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Obtaining Earth Surface and Spatial Deflections of the Vertical
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From Free-Air Gravity Anomaly and Elevation Data
Without Density Assumptions

DaviD M. GLEASON
Geophysics Laboratory, Hanscom Air Force Base, Bedford, Massachusetts

Moritz (1980) presents a density-frec scheme allowing for the analytical or regular continuation of a

~ (| given set of free-air gravity anomalies, referenced to the ground, to any desired level surface if a
_--, corresponding set of elevations (e.g., above mean sea level) is available. An efficient spectral

L : implementation of this scheme is discussed by Sideris (1987). A subsequent spectral execution of the

planar Vening-Meinez equation on the continued anomalies yields deflections of the vertical on the

. chosen level surface. The deflections are brought back to the Earth's surface via a spectrally

e implemented Taylor series. Deflections at a constant altitude above the level surface are obtained

9,,,“" through a routine spectral execution of the planar upward continuation integral. Two sites, having

m diverse topographies, were surveyed for | arc min by 1 arc min mean free-air anomaly and elevation

values and for smaller sets of astronomically determined deflections to serve as control or *‘truth™

Distribution Unkiriited

values. In a topographically tranquil but gravimetrically turbulent Oklahoma site the overall RMS of
the differences between true and predicted deflections was 0.3 arc secs and in a rugged New Mexico
site it was 0.6 arc sec. Accurate first derivative terms (in both continuation steps) require a I arc min
data set as interpolation-free as possible. A 1 arc min data grid is shown to be insufficient for
meaningful computalions of the higher order series terms. Potential pitfalls of the two-dimensional fast
Fourier transform pair are discussed with an emph:ms on unwanted circular convolution effects
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{. INTRODUCTORY THEORETICAL DISCUSSION

Runge’s theorem [cf. Morirz, 1980] states one can always
find a harmonic function T*, arbitrarily close to the Earth’s

~ external (and harmonic) disturbing potential 7, that can be

analytically or regularly continued (be it upward or down-
ward) from the Earth’s actual surface to any desired level
surface. Therefore a converging Taylor series links the
observed Agp free-air gravity anomaly, referenced to the
ground and given by

Lobserved at » ~ Yat the telluroidal point R

to the anomaly Ag'p-, referenced to the chosen level surface
(see Figure 1 for subscript referrals). Heiskanen and Moritz
[1967] dcfine the telluroid as a near-ground surface whose
normal potential at R is equal to the actual potential at the
corresponding ground point P (the points P and R reside on
the same ellipsoidal normal) and show how to compute the
normal gravity yg.

Under such a regular continuation of T, the level surface
Ag' sct refiects the Earth’s exterior gravity field. Inserting
the Ag’ set into Stokes’ formula yields a potential T" which is
harmonic above the chosen level surface (thus unrelated to
the Earth’s nonharmonic interior field) and which agrees
with the actual T on and above the Earth's surface. There-
fore any masses existing outside the chosen surface are, in
cffect, shifted to its interior without changing 7 on and above
the ground. This regular *‘continuation® of 7 (and thus Ag)
is, at least theoretically, preferable to traditional Bouguer
and isostatic *‘reductions’ because the former can be ac-
complished without any assumptions regarding the densities
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which, if unaccounted for, can mcrease the error in individual predicted deflections by as much as

of such masses and without approximating the vertical
gradient of actual gravity by its normal counterpart 9 ¢/8z =
—0.3086 mGal/m. As shown later in this section, the vertical
gradient of anomalous gravity is actually solved for in the
continuation process.

The Taylor series of interest is given by

gk 1  3%Agh
Agp=Agh +2 + = 2
gp &p P az 21 P az?
1 a3Agp
-3
+3!ZF az? * m
where
p=hp—=1n' (9]

with the heights /ip and &' shown in Figure 1.

An inversion of equation (1) is desired, i.e.. a solution for
Ag’ in terms of the observed Ag. Armed with a set of Ag’ on
the level surface approximated by an infinitely extended
plane, one can compute the height anomaly ¢, the deflection
of the vertical component along the meridian, & and along
the prime vertical, 7, at any point P' located on the level
surface via the planar versions of the Bruns and Vening-
Meinez equations [cf. Bomford, 1971] "

{(xpyp)
Ag'(a. W)
"""Y f f [(xp = 0)% + (3 = .\\)lll.': dx dy
Q)
and g 0 1 @9 - 1 S\) () S .{)
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P EARTH SURFACE wher.e Ag = —dTlaz, such an assumpugn Is appropriate [see
Moritz, 1980, p. 176]. The geometric kernel of (9). 1/
TELLUROID (distance)®, dictates dAg/dz to be a high-frequency/
short-wavelength phenomena. Schwarrz [1984], assuming a
Q' A HOSENCEVEL  widely used model spectrum. shows that over 60% of the
p' value of aAg/az is determined by the behavior of the gravity
(<0 he : field in the immediate 3 arc min area surrounding the
I computation point. Thus the ¢ or Ag data in this immediate
5 | h' area must be highly reliable to accurately compute ddg/oz.
] Now equations (3) and (4) can be written as
!
| (xp. yp)
h
ELLIPSOID
2"x, v
annlie: oo s— dx dv
Fig. 1. The applicable surfaces. ..77)' it f f [(xp — R (vp — A‘,)_]| 2 A
(0
f(.([) \p)} \p_\ aﬂd
nlxp, vp) 7‘"’7
Aee v {é( w} f f {\,,-\}
Ag'(x, v
5 dx dy (4) nxp. yp) 21ry "

[(xp =) + {yp — )]

where y is some mean value of normal gravity (say, 979,800
mGal). Just as (1) returns one to Agp from Ag'p, use of
similar Taylor series allows one to obtain {p, £p and 7p from
{pes Epyand mp.

Morirz [1980] shows that for any point Q' on the level
surface

Ao = 2 8y (5)
n=40

where the g/ {superscript combinations involving n or & do
not denote exponentiation while those involving r only do)
are computed recursively via

n
=-> oldgy ) (6)

r=1

n
8o
where the L, values are also obtained recursively via

Ligh) == LiL, - 1(g$)] (7)

for any arbitrary k and the function L, is defined below by
cquation (9). The starting values needed to implement (6)
and (7) are given by

o~ Agg ®)
and

Il |l L’”‘ .(Q’. _\'L)”]

0
20 v = g%xgp . v

_ Q_ Li 3 dx dy
[(xQ 0T+ (vg = ¥)?)

Notice that (9) is the planar version of the well-known
integral expression for the anomalous radial (vertical) gradi-
ent AAg/ar (or dAg/dz) wherein Ag is assumed to be a
harmonic function in space. Under the planar approximation

9}

gMx.y)

.[(.rp'—x) +(yp =7

dx dv (1D

Thus before the multiple integrations of (10) and (11) can be
executed, multiple integrations corresponding to every point
(' on the level surface are required to compute the input g”.
These practical integration concerns can be overcome by
efficiently executing the whole scenario outlined in this
section in the frequency domain. Sideris [1987] (also see
Sideris and Schwartz [1986, 1988] for related works) uses
analytically defined spectra, as well as discrete two-
dimensional fast Fourier transforms (FFTs), to compute the
convolutions of equations (9)-(11). This “‘analytical’” ap-
proach will be summarized in the next section. An alterna-
tive approach, suggested by Wang [1988]. is to compute all
of the required spectra. including the geometrical kernels,
via the discrete two-dimensional FFT pair. Experiments by
this author have shown that use of the analytically defined
transfer functions yield appreciably more accurate deflection
predictions and thus will be incorporated in this paper.

Section 3 will discuss potential pitfalls in any use of the
discrete two-dimensional FFT pair, highlighting the un-
wanted phenomena known as circular convolution. Finally,
section 4 will examine sets of predicted deflections of the
vertical in highly diverse topographic settings. Required
input for the predictions are a truncated set of geopotential
coefficients and gridded data bases of mean free-air gravity
anomalies and elevations.

2. USING ANALYTICALLY DEFINED SPECTRA IN THE
COMPUTATION OF EQUATIONS (9)—(11)

The spectrum of the rth vertical derivative of any two-
dimensional planar gravimetric harmonic function n(x, v, -
= const) is given by [cf. Sideris, 1987]

a"wl(x, ¥, 2 = const)
F

— } 2w WL £ (1)
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where W( £, f,)denotes the Fourier transform of sy, v. 2 -
const) and

q'v'(_/f ~_l‘\3l'3 (13
with the linear frequencies £ and f, corresponding to the x
and v directions. By treating cach ¢* as a planar harmonic
function one has Ljgh) = aghoz and Lg%y = (I
ra'te® oz’ Inserting (7) into (6) vields (in light of (121

n
. I
) o B 2w GE T (14)
;
ro 1 .

where (% denotes the two-dimensional Fourier transform of

A
e

The well-known analvtically defined spectra of the geo-
metnical kernels of (11) are given by

X =27t
F D el i (15
T T
and
v =2mif,
2 L — (16)
EERESII)

torg # 0. Forg = 0 both spectra are set equal t¢ zero which
corresponds to removing the mean of the kernel.

Lincar convolution in the space domain corresponds to
multiplication in the frequency domain provided the neces-
sary steps are taken to convert periodic or circular convo-
lutions. resulting from the use of the direct and inverse FFT,
to the desired linear forms (see the next section for details).
Hence the ath linear convolutions of t11) can be immediately
expressed (in radians) as

feol ) oG
] o TR -
l o b% “.’\“/‘(’Q’
Fora point A that resides on both the Earth's surface and the

level surface (see Figure 1) the desired Earth surfuce deflec-
tions are simply given by

T L n
UE! w0 74

with cach £ and n¥ computed via (17), It is well-known that
the analytical Fourier transform of [x7 « v7] "7 g /g4 for ¢
0. and 1t s again set to zero for ¢ = 0. Henge the nth
convolution of (10), evaluated (in meters) at an arbitrary
on the fevel surface. can be written as

! [
o T F ‘{; (;2,'}

and at 4 the desired Earth surface height anomaly is given by

(7

(18)

(9

(20)

For arbitrary points P on the Earth's surface located below
or above the level surtace one can perform a Tayvlor series to
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get back up (or back down) to £. One gets back 1o Agp from
Agp via (1) whick now can be written as

a

Agpo D gp >

—

-
IpaTEp

pT—

— LD
az RSN
"o o0 b e

Each n 2 1 termin the first n-indexed summation is obtained
from (14) (recall, by definition. gj» = Agp). By treating each
¢* as harmonic. it follows a’(ghyaz" = F HGH-2mg)'),
and through routine algebra one can easily show that the
second n-indexed summation in (21), which has a starting
index of zero. is equivalent to the following sum having a
<tarting index of one:

> i

o

where cach

n
1
et 2 - opF N-2m@ Gy ) (22)
rod r
Note that obviously, for n = 1. gp = —gp and (21) reduces

to the defined Agp = gp-.
Similarly, if one treats each ¢*. &, and n* as planar
harmonic functions, then it follows that
ezt = [V QaplF HigGH-2mg)"}
= (= Uy F NGM-2mg)" '}
AENIZ = (U F Y =if IpGR =27}
= (UyF NGH-27q)" Q2w
and
artphvaz = (U F Yo—if IgpGH =2mg)"}
= (I FGH=2mg)" 'Qmif))
Taylor series akin to (21) can be expanded for {p. &p. and 7p.

Equivalent to these expansions are the following final deflec-
tion expressions at any point P on the Earth’s surface:

] .f}'r} & { &;z}
= L n + 2 - n
ne n 0 nr noo| e
where

gl 1o . (~2mq) 'QuEif)GhT
arl oy < ~r (=27 'Qwif )G
r

a
11

and the terms in the first #-indexed sum are obtained from
(17). For the height anomaly one has

——]
ip= S (hv X i (24) J40s
] n 1 ) T ————
A < -, 0P
st Speclial

where
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Fig. 2. The { arc min by | arc min topography (Oklahoma) of
central 1.75° by 2.25” area.

. l n l }
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and the terms in the first #-indexed sum are obtained from
(19). The fact that the efficient and simultaneous computa-
tion of the G* spectra only has to be executed once (the G*
can be stored on a direct or random access disc file for future
reference), together with the simultaneous calculation of
gridded . & and 7 values via (23)-(24). constitute the appeal
of Sidens” approach.

3. PorteNnTIAL PiTFALLS OF THE DISCRETE FFT Palr

Although some nice treatments of geodetic FFT tech-
niques already exist [cf. Schwarz et al., 1990], the purpose of
this section is to furnish a short (but detailed) explanation on
the optimal computer execution of equations (23)—(24) using
a direct or random access file of precomputed G* spectra
values obtained recursively from F {left-hand side of (14)}.
First of all. most “"canned™ two-dimensional FFT routines
suck s International Mathematical and Statistical Library’s
(IMSL) FFT 3D expect the Ag(0, 0) origin value to be at the
southwest corner of the grid. Thus, to make inverse Fourier
transforms such as (14), (23), and (24) amenable to such
routines, one must apply the appropriate frequency shifts in
any analytically-defined transfer function contributing to the
final spectra which will be transformed back to the space
domain by the inverse two-dimensional FFT routine.

There are three major areas of concern in any use of the
discrete two-dimensional FFT pair, namely, aliasing, spec-
tral leakage. and circular (nonlinear) convolution effects.
Aliasing can only be truly eliminated by sampling the signal
at a rate at least twice as high as the highest frequency
present in the signal (if known). Thus one can only hope to
minimize the aliasing effects by using as dense a grid of data
as practically possible. A popular remedy [cf. Bergland
1969] for spectral leakage. resulting from the failure o
examine the signal over its entire assumed period, is used
here: namely, multiplying the given set of gridded free-air
gravity anomalies by the well-known two-dimensional 80%
cosine taper window. This eliminates discontinuities along
the cdges of the grid and allows the data to take on some
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semblance of periodicity. Such a window must Le applied to
the actual data and not to any artificial data generated by
filling out a record with zeros. Such artificial data will be
discussed shortly and will be used in the test cases of section
4,

When the desired linear convolutions of (9)}-(11) are com-
puted with the aid of the discrete periodic FFT pair, such as
in (14), (23), and (24), the resulting convolution is periodic or
circular in two dimensions. To obtain the desired linear
convolution, Oppenheim and Schafer [1975] show the di-
mensions of the two sequences to be convolved must be
chosen large enough to avoid unwanted aliasing inherent to
the periodic mode of the FFT pair. Convolution of two M by
N sequences produces a sequence of area 2M-1 by 2N-I1.
Hence each array should be dimensioned 2M by 2N (or
larger). Zero values are assigned to each location in the
extended areas of the space domain g* array. If one evalu-
ates the spectra of the geometrical kernel or response
function via a (southwest origin) two-dimensional discrete
FFT, a **four corner’’ space domain grid assignment is made
[see Oppenheim and Schafer, 1975] to avoid the ‘‘wrap-
around’’ or circular convolution. Therein, the corner N/2 by
M/2 nonzero sections of the overall 2N by 2M gnid contain
the appropriately shifted space domain kernel values and the
rest of the grid is zero. One then takes the direct FFT of the
extended 2M by 2N (or larger) grids. As alluded to earlier,
somewhat better predictions occurred by using analytically-
defined kernel spectra. Thus the analytically-defined transfer
functions appearing in (14), (23), and (24) require ‘‘extend-
ed’” frequency counter shifts (recall the transfer function
frequencies must be shifted to adjust for the southwest
origin). An inverse FFT of the extended product spectra is
taken and the desired linear convolution is located in the
original (nonextended) grid locations. Experiments have
shown that neglecting the circular convolution effects can
increase the error in individual deflection predictions by as
much as 100% and increase the overall RMS of the predic-
tion errors by several tenths of an arc second. An additional
benefit of extending the original space domain g* grid with
zeros, to form a 2M by 2N grid, is the reduction of unwanted
picket fence " effects in the G* spectra (see Bergland [1969]
for more details). These unwanted effects, namely, the
Fourier coefficients taking on the behavior of a set of
overlapping band-pass filters, occur because the g signal
does not consist of a desired set of purely discrete orthogo-
nal frequencies.

4. TesT RESULTS

Sideris’ two-step continuation scheme was subjected to all
of the procedural steps outlined in section 3 to compute
deflection of the vertical components from 1, 3, and 5 arc
min gridded data bases of mean free-air gravity anomalies
and mean terrain elevations in two areas having dramatically
different topographies. The 1 arc min gridded files were
furnished by the Defense Mapping Agency Aerospace Cen-
ter (DMAAC), St. Louis, Missouri. The coarser 3 and § arc
min files used were simply averaged versions of the 1 arc min
data.

The north-south Ay planar sampling spacing. in meters,
was set to an arc length of I, 3, and § arc min along a
meridian of radius 6371 km. The east-west Ax was set to Ay
- cos &y, where ¢y is the middle-latitude value of the
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The 1 are min by | are min topography (New Mexico) of
central 37 by 37 area.

Frg. 3.

surveyed arca. Predicted values were then compared to a set
of astrogeodetic deflection “truth™ values located in the
center region of the surveyed area (noncentral predictions of
course suffer from the shortened extent of the data and from
the periodic nature of the FFT pair (with respect to the
fatter. see Wang [1988])).

The two areas selected were (1) the topographically tran-
quil but gravimetrically turbulent (due to the crustal density
structure) Oklahoma/Texas test area of the Gravity Gradi-
ometer Survey System and (2) the highly rugged White
Sands. New Mexico, area. The input data bases for Oklaho-
ma'Texas covered a 3.5 (north-south) by 4.5° (cast-west)
arca and for New Mexico a 6 square arca. Figure 2
ilustrates the central 1.757 by 2.257 region of the Oklahoma
site and Pigure 3 iftustrates the central 3° by 37 area of the
New Mexico site (all astronomically determined ““truth™
stations were located in these central regions). Due to the
rugged nature of the terrain, the accuracy of the New
Mevico gravity anomalies is far from umform. i1 inaccessi-
ble arcas. a least squares collocation scheme was employed
by DMAAC to obtain interpolated anomaly values.

The long-wavelength features of the Earth surface gravity
anomalies corresponding to harmonic degrees n = NT were
removed by the spherical harmonic expansion

\ , L
M \f ay" ol
Aviemoedtre HoA)Y  — > on - | -
- N r

n
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H
E (CE, cos mA + S, sin mAY P, (cos 8) (25)

mo A

where # denotes colatitude and the asterisk implies that the
potential coefficients were made residual to the reference
ellipsoid (various potential cocefficient sets and values for NT
were selected: the results will be discussed below). The
geodetic (&, AL height)p coordinates are transformed to (r. 6,
A)p geocentric coordinates before (25) is executed. The
reduced set Ag;guced = AL = AL emoved Was then subjected
to the two step continuation scheme., producing a set of
reduced deflection components. The long-wavelength fea-
tures of the deflections were then added back via

ro

”‘ &k d‘[[,n.m(CO\ H)]
. 24 {C},, cos mA + U aeEE

S sin mA (26)
m o0 tlH
and
NT "o 2
-1 L, fda -
nir B A = —— (-)
sin § S\
L B
n
N om[=Cx,, sin mA + S8, ,, cos mAlP, .(cos #) 27)

m -0

For both areas the mean elevation surface was chosen as the
tevel reference surface containing the points P and Q' on
Figure 1 (experiments revealed the n-indexed series of (5).
(23), and (24) converge fastest for such a level surface
choice). The final values & and 7. to be compared to the Ath
astrogeodetic “truth’™ values. were obtained from a simple
interpolation of the four predicted (gridded) deflections
closest to the &th control point given by

\4‘ I .El"/l):k}

~ 1 nibu

EA} !
T 1

N by

]

[

(28)

where D is the planar distance from the control point & to
the grid point i,

FABLE | Maxamum ¢ &0 g - &y, and o't f - pp) Absolute Values, Given by (14) and (231, in Central Region of Surveyed
Oklahomw/Texas Area
Sare min by S are min 3 are min by 3 arc min | arc min by 1 ar¢c min

¢’ &7 are n”.are ¢, &, arg n". arc . &L are . are

" mGal NS sec mGCal sec see mGal se¢ sec
0 K621 13.94 11.97 87.84 15.44 12.56 91.89 16.35 13.50
| 1.04 0.08 0.08 1.56 0.06 .06 268 .18 0.21
2 0.01 0.00 0.00 0.03 0.00 0.00 .28 0.01 0.01
3 .00 0.0 .00 0.00 0.00 0.0 0.02 0.00 0.00
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TABLE 2. Overall RMS Vialues of 24 (True  Predicteds € and 5 Differences tor the Okluhoma

Texas Arca

Grid Resolution

S are min by S are

3arc min by 3 arc I arc min by | arc

n Truncation min

Level of (23)
n 3 n
] 0.56 .42
1 0.558 0.41
2 .55 0.4
3 0.58 0.41

min min
£ n ¢ n
.44 0.42 0.38 0.32
0.43 0.42 0.34 0.32
0.43 0.42 0.34 0.32
0.43 0.42 0.34 0.32

The ¢ and n differences are in arc seconds.

Note that the £, ““analytically continued™ deflections
represent the deviation of the actual plumb line from the
normal plumb line at the ground point P, while the astrogeo-
detic € values denote its deviation from the perpendicular to
the ellipsoidal footpoint of P. The difference is accounted for
by the well-known normal reduction for the curvature of the
plumb line {ct. Heiskanen and Morirz, 1967]. One has

h
E.l\llugk'ndk‘llc = ,Edn.ﬂ}“(;l“) continued *.’* E sin 2¢ (29)
where f* denotes the gravimetric flattening, R the radius of
the spherical Earth, 4 the elevation of P, and & its geodetic
fatitude.

For the Oklahoma/Texas area. use of the Rupp [1981]
potential coetficient set through NT = 36 in equations
(25(27) yielded the best quality predictions. Although such
a truncation implies a 5° by 5° local data set is available
(recall a 3.5 by 4.5 set was used). using higher degree
coefficients was detrimental to the final predictions (Sideris
[1987] cites similar experiences). Current high degree and
order geopotential coefficient sets (such as Rapp’s) are
“‘combined’ sets in the sense that the lower degree (n < 36)
coefficients are related to satellite observations, while the
higher degree coefficients come from a global set of 1° or 30
arc min surface mean gravity anomalies. The latter coeffi-
cients are not as reliable as the former due to a scarcity of
surface gravity information over large portions of the globe.
Experiments revealed that use of dense. localized gravity

anomaly data sets in conjunction with the satellite-related n
= 36 potential coeflicients led to the best results.

Table 1 hists. for the 5. 3. and | arc min gads, the
maximum ", £" (= &5+ Epand " (= mp - o on = 0,
1. 2. 3, absolute values in the central region of the Oklahoma
area. For such a tranquil topography. the higher-order terms
are expectedly impotent (the significant ¢!, £'. and n' values
(for the 1 arc min grid) were mainly located near the
protruding hills appearing in the middle of Figure 2. The
overall RMS (in arc seconds) of 24 (true - predicted)
deflection differences in the Oklahoma/Texas area, for vari-
ous grid resolutions and truncation levels of the n-indexed
sums of equation (23), appear in Table 2. As expected. the
higher-order terms contributed little to the fir.al interpolated
deflection computations. The average standard error of the
astrogeodetic ““truth’ values was exceptionally low, =0.05
arc sec. The average standard errors of the input 1 arc min
mean anomalies and elevations were 3.7 mGal and 30 m,
respectively.

For the New Mexico site, the Rapp [1981] coefficient set
was again used with NT = 36 to account for the long-
wavelength contributions. Table 3 is the New Mexico coun-
terpart to Table i. The rugged New Mexico topography of
Figure 3 is reflected in the large magnitudes of the Table 3
higher-order maximum absolute values. Extrapolating the 1
arc min by | arc min section of Table 3 (it was truncated at
n = 8 due to a shortage of disk space at the Geophysics
Laboratory (GL)) infers that equations (5) and (23) should be

TABLE 3. Maximum g”. &' (=£5+ £p). and 1" (=} + 7nf) Absolute Values. Given by (14) and (23), in Central Region of Surveyed
New Mexico Area
Grid Resolution
S arc min by S arc min 3 arc min by 3 arc min I arc min by | arc min

g, &, arc n". arc 2", &, arc n". arc 2", &, arc n". arc
n mQral sec sec mGal sec sec mGal sec sec
[ 119.80 11.88% 28.76 137.52 12.94 28.47 155.81 15.72 33.03
| 19.56 0.78 1.07 31.61 1.15 1.69 85.79 219 3.51
2 3 0.06 0.16 8.74 0.15 0.38 72.47 0.79 1.16
3 0.41 0.01 0.02 1.89 0.03 0.08 60.44 0.49 0.88
4 0.04 0.00 0.00 0.33 0.01 0.01 44.63 0.28 0.80
N 0.00 0.00 0.00 0.05 0.00 0.00 28.54 0.16 0.60
6 .00 0.00 0.00 0.01 0.00 0.00 15.83 0.11 0.41
7 0.00 0.00 0.00 0.00 0.00 0.00 7.69 0.07 0.26
R 0.00 0.00 0.00 0.00 0.00 0.00 RIR}
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x 3 New Mexico area.

The ¢f
corresponding to | arc min x 1 arc min grid.

Fig. 4. values of central 3°

continued through n = 10 to obtain submilligal accuracies for
the entire level surface Ag’ set and 0.1 arc sec accuracies for
the Eaith surface £and nsets. Such a truncation is far higher
than reported by Sideris [1987] using S arc min by § arc min
gridded Jata bascs and intcrpolated | arc min grids. Wang
[1988] also reports on the inability of interpolated grids to
account for higher-frequency terrain effects. Figures 4, §,
and 6 plot the ¢'. ¢°. and ¢ values (vertical scale exagger-
ated) corresponding to the ! arc min by 1 arc min grid, for the
central 3° by 3" arca of the New Mexico site.

Table 4 1s the New Mexico counterpart to Table 2. As a
preliminary remark, it should be mentioned that the 378 pairs
of astrogeodetic d flections used uare not part of an older
astro set used by the well-known C. C. Tscherning White
Sands Study Group and supplied by DMA’s Geodetic Sur-
vey Squadron in Cheyenne. Wyoming. My initial experi-
ments using the Tscherning astro values detected a bias of
approximately 1.2 arc sec in the east-west 7 astro compo-
nents. The Survey Squadron subsequently supplied me with
a newer astro set having accuracies comparable to those of
the Oklahoma set. The values appearing in Table 4 refer to
this newer bias-free set. The tabular results agree closely
with those obtained using the older astro set after the
aforementioned east-west bias was removed.

Although the modest overall improvement in the predic-
tions from the use of the | arc min by | arc min ¢! terms is

The ¢- values of central 37 = 37 New Mexico area,
corresponding to § arc min « { arc min gnid.

Fig. §
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Fig. 6. The ¢* values of central 3° x 3° New Mexico area.
corresponding to 1 arc min x | arc min grid.

disappointing. it can readily be explained. Recall g} =
~zptag®az)p. As stated earlier. the majority of the total
value of the anomalous vertical gradient is due to the
behavior of ¢ in the immediate 3 arc min area surrounding £.
A 1 arc min grid supplies nine. 1 arc min by 1 arc min g°
values in this area. For near-mountain astro stations having
a dense sampling of actual point gravity measurements in
this critical immediate 3 arc min area, the ¢! term consis-
tently enhanced the predictions by several tenths of an arc
second. By contrast. for near-mountain stations lacking such
measurements, the g' term tended to deteriorate the predic-
tions by comparable amounts. The overall statistic hides this
significant ¢ " activity and the use of interpolated anomalies
in areas immediately surrounding the computation point is
detrimental to the cause. Harrison and Dickinson [1989]
suggest constructing a 30 arc sec grid (in this case) and
placing the pertinent 1 arc min gravity and height values in
each of the four 30 arc sec cells before computing the
deflections. Execution of this suggestion with the given 1 arc
min data sets did noi imnrrove the predictions.

In light of the above, one must question the accuracy of g*
and higher terms obtained from a 1 arc min data grid. The g’
term can justifiably be described as the ‘‘gradient of the
gradient”’ of anomalous gravity. Clearly, the majority of its
value is accounted for by the behavior of g in an immediate
area far smaller than 3 arc min. Higher-order ¢* terms are
even more short wavelengthed. One must question how an
initial set of 1 arc min mean anomalies and heiglits can
account for all the high-frequency information in the to-
be-solved-for g*. even if the | arc min mean values are
straight averages of a dense set of point measurements (i.e..
they are interpolation-free). Moreover, noise (errors)
present in the | arc min data will propagate into the com-
puted. weak-signalied g* and. in all probability. render them
meaningless due to unacceptable signal/noise ratios. A 30 arc
sec grid might allow for meaningful ¢ values provided
interpolations usce avoided (of course one runs into numerical
stability, computer storage and CPU concerns with such a
dense grid). By the same argument, if one is working with 3
or 5 arc min data grids. one is hard pressed to justify even the
use of g'. Notice in Table 4 that the overall RMS of the
east-west g differences actually inched upward with the use
of the 3 and S arc min g' values.

As a final remark. one can easily obtain a gridded set of
deflections at a constant altitude /i above the chosen level
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TABLE 4.

! .

GLEASON: OBTAINING EARTH SURFACE AND SPATIAL DEFLECTIONS

Overall RMS Values of 378 (True ~ Predicted) £ and 7 Differences for the New

Mexico Area

Grid Resolution

S arc min by S arc

3 arc min by 2 arc 1 arc min by 1 arc

n Truncation min min min

Level of (23) —_—
n 4 n ¢ n £ M
0 0.84 0.97 0.72 0.74 0.61 0.72
1 0.83 0.98 0.70 0.76 0.59 0.66
2 0.83 0.98 0.70 0.76 0.59 0.65
3 0.83 0.98 0.70 0.76 0.59 0.65

The £ and 7 differences are in arc seconds.

surface through the routine spectral execution of the planar
upward continuation integral given by

{f(a[ helght h)} =F" I{XAé’ - 21rhq}
and
{n(at height W} = F ~ {H e ~ ™4}

where X, and H, denote the two-dimensional Fourier
transforms of the level surface ¢, and 7, gridded sets given
by (18) and e 2™ is the well-known upward continuation
transfer function.

5. SUMMARY

An efficient, spectrally implemented, density-free tech-
nique allows for the prediction of deflections of the vertical
and height anomalies from input grids of free-air gravity
anomalies and elevations. Long-wnvelength contributions
are accounted for by a low degree set of geopotential
coefficients. The scheme has been successfully tested in two
diverse topographies and accounts for severe terrain effects
as well as turbulent gravimetric behavior due to crustal
density structure. One minute grids of noninterpolated free-
air gravity anomalies and heights are required for a universal
set of accurate first-order vertical gradients of anomalous
gravity. intermediate quantities in the prediction process.
Accurate higher-order gradients will require =ven finer res-
olution grids of a noninterpolated nature.
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