The use of a point contact constraint

(or a perhaps more elaborate rolling contact constraint) has not yet been attempted

because, as yet, we do not have tactile sensors that could be used to assure the point

contact. We could build a ball joint to connect the fingertips, but this would not be

as general, or natural way of proceeding.

4.5 Common Palm Reference Frame Conversion

Once a finger is calibrated against the thumb, as just described, it is necessary to

convert the identified parameters into a reference frame located on the stationary

palm of the hand, similar to [57]. This reference frame is the frame labeled 2' in

Figure 4-3, that is, the frame found after the rotation of local frame 2 by the joint

angle 03. The finger's parameters relative to this palm reference are therefore given

by the parameters labeled 3 and greater (except 93), and are re-written in Table 4.3.

The tip transformation is not identified by the above method. It could be identified

if a point contact constraint were used instead of a fixed constraint. For practical
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Joint O0°f (rad) s (in) a (in) a (rad) k
0 1.7824 0.0000 0.3097 -1.6207 0.9336
1' 0.0000 -0.1604 0.0000 0.0000 N/A
1* 0.0943 1.5085 0.1515 0.0480 0.8596
2* -0.0850 1.3000 -0.0069 -0.0668 0.9508
3 ? ? ? ? 1.0000

Table 4.4: Identified thumb parameters relative to a palm reference frame, where a *

indicates that the parameters are those of the Hayati convention (with the respective
units), and a ? means an unknown tip transformation.

purposes the tip D-H parameters are taken to be PHiI = 0, s = 0, a = 0.735 and

a = 0 [57]. Finally, notice that the parameter set labeled -1 locates the first axis of

the finger relative to the thumb.

The thumb parameters are found by following the kinematic chain from the palm

frame 2' backwards to the 'base' (actually, the fingertips). This simply entails re-

versing the sign on the respective 0, s, a and a parameters. Also, in the case of the

Hayati convention parameters the order of transformations must be changed to:

Aj = Rot(z, 9'.)Rot(y, aj)Rot(x, aj)Trans(x, sj) (4.18)

The thumb parameters are thus calculated to be those shown in Table 4.4. Notice

that an additional s translation, s', is required to provide the translation of -0.1604

along the thumb joint 1 axis.

When the whole calibration procedure is repeated with other fingers opposing the

thumb then the identified palm reference frame 2' may differ from finger to finger.

That is, this frame may be arbitrarily displaced or rotated on the thumb's first joint

axis (labeled z2 in Figures 4). One such reference frame may be defined as the

'common reference frame' and the others related to it. The unknown translation and

rotation on z 2 (between any two palm reference frames) may be estimated by locating

the thumb in a fixed position and calculating its endpoint in both reference frames.

The difference between these endpoint locations gives the two unknown quantities.
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4.6 Discussion

Studies investigating the kinematic calibration of the Utah-MTT Dextrous Hand have

been presented. The approach was to use the closed-loop kinematic, calibration tech-

nique developed in the previous chapter. Several modifications of the original algo-

rithm were necessary. First, it was found that joint angle scale factors had to be

included as parameters to be identified. Second, it proved to be important to iden-

tify initially the endpoint and palm (base) transformations by assuming the initial

guesses at the finger kinematic parameters were correct. This provided improved ini-

tial estimates of these parameters, which were otherwise tricky to measure. Once this

first step was completed the full scale non-linear parameter calibration technique was

used. Finally, SVD provided a convenient way of resolving the parameter ambiguity.

The experimental results indicate that the kinematics of the finger/thumb com-

plex can be identified by the proposed closed-loop kinematic calibration method.

Endpoint positioning error was improved by over an order of magnitude. Further,

the identified values of the parameters that were also accurately known a priori were

in close agreement with these a priori values.

Certain parameters were not uniquely determined from the collected joint ,auegl

data. This parameter ambiguity, while clearly not a problem for the particular finger

contact situation studied (see RNIS error), may cause troubles when the identified

kinematics is used for very different finger configurations. The parameter ambiguity

is principally due to the lack of joint movement allowed by the fixed constraint (it

may also be due to limited joint sensor resolution. and other unmodeled kinematics).

In the future we intend to use a point contact constraint (as described in Chapter 3

and (391). This will produce an 11 DOF mechanism with higher mobility. The natural

way to implement this is to use tactile sensors to assure that the fingers stay at a

point contact, while allowing arbitrary orientation of the fingertips. This experiment

awaits the completion of tactile sensors for the fingers. Other more complex endpoint

constraints can also be explored. In fact. the above technique may be extended to

identifying the geometry of an object grasped between the fingers (see Chapter :3 and
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Chapter 5

Autonomous Calibration for

Hand-Eye Coordination

5.1 Introduction

Hand-eye coordination is a particularly demanding task because it requires the con-

sistency of two separate sensing systems - the robot manipulator and the stereo

vision system. It is the intention in this chapter to address the issue of how these two

systems may be calibrated autonomously. By calibration it is meant the determina-

tion of the parameters of the internal models of both the camera and arm systems.

As in the the previous chapters, the emphasis is on autonomy. Thus, only the robot's

internal joint angle and camera image sensors are permitted for the calibration.

5.1.1 Motivation

Autonomy is a particularly important property for a robot that must function outside

of controlled laboratory conditions. It is inevitable that a robot will have its base

moved, links bent, cameras misaligned or be otherwise damaged. In such situations

it would be desirable not to have to resort to the use of special purpose calibration

equipment to update the model used for robot control. In fact, an ultimate goal

would be for the robot to be able to calibrate its internal model in real time.
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While in certain engineering applications the goal of autonomy may be sacrificed

in favor of simplicity, it was pointed out in Chapter 2 that humans have no such

choice in calibrating their sensorimotor system. Thus, a second motivation for study-

ing autonomous calibration derives from an interest in understanding the human

sensorimotor system.

5.1.2 Previous Research

In the domain of robot dynamics autonomous calibration has essentially been achieved.

although the kinematics must be assumed to be known (for example [16]). In par-

ticular, it is possible to estimate the inertial parameters that define the various links

by only using internal joint torque (current), position. and velocity measurements.

This idea has actually been made to operate in*real time model-based adaptive con-

trol schemes[59. The success of inertial estimation is based on the observation that

the suitable combinations of the inertial parameters enter linearly into the dynamic

equations.

In contrast, autonomously determining the static relationship between the internal

joint angle sensors and the manipulator endpoint position - the kinematic model

- has not been as successful as autonomous dynamic estimation (see review [34]).

Typically. researchers have viewed the manipulator as a positioning device - that is,

an open-loop kinematic chain. This view demands that the endpoint be measured in

addition to the joint angles to infer the kinematic parameters. Therefore, autonomous

calibration is not possible.

If instead the manipulator is viewed as a device to interact with the environ-

ment then autonomous calibration is possible, as described in Chapter 3 (see also

[371[39][381). The basic observation is that the manipulator may form a mobile closed-

loop kinematic chain when performing a task. The internal model structure, the

knowledge of the type of task constraint, and the internal joint angle measurements

collected while in a number of configurations provide enough consistency equations to

solve for the kinematic parameters. This technique of closed-loop kinematic calibra-

tion is quite general. As an instance that is most relevant to the hand-eye calibration
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problem, we recall from Chapter 3 that two uncalibrated manipulators may calibrate

one another by moving while rigidly grasping (a 0-DOF task) a common object.

Three observations are worth stressing:

* The knowledge of the task constraint (e.g., two robots gripping together) re-

places the need for an external sensor.

e The redundancy of the sensing systems (e.g., two arms) with respect to the task

enables the various redundant components to move while performing the same

task.

* The a priori model structure knowledge allows one to form a number of con-

sistency equations (the kinematics) which may be solved for the kinematic pa-

rameters.

These three observations serve as a basis for extending autonomous manipulator

calibration to complete hand-eye calibration. First we review relevant vision system

calibration techniques.

The conventional methodology for camera calib--.tio,, is to move a number of

known precision points into the field of view of tue cameras and infer the camera

calibration from the given points in sps. e "see review [60]).

One effective approach is to form a look-up table from known rays (obtained from

two planes of points in space) to recorded image locations [61J[62), and then use

splines to do local interpolation. Look-up table approaches need external calibration

points, and thus they must be disregarded for autonomous camera calibration.

Various model based approaches have been used for camera calibration. In com-

puter vision and graphics the pinhole camera model has been used extensively [63]

[64] [65] [66]. This model may be augmented to account for lens distortions [67] [68]

[69]. Since the pinhole camera model is non-linear in its parameters there have been

various proposals to make the calibration equations linear [31] [70] [69]. These meth-

ods are important because they provide initial guesses at the parameters that general

non-linear optimization methods require. Other empirical polynomial interpolation
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models have also be used [61] [71] [62], their only advantage being that the parameters

enter linearly into the equations.

While the above camera modeling techniques and parameter identification meth-

ods are relevant to autonomous calibration, most of this work is predicated on the

assumption that there are external calibration points available. There are a few no-

table exceptions. For example, early photogrammetric engineering work [72] and more

recent robotics research [73] have demonstrated that the camera parameters may be

recovered by moving the cameras while viewing arbitrary unknown points in space.

Finally, there is a considerable body of literature that addresses the problem of

registering the calibrated vision system's coordinates with respect to the robot base

(see review [34]). Especially interesting is the work in [74]. Their technique is to

determine the camera to hand transformation simultaneously to the robot parameters

by viewing an arbitrary fixed point in space. The internal camera parameters are

calibrated beforehand by viewing a precision calibration jig.

5.1.3 Towards Autonomous Hand-Eye Calibration

As can be seen the calibration of a robot manipulator/vision system is typically

based on a 'divide and conquer' principle. None of these approaches may be made

autonomous. Further, there is no guirantee that once the various separately cali-

brated components are assembled they will be consistent. This is a very important

point since we know that models and sensor readings are inaccurate. We thus pro-

pose that a solution is to calibrate the models of the manipulator and two cameras

simultaneously while performing the task of interest - hand-eye coordination. This

may be done as follows.

Recalling the three observations made concerning closed-loop manipulator cali-

bration, it is remarked that hand-eye calibration fits into this framework. First, a

manipulator and a vision system may sense the location of the same point in space;

and thus, the total robot sensing is redundant. Second, if the task is defined as the

cameras tracking the hand then there is a closed kinematic loop formed. This task

constraint replaces the need for external calibration points. Finally, because we may
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assume a priori knowledge of both the camera and arm kinematic model structure

it is possible to write out consistency equations of the closed loop in a nr" er of

configurations, and thus solve for the parameters. We will develop this idea in what

follows.

5.1.4 Outline

As stated, the purpose of this chapter i to extend the closed-loop calibration approach

developed for calibrating robot arms o calibrating a complete robot - with a stereo

vision system in addition to the m: ipulator. The stereo system is assumed to have

one axis of rotation per camera, b-.' is otherwise taken to have an arbitrary geometry.

An uncalibrated stereo cam, . system will be made to track a point on the hand

of an uncalibrated arm. Therf are at least two distinct approaches to forming the

closed-loop calibration equatio-is. The first is to formulate a model for the manipu-

lator relative to each camera separately, and measure the position error in 2-D image

plane coordinates. The calibration would proceed by collecting data from manip-

ulator/camera movements and minimizing the image plane error in both cameras.

The second approach is to directly model the position of the end effector given by

the stereo calculation (from the image data). The calibration can then proceed by

minimizing the end effector error between the manipulator and stereo models. Of

these two approaches the second is chosen because it seems more natural to minimize

the task space error. In addition, using the second approach enables one to formu-

late the iterative identification equations more simply; in particular, the manipulator

Jacobians developed in Chapter 3 are directly applicable.

It is assumed that the point that is to be tracked may be unambiguously located

on both camera images. This generally non-trivial correspondence problem [66] may

be solved here because of two additional constraints. First, it is known that the hand

is moving rclative to the background; therefore, it is possible to disambiguate the

hand image from the background. Second, a convenient point that can always be

unambiguously located on the hand may be used (e.g., the tip of a pointer).
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5.2 Model Definitions

5.2.1 Manipulator Model

Consider an arbitrary manipulator with nf degrees of freedom. Let the 4 x 4 ho-

mogeneous transformation Aj from link j to link (j - 1) be defined by the Denavit-

Hartenberg (D-H) convention[40] given in Figure 3-2 and (4.1).

For convenience we define the base of the manipulator to coincide with a head

referenced coordinate system that is coincident with the left camera's axis of rotation

(see next section). The position of the last link is related to these base coordinates

by a sequence of D-H transformations defining the kinematic model:

T = AoA 1A2...A,1  (5.1)

Since the model must only locate a point on the end effector the last axis skew is

unnecessary, i.e., let a, = 0.

The position of the point P to be tracked is thus given by the model:

[ = AoA 1A 2 ... A.,Q (5.2)

where the ^ emphasizes that it is the position of P modeledby the manipulator system,

and o = (0, 0, 0,1) is the location of the point P in the hand based reference frame.

All of the unknown manipulator kinematic parameters are placed into an array:

= sT.aT. T)T

where -= (S,S 2 ,...)T etc.
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5.2.2 Visual System Model

The model of a stereo camera system may be decoupled into a purely geometric part

giving the relative orientation and position of the cameras, and a part modeling each

camera's projection of points in space. The parameters for these two portions are

respectively called the ezternal and internal camera parameters.

The internal camera model used is the standard pinhole camera model [66][751.

More refined parametric models including lens distortions [67][68][69] may also be

incorporated without changing the general approach. Let the effective focal point

distance be denoted f, and the projected point P in the image plane be given by the

pair (u, v). Further define local camera coordinates to have x and y axes parallel to

the camera (u, v) grid and have an origin at the focal point (see Figure 5-1). Thus, the

coordinates (oR, .R, zR) of a point P expressed in the right camera's local coordinate

system is given by the standard projection equations:

ZRI(-R) = XRIR + u ) = YR/(VR+ fvf) (5.3)-

Notice that provision is included for unknown offsets (uORf, v/') between the image

plane readings and the optical center of the camera. Analogously, the left camera

equations are:

ZL(-f) = ZL/(UL + U ) = yL/(VL + V") (5.4)

The ezternal geometric model of the two camera system can be represented by

D-H transformations. To distinguish the camera D-H parameters a tilde (e.g., io) is

used. We assume that each camera has one degree of rotation about a fixed axis with

a joint angle sensor (OL = 02 and OR = Oi for the left and right cameras respectively)

as defined below. It is convenient to start the kinematic chain at the right camera's

local coordinate system - that is, the frame located at the right camera's focal point

and having its x and y axes parallel to the right image plane (u, v) coordinate grid. As

mentioned in the previous section, the 'base' coordinates are assumed to be located at
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the left camera axis of rotation. Thus, the transformation of a point z = (z,y,z, 1 )T

in base coordinates to the local coordinates of the right camera Za = (zR,YR, ZR, 1)T

is given by (see Figure 5-2):

= AOAlm = TIz (5.5)

where the only variable parameter is 0' = 82 + I , the right camera rotation. We

also define the opposite transform as z = TR R.The analogous left camera coordinate

system may be located by a further two D-H transformations (see Figure 5-3):

= A2A3s = TLL (5.6)

where the only variable parameter is 0' = L + kf, the left camera rotation. The

parameters i3 and i3 translate and orient about the left optical axis so that the left

coordinate system lines up with the (u, v) image grid, and is located at the focal point.

The parameters aZ3 and &3 are redundant and are taken to be fixed zero quantities. We

also define RR and RL as the upper 3 x 3 rotation matrices of TR and TL respectively.

To solve the stereo camera equations it is convenient to define the vector p from

the left focal point to the right focal point, the vector 1 from the base frame origin tc

the left focal point, and the two internal parameter vectors as follows:

[1p = -RLPL , PL J=AoAA 2A32 (5.7)

= TLO (5.8)
L1

UL + UoL

UL = -RL VL + (5.9)
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Figure 5-1: The internal camera model.

uR + UoRff

UR = -RR VR + VRf (5.10)

-fR

where again o = (0, 0,0, I)T. Notice that UL and UR are respectively vectors from

the left and right focal points along the line of sight. Thus, the point P in base

coordinates is simply:

_ CUL --1 (5.11)

where the 7 emphasizes that it is the position of P modeled by the camera system.

The scalar c is given by:

UR X UL URXU r(p) (5.12)uR X uL • UR X uL

where Ix' denotes vector cross product, and '.' denotes inner product. The linear

operator r(.) has been defined here as it will be useful in Section 5.1.1. All of the

unknown camera parameters are placed into an array:

-T -T-T T T

•.Where I= (fR fL, Of off off off)T and .=( 1 , 2 .. )T , etc.
.wee=JLUA IVR , UL ,L )Si 2
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Figure 5-2: The right camera azes to base D-H transformations. The first transforma-
tion locates the line of action of the right camera rotation. The second transformation
locates the base coordinate z-azis, which is also the left camera azis of rotation.

zba,--z A f.

Z o -.

A0 1 Z3 Z L

to Pt

End effector

Figure 5-3: A stereo camera system attached to a manipulator. L and R indicate the
left and right cameras. The left and right cameras rotate about i and jo respectively.
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5.2.3 The Closed-Loop Model

Comparing equations (5.11) and (5.2) it is seen that the difference defines the closed-

loop kinematic equations of the hand-eye system:

0 = (_O)-_(_)- _ (5.13)

..T -T T

where we have defined _) = (_T ,_4 ) as a concatenation of all of the parameters

to be identified. Note that only unknown parameters need be included in _). For

example, if all the camera parameters were known and not included in 0 then the

calibration method described would be a standard manipulator calibration scheme,

with endpoint visual sensing.

Also, recall that the base coordinates of the manipulator were defined to corre-

spond to the local coordinates of the left camera rotation. Thus, we see that the

manipulator base coordinates are the camera coordinates with axes 1 , ]1, and :1 .

5.3 Model Identification Procedure

As the cameras track the point P at discrete locations the joint angle and image

plane sensory information is recorded. The data recorded at the ith configuration are

placed into a single array:

u...,, 8i '8i uL, v , (5.14)

At the ith configuration of the hand, one vector equation of the form (5.13) may be

written

0 L( ) (5.15)

where in additional to the functional dependence on the model parameters the de-

pendence upon the ith data array u' is explicitly shown. As a short form Az i will be

used, where the functional dependence on the ith ? : array u will be understood
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by the super-script i. After moving the hand and cameras into m distinct locations

3 m scalar equations are generated. These equations must be solved in order to find

the optimal parameter set _, completing the calibration.

5.3.1 Iterative Identification Technique

We use the same iterative method introduced in Chapter 3 to search for the solution

_ .By expanding (5.13) with a Taylor's series about an initial guess 0, and neglecting

higher order terms, the following linearized form is obtained:

A_ = A = CiAe (5.16)

C9 0

where AO =0 - 0. The Jacobian C' may also be written as:

Recall that Aa. is the difference between the location of the point P given by the

camera model and the manipulator model (computed using 4o). Until the system is

calibrated this difference is non-zero.

Place the equations for each of the loop configurations into one array:

AA1  C 1

C 2

AX O = CAO (5.17)

The Levenberg-Marquardt style non-linear search described in Section 3.2.3 is used

to iteratively estimate the parameters. To reiterate, the solution which minimizes the
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modified least squares criteria (AX - C_ )(AX - CA_) + AAq _AT is (3.17):

_ = (CTC + AI)-lCTAX (5.18)

The current guess at the parameters is iteratively updated using (5.18) and _ =

Jacobian Calculation

The columns of the manipulator Jacobian were derived in (3.27) to be:

colj I [x Ci t [~. 1 ](5.19)

and

co!. 2  1 [ -1 X b j coj.. j x x bj~1  (5.20)

The partial derivatives of the camera model may be obtained by similar methods.

First concentrate on the length parameters. Notice that from (3.1) the vectors p and

1 in equations (5.7) and (5.8) may also be written as:

3

=P E ij jE (5.21)
j=O

3

1 =E j-1 + ksj (5.22)
j=2

where i and 2 are local camera z and x axes. Thus, the camera model of point P (5.11)

can be re-written to explicitly show the linear dependence of the length parameters:

1

S= - j ~[r( ,)uL] + &j[r(ij)uL] (5.23)
j=O

3

+ E zj[_ - r(%-1 )uL] + aj[i, - r(iE)uL]
j=2

where we have taker advantage of the linearity of the operator r(.) defined in (5.12).

It is thus apparent that the.column c- ,he Jacobian with respect to a particular length
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parameter is given by the term in square brackets that it multiplies in the previous

equation. For example, the columns with respect to il and 82 are respectively:

col-=~IZU~jo~ (5.24)
5-7- ~-.U ol;c r(il)UL1

The other parameters may be treated by direct differentiation of (5.11). For

example, consider the movement of the point P due to a variation in &2:

A = . 9C + 42 x b'] (5.25)

where b' = UL. The term in square brackets in (5.25) is the column of the Jacobian

with respect to &2. The evaluation of c/0i& 2 is straightforward but messy. It involves

only the partial derivatives of UL and p which are respectively Y2 x b and ) 2 x p.

5.4 Model Identifiability

Inspecting the form of C defined in equation (5.17) it is seen that the columns of

C will be independent, and thus the model identifiable (as defined in Chapter 3) if

and only if there does not exists some fixed linear relation among the columns of the

Jacobians C'. Using (5.19), (5.20), (5.24) and (5.25) the following condition condition

is obtained:

Identifiability condition: identifiability is guaranteed by checking that

there be no constant (for all i = 1..m configurations) linear relation among

the manipulator local link 4 axes and z axes, their moment vectors

xx and x b', and the camera Jacobian vectors given in the

previous section.

The identifiability of the parameters manipulators was studied in detail in previous

chapters; thus, we will restrict ourselves to camera related problem situations.

As a first example of unidentifiable parameters, consider the situation when the

two camera rotation axes arc parallel: z& = z1 - z'. One might suspect a problem
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because it is well known that the D-H s parameter is poorly defined for serial link

kinematic chains with consecutive parallel axes [46]. The columns of the Jacobian

4 z)uL and z' - r(zi)ui respectively. These two

vectors are not linearly dependent, so the problem is not as simple as for serial link

chains. Notice though that z9 = zi is the base coordinate's z-axis of the manipulator,

and the Jacobian vector with respect to the manipulator parameter so is z. Thus,

there exists a linear relation among these three Jacobian vectors:

0 = -[,zi + [z - r(z )ui] + [r(zi)ui] vi (5.26)

and by the identifiability condition the parameters so, , and go are not identifiable

alone. This becomes a practical problem because it also means that CTC will be sin-

gular in the iteration algorithm (5.18). The solution is to use an alternate coordinate

convention for the transformation A,. The Hayati convention [461 developed for ma-

nipulators provides such a four parameter system (see Chapter 4). This convention

cannot be used for all joints because it too has a similar ambiguous parameter when

there are two consecutive perpendicular axes.

As a second instance of unidentifiable parameters, notice that the closed-loop

equations (5.13) of the calibrated model may be written to show explicitly the linear

dependence of the length parameters:

1

o = - j[r(%_1)UL + aj[r(i;)UL1]
j=O

3

+ E j[j_I - r(%_)uL] + aj[ij - r(j)uLI (5.27)
j=2
nt

J ~sj[zj_..1 + a1 [x1 ]
j=O

where in addition to equations (5.13) and (5.24) the fact that the manipulator length

parameters enter linearly into the kinematics has been used. All of the terms in square

brackets are columns of the Jacobian C', and thus, the closed loop is unidentifiable by

the above 'identifiability condition'. Also from (5.27) it is seen that the source of the
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trouble is that the loop equations may be scaled arbitrarily and still satisfy the joint

angle and image plane data. The solution to this problem is to fix one link length

arbitrarily. This length determines the units of length. If conventional units, such

as a meter, are desired the calibrated vision system merely has to view the desired

meter stick and calculate the correction scale factor to its internal units of length.

As a final example of unidentifiable parameters consider the case when the data is

not 'persistently exciting'. For instance, if the hand point P is always to move such

that it stayed in a plane defined by the right camera axis z0, and this plane happened

to be coincident with both focal points, then (u x u ) x z 0 = 0 for all i configurations.

Thus, r(zO,) = 0 and the column of the Jacobian with respect to 31 is identically zero.

The parameter S, is unidentifiable in this situation. Though this scenario is unlikely

it does point out the importance of the choice of the configuration data used for

calibration. Although perhaps only simulation may determine the optimal data set,

it is possible to study the sensitivity of particular parameters [76].

5.5 An Example and Simulation

In order to clarify the general calibration procedure an example is now presented and

solved by simulation. Consider the planar 2-DOF manipulator connected to a head

mounted stereo system in Figure 5-4. In total there are six degrees of freedom in

the system: two manipulator joints, two camera rotations, and two one-dimensional

images. The kinematic parameters of interest are in the following order placed into

the array _: the three link lengths, three joint angle offsets, three length parameters

providing the displacement between cameras coordinates, two camera rotation offsets,4 1 f/ f! - o fy f o/ - ff

and two focal lengths: =(ao, a,, a2, 0, ,)2 A13 ,501,02 ,L, fR) A

simulation of this hand-eye system was performed by using the 'actual' parameter

values

_ = (i.0,1.0, I.O, -.8, ,0 , .i,.36,.i, O, O,.05,.05)T (lengths are in meters and angles in

radians). Joint angle data was generated by moving the four rotational joints 01, 02,

ii, and i2 over a trajectory starting at 81 = 0, 02 = 0, 01 = 0, and i2 = 0, and covering
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a . a, 3 L 0

Figure 5-4: Ezample hand-eye system used for simulation purposes.

a joint space volume defined by increasing each joint three times in increments of 0.1

rad- i.e., 3x 3 x3 x3 = 81 distinct configurations. The resulting joint angles and calcu-

lated image pairs were used as input to the iterative algorithm given by (5.18). In ad-

dition, a preliminary guess of 0 = (1.1, 1.1, 1.1,-.9, .1, .1, .11, .4, .11, .1,.1, .06, . 06)T

was provided and So was fixed at 0.1 m. The algorithm was run until the 'actual'

parameters were recovered to within eight decimal places.

5.6 Summary

A general framework for calibrating a manipulator and stereo system for performing

the task of hand-eye coordination has been presented. The emphasis has been on

autonomous calibration. The vision system was seen to be represented simply with

the D-H convention, thus allowing a unification of manipulator and camera model

notation. The vector based derivation of the columns of the closed-loop Jacobian en-

abled an identifiability condition to be derived. As examples of the application of this

condition the parallel axis problem, the length parameter scale problem, and the data

'persistency of excitation' problem were all discussed. The iterative paraji eter search

algorithm introduced in Chapter 3 was generalized and demonstrated in simulation.
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Chapter 6

Relevance of Robot Calibration to

Human Motor Control

The theory of closed-loop kinematic calibration is based on two premises that, though

generally taken for granted in robotics, must be justified for human motor control:

9 There is need for a task space, and we must therefore learn transformations

from our sensors to this 3-D internal representation - a representation distinct

from other internal representations such as joint space.

* There are structured internal models representing the sensorimotor transfor-

mations. These models are constrained to reflect the physics of our arms and

sensors, and do not take on an arbitrary form.

The second premise is not independent of the first; the hypothesis that there is a

task space requires a constrained parametric representation of the transformations in

order to reasonably explain how the transformations are calibrated (re Section 2.4).

Both of these premises are investigated in the following literature review.

6.1 Internal Models

The notion that there may exist an abstract internal model of the world may be

traced back to Descartes .[77]. For example, his contemplations of how a blind man
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uses a stick for perception led him to the conclusion that we have available a "natural

geometry". Without knowing the length of the stick the blind man can triangulate

to locate points in space. Descartes did not seem to confront the question of how

our arms are calibrated to provide the required hand positions. Nevertheless, he did

recognize the need for a geometric reasoning ability, or more specifically an internal

model structure.

6.2 Accuracy of Pointing

6.2.1 Accuracy Without Vision

One of the earliest systematic investigations of arm movement revealed that accuracy

can be maintained even in the absence of vision [78]. Woodworth concluded that

there are two phases to a movement: an impulse phase that moves the arm most of

the way to the target, and a current controlled phase that provides final adjustments.

During non-visually guided movement the latter phase does not exist and movement

is executed in a feedforward manner (with respect to vision).

To further investigate non-visually guided movements Woodworth [78] had sub-

jects repeat a target movement of a certain distance. The repeat movement was

performed (1) in a different area of the workspace, (2) with another writing imple-

ment, (3) at a different speed, (4) with the wrist instead of the arm, and (5) with a

different hand. The results show that across all of these conditions the eztent of the

movement can be reproduced to within approximately 10 percent of the extent of the

target movement. When movements were made with different parts of the body (e.g.,

torso, foot, etc.) accuracy of repeating the extent of movement was still maintained

to within 30 percent. Apparently the motor system is able to represent "distances,"

independently of the sensory modality, which is consistent (but not necessarily the

only interpretation) with the hypothesis that an internal 3-D representation of the

world exists.

Woodworth [78] goes on to argue that the sensation of distance is not purely
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Figure 6-1: A subject's attempt at drawing equal overlapping triangles with his eyes
closed (actual size). The movement was relatively slow, ;500 ma per segment.

derived from the endpoint positions in space. This is because, although the extent

of movement can be accurately controlled, the absolute positioning is less accurately

controlled. For example, in drawing a triangle repeatedly without vision a subject

replicates the lengths of the sides well, but the absolute location of the vertices drift

substantially [78]. This experiment is easy to repeat; see Figure 6-1.

Fitts [79] also noticed that movement accuracy depends upon other variables than

the target position: the initial position, the velocity and the extent of movement all

influence accuracy of hitting a target. It may be speculated from these studies that

velocity and reafferent force information are used in addition to position information.

This conclusion is in line with present knowledge of proprioceptors. Joint capsule

sensors seem not as important in providing position sense as spindles, and spindles
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provide only velocity and relative length changes in the muscle (4]. Thus, the pri-

mary proprioceptive sense must be integrated to provide position. Such integration is

sensitive to initial conditions, and is prone to drift.

6.2.2 Accuracy and Head Movement

Fitts [79] found that blind pointing accuracy to targets initially seen visually decreased

with the angular displacement away from straight ahead (see review [80]). Biguer

[81] extended these results to show that the inaccuracy was principally due to the eye

rotating laterally more than 30 degrees. If subjects are allowed to move their head

pointing accuracy changed in the direction of the head movement. These results only

reveal that our joint angle sensors are accurate within limited ranges - not surprising.

6.3 Proprioceptive Distortions

6.3.1 Normal Proprioceptive Distortions

Other work has revealed that the position sense inaccuracies are not just due to sensor

limitations. There are systematic distortions in our perception of distance measured

by our arms. For example, forced choice studies reveal that distances sensed in the

horizontal plane are perceived longer in the radial direction than across the chest

[82, page 31-25][83]. Sv.ch global distortions cannot be accounted for by a purely

memory-based account of the sensory transformations, and is more symptomatic of

inaccurate structured models. Unfortunately. these results are difficult to interpret

because distance perception is affected by duration, force and ease of movement [78).

6.3.2 Vibration Induced Proprioceptive Distortions

Vibrz tory" ,imulh.tion of"the .rm muscles can produce illusions of movement - presum-

ably from primary spindle excitation, These illusions are so powerful that movement

car, b,.; perceived to go beyond joint limits and distort parts of the body that the

hand is touching. More importantly, such arm muscle vi.brations can also create vi-
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Figure 6-2: (a) Transformations learned by strict association. (b) Transformations
with an abstract intermediate reference frame.

sual distortions that are most consistent with a hypothesis that a 3-D body-centered

reference frame exists and has rotated [84].

6.3.3 Prism Glasses and Adaptation

The most studied perceptual distortion is that caused by wearing prism glasses (with

lateral displacing, rotating, or inverting lenses) [29] [85] [86] [87] (88]. In a typical ex-

periment subjects wear prism glasses and are asked to adapt to manipulating objects

with one hand under the distorted view. Complete adaption usually occurs if enough

time is allowed (hours or days). Two aspects of the recovery are relevant.

(1) The adapted ability generalizes from the learned set of target points. This

global generalization supports the notion that the sensory transformatiov13 are con-

strained, as opposed to being built up by strict association. It is not clear, though,

whether the constraint is as simple as linear interpolation between neighboring points

in space [89], or whether the transformations are due to parametric adaption of global

models.

(2) The other aspect of the recovery from prism distortion is that inter-manual

transfer can occur. Inter-manual transfer refers to the ability to immediately achieve
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accurate hand-eye coordination with the hand that was not exposed during the adap-

tion period. The inter-manual transfer depends on various factors present during

adaption: whether the eye tracks the hand or visa versa, whether the whole arm is

seen or not, and whether neck movement is permitted or not [86J[87]. However these

dependencies are explained, the important conclusion is that inter-manual transfer

can occur. If inter-manual transfer never occurred then the simplest interpretation

would be that no intermediate coordinate system is used, and direct transformations

between the sensors are learned (Figure 6-2a). The finding that transfer does oc-

cur suggests that there are separate modules for the left arm, the right arm and the

head-eye system, and that each module transforms the sensor-space information into

a common task space - see Figure 6-2b (there is a possibility here that task space

is identical to joint space or retinotopic space). If adaption occurs in the head-eye

module then inter-manual transfer is observed. If adaption erroneously occurs in the

arm module then inter-manual transfer is not observed.

6.3.4 Teleoperation as a Proprioceptive Distortion

Another approach to studying adaption is to change the arm's geometry. Though

this cannot be done easily, an equivalent effect can be achieved by having a human

operator control a teleoperated I3bot [90](91] in a master-slave set-up (the master

being an exo-skeleton fit on the human arm). Distortion in the kinematics could be

systematically introduced into the slave manipulator. Variables such as whether the

shoulder joints intersect, or the link lengths change could be controlled. As with the

prism experiments generalization and inter-manual transfer could be studied.

Unfortunately, the teleoperation literature does not contain such studies. There

are reports that much training is necessary (months) [92]. A few groups have inves-

tigated the problem of using differing geometry master and slave robots. A so called

"incompatibility index" has been developed to measure the tolerated mechanical dif-

ferences between arms [93]. Vertut [90] has found that up to 30 degree orientation

mismatch is tolerated by an operator.

I have conducted informal studies of subjects learning to control an X-Y point
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on an oscilloscope screen with the elbow angle driving the X-movement and the

shoulder angle driving the Y-movement. The hypothesis that the adaption is highly

structured predicts that learning fast and accurate hand-eye (oscilloscope-eye) coor-

dination in one region of the workspace should generalize immediately to the rest of

the workspace. The two subjects tested took over three hours to learn to accurately

move in one quarter of the workspace. By this time they could move "ballistically"

to target points. In spite of this long adaption period, the learning immediately gen-

eralized to the rest of the workspace - as predicted by the constrained representation

hypothesis. These findings are only preliminary, and must be repeated with more

degrees of freedom involved, and less dramatic changes in the kinematics.

6.4 Mental Imagery

6.4.1 Reaction Times to Recognize Rotated Objects

The notion of an abstract 3-D reference frame is a premise of the work on mental im-

agery [94]. A typical result from these studies is that the reaction time in recognizing

a rotated object is proportional to the object's degree of orientation away from the

target object. The conclusion is that the object is incrementally rotated in an abstract

3-D reference frame until it aligns with the target object. Though plausible, this ab;1-

ity to reason spatially does not prove that a 3-D representation.exists. It woud be

adequate to explain these results with an internal joint-space representation. In fact,

in robotics joint space (or more generally, configuration space [95]) is often used for

planning. Further, when mental rotation experiments are repeated with pictures of

hands used as stimuli, instead of arbitrary objects, the reaction times, oddly enough,

obey arm anptomical joint limits [96].

More conclusive evidence for an internal 3-D reference frame comes from studies

in which subjects recognized letters drawn on various surfaces of their bodies. The

letters - half mirror reversed - were drawn while tb,.' body pcrta were in diFFere'at

configurations. The findings turn out to be consistent wit' the idea tha~t we do
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maintain one or more internal reference frames [97].

6.4.2 Structure from Motion

One of the most persuasive arguments for representing the world in a 3-D task space

comes from our ability to recover a rigid body's structure from the motion of moving

points [98][99]. Surprisingly, we can recognize a rigid object by only viewing random

points projected from a moving object onto a screen, in spite of distance not being

preserved between projections of points into different views. Ulman (991 argues that

this ability requires an assumption of the object being a rigid body in the 3-D world.

Thus, again, it seems that the motor system can represent "distance" in the 3-D

world.

A similar situation is encountered in joint space. The distance between points

in joint space is not preserved as the points are rigidly moved in the world. To see

this you only need to let one point be at your shoulder and the other at your hand.

Movement of only the si-oulder joint leaves the the distance between these two point

fixed in space, but it does change the Euclidean distance calculated in joint space.

Thus, none of the natural (intrinsic) sensor coordinat:s provide a convenient way in

which to reason about me'rical relationships in our 3-D world.

6.1 Nei'rophysiological Evidence

6.5.1 Direction Coding in the Cortex

There arc re-cnt findings that indicate that the firing of populations of neurons in

the cortex oncode the direction of hand movement - independently of the arm con-

figuration [1001 or load "1011. While encouraging, these results are hard to interpret.

The finding tha.t cells fire independently of the actual arm configuration or load only

indicates that thcrc is an i',.rnal' -. ..rsao-on. It does not imply that this repre-

se-atation is abstract from one of the intrinsic sensor spaces (e.g., retkotupic space).
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6.5.2 Muscles and Adaption

It is sometimes possible to explain sense mnotor adaption by muscle or muscle spindle

changes (e.g., see (102] and page 189 in [4]). Indeed, active movements seem to be

necessary for adaption to prism glasses [29]. While these findings are of eventual

interest in explaining the implementation of parametric adaption, they do not explain

how the amounts by which to adjust the muscle parameters are calculated. Further,

such muscle or spindle adaption can only accommodate simple changes such as joint

angle offsets or scales (for example, changing the neck joint angle offset by adjusting

the muscle spindles could compensate for lateral displacement prism glasses). These

muscle mechanisms cannot compensate for errors in the knowledge of link lengths or

joint axis orientations.

6.6 Discussion

In summary, the psychophysical data are not inconsistent with the hypothesis that

we can transform sensory information into an abstract 3D task space. Further, from

a functional stand point such a 3D task space is attractive: it enables simplicity in

representing and recognizing objects in the world. Oaf ontribution of this thesis has

been to show how structured models may be ,tsed to learn transformations to a 3D

task space. Another contribution has been to show how hard this learning process

really is, even with simplified robotics models. This difficulty of learning must be

carefully weig' -d against the above simplicity arguments for using a 3D task space

in the first place.
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Part II

Dynamics of the Elbow Joint

During Movement
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Chapter 7

Movement Control Theories

7.1 Introduction

Human arm movements are surprisingly stable, fast, and accurate considering the slow

neural hardware and large feedback propagation delays. As- mentioned in Chapter 1

this performance is partly due to pre.planned feedforward motor drive. We regularly

make ballistic movements without visual guidance, and animals are found to still

execute normal movement after proprioceptive deafferentation [103]. In the previous

chapters the focus was on the learning of feedforward kinematic information. In the

following chapters dynamic feedforward compensation is studied. The issue is not

how a feedforward dynamic model is learned, but whether such. a model exists, and

what form it takes.

Another reason for the high performance of the human arm is muscle dynamics.

Muscle has a very large dynamic force range. It can produce forces per unit weight

exceeding current robotics actuator technology, while it can stilt produce fine enough

forces to control the hand of an eye surgeon. Muscle can also be extremely fast; for

example, contraction frequencies of 120 Hz have been observed in some insects [104].

But most importantly, muscle has built in compliance. It has a short range high

stiffness, which may function in impact situations such as running [1051, and a long,'r

range low stiffness [105], which may allow compliant motion control without excessive

active feedback.
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A series of experiments are described with the goal of characterizing the control

system used in arm movement. Feedforward compensation and muscle properties will

be shown to be of ,, rticular importance.

7.2 Non-Linear Operator Description of Arm Con-

trol

The arm control system may take on the general form depicted in Figure 7-1, where

it is assumed that the task is to track a joint angle trajectory. The input command is

the desired joint angle trajectory Od(t) and the actual output trajectory is 0(t). The

non-linear operator A represents the feedforward dynamics. It computes the feedfor-

ward torque rd(t) = Aed(t). (The word operator is used here in the mathematical

sense defined in [106][101. An operator maps one whole time sequence onto another

whole time sequence. In contrast to a function, an operator may represent systems

with memory.) The non-linear operator 7?. represents the feedback system driven by

muscle spindles (or other proprioception) with a sensitivity controlled by the gamma

drive. Finally, the non-linear operator ? represents the musculo-skeletal plant being

controlled. Though the following treatment will be general, it is helpful for under-

Jtanding to keep in mind the example of a proportional-plus-derivative controller

acting on a second order linear system. In this example P- - Id 2/dt'2 + Bd/dt + K,

7 = Kod/dt + Y.p and A =O.

In the absence of external perturbations r, inspection of Figure 7-1 yields the

general input-output relation of:

(1 + P90) = (?A + PlZ)Od (7.1)

If A inverts the musculo-skeletal plant dynamics (i.e., PA = 1) then perfect feedfor-

ward control is achieved: 6 = Od (except for input signals zeroed by 1 + PRZ). Also,

if the open-loop operator P7R has a much larger effect than either PA or the unity

operator 1 on any signal (i.e., the 'gain' [10[106] of PR, denoted IPRI, is large),
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Figure 7-1: General controller for a joint angle trajectory 0(t).

then high gain feedback cornmaiA fvllowing is achieved: 0 ; Od (except for input

signals zeroed by P ). This last itev. should be used with consideration of the small

gains theorem [10][106): if the open-loop gain 1jPlZ is less than unity, then stability

is always guaranteed. See Section 1.1.1.

7.3 Closed-Loop Dynamics and a Perturbation

Model

With human subjects, aside from measuring EMG, the motor system may only be

studied by injecting external torques r(t) and measuring the joint angles 9(t). None

of the other quantities in Figure 7-1 can be measured. In this section a model of

relationship between total torque inputs and joint angle displacement will be devel-

oped for the motor system governing the elbow joint. Then a perturbation model

will be developed to relate externally applied perturbations to recorded joint angle

movements.
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7.3.1 Model of Closed-Loop Single Joint Dynamics

The operator expressing the closed-loop dynamics relating total torque inputs to joint

angle 0(t) is easily derived to be IcL such that:

(1 + R)Pt = P (7.2)

We now derive a more detailed form of PcI. First transform Figure 7-1 into the

functionally equivalent form of Figure 7-2:

,d rV "e

Figure 7-2: Transformed equivalent diagram to Figure 7-1.

where A!' = A + R?, and r,(t) is considered to be the commanded (voluntary) torque

input to the feedback controller. Now, include a muscle model as follows.

7.3.2 Model of Muscle

Assuming negligible serial tendon compliance, the single joint musculo-skeletal dy-

namics P may be represented by the following general circuit diagram:
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Figure 7-3: Musculo-skeletal dynamics P.

where I is the inertia of the forearm, e is the muscle torque generation mechanism

and z(O(t), (t), t) represents the intrinsic parallel force dynamics of the muscles. Of

course, multiple parallel muscles may act on the arm, but their effect can always be

reduced to a circuit equivalent to Figure 7-3. Symbolically, Figure 7-3 may be written

as:

e = Ii(t) + z(9(t),t(t),t) (7.3)

Defining the new operators Z and I such that:

Zo(t) = z(9(t),(t),t) (7.4)

TO(t) = Ii(t) (7.5)

the muscle dynamics may be explicitly included in Figure 7-2 to give Figure 7-4:
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Figure 7-4: Closed-loop dynamics with muscle model explicitly shown.

7.3.3 Equivalent Feedback Model of the Joint Mechanical

Properties

A further transformation of the diagram in Figure 7-4 gives the functionally equivalent

Figure 7-5:

7*+ Tv 0

Figure 7-5: Equivalent feedback model of the joint mechanical properties.

or symbolically Figure 7-5 is:

0 = 0(t) + (Z + IZ)0(t) - r ,(t) - T(t) (7.6)
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This last loop transformation provides an important insight that will be used repeat-

edly. That is, the intrinsic muscle dynamics can be equivalently built with an active

feedback system, and effectively provide feedback control. This is the idea behind the

equilibrium control theories of [28], explaining experiments in which active feedback

was removed. We will refer to the effective feedback system and will mean that of

Figure 7-5 - generated by both intrinsic muscle properties Z and active feedback R?.

Just as the mechanical compliance of the muscles may be built from an equivalent

active feedback controller, the active feedback can sometimes be realized by a phys-

ically equivalent passive device (e.g., Figure 7-5 can be realized with an equivalent

physical circuit of the form shown in Figure 7-3 with f = z+r sl stituted for z, where

r is defined from the operator RZ as described below). Colgate [11] elaborates on this

with regard to stability. We will also use this physical equivalence notion implicitly

when we talk about mechanical compliance. The term compliance is typically applied

to passive mechanical devices, but as an actively controlled feedback system can often

be built with an equivalent passive device we can say that this active system has an

effective compliance, or compliance for short.

7.3.4 Model of Reflexes

To proceed, assume that the proprioceptive feedback only provides velocity and po-

sition information. Further, let us neglect the effect of feedback delay (this will

be discussed further in Section 7.6). Then, in general the non-linear feedback is

O = r(o(t), (t), t), and (7.6) becomes:

0 = Ot+~~)Ot,)zOt,~)t- t-~)(7.7)

7.3.5 External Torques

Considering the perturbation torque T'(t) to be the input, and adding the possibility

of gravity (7.7) becomes:
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-(t) = 1(t) + f(o(t), (t), t) - r,(t) - mgc sin 0(t) (7.8)

where I, m and c are the forearm inertia, mass and center of mass respectively,

f(0(t),0(t),r.(t),t) = r(0(t),i(t),t) + z(0(t),0(t),t), and g = 9.8m/S2 . Notice that

f -r is the net muscle torque acting on the arm inertia (including parallel connective

tissue forces, active feedback, and intrinsic mechanical properties). The gravity term

was derived by assuming that the arm is moving in the vertical plane, and 0 is defined

to be zero at vertical as described in Section-9.1.

7.3.6 Perturbation Model Used in Experiments

We are now ready to address the question of how to experimentally study the closed

loop dynamics PIj represented in (7.8). As the internal forces (e.g., r,(t)) that act

in addition to the known external forces cannot be-controlled or measured, only the

local behavior of -?,I about a nominal trajectory 00(t) may be studied. Applying an

external perturbation r(t) during execution of the nominal trajectory gives a new tra-

jector3 that is related to the nominal trajectory through the dynamic behavior of the

arm. The arm dynamics can be studied by estimating the relationship between the

applied perturbations and the deviations from the nominal trajectory. Specifically,

if the applied perturbations are small enough, the closed-loop dynamics may be ap-

proximated by the differential behavior about the operating point (0o(t), ro(t), "r(t)),

which is:

Ar(t) = I(t)A#(t) + B(t)A,(t) + K(t)AO(t) (7.9)

Aq(t) = 0(t)- 00 (t)

Ar(t) = r(t) - 'o(t)
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where the joint inertia 1(t) = I + f/fl9, the joint viscosity B(t) = Of // and the

joint stiffness K(t) = 8f/ 8 - mgc cos Oo(t). The second term of I(t) should be zero

as it could only result from high bandwidth force feedback. Also, the negative gravity

contribution to the stiffness turns out to be relatively small (see Figure 10-16 in the

results, Chapter 9). 00 and ro are the angles and torques measured during an average

unperturbed movement. ro may be non-zero.

In the sense that the parameters I, B, and K relate force input to velocity output,

they may be referred to as mcchanical impedance parameters. The relation between

force input and position atput may be referred to as complez stiffness, with compli-

ance being the inverse of thi relation.

7.4 Control Hypotheses and Predictions

In subsequent chapters experiments to estimate the perturbation model (7.9) are

described. In these experiments subjects perform the simple task of moving their arm

between two targets, and perturbations are applied to estimate the dynamics. For the

present, assume that the locally linear behavior of Pci may be estimated from these

perturbations, and that it may be adequately modeled by the time-varying second

order system (7.9). Now, consider what this experimentally determined perturbation

model may reveal about the modules A, 1Z and 'P in Figure 7-1.

7.4.1 Feedforward Versus Feedback Control

First, focus on the role of A, the feedforward control. One extreme hypothesis holds

that A compensates for the plant dynamics entirely (i.e., A = 'IP- , so 0 = 00).

This feedforward compensation is non-trivial (i.e., not a linear system) for multi-

link arms [21] or even for a single joint operating against gravity. In spite of the

difficulty of learning and computing '-1, -this hypothesis of feedforward compensation

is consistent with experimental evidence. Specifically, trajectories are found to be

invariant across load, gravity and speed conditions (call this trajectory invariance).

That is, for a given movement the trajectories are the same in spite of differing inertial
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loads or gravity [107](108], and even take on the same form for different speeds once

normalized by movement time [107].

A competing explanation for trajectory invariance is that the closed-loop system

?aI is made to operate as an effective high gain feedback controller (I'P',91I,> 1, so

0 = 9o). Non-linear link interactions [21] or gravity are treated as disturbances to be

servoed out by the high gain feedback. As shown in Figure 7-5, this may be imple-

mented either by active feedback, RZ, or by altering the intrinsic muscle properties,

Z. Both of these possibilities are unlikely. With regard to reflexes, Bizzi et al. [103]

provide evidence showing that reflex gains are low. This is not surprising, as delays

of more than 25 ms would make high gain feedback unstable. With regard to muscle

stiffness, for normal speed movements the co-contraction necessary to produce high

intrinsic stiffness is rarely observed [109][110] - tri-phasic, or bi-phasic alternating

muscle bursts are usually observed. Thus, neither of these implementations are ac-

ceptable, and an account of trajectory invariance requires some form of feedforward

control.

7.4.2 Compliance Control Hypothesis

A more likely scenario is that feedforward control is used, but it is not always ac-

curate enough, so low gain feedback is used to assist when necessary. In this way

trajectory invariance may be accounted for, and feedback ? and intrinsic muscle

properties Z may still have a role. More generally that role would be to control

the mechanical compliance of the arm. Specific examples of compliance control have

been suggested previously. For example, the reflex action of feedback may make-the

system dynamics look more like a linear compliance, thus simplifying the job of the

feedforward controller [111]. Another suggestion is that low levels of muscle stiffness

may provide stability against unexpected disturbances [28]. Finally, as mentioned

in Chapter 1, the control goal of having a high mechanical compliance is advanta-

geous for constrained motion, particularly when the constraint is unpredictable or

unexpected (e.g., to avoid jamming, excessive contact force, damage or injury).

Thus, for the movements studied in this-thesis a reasonable control hypothesis to
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test is that the arm's mechanical compliance is maximized, while still maintaining

the specified task accuracy. That is, the arm's effective stiffness (i.e., restoring forces

to trajectory errors - with the motor system viewed as the feedback controller in

Figure 7-5) should be low, but high enough to assure that trajectory errors larger

than the specified task accuracy are removed. AG imperfect feedforward contr l or

external perturbations will inevitably cause trajectories errors, the effective stiffness

must be positive at all times. In s..mmary, the first prediction for the perturbation

experiments is:

(P1) In so far as the arm's stiffness can be adjusted for a particular task, the stiffness

should be as low as the task accuracy allows. In the task of pointing between targets

accuracy during movement is not demanded. Thus, the stiffness should be low during

movement (to provide compliance), and higher at the targets (to ensure 'ccuracy).

The mechanism for controlling arm compliance may rely on both intrinsic muscle

properties and reflex activity. For example, the intrinsic velocity dependent dynamics

of muscle could make lowering of the stiffness during movement automatic (this is

discussed further in Sections 7.5 and 11.3). In addition, reflexes are known to ad-

just dramatically luring- particular tasks. For example, in walking there is a strong

anterior tibial H-reflex during stance, but little reflex response in the swing phase

[112].

7.4.3 Limited (Static) Feedforward Control Hypothesis

The computational complexity of feedforward control naturally leads to the question

of how much feedforward control is really necessary. Consider the hypothesis that only

the instantaneous static component of the dynamics P,1 is inverted by the feedforward

A! in Figure 7-2. That is, the feedforward torque r, is computed by (7.8) with

r(t) = f(Od(t)10,t) -mgcsinOd(t) (7.10)
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Under this hypothesis, the desired trajectory Od(t) can be viewed as an equilibrium

trajectoey [28], in the sense that it is only achieved when the arm comes to rest.

During movement of the arm there is always a trajectory error, due to the non-static

components of 'Pi. Note that this is feedforward control in the sense that it requires

knowledge of the static properties of musdes. The behavior of the actual trajectory

O(t) driven by the static feedforward command (7.10) is governed by:

0 = i(t) + f(0(t),Ojt),t) - f/(Od()01t)

-mgc(sin 0(t) - sin Od(t)) (7.11)

Now consider the consequences of this static feedforward hypothesis for attempting

to generating two identical but different speed movements. That is, suppose (7.11)

describes a particular movement O(t) specified by the equilibrium trajectory Od(t),

and suppose a faster speed movement 01(t) is attempted under this hypothesis -

that is by simply time scaling the equilibrium profile by a factor of r. Thus, the new

desired trajectory is Od(rt). Substituting this into (7.11), and replacing t by t/r gives

the equation governing the behavior of the faster movement Of(t):

0 = r2I~f(t/r) + f(O(t/r),r,(t/r),t/r)-f(od(t),O,t/r)

-mgc(sin Of(t/r) - sin Od(t)) (7.12)

where the time scaled faster movement Of(t/r) should be close to 9(t).

To see how different Of(t/r) and 0(t) actually are make the following simplifica-

tions: (1) assume the dynamics f are time invariant (or at least they change at a rate

r faster for the faster movement), and (2) assume that the dynamics are the same

for both movement speeds (later we will see how scaling the dynamics may change

things). Now subtract (7.11) from (7.12) to give:
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0 = I(r 29(t/r) - i(t)) + f(Of(t/r),r94(t/r)) - f(O(t),e (t))

-mgc(sin O (t/r) - sin 9(t)) (7.13)

When the movements just start (without loss of generality, let that be at 0 = 0) only

the acceleration terms are significant. Thus, (7.13) implies r'if (t/r) = i(t). That

is, there is a factor of r 2 less acceleration in the time scaled faster movement at the

beginning the movement. Equivalently, the scaled faster movement looks like it has

r2 times more inertia in its dynamics. Once significant velocity is reached predictions

are harder to make without simulations, but the trajectories do diverge increasingly.

Alternatively, the dynamics might be adjusted to compensate for an increase in

movement speed. Consider the case where the dynamics are linear and of second

order. In this case, increasing the stiffness by a factor of r2 and the damping by a

factor of r is the appropriate adjustment to have the faster movement of(t) have a

time scaled trajectory 01(t/r) equal to the slower trajectory 9(t) [107)[113] (assuming

no gravity is present). To prove this, let f(Of(r),Oj(t),t) = B~1 (t) + K9,(t), and

g =0 in (7.12), and divide through by r2 to give:

0- =I(t/r) + r-BO(t/r) + r 2 K(Of(t/r) - Od(t)) (7.14)

Letting B = rB and K = r2 K eliminates r, and thus makes the time scaled solution

Of(t/r) identical for all speed movements.

In summary, with regard to different speed movements the static feedforward

hypothesis implies the following prediction for the perturbation experiments:

-(P2) Either the time scaled trajectories must differ for different speed movements, or

the dynamics must be scaled. If the dynamics are approzimated by a se*cond order

linear system, this dynamic scaling requires that the stiffness increases by a factor of

r 2 and damping increases by a factor of r, where r is the movement speed increase.
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Next consider the influence of gravity on a control system operated under the

static feedforward hypothesis. The prediction for the experiments is simply:

(P3) The absence or presence of gravity should not affect the stiffness, damping or

trajectory. It should be compensated for by the hypothesized static feedforward system.

Of course, if the actual trajectory differs significantly from the desired trajectory the

gravity compensation might be inappropriate. See (7.11). This deviation of the actual

trajectory from the desired trajectory should be small for slow speed movements, but

increase with increased speed of movement - as discussed above.

It is possible that gravity compensation is achieved by feedback instead of feed-

forward control. For example, there could be an integrator in the feedback controller

7, eliminating the steady-state positioning error (e.g., PID control). In this case, the

linearized dynamics would have to be at least third order. As second order dynam-

ics adequately account for the variance in previous posture perturbation experiments

(see review in Chapter 8) this is not expected to be a possibility.

Finally, with respect to non-static changes in the dynamics the static feedforward

hypothesis does not predict compensation. For example,

(P4) When the dynamics are changed by an ezternal viscous damping load, the static

feedforward compensation should not adjust for this change, and the trajectories should

thus differ from the unloaded trajectories.

Earlier studies of whole arm movements indicate that damping loads do change the

trajectories. Using the instrumentation techniques and methods of [108][1071 we stud-

ied whole arm sagittal plane movements with a damping load applied to the elbow

joint. Figure 7-6 shows typical normal speed trajectories made with and without

the damping load of 1.5 Nm/rad/s. The figures show three typical movements be-

tween targets after 20 practice trials. Movements recorded immediately after changing

the damping are very similar, showing little adaption. Particularly striking is the in-

creased difference between the upward (dotted lines) and downward movements (solid

lines). See also [114].

The finding that a damping load does affect the arm's trajectories is to be con-

trasted with the finding that whole arm trajectories are unaffected by a mass load
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Figure 7-6: Whole arm joint-space trajectories made (a) without and (b) with a
damping load of 1.5 Nm/rad/s acting about the elbow joint. Subjects were given time
to adapt to the load changes (though little adaption occurred), and in the unloaded
case the subjects still carried the mass of the damper. Three upward (solid) and three
downwards movements (dotted) are shown. Each movement took approximately 500
MS.

carried in the hand [107]. If the results in [107] are correct, there must at least be

non-static compensition for inertial loads.

Approximate estimate of desired trajectory

Under the rough approximation that the muscle dynamics are linear it is possi-

ble to back calculate the desired equilibrium trajectory, given a static feedforward

hypothesis:

OdAi,,d = 0 + 1/K(t)[I(t)# + B(t)9 - mgcsinO] (7.15)

The difference (0 - Od,,i,d) provides an indication of the positioning accuracy of the

feedforward compensation. Although the dynamics may be non-linear (though see
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[111] for the possible linearizing effect of reflexes), this calculation is approximately

correct if the 0, 0 and (8 - O&.,-d) are respectively of similar amplitude and frequency

content to the A#, AG and AO perturbations used to estimate I, B, and K.

7.4.4 Dynamic Scaling Feedforward Control Hypothesis

Another possible method to simplify feedforward control is to learn accurate feed-

forward commands for only one slow speed movement and scale up the torques and

dynamics to achieve the same movement at higher speeds [107][113]. Assuming mus-

cle is adequately approximated by a linear system it is possible to predict under this

dynamic scaling hypothesis that:

(PS) The stiffness should scale up by a factor of r 2 , and the viscosity should scale up

by a factor of r, where r is the speed increase factor.

The weakness with this argument is, again, that the dynamics may not be linear.

For single joint movements executed under this dynamic scaling hypothesis the

required stiffness and viscosity scaling keeps the damping ratio fixed. In recent pos-

ture experiments we have found that the damping ratio is constant across three levels

of voluntary muscle co-contraction [115][116]. Scaling of the dynamics during move-

ments has not yet been tested.

7.5 Role of Muscle Dynamics

The measured perturbation dynamics are a function of active feedback, inertia, con-

nective tissue, and muscle. To assess the possible contribution of muscle the following

review is provided.

7.5.1 Frequency Range of interest

First, consider what aspects of muscle dynamics are not relevant. For the uncon-

strained movements studied in -this thesis, it is possible to show that above 5 Hz the

elbow joint dynamics are dominated by the arm inertia (see Figure 10-8). Thus, only
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muscle/tendon dynamics between 0 and 5 Hz are relevant to understanding these

arm movements.

7.5.2 Molecular Level Description

On a molecular scale the mechanism of muscle force production is described well by a

model of crossbridge bonding between sliding filaments [117]. A cycle of crossbridge

connection and disconnection happens continuously. The instantaneous number of

connected crossbridges is related to the stimulation frequency, and it is roughly pro-

portional to the net muscle force.

When a tetanized muscle fiber is subjected to an externally imposed step change

in length there results a large transient increase in force (typically, lasting only a few

milliseconds), and then a gradual change in force to-a steady-state value [118]. The

latter force dynamics are most relevant to-the present arm movement study, (i.e., they

are in the 0-5 Hz frequency range, above which inertia dominates). To a first ap-

proximation, the transient force can be attributed to -the stiffness of the crossbridges

before they break, and the dynamics of the slower force production process can be

attributed to the crossbridges cycling and reforming. A more detailed analysis re-

quires consideration of-the distributed nature of the sarcomeres within the fiber. The

sarcomere lengths are known to be non-uniform and change even when the muscle is

in isometric contraction (see review in [119]).

7.5.3 Steady-State Length-Tension Curves

The steady state force value-is a function of only the final length, giving the so called

length-tension relation. Figure 77 shows a length-tension plot made by Gordon et

al. [1201 from an experiment where they-measured the- steady state force reached in

response to-an-isotonic change to a specified fixed length (some points extrapolated).

The force change -to steady state takes 50-100 ins (as in[118]) wh;ch implies that-the

slope- of the length-tension curve can only be-interpreted as a 'stiffness' when dealing

with- phenomena -slower than 50-100 -ms.
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Figure 7-7: Static length-tension curve for changes of sarcomere length in a muscle
fiber. Numbers correspond to interpretation in terms-of the sliding filament theory.
Reprinted from [120).

7.5.4 Isotonic Shortening

During muscle movement the length-tension relation has no meaning. In fact, during

the isotonic shortening of the muscle fiber in [1201 the velocity is relatively constant,

indicating that the stretching fiber presents a viscous-like load, with zero stiffness.

7.5.5 Whole Muscle

On the macroscopic scale similar length-tension relations are found [121][122][123]

(see Figure 7-8 from [122]), although themechanisms are more complex. Mammalian
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Fig. 3. Tension during extension through different parts of the length range.
Tension records from a number of different extensions similar to those
shown in Fig. 2 have been traced (continuous line)-to show how the tension
during lengthening differs from the isometric tension in various parts of the
length range. Positions of the ankle joint are shown below corresponding
parts of the abscissa.

In each- case the muscle was lengthened through 6 mm at 7.2 mm/sec.
The interrupted lines are isometric length-tension plots.

Figure 7-8: Static length-tension curves for responses to changes in whole muscle
length, with different rates of asynchronous stimulation. Reprinted from [122]

muscle fibers are-arranged in parallel, and attached to ligamentous tissue in a com-

plex pennate structure. Changes in pennation angle can allow muscle length changes

without significant muscle fiber length changes [124]. Also, muscle fiber recruitment

can alter the dynamics. Muscle is innervated by many intermixed motor-neurons,

which are commonly thought to be recruited by size [125], but can also be recruited

in complex synergistic patterns (126]. Net muscle force production is regulated by

recruitment and stimulation rate. At low forces recruitment is found to be the domi-

nant control mechanism, and thus affects the muscle stiffness most dramatically [127].

Presumably, the force and dynamic stiffness should increase with an increase in the

number of parallel muscle fibers recruited.
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7.6 Role of Reflexes

The experiments described in this thesis do not provide a clear distinction between

reflex induced stiffness and intrinsic muscle stiffness. An ideal way to investigate

the role of feedback would be to reversibly block all relevant afferent information

(e.g., with a fusimotor block [128] [129]) during selected movements and observe the

difference in the estimated perturbation parameters. As this is a difficult experiment

(even in animals) we can only distinguish the feedback and intrinsic muscle properties

from the closed-loop dynamics, 7 ,1. This distinction is perhaps possible because of

delay.

If delayed feedback R is significant, then the closed-loop dynamics P7j should

be a function of not only the current state (velocity and position), but also delayed

velocity and position. Thus, to a first approximation the linearized dynamics should

be a second order model with delay terms:

Ar(t) = I(t)AO(t) + B(t)&_.(t)-+ K(t)AO(t) (7.16)

+Bd(t)A (t + T) + Kd(t)AO(t + T)

where, for e...mple, T = 25ms. The parameters of (7.17) can be estimated, and the

relative contribution of the delayed terms can then be tested. This will be left for

future work.
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Chapter 8

Literature Review

Many perturbation studies have been performed to infer intact arm dynamics. This

chapter will review these studies to compare instrumentation, modeling techniques,

and perturbation parameter estimates. With -the-exception- of [130] the research has

been restricted to measuring the mechanical -properties during posture.

The review is organized in terms of the instrumentation used for applying the

perturbations and the perturbation type. This organization is perhaps the clearest as

the particular instrumentation limits the range of perturbations possible (and in some

cases changes the arm's dynamics), which in turn affects the estimated perturbation

dynamics. If the motor system was Jinear all -perturbation methods should give the

same results. Unfortunately, it is non-linear, and impedance estimates are known to

depend on the perturbation amplitude, type, and frequency content.

8.1 Passive Mechanical Perturbations

8.1.1 Sinusoidal Position Perturbations

A simple method of perturbing the arm is to attach it -to a shaft mounted eccentrically

on a rotating fly wheel (a rotating cam setup). In [12] (see also Zahalak [1311)

such an apparatus was used to apply sinusoidal position perturbations of up to 22

Hz. Perturbation amplitudes of 0.46 mm, 0.96 mm, and 4.6 mm were tested while
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the subject maintained large mean forces (35-130 N). The frequency dependent

damping was inferred from the out-of-phase force responses. Damping increased

roughly proportionally to frequency, as is expected of a second order system, with

the exception of the behavior between 8-12 Hz. In the 8-12 Hz frequency range the

damping surprisingly dropped below zero for the smallest amplitude perturbations,

predicting a form of limit cycle instability.

The main problem with this approach is that the low frequency sinusoidal stimuli

may be tracked voluntarily. At frequencies below 6 Hz the authors found that the

results were very variable and could not be used. As the in-phase system response

was dominated-by the arm inertia at or above 6 Hz (i.e., the in-phase force increased

proportionally to the square of the frequency) stiffness estimates were difficult to

make.

8.1.2 Viscoelastic Perturbations

Another method to assess the mechanical response of the arm is to attach it to a

pair of springs (13](132]. The arm is set into oscillation by off-setting the spring from

the equilibrium. In [13] this method was used to drive the arm into a sustained 8-12

Hz, 3 mm tremor (their predicted range of instability (12]). In [132] this method was

used to show that the arm's natural frequency (considered as a second order system)

increases with the subject's voluntary resistance to the perturbations. They also used

a pseudorandom binary input (see below) to obtain a more detailed description of

how the dynamics change with voluntary command change.

8.1.3 Inertial Perturbations

Bizzi et al. [133] used inertial loads to assess the difference in monkey head posi-

tioning -with and without proprioceptive feedback. They found that even without

proprioceptive feedback a monkey could still move its inertially loaded head to , de-

sired position. As a follow up to this experiment Bizzi et al. [134][135][136] performed

a similar experiment on monkey arms. Here they perturbed the deafferented arm
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with a position pulse during movement [136], and found that the arm qualitatively

returned to the original path after the pulse was over. Thus, they speculated that

a virtual trajectory was specified as the input command, and the intrinsic muscle

stiffness maintained the arm on that trajectory. No stiffness estimates were made

during the movements.

8.2 Electromagnetic Actuators

8.2.1 Sinusoidal Positions Perturbations

Agarwal and Gottlieb [137] studied the position responses of the ankle joint to sinu-

soidal torque inputs applied by a DC torque motor. They also found that sinusoidal

inputs were problematic. Such inputs produced a different compliance than measured

with random inputs (see below). They suggest that the motor system's dynamics

changes to adapt to each separate frequency input.

8.2.2 Sinusoidal Force Perturbations During Movement

Lanman [130] studied the response to sinusoidal force perturbation applied during

movement. Only high frequency force inputs between 15 and 30 Hz were analyzed.

He used a similar analysis techniqui to [12], which relies on a preliminary estimate

of the arm inertia to estimate the total joint torque. This total joint torque was then

compared with joint acceleration. He assumed a frequency dependent second order

model, defining the in-phase component of the joint torque as the stiffness, and the

out-of-phase component as the damping. The main finding was that the joint stiffness

is proportional to (1) the load force and (2) the inverse of the velocity. For unloaded

movements the stiffness drops during the movement. For movements loaded with a

viscous damper the force dependency of stiffness cancels out the velocity dependency,

and can even increase the stiffness over the resting stiffness. Lanman attributed the

measured stiffness to short range stiffness of crossbridges (see discussion in Section

11.3).
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8.2.3 Step Force Perturbations

Crossman and Goodeve [8] studied wrist rotation responses to small amplitude step

changes in torque. Although they do not give details of the size of the perturbation

or the nature of force actuation, they claim that a critically damped second order

system models the responses well.

8.2.4 Step Position Perturbations

Mussa-Ivaldi et al. [138] used a two link direct drive manipulandum to apply pertur-

bations to the whole arm supported in the horizontal plane at posture. They used a

'do not intervene' instruction to the subject, and defined the stiffness as the ratio of

force to position change after about 200 ms. They found that the two dimensional

stiffness fields always had a characteristic maximum value oriented radially through

the shoulder.

Sinkjaer et al. [139] studied human ankle torque responses to step changes in

angle. A servo controlled geared DC motor was used to provide 20 step angle changes

with a 40 ms rise time (other amplitudes between 10 to 70 were also used). The

'steady state' (after 450 ms) torque changes were used- as a measure of stiffness, with

the subjects being asked to 'not intervene' during the-perturbations. In spite of the

possibility of voluntary intervention, they found that the stiffnesses measured at low

background torques were comparable with the stiffnesses measured for the ankle joint

with pseudorandom inputs [140][141]. However, at higher background torques they

found almost constant stiffnesi, contrary to [141].

An interesting innovation in [139] is that they were-able to measure active muscle

stiffness without reflexes. The authors found that by stimulating the deep peroneal

nerve transcutaneously they could activate the anterior tibial muscle to both maintain

a fixed mean torque and abolish reflex or voluntary input. These intrinsic muscle

stiffnesses were found to be only slightly-lower than the stiffnesses measured with the

reflex intact.
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8.2.5 Gaussian Random Torque Perturbations

Agarwal and Gottlieb [140] studied the position responses of the ankle joint to random

Gaussian noise torque input, Band limited (2 to 30 Hz useful power) Gaussian white

noise was applied with a DC torque motor (the authors neglected to mention the

amplitude (i.e., standard deviation) of the input). They found that, in contrast

to their earlier sinusoidal perturbation studies, the response could be adequately

modeled by a linear second order system (with coherence of about 90%).

The ankle joint stiffness was found to increase with mean voluntary torque pro-

duction (ranging from 17 Nm/rad at zero torque to 45Nm at 2 Nm torque) and was

angle dependent over a 240 range (ranging from .5 Nm to 30 Nm for the zero vol-

untary torque level). Using the estimated inertia value of approximately 0.02 kgm 2

(which includes the inertia of the apparatus) these stiffness estimates give natural

frequencies between 4 and 7 Hz.

Yosef and Inbar [142] also used Gaussian noise torque inputs to measure joint

impedance. They used a torque motor to apply input forces to the elbow joint, but

complicated matters by not measuring the motor torque. Thus-they had to estimate

the torque from the motor dynamics. They found that the estimated joint inertia can

change and attributed these changes to Golgi organ tendon force feedback. Another

explanation is that their estimated torques were not accurate.

8.2.6 Pseudorandom Binary Torque Perturbations

Soechting et al. [143] (see also [144][132][145] for related work by these authors) used

pseudorandom binary sequence (PRBS) torque inpuits to characterize the EMG re-

sponse of the elbow joint during movement. They used an amplitude of 8 Nm, and 20

ms elements in the PRBS. A novel time-varying impulse response identification tech-

nique was used to characterize the force to EMG response. Although they recorded

angular position information, they unfortunately did not report any force-position

transfer functions.
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8.3 Hydraulic Actuators

Hunter and Kearney [146][147] used angular pseudorandom binary sequence (PRBS)

inputs to characterize the human ankle joint torque response. They drove a position

servoed electro-hydraulic actuator with a 200 Hz PRBS command to produce an

input power spectrum flat from 0 to 25 Hz. They found that a second order model

adequately accounted for the response, but that the model parameters depended upon

the perturbation amplitude.

Weiss, Hunter and Kearney (148][149](141] extended the results of (140]. They

found that there is a position dependence of the joint stiffness over the entire range

of motion, and that there is a linear relation between mean voluntary torque and

stiffness for each position.

Damping ratio's of 0.3 to 0.4 were measured (the same as for the random inputs

in [140]), which should be contrasted with the damping ratio's of 0.8 to 1.0 measured

in pulse perturbation experiments (e.g., [8]). See Section 11.1 for further remarks

concerning this discrepancy.

They also found that at high voluntary torque levels the estimated inertia in-

creased. This anomaly is likely due to the muscle stiffness increasing so high that the

actuator could not produce sufficient power at frequencies where the inertia domi-

nated. Thus, for high force levels frequiencies of up to 100 Hz are required for proper

system identification.

8.4 Pneumatic Actuators

8.4.1 Pseudorandom Binary Torque Perturbations

We-have reported preliminary results with a wrist-mounted pneumatic thruster (air-

jet) [116][150][151]. This one dimensional 400 g airjet applies ±4 N binary forces

to the wrist, at frequencies up to 75 Iz. The airjet switches the flow direction by

a fluidic property called the Coanda effect. The current limitations of this airjet

are that it can only produce binary force sequences, and that the magnitude of the
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force cannot exceed 4 N. The advantages are that it is unencumbering, it changes

the arm dynamics minimally, and it has a high bandwidth. We intend to develop a

3-dimensional version similar to Colgate's airjet described below [152].

8.4.2 Graded 3-Dimensional Torque Perturbations

Earlier wrist mounted airjets were designed by Colgate [152] and Murray [153]. Both

of these designs incorporated the additional constraint that the airjet had to produce

graded forces. The airjet in [153] produces 8 N pulses with a 40 ma rise time. It is

of low bandwidth, but has three states: +8 N, -8 N, and 0 N. The airjet device in

[152] produces controllable 3-dimensional forces al up to 8 Hz. The airjet's open-loop

performance (i.e., just producing binary forces) could exceed 25 Hz. Both of these

designs were based on a spool-valve switching mechanism.
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Chapter 9

Time-Varying Identification

Method

The objective of the experiments is to find the time-varying parameters I(t), B(t)

and K(t) in (7.9) while the subject is executing a fixed movement pattern, specified

by 0o(t). It should be emphasized that these impedance parameters are only valid

for the operating conditions under which they are measured. In no way is the system

assumed to be linear. This perturbation model describes the locally linear behavior

of the closed-loop dynamics Pa.

9.1 The Task

In order to estimate time-varying dynamics many repeated movements are required to

provide an ensemble average. Thus, it is critical to choose a task that may be made

repeatably. After preliminary tests, it was found that a task that subjects could

repeat accurately was to make rhythmic movements between two target points, in

time to a regular auditory stimulus. This was the task performed in all experiments

described.

The two targets used were 1.0 tad (approximately 57 degrees) apart, well away

from the joint limits (Figures 9-1 and 9-2). The upper arm was immobilized in the

sagittal plane perpendicular to the torso. Target 1 was at the position with the
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Figure 9-1: Target and variable assignments for movement task.

forearm perpendicular to the upper arm, and target 2 was at 1.0 tad extension from

target 1. The joint angle 0 is defined to be zero at target 1 and to increase with the

elbow extension; thus, target 2 is at 0 = 1.Orad. A single movement is defined to be

one-cycle from target 1 to tary'.-t 2 and back.

The auditory stimulus was provided by clicks from a piezoelectric buzzer, at in-

tervals of either 750 ma or 1000 ma. Subjects were instructed to move continuously

and repeatedly between targets, and be at a target at the time of a click. Continuous

movement, not accuracy, was stressed. Subjects were instructed to relax and move

naturally, in spite of the perturbations.

In some trials the subjects were seated with their forearm moving in a vertical

plane with respect to gravity. In others, subjects moved in the horizontal plane, with

no gravity.

In addition to the two speed conditions (750 ms and 1000 ma movements) and

the two gravity conditions, in some trials the subjects were loaded with a damper

(approximately 1 Nm/rad/s) that acted about the elbow joint. The force-velocity

specifications for the damper are shown in the Appendix.

For each condition 15 blocks of 30 s each were collected (this gives 300 movements
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Figure 9-2: Experimental setup.

of 750 ms or 225 movements of 1000 ms per condition). Three minutes rest between

blocks was provided to avoid fatigue.

To control for joint angle dependent stiffness (e.g., due to muscle moment arm

changes) subjects also maintained one of three poses while being perturbed (for 5 s

each). These poses were at target 1, target 2 and a target midway between 1 and 2

(i.e., at 0.5 rad). As in the movement experiments, subjects were asked to relax, but

still achieve the task (i.e., maintain the target position).

9.2 Stimulus Type: PRBS

A pseudorandom binary force sequence, PRBS (see Figure 9-3), was chosen as the

input stimulus because it could not be predicted by the subject, and it is optimal for

system identification (in the sense that it can provide band limited white noise with

a minimum length segment). See Chapter 8 for a review of the various alternative

input stimuli.

The PRBS was applied continuously by an airjet [150][151] during all movements
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Figure 9-3: Frequency response of a PRBS with a switching interval of 20 ms.

tasks. The airjet applied forces of -4 N to the wrist in the direction of elbow

flexion/extension.

In preliminary experiments the PRBS was composed of 10 ms elements (10 ms is

the minimum stable switching interval for the airjet), giving a relatively white noise

inprit signal up to 50 Hz. Subsequent analysis revealed that for this movement task

the natural frequency of the arm was below 3 Hz (see results in next chapter). Thus,

to put more low frequency power into the system at its natural frequency the airjet

was switched at 20 ms intervals in a PRBS. This results in a relatively white noise

input between 0 and 25 Hz. See Figure 9-3 for the frequency response of this PRBS.

Frequency spectral shaping is possible by stochastic shuffling [154] or by analytic

techniques [155], but was not deemed necessary without more a priori information on

the elbow joint dynamics.

9.3 Airjet Perturbation Device

9.3.1 Specifications

The primary design goal wa. 'hat the PRBS perturbation device must not constrain

the arm movement, or significantly change the arm dynamics. For this reason, a light

weight wrist-mounted pneumatic thruster device was used [150]. A further design

constraint was that the device must have sufficient force and bandwidth to perturb the

127



arm measurably at frequencies up to 100 Hz. The 100 Hz frequency goal was chosen

to be several times higher than the highest natural frequencies measured for joint

dynamics (see measurements in [141] for example). This frequency allows accurate

estimation of the inertia under all physiological conditions, provided the force is large

enough. An approximately 4 N force turns out to be a good compromise for the the

force produced by the airjet. As the inertia dominates at high frequencies it is possible

to make a rough calculation of what displacement this force will produce at 100 Hz.

With an inertia of I = 0.1kgm 2 and a moment arm of 0.4 m, a 0.1 mm displacement

results from a 4 N 100 Hz force perturbation. This 0.1 mm displacement is within

the resolution of the position sensor described below. Also, given the low frequency

content of the PRBS perturbation stimulus it was found that a 4 N force rarely

perturbs the arm more than 5 - 10 degrees (see Chapter 10). Thus, the small

perturbations assumption in the analysis is probably not violated. Finally, a 4 N

force applied at the wrist produces approximately the same torque as the maximum

torque produced by the muscles in the task studied; -see Section 11.1 for a discussion

of this. Thus, the force is sufficiently large to provide relevant measurements to study

normal speed movement formation.

9.3.2 Design

The details of the airjet design used in this thesis may be found in [150][151]. A brief

summary of the design is included here.

The airjet is a device that is mounted on the subject's wrist. It consists of a nozzle

to speed up the air velocity to about 200 m/s, and a switching mechanism to divert

the air flow down one of two thin walled brass tubes that bend to point in opposite

directions along the line of arm movement. See Figure 9-4. With the flow down one

tube a 4 N reaction force is produced - due to the mass flow rate of air (30 cubic feet

per minute). The force is switched 180 degrees to the other tube in 5 ms with a rise

time of 1 ms. Figure 9-5 shows this switching response. The 5 ms delay is mostly due

the solenoids used in the switching mechanism and could be lowered. The extremely

rapid 1 ms rise time is realized because the switching is based on a fluidic property
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Figure 9-4: The wrist mounted airjet used in experiments. Figure reprinted from
[150].

10

8.
6.

4. AllAAAAA
0.
S-2.

-6.' 4 -
8.

Time s

Figure 9-5: Step response of airjet. Figure reprinted from [1501.
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Figure 9-6: Force power spectrum of airjet following a PRBS at the maximum switch-
ing rate. Note: this is not the force input used in the experiments. See Figure 9-3.
Figure reprinted from [150].

cuff

Figure 9-7: Cuff mounting. The wrist is placed in the circular section, and the airjet
attaches to the I-beam force scnsor. Figure reprinted from [160].
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called the Coanda effect. Only the inertia of the air limits the theoretical switching

speed. Figure 9-6 shows the device's bandwidth. The mass of the airjet is 400 g. The

air flow produces substantial noise, requiring the subject and experimenter to wear

ear protection.

9.3.3 Wrist-Cuff Attachment

The airjet is placed above the hand such that it produces force in the direction

of elbow flexion/extension and is aligned with the long axis of the arm to avoid

pronation/supination torques. It is attached to an aluminum frame which is clamped

on the wrist. See Figure 9-7. The subject wears a custom molded cuff for ease of

clamping and comfort. Cuff movement was found to be negligible (0.1 - 0.2 mm) for

the perturbations used [150].

9.4 Sensing

9.4.1 Force Sensing

An I-beam with strain gauges connects the airjet to the cuff frame (150]. See Figure

9-7. The I-beam is sufficiently cor.pHant to obtain good force sensitivity, but stiff

enough to have a resonance (160 Hz) well above the arm's natural frequency. To

avoid aliasing the force data were low pass filtered with a linear phase, -80db stop-

band analog filter with a cut-off frequency of 200 Hz (i.e., an 8 pole, 6 zero Frequency

Devices DO W848 filter with a 4.2 ms pure delay).

9.4.2 Position Sensing

The position of an infrared light-emitting diode (IRED) on the cuff was measured with

an OptotrakT M system, a 3D motion measurement system with a 0.05 mm resolution

[150]. Data was sampled at the maximum rate of 200 Hz, and interpolated to the

600 Hz force sampling rate with cubic splines.

Let (z, y) be any point in the plane of rotation of the elbow. The center of rotation
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(zc, yc) and radius r, to the IRED were estimated by finding the least squares best

fit circle that goes through all the movement data. The angle with respect to vertical

was then computed as:

0 = tart- i T, -(9.1)
Y -C

The applied torque was computed as:

,= rF (9.2)

where F is the measured force, and r = r, + 0.18m (0.18 m is the distance from the

IRED to the force sensor).

9.4.3 Pronation/Supination

To control for possif,.e unmeasured wrist prondtion/supination some trials were per-

formed with the airjet and cuff directly connected to a revolute joint with the axis

of rotation aligned with the subject's elbow. This eliminated possible wrist prona-

tion/supination. In most subjects no difference was seen with and without the rev-

olute joint support. Data with significant pronation/supination were thrown out.

Ideally, additional IREDs should have been used to correct for non-planar motion,

but the current OptotrakTM's limited bandwidth did not allow this.

9.4.4 Data Acquisition and Filtering

A real-time VME-based microprocessor system [156] was used to collect all data and

also control the experimental stimuli. The sampled data were usually low pass filtered

off line at 50 Hz. Additional filtering was applied as needed. All filtering was based

on a recursive 12th order Butterworth filter with a normalized cutoff frequency of 0.1

[157, pg. 218]. Low pass, band pass and high pass filters of arbitrary frequencies were
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obtained with the transformations in [157, pg. 238]. Phase distortion was eliminated

by running the filter over the data twice: once in the normal manner, and then again

with the data time reversed.

9.5 Perturbation Calculation

9.5.1 Alignment and Removing the Mean

For each subject and movement condition, joint angle position profiles were obtained

by (1) chopping the data into single 'movements' Oi(t) of one cycle each (where i - 1

to n, and n is the number of movements made), (2) initially aligning the movements by

peak velocity, (3) computing a mean movement profile, (4) re-aligning each movement

so as to minimize the root mean square, RMS, difference between the mean profile

and the movement Oi(t), and (5) re-computing a mean movement profile with the

re-aligned data to give the final mean movement profile -6(t).

Steps (4) and (5) were sometimes repeated to improve the average RMS differ-

ence between the movements and the mean, but iteration was usually not neces-

sary, and did not affect the final parameter estimates. Corresponding torque pro-

files were obtained by chopping torque data up at the alignments computed for the

angle data, computing a mean torque profile, and removing this mean from each

torque profile. The final result gives n single movement position and torque tra-

jectory profiles (Oi(t),ri(t), where i = 1 to n), a mean position profile and a mean

torque profile (Oo(t), r0(t)), and n movement perturbation position and torque profiles

(Ai(t), Ari-(t), where i = 1 to n). Figure 10-2 shows typical movement data before

and after removing the mean.

9.5.2 Posture Perturbation Estimates

In the case where the subject was asked to maintain a fixed posture, the dynamics

were linearized about the mean arm position, Oo. Thus, AO(t) = 0(t) - 0o. Likewise,

-A(t) = r(t) - -ro.
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9.6 Time-Varying System Identification

The perturbation dynamics (7.9) were identified by finding the best parameter esti-

mates 1(t), B(t), and K(t) that satisfy the ensemble of measured perturbations at

each fixed point in time. The method is summarized as follows: (1) (7.9) is dis-

cretized, (2) an optimization criteria is specified, (3) the discrete time parameters are

optimally estimated, and (4) the continuous time parameters and parameter variances

are estimated from the discrete time estimates.

9.6.1 Discretization

The sampled data collected in the experiment should satisfy a general discrete time

auto-regressive moving average (ARMA) model:

0 = ao(t)AO(t) + al(t)AO(t - h) + a2(t)AO(t - 2h)...

+bo(t)Ar(t) + bi(t)AT(t - h) + b2(t)AT"(t - 2h) + ... (9.3)

where h = 1.67ms is the sampling interval, the ai are the auto-regressive parameters,

and the bi are the moving average parameters.

To relate the continuous time model (7.9) to (9.3) a simple method is to use the

Euler approximation of a derivative:

(t) = 0(t + h)- O(t) (9.4)
h

Substituting (9.4) into (7.9) gives:

AT(t) = ao(t)AW(t) + atAO(t + h) + a2(t)A8(t + 2h) (9.5)

where the linear relationship between (I(t), B(t), K(t)) and (al(t), a2(t), a3(t)) is

easily derived.

A more accurate m~thod to discretize (7.9) is to view the data as coming from
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a sampled data zero-order-hold (ZOH) process, an .ategrate (7.9) over each sample

interval (1581, giving:

0 = A8(t - h) + al(t)AO(t - h) + a2 (t)i (t - 2h)

+b1(t)A-(t- h) + b2(t)AT(t - 2h) (9.6)

where the relation between (I(t), B(t), K(t)) and (ai(t), a2(t), bl(t), b2(t)) is non-

linear (see page 52 in [158 for the inverse of the relation below):

K(t) al(t) + a2(t) + 1
61(t)+b 2(t)

Bit) = 2zK(t) (9.7)

Wo

I(t) K(t)

where z = f/(1 + f), Wo = , -T7, f = (1/ag - K(t)b1(t)/ag - b/g)2 , g

sin(wh), w = cos-'(b)/h, b = -al(t)/2a and a = Va2.

Exogenous variables [158] for modeling the noise process were not used. Instead,

the following parameter identification method was found to be adequate.

9.6.2 Parameter Identification with Input and Output Noise

At each fixed point in time t the ARMA parameters (al(t), a2 (t), bi(t), b2(t)) in (9-.6)

are constant for all n movements (where n = 300 for the 750 m. movements). These

n linear equatioDs in four unknowns may be solved in a number of ways.

A standard method is to assume that all of the error enters additively into the 4

output iAO(t), and find the parameters that minimize the mean squared error between

the measured and predicted joint angles:

n!

A( (t) - rehl(t))2  (9.8)
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where for the model (9.6):

=aj(t)AOi(t - h) + a2 (t)WOi(t - 2h)

+bj(t)Arj(t - h) + b2(t)Ai(t - 2h)) (9.9)

and the subscripts i indicate the movement number. The problem with this linear

least squares (LLS) method is that even if the measurements were corrupted only by

ideal Gaussian white noise (GWN), the parameter estimates are biased because of

(a) the auto-regressive terms (a, and a2 ) and (b) input as well as output noise [158].

An improved method is developed by assuming that the input and output are cor-

rupted by equal variance independent GWN [159]. Under these assumptions Koop-

man [159] developed a simple unbiased estimator of the ARMA parameters (though

not optimal in the Maximum-Likelihood sense). The method is analogous to the pro-

cedure for fitting a multi-dimensional plane to data. Rewrite (9.6) for all movements

as

1
Aeo(t) A00(t -h) AOo(t - 2h) Aro(t - h) Aro(t - 2h)

Ae 1(t) Ae1(t - h) Ae,(t - 2h) Ar(t - h) Ari(t - 2h) a,

a2
AO,(t) AO(t - h) A#9(t - 2h) AT(t - h) A r(t - 2h) j b2

(9.10)

or more compactly:

o=Jp (9.11)

Thus, p may be considered to be the normal to a plane in 5-dimensional space. Let

the mean squared normal distance A from the data to the plane be:
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A = d P T (9.12)

The normal p that minimizes A is:

p = the jth eigenvector of jTj (9.13)

where the jth eigenvalue is the smallest eigenvalue (which also happens to be A,

conveniently giving a measure of the model fit). The elements of p given .by (9.13)

provide the required ARMA parameter estimates. The eigenvector is readily obtained

by singular value decomposition (SVD) of J without forming jTj, thus avoiding

numerical error accumulation associated with the JTJ operation (58].

An estimate of the ratio of the input to output noise variance is necessary in order

to scale the input measurements to achieve the assumed equal noise variance. For

the data studied here, this ratio was typically set at 1.0, although changing it to any

value between 0.01 and 100.0 did not appear to effect the results.

The assumption that GWN is acting on the measurements is not as restrictive as

it appears. As the measurements for each trial come from movements separated by

more than one second it is reasonable to assume that noise across trials is independent.

Only the data within three samples on a particular movement may be correlated (i.e.,

there may be correlated noise acting on AWj(t), AOi(t - h), AOi(t - 2h), Ari(t - h),

and Ari(t - 2h)).

9.6.3 Time-Varying Impulse and Frequency Responses

The time-varying impulse response may be modeled using (9.3) with ao(t) = -1,

al(t) = 0 for I > 0, and b(t) not necessarily zero for lags I up to several times the

system response time. Parameter estimation may be carried out by an appropriately

modified (9.10), or by the linear least squares (LLS) method. Here LLS is chosen as
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there are no auto-regressive terms. In matrix form (9.3) is:

A9o(t) Aro(t) LATo(t - h) A-ro(t - 2h) . . . boat)

S A-(t) Ari(t - h) Ar(t - 2h) . . .(9.14)

or more compactly:

= (9.15)

and the LLS solution is

P= (J Ji) - Jy (9.16)

Notice that Jr J and JjTy are respectively the ensemble auto- and cross-correlations.

The time-varying frequency response can be estimated by Fourier transforming the

impulse response & at each fixed point in time.

The problem associated with this analysis is that at each time instant there are at

least 180 parameters (i.e., bh(t) with I = 0 to 179 for a 300 ma long impulse response

at the 600 Hz sampling rate), but only 200 to 300 equations (movements) to use in

the estimation. Thus, as a result of noise, J1 typically is not of full rank and the

solution (9.16) is undefined.

To generate more equations it is reasonable to assume that the dynamics are

time-invariant within fixed time windows w (w = 60ms). Thus, within a window n

equations of the form (9.14) hold at each of the wfa (=37) sample times. Thus, there

are wfon (= 37n) equations with which to estimate the fixed ARMA parameters in

a given window.

Even with the windoving technique described in the previous paragraph, it was

found that for the data obtained in these experiments J was still not of full rank.

To uniquely define a solution the squared Euclidean norm of & may be minimized
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simultaneously to minimizing the mean squared modeling error:

(y_ (Y- J 1,P )+y_ + (9.17)

This minimization may be implemented by ridge regression [160], or equivalently

with the singular value decomposition SVD approach described in [58]. (For the SVD

method, any singular value less than 10" of the maximum singular value was zeroed.)

As this solution is only of mathematical convenience and the real problem is one of

having too many parameters to be estimated, the impulse response estimates are of

questionable value and were only . 'imated for a few data sets (see Figure 10-7 in

the results section). Perhaps a better solution would be to minimize the norm of the

discrete first or second derivative of the impulse response & (rather than the norm of

thus enforcing a smoothness constraint on the impulse- response.

9.6.4 Posture Impedance Estimates and Ergodicity

In the case of the perturbation data collected during posture, the above system iden-

tification technique must be modified as there is only one input/output pair. To do

this it is assumed that the system parameters I(t), B(t), and K(t) are coxj-f.

B, and K respectively. An equation of the form (9.3) with constant paria', i s

describes the data. Therefore, combining the equations across time, rather than down

the movement ensemble, is valid. With AOi(t) = AO(t - i) and Ari(t) = Ar(t - i)

substituted into (9.10) the constant vector p may be estimated and I, B and K

recovered using (9.7).

Inspecting the elements of jTJ reveals time-averaged cross-correlations and au-

tocorrelations of the input and output variables. Effectively, the substitution of

AOi(t) = AO(t - i) and Ar7(t) = Ar(t - i) turns the ensemble averaged correlations

into time-averaged correlations. Thus, in a statistical framework the justification

for this substitution is ergodicity (i.e., time averages equal ensemble averages). No

assumption about the siationarity of the input signal Ar(t) is used, although its sia-
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tionarity would make the autocorrelation matrix (a submatrix of J'J) Toeplitz in

structure, which could be exploited to simplify the computation.

Analogously to the previous section, the impulse response during posture may be

modeled by assuming a time-invariant system with a structure of (9.3) with a0 = -1,

al = 0 for I > 0, and bi not necessarily zero for lags 1 up to several times the system

response time (typically, at least 300 ms, or I = 0 to 179 for the 600 Hz sampling

rate). Parameter estimation may be carried out using an appropriately modified

(9.10). Alternatively, as no autoregressive terms exist to introduce parameter bias,

linear least squares LLS may also be used (assuming no input noise).. The LLS

solution is equivalent to the standard correlation solution. The frequency response

may be estimated by Fourier transforming the estimated impulse response.

9.6.5 Simulations

A critical part of any system identification technique is verification with simulated

data. To simulate the experimental setup the forearm was modeled as a cylinder (mass

and center of mass m and r) with inertia I = 0.075k9m 2 , the muscles were modeled as

linear with constant stiffness K = 20Nm/rad and damping B = 1.ONm/rad/s, and

the arm was considered to move in the vertical plane against gravity. The airjet was

assumed to have a mass of ma = 0.2kg acting at ra = .4m radius, giving an inertia

of I,- = .032kgm2 . Thus, without the airjet running the unperturbed dynamics are:

0 = I8(t) + 10(t) + BO(t) + K(O(t) - Oo(t)) (9.18)

-mgr sin 0(t) - magra sin 0(t) (9.19)

The motor input 9o(t) is calculated so that the unperturbed dynamics (9.19) pro-

duce an arm trajectory 0(t) that is a 0.5 Hz sinusoid with a peak-to-peak amplitude

of 1 rad (similar to the 1000 ms movement condition, where each cycle is one move-

ment), and 100 cycles long.
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With the airjet running, the perturbed dynamics are:

r(t) = 1I(t)+ B9(t)+ K(O(t)-Oo(t))-mgrsinO(t) (9.20)

where r(t) = TPRBS(t) - 109(t) - magr, sin 0(t) is the force measured by the force

sensor on the airjet mounting, and TPRBS(t) is a PRBS of ±1.6 Nm. Using O0 (t) and

7pRBS(t) as input to a fourth order Runge-Kutta numerical integration [58] of (9.20),

the perturbed joint trajectory 0(t) and perturbations measured by the force sensor

r(t) are computed.

The above procedure was used to generate simulated data. The data was then

processed as in the experiments. That is, the simulated data 0(t) and r(t) were

chopped into single movements (one cycle each), and aligned with the technique

described in Section 9.5.1. Mean movement profiles ro(t) and O0 (t) and perturbations

about the mean were computed. See Figures 9-8 (a), (b) and (c).

The perturbation parameters were then estimated using (9.13) (after introducing

5% GWN noise into the input and output data). See Figure 9-9. Notice that only the

inertia of the arm I was estimated, not the total inertia of the airjet and arm. Also

notice that the stiffness estimates are a little lower than K = 2ONm/rad, particularly

near target 1 (0 = 0). This is the effect of the negative gravity contribution to stiffness,

as discussed after equation (7.9).

9.6.6 Apparatus Identification

The mass of the wrist cuff and the frame supporting the airjet contributes to the

measured inertia. To estimate the inertial contribution of the whole apparatus it

was supported on a light low friction revolute joint, such that the airjet was at the

same distance and orientation relative to the joint that it typically is during the

experiments. A PRBS input was applied by the airjet and measured as in Section

9.4. The acceleration was computed by 50 Hz low pass filtering the recorded joint

angles and using the approximation (9.4) twice. The static relation -r = ]'=ff was

then fit to the data to provide an apparatus inertia estimate of It/! = 0.035kgm'.
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9.6.7 Artificial Arm Identification

Using the same support joint for the airjet apparatus described in the previous section

a simulated arm may be made by coupling the joint to a damper and/or spring. Using

only a damper (see Appendix) a simulated experiment was performed where the airjet

was switched with a PRBS with 20 ma elements. The method of section 9.7.2 was

used with (9.13) to estimate the perturbation parameters, giving: I = 0.04kgm2 ,

B = 1.20Nm/rad/s and K = 0.9lNm/rad. These estimates agree well with the

inertia estimate of the previous section and the specification sheet provided by the

manufacturer of the damper (see Appendix). In an independent test a 4 N step

response also gave a similar damping estimate (1.3 Nm/rad/s). The small stiffness

could be due to the restoring forces provided by the air supply lines.
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Chapter 10

Results of Airjet Perturbation

Experiments

10.1 Posture

The angle dependence of perturbation parameters estimated during posture (see Sec-

tion 9.6.4) is shown in Figure 10-1. The plotted values show the mean and standard

deviations of six estimates made from separate 5 a trails where subjects were in-

structed to point at a fixed target location. For the horizontal movements there is

little dependence of these perturbation parameters on the joint angle. For the vertical

movements the stiffness increases slightly with joint angle.

The torque variance accounted for (VAF) by the second order perturbation model

was computed for each trial, and is consistently above 80% (where the VAR/100% is 4

defined as one minus the ratio of the variance of the model's error in estimating torque

to the variance of the torque data). Frequency responses and coherence functions were

calculated for all subjects. The coherence was always above 95% up to 50 Hz.

1A' orizontd 7-Ores Movements

In this and following sections we now consider how the mechanical properties are

modulated under various movement conditions. First we focus on the horizontal
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Figure 10-1: Joint angle versus mean (a) inertia, (b) viscosity and (c) stiffness for
Subject Si asked to maintain fixed postures in the vertical plane ('marked with rvr'po\

and horizontal plane (marked with triangles). (d) Joint angle versus mean stiffness
for Subject S2. Error bars show standard deviations about the means.
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plane 750 ms movements.

10.2.1 Typical Movement Data 4

Typical angle and torque measurements are shown in Figure 10-2 for two subjects.

Figure 10-3 shows the corresponding perturbations computed by removing the en-

semble means (re Section 9.5.1).

10.2.2 Main Results

The time-varying parameter estimates made using the perturbations from 300 move-

ments and (9.13) are shown in Figure 10-4 (See Figure 10-6 also). The mean parameter

values and standard deviations computed over 60 ms windows are shown. The data

are repeated for an extra cycle to emphasize that the estimates are periodic. The

corresponding damping ratios (B/(4KI)° 's ) are shown in Figure 10-5. The features

in Figures 10-4 and 10-5 that are typical across all subjects and conditions are:

1. The stiffness is modulated with the movement. It reaches a peak value just before

the arm comes to rest at a target and drops to a minimum value before the peak

velocity of movement is reached.

2. The stiffnesses are low, lower than the smallest values measured during posture.

3. The stiffness values at the two targets are sometimes unequal (usually higher at

target 2 when gravity is present).

4. There is a tendency for the damping to drop slightly while the arm is at a target.

The damping estimates have considerable variation across subjects though.

5. The damping ratio is not constant, ranging from 0.2 to 0.6 during the movement.

6. The inertia estimates are constant and agree with previous estimates of forearm

inertia. The values shown include the apparatus inertia of 0.05kgm2 .
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Figure 10-2: Typical horizontal plane elbow angle and torque profiles for subject Si
and subject S2. Each plot represents a full cycle taken from a rhythmic oscillation of
the forearm in time to a periodic auditory stimulus (period 750 ms and duration 30
s). Targets to oe hit were at 0.0 rad and 1.0 rad.
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Figure 10-5: Figure 10-4 continued. Damping ratio profile.

The stiffness variations mentioned above cannot be simply due to passive connec-

tive tissue or skeletal moment arm changes, as the stiffness values measured during

posture do not vary with joint angle (over the range studied).

10.2.3 VAF

The torque variance accounted for (VAF) by the model parameters in Figure 10-4 is

76%. Across all conditions and subjects the VAF by the time-varying second order

system parameters exceeds 70%. Most of this error is due to voluntary variation in the

trajectory from movement to movement, which effectively introduces low frequency

noise into the data.

10.2.4 Frequency Responses and Natural Frequencies

Three samples of the time-varying frequency response (at (a) 0 = 0.0 rad, (b) 0 =

U.5 rad on the extension movement, and (c) 9 = 1.0rad) are shown in Figure 10-7.

These were estimated with the SVD method of Section 9.6.3 with a 60 ms window,

and a Fourier transformation. The natural frequencies, as defined by the point at
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Figure 10-6: Same as Figure 10-4, except for subject S2.
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which the phase angle crosses -90 degrees, are respectively (a) 1.77 Hz, (b) 0.63 Hz,

and (c) 2.51 Hz. The corresponding natural frequencies computed from the second

order system parameters are respectively (a) 1.50 Hz, (b) 1.06 Hz, and (c) 2.05 Hz

(where the natural frequency f,, is defined as 2rf, = (K/I)°'). This second method

of natural frequency estimation is superior in view of the problems mentioned earlier

in connection with estimating the time-varying impulse response. By all measures,

the natural frequency is always below 3 Hz.

10.2.5 Dominance of Inertia Above 5 Hz

To demonstrate the dominance of inertia above 5 Hz the data were filtered with a
high pass filter with a 5 Hz cutoff frequency (see Section 9.4.4), and a static inertia

model Ar = lAi was estimated. Figure 10-8 shows the measured torque (thin line)

and the estimated torque lAi (dotted line) for a segment of the data. Both angle and

torque data were also low pass filtered at 30 Hz in order to differentiate the angle data

to get acceleration - thus the smoothness of the curves. The variance accounted for

(VAF) by this constant inertia model was 95%, verifying that the system's natural

frequency is below 5 Hz, and indicating that the inertia dominates the dynamics

above 5 Hz.

10.2.6 Effect of Airjet Perturbation Frequency

Figure 10-9 shows results of an experiment in which subject S2 moved in the horizontal

plane and was perturbed with the airjet switched at twice the usual frequency (10

ms elements in the PRBS). With this stimulus rate the input was white up to 50

Hz, but there was only half the power that there usually is between 0 and 25 Hz.

Comparing Figures 10-6 and 10-9 shows that this increase in bandwidth and decrease

in low frequency amplitude does not qualitatively affect the results. Quantitatively,

the VAF in Figure 10-6 is 72% and the VAF in Figure 10-9 is 76%.
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Figure 10-8: The data from Subject Sl's horizontal movements (750 ms stimulus)
were filtered at 5 Hz with a high pass filter, and a static inertia model Ar = IA was
estimated. Plotted above are the torques (thin line) and the estimated torques IAi
(dotted line) for a segment of the data. The variance accounted for (VAF) by this
constant inertia model is 95%, indicating that the inertia dominates the dynamics
above 5 Hz.

10.3 Effect of Speed Change

The stiffness estimates increase slightly with a speed increase. Figure 10-10 shows

typical results when moving between targets in the horizontal plane at the 0.5 Hz rate

(1000 ms stimulus). Comparing this to the equivalent but faster 0.67 Hz movements

in Figure 10-4 it is seen that the stiffness profiles are similar. The stiffness does not

scale up by a factor equal to the square of the speed-up factor, which is x 1.78. Figure

10-11 (also see Figures 10-15 and 10-17) compares the stiffness profiles for the two

speeds for subjects S1 and S2.

10.4 Effect of a Viscous Damping Load

Figure 10-12 shows the results of attaching a damper to the arm during movement.

Comparing these results to Figure 10-4 reveals that the damper more than doubles

the damping that is normally measured in the unloaded joint (note that the damper
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has a non-linear force-velocity relation shown in the Appendix - thus the higher

damping at the targets). In spite of this increase in damping, the peaks in the

stiffness profile are only increased by 20 percent, and the minimum stiffness during

movement is unchanged. Effectively, the system's damping ratio is doubled, and there

is no attempt to compensate.
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Figure 10-12: Same as Figure 10-4, except with a viscous damper loading the arm.

Notice that the scale on the damping is different. The damper load is non-linear

(the damping drops slightly with increased velocity. See Appendix). Note that the

stiffness profile is very similar to Figure 10-4. The inertia is a little larger than in

Figure 10-4 because of the damper attachment. Data are for Subject S1.
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10.5 Effect of Gravity

10.5.1 Stiffness Increases Due to Gravity

To observe the affect of gravity, analogous experiments to the horizontal plane ex-

periments just described were performed in the vertical plane. Figures 10-13 and

10-14 show the results from subjects S1 and S2 moving in the vertical plane in time

to the 750 ms auditory stimulus. Comparing these to the horizontal movements in

Figures 10-4 and 10-6 reveals that the stiffness is higher at target 2 in the vertical

plane movements. Note that the inertia estimates in the vertical movements are still

constant, but are slightly higher in both subjects. This difference can be attributed to

the cuff being mounted slightly further down the arm. This shift in mounting should

not affect the stiffness or damping estimates.

To see the stiffness profile differences more clearly, the stiffness profiles from two

subjects and speed conditions were plotted together in Figure 10-15. Comparing

these results to the corresponding horizontal plane plots in Figure 10-11 reveals that

there is a significant asymmetry in the vertical plane stiffness profiles. Unlike the

horizontal plane movements the stiffness at target 2 (1.0 rad) is two to three times

higher than at target 1 (0.0 rad). Notice that at target 2 the subject must resist the

larger gravity force. This will be elaborated further in the next chapter.

As mentioned in Section 7.3 there is a small contribution to the measured stiffness

that is due to gravity (-mgccosO). At vertical (9 0.Orad) this contribution is

highest. To see the size of this contribution it was computed for each angle and

subtracted from the measured joint stiffnesses. The required mass and center of mass

of the arm were estimated from the measured inertia using an assumption that the

arm could be modeled by a cylinder. Figure 10-16 shows the stiffness profiles (a)

before and (b) after making this gravity correction. Note that the difference does not

account for the ym tr .n.. .he Stiffness pcaks. As Lte liffterence between these two

profiles is small, this gravity contribution will not be considered further.
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10.5.2 Effect of Speed Change Under Gravity

As with the horizontal movements, there is only a marginal increase in stiffness with

an increased speed of movement in the vertical plane. Figure 10-17 shows the stiffness

profiles for four subjects moving in the vertical plane at the two speeds.

S4__ _ _ _ _ _ _

S3

S2

Figure 10-17: Stiffness profiles measured in the vertical plane at the two speeds.

Subjects as indicated.
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Chapter 11

Discussion

11.1 Relevance of Perturbation Estimates

An important issue that must be cleared up before proceeding is whether or not

the mechanical impedance estimates are relevant to the formation of normal speed

movement.

11.1.1 Short Range Stiffness

It might be argued that the low amplitude, high frequency input of the airjet only

excites higher order dynamics that 'are not normally relevant to unconstrained move-

ment (e.g., short range stiffness [1051). This argument is wrong for several reasons.

First, care was taken to use a sufficiently large perturbation force. In fact, the

1.6 Nm torque produced by the 4 N airjet thrust is comparable to the maximum net

torque that the muscles produce in the movements studied, see Figure 11-1. Thus, for

the segments of the PRBS in which the airjet is on in one direction for an appreciable

portion of the movement time (say >100 ms) the arm effectively receives a step torque

change comparable to the maximum net muscle torque.

Second, after the initial experiments that indicated that th a r,'7 -atural fr

quency was below 3 Hz, the airjet's minimum switching time was raised to 20 ms,

providing more power at the low frequencies. Figure 9-3 shows that the majority of
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the input power is evenly distributed between 0 and 25 Hz. As a qualitative indica-

tion of the low frequency power, it is mentioned that the airjet regularly perturbed

the arm 5 to 10 degrees, and on occasion, for the arms of smaller subjects, displaced

the arm the entire 60 degrees between targets (in these few cases the subject would

abandon that movement).

Finally, the stiffnesses and corresponding natural frequencies measured in this

thesis are much too low to be of only short range stiffness origin. As mentioned,

the stiffness estimates give values for the system's natural frequency below 3 Hz. A

separate corroboration of this low natural frequency comes from noticing that 95%

of the variance may be accounted for by a pure mass model, if the input and output

are high pass filtered above 5 Hz (Figure 10-8). If the airjet was probing only the

short range stiffness, much higher natural frequencies estimates (stiffness estimates)

would be expected. For example, the short range forearm stiffness estimates made

by Lanman [1301 (with high frequency 20-30 Hz sinusoidal inputs) are 5 to 10 times

the values estimated in this thesis.

11.1.2 Spindle Reflex Sensitivity with Vibrations

The presence of the low amplitude high frequency content in the input PRBS may al-

ter the muscle spindle sensitivity. The spindle response may be saturated (or clamped)

by the vibrations, making them insensitive to larger, lower frequency stretch [161].

Perhaps there is a connection between this and the observation made in Chapter 8

that the damping ratios measured with PRBS inputs are lower (0.3 to 0.6) than those

measured with single pulse inputs (0.8 to 1.0). There is no simple method to control

for this problem, as the apparatus used can only produce binary force sequences. As

much of the following analysis relates to relative stiffness changes with movement,

these possible spindle sensitivity changes do not affect the conclusions.
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11.2 Testing of Control Theories

The predictions (P1) to (P5) of Chapter 7 are now tested with the perturbation

parameter measurements from Chapter 10.

11.2.1 Compliant Feedforward Control

First consider prediction (P1). It is clear from the horizontal movements in Figure

10-I (and others like it) that, as predicted, the joint stiffness is low and only rises

as the targets are approached. As discussed earlier, the finding that the stiffness is

low suggests that feedforward control dominates. Further, joint stiffness rises exactly

when it is required to reject disturbances in attaining the target; that is, it reaches

a peak just before the target is attained. Once at the target no further accuracy is

needed and the stiffness can drop immediately.

11.2.2 Stiffness and Force Modulation

As the arguments behind the :ompliant feedforward control hypothesis are purely

functional, it is interesting to inquire into the nccha-,sm behind the stiffness mod-

ulation. This will be attempted in .he next zction, but to start toward this goal

we make the hypothesis that the st "r-ss changes are approximately proportional to

muscle forces changes.

First, consider the horizontal movements. Assuming little co-contraction, the

torque from the agonist muscles can be calculated to be the torque needed to accel-

erate the arm. As the acceleration is a maximum at the targets, the muscle torque is

also at a maximum. Figure 11-1(a) shows the muscle torque required to accelerate the

arm inertia (computed from the estimated inertia and average acceleration). Notice

that indeed the stiffness goes up where the muscle torque is highest.

Further, comparing the two speed movements it is found that the stiffness is only

higher in the faster movements near the targets. This is also true for the comparison

between the computed net muscle torques at the two speeds; the difference is largest

near the targets. In the middle of the movement the acceleration is zero, irrespective
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of the speed. See Figure 11-1(a-b). The stiffness increase is not sufficient to conclude

a strict proportionality with force, nevertheless t e stiffness does go up with muscle

force increase.

Likewise, the muscle torque in the vertical movements can be calculated. In this

case gravity also contributes to the torque. Figure 11-1(c) shows the computed net

muscle torque (where tne computation uses the estimated inertia, a cylinder model

of the arm to estimate the mass an center of mass from inertia, and the average

trajectory). Notice that the stiffness is again highest where the muscle torques are

highest. The muscle torques at the two targets are asymmetric, just as the stiffnesses

are.

Unfortunately, this simple explanation for muscle stiffness changes is not complete.

Consider the damper experiment. This experiment was specifically designed to test

this force-stiffness explanation. The damper produces its largest torque in the middle

cf the movement (at the peak velocity). Figure 11-1(d) shows the computed net

muscle torq-es to oppose inertial acceleration and the damper load. But Figure 10-

12 shows that the stiffness does not go up during movement, despite the large increase

in torque during the movement. The stiffness does go up slightly, but only near the

targets. Thus, the mechanism for stiffness modulation must be more complex than

this simple monotonic force-stiffness relation. This may have been expected, as it

was mentioned earlier that muscle force is velocity dependent. Also, reflex induced

stiffness changes and co-contraction were ignored in the above arguments.

11.2.3 Speed Scaling and Feedforward Control

To further test the hypothesis that feedforward control dominates, consider the dif-

ferent speed movements again. If there was no feedforward compensation (other than
perhaps static feedforward gravity compensation) then the effective feedback gains
(as measured by the stiffness) would have to increase with the square of the speed

increase (i.e., x 1.78) to produce the same time scaled movement trajectory (i.e., pre-

diction (P2)). In actuality, time scaled movement trajectories at the two speeds are

the same (e.g., Figure 11-2(b-c)), and yet for the faster movement the peak stiffness
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average horizontal 750 ms movements, (b) an average horizontal 1000 ms movements,

(c) an average vertical 1000 ms movement, and (d) an average horizontal 750 ms

movement with a damping load.
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approximately i rad (see previous figures).

171



is on average only a factor of 1.18 larger, and the mean stiffness across the movement

is on average only a factor of 1.05 larger. These stiffness changes are significantly

different from the predicted factor of 1.78. Thus, prediction (P2) is incorrect and a

feedforward speed compensation is necessary.

The dynamic feedforward compensation is not complete though. As predicted in

(P4) the trajectories loaded with a 1 Nm/rad/8 damper are different from the tra-

jectories in all other conditions. Figure 11-2 shows this difference and also shows the

similarity between the trajectories of all other conditions (gravity and speed). Partic-

ularly notice how different the velocity profile is for the damping loaded movement.

It is perhaps not surprising that the arm does not maintain the same trajectory, as

the task only requires reaching the targets.

Finally, as stiffness and viscosity do not scale up appropriately with speed, the

possibility that the feedforward compensation is simplified by dynamic scaling is

disproved. That is, prediction (P5) is incorrect. The stiffness and damping are not

scaled so as to allow simple scaling of the feedforward torque command to produce

faster movements.

11.2.4 Static Feedforward Gravity Compensation

Though the feedforward compensation is not merely static, it is still possible that

gravity compensation occurs, giving the prediction (P3). Comparing the vertical

movements to the horizontal movements (e.g., Figures 11-2, 10-15 and 10-11) it is

found that there is little difference in either of the trajectories and the only difference

in the dynamics is a less than 5 Nm/rad mean stiffness increase. Thus, unless this

stiffness difference is significant, it is probable that gravity compensation is being

used.

To further investigate the affect of these stiffness differences between the vertical

and horizontal movements consider the arm to be driven by a L;...;Azcd' model oft the

form (7.15). In the absence of gravity compensation the computed desired trajectory

90 is shown in Figure 11-3(a). This was computed from (7.15) using the average actual

trajectory, the estimated parameters, and a cylinder model of the arm (to estimate

172



the mass and center of mass from the inertia). This is the trajectory that the the

equilibrium trajectory hypothesis [136][28] predicts. With gravity compensation the

effect of the last term in (7.15) is zeroed, and the computed desired trajectory is shown

in Figure 11-3(b). Notice that without gravity compensation the desired trajectory

must take on a complex shape. Of course, these plots must be treated with care

because they presume linearity of the arm dynamics, or at least that the identified

parameters approximate the non-linear dynamics adequately (see Section 7.4). In

any event, it appears that feedforward gravity compensation is required. That is, the

stiffness increase in the vertical movements is not enough to compensate for gravity

without explicitly providing a feedforward term to cancel out the static effect of

gravity.

11.3 Mechanisms for Stiffness Modulation

As mentioned before, the perturbation stiffness measurements are a function of passive

joint properties, muscle, and reflexes. Though it is difficult to distinguish these factors

there are certain muscle properties that may well aid in explaining the changes in

stiffness with velocity.

11.3.1 Intrinsic Velocity Dependent Compliance

Consider the repeated horizontal movements studied here. In this task the arm ex-

ecutes roughly a sinusoidal 0.5-0.7 Hz trajectory by exerting reciprocal biceps and

triceps activity. A given muscle, when activated, can be considered to be driven by

a sinusoidal position drive (i.e., the drive resulting from arm inertia and the other

muscles). Thus, the isolated whole muscle oscillation studies of Rack and Westbury

[105] are relevant to the present study. They oscillated tetanized cat soleus muscle

at 0.0 H-, and ,p-lttd t instantancous lengt versus tens io curves for complete

cycles of the inr - Anusoid (the cycles were non-conservative: encircling a non-zero

area in the length-te,,sion plane, requiring work). Starting from zero velocity, the

initial stretching of the muscle produces a sharp increase in tension until the stretch

173



0."0

0.800'w,

-0.0" . ", O 0.800 0.800 1.000 1.200 1.

~T.W 10

(b)1E
0.400

0.200

( 0.200 0.800 0.800 1.000 1.200 1.400

TIME t
4
)

Figure 11-3: (a) Actual trajectory (solid line) and desired trajectory computed under

the equilibrium trajectory hypothesis (dotted line). (b) Same as in (a) but gravity

compensation is assumed in addition to the equilibrium trajectory hypothesis. Data

shown are for subject S2. Desired trajectories were computed with equation (7.15)

as described in the text.

174



exceeds 1 mm, and then the muscle continues to stretch with little increase in tension.

On the reverse part of the cycle exactly the same thing happens: starting from zero

velocity, the initial shortening produces a symmetrical sharp drop in tension until the

shortening exceeds 1 mm, and then the muscle shortens with little decrease in ten-

sion. In effect, the muscle has a short range high stiffness acting only when starting

from zero velocity, and only lasting for 1 mm stretches (5 percent of muscle length,

or 40 of ankle rotation [122J). In the rest of the cycle (that is, during movement) the

muscle is very compliant, resisting length changes with little force.

This phenomena was also observed in their earlier studies [121][122][123]. Figure

7-8 (the solid lines) shows their results for ramp stretches starting from various lengths

and tensions. The ramp inputs cause an initial sharp rise in tension, which lasts only

for about 1 mrm (40 of ankle rotation). The tension then only rises slowly, or in some

cases drops off, as the lengthening continues.

It can thus be speculated that the airjet perturbations are met with high short

range stiffness only when the arm is near rest, that is, within a few degrees (, ±4)

of the target. This short range stiffness is only probed by segments of the PRBS that

switch fast enough to maintain the arm displacements within a few degrees. The low

frequency segments of the PRBS perturb the arm outside of this short range stiffness

zone, and would thus tend to lower the stiffness estimates.

Further, it may be speculated that during movement the airjet PRBS induced

displacements should meet with much more muscle compliance than when at rest.

That is, the tension from shortening active agonist muscles should drop relatively

little in response to the displacements in the direction of movement (i.e., additional

small displacements in the direction of the already shortening agonist should affect

the muscle force similarly to the plots in [121][122][123]). Likewise, the tension in the

lengthening antagonist muscles should rise relatively little in response to perturbation

displacements in the direction of movement. Figure 7-8 indicates that it might even

be possible for the tension to drop (for a lengthening muscle just beginning to move)

in response to stretch. The muscle responses to PRBS induced displacements in the

opposite direction to movement are probably similar if the displacements are small
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enough not to reverse the direction of movement.

Lanman [130] (see review in Chapter 8) probed the human arm with high fre-

quency sinusoidal perturbations during movement, and also found that the muscle

stiffness drops during movement (the frequencies he used are too high to allow reflex

activity). He attempted to link these results to a molecular level description of muscle,

arguing that perhaps for displacements above a certain threshold the actin-myosin

bond breaking rate is increased in proportion to the velocity. Thus, as the velocity

increases the number of bonds should decrease, and the stiffness provided by the sum

of all bonds should decrease.

Lanman also demonstrated that if the arm is loaded with a viscous damper during

movement, then the stiffness no longer dropped. He likewise explained this result with

a crossbridge model. He argued that the increased load requires more crossbridges

to be formed, offsetting the effect of the crossbridges being broken by the muscle

length changing. Lanman's result (and explanation) is hard to reconcile with the

experiments of [105](122] described above, but is probably related to the fact that

he only probed the arm with single high frequency (15-30 Hz) sinusoids. Also, as

mentioned in Chapter 7 the distributed sarcomere force generation mechanisms are

not generalized easily to whole muscle.

Generalizing Lanman's explanation to explain the data collected with PRBS per-

turbations with significant low frequency content must proceed with caution. As

mentioned at the beginning of this chapter, belw 5 Hz the airjet produces pertur-

bation length changes beyond the short range stiffness of muscle (e.g., short range

stiffness is attributed to the elastic limit of crossbridges in [130]). Although the mea-

sured stiffnesses do tend to drop with velocity, they do not increase much with a

damping load. Thus, there must be other mechanisms than short range Stiffness that

maintain the stiffness profiles across these experimental conditions.

In summary, known muscle properties could qualitatively account for some of the

features of the data collected in this thesis. Muscle can be viewed to have long time

constant (> 50 ms) elastic properties (re length-tension curves) if allowed to come

to rest (see review of muscle properties in Chapt. " rurther, at rest muscle can
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provide pure high stiffness if not stretched beyond the limit of its short range stiffness

(e.g., elastic limit of the crossbridges). Both of these stiffnesses contribute to the

measured stiffness near the targets. Also, as more force is required in the vicinity of

the target (e.g., due to acceleration gravity changes) more parallel force generating

elements have to be recruited (either by increased firing frequency or increased muscle

fiber recruitment), and thus the stiffness should go up. On the other hand, during

movement muscle behaves more like a pure force source with only damping, (that

is, not necessarily resisting length changes to external force perturbations). Thus,

even though there may still be force being generated during the movement (e.g., to

oppose the external damping load in the experiments) the stiffness should still drop.

Of course, these are rough characterizations of the true complex behavior of muscle.

Many of the finer details in the data are still hard to understand. For example, why

do the stiffness changes slightly lead the muscle force changes (rising before the target

is reached, that is, before peak acceleration)? This brings us to a consideration of the

influence of reflexes.

11.3.2 Reflex Contribution to Stiffness

As the measured stiffnesses are low (giving natural frequencies below 3 Hz), it is

possible that they are maintained by reflexes - in spite of feedback delays. That is,

muscle forces during movement may be driven by reflexes to augment the effective

mechanical stiffness of the arm (see Section 7.3).

The contribution of reflexes can be assessed by measuring EMG activity (also see

Section 7.6). An estimation of the transfer function between EMG and perturbation

torques gives an indication of the reflex onset and magnitude. Fortunately, Soechting

et al. [1431 have measured such reflex transfer functions during ballistic forearm move-

ments when applying PRBS force inputs with exactly the same frequency content as

in this thesis (see Review Section 8.2). Their time-varying reflxv nmpulse responses

indicate that the reflex activity due to the perturbations is significant throughout the

movement, with initial magnitudes and onset times similar to those of the same re-

sponses measured while riiaintaining a fixed posture. The movement reflex responses
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differ from the posture reflex responses in that they have significant activity at lags of

up to 300 ms, indicating that proprioceptive information from as much as 300 ms in

the past is used to control the movement - even information from before the onset

of movement is used (re feedforward control). Th,- Jex onset delays are of about 50

ms, implying that the reflex lozp gain can be significantly above unity for frequencies

below 10 Hz (above 10 Hz the reflex gains must be below unity to ensure stability,

see Section 1.1.1). Thus, it is possible that the reflexes can contribute to maintaining

the stiffness values (<3 Hz natural frequency) measured in this thesis.

11.4 Summary

The contribution of this work ha'- been to provide estimates of the time-varying me-

chanical compliance of the arm during movement. The arm stiffness is modulated

with the movement, dropping relatively low during motion. Such control of the me-

chanical compliance could be advantageous from the standpoint of avoiding excessive

contact forces in unexpected collisions, or more generally for producing constrained

motions (see remarks in Chapter 12).

The finding that the stiffness is low during movement is not inconsistent with an

equilibrium trajectory hypothesis (i.e., static feedforward compensation). Simulations

using the estimated stiffnesses show that, provided gravity is compensated for, the

equilibrium trajectories reflect the actual trajectories closely (see Figure 7.15(b)).

The reason for this is that, in spite of the equilibrium potential field being negligible

during movement, the inertia of the arm continues the motion.

The additional finding that dynamic scaling does not occur to compensate for a

movement speed increase is inconsistent with the equilibrium trajectory hypothesis.

McIntyre (1621 anticipated this discrepancy, but argues that augmenting the equi-

librium trajectory tbeory with a velocity referenced reflex feedback loop (including

reaso,11able rhy, sog.,-a, ciays) is sufficient to produce similar time scaled movements

at different speeds. This solution preserves the simplicity of the theory, and prop-

erly stresses the importance of velocP' sensory information in the motor system (see
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Section 6.2.1).
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Chapter 12

Future Research

12.1 Kinematic Calibration

12.1.1 Use of Force and Velocity Sensing

In contrast to joint angle measurements, joint torque measurements enter linearly

into the relation describing the endpoint force. Thus, kinematic calibration may be

simplified by using force sensing. Specifically, it is possible to estimate the linearly

occurring elements of the joint Jacobian matrix relating tip forces to joint torques.

The kinematic parameters can then be analytically recovered from the Jacobian ma-

trix elements. This analytic parameter estimation is possible because of the simple

structure of the Jacobian matrix derived in Chapter 3. Similarly, as the joint an-

gle Jacobian also relates joint velocities to endpoint velocities, it should likewise be

possible to analytically estimate the kinematic parameters from velocity information.

While analytic techniques may not give accurate parameter estimates when noise

is present, they are important to develop, as a major difficulty in kinematic calibration

is the estimation of initial parameter estimates.

Finally, the use of velocity and force infoL-mation in calibration is attractive from

a bioloical point of view, as these quantities appear more readily available in the

human motor system (re Chapter 6).
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12.1.2 Global Uniqueness

In Chapter 3 results pertaining to the uniqueness of the kinematic parameters were

derived. It was shown that there are multiple solutions to the non-linear calibration

equations, and that the equations become singular for certain parameter sets. As

calibration must proceed iteratively, the following question should be addressed in the

future. Is it possible to follow a continuous path in parameter space (by any iterative

algorithm) from any initial point to a solution without crossing a singularity? It

is reasonable to conjecture that the answer to this question is yes. At least for

calibrating open kinematic chains, it is possible to show that the singularities divide

up the parameter space into disjoint manifolds, each of which contains one of the

2n- 1 solutions (provided the length parameters are suitably bounded). There may be

additional solutions on each manifold, but there can only be a finite number of them.

The manifolds provide a multiple covering of the output (endpoint) space. Thus, in

the open-loop calibration case a solution can always be reached without crossing a

singularity (i.e., without leaving a manifold). This needs to be elaborated and the

full conjecture should be tested.

12.1.3 Motor Psychophysics

The relevance of model-based robotics control methods to human motor control re-

quires further psychophysical experimentation. For example, experiments similar to

the teleoperator adaption experiments described in Chapter 6 may help develop an

understanding of how constrained our internal representations of sensorimotor trans-

formations are. As well, simple experiments to characterize the accuracy of whole arm

3-dimensional movement are necessary, before any strong conclusions can be drawn

about how important calibration is to the motor system.
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12.2 Airjet Experiments

12.2.1 Compliance During Performance of Difficult Tasks

Future airjet experiments should include characterizing the forearm's compliance

while performing more interesting tasks - such as catching a ball. The role of com-

pliance in these tasks is more critical, and an understanding of how it is modulated

may aid in building robots that can perform similar complex tasks.

12.2.2 Role of Reflexes

As mentioned in Chapter 7 the role of reflexes can be studied by estimating mod-

els with sufficiently time lagged parameters - to account for delays. This can be

done with the existing data. Alternatively, time-varying impulse responses can be

estimated. As discussed in Chapter 9, this requires the development of an identifi-

cation technique that incorporates a smoothness constraint on the impulse response.

Finally, future experiments will record EMG during movement, and EMG-torque

impulse responses will be identified.

12.2.3 Whole Arm Compliance

The main goal of the airjet project was (and still is) to characterize the 3-dimensional

compliance of the arm during unconstrained movement. Generalization of the airjet

perturbation device to a 3-dimensional version should be straight forward. Three-

dimensional system identification techniques must also be developed.

12.3 Role of Compliance in Constrained Arm Move-

ments

In previous work, not reported in this thesis, we performed a series of experiments

to study the contact forces during constrained whole arm movement [163]. We found

that a hypothesized stritegy of relying on the compliance of the arm and ignoring
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the specific surface constraint shape was consistent with experimental measurements.

This work will be continued and integrated with the compliance estimation studies

reported in this thesis.
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Appendix

The damper torque load used in the airjet experiments has a torque-velocity char-

acteristic given by Figure 12-1. In all cases the damper was set at 75 percent of

maximum damping.

SPEED - Rev min,
to100 1000

"-Toru Speed Curves for;

filling of various viscositiCs :

Ibf in i i

SPEED - Radisns/ stc

Figure 12-1: Torque-veocty relation for the damper used to load the arm. The model

used has the 500,000 cSt flling. At all times the viscosity was set at 75 percent of
the maximum adjustable value. Damper manufactured by Kinetrol.
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