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SECTION 1
FIRE EFFECTS IN A THERMONUCLEAR AFTERMATH

Relative to what is known concerning the consequences of blast, prompt
radiation, and radioactive-material fallout, comparatively little is known
about fire effects in a thermonuclear aftermath (Glasstone and Dolan 1977).
This limited predictive capability seems at least partially attributable to
the dedication of comparatively limited resources to the investigation of
fire effects. Because no canonical, standard fire behavior seems
identifiable, and because fire effects seem particularly meteorologically
dependent, this limited effort is understandable. In fact, however, aside
from very-short-term thermonuclear effects, other postexplosion events also
can be meteorologically dependent (witness the role of thermal layers,
which can result in highly nonideal blast-wave structure and soil scouring,
or the role of tropospheric winds and stratification on dry and wet
deposition of fallout). If fire effects are to be knowledgeably included
with other post-thermonuclear effects for purposes of strategic-weapon
targeting, a stronger technical base for decision making seems desirable.

A fundamental goal in assessing post-thermonuclear fire effects is
achieving an estimate of what matter burns how soon (if it burns at all),
given the areal density of the combustible and inert material (the
“loading"), the meteorological environment, and the topography of the
vicinity of the target. This goal may be restated as seeking an estimate
of the rate and direction of firespread (i.e., the rate and direction of
fire propagation from combustible material already alight to combustible
material not yet involved with burning).

Assigning the phenomenon of firespread this priority is not without
alternatives. For example, preliminary to firespread is the phenomenon of
ignition, effected in a thermonuclear context by (1) preblast arrival and
postblast-arrival radiative heating of combustible matter, and (2) the
consequences of blast effects, which can knock down power lines, disrupt
gas mains and 1iquid-fuel-storage facilities, etc. Of course, the
interaction of blast arrival with fires initiated by blast-precursive
radiation is varied, since an ignited object may be broken into many pieces




(some serving as torches, some too small for burning to be sustained), and
forced-convective extinction of fire sustained by noncharring fuels may
occur--though most burning synthetic and natural polymers form near-surface
heat-retaining char layers that sustain the outgassing of combustible
vapor, and hence the polymers typically relight after the brief (few-
second) interval of high blast-associated winds. The point of view adopted
here is that, within the range of free-burning fire phenomena, ignition
criteria are relatively well investigated, understood, and quantified
(Glasstone and Dolan 1977). Furthermore, many ignitions arise from
difficult-to-anticipate circumstances dependent on the time of day or
season of the year or meteorological conditions or extent of preparedness
or whether fire-safety infractions are incurring, etc. It seems reasonable
to anticipate that ignitions inevitably will occur in a thermonuclear
aftermath. The key issue is whether fire spreads from the sites of
ignition, and, if so, how quickly and in what directions. Knowledge of
firespread is essential to assessing the viability of fire-fighting
countermeasures (the pertinent parameters include available time, manpower,
equipment, communication, transport, water distribution, and visibility),
to assessing the adequacy of natural or man-made firebreaks, and, in
general, to anticipating what the fire effects will be.

Predictive capability concerning the structure-to-structure spread of
fire in an urban or suburban setting is in a primitive state because, aside
from incendiary or thermonuclear bombing, such spread is a rare event
associated with natural disasters (earthquakes, hurricanes) or violent
accidents (huge explosions and detonations, usually of munitions or
propellants). The fire-safety regulations and fire-fighting capabilities
of technologically advanced countries tend to limit large-area fires in the
twentieth century to wildlands or to portions of communities at the
wildlands/suburban interface, though counterexamples certainly can be cited
(Pyne 1985). To the knowledge of the authors, there is no agency (other
than the Defense Nuclear Agency) supporting investigations into block-scale
or neighborhood-scale burning, and the modeling of the dynamics of very
large wildland fires seems not to be a major undertaking of even the Forest
Service. The rudimentary state of the topic is suggested by the current
uncertainty concerning the quantitative criteria for the relative




importance of radfative transfer and of convection/conduction in the
preheating of uninvolved combustible matter (henceforth referred to as
fuel) to its pyrolysis condition. It was in this context that the present
firespread investigation, combining laboratory-scale experiment and
approximate simplistic theoretical modeling, was undertaken. (A discussion
of methodology for the investigation of urban-scale firespread is
undertaken in Section 2.)

Although the present investigation is concerned with firespread in an
urban/suburban setting, there are parameter ranges in which wildland-
firespread experience is pertinent. In wildlands, a multisized (by
diameter and height) fuel loading is perennially present, hot and dry
spells of weather periodically arise in many geographic areas, and unwanted
ignitions frequently occur (owing to lightning, arson, accidents in
commercial activity such as logging, carelessness in recreational use,
etc.). In fact, the greatness of the fire danger is intermittently such
that fuel-loading reduction and/or elimination by so-called prescribed
burning is practiced in many areas of the globe; furthermore, intentional
burning is used to remove residual organic matter from harvested forests
and tilled areas, both as a low-cost convenience and/or as a promoter of
regeneration. However, it is only with the arising of strong sustained
winds in conjunction with drought, heavy accumulation, and ignitions that
routine fire events, normally unreported, become front-page episodes, even
historical watersheds (Nobie 1977; Pyne 1982; Simpson 1989). The
relatively rapid spread of fire under wind aiding may arise via buoyancy-

induced flow during upslope runs. So-called active crown fires arise only
in connection with high winds (Fendell 1986). Such "blowups" persist as
long as the winds are sustained, unless a firebreak, effective against even
firebrands, along the path of spread is encountered. For a large complex
of fires, generally only a prolonged interval of cool moist weather,
including significant precipitation, terminates the spread, or at least
facilitates containment and control. Accordingly, on the basis of
wildlands experience, emphasis in the work to be reported is on flow-
assisted firespread across beds of discrete fuel elements.




Wildlands fuels include live vegetation with appreciable moisture
content (typically equal to, or exceeding, the dry weight, for thin-
diameter fuels), whereas the dead wood used in construction i{s typified by
appreciably lower moisture content (even shortly after rainfall, since
there is fairly rapid adjustment of dead wood to ambient conditions).
Thus, the moisture content of the fuel tends to be important for wiidlands
firespread, because the fuel is virtually fully desiccated even of “bound”
water before it is pyrolyzed, and an often nontrivial heat requirement is
associated with the desiccation. But with respect to the importance of the
role of moisture content on the rate of firespread in the urban-suburban
context, the wildlands experience may be misleading.

Finally, in the aftermath of a large thermonuclear explosion, one
expects particularly strong blast effects close to the hypocenter, and
diminished blast damage at greater lateral distances from the hypocenter.
One also anticipates more ignitions in the strewn debris in close to the
hypocenter, and fewer ignitions at greater lateral distances, where the
fuel distribution is more “clumped.” In fact, in close to the hypocenter
the fire serves mainly to transform heavily damaged homes and structures
into carbonaceous residue; this vigorous burning in the early hours after
the thermonuclear event is primarily of interest in conjunction with the
rapid lofting of smoke, soot, and other combustion products (including
water vapor), into a tall central convective column. The convectively
induced advection retards laterally outward firespread from the sites of
ignition because such spread is against the wind. This central-buoyant-
column-dominated, early stage of the post-thermonuclear fires is mainly of
specialized interest in connection with (1) hypothesized long-term, global
effects related to climatic cooiing and reduction of incoming solar
radiation, and (2) shorter-term, more localized consequences of lofted dust
and smoke (the so-called "fog of war"), whereby the efficacy of high-
altitude sensors operating in the infrared and visible portions of the
electromagnetic spectrum is significantly reduced. As the fire intensity
is mitigated after a few hours, laterally outward propagation in the
direction of the prevailing ambient winds occurs. The fires in the
distributed, small-diameter rubble closer to the hypocenter center serve to
sustain and propagate burning that later may inflict damage at large




distances from the hypocenter, at sites at which blast damage is slight or
virtually negligible. Thus, the fires in the more closely spaced, thin
fuel elements typical of strewn debris give the locus of the burning front
at an earlier time, a prerequisite to inferring the position of the
firefront locus at some later time. In this way it seems reasonable (in a
systematic approach linked to the sequence of events in a thermonuclear
aftermath) to treat firespread across beds of closely spaced, thin fuel
elements as a first step, and only then to proceed on to firespread among
the larger, more isolated fuel elements with "internal structure* (i.e.,
fuel elements simulating houses and buildings, with hollow cores, ceilings,
and internal fuel loading representative of furniture, finishing materials,
etc.). Accordingly, attention is focused here on flow-assisted firespread
across beds of close-proximity, thin-diameter wooden fuel elements, as a
preiaquisite to treating firespread across clumped fuel distributions
typifying sites mostly unaltered by blast damage. For completeness, it is
noted that, in wildlands, the thermally thin, leaf-and-twig-type component
of the fuel distribution [that is, the fraction (of the total fuel loading)
which is of less than (say) one-centimeter thickness, and hence more
readily desiccated and pyrolyzed] often is consumed with firefront passage.
The thicker fuel elements mainly serve (as do rocks and other inert matter)
as heat sinks during firefront passage; thicker fuel elements are burned
after firefront passage, if ever burned at all. Thus, for estimation of
the rate of firespread, the emphasis on the amount and the properties of
small-diameter fuel elements in multisized fuel distributions seems
appropriate.




SECTION 2
METHODOLOGY

Fire experiments on an urban scale are prohibitive for reasons of
cost, and perhaps prohibited for reasons of environmental concern.
Predictions ultimately must be made by a computer-code simulation.
(Engineering judgment must be exercised in assessing the plausibility of
predictions made by a computer code for a scale of phenomena for which it
has never been tested.) To the knowledge of the authors, a candidate fire-
effects computer code does not exist. One goal of near-term research is to
help determine the desired characteristics of such a computer code, and to
establish a systematic procedure for validating the code. However, in view
of the present state of limited understanding of needs and capabilities, it
may be premature even to initiate the development of an urban-scale fire-
effects "hydrocode".

An alternate approach is to undertake jointly experimental and
theoretical projects that pursue fire effects over a sequence of spatial
scales, by proceeding from small laboratory scale to large enclosed-
facility scale to small field scale to large field scale. The reasons for
commencing on smaller scale and proceeding subsequently to larger scale are
many. On smaller scale, there is more control of test conditions [so that
the prescribed experiment can be executed without delay and without change
(during a test) of nominally fixed constraints, and the experiment can be
repeated], relatively small cost per test, rapid turnaround time (so that
relatively little calendar time need elapse between tests), and relatively
complete and delicate instrumentation is feasible. In fact, the
development, hardening, calibration, and siting of instrumentation can be
advanced on laboratory scale, for later use in larger-scale tests. Some
phenomena important at large scale are not readily reproduced in a
laboratory-scale, wind-aided-firespread experiment, such as wind gustiness,
(prescribed) air-stream relative humidity, and radiative transfer.

However, this circumstance may be an asset in that only a subset of the
total range of concerns need be addressed at early stages of an
investigation. Attention may later be concentrated on the initially




underplayed effects, since understanding of the initially present subset of
effects presumably by then will be well in hand. In any case, since
larger-scale tests are more costly, executable only at longer calendar
intervals, and harder to control and instrument, there typically will be
fewer of such tests, and the need for each one to be informative if
programmatic objectives are to be achieved is more critical. Therefore,
seeking insight at the outset via experimentation at smaller scale seems
judicious. A frequently incremented bank of experimental data, that often
can be extended (on request) to any of a wide range of parametric
assignments, seems advantageous for the development and upgrading of a
concomitant theoretical-prediction capability. Again, because only a
subset of the total number of ultimately relevant phenomena may enter
significantly at the smaller scales for which laboratory-scale experimental
testing is executed, there is greater probability that the theoretical
model will not be overwhelmed at the outset of its development. Rather,
the opportunity for the theoretical model to be evolved in tractable stages
(i.e., levels of sophistication) is enhanced.

Ultimately, it is clearly indispensable that preliminary insights
achieved on the basis of laboratory-scale and small-field-scale experiments
be tested on the scale of the event of interest (or, in the context of
urban-scale fire, on as large a scale as feasible). The factor of the
unexpected furnishes a major motivation for proceeding to tests on larger
scale. However, for firespread across a bed of thin discrete fuel
elements, no very large extrapolation may be necessary. It is indicated in
the text to follow that, for thin fuels, the rate of propagation of the
flaming front is primarily a function of two parameters, the ambient wind
speed U and the fuel loading m, where m is the mass of fuel (consumed with
firefront passage) per unit planform area of the fuel bed. The wind speeds
attainable in the TRW laboratory facility (Fleeter et al. 1984; Beach et
al. 1986) approach 5 m/s and fuel loadings approach 0.3 g/cmg. Thus, the
wind speeds are comparable to values of interest in commonplace situations.
The fuel loadings are comparable to the total thin-fuel Toading (both in
the canopy and in the understory) in a typical Canadian conifer stand
(B. Stocks, private communication); are within a factor of ten of loadings
in typical American urban/suburban areas; and are within a factor of 50 of




the extraordinarily high fuel loadings that characterized the Hammerbrook
section of Hamburg, Germany, in which a firestorm was induced by massive
incendiary/high-explosive bombing on 27-28 July 1943 (Carrier, Fendell, and
Feldman 1985; Carrier and Fendell 1986). Hence, at least with respect to
key parameters for wind-aided firespread across thin-fuel distributions,
there is required no large extrapolation of observations from the
parametric conditions attainable in a laboratory facility.

This section on methodology is concluded with the comment that the
major impediment to the development of a hydrocode to predict the position
of the locus of a propagating firefront at some later time, given its
position at some earlier time, is probably not associated with the capacity
of computer hardware to permit the user efficiently to store, retrieve,
manipulate, and display data relating to fuel loading, meteorological
conditions, and topography--although production of the required software
would require a considerable investment of time, money, and effort. If the
capacity existed to infer the fire-propagation rate and direction for a
given postulated ignition pattern, the capacity could be exercised for an
alternate ignition pattern, so that the sensitivity to the (difficult-to-
anticipate) ignition pattern can be examined. What currently limits this
capacity is uncertainty concerning the physically relevant "rules” by which
the firefront position evolves in a given fuel bed under known wind aiding.
[Incidentally, only that component of the wind perpendicular to the local
tangent to the firefront locus serves to aid (or to oppose) spread; the
component of the wind tangential to the front does not much alter
firespread. For this reason, the ellipsoidal locus of a firefront evolving
from a local ignition in a constant wind tends to develop ever-more-unequal
axes in time, in plan view.] This project is dedicated to reducing this
uncertainty concerning the physically pertinent rules for firespread.




SECTION 3
WIND-AIDED FIRESPREAD ACROSS ARRAYS OF DISCRETE FUEL ELEMENTS

3.1 INTRODUCTION.

Fire propagates through a mixed-size array of fuels at the rate at
which the thermally thin fuels (i.e., the fuels well described as
isothermal) are desiccated and heated to their onset-of-pyrolysis
temperatures. Thicker fuels may act primarily as heat sinks during
firefront passage, though these fuels may eventually burn well upwind of
the firefront. Although a fire "jumps" forward discontinuously through
discrete-element fuel beds, the rate of spread usually may be taken as
effectively continuous for the time scales of practical interest.

Though spread can occur against the wind or in the absence of an
ambient wind, attention here is focused on the faster rate of propagation
observed under wind aiding. Well-defined (repeatable) arrays of identical,
vertical, regularly arranged, small-equivalent-diameter, matchstick-like,
wooden fuel elements are examined for the most part, though some tests with
beds of elements of varied diameters (but generally uniform height), and
with beds including inert as well as combustible elements, are undertaken.
Reference to the wind speed is to the ambient values; the wind in the fuel
bed may be comparable (as in grasslands) or quite distinct (as in tall
forest.)--though the burning of the upwind fuel may reduce the impedance to
the ambient wind. The quasisteady rate of spread is sought, if a
quasisteady rate exists, so that one envisions an experiment with a still-
to-be-involved expanse of unburned fuel downwind, a flaming front (of
finite streamwise extent) whose speed of translation is sought, and an
expanse of burned fuel upwind (Figure 1).

Among the unresolved issues associated with wind-aided firespread
across arrays of discrete fuel elements is the preheating mechanism by
which fresh downwind fuel is raised from ambient temperature to pyrolysis
temperature (~600 K), as distinct from the heat-transfer mechanism
significant immediately at the flaming front (at which the bulk-gas
temperature may reach 1000 K to 1200 K). Emmons (1965), Rothermel and
Andersen (1966), Van Wagner (1968), Emmons and Shen (1971), Steward (1974a),
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Telisin (1974)--with some reservations, and Steward et al (1977) all take
the preheating mechanism primarily to be radiative transfer, as opposed to
convection, but without definitive experimental evidence. Also, Luke and
McArthur (1977) and Cheney (1981) report that the rate of spread increases
nearly linearly with the fuel loading, whereas Thomas (1971) reports that
it varies inversely with loading--the same dependence on loading drawn
theoretically by Fleeter et al. (1984) on the basis of a suggestion by
Taylor (1961) that the rate of spread adjusts itself such that the
entrainment requirements of a fire-generated line plume are just met by the
ambient-wind crossflow. While the model may have relevance to crown fires,
Taylor warns that the near-ground decrement in the ambient wind speed is
overlooked in the simplistic model; furthermore, the use of weakly-buoyant-
plume-type entrainment concepts in the flaming zone seems of uncertain
accuracy. Also, Cheney (1981) notes that the rate of spread has been
conjectured to increase linearly, quadratically, and even exponentially
with the wind speed; the above-cited line-plume-in-a-crossflow model
implies a cubic dependence of spread rate on wind speed (Fleeter et al.
1984).

Intuitively, it seems curious that convective-conductive preheating
almost universally has been accorded a secondary role to radiative
preheating, yet, almost invariably, rapid-firespread events are associated
with enhanced wind-aiding (Davison 1931: Mushan 1941; Caidin 1960; Wells
1968; Noble 1977; Pyne 1982; Simpson 1989). The individual fuel elements
maintain their separation in the presence of high sustained wind; however,
convective transport may permit the hot "wash" (if not the flames
themselves) from upwind burning fuel elements to span the distance to the
nearest downwind fuel element, such that downwind element is brought to its
onset-of-pyrolysis condition before the upwind elements burn out.

3.2 NOTES FROM THE LITERATURE TREATING WIND-AIDED

FIRESPREAD ACROSS MATCHSTICK-TYPE FUEL ELEMENTS.

Hwang and Xie (1984) examine the increment in the firespread rate
across vertical matchstick arrays for upslope orientation, and the
decrement for downslope propagation, relative to the rate of spread for
horizontal propagation. Upslope orientation induces a wind that aids
spread, even if no ambient wind exists; upslope orientation also results in
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the flame being closer to the fuel bed to abet the radiational view-factor
and contact ignition. The effect of siope seems relatively modest for
orientations of no more than 10° from horizontal. Steward (1974a)
represents data for cribs, beds of needles, and matchsticks; the spread
rate remains invariant with downslope up to 30° and more, whereas the
spread rate doubles for an upslope of 20° (relative to the rate at zero
slope). Cheney (1981) summarizes results of similar gist concerning the
effect of slope on spread from field data gathered in Australia.

Prahl and T'ien (1973) consider wind-aided flame-spread phenomena for
vertically oriented single lines of matchsticks, in the manner of Vogel and
Williams (1970). However, Miller (1970) documents the need to consider
sufficiently two-dimensional arrays of matchsticks in order to obtain rates
of spread invariant with further increase in the number of parallel
columns. Also, Prahl and T'ien engender the impressed wind via downstream
suction, rather than via upwind blowing; this procedure precludes
unconstrained action of the plume-type behavior, since the induction of
Tow-level air into the plume from the downwind side is (artificially)
opposed. The increment in spread rate with increasing wind (over wind-free
tests) is found to level off at the higher wind speeds examined (~75 cm/s);
the authors speculate that at still higher wind speed forced-convective
extinction would be anticipated. [For thin fuel elements, extinction is
effected by forced-convection-transport rates sufficiently in excess of
chemical-exothermicity-release rates; for thicker fuel elements, surface
reradiation of heat is responsible for extinction (Spalding 1955, pp. 208-
211). For fuel beds composed of identical, upright, regularly arranged,
discrete elements, it seems generally appropriate to discuss the fuel-bed
extinction in terms of single-element extinction, since no elements are
bypassed in a flame propagation: a downwind fuel element burns only if its
upwind neighbor(s) burn(s) first.]

The effect of wind and moisture content on line-fire spread across
reasonably uniform beds of ponderosa-pine needles (that burned with one-
meter-high flames) and white-pine needles (that burned with one-third-
meter-high flames) is such that less of the fuel is burned as the wind
speed increases up to 2.2 m/s (Anderson and Rothermel 1965; Rothermel and
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Anderson 1966). Above this speed the streamwise expanse of the flaming
zone extended to the length of the fuel bed (2.4 m), and there is strong
doubt that a steady rate of flame propagation was achieved. The less-than-
complete consumption of matchstick-type fuel elements during firefront
passage under higher winds is noted by Fang (1969).

Steward and Tennankore (1981) emphasize the longer length of run
required to achieve a steady rate of flame propagation, or even a
quasisteady rate, for the higher speed of spread under a higher ambient
wind. (This behavior was also observed in the experiments to be reported
below.) These investigators adopted a wind tunnel with a working section
1.22 m wide, 1.19 m high, and 7.1 m long, in which identical, vertically
oriented, birch dowels arranged in a uniform matrix were burned. Center-
to-center distances ranged from 0.82 cm to 3.8 cm, and the diameters of the
circular-cross-section dowels ranged from 2.5 mm to 12.7 mm. “For the
small diameter dowels with high rates of spread there was considerable
doubt that a steady state was achieved even after 100 rows" (ibid., p.
642). The rate of fire spread was observed *, _.ically to increase by a
factor of five as the wind was increasea from 0.28 m/s to 2.8 m/s for 2.5-
mm-diameter dowels; but the burning time of both large-diameter and small-
diameter dowels was found to be independent of wind speed for a particular
fuel bed, over the range of winds just discussed. Thus, "...the width of
the active burning zone is directly proportional to the rate of fire spread
which...increases rapidly with wind speed" (ibid., p. 645). [Byram et al.
(1966), had reported quite similar results for cribs (i.e., for fuel beds
consisting of layers of parallel pine sticks, with alternate layers
parallel and perpendicular to the flow).] While the burning time of an
individual birch dowel was independent of wind velocity, the burning time
from 80% to 20% of initial weight was proportional to the dowel diameter to
approximately the 3/2 power. Thus, whereas in a given test a 2.5-mm-
diameter dowel burned in less than 20 s, a 12.7-mm-diameter dowel burned in
about 200 s. "In a fuel bed with a mixture of two such diameters the 2.5
mm dowels would ignite and burn to completion before the 12.7 mm diameter
dowels had virtually even started to burn" (ibid., p. 643). Such a large
separation in fuel thicknesses does emphasize that flame-propagation rate
is associated normally with the thin fuels present; however, in a more
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general context in which a more continuous spectrum of fuel sizes is
present, it may be worth remarking that fire-front propagation is expected
to be associated with the thinner (probably not just the thinnest) fuels
present, and these more easily ignited thinner fuels, in turn, do ignite
the thicker, slower-to-burn-out fuels.

Steward et al. (1977) also emphasize the difficulty of attaining
steady, reproducible rates of fire propagation with an aiding wind.
Especially for winds in excess of 3 m/s, spread tends to be unstable and to
be dependent on the details of ignition. Nevertheless, these investigators
report wind-aided-firespread results for birch dowels (with 5% moisture
content). For dowels 0.15 cm in diameter and 6.68 cm in length, the fire-
spread speed is reduced to one-half if the center-to-center spacing of the
array is reduced from 2.54 cm to 1.27 cm; the spread-rate increase with
increase of the wind up to 2 m/s is appreciable for either spacing. (Other
tests with dowels over twice as long indicated even faster spread than with
shorter dowels, but these tests were cited as unstable.) However, for a
wind in excess of 2 m/s, the increase of spread rate with increase of wind
is much less. Indeed, at spacing of 3.81 cm, no fire would propagate over
the range of wind speeds examined (0.5 m/s to 3.5 m/s). Furthermore, for
dowels of 0.64 cm in diameter, for a center-to-center spacing of 2.54 cm,
the increase of rate of spread with wind 1s rather modest and almost
independent of an increase of dowel length from 6.68 cm to 13.97 cm.

Again, there is suggestion that at wind of sufficient speed, in this case
3 m/s, the increase of spread rate with wind approaches zero. In brief, a
decrease of flame-spread rate with increased loading (more particularly,
with decreased porosity), and a (more pronounced) increase with increased
wind speed at small wind speed (and a more modest increase with still
higher wind speed), seem to summarize the results.

Fons (1946) systematically varied the ambient temperature, moisture
content, wind, and spacing for 19-cm-long, 0.33-cm-to-1.0-cm-diameter twigs
of dead ponderosa pine, set vertically and at regular intervals in fire-
retardant-treated sawdust. The bed was 91 cm in width and almost 11 m in
length; the upwindmost one-third of the length was set aside to permit the
fire to reach an equilibrium rate of spread after line ignition of the
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midregion (only) of the upwindmost row. In addition to noting the reduced
spread rate under lower ambient temperature (longei preheating times) and
higher moisture content, Fons reported that, for the thermally thin fuel,
1f U denotes ambient wind speed, pgs denotes solid-fuel density, and d
denotes solid-fuel diameter, then

(e ‘,15; & v

where n 2 1 for winds under 2.25 m/s and n @ 1.5 for winds between 2.25 m/s
and 9 m/s. Fons noted that spread must slow and desist for sufficiently
large element-to-element spacing s.

wWhile some general trends are evident, definitive insight is not
available yet in the literature.

3.3 EXPERIMENTAL TESTS.
3.3.1 Test Facility.

The facility used in the present investigation has been described in
detail previously (Fleeter et al. 1984), but brief comments are included
here so that the presentation is self-contained and updated.

The facility consists of a blower which pushes ambient air through a
flow-conditioning section upwind of the test section (Figure 2). Through
the use of a sequence of honeycombs and fine screens, all at least several
meters upwind of the test section, the flow-preparation section produces a
uniform steady stream of low turbulence. Specifically, with the exclusion
of near-wall layers, the time-averaged streamwise speed varies by less than
+5% from the nominal cross-sectional mean wind velocity for a test-section-
entrance speed of 4.2 m/s, and the rms turbulence level at this speed was
about 0.6% (Beach et al. 1985). The wind tunnel has a movable ceiling,
readily translatable downwind in its own plane, such that the leading edge
of the ceiling can be made to trail just behind the downwind-propagating
buoyant flaming upflux. The strongly buoyant gas is concentrated in the
vicinity of the burning front, which separates uninvolved downwind fuel
from whatever char remains of the fully outgassed upwind fuel. The movable
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ceiling permits the buoyant firefront gas to rise with a minimum of
obstruction, while also allowing an airflow of undiminished freestream
speed to reach the propagating firefront, since the upwind cross-sectional
area is maintained constant during the fire spread. (Of course, the
thickness of the near-fuel-bed boundary layer does increase with downwind
distance from the leading edge of the test section, but the dimensions of
the test-section cross section, over 1.1 m x 1.1 m, assure that no
appreciable acceleration of the freestreaming occurs.) Aiding winds in
excess of 4 m/s are attainable in the tunnel.

The up-to-5-m-long fuel bed consists of ceraﬁic trays with holes
drilled at 1-cm intervals; i.e., the fuel bed may be envisioned as a
checkerboard with a hole drilled at the center of each square, of 1l-cm-edge
dimension. The ceramic material (fiberfrax duraboard HD made by
Carborundum Company, Niagra Falls, NY) was selected for its uniformity,
thermal-insulation property, stability at high temperature, resistance to
thermal shock and chemical attack, recovery after wetting by water, and
ease of drilling and sawing. The discrete fuel elements utilized here are
typified by thin white-pine toothpicks, oriented vertically, with 0-to-4
toothpicks per hole (Figure 3). The test-initiating ignition involves
simultaneously lighting all the fuel elements in the upwindmost line (row),
perpendicular to the airflow, by means of gaseous-diffusion-flame torch,
that is then turned off. The flow exits without obstruction through an
exhaust stack into the atmosphere.

The rate of firefront propagation is inferred via type-K
thermocouples, spaced at 14-cm intervals along the streamwise centerline of
the test bed, near the fuel-bed surface. The readings are recorded
digitally by a Transera data-acquisition system and stored on an IBM PC.
Since only the time of pyrolysis-temperature onset is used to indicate
firefront transit, any delay in the relaxation to ambient temperature is of
no concern for current purposes. [For the quasisteady propagation of a
firefront (of finite streamwise extent) across a macroscopically uniform
bed, tracking the downwind progression of any convenient isotherm (above
ambient temperature) yfelds the rate of firespread.] The thermocouple
voltages are converted by the acquisition system to temperatures and are
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Figure 3. Ceramic trays, drilled with holes one centimeter apart, filled
with a toothpick loading such that m = 0.02208 g/cmé.
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presented as functions of time. Also, a vertical array of thermocouples is
positioned at—the streamwise centerline of the fuel bed, at a distance of
about 2 meters downwind from the leading edge of the fuel bed. The ten
thermocouples present on the rake are spaced at 5-cm vertical intervals,
with the lowest thermocouple positioned 8 cm above the surface of the
substrate and the highest at 53 c¢m above the surface. For a steady rate of
fire propagation, the time t can be scaled by the firefront-propagation
speed vf§ to yield the variation of the temperature T as a function of
streamwise position. The spatial loci of isotherms can be inferred from
the temperature profiles. From the isotherms, the tilt of the buoyant hot
gases near the firefront can be inferred. In particular, the tilt angle A
is measured from the ray pointed directly downwind, so that A = 0 describes
buoyant hot gases blown flat to the downwind fuel-bed surface, while A =
x/2 describes the hot gases as rising perpendicularly to the fuel-bed
surface (without any downwind or upwind tilt). Typically one expects a
downwind tilt such that 0 ¢ A { #/2. In addition, a side-view record of a
test is obtained by manually moving a video camera mounted on a
translatable platform outside the tunnel. An overhead view of a test is
obtained by use of a video camera attached to the translating ceiling.

3.3.2 Test Conditions, Data Analysis, and Repeatability.

Attention was concentrated on ascertaining the dependence of flame-
propagation rate on two parameters anticipated to be of particular
importance: the wind speed (varied mostly from 0.0 m/s to 4.6 m/s) and the
(planform-area-averaged) fuel loading (varied mostly from 0.011 g/cm2 to
0.088 g/cmz, with some tests ranging to about 0.3 g/cm2). Other parameters
varied were the fuel-bed width (varied from 30 cm to 100 cm), fuel-element
height, fuel-element thickness, fuel-element composition, and inert-mass
loading. While some mixed-element tests are described below, in the
absence of an explicit statement to the contrary, every test is to be taken
to involve regular arrangements of identical fuel elements. The fuel-bed
inclination was held horizontal in all tests.

The individual white-pine toothpicks used as fuel elements in many
tests were 6.1 cm in length, with about 4.6 cm exposed for burning above
the drilled ceramic tray. The circumference of the lengthwise-varying-
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rectangular-cross-section toothpicks was such that the average diameter for
the equivalent-area circle was 0.13 cm, and the average mass per toothpick
was about 0.052 g. Toothpicks, even in the tests with the widest loading
distributions (100 cm), were more than 5 c¢cm from the tunnel-test-section
side walls. Table 1 presents some properties of the several other
combustible and inert elements used in the experiments to be reported. A
thermogravimetric analysis carried out on three types of the wood samples
indicated that about 70% of the mass evolved as gas (during gradual heating
in an inert atmosphere) over the range from about 575 K to 675 K

(Figure 4). The densities of the three wood species utilized in the
testing (white pine, birch, bamboo) are comparable. Also, after typical
storage, baking 100 white-pine toothpicks at 573 K for 16 minutes removed
8.4% of the toothpick massl.

A typical thermocouple-output curve of temperature as a function of
time describes a slow rise in temperature (interpreted as preheating),
followed by a more rapid rise (interpreted as flame arrival), followed by a
gradual decay (interpreted as forced-convective cooling of the thermocouple
by the upwind air flow). A constant rate of flame propagation, i.e.,
steady spread, is indicated by the graph of isotherm progression vs. time
approximating a straight line. [More explicitly, the graph is of the time
(since ignition of the leading-edge row of fuel elements) at which each of
the near-fuel-bed-surface thermocouples, distributed at known streamwise
positions downwind from the leading edge of the fuel bed, first achieves a
specified temperature above ambient.]

1Approximate1y 500 white-pine toothpicks at a time were subjected to the
gross-heat-of-combustion technique specified in the National Fire
Protection Association protocol 259 (Standard Test Method for Potential
Heat of Building Materials); the tests were conducted in an isothermal
Jjacketed oxygen bomb calorimeter. The test sample was stored in a
conditioning room (held at 296 K +3 K, 50% +5% relative humidity) for about
two months. Each sample was then ground via a rotary laboratory mill until
it would pass through a 60-mesh screen, then returned to the conditioning
room for a week before testing. The gross heat of combustion was about
17.7 kJ/g of fuel. Samples were also placed in an oven at 373 K for 48
hours prior to testing to remcve free water (which proved to constitute 7%
to 8% by mass of the sample). The gross heat of combustion then was about
19.0 kdJ/g. The authors are very grateful to J. R. Lawson of the Center for
Fire Research of the National Institute of Standards and Technology for
these data.
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Table 1.

Element
_Jype

White Pine I
White Pine II
Bamboo I
Bamboo II
Birch I

Birch II
Nails

Plastics

Properties of the fuel elements and inert elements
used in experiments.

Hydraulic Exposed Mass per Common
Diameter Height Unit Length Commercial
(mm) (cm) (q/cm) Designation
1.3 4.6 0.009 Flat toothpicks
1.9 7.7 0.023 Sandwich picks
2.3 3-22 0.030 9" bamboo skewers
3.0 4.6-14 0.060 6" bamboo skewers
3.3 2-14 0.061 1/8" dowels
4.4 4.6 0.086 Sandwich skewers
3.8 3.8 0.350 Common 2" nails
2.4* 4.6 0.022 Q-tip shafts

*Tube with hollow center
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The ambient temperature varied from 287 K to 303 K, and the ambient
relative humidity varied from 15% to 75%; however, the flame-propagation
rate was judged to be insensitive to these variations. Several tests were
conducted under the same controllable conditions on different days to
investigate the repeatability of results: for a wind speed of 2 m/s, a
fuel loading of 0.022 g/cm2, and a test-bed width of 55 cm, tests were
conducted on days when the humidity varied by 20% and the ambient
temperature varied by 4 K, and the scatter owing to uncontrolled variables
seemed to be minimal. However, other tests were conducted explicitly to
examine fuel-moisture-content and/or substratum-moisture-content effects.
In such tests, the fuel-element-loaded ceramic trays were placed in the
test section, which was then sealed off from the exit duct and flow-
preparation section and a humidifier was placed in the test section for
three-to-four hours, until the relative humidity reached 100% and
condensation occurred on the test-section walls. The test was executed
expeditiously after the humidifier and test-section isolators were removed,
but no attempt was mad~ in any test to condition the ambient air blown into
the test section. In other tests fine water droplets were sprayed onto the
ceramic substratum while provision was taken to try to maintain the fuel
elements at their ambient water content.

A nearly complete compilation of the conditions and results for all
tests conducted appears in Tables 2-6.

3.3.3 The Effect of Microscale Variation
("Crystallinity") on the Rate of Firespread.

If effectively identical toothpick-like fuel elements of density pg,
(exposed) height H, and characteristic cross-sectional area d2 are inserted
upright into the regularly distributed, drilled holes, the fuel loading m
is altered only by varying the porosity ¢, more specifically, n, the number
of fuel elements per unit planform area of the bed, since

m = psH(1-g) = psHnd2. (3.1)
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The (averaged) initial mass of fuel per unit planform area of the bed is
conceptually distinguishable from the mass per area consumed during
firefront passage; however, for virtually all the thin-fuel-element testing
to be reported here, the fuel loading is entirely burned during firefront
passage, so that the two quantities are equivalent. [In the absence of any
explicit statement, no inert loading is present; whenever present, the
discrete inert upright elements will also be characterized by an areal
average. For beds with elements of multiple heights, thicknesses, and
composition, (3.1) requires generalization, usually in the form of additive
terms on the right-hand side].

Implicit in the adoption of the characterization of the fuel bed by
the overall parameter m is the intention to seek firespread-rate results,
to the fullest extent reasonably consistent with experimental observation,
without concern for details concerning the fuel distribution (other than
for provision that the elements are “"thin," are not "prone" to the
substratum, and are composed of common wood species with “"typical® chemical
exothermicity per unit of ovendry mass). It seems worth noting that, in
the absence of special provision for meticulous and tedious inventorying,
little is often known concerning discrete-element fuel distributions of
practical interest other than an estimate of the initial total fuel loading
m and an estimate of the total fuel loading after all burning (not
immediately after firefront passage).

Nevertheless, experiments are conducted with regular arrangements, for
the purpose of achieving a well-defined, nominally reproducible bed, to
permit repetition of test conditions. For experiments limited to variation
of m by variation of n only, one may alter either the number N of the fuel
elements per unit planform area s2 of the bed, where s is the spacing
between the above-described “checkerboard-distributed", equal-diameter,
equal-depth holes, or the between-nearest-holes spacing s; in the present
experiments, only the number N is altered. If, in addition, n itself is
held fixed, only small-scale variability within a fuel bed uniform on a
grosser scale is permitted. This microscale indefiniteness within
macroscopic uniformity here is termed crystallinity, a concept familiar
(for example) in the continuum treatment of (say) elastic solids. In

50




particular, the allotment of toothpicks to the smallest four-hole square
delineated by drilled holes constitutes for this section the basic
"building block"; this element (conveniently taken with one side parallel
to the leading edge) is meticulously repeated to comprise the entire array
for the tests discussed immediately below. Thus, one can obtain an average
of one toothpick in each hole by placing a single toothpick in every hole
or by placing two toothpicks in every other hole.2 (For more complicated
arrays, with mixed elements, a larger basic "building block" is adopted.)

One concern is that the firefront might propagate appreciably faster
for those arrangements [with fixed wind speed, fixed fuel-loading
parameters (ps, H, n, d2), and fixed bed width] for which a downwind
element is closer to an upwind element, with both oblique and in-line
considerations of consequence. If such details of small-scale
nonuniformity are of appreciable import for firespread rate, a description
of the fuel bed in terms of the single macroscopic property m would be
frustrated from the outset. While there is some variability of firespread
rate, probably ascribable to the just-described proximity considerations,
especially for lighter loadings, it is concluded that the macroscopic
description m suffices. For example, Figure 5 indicates the sensitivity of
firespread rate to details of fuel-element-distributions in which there is
the equivalent of two white-pine toothpicks in each hole; Figure 6
indicates the sensitivity for variations on the equivalent of one toothpick
per hole.

2For a square grid of holes, each of which can accommodate up to and includ-
ing four toothpicks, for a four-hole-square basis there are four ways to
achieve the equivalent of one-half a toothpick per hole, eight ways to
achieve the equivalent of one toothpick per hole, and sixteen ways to achieve
two per hole--if one precludes subdividing toothpicks and disregards effec-
tively equivalent arrangements. The presence of more than one toothpick per
hole augments the possibility of the shading of one fuel element from some
radiation owing to the presence of others. Incidentally, since virtually all
synthetic polymers readily available in toothpick-type configuration are
thermoplastic and melt upon heating, a small pool of (not necessarily equal)
mass of viscous, largely unburned fluid at the site of each plastic element
results from their use in a bed of mixed polymers, and (except for one test)
attention is limited to tests with natural polymers only.
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Figure 5. Effect of the fuel-loading pattern on the rate of firefront
propagation for fuel loading m = 0.08830 g/cml, bed width W =
55 cm, and wind speed U = 70 cm/s. The quantity xf is the
streamwise-centerline position of the firefront (downwind from
the leading edge of the fuel bed) and t is time since ignition.
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Figure 6. Effect of the fuel-loading pattern on the rate of firefront
propagation for fuel loading m = 0.04415 g/cm?, bed width W =
55 cm, and wind speed U = 70 cm/s. The quantity xf is the
streamwise-centerline position of the firefront (downwind from
the leading edge of the fuel bed) and t is time since ignition.
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SECTION 4
ANALYSIS

4.1 A MODEL OF THE PHENOMENOLOGY.

We shall formulate and solve a convenient, tractable model of the
phenomenology encompassed by Figure 1, by adopting many approximations. In
particular, we seek from the simple model an expression for the rate of
firefront propagation, vf, taken to be quasisteady, as a function entirely
of parameters known prior to test execution. At several turns in the
analysis, alternative approximations might be adopted; consideration of
these alternatives is taken up later in the main text, and more broadly in
the appendix, in which a semi-empirical treatment of the phenomenology is
developed. The semi-empirical treatment is relegated to the appendix
because we regard it as an inferior approach to the present problem; the

only reason for including the appendix at all is to develop the
implications of some alternative approximations, in order to demonstrate
succinctly that the resulting predictions are much at variance with the
experimental observations.

In the frame of reference of a steadily propagating two-dimensional
(line-type) firefront, with the origin of coordinates at the downwindmost
site at which the fuel surface is at the (known) pyrolysis temperature
Tpyr, we let the streamwise coordinate be denoted by x (positive downwind)
and the transverse coordinate be denoted by y (positive into the gas phase,
negative into the fuel bed) (Figure 7). In such a frame of reference, the
fuel bed is translating upwind (i.e., in the negative x direction) at
constant speed vf, the key unknown. The wind is flowing in the positive x
direction at constant known speed (U - vf), but, since we are interested in
cases in which U >)> vf, the wind speed is taken to be U. We also
anticipate tentatively that the fuel loading can be characterized
adequately for present purposes by the overall quantity m, the mass of
combustible matter [per unit (planform) area of the bed] consumed with
firefront passage. We anticipate that vf§ may be primarily a function of U
and m because the other parameters may not vary much from case to case
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of interest3. Among the other parameters are Q, the heat released per unit
mass of fuel burned [adjusted to account for a modest amount of moisture
present in the fuel (Luke and McArthur 1977)4, and for the amount of
sensible heat required to raise even the dry fuel from the ambient
temperature to its pyrolysis temperature]; & is the thermal diffusivity of
the gas phase, where c¢p is the typical specific heat capacity of the gas at
constant pressure, po is the density of the gas near the flame, and k is
the thermal conductivity of the gas near the gas-solid interface near the
origin of coordinates; xp is the effective (bulk) thermal diffusivity of
the fuel bed, where kp is the effective thermal conductivity of the fuel
bed, cp is the effective specific heat of the bed, and pp is the mass of
the bed per unit volume of the bed.

From dimensional analysis, we might expect that the normalized rate of
firespread depends on the following groups:

v p. C ,
Ufsz__o_a__Tf N (4.1)

where the flame temperature Tf can be rephrased in terms of more
fundamental thermodynamic (and thermochemical) properties, such as the
stoichiometrically adjusted ambient oxygen mass fraction and the ambient
temperature (Fendell 1965), but such detail does not serve our objectives
because vigorous-flame temperatures do not vary much for present purposes.
Clearly several further approximations are being adopted by so limiting the

3Holding the mean wind U constant, and arranging for the properties of the
ambient fuel bed to spatially uniform (macroscopically), are prerequisites
for achieving a quasisteady rate of spread. Of course, such experiments
are designed to yield the dependence of the rate of spread on these
parameters, and cannot yield the dependence (believed to be generally less
important) on the rates of change of these parameters. In applications,
the firespread rate implicitly is taken to depend primarily on the local
and instantaneous values of pertinent parameters themselves, presumably
because these parameters generally vary slowly.

4among the other consequences on firespread of fuel-moisture content may be
the role of additional water vapor (1) in interfering with collisions of
oxygen and pyrolyzate molecules, and (2) in modifying the radiative
transport of heat. However, the latent-heat requirement to evaporate the
water is taken to be the principal effect.
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number of dimensionless groups on the right-hand side of (4.1); e.g., the
molecular diffusion coefficients for the gas phase are being taken as
comparable, radiative transfer and gravitational effects are being
neglected, any latent heat for pyrolyzation of the wooden fuel is being
ignored, heat loss to inert content in the bed is being omitted, (for the
vigorous burning of interest) the rate of reaction is being taken as
indefinitely rapid relative to the transport rates, and residual
unpyrolyzed fuel does not occur for the thin-fuel loading. In fact, the
only generalization of (4.1) that we shall discuss below concerns the
possible presence of additional groups on the right-hand side of (4.1) for
cases in which the characterization of the bed by the gross parameter m
does not suffice. In such cases, the additional groups that we select for
inclusion may be written (for the case of identical fuel elements)

HU dU Wy
K

"l
"l

' (4.2)

1] 1] '

L

where H is the length of the fuel elements, d characterizes the thickness
of fuel elements (recall that d2 characterizes the cross-section area of
the elements), W is the width of the fuel bed, and 8 is the width of the
test section. The last parameter 8 is distinct from the others, and is the
only example that we choose to include of a property of the particular
experimental facility. Were there to irise evidence of the need to include
the parameter 8, it would imply that in practice the firespread phenomenon
may be nontrivially altered by the facility used; for the mathematical
idealization of a line-type spread, 8 is infinite. For a fuel bed composed
of identical upright matchstick-type elements, the height of the bed H is
also the height of the elements, as adopted in (4.2); more generally, the
two heights are not the same, and the first group in (4.2) is not redundant.

We envision the fuel as being preheated from ambient temperature to
pyrolysis-onset temperature Toyr by the heat released by the gas-phase-
diffusion-flame burning over the pyrolyzing portion of the fuel bed. We
take all the heat derivable by combustion of the pyrolyzate with ambient
oxygen to have been released over the pyrolyzing surface; i.e., we ignore
the fact that some of the combustible vapor evolved from the polymeric
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loading either is not burned or is burned downwind of the pyrolysis-front

position (which is recalled to lie at x = 0, by choice). If the amount of

fuel not burned is relatively negligible, then it may be noted that we are

altering the streamwise distribution of the heat derived from the burning

of "excess pyrolyzate" in x > 0, but we are not altering the total

exothermic heat obtainable from the burning of the available fuel

loading m. .

A statement of the conservation of the energy per time per unit depth
(perpendicular to the plane of Figure 7) is given by

Ve Qm= pocp Tf vy, (4.3)

where Y characterizes the stand-off distance (at the pyrolysis-front
position x = 0) from the two-phase interface (y = 0) of the peak gas-phase
temperature, taken to be the adiabatic flame temperature Tf of a
pyrolyzate/air diffusion flame (Figure 8). 1In fact, the value Y fluctuates
on the integral scale of the turbulence, so Y is an average value. We are
ignoring any heating of the oncoming air stream (by a warmed substratum)
upwind of the fuel-bed burn-out site, just as we are ignoring any gas-phase
velocity-boundary-layer formation upwind of that burn-out site, in our
idealized formulation. The statement (4.3) equates (1) the heat content
per depth per time entering the gas phase across the interphase with the
pyrolyzing portion of the fuel bed and (2) the heat content (above ambient)

per depth per time of the gas stream crossing the pyrolysis-front plane

x = 0. The datum for temperature adopted throughout this analysis is the
ambient temperature, taken to be the same for the air and the bed for
convenience.

The downward heat flux (in energy per area per time) from the gas

phase to the fuel bed over the preheating zone » > x > 0 is expressed by .
kT .
a = f[3. (4.42)

where the dimensionless function f(x/Y) decreases to zero as its argument
increases. Equation (4.4a) implies that a convective-diffusive mechanism
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Figure 8. A schematic (supplementary to Figure 7) in which it is
emphasized that the diffusion-flame burning of pyrolyzate with
ambient air occurs within the forced-convective boundary layer
in the adopted model. The characteristic stand-off distance Y
of the maximum temperature Tf at the onset-of-pyrolysis front
x = 0 is noted, along with a rough conjecture of the entire
gas-phase temperature profile at that streamwise position.
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effects the preheating of fresh fuel from ambient temperature to the
pyrolysis temperature Tpyp. For later reference, were radiation the
mechanism for preheating of fresh downwind fuel, if € is the absorption
coefficient of the hot gas and ¢ is the Stefan-Boltzmann constant, then,
with Y characterizing the depth of the hot layer,

q = Yeo 74" gf). (4.4b)

where the dimensionless function g(x/Y) also decreases to zero as its
argument increases.

For the heat balance within the fuel bed for the preheat zone, it is
convenient (for this paragraph only) to reverse the sense of the coordinate
axes, such that x is positive upwind and y is positive downward into the
fuel bed. Then, if subscripts y and ¢ denote partial derivatives,

Ve
ST Tt 0 g x/Y. (4.5)

£, Tyy
Any flow-associated transport of heat within the fuel bed is ignored
(unless we take the phenomenon to be parameterized by the effective

transport property ). The Laplace-transform pair is recalled to be

- » 1 int+f
h(s) = jo [exp(-s§)] h(£) d¢, h(§) = 77 I [exp(sg)] h(s) ds, (4.6)

-im+p

where f is chosen so that all singularities 1ie to the left of Re(s) = g in
the complex s plane. Applying the transform (4.6) to (4.5), and then
solving under the condition of boundedness (for a fuel bed approximated for
this manipulation only as of semi-infinite depth, for simpiicity of
expression), yields, if A(s) is a function of integration to be identified,

v.s 1/2
T(y,s) = A(s) exp|- [;ﬁy] yl. (4.7)
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Application of the boundary condition (4.4a) gives, under the Laplace
transform,

_ ka _ _ VS 1/2
q(s) = - f(s) = -ka (0,s) = kb[_—_] A(s). (4.8)

Therefore, by (4.7) and (4.8),

o 172
T(0,5) = A(s) = % rf[;b—Y] sV2%(s). (4.9)
b s
But T(_y = 0, f = 0) = prr, SO
1/2 .
ko (f N U SR V7 S YS
Toyr ™ Tf[vfy] N, where N = iz j_i“+p Y2 %(s) ds;  (4.10)

that is, N is just a positive real number whose value depends on details
(of the heat-transfer profile) that we do not specify. If (4.3) is solved
for Y and substituted in (4.10), there results

1/2 1/2
’f . N[Efgfﬂ_} [_Ii_} [Ejij , (4.11)
U kbpbcb prr‘ Qmu

The dependence on the square root of the ratio of the so-called conductance
for the gas phase to that for the solid phase is conventional in such
phenomena (Carslaw and Jaeger 1959, pp. 87-88). We regard kpppcp as a
composite property of the bed, and do not regard it as appropriate to
attempt an approximate evaluation of any one factor in terms of other
quartities that have been introduced.

Accordingly, by (4.11), vf ~ (U/m)1/2, a dependence indicated below to
be in agreement with experimental observations obtained for thin-fuel-
element-firespread tests in the TRW firetunnel facility. The expression

61




(4.11) is nondimensional, but in practice none of the factors other than m
and U can be easily varied, so that, superficially, the (incidental)
dimensionless presentation adds little further insight. In fact, more can
be learned from (4.11), as will be discussed below.

First, it should be emphasized that the relation v ~ (U/m)1/2 can
hold over only a limited range of parametric values, since we expect that
other processes may permit finite (albeit slow) rates of spread against the
wind or in the absence of wind; that sufficiently high wind could resuit in
forced-convective extinction; that a continuum model of the bed may better
serva for very dense loading; and that nonpropagation may ensue for
sufficiently sparse loading. Also, repeating the derivation with (4.4b) in
place of (4.4a) results in the expression

3/2 1/2
. (" o] Ly o
U mQ 'f Mean4

where the definition of the positive real constant M is that given in
(4.10), if T + g, where g is defined in (4.4b). Equation (4.12) gives
vf ~ (U/m)3/2, at variance with observations reported below. In the
appendix this topic, and the implications of a model in which the bed is
modeled as well-mixed (i.e., approximately isothermal because kp is
indefinitely large), are developed further.

Since, according to observations with thin-fuel-element distributions,
(4.11) captures the entire dependence of the rate of firespread v§ on the
parameters U and m quite well, one infers that any (probably modest)
dependence of v¢ on the groups (4.2) is of the form (H/d), (W/d), and/or
(W/8); we rely on experiment to shed light on such dependence, if any.
Incidentally, from inspection of (3.1), we identify still another length
scale n-1/2; however, H, d, and n are related to m via (3.1), so n-1/2 is
not an independent length scale.

62




4.2 FURTHER NOTES ON THE ROLE OF RADIATIVE PREHEATING IN

WIND-AIDED FIRESPREAD ACROSS BEDS OF DISCRETE FUEL ELEMENTS.

A first-principles argument is undertaken to indicate the conditions
under which radiative heat transfer is competitive with convective/
conductive heat transfer for preheating in wind-aided firespread across an
array of discrete fuel elements.

The radiation from the products of burning wood, including (as they
sometimes do) glowing soot, is incident, in part, on the cool fuel which
the fire is approaching. The total (time-integrated) heat § (in ergs/g of
fuel) incident on that fuel during its entire heating history is given by

§-=01¢ Y(V,f) [t/vf](l/m), (4.13)

where eoT4 is the radiative output per unit volume of the hot gas, (t/Vf)
is the preheating time, and Y is the "thickness" of that slab of hot gas.
Explicitly,

g = 5.67 x 105 erg/(s cm? K%);

T = temperature of the hot gas (K);

€ = absorption coefficient of the hot gas (cm-1);
Y = vertical thickness of the hot-gas region (cm);

Vi = fuel-geometry and orientation portion of the view factor
(dimensionless):

f = fraction of the horizontal area occupied by fuel (dimensionless);

—
L}

effective streamwise (horizontal) distance over which radiative
heating is received (cm);

vf = rate of firespread (cm/s); and
m = mass of thin fuel per unit planform area of the bed (g/cm?).

We adopt m = 0.1 g/cm2 and v¢ = 5 cm/s, values appropriate for a
windspeed of 2-3 m/s, according to observations reported below. The highest
temperature in the luminous zone is about 2000 K (from decades of
investigation of vigorous hydrocarbon/air diffusion flames). The length [,

63




here the length that glowing gas overhangs the preheating zone, is observed
to be not more than 30 cm. (The value of L appropriate to radiatively
preheated burning will be addressed below.) The absorption coefficient

e = 102 cm-1, on the basis of experiments carefully executed at Factory
Mutual Corporation in Norwood, MA (J. deRis, private communication). The
height Y of the glowing region is observed to be about 5 cm. The quantity
V, equal to the product Vif, can be estimated by noting that the upward
radiation is as large as the downward, the downstream radiation is as large
as the radiation directed upstream, and much radiation is lost laterally.
Only the forward and downward radiation can serve to preheat fuel, but much
of that impinges on the facility walls. That portion of the forward,
downward radiation that is incident on the fuel bed is divided between that
which encounters the discrete fuel elements and that which encounters the
floor (i.e., the substrate). The fuel elements are sparsely distributed in
current experiments, so V is less than 0.005; for more extensive fuel
covering, V might be as large as 0.05. This value implies that the
radiation is received by fuel and substrate over 0.25 rad (of the possible
4x rad), and 0.2 of that radiation is incident on the fuel, not on the
substrate. If we adopt V = 0.01, then, with the values given in this
paragraph for the other parameters, we obtain the crude estimate from
(4.13) that 5 = 2.9 J/g. This value falls far short of the preheating
necessary to pyrolyze wood, a value close to 250 J/g. Thus, it is
convective-diffusive heat transfer which enables firespread to occur in the
TRW experiments described above.

Let the reference fuel loading of 0.1 g/cmZ henceforth be denoted mg.
For a value of m that is n times mgy, for a fire propagating at the flame
speed of the convective-diffusive model (4.11), vf§ is multiplied by a
factor n-1/2, The simple energy balance (4.3) gives

mve~ YU (4.14)

Hence, Y is multiplied by a factor nl/2, The parameter Vi is unchanged,
but the factor f is multiplied by a factor n, just as is the quantity m
itself. It is argued below that the downwind-thermal-decay length of a
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stream that is losing its heat by radiation does not change with m, but the
distance downwind to which the radiation reaches scales with Y just because
of the geometry; i.e., s multiplied by a factor nl/2, By combining
these factors, we find from (4.13) that the effect of increasing the fuel
loading by a factor n results in an increase in the radiative preheating h
by a factor n3/2, Since a fuel loading my = 0.1 g/cm? yields § = 2.9 J/q,
and since a value of Q about 85 times greater is required to achieve
pyrolysis, a fuel loading roughly sufficient to achieve pyrolysis by
radiation is estimated by setting n3/2 = gs, Hence, a sufficient loading,
nmg, is about 1.7 g/cme. This is not a universal result; radiative
preheating does not always become either comparable or dominant at m = 1.7
g/cm2. However, the result does suggest the level of loading near which
the transition from the domination of preheating by convective-diffusive
heat transfer might be expected in a firespread facility.

Incidentally, since every parameter (including t) that affects the
quantity v¢ in the convective-diffusive model scales there as it does in
the radiative model, the above argument is selfconsistent.

Finally, attention is turned to substantiation of an earlier remark
concerning the parameter L, more precisely concerning the decay length of
the burnt-gas temperature downwind of the firefront. The rate of loss of
heat (owing to radiation) per gram of gas, if T is temperature and t is
time, is expressed by

afc 4
_E_Tl = - E.‘Z_T_' (4.15)
ot P
where p is gas density. With x = Ut, so
a_ .9
3t = Y 3% (4.16)

65




it follows that, for Cp const.,

5
aT _  geT
N il T (4.17)

The product (pT) is virtually constant in the present isobaric system:
- - ~ 10-3 3
PT = p,Tys T, =300 K, g, = 1077 g/em”. (4.18)

While (4.17) is readily integrable, we simply note the following. For the
temperature, assigned the value Tf, to decrease to the value

(T¢/a), where Tf characterizes the peak (flame) temperature and the factor
a > 1, requires a streamwise span Ax = t, where

5
cT oeT
p f. f
7 ~ Y;TTU' (4.19)

or, if ag/(7-1) = CpTo' where a, is the speed of sound in the gas at
temperature Tg and 7 is the ratio of specific heats, then

. Upoag/(7-1)

al (4.20)

4
aeTf

For typical values (U = 100 cm/s, ag = 1.2 x 109 cm/s), al = 31 cm, or, for

@ =21/%~1.2, T ~26 cm. This value for L, derived here on the basis of
radiative cooling, is quite comparable to the value of 30 cm adopted
earlier on the basis of observation for a firespread inferred to have a
convective-diffusive mechanism for preheating.
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SECTION 5
EXPERIMENTAL RESULTS

5.1 RESULTS FROM THE TRW FIRETUNNEL FACILITY.
5.1.1 The Effect of Wind Speed and Fuel Loading on the Rate of Firespread.

Perhaps the most practically significant result of the experimental
testing is that the quasisteady rate of firespread v¢ varies as ul/2 for
fixed m (Figure 9), and as m-1/2 for fixed U (Figure 10), where U is the
speed of the aiding ambient wind and m is the area-averaged thin-element
fuel loading. The results are from tests with 55-cm-wide fuel beds loaded
with white-pine toothpicks. Below, these data (and others) are replotted
to indicate the adequacy of the fit v¢ ~ (U/m)1/2,

In Figure 11 the result for a single test, in which a few combustible
thermoplastic fuel elements (Table 1) are added to the white-pine
toothpicks [in a 55-cm-wide bed, with wood loading of 0.011 g/cmZ, for a
test at U = 2.5 m/s], is juxtaposed with the results for two toothpick-only
(but otherwise identical) tests. The slower spread with the heavier,
plastic-augmented loading is consistent with the test interpretation that
the synthetic-polymer elements partially volatilized, though much plastic
melted into a small pool of very viscous fluid near each hole into which a
plastic element was placed. That is, a fraction of the plastic mass served
to enhance the fuel lcading. In another compariscn, a black roofing
cement, a mixture of petroleum asphalt and mineral filters (manufactured by
Gardner Asphalt Corporation, Tampa, FL), was coated on the above-described
white-pine-toothpick elements, such that the nominial fuel loading was
raised from 0.011 g/cm? (toothpicks only) to 0.033 g/cm? (toothpicks plus
coating). While only 30% of the coating proved volatile, the flame-
propagation speed was again retarded (owing to the enhanced loading of the
bed) from the coating-free-test result. Specifically, vf decreased from
6.4 cm/s to 3.8 cm/s, for tests with U = 3.4 m/s.

In Table 7, firespread-rate results are presented for fuel beds
sparsely loaded with white-pine toothpicks; schematic drawings of most of
the fuel-loading patterns pertinent for Table 7 are given in Figure 12.
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Table 7. Flame propagation as a function of wind speed and fuel loading
for 55-cm-wide fuel beds: test results,

Fuel: White Pine wind Speed
d=1.3mm, h=46cm 0.0m/s 0.7 mis 1.6 m/s 2.5 mis
0.005 No No No No (d)
Loading 0.007 No Cond (¢) Cond (c) Cond (c)
0.011 No Yes (a) Yes (4.2) Yes (4.9)
g 0.022 No Yes (a), Yes (4.0) Yes (4.5)
0.044 No Yes (1.4) Yes (2.2) Yes (2.6)
0.066 Yes (0.21) Yes (b) Yes (b) Yes (b)
cmcm 0.088 Yes (0.3) Yes (a) Yes (1.4) Yes (1.3)
0.176 Yes (0.23) Yes (b) Yes (b) Yes (b)
Notes:

Firespread rates, given in parentheses after some ”"yes” entries,
are in units of cm/s;

(a) = firespread rate not measured:

(b) = test not conducted, but propagation is expected;
(c) = firespread nonsustainable;

{d) = testnot conducted, but propagation is not expected:;

d signifies fuel-element effect diameter;
h signifies fuel-eiement height.
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loadings (designated by fuel mass per planform area, m) cited

in Table 7.
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The purpose is to identify the minimal loading for which fire propagates.
These tests begin to identify the limits of the domain in the (U,m)
parametric space for which the relation v¢ ~ (U/m)1/2 holds. Firebreaks
arising because of the large distance from fuel element to fuel element
might be modified locally because of ignition-inducing firebrands.
Firebrands did not occur during the firespread testing in the laboratory
facility. We conjecture that ignitions owing to firebrands are often a
random event, and, for a modest amount of branding, we would expect the
test results reported for the rate of spread, or for nonpropagation of
fire, to be only locally and transiently modified by branding.

5.1.2 The Effect of Ceiling Movement on the Rate of Firespread.

Figure 13 presents comparative test results that relate to the
provision for a moving test-section ceiling, so that there is unimpeded
ascent of buoyant product gases (as well as an invariant wind speed at the
firefront, such that a quasisteady rate of firespread can be achieved, if a
quasisteady rate exists for the test conditions). For a fully extended
ceiling at the test initiation, so that the ascent of buoyant product gases
is impeded, and the buoyant gases are turned downwind by the oncoming
stream, no steady rate of propagation is achieved. For a ceiling
translated such that the buoyant ascent is unimpeded, but such that the
flow arriving at the firefront is effectively invariant with firefront
movement, a quasisteady rate is achieved (Figure 13). If the ceiling is
not translated at all, but instead is Teft fully retracted at its upwind

position, the rate of spread tends to be slightly slower than with the rate
observed with ceiling translation.

5.1.3 The Effect of Fuel-Bed Width on the Rate of Firespead.

Because of lateral radiative heat loss at the fuel-bed edges, and
because, during preheating, the downwind fuel elements near the lateral
edges do not receive heat from upwind-fuel-element burning to each side (as
much as the near-centerline fuel elements do), the firefront develops a
curvature (Figure 14). The centerline-firefront position, used to obtain
the spread rate, lies further downwind than the firefront position near the
fuel-bed edges. Since only the component of the oncoming wind normal to the
local-firefront locus aids spread, once the spread rate at the flanks lags, it
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Figure 13, The streamwise position of the firefront (as indicated by the

near-bed-surface thermocouples on the streamwise centeriine),
xf, as a function of time t (since ignition of the upwindmost
row at x = 0), for the specified aiding wind speed U, bed width
W, fuel-element effective diameter d, fuel-element height H,
and fuel loading m. In tests 57, 58, and 62 (of Table 2), a
ceiling is translated (in its own plane) downwind during a
test, such that its leading edge is just upwind of the buoyant
firefront gases; in test 70, the ceiling is fully extended
downwind at ignition; in test 124, the ceiling remains fully
retracted throughout the test, so that the entire test section
remains lid-free (“open").
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Figure 14,

AR LI

%’,.f’ ¥ o

A photograph of the firefront curvature for wind-aided
firespread across a bed of discrete fuel elements. Here (for
test 1 of Table 2) the loading m = 0.011 g/cm¢ (of white-pine
toothpicks), the wind U = 1.6 m/s, and the bed width W = 100
cm. Whereas the near-centerline fuel elements are preheated by
the burning of upwind fuel elements to each side, near-edge
elements receive heat from one side only. Once lateral heat
losses result in a firefront lag at the fuel-bed edges, the
reduced wind aiding at the flanks precludes restoration of a
planar firefront. The aiding wind is blowing from right to
left, and the streamwise position is several meters downwind
from the upwindmost rcw.
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continues to lag, perhaps even more so with time under a constant wind.
Testing with a wider and wider fuel bed removes the near-fuel-bed-
centerline fuel elements even further from edge effects, and hence a faster
rate of firespread for wider fuel beds is observed (Figure 15), although
achievement of an asymptotic value for the centerline spread rate may
entail a prohibitively large facility. Also, if there is any tendency for
the oncoming wind to be more easily diverted around (rather than over or
through) the buoyant product gases at the firefront, such diversion becomes
impeded as the fuel-bed width approaches the test-section width of the
facility; this phenomenon would also contribute to a faster rate of spread
for a wider fuel bed. Comparison of test results for other parameters is
meaningful if the tests are all executed at the same width of bed.

One may achieve somewhat more planar firefronts by decreasing the
fuel-bed width with distance downwind from the leading edge. Both the
lateral heat loss, and the asymmetric preheating of off-centerline fuel
elements, are seemingly reduced by such tapering of the bed width with
increasing downwind position. Indeed, for tapered beds, the rate of
firefront propagation is enhanced sufficiently that a bed locally can
support flame propagation as rapid as that for a wider, constant-width fuel
bed (Figures 16 and 17). Of course, for the sufficiently narrow bed at the
end of a firefront transit of a sufficiently tapered fuel bed, a
propagation mechanism different from that holding upwind may predominate,
simply because the bed is too narrow (Miller 1970). In fact, the rate of
spread typically slows dramatically for a sufficiently small bed width, and
often extinction quickly ensues.

5.1.4 The Effect of the Presence of Inert Matter in the
Fuel Bed on the Rate of Firespread.

In seven tests, vertically oriented common nails were regularly
distributed in the midspan (only) of a fuel bed with regularly arranged,
thin, upright, wooden toothpicks (Figure 18). The objective was to
ascertain the (relatively small; heat-sink and (relatively large) wind-
retardation effects arising owing to the presence of noncombustible
material in the fuel bed. The oxygen-deprivation effect that may inhibit
vigorous burning (and may lead to copious smoke production) when inert
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Figure 18.

n
- S S

A side view of a pretest fuel bed consisting of common nails
interspersed regularly amid white-pine toothpicks; the inert
and combustible elements are positioned in shallow holes
drilled in a checkerboard pattern (1-cm sides) in a ceramic
substrate. Table 1 presents the properties of the bed
elements.
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material is well mixed with combustible polymers cannot be investigated by
the study of such arrangements, but the arrangements investigated here do
meet the criterion of fuel-bed reproducibility adopted in this study.

Upwind and downwind of the midspan are expanses in which the fuel-
element loading is identical to that of the midspan, but no nails are
present. Properties of the nail and white-pine-toothpick elements used in
the tests are listed in Table 1; it may be useful to note that the presence
of one nail in every drilled hole results in an planform-area-averaged
inert loading of 1.28 g/cm?, whereas the presence of one toothpick in every
drilled hole results in a planform-area-averaged fuel loading of
0.044 g/cm2.

Figures 19-21 present the results; the insets symbolize the loading of
the midspan, with a darker mark denoting a nail-filled hole, a lighter mark
denoting a toothpick-filled hole, and a circle with no mark denoting an
empty hole (the shallow holes being drilled into the substratum). In
Figure 19, the ratio R of the number of nails to the number of toothpicks
in the midspan is unity in the three presented tests, but the rates of
firespread (inferred, per usual, from near-bed-surface-thermocouple data)
differ. The preheating capacity of a fuel element is strongest on a
neighbor immediately downwind; to the extent that the neighbor is inert,
firespread is slowed. Figure 20 examines alternate arrangements for which
R =0.25, withm = 0.22 g/cm2, the same loading as in Figure 19, The small
change in firespread rate with a variance in microstructure within
macroproperty invariance ("nail crystallinity") is noteworthy. Figure 21
presents results for R = 0, 0.33, 0.5 and 1, with m and U held invariant;
it is found that v¢ increases monotonically as R decreases. It appears as
if there may be no finite value of R for which vf is effectively unaltered
despite the presence of nails; i.e., there seems no noteworthy threshold
value before the nail content alters vf.

Of curiosity is the juxtaposition of results from tests 87 and 93 (see
Table 2), both with nail-filled midsections (Figure 22). Whereas the
flamespread was more rapid with greater aiding-wind speed for the upwind
and downwind nail-free sections, the flamespread for the nail-containing
midsection was more rapid by a factor of two for the smaller of the two
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300 400

The firefront position xf (downwind from the leading edge of
the fuel bed) vs. time t (since ignition of the upwindmost row
of fuel elements at x = 0). The tests involve a fuel loading
of white-pine toothpicks, with m = 0.022 g/cmz, a wind speed U
= 2.5 m/s, and a fuel-bed width W = 55 cm. The ratio R (of the
number of nails to the number of toothpicks) is unity for the
midspan of the fuel bed. Upwind and downwind of the midspan
nail-and-toothpick arrangement (which is indicated in the
inset, with a darker mark signifyving that a nail occupies a
shallow hole in the substratum, a lighter mark signifying that
a toothpick occupies a hole, and a circle without marks
signifying that the hole is empty), R = 0 for all cases; i.e.,
upwind and downwind, the toothpicks are present, without any
nails.
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aiding-wind speeds. This observation concerning the midsection behavior
may be evidence of a so-called finite-Damkohler-number effect in firespread
across discrete fuel elements, where Damkohler number is defined to be a
dimensionless ratio of a characteristic reaction rate to a characteristic
flame rate. If the Damkohler number is sufficiently small, the chemical
reaction is extinguished ("chemically frozen" flow); if the Damkohler
number is sufficiently large, the chemical reaction proceeds at chemical-
equilibrium rates; at intermediate-Damkohler-number conditions, transport
rates and reaction rates are competitive, and a faster flow impiies a
slower rate of chemical reaction. Upwind and downwind, presumably the
Damkohler number was sufficiently large for the flow to be in chemical
equilibrium, and the faster flow is responsible for a faster rate of spread
under rate-of-preheating-controlled considerations. In the midsection the
temperature is reduced owing to the presence of a heat sink (the nails),
and the chemical-reaction rate typically decreases exponentially as the
temperature is reduced; then, rather than being under preheating-mechanism
control, the spread rate is under reaction-rate control, and an enhanced
wind speed implies a reduced spread rate.

5.1.5 The Effect of Fuel-Element Height on the Rate of Firespread.

On the basis of the limited testing carried out in this program, only
the general guidance is suggested that the effect of fuel-element height on
the rate of firespread seems to be represented by the relation

Vf”[%l}

Som: plausibility for such a dependence is suggested by the results

1/2 p
[%] , 0.25 < p < 1.0. (5.1)

presented in Figure 23.

5.1.6 The Effect of Fuel-Element and Substratum
Moisture on the Rate of Firespread.

If the water content exceeds very roughly 30% of the ovendry weight of
toothpick-type fuel elements, liquid water tends to accumulate on the
elements; for the time scales and exothermicity associated with firefront
passage for the test conditions typical of Table 2, fire propagation tends
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to be precluded. For water content below 30% or so, the rate of firespread
is uncertain relative to the rate for the same test conditions for modest
water content (say, 6-8% of ovendry weight) (Figures 24-25): a rigorous
correlation of the amount of firespread-rate retardation with the amount of
water content (up to the above-discussed level of crudely 30%) was not
obtained in the limited number of tests dedicated to the phenomenon. A
plausible explanation seems to involve the role of the (usually
concomitant) moiscure content of the substratum supporting the combustible
fuel elements. Water tends to accumulate on and just below the surface of
the porous ceramic, and the tctal amount of any such water content can
readily exceed the total water content of the fuel elements (for the fuel
loadings investigated in the testing). Thus, the retardation of the rate
of firespread owing to moisture content of the substrate seems attributable
to the reduction of the flame temperature Tf in (4.11).

Although the humidity of the air stream was not controlled in the
testing, an effort was made to minimize the amount of pretest convective
drying by rapid test initiation.

5.1.7 The Role of Substratum Composition on the Rate of Firespread.

The rate of firespread appears to be independent of the substrate
composition, at least for the clay and ceramic materials tested (Figure
26). The ceramic had density of 425 kg/m3, heat capacity of 1130 J/(kg K},
and thermal conductivity of 0.080 W/(m K) at 447 K, 0.223 W/(m X) at
1255 K; the respective properties of a clay are 1750 kg/m3, 1000 J/(kg X),
and 0.585 W/(m K) at room temperature. Thus, at 1255 K, the square root of
the conductance of the clay is but about three times that of the ceramic,
and the two inert materials might be expected not to yield different
results, However, we point out that retention of even residual liquid
water by either material can lead to distinctly different firespread-rate
results from those given in Figure 26.

5.1.8 The Effect of Mixed Fuel Elements on the Rate of Firespread.

Figure 27 juxtaposes results for fuel beds (1) with different fuel
loadings of the same thin fuel elements; (2) with virtually equal fuel
loadings constituted by fuel elements of different diameters, and (3) with
equal fuel-element loadings but different inert-element content. It has
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27. The firefront position xf as a function of time t, for

tests with a 55-cm-wide bed composed of 4.6-cm- h1gh elements
under a wind of 2.5 m/s. In the inset, an empty circle
designates an empty hole drilled in the ceramic substrate; a
dark mark signifies a hole occupied by a 4.4-mm-diameter birch
dowel; and a light mark signifies a hole occupied by a 1.3-mm-
diameter white-pine tcothpick. The only exception is for test
162, in which a dark mark signifies a hole occupied by a
common nail. The loadings under the sketches refer to the
combustible elements only.
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already been noted that inert 2lements serve as a wind obstruction and
retard the rate of firespread that would occur in their absence. It ailso
has already been established that a greater loading of the same type of
thin-fuel element retards the rate of firespread. However, Figure 27
contributes the additional insight that if a substantial fraction of the
fuel mass is constituted by thicker fuel elements, even if those elements
burn to completion with the thinner ones during firefront passage, the rate
of firespread is significantly retarded. The proportionality factor in the
relation v¢ ~ (U/m)1/2 is altered by this change in fuel-element
properties.

Whereas elements of diameter 3.4 times those of the thinner elements
burned simultaneously with the thinner ones under & wind speed of 2.5 m/s
(test 153, presented in Figure 27), at a higher wind speed of 4.6 m/s the
thicker, 4.4-mm-diameter birch II elements did not burn as the firefront
propagated through (and fully consumed) the 1.3-mm-diameter, white-pine-
type toothpicks (test 179). In test 179, the thicker elements either
burned slowly to completion well upwind of the firefront, or did not burn
much at all. The fuel loading was 0.041 g/cmé just as in test 153; in
fact, the loading in test 179 was exactly as in test 153 except that all
the thin thoothpicks were moved to one column (that had every hole
occupied) and only a few thicker dowels populated the parallel occupied
column--between these two (at least partly occupied) columns was left an
entirely empty, parallel column, just as in test 153. Thus, in the
testing, at least one condition was defined at which the firefront
propagation entailed the thinner elements only, in a fuel bed with
multidiameter elements.
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.2 CCMPARISON WITH OTHER EXPERIMENTAL DATA.

(W]

W

2.1 Summary of Resnlts from the Present Testing.

It seems useful to recall that in the present fnvestigation testing
.iin sreviously described flat-sided white-pine 4.6-cm-high toothpicks was
carried out primarily for beds of 353-¢m width. The wind speed U was varied
mostiy from 2.0 to 3.5 m,s, and the icading was varied frem 0.11 to 0.328

Ia}

xg. m¢: hence, :U.m) varied from 0.00 to 41.7 m3/(kg s), and
C.0cms € vse £ 5.9

cm/s. Least-squares curve fitting of the data
(Figure 78) gives, if g is the standard deviation, with vf¢ in cm/s,

e = 1.13 (unn) /2

i

, 0 = 0.42 cm/s. (

(@1

.9)

Thus, a1 model with convective preheating of a finite-thermal-conductivity
fuel bed seems compatible with the data.

5.2.2 The Nelson-Adkins Data.

Nelson and Adkins (1986, p. 1296, table 1) present flamespread data
{Figure 29) taken for fire propagation across fresh slash-pine needles set
in a tray 0.91 m in width and 4.88 m in length, after conditioning to a
moisture content of 11% (ovendry basis); the dry fuel loading averaged 0.34
<g/mé, and the layer thickness of moist needles was estimated to be 2.5 cm.
The wind-tunnel test section was 21.3 m in length with a 2.44 x 2.44-m
cross section. The fuel bed was placed in the tunnel with the fiel surface
approcimately 20 cm above the floor and with its long dimznsion parallel to
the directicn of flow. A guasisteady state was achieved usually within a
Juarter *9 a half of the total test time.

telson and Adkins (1988) sugsost that, in the present notation,

0.25 ,,1.30 e
Ve = 0,39 m U ‘t, (5.13}
f r
nrere t.ois a flame-residence time in seconds, v¢ is in m/s, m is in kg:me,
ind ots in omos; this empirical fit is taken to describe a wide range of

“anteatory Cand field) data. Since the residence time t, itself depends 2n
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m, U, and possibly other parameters in an unidentified way, the fit is of
Timited utility in its present form; an expression more tied to quantities
measurable prior to the test is preferred here, although admittediy for
mixed-size-fuel beds the fraction of the total fuel loading burned during
firefront passage is unknown prior to test execution. While a least-
squares Tit to the twelve cases reported by Nelson and Adkins gives

U0.17
Ve = 1.7m—0.T§ (5.11)

with a standard deviation of 0.66 cm/s, where vf¢ is in cm/s, U is in m/s,
and m is in kg/mZ, more generally it appears that the data of Nelson and
Adkins are obtained from experiments in which convective preheating is a
reasonable inference (Figure 30). In these data, m varies from 0.49 to
1.07 kg/m2, while U varies from 0.2 to 2.3 m/s, so (U/m) varies (fairly
modestly) from 0.45 to 4.19 m3/(kg/s). The observed flame speed varied
from 1.2 to 3.7 cm/s.

5.2.3 The Fons Data.

Fons (1949 p. 112, table 1) tabulates experimental data (Figure 31)
for 49 tests with vertically oriented, equally spaced, uniform twigs of
ponderosa pine, about 19 cm in height and either 0.15, 0.30, or 0.45 cm in
diameter. The bed was 3.6 m in length and quasisteady propagation was
taken to have been achieved after propagation of 1.2 m along the bed. Wind
speed U was varied from 1.8 to 3.6 m/s, and fuel loading was varied from
0.33 to 1.27 kg/m2, so that (U/m) was varied from 2.03 to 10.7 m3/(kg s)
and the observed flame speed from 1.3 to 5.2 c¢cm/s. One finds that, if ¢ is
the standard deviation, curve fitting to a prescribed power via a least-
squares criterion gives

ve = 0.92 (U/m?/3, o = 0.56 cn/s. (5.12)

Here again U is in m/s, vf is in cm/s, and m is in kg/mz. From Figure 32,
plausibly, the mode of preheating in Fons's twig-fire experiments is
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cravection, and the finite-thermal-conductivity model (with nonuniform
temperature in the fuel bed) may be particularly suitable.

5.2.4 The Steward Match-Splint and Wood-Shavings Data.

Steward (1974b, table 4) reports a dozen tests (Figure 33) with prone
poplar match splints in a fuel bed with 0.81 voidage and either 6.5% or
8.3% {ambient) moisture content. The fuel beds were 1.8 m in length and
0.4 m in width. These dimensions seem somewhat limited for ensuring that a
steady rate of propagation is achieved. The fuel loading m was fixed at
2.15 kg/m2 in all tests, while the wind speed U was varied from 0.6 to 3.5
m/s, so that (U/m) was varied but from 0.28 to 1.63 m3/(kg s). It may be
noted that the fuel locading is well above the peak values used by either
Fons or Nelson and Adkins in experiments discussed above. One finds from
least-squares fitting that vf ~ Ul-32 serves well, but the absence of any
variation of the fuel loading limits the drawing of strong conclusions.
Tests with poplar wooa shavings (0.92 voidage) gives vf ~ U0.81 (Figure
33); in these tests, 0 < (U/m) < 3.75 m3/(kg s).

5.2.5 The Steward-Tennankore Birch-Dowel Data.

Vertically oriented, circular-cross-section birch dowels, arranged in
a uniform matrix via holes drilled in a steel plate and having about 5%
(ambient) moisture content, were burned in a wind tunnel 1.22 m in width
and 1.19 m in height and 7.1 m in length (Steward and Tennankore 1979,
figure 10).

Thirteen experiments (Figure 34) were carried out with 2.5-mm-
diameter, 67-mm-long dowels with center-to-center distance of 25.4 mm. The
wind speed U varied from 0.4 to 3.5 m/s, with the fuel loading held fixed
at 0.21 kg/m2. One finds from least-squares fitting that vf ~ U serves
fairly well, but again the absence of any variation of the fuel loading
Timits the drawing of strong conclusions.

Twelve experiments were carried out with 2.5-mm-diameter dowels with
25.4-mm-separated centers, but with the dowel length slightly more than
doubled (to 140 mm) (Figure 34). The wind speed was varied from 0.31 to
2.28 m/s, with the fuel loading held fixed at 0.437 kg/mé. One finds that
roughly ve ~ U3/2Z, but again it is difficult to draw strong conclusions.
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Twelve experiments were carried out (Figure 34) with 6.4-mm-diameter,
140-mm-high birch dowels on 25.4-mm-separated centers, such that the fuel
loading was increased to 2.86 kg/mz. The wind speed U varied from 0.21 to
3.2 m/s, with the fuel loading fixed at the relatively large value of 2.86
kg/m2. One finds that roughly v¢ ~ U2/3, but the previously stated
reservation is again cited.

If attention is limited to experiments with 2.5-mm-diameter dowels, in
addition to the previously discussed dozen cases with 140-mm length and
25.4-mm separation and the previously discussed dozen cases with 67-mm
length and 25.4-mm separation, Steward and Tennankore also present four
cases with 67-mm length at 12.8-mm separation and one case with 140-mm
length and 12.8-mm separation. One finds from Gauss-Markov iterative
fitting that, if H denotes fuel-element length, vf ~ H.

5.2.6 The Thomas Field-Burn Data.

The applicability of the laboratory-test results obtained here to
wind-aided-firespread rates in the field requires an extensive experimental
program. As a preliminary step, Thomas (1971, p. 159, table 1) presents
data from nine head fires in heather and gorse; Thomas himself suggests, in
present notation, that v¢ ~ (1 + U)/pp. Since pp = pg(1 - ¢), and Thomas
presents the fuel-bed height H, by (3.1) we are able to replot his results
(Figure 35) in the form v¢ = C(U/m)1/2, in which the proportionality factor
C appears to take on different values for tests with gorse and heather,
values somewhat larger than that given in (5.9) for the present laboratory
tests. Two very marginally propagating fires, for which only estimated
input values are available and for which relights were necessary, deviate
from the fits.
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SECTION 6
FUTURE DIRECTIONS

About 195 tests of wind-aided firespread across regular two-
dimensional arrays of vertically oriented thin fuel elements have been
conducted. The primary output reported from these experiments is the rate
of firespread vf, under quasisteady conditions, as a function of key input
parameters, such as the wind speed U and the fuel loading m. The thickness
(streamwise depth) of the burning zone dt is the product of the spread .ate
vf and the duration of burning of a single fuel element tpyrn. But
observationally (for the parametric values investigated to date), for thin
fuel elements, vf¢ varies directly with the square root of the wind speed
and inversely as the thickness of an individual fuel element, and tyypn
varies as the three-halves power of the thickness, independently of the
wind speed (Steward and Tennankore 1981). The upshot is that the burning-
zone thickness dt ~ (Ud)1/2. For quasisteady spread, it is recalled that
we require a burned-out upwind expanse and a still-unburned downwind
expanse, between which is sandwiched a flaming front that is observed to
propagate at a constant speed. For a range of wind speeds of practical
interest, we have found that an approximately 6-m-long test section affords
a propagating, burning zone of finite width within the facility if the
thickness of an individual fuel element does not exceed about 4 mm or so.
For a test section (say) six times greater in length, one ought to be able
to accommodate a burning-front thickness six times as great, and still be
able to confirm a quasisteady rate of firespread. The above relation
suggests that a bed of fuel elements, each of which is 36 times as thick,
or about 15 cm in diameter, might be burned informatively in a firespread
facility of the enhanced length. A somewhat different dependence of tp,rn
on fuel-element thickness is inferred from the current experiments
(Figure 36). Specifically, the time of burn, tpyrn, is found to vary as
the loading m, and hence as d2, so d¢ ~ ul/2 g, Hence, a test section six
times as long might permit investigation of quasisteady fire propagation
across beds of fuel elements only six times as thick, or only about 2.4 cm
in diameter. In fact, one can replot (Figure 37) the results of Steward
and Tennankore (1981) themselves, and those of Fang (1969), to obtain
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approximately, tpyprn ~ m. Thus, the alternative, conservative estimate of
the fuel-element thickness compatible with achieving a quasisteady spread
in the lengthened chamber may be the more plausibie estimate.

In any case, a direction for future research on firespread might
concern thicker, more isolated fuel elements; as one motivation, such
elements characterize the less-blast-damaged scenario holding at lateral
distances further from the hypocenter in a thermonuclear aftermath.
However, the above facility of enhanced length is not proposed here as a
high-priority future direction for the discrete-element-firespread
research. The reservation is that if one proceeds over a sequence of ever
increasing spatial scales in the form of beds of dowels of ever larger
radius, one is moQing efficiently toward a data bank on firespread (if any)
across a "field of telephone poles". Seemingly of higher priority is
obtaining insight on the rate of flow-assisted firespread between
buildings. Buildings are characterized by internal structure, with a
floor, ceiling, walls, and contained combustible matter; in contrast, a
dowel has no internal structure.

An optimal agenda for obtaining insignt on the rate of firespread
through arrays of houses is difficult because there exist no known scaling
lTaws that permit extrapolation from laboratory-scale observations to full-
scale observations. Currently, if one wants definitive information about
firespread through an array of houses, one must burn many arrays of houses.
Hopefully, just as simple interpretation of data and use of similitude
arguments have permitted highly plausible conjectures to be made concerning
the burning of thicker dowels from experimental observations on thinner
dowels, so one hopes that highly plausible extrapolations to larger scale
will evolve from testing on smaller scale for the rate of firespread under
wind aiding through discrete fuel elements with internal structure.

We suggest that flow-assisted firespread across regular arrangements
of wooden boxes with covers be examined, with the fuel apportioned among
the outer sheath, the rafters, and the internal combustible contents to
match the apportioning in structures (homes and/or buildings) of interest.
At first, a single dimension 2 is to characterize the (cubic) becxes, but in
later tests, the width, height, and depth of the outer sheath may be




unequal. A plausible succession of values for the dimension £ may be 12.5
cm, 25 cm, 50 cm, 120 cm, and 240 cm. It may be noted that the test-
section width in the current firetunnel facility is 110 cm, so the last two
values (at least) would require a larger indoor facility or outdoor
testing. It is emphasized that what is being suggested is a program that
proceeds to the testing on scales comparable to those of actual structures.

It is also useful to introduce the spatial dimension L, the distance
hetween wooden boxes. At first, the streamwise and transverse separations
between wooden boxes might be equal, so a single dimension suffices for
description; later, the consequences of unequal separations may be
investigated. In a typical envisioned test, a regular arrangement of
wooden hboxes is placed in the test section of the firetunnel, the blower is
turned on to produce a preselected wind speed (unless spread in the absence
of an ambient wind is being investigated), and a gas-jet-diffusion-flame
igniter is used to ignite simultaneously and identically the burning of all
boxes in the upwindmost row (Figure 38). Photographic recording and
thermocouples are then used to record the subsequent fire event.

After testing at each value within the range of wind speeds, it will
be interesting to inquire how the spread rate vf varies with wind speed U
and fuel loading m; in particular, it will be interesting to ascertain
whether it is sufficient to seek v¢ in terms of U and m (only), and, if so,
whether v¢ ~ (U/m)d, where q = 0.5.

It is reiterated that testing is to be repeated for different values
of the wooden-box dimension £, so that 2 takes on a succession of values
21, 22, 23,... Clearly a purpose of this agenda is to develop a predictive

capability, with the aid of theoretical modeling, that can be extrapolated
to larger scales 24, 25,....

As a preliminary example of the tests just outlined, the results are
discussed for three tests with regular arrays of small empty paper boxes
(2.8 cm x 2.4 cm x 3.8 ¢m), each box pierced with eight round toothpicks
with an average diameter of 2 mm. The toothpicks, 6.5 cm in length and
protruding from the sides of the boxes, constituted 50% of the box-assembly
mass of 3.255 g. The char remaining after burning was rough 0.173 g
(Figure 39). In the tests to be described, the upwindmost 15-20 cm of the
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Figure 38. (a) A planform sketch is presented of a firetunnel experiment
to study the wind-aided firespread across a regular array of
identical wooden boxes of length and height 21, width 27, and
separation distance L. The boxes, which have "roofs", may
contain an internal fuel loading. This experiment is to be
repeated for various dimensions (and wind speeds U), to assist
in the evolution of urban-firespread scaling laws, with the aid
of dimensional analysis and analytic modeling. (b) A side-view
sketch of the same configuration is presented.
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Figure 39. Photographs of the fuel bed before and after test 194,
involving a regular arrangement on a 6-cm x 6-cm grid of small
paper boxes (2.8 ¢cm x 2.4 cm x 3.8 cm), each pierced with
eight protruding toothpicks. The 55-cm-wide bed was burned in
a wind of 1.6 cm/s. Each box assembly initially had 3.255 g,
of which half was contributed by the toothpicks; about 0.173 g
remained as char after the test.
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fuel bed was loaded with round white-pine toothpicks, for ease of ignition
(Figure 40). This figure also presents the packing arrangements for each
of the three tests. For a 10-cm x 10-cm grid (box-center-to-box-center
distance), the fuel loading m = 0.31 kg/mz; for an 8-cm x 8-cm grid, m =
0.48 kg/me; for a 6-cm x 6-cm grid, m = 0.86 kg/mg. Since only the
unshaded boxes burned, inspection of Figure 40 indicates that sustained
firespread occurred only for the heaviest of the three loadings; since the
measured burned time was roughly 100 seconds and the flame speed was
roughly 1 c¢cm/s, a minimum test length of about 100 cm is required to
achieve a quasisteadily propagating structure, and the results are of
marginal credibility. On the basis of results obtained from testing with
1.3-mm-diameter plain white-pine toothpicks [for which v¢ = 1.13 (u/m)1/2,
where U is in m/s, m is in kg/mé, and vf is in cm/s], a spread rate of 1.5
cm/s would have heen expected for the conditions of the test. While the
result of about 0.8 cm/s was much slower, presumably owing to the nature of
the fuel loading, the possible pertinence of a relation of the form v¢ ~
(U/m)4, perhaps even with g = 0.5, is not prejudiced by the result.
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Figure 40.
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A schematic of the fuel-bed loading for each of three tests
with regular arrangements of small paper boxes, each with
protruding toothpicks. The boxes are designated by small
shaded squares with associjated line segments. The upwindmost
portion of the fuel bed was loaded with regularly arranged
vertical white-pine toothpicks, the leading row of which was
ignited by a propane torch to initiate a test in the noted
wind U. An unshaded box indicates one which burned in the
ensuing firespread.
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APPENDIX A

ALTERNATE APPROXIMATIONS FOR THE MODELING

We now develop alternative approaches to the simple analytic modeling
of quasisteady wind-aided firespread across a bed of discrete fuel
a2lements. These alternatives involve different physical approximations
(e.g., here we consider, inter alia, a well-mixed, isothermal fuel bed) and
different methods (e.g., here we consider a semi-empirical approach) from
those adopted in Section 4, in which there was developed a first-
principles-based approach, based on convective/diffusive preheating (with
comments on radiational preheating) for a nonisothermal bed with finite
thermal conductivity. The material below is included for contras® only; it
is relegated to an appendix because we regard the approach in the main text
as superior for the present study.

A major distinction between the approach in Section 4 and the present
approach is that here we adopt two spatial scales for the downwind preheat
region (Figures 7 and 8): the vertical scale Y (defined as before) is
Joined by a horizontal scale X. Together with the key output sought, the
rate vf of firespread, we now require three equations to ascertain these
three unknowns. It is emphasized that X pertains to the preheat zone, and
is distinct from the length L characterizing the streamwise expanse of the
pyrolysis zone:

0

mve = f ] modx, m(x) = pbvb(x), (A.1)

where vh(x) is the speed in the y direction with which the substratum
beneath the fuel bed approaches an observor fixed on the bed surface.
Actually, identifying L is not required for finding v¢.

From the conservation of energy [see (4.3)]

YUp, ~ mvf[zgf;], (A.2)
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where the notation is defined in Section 4.

Empirically (Figures 41, 42, and 43),

A - [E]a, (A.3a)

where A is the angle of inclination (of the gas-phase isotherms at the
pyrolysis front x = 0 with respect to the ray in the direction of
propagation), as inferred from thermocouple-rake data obtained in the
experimental facility. [The angle A is to be distinguished from the
function of integration A(s) introduced in (4.7).] For small values of A,
and, in any case for present purposes,

A [m]a, (A.3b)

where 1 D> a > 0 for m = 0(0.05 g/cmd), and U = 0(1 m/s).

Conservation of energy in the preheating portion of the fuel bed, for
an observor in the steady frame of reference of the propagating firefront
(Figures 7 and 8), is given by (again, T denotes the temperature above
ambient temperature, which is taken to be the same for both air and fuel
bed)

PppVs
kayy F X

T =0, 0<y<H 0y (A.4)

As in Section 4, for the analysis, the vertical coordinate y has been taken
positive downward, in contrast to the convention adopted in the just-cited
figures; however, the streamwise coordinate x is still positive downwind
{in contrast to the procedure for the analysis in Section 4), and y = x/X,
with X still to be identified. If one adopts the Fourier transform over
the domain -@ { y ( = (although the results of interest are limited to
1cnnegative values of y), then the transform and its inversion are here

‘efined to he
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Tley) = §  Tlhuy) exe (ixg) dy (A.3a]
®
) = g | T elien de. (A.30)
Hence, (A.4) becomes
Ty pbibvf (ig) T =0, (A.6a)

. 1/2
1§PbeVf} yJ (A.6b)

T(€,y) = R(g) exp[-[ >

for H » », But, since Tf is constant, for a convective-conductive mode of
heat transfer from the gas phase to the fuel bed, for y > 0, if f(y) is a
function that decreases monotonically to zero (as its argument increases)
at least rapidly enough to ensure boundedness,

kpTy (X0 0) = =F(R) /Y, or kT, (£,0) = - FlE)/Y. (A.7)

Hence, from (A.5b), (A.6b), and (A.7),

1/2

kX © 2 :
. b f(¢) exp(igy)
RO [pbcbvf] J—m (?;?I}ZY - e

But, by definition, T7(0,0) = prr, the pyrolysis temperature, a given
constant. Hence, from (A.8),

Y o~ [5—] . (A.9)
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From (A.2), (A.3b), and (A.9), for preheating primarily by convective
diffusion, with a finite value for the effective thermal conductivity kp,

(1+a)/2 (a-1)/2 U (3a-1)/2

I ERTT RTe

The appearance of (a/2) in the expressions for vf and Y reduces the

(A.10)

sensitivity to the (somewhat uncertain) value of a. For a = 0, the sguare-
root dependence obtained in (4.11) for vf¢ on the ratio (U/m) for
convective/diffusive preheating is recovered. In fact, a = o(l); although
the data are somewhat scattered, the assignment a2 = 0.15 is plausible
(Figure 43). Intuitively, the result that the horizontal scale X decreases
as (U/m) increases seems anomalous, but the dependence is rather weak (the
exponent ~ -0.28).

If one considers a fuel bed of finite depth H with no heat transfer to
the substratum, then for preheating one considers (A.4) subject to (A.7)
and

T(=,y) =0, T(0,0) = T

)
o

k. T -H) = .

pyrt b y(x. ) (A.11)
For a uniformly mixed fuel bed (i.e., for the case in which kp increases as
Ty decreases, such that the product is finite and the fuel-bed temperature

approaches invariance with depth), one may integrate over 0 { y < H to

obtain
pbfobH
-kay(X,O) + - TX = 0, (A.12)
ar
Xf
T - (A.13)
X prprHY
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Since ppH = (m + mg) by definition, where my is the mass of air per unit
planform area of the bed (and m >> my except for very light fuel loading

or

00
X Jo f(xq) dx X
Vf(m * mo) )

Tpyr = v (m+my or ¥ ~

This relation, together with (A.2) and (A.3b), yields

-1 2a-1
Vi © {%Ja m i m Y- &ﬂ“ m 1 my X~ Gﬂ ’ m 1 my (A.

For 1 >> a > 0, these results are at odds with observation.

For radiative transfer as the dominant mode of preheating [compare

(4.4a) and (4.4b)], (A.7) becomes (g decreases monotonically to zero as i

argument increases)
kay(x.O) = -g(p)y, (A.

so (A.2) and (A.3b) are complemented by

5"
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Hence,

U (1+a)/2

(3-a)/2 (1-a)/2
N R e

Again, as a + 0, one recovers the corresponding results for v¢ in Section

(A.19)

3, explicitly, {4.12). It may be noted as a check that indeed, for
radiative preheating, an increase in the Y scale implies a comparable
increase in the X scale, especially as a + 0.

For uniform mixing over the fuel-bed depth, but with radiative
transfer from the gas phase as the mechanism for fuel-bed preheating, so
that (A.7) is replaced by (A.17) when substituting into (A.12), then (A.15)
is replaced by

<
~h
—

3

+

3
Q
—

—~

For 1 D> a > 0, again the results are at odds with observations.
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APPENDIX B

PARTIAL LIST OF SYMBOLS

English Symbols

A angle of ascent of the buoyant gases, measured from the
downwind horizontal

ag speed of sound at ambient conditions

A(s) function of integration

Ch specific heat capacity of the gas at constant pressure

d effective diameter of fuel elements

dt burning-zone thickness

f fraction of the horizontal area occupied by fuel
(dimensionless)

H height of the fuel elements; aiso, depth of the fuel bed

k thermal conductivity of the gas

kh effective thermal conductivity of the fuel bed

kg thermal conductivity of the gas near the flame at the

pyrolysis front
box dimension

L streamwise length of the fuel bed; also, the distance
between boxes

L effective streamwise (horizontal) distance over which
radiative preheating is received (cm)

m mass of thin fuel per unit planform area of the bed
(g/cm?)

Mg mass of air per unit planform area of the bed; also, a
reference fuel loading

M positive real constant which characterizes the
radiative-heat-transfer profile

n number of elements per unit planform area; also, a
constant (typically, an exponent)

N number of toothpicks; also, a positive real number which

characterizes the convective-heat-transfer profile
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English Symbols
P

q

Jots

Tpyr

vE

PARTIAL LIST QOF SYMBOLS

constant (typically an exponent)

downward heat flux

heat released per unit mass of fuel burned, after
subtraction of the sensible and latent preheating

required to bring the mass from the ambient to the
pyrolysis condition

total (time-integrated) heat incident on the fuel
(erg/g)

ratio of the number of nails to the number of toothpicks

spacing of toothpicks, also, the integration variable in
the Laplace transform

time

time during which the fuel-bed temperature exceeds 473 K
flame-residence time (s)

flame temperature

ambient temperature

pyrolysis temperature

ambient wind speed

rate of firespread (cm/s)

product of Vy and f

fuel-geometry and orientation portion of the view factor
(dimensionless)

width of the fuel bed

coordinate in the streamwise direction, positive
downwind

characteristic horizontal scale

axis perpendicular to x and to the gas/fuel-bed
interface (typically positive into the gas phase)

stand-off distance of the flame from the gas-solid
interface at the pyrolysis front
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Greek Symbols

fb
Ps

¢

X
Superscripts
Subscripts

b

f

PARTIAL LIST QOF SYMBOLS

constant (dimensionless)

constant used in the Laplace-transform-inversion
integral

absorption coefficient of the hot gas (cm-1)

ratio of specific heats; aiso, the tiit angle of the
buoyant gases, measured from the vertical axis (the
complementary angle of A)

width of the test section of the fire tunnel

thermal diffusivity of the gas phase

bulk thermal diffusivity of fuel bed

x/Y

gas density

mass of bed per unit volume of bed

solid-fuel density

Stefan-Boltzmann constant, 5.67 x 10-2 erg/(s cm K4):
also, standard deviation

porosity
x/X

Laplace-transformed variable

Pertaining to the fuel bed

Pertaining to the flame
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