AD-A228 580

PENGUIN: A Language for Reactive
Graphical User Interfaces

Sue-Ken Yap

Technical Report 344
April 1990

UNIVERSITY OF

ROCHESTER
COMPUTER SCIENCE

DISTRIBUTION STATEMENT & [

Approved for public release; ‘
Diatribution Unlimited (} i

PENGUIN: A Language for Reactive
Graphical User Interfaces

by

ﬁ {1 5% (Sue-Ken Yap)

Submitted in Partial Fulfillment

of the

Requirements for the Degree

DocCTOR OF PHILOSOPHY

Supervised by Michael Scott

Department of Computer Science

University of Rochester

Rochester, New York

April 1990

SECURITY CLASSIFICATION OF TH!S PAGE (When Dllignlered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

T REPORY NUMBER

344

2. GOVT ACCESSION NO,|

3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)

PENGUIN: A Language for Reactive Graphical
User Interfaces

5. TYPE OF REPORT & PERIOD COVERED

technical report

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(a)
Sue-Ken Yap

8. CONTRACT OR GRANT NUMBER(s)

N00014-82-K-0193

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Computer Science Dept., 734 Computer Studies Bldg.
University of Rochester, Rochester, NY 14627

10. PROGRAM ELEMENT.PROJECT TASK
AREA & WORK UNIT NUMBER

1. CONTROLLING OFFICE NAME AND ADDRESS

Defense Advanced Research Projects Agency
1400 Wilson Blvd., Arlington, VA 22209

12. REPORT DATE

April 1990

13. NUMBER OF PAGES

115

14, MONITORING AGENCY NAME & ADDRESS(/f different from Controlling Office)

Office of Naval Research, Inf. Systems
Arlington, VA 22217

1S. SECURITY CLASS. (of thia report)

unclassified

1Sa. DECLASSIFICATION/ DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report®
Distribution of this document is unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

None.

19. KEY WORDS (Continue on reverse side if necessary and identity by block number)

user interfaces; human factors; interaction techniques; grammars; parsing

20. ABSTRACT (Continue on reverae side i{f necessary and identity by block number)

(see reverse)

FORM
JAN T3

0D , 1473

EDITION OF | NOV 65 |S OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

20. ABSTRACT

PENGUIN (Programming Environment for Graphical User Interfaces) is a computer language that

upports grammar-based specification of control flow in event-driven graphical programs. The
PENGUIN model of intercomponent connection extends and subsumes the older Seeheim model
of UIMS design, allowing large programs to be constructed as co-operating components.

Traditional approaches to graphical program design have treated the user interface code as
something that can be written independently of the application. This dissertation argues that the
reactive nature of graphical programs should be taken into account from the beginning of design,
that a graphxcal program be composed as a collection of modules whose input behaviour is
specified, and that modules be grouped into separately-compiled components along lines of clear
division of labour and responsibility for resources. Such partitions result in components that are
more likely to be reusable.

This dissertation discusses the rationale behind the design of PENGUIN. An implementation of
PENGUIN was used to evaluate this design. Our experiences irdicate that the use of PENGUIN
can reduce the volume of user interface code by a factor of two to three and result in code which is
clearer than functionally equivalent code using traditional control structures. Uniform handling of
I/O and signals as PENGUIN events leads to programs that are more portable across systems.

PENGUIN encourages the construction of reactive modules which are clearer than modules that
use polling or a mixed approach. We claim that reactive programming is a sounder basis for
constructing the sophisticated interfaces that will eventually supplant the current generation of
interaction techniques.

Curriculum Vitae

K2 (Yap Sue Ken) was born in Kuala Lumpur, Malaysia. He received
his Bachelor of Electrical Engineering from the University of Malaya in 1979.
During his engineering studies, he became interested in the potential of computers.
Upon graduation, he went to the Basser Department of Computer Science of the
University of Sydney, Australia. He received the M.Sc. degree in 1982. He worked
for two years in industry as a systems analyst before returning to graduate school.
Since 1984 he has been enrolled in the Computer Science Ph.D. program at the
University of Rochester, NY, USA.

1

Acknowledgments

The single authorship of this thesis belies significant contributions by other
people. My family, especially my mother, have been very understanding to let me
go to the other side of the world for six years. Without their implicit support,
I could not have finished. The Department of Computer Science supported me
financially throughout the duration of the doctorate program. My mentor and
advisor, Michael Scott, has been very patient with me throughout my candidacy.
My colleagues Laura Sanchis and Michael Swain were kind enough to proofread
early drafts of this thesis. Finally, my thanks to the staff of Carlson Library, one
of the best stocked libraries I have used, and especially to Diane Reiman, who
understands what computers are really for.

This material is based upon work supported in part by tl.e National Science
Foundation under Grant number CCR-8320136 and by ONR/DARPA research
contract number N00014-82-K-0193. The government has certain rights in this

material. "4 :.0ssion For ‘
RIS GRA&;’T
i DTIC TAB
Unannounced O

Justification —— i

Y.
Distribution/
Availabiliﬁtzj:ﬁodes

Avail and/or
Dist Special

Vad

m

Abstract

™
PENGUIN (Programming Environment for Graphical User Interfaces) is a com-
puter language that supports grammar-based specification of control flow in event-
driven graphical programs. The PENGUIN model of intercomponent connection
extends and subsumes the older Seeheim model of UIMS design, allowing large
programs to be constructed as co-operating components. O

“Traditional approaches to graphical program design have treated the user inter-
face code as something that can be written independently of the application. This
dissertation argues that the reactive nature of graphical programs should be taken
into account from the beginning of design, that a graphical program be composed
as a collection of modules whose input behaviour is specified, and that modules
be grouped into separately-compiled components along lines of clear division of
labour and responsibility for resources. Such partitions result in components that
are more likely to be reusable. ™™

This dissertation discusses the rationale behind the-design of PENGUIN. An
implementation of PENGUIN was used to evaluate this design:>Our experiences
indicate that the use of PENGUIN can reduce the volume of user interface code
by a factor of two to three and result i code which is clearer than functionally
equivalent code using traditional control structures. Uniform handling of 1/0
and signals as PENGUIN events leads to programs that are more portable across
systems. .

<~ PENGUIN encourages the construction of reactive modules which are clearer
than modules that use polling or a mixed approach. “\We claim that reactive
programming is a sounder basis for constructing the sophisticated interfaces that
will eventually supplant the current generation of interaction techniques.’

Table of Contents

Curriculum Vitae

Acknowledgments

Abstract

List of Figures

1 Introduction

1.1
1.2
1.3
1.4
1.5
1.6

Overview v v v i i

Contributions
Definitions

Organization

2 Previous Work

2.1
2.2
2.3
2.4
2.5
2.6
2.7

Characteristics of Graphical Interfaces . .
The Seeheim Model
The Application Layer
The Presentation Layer

The Dialogue Layer

Project Goals and Context-free grammars

Summary

.............

.............

.............

ii

iii

iv

viii

00 O Gt o N

10
10
11
12
16
17

The PENGUIN Language

3.1
3.2
3.3
3.4
3.5
3.6
3.7
38
3.9

3.10 Error Recovery
3.11 Modules
3.12 Environment variables

3.13 Queues

Fork Productions .
Sub-parsers
Action routines . .
Context

Sub-grammars Lo

Execution model

Py AT L L L. .- L e s e e 4 s s s s a e s s s s s s e e a s s e e

* and + Operators

..........................

..........................

..........................

..........................

..........................

............................

Compiler and Parsing Algorithms

4.1
4.2
4.3
4.4
4.5
4.6

Cactus Stack e
Parsing

Locating sub-parser by context

PENGUIN in the large

51 Previouswork L
5.2 PENGUIN Components and Ports
5.3 Matchmaking L Lo
5.4 Modules and components compared
5.5 The PENGUINModel
Implementation

6.1 PENGUIN Programs
6.2 Generatedcode L
6.3 PENGUIN Run-time Library
6.4 Input Management

........................

Linear search for production (LSEARCH)
Translation to a new alphabet (TRANS)

Conclusion e,

.............

18
18
20
20
21

22

22
23
24
24
25
26
28
28

30
30
31
32
33
38
41

42
42
44
45
46
47

50
30
51
33
34

vl

7 Experiences with PENGUIN

7.1 Case study: Pfig R
7.2 Case study: Alarmclock L.,
7.3 Case study: Graphical printer interface
T4 Observations« v v v vt i it i e e e
7.5 Evaluation of PENGUIN against goals

7.6 Problems. e e e

8 Conclusion

8.1 Contributions o
8.2 Desirable PENGUIN enhancements
8.3 Futureresearchissues.
84 Conclusion e

A PENGUIN Language Manual
Al Introduction
A2 Lexical Conventions
A3 Modulesections
A4 Privatedata
A5 Grammar e e e e e e e e

A6 Executionmodel

B Extended Example
B.1 PENGUINmodules
B.2 Main program and auxiliary routines

B.3 Example output from PENGUIN compiler

Bibliography

56
56
59
60
61
62
65

67
67
68
69
70

73
73
74
76
79
30
81

83
83
99
105

112

Vil

2.1

4.1
4.2

5.1
5.2

=1
Ju—

List of Figures

The Seeheim model of a UIMS.

Fork junction in cactusstack

Data structure for sub-parser dictionary

An example configuration in the PENGUIN component Model . . .
Substructure of a PENGUIN component

Apfigwindow oL oL

vili

1 Introduction

This chapter explains the scope of this dissertation, motivates its goals, defines
terminology, and outlines the organization of the remainder of the text.

1.1 Overview

This dissertation is concerned with the design of a notation and computer lan-
guage, PENGUIN, for specifying and programming interactive graphical user in-
terfaces, and a model for the composition of graphics programs.

Graphical user interfaces (GUIs) make computer applications easier for non-
technical users to use, but because of their size and complexity these interfaces
require more effort in program construction than textual interfaces do. Current
techniques of constructing GUI software are inadequate because they are based
on an inadequate model of program structure and input/output handing, and
fail to address the particular needs of graphical interfaces. An examination of the
requirements shows that formal notations, together with automated tools for code
generation, can provide a solution to this programming bottleneck.

The thesis of this dissertation is (1) that graphical user interfaces require
linguistic support for event-driven programming, grammar-based specification of
input and composition of independent processes, and (2) that PENGUIN meets
these needs.

PENGUIN has these characteristics:

e The input language of PENGUIN programs is specified with an augmented
context-free grammar. The grammar notation supports two goals: it en-
hances the readability of specifications, and it allows the automatic genera-
tion of parsers that enforce the input language.

e PENGUIN programs are reactive in contrast to conventional programs that
either poll for input or alternate between program control and input control.

¢ A module is the PENGUIN unit of compilation and the basic building block
for creating interactive programs. It contains a grammar speciiication, pri-
vate data, and executable code. A module embodies an interaction tech-
nique or simulates a physical object in software. Modules are composed into
components at compile time.

o A component is the PENGUIN unit of independent, concurrent execution.
PENGUIN generalizes the three-layer Seeheim model [Pfaff, 1985] to the
PENGUIN model which allows arbitrary graphs »f components. Compo-
nents can be composed dynamically to create networks that work in concert.
PENGUIN provides precise definitions for compatibility between components.
Components that have compatible protocol specifications can be connected
together. Components that have the same protocol specification are inter-
changeable as far as their peers are concerned.

1.2 Motivation

Computers are powerful tools. The history of computing machinery has seen
technology drive increases in computing power and memory capacity, with no
foreseeable barriers to the current rate of improvement.

Human-computer interfaces have improved tremendously at the same time.
Today’'s GUIs are a far cry from the patchboards of early machines. Unfortunately
we do not have the software technology for constructing lucid and maintainable
programs for today’s graphics hardware.

1.2.1 Reactive execution

One significant problem is the traditional model of input /output (1/0O) in standard
programming languages. 1/0 is accessed via routines from a software library (as
in C [Kernighan and Ritchie, 1978]) or via constructs built into the language (as in
Pascal {Jensen and Wirth, 1975]). This model of 1/0O is not suitable for GUlIs for
several reasons. With GUlIs there can be more than one focus of attention. The
user has the freedom to enter information at various places and in no particular
order. 1/0 subroutines cannot handle this mode of interaction easily. Systems like
the MacIntosh [Apple Computers, 1986] or the X Windowing System [Scheifler
and Gettys, 1987] that provide access to graphics devices from conventional pro-
gramming languages either turn the program into a single threaded statc machine
o1 require the use of non-standard routines that poll for input to avoid blocking
at inconvenient places.

Consider the implementation of a typesetting previewer. The previewer dis-
plays a page, then reads a user command (keystroke or mouse button depression)

to direct its next action. In addition. the previewer has to r:spond to signals
from the windowing system that indicate the need to repaint the current window
contents. In the normal programming paradigm, the program is written as a “big
loop with switch” thus:

display a page
loop
get an input event
case event of
keystroke:
mouse button:
do user command
repaint signal:
repaint window
/* end of cases */
/* end of loop */

The first problem with the code above is that it is not easily discerned that it
describes several interactive threads, nor is the input language of each thread clear
from the program code. Errors may be made in writing a program to conform to
input specifications. It may also be difficult to change or rewrite the code with
assurance that the input behaviour has not been altered. Suppose the programmer
decides to implement multiple character commands. An example would be a
command to jump to a certain page, which requires collecting the digits of a
number. If the digits are read within the case branch, then repaint signals are
ignored until the whole number has been collected. Immediate response to repaint
signals can be preserved only by incorporating the number reading routine in the
main loop, thereby adversely affecting program clarity.

PENGUIN’s grammar-based specification keeps unrelated threads of interaction
lexically separated. The sequence of events leading to a particular action can
be more readily deduced from the PENGUIN specification than from the “big
loop with switch” code. Equally important, unrelated code managing separate
resources can be kept lexically separate in modules, and not be mixed together in
the big loop.

A side benefit of programming with a high level model of program input is that
the portability of the application is improved because the specification deals with
abstract events, pushing details of the implementation to envircnment-specific
libraries. Alsc the error messages that the user receives from the GUI compiler
will reflect constructs in the design abstraction and not the constructs of the target
environment.

A second problem with the code above comes to light if the programmer wants
to modify the program so that the user can interrupt the display of a page. The
fetching and display of individuai tharacters of the page must be incorporated into
the main display loop of the program if it is to remain sensitive to interrupts while
tl-e page is partially complete. Alternatively, system-specific means of handling
interrupts must be used. In short, the current paradigm permits no more than a
single loop if the reactive nature of the program is to be preserved.

An event driven approach to GUI programming removes many of these difficul-
ties. Unfortunately, current languages do not support event driven programming
well. A subroutine package such as the X11 library does not sufficiently moti-
vate the programmer to write programs in an event-driven style; self-discipline is
required of the programmer to preserve the event-driven nature of the program
with current tools. PENGUIN’s event-driven model frees the programmer from
the contortions required to translate algorithms in the event-driven world to a
sequential implementation.

1.2.2 Inter-process connections

Current User Interface Management System (UIMS) models have inflexible views
of graphics programs. A program is usually designed to work in one particular
environment and do one task. Co-operation with other programs is either difficult
or impossible. The traditional dichotomy between the user interface and the
application code results in programs that cannot communicate with each other,
only with the the shared graphical display software. A re-examination of the
rationale behind the traditional UIMS model is needed.

PENGUIN defines a model for composing programs as a network of commu-
nicating components. This model is a generalization of the traditional Seeheim
model, discussed in Chapter 2, which partitions a graphical program into three
components according to logical function. PENGUIN allows the program to be par-
titioned into an arbitrary number of components according to division of labour.
The PENGUIN model results in components that are better delineated in terms
of input protocol and management of private resources, and therefore more likely
to be interchangeable or reusable. Since PENGUIN specifies the behaviour of each
component with a grammar, the interactive behaviour of the network of connected
components is also specified.

1.3 Goals

A language and model for programming GUIs should meet the following goals:

Specification It should be usable as a specification language. Programmers who
are reading code written in this notation should be able to understand the
intention of the author better than if the interface had been programmed in
a standard programming language.

Translation A compiler can generate code from the specification. The compiler
should significantly reduce the amount of coding effort required to construct
an interface compared with current methods.

Port~bility The notation should be sufficiently independent of the graphics envi-
ronment (the underlying operating system support and the graphics libraries
available) that the effort of porting a program to a different environment is
small compared to the effort of rewriting the program, had it been written
without the aid of the notation. '

Reusability The language should encourage the reuse of code by making it easy
for the programmer to keep the portions that can be used in another pro-
gram, while altering the portions that must be customized for the new ap-
plication. Modules like sliders, buttons, menus, etc. should be available for
easy reuse.

1.4 Contributions

e PENGUIN is a specification language for GUIs. Programmers can specify the
language accepted by the program with an augmented context-free gram-
mar. This makes the task of program maintenance easier and improves the
vortability of the program by helping the programmer separate the specifi-
cation of the protocol of the program from the implementation.

e PENGUIN explores the view that interactive programs are inherently event-
driven and execution should be driven by the arrival of data. Traditional
programming has considered I/0 an activity subordinate to the main work of
the program. This dissertation argues that an input-driven model [van den
Bos, 1988 is more natural for graphics programs.

¢ In conventional I/O, multiple threads of interaction are usually merged into
a loop that dispatches each event to the appropriate subroutine. This ob-
fuscates the code by juxtaposing code for unrelated threads of activity. In
PENGUIN unrelated sequences are lexically separated. PENGUIN exploits
the event-driven model to support an efficient implementation of multiple
threads.

e PENGUIN is an implementation language for GUIs. A PENGUIN compiler
translates the high level specification into the target language. This reduces

the amount of coding required of a programmer by implementing a higher
level of abstraction. PENGUIN also reduces the amount of effort required to
port large graphics programs by concentrating environment dependencies in
the run time support.

¢ PENGUIN modules encourage the reuse of interface code. A module is a
unit of interaction and is a realization of an interaction method. A module
is a self-contained manager of a resource. Multiple instances of a module
can be created, all sharing the same behaviour but each with its own copy
of variables. Libraries of modules are available as off-the-shelf components.
Variant modules can be derived from existing modules instead of being writ-
ten from scratch.

e PENGUIN proposes a replacement for the traditional Seeheim model that
better fits the needs of programs, and results in a more symmetric and uni-
form treatment of the co-operating components of a program. Such compo-
nents are more likely to be interchangeable or reusable.

1.5 Definitions

This dissertation will heavily use, both for illustrative purposes, and for validation
of the methodology, hardware configurations commonly known as workstations
with windowing displays. The methodology can easily be extended to deal with
advanced interactive devices which are coming into more widespread use. How-
ever, workstations are currently the most accessible representatives of a class of
computing environments in which programs have to deal with interactive, inter-
leaved inputs from multiple sources and where graphical information, which is
much richer in attributes than textual information, is processed. A brief explana-
tion of the terminology involved follows.

1.5.1 Hardware

A bitmap display is a screen whose unit of addressability is the pirel, short for
picture element, in contrast to textual displays, where the unit is the character. A
pixel may be monochrome, gray scale or colour. The ability to display arbitrary
patterns of pixels gives great flexibility to programs. Text and graphics are han-
dled by the same general-purpose mechanism. As an example, the character font
1s no longer restricted to that provided by the hardware, as in textual displays,
but can be controlled at will by software.

1.5.2 Windowing Systems

A bitmap display is too precious a resource to devote entirely to a single program.
A windowing system is software that partitions the “real-estate” of the screen into
separate regions, commonly called windows, each of which can be assigned to a
different program. The windowing system also multiplexes the use of the input
devices, such as the keyboard and mouse, between the windows. The use of the
display can be further increased by allowing windows to overlap. Windows in use
obscure those kept idle. This is called the desktop metaphor, for the analogy to
the desk of a busy person.

Note that although a window may be a text window, and commonly is, a
window is simply a delineated region of the screen!. For example, a chessboard
may be presented in a window. In the X Windowing System [Scheifler and Gettys,
1987], windows may enclose subwindows ad infinitum, which is pleasantly regular.
The chessboard may use subwindows for the squares.

1.5.3 Physical and Logical Devices

Each window on a physical display can be considered a logical output device. The
mouse and keyboard appear to be devoted exclusively to the window selected for
input. In other words, each window is associated with one or more logical input
devices. The windowing system, together with a window manager, determines
the placement of windows and the mapping of physical I/O devices to logical 1/0
devices.

Foley and Wallace [Foley and Wallace, 1974] classify input devices by function.
For example:

e pick, e.g. lightpen or mouse
e button
e locator, e.g. joystick, tablet or mouse

e valuator, e.g. dial or slider

A device from one class can be emulated by a device from a different class,
albeit with reduced effectiveness. For example, a typical graphical implementation
of a volume control is as a simulated slider controlled by the mouse.

To the program, only the range and resolution of data returned by a device
are of interest. The device is treated as a black box that returns some information

'Windows are usually rectangular so that the computations to multiplex input and direct
output can be efficient, but this is not a requirement.

-1

about the real world. The implementation, in terms of physical devices, perhaps
via layers of logical devices, may affect the ergonomics of usage, and concerns
only the designer of the device. In this dissertation we shall consider only logical
devices. The multiplexing of physical devices onto logical ones and the emulation
of one logical device by another are outside the scope of this dissertation.

1.5.4 People Involved

In this text, the user is a person who operates the program to achieve some
goal. Such 2 person is not assumed to know anything technical about computers.
The programmer is a person who implements the program. Knowledge of the
application program, and some knowledge of the principles of user interface design
is expected of a programmer. The designer is a person who creates software tools

and libraries such as PENGUIN that enable programmers to build programs with
high-quality GUIs.

1.6 Organization

The rest of this dissertation is organized as follows: Chapter 2 summarizes the
state of the art and explains why conventional programming paradigms are inade-
quate. In chapter 3 we propose a model of program construction and a grammar-
based notation for expressing the multi-threaded nature of such programs. We
explore the technical issues in the design of a practical language, PENGUIN, that
embodies these ideas and the algorithms needed to implement this language in
chapter 4. Chapter 5 introduces and justifies the PENGUIN model for the construc-
tion of large programs. In chapter 7 we relate experiences with using PENGUIN.
Finally, in chapter 8, we discuss the lessons learnt and how these can applied to
future work in this area.

2 Previous Work

In this chapter we survey previous work in characterizing and formalizing GUI
specifications, and models for composing GUIs.

2.1 Characteristics of Graphiéal Interfaces

Programming languages provide facilities for input/output. However, the 1/O
constructs in these languages are oriented toward textual interfaces. I/0O facilities
that are suitable for textual interfaces may be inadequate for GUIs. Several signif-
icant differences between textual and graphical user interfaces can be enumerated.

Multiple attributes Textual interfaces use elements of information drawn from
a small, predetermined alphabet, generally the same alphabet used in writ-
ten human communication. The alphabets of GUIs can be drawn from many
diverse sets, e.g. size, value, texture, colour, orientation, shape, intensity,
time, symbols and so forth [Bertin, 1983; Morse, 1979]. Some of these al-
phabets are open-ended sets—symbols, for example. Some alphabets may
be compesed from a small, recognizable set. For an alphabet of symbols,
the primitives are lines and geometrical figures.

Interleaved interaction Textual interfaces usually assume that the computer
and human alternate at sending information. Typically, the computer gen-
erates some output and waits for the user to enter some data. GUIs can be
operated with both machine and user working concurrently.

Multiple interaction sites Textual interfaces usually assume that there is just
one focus of attention and that interaction between human and machine
takes place at that location. Although the screen is two dimensional, the
textual interaction can be characterized by a linear string of symbols from
human and machine. GUIs can have many interaction locations. The user
1s not constrained to finish an interaction at one place before moving to the

next place. The user is free to interact with the machine in any sensible
sequence. This means that the origin of the input data is just as important
as the contents of the data and should be made available to the program.

2.2 The Seeheim Model

Early workers visualized the human/computer interface as a part of a program
that could be separately designed and fitted into existing programs. Implicit
in the term User Interface Management System (UIMS) was the idea that the
intertace could be installed as a piece of software through which all interactions
with programs were channeled, by analogy with Data Base Management Systems.

A structural model of GUIs was first proposed at the SIGGRAPH workshop on
Graphical Input Interaction (GIIT) in 1982 [Thomas, 1983]. The following year
the workshop in User Interface Management Systems in Seeheim [Pfaff, 1985)
produced the Seeheim Model of interactive application structure.

The Seeheim Model has three layers—the application, the dialogue and the
presentation.

Application Dialogue |e Presentation
layer layer layer

e User

1

Figure 2.1: The Seeheim model of a UIMS.

In the Seeheim model there are two streams of data. The application layer
generates output and sends them to the dialogue layer, which in turn sends data to
the presentation layer, causing changes on the display. The other stream contains
the input data, originating in the presentation layer as a result of user input, and
flowing through the dialogue layer to be received by the application layer as input.

In all the dialogue notations based on the Seeheim model it is conventional
to consider data to be quantized in tuples called tokens or events. We shall use
both terms interchangeably, although sometimes ai event is defined as conveying
no information other than the type of event and who it came from.

2.3 The Application Layer

The application layer does whatever the “real work” is supposed to be. If the
goal is to solve a set of linear equations, then the work may be inverting a matrix.

10

The entry of data and display of the results is not the responsibility of this layer.
Informally, the application layer is what would remain in a program after all the
portions of code dealing with input/output with the outside world were excised—
hence the desire to move interface functions to other layers. This description is
oversimplified because a graphical program is more complex than an interface
stuck onto an application layer. Feedback is often crucial to the smooth use of
a graphical program and often must make use of information available only in
the application layer. Take for example a line art editor, which must be aware
of objects stored in its database and alter the display appropriately when the
“delete” function is selected. To the “real work” we must also add error checking
and semantic feedback as some of the duties of the application layer.

2.4 The Presentation Layer

The function of the presentation layer is to insulate the program from physical
device dependencies. The presentation communicates with physical devices that
accept input or present output on the display and presents these as logical de-
vices to the dialogue layer. An example of a logical device might be a valuator
that returns a real number between 0.0 and 1.0. The presentation layer may use
different realizations for this: sliders of differing shapes and sizes, knobs, per-
haps even a pair of up/down buttons coupled with a digital meter. These may
be alterable at compile time, perhaps even at run time. Another example of a
physical/logical translation is the simulation of a middle button on a two button
mouse by chording (depressing both buttons simultaneously).

Another concern of the presentation layer is the placement and sizing of graph-
ical objects. The appearance of objects may change depending on the aspect ratio
and size of the screen on which it is presented. A program should be able to work
with many different hardware configurations without the need to recompile. The
appearance of a graphical object may depend on the importance of the object
at a given time in a session. For a window that has been iconified because it is
not in use, a page of text might be represented as a rectangle with barely visible
scribbles. When the user decides to work on that window and opens up the icon
to zoom in on the page the presentation layer should show the page in greater
detail.

Finally, the presentation layer allows users to customize an interface to indi-
vidual preferences. A command may be entered in several ways. One user may be
content to access program functions via menus. One user may prefer to use mouse
buttons for speed. Such convenience bindings of buttons to program functions are
commonly called accelerators.

Many existing windowing systems do not have a clearly distinguishable pre-
sentation layer. However some of the services provided by a presentation layer

11

are available in popular windowing systems. An example is the X Windowing
System [Scheifler and Gettys, 1987], which defines a protocol between the window
server and clients. The server manages the layout of the screen and multiplexes
the input devices between the windows.

The need for a presentation layer is generally accepted. Singh [Singh, 1985] has
shown how, for a particular UIMS, all device dependencies can be concentrated
in the presentation layer, and how libraries of interaction techniques can be cre-
ated to provide physical to logical mappings appropriate to each program. The
presentation layer can enhance program portability. A common interface can be
presented to a program by a set of libraries, each tailored to a different windowing
environment.

It is useful to divide the presentation layer into two parts: the environment
dependent part, which interfaces with hardware; and the environment independent
part, which implements logical devices and handles user preferences.

Current windowing systems tend to blur the distinction between these two
parts because libraries hide these functions from user programs. For instance,
in the X windowing system the environment dependent portions are all in the
server process, but some environment independent functions are also handled in
the server. In the SunView[Sun Microsystems, 1986] windowing system, both the
~ environment dependent and environment independent portions are implemented
by library functions. This variety in implementation strategies is a clue that the
boundary that surrounds presentation functions is not as clear-cut as the Seeheim
model seems to impiy. We shall return to this point in Chapter 5.

2.5 The Dialogue Layer

The dialogue layer is the seat of control in an interactive program. It determines
the structure of a conversation by constraining communication to permissible pat-
terns of interaction. The dialogue decides what constitutes a unit of information
that should be passed (in either direction) between the user and the computer. It
also classifies the data and sends it to the appropriate thread of conversation. In
short, while the presentation layer determines the visual appearance of a GUI, it
is the dialogue layer that determines the quality of the conversations between the
user and the computer.

In most textual programs, the dialogue portion is determined by the placement
of calls to I/O routines within the code. Most programs do not have sufficiently
complex interaction structure to require separating this dialogue portion. Compil-
ers and other grammar driven programs are notable exceptions. The reason is that
these programs have to accept or reject input data according to formal specifica-
tions and these specifications are complex enough that machine-generated parsers
represent a significant saving in coding effort.

Simple GUI dialogues use the same technique as textual programs for con-
structing dialogues: calls to 1/O routines and use of traditional control-flow struc-
tures in an imperative language. This technique is impractical with complex
dialogues. Some GUIs provide libraries that have a rudimentary means of spec-
ifying dialogue For instance, the X Toolkit[McCormack et al., 1988] allows the
programmer to specify translation tables from events to semantic actions. While
such libraries are a form of programming automation, there are still deficiencies.
The specification language often does not allow for anything more complex than
a sequence of events to be specified and thus fails to be sufficiently powerful.
The dialogue specification is tied to a particular window system and therefore
non-portable. Only a formal dialogue notation can satisfy all the goals of a GUI
specification system enumerated in Chapter 1. Our work with PENGUIN will show
that a formal dialogue notation aids in the creation and maintenance of GUIs.

Several formal notations for dialogue have been proposed. A dialogue notation
is intended to capture details of the sequence and structure of a “conversation”
with the user. There are three major categories for notations currently in use:
transition networks, event handlers, and grammars. There are also notations such
as “input tools” which do not readily fit into these categories but partake of some
features of each. We evaluate how well each notation supports the needs that
derive from the characteristics of GUIs. We also evaluate each notation according
the four desirable goals we proposed in chapter 1 for a GUI language.

2.5.1 Transition networks

Transition networks have been proposed by Newman [Newman, 1968}, Edmonds
[Edmonds, 1981}, Jacob [Jacob, 1983] and Guest [Guest, 1982], among others.

Transition networks consist of nodes and arcs. Nodes correspond to states
of the system, arcs to events that cause changes in state. Events may originate
with the user or with the computer. Recursive transition networks (RTNs) are
needed to provide power equivalent to that of context-free grammars (CFGs).
Augmented transition networks are RTNs augmented with registers [Woods, 1980]
for argument passing. Jacob uses a linearized textual notation for specifying
transition networks, as does Guest, for ease of entry using textual input devices.

This notation is easy to learn because each state of the dialogue corresponds
to a location in the network. Simple dialogues can quickly be constructed in this
notation. Transition networks suffer from the drawback that transitions between
arbitrary states are permitted. Without voluntary discipline in the construction
of transition networks, a programmer can create a convoluted network that is
hard to maintain. This problem is analogous to the unrestricted use of GO TO
statements in programming. It is also easy for the programmer to make mistakes
transforming a state diagram into a textual representation. There is no support for

13

multi-threaded interaction; the dialogue is in exactly one location in the network
at any time. Exceptions are difficult to express. The most promising approach,
wild card arcs for exceptions, can handle only one level of exceptions.

Transition networks satisfy the transiation and portability goals, but fail the
specification and reusability goals. Diagrams get complicated quickly. Using a
textual translation of a diagrammatic language increases vulnerability to tran-
scription errors. There is no multi-thread support. Exception support is poor. As
there is no concept of sender identity, it is not possible to dispatch events to dif-
ferent instances of a sub-diagram. It is also not possible to reuse a sub-diagram by
modifying it into a slightly different sub-diagram without renaming events (arcs).

2.5.2 Event handlers

Event handlers were originally proposed by Green [Green, 1985]. ALGAE [Flec-
chia and Bergeron, 1987], is one implementation of event handlers.

A handler is a piece of code with entry points. An entry point is activated
when a suitable input event arrives. Handlers contain internal state in the form of
static variables. Access to global state is also permitted. Events may be received
from the presentation or from the application. Events may also be sent from other
handlers by specifying the recipient in the send operation. The entire collection
of handlers resembles a Smalltalk system in which objects activate other objects
by sending messages. Handlers can be created dynamically, each instance sharing
the same code template but having its own private variables. Event handlers can
easily handle multi-threaded conversations and exceptions.

One drawback is that there is no syntax for specifying a sequence of events
interleaved with actions. Each entry point consists of the activating event followed
by the action code. This also implies that only one event can be processed at a
time. In contrast, grammars allow sequences of events to be specified.

Another drawback of event handlers i1s that the number of handlers that may
have to be activated in response to an event may potentially be unlimited. The
notation cannot guarantee that no two handlers have event types in common. As
every possible event handler must be examined, the implementation may create a
perfornance bottleneck.

Eveni handlers satisfy the translation and portability goals, but are weak for
specification and reusability purposes. The limitation of an entry point to a
single event instead of a sequence of events means that some dialogues will require
unnatural expressions in this model. (Appendix B shows an interface that makes
good use of the concise notation provided by grammars, such as closure operators.)
The lack of a means of labeling external events by sender limits reusability to the
creation of multiple instances from a single template. It is difficult to recycle
code from one handler without renaming the events to avoid alphabet conflicts.

14

Finally, the distinction between internal and external events is artificial and can
be subsumed in a more general model.

2.5.3 Input tools

Van den Bos [van den Bos, 1988; van den Bos, 1979 proposed an augmented BNF
notation for specifying what he called “input tools.” His notation partakes of the
flavor of both context-free grammars and event handlers.

Input tools are pieces of code that accept primitive inputs (like a keypress),
possibly perform some computation, and return values to callers. More sophisti-
cated virtual input devices are composed from basic input tools. For example, a
tool can be specified that accepts only a decimal string. The major contribution
of this work was to allow operators for concurrency. For instance, a & b in this
notation means that both tools a and b must successfully execute for the expres-
sion to return a success status. This notation allows multi-threaded dialogues to
be specified.

There has been at least one attempt to implement Van den Bos’ proposal. A
translator generated a parser from the specification language[Matthys, 1985]. The
experiment was not regarded as successful for two reasons. The major problem
was performance. The reaction time of the parser became unsatisfactory as the
number of productions increased because locating the tool that would accept
the input required exhaustive search of all active tools. The second problem
was that the design notation was not easy to work with. Side effects occurred
at unexpected times.! The poor performance only aggravated the problem by
forcing programmers to seek the most economical, instead of the most natural,
expression.

Input tools satisfy the translation, portability and reusability goals, but are less
than satisfactory for specification. Each production in the grammar is enclosed
in an input tool, which makes it difficult for a collection of related productions to
share common state. As with event handlers, the notation may require sending
events to an arbitrary number of recipients, an efficiency concern. As defined,
there is no mechanism for specifying and sending directed events. Finally, the
language does not provide persistent local storage.

1The authors do not elaborate on this criticism, but they apparently refer to the side effects
caused by executable statements. The notation does not provide the means to define persistent
local storage, so state information has to go into the global area. Any input tool that has been
activated can change the shared global state.

2.5.4 Context-free grammars

Context-free grammars in dialogues reuse the large body of language theory ap-
plied to the construction of compilers. Proponents of context-free grammars in-
clude Olsen [Olsen, 1983; Olsen and Dempsey, 1983], and Hanau and Lenorovitz
[Hanau and Lenorovitz, 1980).

Context-free grammars describe a dialogue by defining the language of all the
legal sequences of user input to the application, or of application output to the
display. The major advantage of CFGs is conciseness. However there is some
evidence that this conciseness makes CFGs harder for programmers to learn and
use[Guest, 1082!

CBuy 2o

Oisen uses a notation similar to LL(1) grammars. His Interactive Pushdown
Automaton (IPDA) executes the algorithm corresponding to the compiled gram-
mar. An IPDA is like a PDA, but has been augmented with three features:
conditional transitions to allow semantic control of the parse syntax; immediate
transitions to allow semantic actions without prior input, and pervasive transi-
tions to handle exceptional conditions. The last feature allows the user to escape
from the current interaction and resume the interrupted conversation later. The
IPDA as described has not been generalized for multi-threaded conversations. As
a result, only one level of escape is allowed. It is not possible, for example, to
get further help within the help dialoe-- This problem cannot be solved easily
without providing a true multi-thr ad capability.

2.6 Project Genls and Context-free grammars

Context-free grammars have certain advantages over alternative specification
methods. These advantages are:

e Grammars are concise. The representation of a dialogue using grammars is
smaller than that using a transition network and about par with event han
dlers. The economy of symbols makes it easier to comprehend the dialogue
as a whole and eases modification and maintenance.

e Grammars have structure. There is 1ncentive for the designer to factor out
common pieces of the dialogue. The semantics of the parsin; algorithm can
be designed to support composition of dialogue fragments to form larger
dialogue sections. This encourages the reuse of existing dialogue code by
programmers.

o Techniques for parsing grammars are well studied. The performance of a
grammar based dialogue can be predicted well from the algorithm.

16

e A grammar concisely codifies what constitutes a group of legal input items
and when they should be acted on.

A disadvantage of context-free grammars is that the notation is partly declara-
tive, which can be disconcerting to programmers used to writing imperative code.

The success of tools for turning grammars into parsers lends support to the
hypothesis that the translation goal is achievable. Portability and reusability are
also important goals in other computer languages and the techniques for achieving
these goals are well understood and can be applied in a grammar-based dialogue
langu~ge.

2.7 Summary

Previous notations for dialogues are inadequate because they fail to address fully
the peculiar needs that are a consequence of the characteristics of GUIs. Transition
networks fail to handle token attributes or multi-threaded interaction. Event
handlers support multi-threaded interaction but do not provide directed token
dispatch, entailing considerable inefficiency. Input tools do not support directed
token dispatch or private data. Traditional context-free grammar based notations
do not provide true multi-thread capability. Of all the previous notations only
event handlers have support for backing out of a thread. The design of PENGUIN,
which the next chapter will present, remedies all the shortcomings of previous
notations and fulfills the needs of GUI dialogues.

17

3 The PENGUIN Language

This chapter describes and motivates the features of PENGUIN. The grammar no-
tation captures the sequencing of input. Fork productions specify multi-threaded
behaviour. Modules define self-contained reactive objects that can be reused. The
PENGUIN compiler provides the bridge from such high-level specifications into
executable code. Implementation details are pushed into the run time library,
enhancing portability of the application across different environments.

In common with other dialogue notations, PENGUIN’s language model consid-
" ers a event or token to be the basic unit of interaction with the outside world.
Tokens are mapped into terminals in PENGUIN grammar productions. Within
productions, time precedence relationships implied by the placement of terminals,
non-terminals and actions are enforced. Grammars provide a concise way to spec-
ify these time precedences. The execution of a PENGUIN program is driven {rom
below by the arrival of tokens and from above by the prediction of product:ns.

PENGUIN modules allow a program to be constructed as a set of smaller gram-
mars instead of one monolithic grammar per program. Modules also provide data
hiding and instantiation. Resources (variables) are private to each instance of a
module. Reuse of module code is encouraged. PENGUIN components, described in
Chapter 5, provide a mechanism for applications that need true concurrent exe-
cution. Components also allow applications to be built as co-operating prucesses,
reducing the level of conceptual complexity of each component.

3.1 FYork Prcductions

Chapter 2 shows that an adequate notation for GUIs must allow the specification
of interleaved threads of interaction so that the programmer does not have to ob-
tain concurrency by other, less lucid means. Standard context-free grammars are
insufficient in this respect. The foremost drawback is the strict order of evaluation
in CFGs. CFGs receive input from one source and have one locus of control.

To remedy this shortcoming, context-free grammars' are augmented with two
new types of fork productions: the parallel and production: &>, and the parallel
or production: |>,in addition to the sequential derives production: =>. Both new
types of production cause the creation of sub-parsers (Section 3.2) which work in
parallel. Formally stated:

A production L &> R R; ... Ry succeeds when all of the symbols on the
right hand side succeed. More formally, the &> production generates
all interleavings of strings generated by the symbols on the RHS.

A production L |> RiR;...Ri succeeds when one of the symbols
on the right hand side succeeds. More formally, the |> production
generates all interleavings of a string generated by one RHS symbol
with prefixes of strings generated by the other symbols on the RHS.

&> productions are useful when the order of input is immaterial. Filling in a
form is one example:

form &> A B

Both A and B must appear in the input for form to succeed. The terminals
that A and B derive may be interleaved in any order in the input.

| > productions are useful when the completion of one sub-production obviates

the need for others. User-generated interrupts (e.g. from hitting the DELETE
key) are one examnple:

getnumber (> interrupt read.digits

The completion of either interrupt or read_digits will cause getnumber
to succeed. Different levels of interrupts can be used to back the parser out to
arbitrary pre-arranged positions.

The &> and |> productions allow us to construct a hierarchy of sub-parsers to
manage a conversation with multiple levels of aborts, nested parallel conversations
(e.g. for interactive help), and other useful structure.? This feature of PENGUIN is

1 We use a hopefully self-explanatory extended Backus-Naur Form notation.

2It is worth noting that our augmented grammars are not in general context free. The
language generated by

A& BC
B=>aBec| e
C=>bcCdlc¢

is one example; its intersection with the regular set a*b*c*d* is a”b™c¢"d™. Thanks to David
Sher for this proof.

19

similar to the light-weight process or thread features of some high-level languages
and programming environments.

A more detailed example of the use of fork productions is found in section 3.7.

There is one additional rule on the use of fork productions: it must always
be possible to predict their use without lookahead. In other words, if A is the
left hand side of a fork production and aA is a prefix of a valid sentential form,
then every valid sentential form beginning with a must begin with aA, or be
derivable from a sentential form that begins with @ A. This amounts to insisting
that concurrent conversations must be started explicitly by user or application
acticn, and need not be detected in response to the arrival of input from one of
the branches. This rule simplifies parsing considerably and is also consistent with
natural dialogue structure.

Two other types of fork productions are provided. These are &: and |:
productions. These “no-wait” versions are defined just like &> and |>, except
that the parent continues to accept further tokens without waiting for the RHS
items to complete. These productions are useful when there is no need for the
children to trigger any actions after completion. The use of these productions
simplifies certain common situations in dialogues.

3.2 Sub-parsers

Formally, a sub-parser is a thread of execution in the parser created by a fork pro-
duction. Except in the no-wait versions, the parent thread is suspended until all
child threads are terminated, whereupon execution resumes in the parent thread.

Although any number of sub-parsers can be created during parsing, there
can only be as many distinct domains for sub-parsers as there are sub-grammars

(Section 3.5).

3.3 Action routines

In the above examples, actions have been omitted for clarity. Actions are pieces
of code thal may be interposed anywhere in ihe right hand sides of productions.
They are used to effect operations that change the state of the program or cause
other side effects. Actions are triggered at moments in time consistent with their
position in the productions activated. Actions may be considered items that
always succeed but cause side effects by executing code. Some actions are routines
that output to the presentation layer or to the application layer. In the Seeheim
model tokens for the dialogue layer arrive from the other layers. In the generalized
PENGUIN model discussed in chapter 5 the presentation is a special case of a

20

PENGUIN component that manages physical resources. Multiple dialogue and
application components may exist. All communication between components is
through tokens. The output of some component becomes the input of some other
component.

3.4 Context

Fork productions make it possible for PENGUIN grammars to have more than one
active production. This enhancement creates the problem of dispatching tokens.
For example, if two windows created by a fork production are active, then there
may be two sub-parsers with the same production active and we need to decide
which sub-parser should receive an incoming token.

One might require every sub-parser to have a separate alphabet so that at
most one production can accept an incoming token. However, the number of sub-
parsers existing at run time is in principle unlimited, since those sub-parsers might
correspond to different windows of the presentation component. If an unbounded
number of windows can be created, it becomes impossible to enumerate all tokens
in a finite grammar at dialogue-generation time.

We stipulate that all tokens must possess at least two synthetic attributes:
value and contexrt. Value captures the usual notion of token type. Contcxt al-
lows the dialogue to differentiate between tokens of the same value from different
sources. As with other attributes, context may be assigned and tested in the
actions of the grammar. In addition to matching in value, each token must also
match in context. The context of an incoming token must match the context “in-
herited” by that token in the grammar. No copying is actually required for this
inheritance; the compiler merely has to note the location in the attribute record
of the symbol deriving the terminal where the matching context can be found.

A notation based on left-attributed LL(1) grammars in single-assignment form
[Aho et al., 1986; Knuth, 1968] manages the use of contexts. The inherited at-
tributes of a symbol X in a production of an L-attributed grammar depend only
on attributes of RHS symbols to the left of X or on inherited attributes of the
LHS of the production. The interactive nature of the parser requires this; if the
grammar is not left-attributed, more than one pass may be required to evaluate at-
tributes and this conflicts with the interactive nature of the grammar. Attributes
that contain context values are identified to the dialogue compiler. In an LL(1)
grammar, all attributes can be evaluated left-to-right, in the course of the parse it-
self. The single-assignment property requires that all dependencies be copy rules:
computation is performed solely in action routines. The restriction to one token
of lookahead is consistent with intuitive behavior for interactive systems.

21

3.5 Sub-grammars

The fork productions previously defined partition a grammar into sub-grammars.
The productions of a sub-grammar are those productions derivable from start
symbols, without traversing fork productions. Context propagation obeys the
same copy rules as other attributes. However, in the presence of fork productions,
further rules must be imposed on context propagation in fork productions to
ensure that two branches cannot both match a token. This is to preserve the
property of PENGUIN grammars that no more than one sub-parser will respond
to an input token, guaranteeing parsing efficiency at run time.

First, action routines that return context values in synthetic attributes are
required to create new, unique values for each call. Second, the copy rules for
a given production are not permitted to assign the same context value to two
different inherited attributes of a non-terminal on the RHS or to two different
synthetic attributes of the non-terminal on the LHS. Furthermore, no context
value may be copied into both branches of a fork unless the value alphabets of
the two sub-productions are disjoint. Simply put, the branches of a fork either
(1) partition the token value alphabet between them, or (2) only know the names
of different contexts.

A modified LL(1) parsing algorithm that handles these context matching and
propagation rules was discovered. An alternative parsing algorithm requires us
to mmpose the further restriction that sub-parsers inherit a fixed and statically
determinable number of contexis. This means that synthesized contexts may not
be used within the sub-grammar in which the action appears, but may only be
passed to an inferior sub-grammar. With this rule it is possible to re-write each
sub-grammar as a conventional context-free grammar, without context attributes
or forks. Standard (e.g. LR) parsing algorithms can then be employed. The
descriptions and analyses of both parsing algorithms are found in chapter 4.

Limiting sub-grammars to a fixed number of contexts is not as serious a re-
striction as it might at first appear. Artificial sub-grammars may be introduced
to change to a new and different context:

S=>_...X...
X & Y

The fork productions work as expected for the limiting case of one branch. In
this example an |> production would have had the same effect.

3.6 Execution model

A PENGUIN program starts with the run time parser in control. The parser
initially predicts the first start symbol of the grammar. While no fork productions

o
o

are encountered, parsing proceeds as in conventional context-free grammars: input
tokens either match terminals in the grammar or predict productions. Actions
interspersed between items are executed at appropriate times. Tokens can be sent
to the outside world by routine calls in action code.

When a fork production is encountered sub-parsers are created. Each sub-
parser accepts tokens independently of other sub-parsers; the language rules ensure
that no more than one sub-parser will accept an input token.

In short, fork productions manage the hierarchy of sub-parsers and drive the
program from the top down, while tokens arriving from the outside match termi-
nals in the grammar and drive the program from the bottom up.

3.7 Examples

Here is a simple dialogue that awaits the key k and then creates two new sub-
windows with an &> production. Both sub-windows must terminate before the
parser proceeds. In the following, inheritance rules are written using a notation
similar to argument passing in imperative languages: Y(@X.c1) means that the
first attribute of Y is copied from the c1 attribute of X.

terminal key(context ctx) = ’k’;

nonterm S{context ctx), X(context cl, context c2);
nonterm Y(context ¢), Z(context c);

nonterm new(lcontext ctxl, context ctx2);

S => key(@S.ctx) new X(Onew.ctxl,0new.ctx2) ...;
X & Y(@X.c1) Z(@X.c2);

The non-terminal new, defined elsewhere, creates two new windows and passes
their contexts to Y and Z, so that ¥ and Z operate in different contexts.

In practice much of this verbiage is eliminated by these default context rules:

1. Every symbol automatically has a context attribute called ctx declared.
This attribute is placed after explicitly declared context attributes, if any.
This means that a symbol with no context attribute declarations has one
context attribute b, default.

2. A RHS terminal or non-terminal S with n — 1 attribute copy rules for n
attributes is assumed to have the additional rule S.ctx = L.ctx, where L
i1s the LHS non-terminal. Recall that by the first rule every symbol has
at least one attribute. Thus the most common situation where the LHS

23

context is propagated to all RHS symbols can be obtained by declaring
neither context attributes nor copy rules.

This next example illustrates the use of alphabet splits. The same context is
used by both parts of the fork, but they respond to different keys.

terminal left = ’1’, middle = ’m’, right = ’r’;
nonterm L, R;

I> N A;

=> L+;

=> R+;

left ... ;
=> right ...;
=> middle;

w2 20N
il
v

This grammar repeatedly chooses between two productions depending on
whether the left or the right button is clicked, but finishes when the middle button
is clicked.

3.8 Attributes

Besides the value and context attributes, tokens may carry other attributes. To-
kens are the units of information in the PENGUIN model. For example, a VAL-
UATOR (slider or knob) may inherit the attribute range to specify the range of
real numbers it operates on and synthesize the attribute value. Actions embedded
in the dialogue specification may manipulate these attributes.

In the PENGUIN model there is no restriction on the size or number of at-
tributes that may be carried by a token, although a practical implementation
may restrict the size of a token to the amount of data that can be read without
fragmentation. Different graphics programs will have different notions of what
constitutes a token. A drafting program may treat one keystroke as a token, while
an image display program may consider an entire image to be a single token.

3.9 * and 4 Operators

In BNF the idiom for reading zero or more occurrences of terminal ¢ is:

A=>T
T=>+tT
T =>

This idiom is common enough to warrant shorthand. We can write this as:
A => tx

The + operator plays an analogous role for one or more occurrences of t. Non-
terminals may also use these suffix operators.

In the current language specification, closure operators may not appear in the
RHS of fork productions. An auxiliary symbol is required if a fork production
derives a suffixed item.

Attribute flow rules for a suffixed item X are as follows: Inherited attributes, if
any, of the X mean that every occurrence of the X receives those attributes. The
last occurrence of X produces the synthesized attributes specified for X. If no
instances of X are accepted, then the synthesized attributes are left unchanged.

Besides allowing the programmer to write concisely what is intended, these
operators also allow the compiler to optimize the grammar to prevent semantic
stack buildup. The copy actions for attributes are also simplified.

3.10 Error Recovery

Error tokens are tokens that cannot advance the state of the parser. There may
already be explicit productions in the grammar to handle some user errors. It is
unacceptable to drop error tokens gratuitously. At least the default action should
be to reflect the error to the presentation component so that the user is aware of
the error. There are two ways a token is unacceptable to the parser.

1. The context of the token is acceptable to some sub-parser but the value of
the token is not legal at this point in the parse.

2. The context of the token is not acceptable to the parser because there is no
active sub-parser that will accept this context.

The first case is the same problem as a syntax error in conventional parsing
without context. Aborting the parse on such an error is unacceptable. An inter-
active parser should never terminate on detecting an error, unlike a batch parser.
For conventional parsers. generally some form of error repair and recovery may
be attempted on the program. For interactive applications, error repair is not as

25

important. The error is usually detected at the first offending token and is usually
the result of a typing error by the user.

The keyword catchall denotes a terminal in the grammar that is allowed
to match tokens not acceptable to any other production. The catchall token
is subject to the same context binding rules as ordinary tokens. This allows a
hierarchy of catchall tokens for recovery at different levels of the dialogue. In
the absence of an explicit catchall thread in the grammar for a given context,
a default error handler is installed. The default error handler is likely to do
something simple, such as sending an out-of-band signal like a bell character to
the presentation component.

There may be several causes for the second situation. The thread may not
exist yet because the input has arrived before the creation of the matching context.
This usually means the programmer has failed to make sure an sub-parser is active
whenever a token with its context could be generated, e.g. allowing user input in
a window before the corresponding sub-parser has been started. The thread may
not exist because all threads for a given context have exited. This may happen
when input is buffered ahead and the sender continues to provide tokens after the
last acceptable toke..

Neither c...' .dmits to run-time repair. In the first case we have a programming
error. In ..» ,econd case, the extra tokens are superfluous. Both contingencies
are dealt with by a top-level error handler that prints a diagnostic message about
strav tokens. The programmer can provide an error handler to replace the default
ore supplied by the runtime library.

3.11 Modules

A graphics program that contains a single, monolithic grammar is not only hard
to write and maintain, but also discourages the reuse of grammar fragments. One
of the goals of PENGUIN is to promote the reuse of software.

Dividing a dialogue into modules eases construction and maintenance. Sev-
eral general criteria apply when dividing a dialogue into modules. Each module
should have a clean protocol, specified by a grammar, for its interaction with other
modules; the separation should be made at a point that is most likely to allow
the module to be reused later; the module should be easy to parameterize; and
any internal state should be kept local to a module. The criteria stated resemble
those recommended for writing data abstraction routines, with the chief addition
of grammars for handling protocol.

Modules can be separately compiled and linked later, a small efliciency gain for
programs comprising large numbers of modules. Libraries of modules will encour-
age the reuse of software. Unnecessary detail can be hidden from programmers.

26

All this is similar to object code modules in programming environments. Another
saving results because the combined space requirements of a composed module
will be less that of a single monolithic module because the number of contexts in
the sub-parsers will be less than the total number of contexts in the whole parser.

Formally a module contains

e A grammar to specify its interaction protocol with the outside.
e Action routines, for computation and sending output tokens.

o Local variables for retaining any state of the module between activations.

Information enters the module in four ways: contained in input tokens, in-
herited through attributes of start symbols, or through environment key-value
pairs.

For GUIs, a module will generally correspond to an interaction object. An
example is a graphical slider. Its interface has input attributes, namely, the size,
location, and orientation; and yields an output value, the setting of the slider.
The device maintains internal state, the current set value. Some modules have no
resources to manage but merely handle protocol.

The text of a PENGUIN module defines the template of a module. An in-
stance of a module is created with an explicit invocation of the create symbol
of that module and a module handle created for grammar predictions involving
that instance. Thereafter, the module handle is used to qualify references to other
symbols of the module. The destroy symbol invalidates the handle and makes it
available for another create operation. All instances of a module shares the parse
tables of the template, but are otherwise separate in their lives.

Here is an example showing the life-cycle of a module instance.

module M mh;

S -> mh:create mh:S mh:destroy

The create action assigns the handle to mh. Next the start symbol S of this
instance is predicted. This prediction may in turn cause subordinate module
instances to be created. When this start symbol has completed, the instance is
destroyed and the handle mh is invalidated.

In practice, the creation, use and destruction of module instances are usually
in separate productions because they are used in different phases of a program’s
lifetime.

27

3.12 Environment variables

Modules often need to obtain information from the outside that may differ between
invocations. Attributes may be used to pass this information but are cumbersome
if the information remains unchanged across most calls.

Environment variables address this need. The environment is a set of (name,
value) pairs. Name is a legal environment name in PENGUIN, and value is an
uninterpreted block of bytes. Although it is conventional in some programming
environments to restrict value to the domain of printable strings, PENGUIN does
not require this.

A given set of environment bindings is inherited by all descendant modules.
Changes in the current binding do not affect bindings already passed to descen-
dants, nor can descendant modules affect bindings in superior modules. PENGUIN
provides a syntax to obtain the binding for an environment name. Routines in the
run time library allow new bindings to be created or old bindings to be superseded.

This environment mechanism handles many of the name to value translation
needs of a graphical environment. One example is obtaining the user preference
for the background colour of a window, which usually remains unchanged across
many module instances.

Here is the previous example enhanced with a use of an environment variable.
modnle M mh:

S -> mh:create mh:S($colour) mh:destroy

$colour is an environment variable that has been inherited through the hier-
archy of module instances. Here it is passed as an attribute to a start symbol of
module M.

3.13 Queues

Although sub-parsers work in parallel, the granularity of this parallelism is at the
token level. Since there is never any ambiguity as to which sub-parser will accept
a token, one input queue suffices for a PENGUIN parser no matter how many sub-
parsers are active. The queue is ordered by arrival time of the tokens regardless
of the source of the token.

Another way of visualizing the situation is to say that there is only one parser
in a PENGUIN component and that this parser multiplexes tokens from the input
queue between its many active sub-parser threads.

28

In theory, one input queue suffices, but in practice, there are tokens that must
arrive ahead of other tokens, such as user interrupts and other out-of-band data.
A second queue, called the urgent queue, is needed. Tokens from this queue are
always read before tokens from the normal queue. This in effect provides a two-
level priority scheme for tokens. An arbitrary amount of data may be waiting in
the normal queue. If out-of-band tokens have to wait for all preceding tokens to
be processed, it defeats the purpose of the out-of-band information. Note that
nothing about the speed or latency of the connection between components has
been assumed. The PENGUIN model accommodates both fast, local connections
and long, high-latency connections.

9

4 Compiler and Parsing
Algorithms

In this chapter we look in detail at the algorithms and data structures of PENGUIN.

There are two kinds of algorithms to be considered—those in the parser gen-
eration phase and those in the run time phase. Although the former precedes
the latter chronologically, we discuss the latter first because the run time parse
algorithm motivates the parser construction algorithm. We are interested in the
run time space requirements of the parser, so we also analyze the data structures.
The run time complexity and data structures of the parse generation phase are

- of little interest here but it is assumed a reasonably efficient implementation is

chosen so that compilation will be fast enough.

4.1 Cactus Stack

In PENGUIN programs there is no longer a single focus of input in the parser, so
a simple stack will not suffice. Since branches may be destroyed in any order we
need a cactus parse stack.

One translation scheme for PENGUIN code is to generate data structures for
an interpretive parser. Here the cactus stack is maintained by the parser and
action code is called via procedure pointers. Another translation scheme is to
realize the gramimar as a multithreaded recursive descent parser. Productions and
symbols become coroutines. The cactus stack is embedded in the stack frames of
the threads. Action code is inserted inline in the routines corresponding to the
productions.

In the interpretive method the cactus stack is a tree of production frames with
two-way links. We need the bidirectional links because when a child terminates
and its production needs to be exited, the sibling branches have to be located.
Each frame corresponds to an instance of a production waiting to be completed.
When a fork production is encountered an appropriate frame is constructed and
the stack is split. The implementation of &> and > productions is simple: a

30

counter in the parent tracks the number of child branches still unsatisfied. Every
time a child branch is satisfied, the count is decremented. When the count reaches
zero, the fork is satisfied and any remaining children can be aborted. For &> forks
the count starts at the number of children and for |> forks it starts at 1. Figure 4.1
illustrates a branch in the cactus stack.

In the coroutine method when a fork is encountered the run time code creates
a new thread. This involves allocating a chunk of memory to each branch for its
stack. At creation each stack is initialized at the bottom with a return address
that points to a fork cleanup routine. When a branch terminates, this cleanup
routine acquires control, preventing execution from resuming at an indeterminate
address. The cleanup routine is also responsible for dealing with sibling branches.
If the backlinks implied by the return addresses of the threads are traced, the
stack frames form a cactus stack structure. The bookkeeping code for &> and |>
forks follows similar lines.

Figure 4.1: Forl: junction in cactus stack

4.2 Parsing

The parser is the heart of a PENGUIN program. It realizes the fork productions,
parses using context and propagates attributes.

Two approaches to parsing the input stream in the presence of context are
presented here: use the context to dispatch tokens at run time (LSEARCH), or
pre-translate tokens with context and value attributes to tokens with just the
value attribute (TRANS).

The analysis presented here is per sub-parser. The worst case time complexity
of a PENGUIN parser is dominated by the time complexity of the slowest sub-
parser. The space requirement of the parser is the sum of the space requirements
of the sub-parsers. Therefore, unless otherwise stated, all measures of time and
space are per sub-parser.

Conventions used for symbols:

31

P Set of sub-parsers
¢ Length of input string
T Set of terminals in sub-parser
t Number of terminals (size of alphabet) in sub-parser
N Set of non-terminals in sub-parser grammar
n Number of non-terminals in sub-parser grammar
C Sei of coniexts of sub-parser
¢ Number of contexts of sub-parser

p Number of productions in sub-parser

In PENGUIN some non-terminals are non-predicting. That is, they expand
immediately without lookahead of terminals. The compiler requires that the left
hand side of any fork production be a non-predicting symbol. Also, non-terminals
that appear on the left hand side of only one normal production are declared
non-predicting by the compiler. In any case, a non-predicting non-terminal must
appear exactly once on the left hand side in the grammar. For the purposes of
parse table generation, the non-predicting symbols and associated productions
effectively drop out of the grammar.

4.3 Locating sub-parser by context

When a token arrives, first its context attribute is used to determine which sub-
parser could accept this token. This portion of the algorithm is common to both
LSEARCH and TRANS. There may be more than one sub-parser that could match
the context but not more than one will accept; this arises from alphabet splitting.
A dictionary must be provided to map contexts to sub-parsers. Formally,

H:C - PJU{e}

One realization of f is a hash table. It has to be npdated whenever the set C
changes. Under the restriction that each sub-parser inherit a fixed and statically
determinable number of contexts, C' has to be updated only at forks. Otherwise
H must also be updated in response to actions that introduce new contexts.

The result of this mappi..g operation is either a pointer to one sub-parser or
(in the case of LSEARCH) a pointer to a table giving the sub-parser for each
token value for the case where alphabet splitting is used to dispatch to different
sub-parsers. Figure 4.2 depicts the mapping operation.

32

Context ——\

H

Context hash table

Value _—\‘

‘Value lookup table

Fork tree

Figure 4.2: Data structure for sub-parser dictionary

4.4 Linear search for production (LSEARCH)

The algorithm described below is for the interpretive method. The sequence of
events in the coroutine method is similar except that there is no external parser.
The steps of the algorithm are executed by the code that the compiler generates
or by the run time library routines.

After the sub-parser has been determined, the token value is used to advance
the state of this sub-parser, if possible. In the presence of multiple contexts within
a sub-parser, LSEARCH does a linear search through the list of valid contexts for
this sub-parser wo select a production based on context and value.

If the token is not acceptable to the sub-parser then error handling is invoked.
This method is only usable with predictive parsing because bottom-up parsing
would involve matching contexts against attributes that have not yet been inher-
ited because they are in left corners, so the correct reduction has not yet been
determined.

With the sub-parser in hand, we can now attempt a match. The case of a
terminal on the top of stack is trivial. In the case where the input token is in
PREDICT(TOS), we obtain a list of possible productions to predict.

33

parse:

push starting symbol of grammar on stack
loop
while top symbol of some branch is non-predicting
if symbol heads normal production
push production on stack
else if symbol heads fork production
create new sub-parsers for each branch of fork
let a be the input token and b its context
determine unique branch that might accept token a with context b
let £ be top of stack symbol on that branch
if z = a and context of z = b
consume input symbol
pop stack
continue loop
fzeN
let L be list of pairs pointed to by M|z,]
/* try productions that predict a */
foreach pair on list with known context
if 5 = context at field offset
pop stack
push production on stack
continue main loop
/* now try predicting epsilon and try to match TOS again */
if ¢ € FIRST(z)
pop stack
else

error
/* end loop */

M|[X,a|is the production table indexed by non-terminal X on the top of stack
and current input terminal a. Each element is a list of pairs of (field offset, pro-
duction). The field offset is the offset in the TOS attribute record at which the
matching context is found, and is precomputed in the table generation phase.
Some entries on the list may have unknown field offset. It turns out that the
RHS of the corresponding production will always be ¢, or something that derives
¢. These arise from productions predicted by terminals in the FOLLOW set of a
non-terminal. In this situation there are one or more non-terminals on the parse
stack that derive ¢, that are above the non-terminal that derives the current input

34

terminal a. The context is unknown because we do not know how far down the
stack the non-terminal bearing the matching context is. Fortunately, in such cases
we can always predict the € productions and remove non-terminals from the stack
until the one bearing the matching context is exposed. Now either this sub-parser
will match the context, or no sub-parser will.

4.4.1 Analysis

Mapping from context to sub-parser takes O(1) time. Matching a terminal and
pushing a production on the stack takes O(1) timie. When the top of stack is a
non-terminal a list of up to ¢ context to production pairs may have to be searched.
Finding the pair with the matching context from this list takes O(c) time. The
worst case time complexity to parse an input of length 7 is then O(cz).

We need O(c) space for a hash table to dispatch by context and O(ct) space
for the lookup tables for split alphabets in the worst case.

The maximum amount of space required for the parse table is ¢ times the
original parse table because M is a table of lists each of maximum length c.

4.4.2 Table construction algorithm

If the top of stack non-terminal does not predict € on the current input token, the
context that must be matched by the input token is always in the symbol on the
top of the stack. There are two cases: (1) The top of stack symbol is a terminal
and matching context has already been copied into its frame. (2) The top of stack
symbol is a non-terminal and a chain of copy rules exists from one of its attributes
to the terminal that will eventually match the input symbol.

The fieldnames of the matching context in the top of stack non-terminal are
precomputed with a straightforward modification of the FIRST set construction
algorithm. FOLLOW sets will be treated later. In this modified algorithm, a
FIRST set contains not just a set of terminals but rather a set of triples of (termi-
nal, fieldname, production) where (a,0,7) € FIRST(X) iff r = X = Ba where
B = af. Informally, r is the first production in the derivation of a from X
and o is the fieldname in X of the context to be inherited by a. If X is a termi-
nal, the fieldname is simply the fieldname of the (only) context attribute. This
fieldname is readily computed from the inheritance rules specified along with the
grammar. In the algorithm below, fieldnames for terminals in the FIRST set of a
non-terminal are indicated by a prime mark.

fill_first_sets:

foreach non-terminal X
FIRST(X) := {}
foreach terminal a
FIRST(a) := { (a,0,7) }
foreach non-terminal X
if 3 a production r = X = a ... then
iet o' be fieldname where copy rule a.context = X .fieldname exists
add {a,0’,r) to FIRST(X)
repeat
foreach production r
add compute first(r) to FIRST(lhs(r))
until no FIRST sets have changed

~ compute first(r : production):

if length(rhs(r)) =0
return {e}
result := {}
foreach symbol a in rhs(r)
s := FIRST(a) /* current approximation */
foreach triple u in s
translate_fieldname(lhs(r),u)
u.production :=r
add s to resuit
if not ¢ € FIRST(a)
break
if ¢ € FIRST of every symbol in rhs(r)
add ¢ to result
else

return result

36

translate_fieldname(l : symbol; u : triple):

if an attribute copy rule u.fieldname = [.fieldname exists
replace u.fieldname with [.fieldname

else
grammar specification error

It is worth noting that, just as in conventional FIRST set construction, a
terminal a can be added to FIRST(X) for non-terminal X multiple times.

FOLLOW sets are computed in the conventional way. There is no need to track
the fieldnames because the fieldname is unknown for FOLLOW sets. Productions
predicted by terminals in FOLLOW sets are of the form X = € and non-terminals
have to be popped off during parsing to discover the right context.

The FIRST and FOLLOW sets are then combined to form PREDICT sets.
predict:

foreach production r = X = v
add FIRST(y) to predict_set(r)
if v =€
remove {c} from predict_set(r)
add FOLLOW(X) to predict set(r)

With the PREDICT sets, the parse table can be filled. Each entry in the table
is not single-valued, as in a standard LL(1) table, but a list of (offset, production)
pairs. The offset is that of the fieldname of the context attribute in the top of
stack non-terminal at the time the prediction is made.

37

find _offsets:

foreach X, a
M(X,a] = {}
foreach production r = X = «
foreach triple (a, fieldname, r) € predict_set(r)
add (offsetof(X fieldname), r) to M[X, a]
foreach X, a
if M{X.a| = {}

M[X,a] = eiior

4.5 Translation to a new alphabet (TRANS)

TRANS has the advantage of being usable with any parsing method, and is not
restricted to predictive parsing, provided the grammar is of a suitable form for
the method in question.

The TRANS method converts a context augmented sub-grammar into a stan-
dard grammar. After the sub-parser lookup shown in section 4.3, the standard
parsing algorithm is used to advance the state of the sub-parser.

At parser generation time, the provided grammar G = (T, N,C, P, S) with
context and value attributes is transformed into an equivalent grammar G' =
(T',N', P',S’) with only value attributes. At run time an incoming token with
context and value attributes is converted to a token with only a value attribute
and presented to a standard parser.

4.5.1 Table construction algorithm

In the following discussion the grammar G refers to the set of productions com-
prising a sub-parser. Recall our stipulation that a sub-parser inherit a fixed and
determinable number of contexts. This allows us to partition the productions of a
PENGUIN module into self-contained sub-grammars, each invoked via a collection
of start symbols. Each of these sub-grammars can be transformed independently.

We do not have to know the values of the contexts, only that they are distinct
contexts. Let T be the set C x T'. Each terminal in T in the augmented grammar
is replaced by a symbol in 7.

38

Each non-terminal in N has a set of contexts associated with it. TFor every
distinct permutation of contexts associated with a non-terminal replace that non-
terminal with 2 new non-terminal from N'.

Finally, every production in P that was headed by a non-terminal in N must
be replaced by several copies, one for each distinct variation in N'.

Assign ordinals to the context attributes of the start symbol S. Every non-
terminal in the grammar derivable from S has some permutation of a subset of S’s
context attributes. Every terminal in the grammar derivable from S has one of
S’s context attributes. We wish to find N’, the set of non-terminals with distinct
permutations of contexts, and T”, the set of terminals with distinct contexts. Let
k be the index of the last context attribute. These two predicates hold:

S(1,2,...,k)e N’

if Ny € N and N; = aN,3 then N, € N’

We generate these sets by a top-down search. Assume two sets, initially empty,
for terminals and non-terminals. Each element of these sets is a triple comprising
the terminal or non-terminal identifier, the permutation of context attributes,
and a field used to hold the transformed name in the last phase of the algorithm.
We assign ordinals to the context attributes of start symbol S. (X, {1,2,3}) is a
distinct permutation from (X, {2,1,3}).

gen_sets:
new_terminals := {}
new_nonterms := {}

add_to_nonterms(.S, initial_permutation)
rename_symbois

39

add_to_nonterms(s, 7):

if (s,2.7) in new_nonterms
return
else
add (s,t,?) to new_nonterms
foreach production headed by s
foreach non-terminal X and permutation m in RHS
add_to_nonterms(X, m)
toreach terminal a and context y in RHS
add (z,y,?) to new_terminals

When all the reachable permutations of contexts have becu generated, new
terminal and non-terminal names are assigned to the third field of all triples.

For every production r = X = v in P, one or more productions r’ = X’ = +/
are placed in P’, one for every triple with first field X, and where X’ is the third
field of the triple. Every string of symbols « is replaced by the string of symbols
v', where each name and context permutation is translated to a new name.

rename_symbols:

fill the third field of triples with unique names
foreach production r = X = «
foreach triple of the form (X, m,Y)
add production Y = 4 to G’
foreach terminal @ with context y in G’
replace a with b where (a,y,b) € new_terminals
foreach non-terminal X with permutation m in G’
replace X with Y where (X,m,Y) € new_nonterms

4.5.2 Analysis

For equal basis of comparison, we measure a transformed LL(1) parser.

The time complexity of this parse algorithm is the same as that of the under-
lying parse algorithm, since the translation step only adds a constant amount of
time per symbol. In the case of a transformed LL(1) parser, this is linear in the
size of input.

40

The worst case space blow-up is computed as follows: The number of terminals
increases from t to c¢t. The number of non-terminals increases from n to c!n. This
is because there are up to ¢! possible permutations of the attribute path for the
context attributes carried by a non-terminal. The number of productions increases
from p to c!p. Each production is headed by a non-terminal and we need to make
up to ¢! copies of each production.

The size of a LL(1) parse table is the sum of the sizes of the prediction table,
which is of size nt, and of the production list, which is of size pl, where [is the
maximum length of any production. After transformation, these sizes become
clnct and c!pl, roughly a factor of ¢! increase. We should also add the size of the
translation table, which is ct, but this is swamped by the other two increases.

We aiso need O(c) space for a hash table to select a sub-parser initially, just
as in LSEARCH. '

In practice the number of contexts in a sub-parser (not the entire grammar for
a module) is likely to be small. Recall that a context represents a source of input
tokens. A sub-parser will probably deal with at most two or three contexts. Thus
the increase in storage requirements may be tolerable.

4.6 Conclusion

LSEARCH requires O(ct) running time as compared to O(z) for LL. LSEARCH
requires O(c + ct) additional space over LL for the value lookup tables and up to
¢ times the space for LL parse tables.

TRANS requires O(7) running time which is the same as LL or LR. The worst
case space requirement is a maximum of cclnt + clpl + c.

LSEARCH has the advantage of requiring little extra space with a factor of ¢
slowdown while TRANS has the advantages of a constant translation time over-
head, and being usable with any parsing method. For small ¢, TRANS has tolera-
ble space requirement blow-up. However, small ¢ also tends to favour LSEARCH.

Since the number of contexts in a sub-parser c is normally small (say < 3),
LSEARCH will suffice for our parsing algorithm. The implementation is described
in detail in chapter 6.

41

5 PENGUIN in the large

The previous two chapters described the methodology for the construction of sin-
gle PENGUIN programs. A programming environment requires many programs
working in concert, and whose interrelations usually cannot be preplanned. For
the construction of large applications, we need additional mechanisms for com-
posing software.

Too many current graphics programs are written to run as standalone pro-
cesses. Often the only interprocess connection is with the windowing system.
This prevents users from combining graphical programs in useful ways. This is
partly due to the lack of standard representations for graphics data; textual data
is easily organized as streams of characters or lines.

PENGUIN remedies these deficiencies with a model of intercomponent data
transfer based on generalized tokens. The PENGUIN model takes advantage of the
multi-threaded grammars of the language. We exhibit the PENGUIN model for
the composition of interconnected programs and show how this model subsumes

the older Seeheim model of GUls.

The PENGUIN model also solves the problem of writing portable GUIs for
programs that have a significant computing component or deal with unpredictable
delays. Current solutions require the use of systermn specific methods of integrating
multi-processing with the interface to the presentation component. In PENGUIN,
all interactions are handled uniformly as tokens.

5.1 Previous work

The UNix! [Ritchie and Thompson, 1974] facilities for interprocess communica-
tion has been widely emulated. The extension frcm linear pipelines to arbitrary
networks of processes that has been proposed for textual interfaces [McDonald and
Dix, 1988] is natural for graphics environments, yet few general results have been

TUNIX is a trademark of AT&T Bell Laboratories

realized. Two previous efforts at introducing networks of connected components
for GUI programming are Fabrik and ConMan.

5.1.1 Fabrik

Fabrik [Ingalls et ai., 1988] is visual programming environment ir ~liicr: visual and
computational user interface components can be “wired” together to build new
components and useful applications. The vocabulary of Fabrik consists of objects
that either interact with the user or perform some computation. One characteristic
of Fabrik is the ease with which composite components can be tested, as the
tableau is always “alive” during assembly. The internal dataflow semantics of
composite compenents are handled behind the scenes.

Fabrik incorporates a type checking system to validate connections. Types
supported include primitive types, bundled (record) types, array types and enu-
merated types. The definitions of compatibility are similar to those in a conven-
tional language. Each primitive component assigns a type to each of its “pins”
restricting input and output types. An interesting type is the unspecified type
which has the ability to propagate types to other pins once a connection is made
to a typed pin. For example, a Selector component has one pin of Number type
which selects one of several input pins all of unspecified type to be propagated to
the output.

The components of Fabrik are not free-standing programs but more akin to
subroutines from a library which have been assembled with the help of the Fab-
rik interface builder. A compilation step creates a composite component that
retains all the semantics implied by the network of components. This composite
component can then be entered into the library for reuse.

Fabrik demonstrates the practicality of composing behaviour by composing
interactive objects, and the basic support necessary for type checking connections
between such objects.

5.1.2 ConMan

ConMan(Haeberli, 1988], for Connection Manager, is a high-level visual language
that allows users to dynamically build and modify graphics applications. ConMan
provides the user with a visual editor with which the user can connect the output
of a component (program) to the next one. Each component interacts with the
user via an interaction frame (window). The major difference between ConMan
and linear pipes in UNIX is that ConMan supports arbitrary graphs. Changes
to one component propagate to downstream components. Useful components in
ConMan include a watch component for inspecting data, a tape recorder, and a
mixer.

43

ConMan itself is a user process that runs under the window manager. When
a component starts up, it notifies ConMan of the input and output ports it will
use. After connections with peer components have been established, components
use interprocess communication messages to exchange data. Data is exchenged
as typed, variable sized textual messages.

ConMan demonstrates the worth of two goals: encouraging developers to break
monolithic applications into functional components that communicate with each
other using high level data structures, and allowing the user to design and extend
applications.

5.2 PENGUIN Components and Ports

PENGUIN extends the idea of communicating components. The model is not re-
stricted to specialized environments such as those defined by Fabrik or ConMan.
Fabrik components cannot be used outside of the Fabrik workbench for free stand-
ing programs; Fabrik is a world unto itself. ConMan relies on all participating
components adhering to a special protocol for interprocess communication. Pro-
grams that use different protocols cannot work with ConMan protocols. Instead
of requiring components to use a specific protocol, PENGUIN only lays down gen-
eral principles for intercomponent connections. The behaviour of a network of
interconnected components is formally specified by the grammars of the individ-
ual components. Compatibility between components is also formally defined. The
ConMan model of components is subsumed by the PENGUIN model. Moreover,
network windowing systems in GUIs are treated as just another PENGUIN com-
ponent, ra‘her than as a special kind of program. The generality of the PENGUIN
model comes at a price; programmers must design the interfaces between compo-
nents; there are no ready-made interfaces. The PENGUIN compiler is the founda-
tion of a suite of tools that can help the programmer construct intercomponent
interfaces.

We define a component as a parser with a collection of modules that com
prise an independent executable program. A component is the smallest unit of
independent execution and corresponds to a process in many operating systems.
The behaviour of a component is specified by the union of the grammars in the
composing modules. The input alphabet is specified by the union of the input
alphabets of the composing modules. Together, the grammar and the alphabet
specify the protocol adhered to by the component.

A component communicates with other components via ports. A port is a
rendezvous site for a recipient, the set of modules inside a component and senders,
the peer components. To the programmer, a port is a named resource to which
tokens can be directed. This extra level of indirection hides the identities of the

44

communicants from each other, making it easy to change comr. unicants, even
on-the-fly if desired.

Components may be interconnected at run time to construct different config-
urations, to take advantage of the synergy induced by communicating processes,
in the same way that UNIX pipes can be used to build composite programs. Col-
lections of PENGUIN components are not restricted to being coupled in linear
configurations but can be interconnected as an arbiirary network.

Note that the connections between components are deliberately left underspec-
ified. They are only required to be have the FIFO property, be flow-controlled and
be reliable. No constraints are placed on the mechanism, transfer rate or latency.
Implementations may use shared queues, RPC, sockets, streams, virtual circuits
or whatever is appropriate.

5.3 Matchmaking

Connecting components requires a matchmaking process. We need to know if two
components are compatible before connecting them together.

Alphabet compatibility is defined as: Every terminal generated by the sender
is in the terminal set accepted by the recipient. Two conditions must be satisfied:

1. The alphabet of the sender is a subset of the alphabet of the recipient.

2. Corresponding pairs of terminals in the subset are type compatible.

The first condition can be verified by comparing terminal sets. The second
condition simply requires verifying type compatibility between corresponding ter-
minal tuples.

We assume that it is possible to transparently transfer terminal tuples between
heterogeneous machines, using encoding mechanisms such as Sun’s XDR [Mi-

crosystems, 1986] or ISO ASN.1 [ISO/IEC, 1987] to handle byte ordering and
padding differences.

We note in passing that that all UNIX processes using byte-streams are trivially
alphabet compatible because (1) the common alphabet is the 8 bit code and (2)
the only field of terminal tuples is a single byte. Another example is provided
by processes that adhere to the “lines of text” interchange standard. Here (1)
the common alphabet contains one terminal—the line, and (2) the only field in
the terminal tuple is the data in the line. Again, all processes adhering to the
standard are compatible, ignoring maximum line length restrictions.

Two further levels of compatibility can be defined, but no effective procedure
exists for enforcing them. Language compatibility is defined as: A sender is com-
patible with a recipient if every sequence of tokens generated by the sender is

accepted by the recipient. Semantic compatibility is defined as: Actions triggered
by the receipt of tokens are those intended. Semantic compatibility is usually
defined operationally by the user-

Alphabet compatibility can be checked with a registry of component types that
is consulted before connecting components. Run-time checking of messages[Scott
and Finkel, 1988] is another possibility.

5.4 Modules and components compared

Modules are appropriate units for code that is reusable in building blocks for
applications, but not in isolation. Examples are graphics devices such as buttons
and scrollbars, which always form part of an application. These modules may be
parameterized, e.g. for size and colour, using passed attributes or environment
values. An analogy may be drawn with library routines; a sine routine is seldom
useful without being part of a program.

The composition of modules is a larger module. A module must be combined
with a parser to become a component. The PENGUIN method of composing com-
ponents as a set of modules is superior to the traditional method of constructing
a component with a big loop because it allows additional threads of interaction
to to be added to a component without having to rewrite any code. Clashes
and ambiguities in token values are detected by the compiler. The programmer
doesn’t even have to supply the parser because a stancard parser works for any
combination of modules.

Since theie is one parser per component, a component has the property that
it has exarily one point of computation at any instant. The pseudo-concurrency
within a component is induced by the event-driven nature of PENGUIN programs.
In PENGUIN programs, the times of arrival of tokens are the times at which a
(possibly different) sub-parser can be activated. It is important that no semantic
action be allowed to execute for an unbounded, or even large amount of time.
otherwise the queues will fill up and the interactiven:ss of the component will
suffer.

Activities that need to be run in parallel will require separate components.
So long as the “real work” of a single component is of short duration, occasional
pauses in the interactive response may be acceptable. For work that may take
long, e.g. a lengthy computation, a friendlier interface would create a separate
component to do the work. A protocol for sending information to, retrieving
results from, and enquiring the status of this component would be needed. The
user could proceed with other tasks while waiting for the component to finish the
work.

46

The composition of components is a component. The internal “plumbing”
between components is invisible from the outside of the “super-component”, just
as a user-defined program that invokes several other programs can be treated as
a simple program in many operating systems. Components execute in parallel.
Processes, as defined in many operating systems, are a natural implementation of
components.

Another reason for designing a graphics application as a set of components is
to limit the proliferation of design details and to allow parallel implementation
of components. No matter how good the intentions of a designer may be, large
systems cannot easily be constructed as monolithic systems. Once the boundaries
between components have been drawn and the protocol agreed upon, the com-
ponents may be implemented by separate teams. The gains in clarity must be
balanced against the extra effort required to partition the system and define the
protocols. PENGUIN helps this effort by encouraging the use of grammar notation
in specifying the structure of communication between components.

5.5 The PENGUIN Model

The Seeheim model prescribes dialogue and application components in a program.
These components can be realized as components as described in Section 5.2.

The Seeheim model can be generalized to the PENGUIN model, which allows
an arbitrary number of components, connected via ports. f one recalls that
the simplest case of a component is a single module and parser, then one sees
that the presentation component also satisfies the criteria for components. The
presentation uses a particular protocol, has action routines and manages resources,
including, in this case, the physical devices st:ch as the screen and keyboard.

Mov Display
genegafor +—| Chess » (Present-
ation)
[
Opening Another
book display

Figure 5.1: An example configuration in the PENGUIN component Model

47

Figure 5.1 is a hypothetical chess program, realized with communicating com-
ponents. Note that non-PENGUIN connections to the outside world, e.g. to file
systems, are not shown in the diagram.

The case for separate dialogue and application components in a program is
not as strong as that for the existence of a presentation component. The original
formulation of the Seeheim model envisaged that it would be possible to keep
syntactic and semantic issues separate. “What class of feedback will be generated
for input?” is a good question to ask when trying to determine the function
of a component, i.e. lexical, syntactic or semantic. The chess program is an
example that illustrates the different types of feedback. Typing an invalid key
at the window is a lexical error; it can be detected by the presentation because
the presentation knows the set of valid keys. Clicking on the right mouse button
to confirm a quit command when the left button is the correct one to use is a
syntactic error; the left button is valid at other times, but not in this particular
command sequence. Trying to castle a king in check is a semantic error; it can
only be discovered by the application component by checking the validity of the
move, based on the locations of the pieces.

When a logical object is Leing manipulated, the syntax of the protocol is closely
associated with the semantics of the object. It makes more sense to specify the
~ syntax near the semantic specifications of a module rather than to gather all the
syntactic and semantic portions of modules into their own components. Compo-
nents that have been segregated by lexical, syntactic or semantic functions have
logical cohesion or, at best, communicational cohesion[Yourdon and Constantine,
1979]. Both these types of cohesion are weaker than functional cohesion, that
exhibited by PENGUIN components.

The presentation component, which normally is thought of as having syntactic
functions, does in fact obey some protocol, albeit simple. The presentation is more
properly considered as a manager of physical resources. That it normally performs
lexical tasks is an artifact of its being first in the chain of communication from the
user. Windowing systems, as presentation components, are constructed differently
from clients applicat’ 5. We argue that this distiaction is artificial. A windowing
system should be constructed as a PENGUIN component and not as a completely
different kind of program.

It is expected, therefore, that PENGUIN programs will not normally have sepa-
rate dialogue and application components but may in fact have many components
each of which combines dialogue and application functions (Figures 5.1 and 5.2).
Our PENGUIN mode] allows syntactic and semantic portions within a component.

In this revised view, PENGUIN takes on not just the duties of dialogue control
but also specifies to some extent the lexical and semantic tasks of the component.
In the current implementation the terminal declarations are lexical specifications
and the action routines are semantic actions. This dissertation began with a

18

Semantic actions

Dialogue

Lexical
analysis

Figure 5.2: Substructure of a PENGUIN component

consideration of the syntactic, or dialogue portion of a graphics program, so the
lexical and syntactic aspects were downplayed. However, in the light of the PEN-
GUIN model, these must be considered as important a part of the interface as the
dialogue is. In fact, the UIMS notion that the parts of the program that are for
“Interface” can be separated from thoce that are for “useful work” is untenable.
In PENGUIN, decompositions are along the lines of responsibility for resources,
not by application independent function.

An interesting consequence of the PENGUIN model is that the presentation
component is interchangeable, provided that the presentation has sufficient ca-
pabilities, and the protocol between it and the other components is properly de-
signed. This means that a graphics program can be made portable across different
presentations at the expense of finding a common protocol for every presentation
of interest.

49

6 Implementation

This chapter describes the implementation of the PENGUIN compiler, which reifies
the design principles of Chapter 3.

6.1 PENGUIN Programs

The PENGUIN compiler is written in C++, with the aid of bison [Donne.iy and
Stallman, 1988], an LALR(1) compiler-compiler; flex [Paxson, 1989; Lesk and
Schmidt, 1979}, a lexical analyser generator and g++ [Tiemann, 1989]. the Free
Software Foundation C++ compiler.

The unit of compilation is a PENGUIN module. A PENGUIN module comprises
these sections: header, declarations, imports, private variables and the grammar.
The header names the module. Declarations are typedefs, and symbol (terminal
and non-terminal) declarations. Imports are declarations for linkage purposes and
are prefixed with the name of an external module. Private variables are either
module handle declarations or variable declarations. At the moment PENGUIN
does not do full type checking so the types allowed are those in the target language,
C++, with the restriction that the typename must be a single identifier. Typedefs
soften this restriction by allowing constructed types to be given single identifier
names.

The grammar section contains productions, which may have on the LHS non-
terminals and on the RHS non-terminals, terminals or inline code. The production
operatoi niay be the sequential derivation operator, the parallel AND and parallel
OR operators and the no-wait variants of the last two. Appendix A contains the
PENGUIN grammar.

The compiler generates several types of output code. First come the preproces-
sor directives that include the appropriate external definitions (including those for
imported symbols). Next come declarations of various types and structures used
by symbols. Then follow data initializations for translation and parsing tables.
Prediction of productions at run time is driven by the parsing tables. Finally, the

50

compiler generates a collection of recursive descent routines corresponding to the
symbols and productions of the grammar. The last routine to be generated is the
constructor for the class representing the module.

Each PENGUIN module results in an object file when compiled. This is linked
with the run-time library, which provides the input routines, token dispatcher,
coroutine scheduler and utility routines. A main program to start the collection
of modules has to be provided by the programmer, but may eventually be provided
in the run-time library.

The presentation component used for experimentation is the X11 Windowing
System server and associated libraries. X1ib, a library of stub routines, comes
with this server, and the input routines interface to this stub library. Tokens
in PENGUIN terminology are called events in X11 terminology. PENGUIN takes
advantage of the context that the X11 server attaches to each event. This context
is the window id of the window from which the event originated. Other windowing
systems could be interfaced to PENGUIN easily. '

6.2 Generated code

This implementation of the PENGUIN compiler generates code in C++ [Strous-
trup, 1986]. Two files are created when a PENGUIN module is compiled. The
definition (.h) file contains declarations of the C++ class corresponding to the
module and declarations of attribute structures for grammar symbols. The imple-
mentation (. cc) file contains the tables and code corresponding to the declarations
and to the grammar.

6.2.1 Structure and class declarations

Structure declarations for symbol attributes are placed in the definition file for
importation by other modules. The last item in the definition file is a declaration
of the class implementing the module.

6.2.2 Tables

The prediction table is a matrix of lists indexed by non-terminal and terminal.
Each list is a series of context offset and production number pairs.

A translation table is generated for converting from the terminal values that
arrive from the outside world to the internal indices for the tables. This allows
the parse table indices to be a dense set. For large, sparse, terminal sets, another
translation mechanism, such as hash table lookup, could be substituted.

51

Bit sets are also generated to describe forks in which an alphabet is split. The
parser checks the incoming terminal against these sets to decide which sub-parser
gets the token. :

The translation and prediction tables are not class members but are initialized
data with file (static) scope and thus are visible only to routines in the accompa-
nying module.

The catchall terminal is iuplemented by appending one entry to the terminal
set. When the run time parser cannot find a match for a given terminal, it
attempts a match using this pseudo-terminal.

6.2.3 Code

The first scheme for handling the augmented grammars envisaged having the
compiler generate initialized tables which are used by an interpreter. The inter-
preter maintains a cactus stack corresponding to the parse history of the PENGUIN
program. Forks create new branches in the cactus, and joins delete branches. At-
tribute passing is less straightforward. Either attribute types have to be restricted
to a small set of types known to the PENGUIN compiler so that the offsets and
sizes of members in attribute structures are known, or the compiler has to gener-
ate C++ routines for the copy actions to be called by the interpreter. Inline code
also has to be turned into named routines. Considerable overhead is incurred if
the ratic of inline code to grammar symbols is high.

For the reasons cited above, the coroutine method described in Chapter 4 is
used. A PENGUIN module is turned into a set of coroutines. The cactus stack is
implicit in the call history of the coroutines. Terminals in the grammar are turned
into calls to a run time routine that expects input. Productions are turned into
routines. Non-terminals are turned into calls to a run time routine that peeks at
the next input token and uses that to decide between different productions. A
coroutine package handles the thread switching.

PENGUIN makes the generated routines members of a derived class whose base
class is module. Private variables are translated into class members. A constructor
for the derived class is generated to initialize some pointers into the static tables.

Using the symbols create and destroy of an external module generate, in
addition to the usual routine call, calls to a constructor or a destructor for that
module, respectively.

Imported symbols cause the appropriate definition (.h) files to be included
once only at the beginning of the implementation (.cc) file.

6.3 PENGUIN Run-time Library

We describe onlv the coroutine method run time algorithms here.

The heart of a PENGUIN component, the parser, is called from the main routine
after initialization. There is one parser per component. This parser is passed the
topmost module of a component. It is also passed a C++ class that provides
input tokens.

Sub-parsers may be created in the course of parsing. Sub-parsers are created
when a fork production is expanded, or an external symbol is expanded. The
sub-parsers are implemented by coroutines.

When a token arrives, the sub-parser that might accept this token is ascer-
tained through the sub-parser dictionary. Sub-parsers are entered into the dic-
tionary when a fork production is expanded. When a parent waits for children
productions to finish its entry is removed except in the case of the no-wait variants
of fork productions, where the parent sub-parser remains in the dictionary.

A sub-parser must be entered into the dictionary under all the contexts that
are carried by its start symbols. The compiler knows exactly how many contexts a
symbol carries and passes a counted array of contexts to the run time fork routine
so that the routine can put those contexts into the dictionary. The attribute
structure is rearranged at compile time so that all the context attributes are
contiguous in the attribute structure and can therefore be passed directly as an
array.

Tokens that have no accepting sub-parsers are matched against the pseudo-
terminal catchall. If this too fails to match then a run time error routine is

called.

Sibling branches must be terminated when a fork is satisfied. To enable the
termination code to gain control when a branch terminates, the branch is called
indirectly through an enclosing run time routine. All child branches are passed a
common data structure that keeps track of which branches are still active. The
tirst OR branch or the last AND branch to terminate will clean up all its siblings.
The parent routine may also need to be reactivated. A deficiency of the current
implementation is that a fixed size stack is allocated when a branch is created.
There is no bounds checking for the run time stack, nor can the stack grow on
demand.

Branches that share a context are passed alphabet maps (bit sets) so that the
dictionary lookup can correctly determine the sub-parser that will accept a token.

The coroutine dispatch code keeps a queue of sub-parsers that are ready to run.
This queue is checked before reading input. One situation where there is more
than one ready sub-parser is when a fork has , -t been executed and there are
several sub-parsers that have not yet blocked on input. These sub-parsers must

53

all be executed as far as they can go, 1.e. up to the appearance of a terminal.
Only when this ready queue is exhausted does the parser read an input token.

The coroutine switch library is the only architecture specific part of the PEN-
GUIN library. It contains one routine with a handful of assembly language state-
ments and a couple of other routines that use architecture specific knowledge
about the layout of the activation records on the stack. The only architecture
supported at the moment is the Motorola 68020 [Motorola, Inc., 1985] series of
CPUs but the code can be adapted for other architectures in a matter of hours
or minutes. On the 68020, coroutine switching is done by saving the registers in
a save area, then exchanging stack pointers. When the switch routine returns,
execution resumes in a different sub-parser.

Context and other attribute values are passed as structures on the run time
stack. Every terminal or non-terminal routine receives a structure whose members
are the inherited and synthesized attributes of the item. The fields attached
to items on productions are translated into the assignment statements involving
attribute structure members.! Field names may also be used in inline code. These
are also translated into names of attribute structure members.

Module handles are translated as class members or local variables of type mod-
ule pointer. External references invoke the appropriate actions from the imported
module. The create and destroy actions are special to the compiler and generate
extra code to initialize the handle before calling the create action; and to free the
handle after calling the destroy action.

Appendix B is a extended example showing input and generated code.

6.4 Input Management

The generated PENGUIN parser uses a simple interface to device specific input
routines. These routines are provided by classes derived from the base input
class. Since the PENGUIN runtime does not know in advance what device class
will be linked with the parser, the base class contains, in addition to the terminal
and context fields, pointers to device specific routines. These routine pointers are
initialized by the constructor of the derived class.

/*

*k Definitions for base input class
*/

#ifndef _baseinput_h

'We use the Eiffel [Meyer, 1988] convention that the declared members of a symbol are called
attributes, and the identifiers used in productions are called fields.

54

#define _baseinput_h 1

#include <pg.types.h>
#define ILL_TERM (-1)
#define ANY_TERM (-1
class baseinput;

typedef int port;

typedef int (baseinput::*iproc)();

typedef int (baseinput:

class baseinput

{

public:
int
int
context
iproc
iproc2
iproc

};

#endif

:*iproc2) (port,...);

input_pending;
val;

ctx;

get;

send;
no_context;

The parser calls the device specific routines via the pointers. It expects the
input pending flag, terminal value and terminal context fields to be filled in upon
return from the input routine.

7 Experiences with PENGUIN

PENGUIN was used to prcgram several pieces of local software with GUls. Each
of these will be discussed individually.

7.1 Case study: Pfig

Xfig is a line graphics editor. It presents the user with a canvas, upon which the
user can draw geometric figures such as lines, squares and ellipses. The primary
input device is the mouse. The keyboard is used for typing text objects on the
canvas and entering file names in the data entry window. The mode of input is
selected by a panel of simulated buttons. Some of the buttons are toggle switches,
having two states. Some form groups in which only one button in a given group
can be selected at any instant.

We have rewritten the user interface portions of xfig in PENGUIN, producing a
functionally equivalent program called pfig. Figure 7.1 shows pfig in operation.
The hierarchy of the windows looks like this:

pfig
canvas
panel
buttons
message
rulers

7.1.1 Observations

PENGUIN allows the programmer to modularize the pfig interface easily. Pfig
also demonstrates the separation of the concepts of class and instance. FEach

56

4 ? ? 7
l||||l|Illlllllflllllllllllllll?lllllllI|l||IlI?lllllllllllllllllIlllllllllllll bbb b |90

<[00 EQ)
SO BID

(]
X
I

wof I 21D EE
BERNEIEER

T A=) o
LV ENCTEHS

© ~)
FRTTTTTCTIITTIIYITTTS ITTVCTTITTRITICOTL VRN ATTITCTCINITONI N

w
e

Luidil

ELLIPSE drawing: specify RADIUSES

Figure 7.1: A pfig window

-1

ot

button shares the same code and parse tables but the legends on the buttons
differ between buttons. More i-1portant, each button runs in a separate context.
Events can be dispatched to the ~cirect instance and cause the appropriate actions,
in this case, sending a message .o the panel informing it which button had been
depressed. As each button controls its own private data, it is easy to allow each
instance to track its own state, which 1s useful for making latching buttons.

It was easy to program each button to handle click tokens and exposure tokens.
PENGUIN takes care of the alphabet split between different productions. Adding
a production to handle focus tokens (cursor entering the button) to highlight the
button was trivial, illustrating the ease of augmenting PENGUIN code that has
been separated into modules.

PENGUIN makes possible a method for intermodule communication we call
“token forwarding.” Here is an example of how it it works. A panel comprises
buttons. Each button may trigger a different action routine when clicked upon.
Since the code template for the button is common to all buttons, it is not ap-
propriate to put the call to the action routine in the button code. There are two
traditional ways to deal with this situation. The first method is to give each but-
ton a unique index and have the code use the index to find the appropriate action.
This requires a case statement or a global array somewhere. The second method
1s to pass a pointer to an action routine to each button (callbacks). PENGUIN
make a third method possible: take the input token, change the context to one
expected by the recipient and forward the token. In this example the buttons for-
ward tokens to the parent panel. These tokens have the index of the button that
was clicked. Each button instance saves this index from the attributes passed in at
creation time. As far as the panel is concerned, a click event has happened at its
window, even though the presentation does not deliver any. It is not necessary for
modules to have a parent/child relationship for forwarding to work. Forwarding
allows the pointers on the top and side rulers to track the movement of the cursor
in the canvas window, and the canvas window is a sibling of the ruler windows.

7.1.2 Measurements

Measurements on pfig show that 687 lines of PENGUIN code expanded to 2100
lines of C++ code, a ratio of about 3:1. The pfig example replaced 2550 lines of
C code with 2101 lines of PENGUIN, C++ and C code. This ratio becomes more
favourable when one notes that some of the PENGUIN code for the abstract inter-
actor modules (buttons, menus) provides functions that were previously provided
by the X11 Toolkit. (xfig is 15000 lines large, but much of the code is windowing
system independent.)

We estimate that the code generated by PENGUIN is about 50% more verbose

than what a programmer would write!. From this we conclude that the PENGUIN
source is about a third to a half as verbose as the equivalent code a programmer
would have to write in a conventional imperative language. '

The X11 Toolkit is about 23000 lines of code while the PENGUIN runtime is
about 1400 lines of code. However one must take into account the fact that the
X11 Toolkit provides many more features than could be put into the PENGUIN
run time library in the short time available. We estimate that about 5000 to
10000 lines of PENGUIN and C++ would suffice to recreate the X11 Toolkit. The
X11 Toolkit suffers from having to implement object-oriented features such as
instances and inheritance in plain C. It is also disadvantaged by having to use
callbacks for semantic actions instead of being event-driven.

On a Sun-3, the text area of the xfig binary is 400 kbytes while the text area
of pfig is only 300 kbytes. The difference is accounted for by the size of the X11
Toolkit. The initialized data and uninitialized data (bss) areas are similar in size.

7.2 Case study: Alarm clock

The second application is a simulated alarm clock with time and alarm displays,
and buttons to set the display mode ana the time of the alarm. This application
demonstrates the handling of signals as events. The window hierarchy is simple:

wrapper
clock
alarm
mode_button
set_button

A run time library timer module sets up a handler for UNIX alarm signals.
When the operating system delivers .n alarm signal, the library translates it into
a PENGUIN event. Since UNIX signals carry no information other than the fact
that they occurred. an auxiliary queue stores a list of pending timer events. The

library obtains the context and value of the token to create from the queue when
a signal occurs.

The clock time and alarm time subwindows respond to exposure events, so they
will redisplay the time when the window first appears or when it is unobscured.
The clock subwindow schedules a timer event once a minute. When the minute
event arrives, three things are done: the clock display is updated; current time is

Tt is little unrealistic to assume that a programmer could generate the prediction tables by
hand though.

compared with the alarm time and if they match, the clock beeps; and another
timer event is scheduled for a minute in the future.

Because the alarm clock was coded from scratch, there is no old implementation
to compare against. Some indication of the degree of programming help provided
by the compiler can be seen from these statistics: 312 lines of PENGUIN code
generated 1129 lines of C++ code. Another 232 lines of auxiliary routines in
C++ were needed. The run time library is identical to that used by pfig, except
for the addition of the timer module. There are 29 productions, of which 5 are
forks.

Our subjective impression is that the clock would have been noticeably harder
to write without PENGUIN. The clock code would also have been less portable.
A clock written with traditional GUI libraries would have contained calls to envi-
ronment dependent services to obtain the alarm signals. In the PENGUIN world
all signals from the outside world are dealt with as events; the run time library
provides the translation. With the timer code in the run time library, future pro-
grams requiring timer events would be easier to write. When porting programs
requiring timing services to a non-UNIX environment only the run time library
timer routine would need to be rewritten.

7.3 Case study: Graphical printer interface

Print 1s a program to submit jobs to the printer queue and notify the user when
the job is complete. It demonstrates the use of components to divide up work.
There are two components: one deals with the user interface and job submission;
the second monitors the printer queue, notifying the first component when a job
completes. This design allows the user to continue to submit iobs without waiting
for the first to finish.

The module hierarchy of the print program is even simpler than that of the
alarm clock:

wrapper
slot

The screen area of the print tool is divided into a number of slots, each of
which tracks the status of one file. The number of slots is fixed at compile time
for simplicity. Initially all slots are empty. When the user types in the name of
a file and confirms the request with a final carriage return, the job is submitted
to the printer queue. The monitor component is notified. After some time, when
the file has been printed, the monitor component sends an event to the print tool.

60

which then highlights the file name to draw the user’s attention. The slot is then
free for another print request. If the request fails because the file name is invalid or
the file does not exist, the name disappears from the slot shortly after submission.

The protocol for intercomponent communication is simple. A request packet
is sent to the monitor component for every file to be printed. Eventually a reply
packet is returned, indicating either that the file did not appear on the queue
(which is an error condition), or that the file has completed printing. It is neither
necessary nor desirable to make the monitor component respond to status queries;
the print tool already knows the status of the each request and can answer queries
directly.

The print tool continues to maintain the appearance of the window while print-
ing occurs in parallel. The print tool demonstrates how operations that require
an indefinite amount of time to complete may be delegated to an auxiliary com-
ponent, allowing the user interface to remain reactive. The same design principle
can be applied to programs with a heavy computational component to keep the
GUI portion interactive.

Measurements show that the print tool required 159 lines of PENGUIN code
to produce 484 lines of C++ code. An additional 241 lines of auxiliary routines
in C++ were required. There are 12 productions, of which 2 are forks. The run
time library is the same as that used by pfig except for the addition of a module
to handle intercomponent communication.

7.4 Observations

Multiple threads and context based token dispatch work as expected. The PEN-
GUIN run-time library takes care of the ugly details of thread creation and clean-
up, leaving the grammar and code uncluttered.

Windowing specific code is concentrated in the run-time library. It would not
be difficult to rewrite the library to use a different windowing system. Portability
requires foresight when designing the application and libraries; windowing system
dependencies must be kept out of application code and dealt with in the run time
library interface.

Some difficulty was encountered with lexical classification. PENGUIN expects
a flat token alphabet. Real world token sources may have hierarchical alphabets
where one field of the token selects variants for the other fields, e.g. button: left,
middle, right; key: any key. For the moment, this is swept under the rug by
requiring each application to provide a lexical translation routine.

Attribute handling in PENGUIN is clumsy. This is partly the fault of the
implementation, which uses structures to pass all the attributes of a symbol.
This means that assignments have to be generated prior to and after the routine

61

call corresponding to an item. In retrospect it might have been better to use a
conventional argument list instead of passing attribute structures. However this
method has its own drawbacks: unassigned attributes and synthesized attributes
need special handling.

This particular implementation of attribute handling also caused problems
when coding the part of the main program that sets up the initial set of modules.
The code for initializing all the attribute structures was clumsy.

Converting an existing application to use PENGUIN was more time consuming
than expected. The main hurdle is to retain the original semantics while changing
the dialogue structure. Xfig was originally written in C and interfacing to C++
presented some difficulties. The final binary combines object code generated by
the C and the C++ compilers. The original assumption that C and C++ object
modules could be easily mixed proved not to be true. C++ is a more strongly
type-checked language than C and it was necessary to specify all the entry points
in the C object modules called from C++. In retrospect, it would have been
cleaner to rewrite the original C code in C++. However, the original C code
contains dubious coding practices so this is not an easy solution either.

7.5 Evaluation of PENGUIN against goals

7.5.1 Specification

PENGUIN’s event-driven model and modules force the programmer to specify all
the possible tokens that could arrive at a module. It is therefore easy to see
all the possible sequences triggered by input. In contrast, the polling method
requires the reader to untangle the execution paths taken by tokens belonging to
various contexts. The other traditional method, using callbacks, requires elaborate
initialization of data structures containing pointers to callback action routines.
The body of the action routines may be quite far from where the module is created.
The PENGUIN method keeps action routines close to the grammar specification.

In addition, the compiler generates, upon request, a prettyprinted list of pro-
ductions in the grammar which allows the programmer to see at a glance the
possible sequences of events. Here is the listing for the button module. It is the
skeieton of the pfig grammar.

62

Start productions

create => _INLINE_

. destroy => _INLINE_

. S &> work repaint

. work => click*

. repaint => events*
Producticns:

0. click => left _INLINE_

1. events => expose _INLINE_

2. events => pointerin _INLINE_
3. events => pointerout _INLINE_

B W - O

7.5.2 Translation

PENGUIN takes a module specification and generates code that the programmer
would have had to write. Prediction tables, which are normally tedious to compute
by hand, are computed Yy PENGUIN. Appendix B exhibits the PENGUIN code for
the canvas module in .fig as well the generated code, for comparison.

PENGUIN’s input language allowed us to structure an application as a set of
reactive modules. The conceptual simplification introduced is significant. Firstly,
no time precedence relationships can be assumed across productions except when
one production predicts another; precedences only apply within productions. Sec-
ondly, the private variables within each instance of a module are local resources;
access to global variables requires explicit importation or the use of external rou-
tines. These two conditions enforce a programming discipline that requires the
programmer to ensure that each production leaves resources in a consistent state
when a production finishes. Effects of semantic actions are as localized as pos-
sible. Reasoning about the module as a whole can be done by examining one
production at a time, in particular by noting which sequence of input events will
activate each production. Reasoning ubout the component as a whole can be done
by examining the actions contained in and resources managed by each module.

PENGUIN’s run time library manages the creation and destruction of threads.
It is very pleasant not have to manage threads oneself and to be able to enhance
the behaviour of existing code by adding more productions. In all the examples
above, fewer lines were needed in PENGUIN than if the standard Toolkit library
had been used.

63

7.5.3 Portability

Modules can be written to deal. with abstract events, and the binding of the
events to the presentation (in the case of pfig, the windowing system) can be
pushed into the run time library. The pfig example in Appendix B shows the
PENGUIN code for a button module containing calls to run time routines to handle
events. It would be simple to retarget run time library code for say the SunView
environment. '

Note that callbacks do not work in languages where procedure variables are
not supported. PENGUIN’s event driven model is more portable in this respect.

Only about 20 lines of C and assembler in the run time library for coroutine
support are machine specific. Only Sun-3s are supported at the moment, but
other machines would be trivial to add.

It is instructive to compare the construction of pfig with an earlier software
effort in which the original version of the graphical editor, fig, was ported from
the SunView windowing system to the X windowing system over a period of two
months in the author’s spare time, resulting in xfig. The work was mechanical,
boring and tedious. The same windowing services were needed by the editor in
both environments: the major differences were in the syntax of the routine calls
and the data structures involved. Fortunately, by judicious use of C preprocessor
and compiler features, a decent translation resulted. This experience lends support
to the assertion that GUI programs written in a higher level notation such as
PENGUIN can be ported with less effort to a variety of GUI platforms than would
be needed for translation between windowing systems. Translation efforts such as
that from fig to xfig can be avoided if the software is written in PENGUIN in the
first place. Such GUI programs would be written to handle abstract events and
use generic data structures. The PENGUIN run time library would handle most of
the graphical environment dependencies.

7.5.4 Reusability

Two ways of reusing a PENGUIN module are (1) to create a module that can be
parameterized for various purposes and (2) to change the source of an existing
module for a slightly different purpose.

A good example of a reusable module of the first type is the button module
in pfig. Not only does this module serve as the basic unit in the control panel
but it also serves as the basic item in a popup menu, even though panel buttons
are square with pictures on them and the menu items are rectangular with text
legends. The panel buttons do not highlight when the cursor enters the button
while the menu items highlight. Each button is customized by passing a data
structure that describes the characteristics of the button required. This module

64

can easily be reused in other windowing applications. Many of the other modules
created for pfig such as menus and panels are reusable in this way too.

Conventional windowing systems do not cater to this type of reusability as
well as PENGUIN does because support for attribute passing through a hierarchy
of modules is poor. This is a consequence of grafting a Ul notation on top of a
conventional language instead of providing compiler support for attribute flow.

An example of a reusable module of the second type is the wrapper module
from the tools in the case studies. There are only minor differences between
the different versions, inspite of the different applications, because the purpose is
similar in each version: create all the descendant windows in the application and
manage the contexts created. It was only a matter of a few minutes of editing to
transform a wrapper module written for pfig to one suitable for alarm.

While in principle modules written for conventional windowing systems can
be reused in the same way, in practice the low level of programming detail that
gets introduced into such modules make it hard to distangle the windowing sys-
tem independent tasks of a module from the incidental minutiae required by the
particular environment. PENGUIN encourages the programmer to push such con-
cerns into the run time library or at least into subroutines called from PENGUIN
modules.

7.6 Problems

Although grammars made the control structure of the program clear, the number
of levels of productions used were not as deep as we had expected. Part of the
reason may be because programmers hesitate to make deeply nested structures
with the traditional methodology. Only more experience with using PENGUIN to
write applications from the ground up can tell.

Grammars replaced less of the traditional program than we had hoped. A
lot of the work of a graphics program is concerned with error checking and other
semantic work which has to be done whatever control structure is imposed.

PENGUIN’s context features were not used as much as we had expected. Most
of the time only a single context was used in a module. We attribute this partly
to lack of experimentation with these new features and how they might be used
In new programs.

PENGUIN should not have bothered with controlling the flow of non-context
attributes. It was a waste of time to separate inherited and synthesized attributes.
One small argument in favour of retaining the separation is that it keeps the inter-
pretive approach to run-time parsing (Chapter 6) feasible; an interpretive parser
needs to know the direction of attribute flow to generate the appropriate calls
to copy attributes between stack frames; in a native parser the programmer is

65

responsible for managing the flow of non-context attributes. However the superi-
ority of the native code method is too strong. PENGUIN should have just allowed
the programmer to use whatever host language parameter passing capability was
available. Knowledge about the context attributes is still required to enforce con-
text uniqueness.

There were some features that could not be programmed in PENGUIN such as
starting up a large but finite number of threads. For this one needs a counter,
which can only be done by an escape to the host language. This situation occurs
often, so either PENGUIN should provide some iterative construct in the future,
or some more structured way of using host language features should be allowed.

initially PENGUIN programming seemed strange because of the declarative
nature of the grammar. It became more natural with use. To win acceptance

with more users, more experience is needed to see which parts of the language
could be made more natural.

66

8 Conclusion

In this chapter we summarize the contributions of PENGUIN, suggest directions
for future work on PENGUIN, and prognosticate a little on the future of GUIs.

8.1 Contributions

We have described the design philosophy and underlying theory of PENGUIN. Our
experiences with PENGUIN confirm that compiler technology can ease the task of
programming GUIs. This is an important result because in the future more and
more computers will be used by non-specialists. Future GUIs will stress ease of use
with more effective human-computer interfaces. Effective interfaces require more
programming effort. If software productivity is not to suffer, then programmers
must have more sophisticated tools.

PENGUIN is an important advance in GUI technology for the following reasons:

Expressive notation Among the various candidate notations for GUI dialogues,
grammars are the most expressive and concise. Our experience with dia-
logues written in PENGUIN bears this out. Grammars are generally a third
to a half of the size of the code they replace and provide a clear skeleton
structure for the code. PENGUIN’s fork operators have proved to be ade-
quate to deal with practical dialogues.

Code generation PENGUIN is a tool for automating much of GUI dialogue con-
struction. Fork productions provide a high-level abstraction for multiple
threads; the compiler maps *he grammar productions into multi-threaded
code. The compiler and run time system ensure the correct dispatch of
tokens.

Improved portability The PENGUIN run time library isolates the programmer
from environmental dependencies. Routines for event input have only to be

67

written once for each environment and thereafter are available to all PEN-
GUIN programs, amortizing the programming effort over many applications.
The uniform event model of PENGUIN treats all input data, signals and ex-
ceptions as events. Since event handling is one of the more environment
dependent parts of a GUI program, pushing these functions into the run
time library makes PENGUIN programs easy to port.

Thread management GUIs require support for multi-threaded behaviour.
PENGUIN separates thread management concerns from sequential program-
ming. The runtime library manages threads, thereby simplifying the pro-
grammer’s job. PENGUIN’s grammar notation and context-based dispatch
are essential to a practical and efficient implementation of multiple threads.

Reactive execution PENGUIN’s reactive execution model is a better fit to GUI
dialogues than the approaches taken with imperative languages: polling and
callback routines. In PENGUIN notation, execution is driven by input rather
than by control flow structures. This allows the programmer to write a
module as a set of input acceptors. The PENGUIN event notation frees the
programmer from spurious concerns that have been introduced by forcing
event-driven programming into the sequential programming model. Sequen-
tiality needs only be considered within a sub-parser.

Delegation by redirection The quantization of input into events and the use
of sub-parsers to deal with separate threads allows a new way of delegating
responsibility to a different sub-parser: redirection of events. This mecha-
nism is general and does not depend on any hierarchy of PENGUIN modules
in a program.

Component model The PENGUIN intercomponent connection model provides a
framework for building complex applications as a network of independently
executing components. The grammars of the components formally spec-
ify the protocols that the components will use to communicate with each
other. The traditional Seeheim model of partitioning an application by lex-
ical, syntactic and semantic responsibilities gives way to a model in which
components manage resources and communicate across logical application
boundaries.

In summary, the use of traditional programming methodologies results in GUI
programs that have unnatural structure. Although the dialogue is but a part of
graphical applications, it is the critical heart of such software.

8.2 Desirable PENGUIN enhancements

PENGUIN could easily be improved to make usage more convenient.

68

More automation The compiler could do more work for the programmer. If a
multi-way fork is needed, the programmer currently has to provide auxiliary
symbols because only non-terminals are allowed on the right hand side of a
fork production.

A& BC
B => t*
C=>XY2

The compiler should allow the programmer to write
A tx {XYZ}

by creating auxiliary symbols as needed in the generated code.

Lexical issues The terminal classification scheme is too rigid. It is assumed that
each terminal in the grammar represents exactly one element of the token
alphabet. An enhancement to PENGUIN would allow the programmer to
classify tokens using more than one attribute in the terminal and would let
the compiler take over more of the work of the programmer. For example,
the programmer might specify that a range of alphabet elements map to a
terminal in the grammar, e.g. all keyboard tokens are collectively called a
key terminal and the key value is passed to semantic routines in a separate
attribute.

At this moment this limitation is bypassed by performing translation in the
input routine. This augmentation would not alter the context-free property
of the grammar.

8.3 Future research issues

In the long term, improvements to PENGUIN will require investigation into several
open research issues. PENGUIN can be improved by providing general and powerful
mechanisms that will increase the expressivity of the notation and improve the
reusability of code. PENGUIN should also be made to coexist better with other
programming tools.

Inheritance Inheritance is a way of allowing common features to be factored
out in a common ancestor. For example, a button module may need to be
specialized to make a locking button. Inheritance would make PENGUIN
grammars more reusable. An interesting research issue would be to extend
inheritance to productions. Current object-oriented languages define inher-
itance only for data and procedures.

69

Grammars as parameters Grammars are static global objects. Grammars
might be more useful if they could be passed as parameters, giving modules
whose behaviour could be altered dynamically.

Exceptions Sub-parser resources that are managed by the PENGUIN run time are
automatically recovered at the end of a fork. Resources that are explicitly
allocated by programmers within sub-parsers will be lost. There should be
a way to execute programmer specified code that would free these resources
prior to coalescing the branches of a fork.

Language environment PENGUIN is not well integrated with existing language
environments. Some things cannot be done easily in PENGUIN but the
mechanism for escaping to the host language is awkward. For example, the
syntax for declaring private variables is restrictive and makes it difficult to
declare the full range of data types allowed in the host language. Another
example is the need for an unnatural notation to signal to the compiler
references to attributes in inline code. Ideally, PENGUIN should handle token
dispatch, flow of control, and thread management, but allow the programmer
to use the host language to achieve other goals.

Components Intercomponent éompatibility has been formally defined in Chap-
ter 5, together with possible implementation techniques but experience is
needed to determine which techniques are useful.

Other problem domains PENGUIN is a language for describing reactive execu-
tion in general. Many other problem domains require programs that accept
input from multiple sources, using context to dispatch to threads. Although
context is normally associated with windows in a graphical user interface en-
vironment, it could equally well be used to identify one of several sensors in
a real-time embedded program or one of several communicants in a network
protocol program. PENGUIN may prove to be a useful tool for constructing
such software.

8.4 Conclusion

Although we have shown that PENGUIN is a superior tool for the construction
of GUI dialogues, there is little impetus within the GUI community to abandon
current dialogue construction practices. There are several reasons for this:

e Current GUI programming praxis is conservative, being concerned with con-
trol over appearance and with the standardization of interiaces, as shown by
the emergence of “look and feel” toolkits for windowing systems. Current

70

GUIs do not exhibit a wide variety of interaction styles. A small selection
of buttons, menus, scrollbars and viewports suffices for most current ap-
plications. This reflects the conservative nature of the GUI market. Users
who have grown accustomed to certain styles of interaction are reluctant to
switch to new interaction techniques without a guarantee of adequate return
on learning effort.

e Current practice also reflects insufficient experience with novel I/O devices.
The standard configuration of screen, keyboard and mouse encompasses the
overwhelming majority of graphical interfaces. The current GUI practice is
to concentrate all device specific code for standard configurations in a single,
monolithic presentation component. This methodology is adequate for stan-
dard configurations but does not permit additional interaction channels such
as sound to be added easily. With current practice, the presentation compo-
nent cannot be easily modified or replaced by the programmer. PENGUIN’s
model allows as many presentation components as needed to communicate
with devices to be created.

e Traditional programming languages have a great deal of inertia. For ex-
ample, in the X11 windowing system, toolkits would clearly have benefited
from a modern language such as C++, instead of C, but C continued to be
used because of concerns over the availability of C++4 compilers for a wide
range of platforms.

In the long run, appropriate methodologies such as PENGUIN will prevail be-
cause advances in GUI hardware and software will necessitate the adoption of
better tools. Appearance and standardization issues do need to be resolved but
in the longer term, advanced interfaces for use with sophisticated hardware will
emerge. Devices such as wired gloves and head-up displays will come down in
cost with development. These devices will require new interaction techniques,
different from those developed for windowing displays. Even with windowing dis-
plays. increases in hardware power will permit more natural interaction techniques
such as animated interfaces, which cannot be easily catered for by current GUI
toolkit technology, but require special programming effort. A structural engineer
may experiment with a framework by manipulating objects on a screen and then
requesting an almost instant analysis of the structure. When these advanced inter-
action techniques come into wider use, current interface techniques and software
tools will prove inadequate.

The history of progress in Human-Computer Interfaces can be read as a con-
tinual search for improvement in the bandwidth of commuuication channels be-
tween the machine and user. A person directly manipulating a physical object
gets all the information the senses can absorb. A person sitting at a computer

71

terminal must maintain a mental model of the objects inside the computer sys-
tem. Textual user intertaces require the user to retain more context than GUls
do. Textual interfaces were necessitated by the narrow bandwidth communication
channels we once had. GUIs provide wider bandwidth for interaction. Techniques
such direct manipulation [Shneiderman, 1982] can take advantage of this increase
in bandwidth but the programming tools we have are wanting. In the GUI world,
information entering a program does not come from a single source only, nor will
users be willing to react to a program only when bidden to do so by the program.
Our teols must support these freedoms permitted by GUIs.

-1
S

A PENGUIN Language Manual

A.1 Introduction

This manual describes the PENGUIN language. The manual is organized as follows:

1. Introduction

o

Lexical Conventions
3. Module sections

4. Declarations

5. Storage

6. Grammar

A.1.1 Syntax notation

In the syntax notation used in this manual, syntactic categories are indicated by
an italic face, and literal words and characters by a typewriter face. Alternatives
are listed on separate lines. Zero or more instances of an item are indicated by a
superscripted asterisk:

item”

An optional terminal or non-terminal symbol is indicated by the subscript
“opt,” so that

{ ezpressiongy }

indicates an optional expression enclosed in braces.

A.2 Lexical Conventions

The unit of translation is a PENGUIN module. Currently this is synonymous with

file.

A.2.1 Tokens

There are six types of tokens:

o Identifiers
e Keywords

Constants

Strings

Operators

Other separators.

Blanks, horizontal tabs, new-lines, formfeeds, and comments (collectively,
“white space”), as described below, are ignored except as they serve to separate
tokens. Some white space is required to separate otherwise adjacent identifiers,
keywords, and constants.

If the input stream has been parsed into tokens up to a given character, the
next token is taken to be the longest string of characters that could possibly
constitute a token.

A.2.2 Comments

The characters /* start a comment, which terminates with the characters */.
These comments do not nest. The characters // start a comment, which termi-
nates at the end of the line on which they occur. The comment characters //, /*,
and */ have no special meaning within a // comment and are treated just like
other characters. Similarly, the comment characters // and /* have no special
meaning within a /* comment.

A.2.3 Identifiers

An identifier is an arbitrarily long sequence of letters, underscores and digits. The
first character must be a letter. Upper- and lower-case letters are different. All
characters are significant.

A.2.4 Keywords and Operators

The following identifiers are reserved for use as keywords, and may not be used
otherwise:

const external grammar include mcdule nonterm private returns
terminal typedef

PENGUIN programs use the following characters as operators or for punctua-
tion:

() *x+-:, .80
and the following character combinations are used as operators:
= & |> &: |:

Each is a single token.

A.2.5 Literals

There are several kinds of literal constants:
literal:
integer-constant
character-constant
string

Integer constants

An integer constant consists of a sequence of digits and is taken to be decimal.
The range of representable integers is machine dependent but may be assumed to
be signed 32 bits in current implementations.

Character constants

A character constant i1s one or more characters enclosed in single quotes, as in
’x’. Single character constants have type char.

Certain non-graphic characters, the single quote, the double quote, and the
backslazh. may be represented according to the following table of escape sequences:

-1
(1

new-line NL (LF) \n

horizontal tab HT \t
vertical tab VT \v
backspace BS \b
carriage return CR \r
form feed FF \t
alert BEL \a
backsiash \ \\
single quote ’ \’
double quote v X
actal number non \non
hex number hhh \xhhh

If the character following the backslash is not one of those specified, the be-
haviour is undefined. An escape sequence specifies a single character.

The escape \ooo consists of the backslash followed by one, two, or three octal
digits that are taken to specify the value of the desired character. The escape
\xhhh consists of the backslash followed by x followed by a sequence of hexadeci-
mal digits that are taken to specify the value of the desired character. A sequence
of octal or hexadecimal digits is terminated by the first character that is not an
octal digit or a hexadecimal digit, respectively.

Strings

A string literal is a sequence of characters (as defined in § A.2.5) surrounded by
double quotes, as in ”...”. Within a string, the double quote character must be
preceded by a \.

A.3 Module sections

A module comprises the following sections, some of which are optional:

module:
header declarations,,; erternals,,, private,, grammar

A.3.1 Header

The header provides a name for the module. The name should be the same as the
filename body in the current implementation.
header:
module identifier

A.3.2 Declarations

A declaration introduces one or more names into a module and defines the type
of a name.
declaration:
typedef
terminal declaration
nonterminal declaration
insert
include

Terminals and non-terminals are collectively called items.

Typedef
Lypedef:
typedef identifier = definition ;

A typedef introduces an abbreviation for a type definition. The definition is
any type declaration that is valid in the target language, currently C++.

Terminal declaration

terminal declaration:
terminal terminal-list ;
terminal-list:

terminal

terminal , terminal-list
terminal:

identifier attributes,, value,p
value:

integer-constant
character-constant

A terminal declaration names tokens accepted by the parser. A value can be
associated with a terminal with the optional value clause. In the absence of a
value clause, a terminal is assigned a value one greater than the last terminal
value. If the first terminal does not have a value clause. the value defaults to 0.

Attributes may be associated with a terminal. See § A.3.3.

Nontcrminal declaration

nonterminal declaration:

nonterminal nonterminal-list ;
nonterminal-list:

nonterminal

nonterminal , nonterminal-list
nonterminal:

identifier attributes,y

A nonterminal declaration names nonterminals and associates attributes with
those names. See § A 3.3.

Inserts (

Inserts are used to pass lines uninterpreted to the target language processor.

insert:
$(arbitrary text $)

Includes

An include directive causes the compiler to interpolate the contents of the named
file after the include directive.

cncliude:

include string ;

A.3.3 Externals

exrternals:
external modulename declarations

An external section allows declarations to name non-termin-ls that are im-
ported from other modules and associates attributes with those names. The first
identifier must be the name of a module and the second identifier a non-terminal
from that module.

Attributes

attributes:

(inherited,p, synthesized,,,)
inherited:

attribute-list
synthesized:

| attribute-list
attribute-list:

attribute

attribute , attribute-list
attribute:

typename attributename
typename:

identifier
attributename:

tdentifier

Attributes name regions of storage that are used to pass information between
symbols. The scope of an attribute name is local to the associated item, all
references must be qualified.

A.4 Private data

private:

private private-declaration™
private-declaration:

typename variablename ;

module modulename variablename ;

lypename:

identifier
modulename:

wdentifier
variablename:

identifier

A private declaration names regions of storage that are private to a module.
Each instance of a module is assigned a separate region of storage.

A.5 Grammar

grammar-section:
production:

lhs:

local-list:

vperator:

rhs:
synthesized:

item:

inline-code:
fields:

field-list:

field:

grammar production”
lhs local-list operator rhs synthesized,
identifier

storage-declaration™

ttem*
returns fields

identifier fields,p:

inline-code
$(arbitrary-statements $)
(field-list)

field
field , field-list

variablename

Q@ itemname . fleldname

Q@ . fieldname

Q@ integer-constant . fieldname
expression

$ envname

pt;

80

variablename:

identifer
itemname:

identifier
fieldname:

identifer
envname:

identifier

The grammar section lists the productions contained in the module. A pro-
duction specifies the sets of sequences of terminals, non-terminals and inline code
that are accepted as the expansion of the LHS non-terminal.

Field lists specify inherited attributes or expressions to be copied into at-
tributes of non-terminals. Attribute flow between items in a production must be
from left to right. Inline code may name attributes of items to the left in the pro-
duction. The optional attribute return list specifies synthesized attributes that
are returned by the LHS non-terminal to the superior production.

The local list comprises declarations of variables that are private to the pro-
duction.

A.6 Execution model

A PENGUIN component must contain at least one module. When execution begins
in a component, at least one instance of a module must be created. A instance of
a module is created by predicting the special non-terminal create of the module.
This operation has the side effect of initializing a handle to the instance of the
module created. The special non-terminal destroy recycles the handle for use by
other created instances.

A production becomes active when the LHS non-terminal is predicted by some
other production (in the same module or in an external module), or when the
initial start-up routine predicts the LHS non-terminal. A production terminates
when a valid sequence has been accepted. Productions may predict terminals,
which must be matched by input tokens. Productions may predict inline code.
The specified code is executed when that position in the production is reached.

When a normal production becomes active, it predicts the sequence that is
accepted by the RHS symbols. In the case of fork productions, indicated by the
use of operators other than =>, partial sequences for some of the RHS symbols
may be accepted. The &> operator accepts a sequence that is an interleaving of
all sequerces accepted by the RHS symbols. The |> operator accepts a sequence
that is an interleaving of a sequence accepted by one right hand side symbol and
sub-sequences accepted by all of the cther RHS symbols. For both opcrators, the

~

51

production predi~ting the LHS symbol is suspended until the LHS symbol is ac-
cepted. The &: and | : operators are defined similarly, except that the production
predicting the LHS symbol is nut suspended, but continues to accept sequences
to the right of that symbol.

Input tokens arrive from other components and are read from the urgent queue,
or the normal queue, if the urgent queue is empty. Tokens are tuples containing
at least two fields, value and coutext. Both queues are ordered by time of arrival.
Each token is dispatched to the production awaiting a terminal of that value and
context. Tokens that cannot be dispatched are sent to a run time error handler.
Normal and urgent tokens are sent to other components by calling the appropriate
run time library routine.

No time precedences are implied by the order in which the productions are
listed. The only time precedences are those implied by the order of items within
a production and the prediction of non-terminals from a production.

- B Extended Example

This appendix contains the complete source code for the user interface portion of
the pfig line graphics editor. The hierarchy of the modules is shown in Chapter 7.
This appendix is divided into three sections: (1) the PENGUIN modules comprising
the GUI, (2) the main program, which also contains the glue routines to the X
windowing system, and (3) an example of code generated from a PENGUIN module.

B.1 PENGUIN modules

Wrapper module

The first module we exhibit is the wrapper module. The wrapper window is not
sensitive to any events but encloses all its descendant windows.

//

// wrapper window for pfig
//

module pwrapper

$(

#include <std.h>
#include <stream.h>
#include <Xinput.h>
#include "pfig.h"
#include "resources.h"
$)

include "pwrapper.pi”;

external ppanel

include "ppanel.pi;
external pcanvas

include "pcanvas.pi”;
external pruler

inciude "pruler.pi’;

external pmessage
include "pmessage.pi";

private

module ppanel P;

module pmessage M;

module pcanvas C;

module pruler HR;

module pruler VR;
$(

extern "C" void setup_rulers();
$

These are preliminary setup declarations. The includes bracketed by $(and
$) are passed through to the C++ compiler. The PENGUIN includes contain the
attribute declarations of external non-terminals.

grammar
create
Window v,
=>
$(
w = xi->create_enable_context(Q.wrapper_str);
cerr << “Wrapper window " << hex(w) << "\n";
@.message_str->parent = Q@.hruler_str->parent =
0.vruler_str->parent = @,canvas_str->parent =
©.panel_str->parent = w;
$)
P:create(Q.panel_str,0.button_str,@.nbuttons)
HR:create(@.hruler_str)
VR:create(Q@.vruler_str)
C:create(@.canvas_str,0.menu_str,?.item_str,Q@.nitems,
CBR:create.ctxi,0VR:create.ctxi)
$(
topruler_pizwin = trswfd = @HR:create.ctxi;
sideruler_pixwin = srswid = ?VR:create.ctxil;
setup_rulers(@.nruler_str->bgc,@.hruler_str->fgc);
$)
M:create(0.message_str)
returns (w, Q@P:create.ctxl, €@C:create.ctxl,
OHR:create.ctxl, @VR:create.ctxl, OM:create.ctxl);
destroy =>
$(
cerr << "Wrapper destroy\n";
$;

The

create non-terminal calls a run time library routine to obtain a context

for the wrapper window and saves this context in the window structures of its
descendant windows: a panel, a message area, a canvas (drawing) area, and two
rulers. Next it predicts the create non-terminals of each of its children modules,

passing

along the window structures inherited from the main routine. For com-

patibility reasons, some global variables from the C routines need to be initialized.

Finally,

start

The

to start

all the new contexts are returned.

$(
cerr << "Wrapper S ctx " << hex(@.ctx) << "\n";
$)
start(Q@.ctxi, €.nbuttons, @.ctx2, @.ctx3, @.ctx4, Q@.ctx5, Q.dpy);
&>
P:S(@.nbuttons,@.ctxl)
C:S(0.ctx2)

HR:S(Q.ctx3)
VR:S(Q.ctx4)
M:S(Q@.ctx5);

S non-terminal is called frorn the main routine after the creation phase
the program running. All this non-terminal has to do is predict all the S

non-terminals of its children.

Canvas module

The canvas window provides the drawing surface on which the user creates line
graphics.

// canvas window for pfig

module p

$(

#include
#include
#include
#include
#include
$

canvas

<std.h>
<stream.h>
<kinput.h>
"pfig.h"
"“"resources.h"

include "pcanvas.pi";

terminal expose = ’e’, key = 'k’,

left = ’1’, middle = ’m’, right = ’r’, pointer = ’p’;

nonterm repaint_loop, work_loop;

nonterm repaint, work;

external pmenu

include "pmenu.pi";

private

$

module pmenu M;

int menu_count;

Wstruct *m_info;

context mctx; // of menu
context hctx; // of hruler
context vctx; // of vruler

extern "C" void redisplay_canvas();

extern "C" void pointer_move();

extern "C" void key_press();

extern "C" void null_proc();

extern void (*canvas_leftbut_proc)(int, int);
extern void (*canvas_middlebut_proc)(int, int);
extern void (*canvas_locmove_proc)(int, int);
extern void (*canvas_kbd_proc)(int, int);

These preliminaries differ from those of the wrapper window in that terminals

are declared because this window accepts events. The values of the terminals
have been chosen to be mnemonic and have to match the values in the terminal
mapping routine in pfig.cc, the main module. There are also private variables
for saving state between predictions of non-terminals from this module.

grammar
create
Window v;
$(
canvas_swfd = canvas_pixwin = ®
= xi->create_enable_context(Q.ps);
cerr << "Canvas window " << hex(w) << "\n";
canvas_leftbut_proc = canvas_middlebut_proc =
canvas_locmove_proc = null_proc;
canvas_kbd_proc = null_proc;
menu_count = €.ni;
m_info = Q.Ms;
$)
M:create(@.Ms,0.is,€.ni)
$(

mctx = €M:create.ctxi;
hetx Q.hctx;

86

vctx = @.vetx;
$)
returns (w);

destroy =>
$(
cerr << "Canvas destroy\n";

$);

The function of this create non-terminal is similar to that in the wrapper
module: obtain a context, initialize variables, predict the create non-terminal of
a child and return the new context to its parent.

S &>
repaint_loop work_loop;

repaint_loop =>
repaint#*;

work_loop =>
work*;

The S non-terminal starts two sub-parsers in parallel, one to deal with exposure
events and the other to deal with user input. This arrangement allows the user
input productions to be changed without affecting exposure handling.

repaint =>

expose
$(
cerr << "Canvas expose ctx " << hex(@.ctx) << "\n";
redisplay_canvas();
$);
work
XButtonEvent *e;
=>
left
$(
cerr << "Canvas left button ctx ' << hex(®@.ctx) << "\n";
e = (XButtonEvent *)xi->xevent();
(*canvas_leftbut_proc)(e->x, e->y);
$);
work
XButtonEvent LN

87

=>

middle
$(
cerr << "Canvas middle button ctx " << hex(@.ctx) << "\n";
e = (XButtonEvent #*)xi->xevent();
(*canvas_middlebut_proc) (e->x, e->y);
$);
work =>
right
$(
cerr << "Canvas right button ctx " << hex(®.ctx) << "\n";
xi->enable_context(m_info);
$)
M:S(menu_count,mctx);
work
XAnyEvent *@a;
=>
pointer
$(
e = xi->xevent();
pointer_move(e);
xi->change_context(e, (Window)hctx);
xi->send_output(0, e);
// one ruler handles both
$);
work
XAnyEvent *0;
=>
key
$(
e = xi->xevent();
key_press(e);
$);

All that these productions have to do is invoke the appropriate semantic rou-
tines. The production that handles pointer motion is worth commenting on: it
changes the context of the token and forwards it to a ruler window. This useful
device is explained in Chapter 7.

Button module

A button provides an area that can be clicked upon to invoke an action routine.
Although there is but one template, many instances of the button module are
created because pfig has a panel of buttons. The panes in the pop-up menu are
also instances of buttons.

// button window for ptig
module pbutton

$(

#include <std.h>
#include <stream.h>
#include <Xinput.h>
#include "pfig.h"
$

include "pbutton.pi®;
terminal expose = ’e’,
left = ’1l’, pointerin = ’f’, pointerout = ’F’;
nonterm work, repaint;
nonterm click, events;

private
Wstruct #*self;
int number;

The preliminaries are similar to the other rnodu.les, with the one difference
that buttons are sensitive to the cursor moving in and out of them so that they
can draw attention to themselves when they are prepared to accept input.

grammar
create
Window w;
$(
number = Q.n;
W = xi->create_enable_context(self = @.ps);
cerr << "Button window " << hex(w) << "\n”;
$)
returns (w);
destroy =>
$(
cerr << "Button destroy\n";
$);

The create production obtains a context, saves information in privaie vari-
ables and returns the new context.

89

work
repaint;

work =>

repaint =>
events*;

Here we create two sub-parsers to deal with user input and exposure events.

click

XAnyEvent *g;

=>

left

$(
// cerr << "Button left ctx " << hex(@.ctx) << "\n";
xi->refresh_contents(self);
// monkey with button event and pretend it came from panel
e = xi->xevent();
xi->change_context(e, self->parent);
// this is terrible, but to do it right is messy
// put button number in last long of packet
spare_slot(e) = number;
xi->send_output(Q, e);

$);

events =>
expose
$(
// cerr << "Button expose ctx " << hex(@.ctx) << "\n";
xi->refresh_contents(self);

$);

events =>
pointerin
$(
cerr << "Button pointerin ctx " << hex(@.ctx) << "\n";
xi->highlight_window(self);
xi->refresh_contents(self);

$);

events =>
pointerout
$(
cerr << "Button pointerout ctx " << hex(®@.ctx) << "\n";
xi->unhighlight_window(self);
xi->refresh_contents(self);

$);

90

The click production forwards the click event to the panel window. Each
button window has a unique index assigned via an attribute passed in at creation
time. This index is forwarded to the panel in the event record so that the panel
knows which button the click originated fro:m.

Panel module

The panel module implements a bank of switches. It encloses many instances of
buttons.

// panel window for pfig
module ppanel

$(
#include <std.h>
#include <stream.h>
#include <Xinput.h>
#include "pfig.h"
#include "switch.h"
$)
include "ppanel.pi”;
terminal expose = ’e’,
lett = ’1°;

nonterm repaint, work;
nonterm spawn;
nonterm click, expose_loop;

external pbutton
include "pbutton.pi";

private
module pbutton handle;
Wstruct *win;
Wstruct *button_info;

int nsw;
$(
extern "C" void do_switch(int);
$)
grammar
create
Window w;
Wstruct *b;
module pbutton B;
int i;
=>
$(

91

button_info = ©€.bs;

nsw = @.nb;

w = xi->create_enable_context(Q.ps);

cerr << "Panel window " << hex(w) << "\n";
for (i = 0; i < Q.nb; ++i)

{
b = &button_infolil;
b->dpy = €.ps->dpy;
b->parent = w;
b->fgc = @.ps->fgc; /% inherit from panel */
b->bgc = @.ps->bgc;
b->eventmask = ButtonPressMask | ExposureMask;
$) '
B:create(b,i)
$(C
b->pg_mod = B;
}
$)
returns (w);
destroy =>
$(
cerr << "Panel destroy\n";
$);

The number of buttons in the panel is passed in an inherited attribute from
the wrapper module. PENGUIN does not have a construct to predict a large but
finite number of external non-terminals so an escape to the host language is used.
The for loop initializes each button’s configuration structure and then predicts
the start symbol in that button.

S f 54
repaint work;

repaint =>
expose_loop*;

expose_loop =>
expose
$(
cerr << "Panel expose ctx " << hex(0.ctx) << "\n";

$);
work =>

$(

register int i;

92

for (i = 0; i < msw; ++i)

{
win = &button_infol[il;
handle = (pbutton *)win->pg_mod;
$)
spawn
$(
}
$)
click+,;
spawn &:

handle:S(win->self);

Here as before, the for loop escape to the host language is used to fork all the
sub-parsers for the buttons in parallel.

click
int i;
XAnyEvent *e;
XButtonEvent *b;
F_switch *3y;
F_switch *0ld;
=>
left
$(

e = xi->xevent();
b = (XButtonEvent *)e;
cerr << "Panel left button ctx " << hex(@.ctz) << "\n";
cerr << "Button " << (i = spare_slot(e)) << " Coordinates "
<< b->x << " " << b->y << * "
<< b->x_root << * " << b->y_root << "\n";
do_switch(i);
$);

Message module
The message window displays prompts and diagnostics from the program.

// message window for pfig
module pmessage

$(

#include <std.h>
#include <gtream.h>
#include <Xinput.h>
#include "ptig.h"

93

#include "resources.h"

$

include "pmessage.pi";

terminal msg = 'l’, expose = ’e’;
nonterm repaint, message;

nonterm repaint_loop, message_loop;

private
Wstruct *self;

grammar

Create
Window L
=>
$(
msgswid = msg_pixwin = w
= xi->create_enable_context(self = Q@.ps);
cerr << "Message window " << hex(w) << "\n";
$)

returns (w);

destroy =>
$(
cerr << "Message destroy\n";

$);

S &>
repaint_loop message_loop;

repaint_loop =>
repaint*;

message_loop =>
message*;

repaint =>
expose
$(
cerr << 'Message expose ctXx " << hex(@.ctx) << "\n";
xi->refresh_contents(self);

$);

message
XAnyEvent *e;
=>
msg
$(
e = xi->xevent();
self->legend = (char *)spare_slot(e);

94

xi->refresh_contents(self);

$);

Two sub-parsers handle exposures and incoming messages. The message mod-
ule assumes that a modules wishing to display a message places a pointer to the
null-terminated string in a spare field of the message token and sends this token
to the message window. The message window changes the field of the window
structure that specifies the window legend and then calls the run time library
routine to refresh the window.

Ruler module

One ruler module serves for both the vertical and horizontal rulers since both
of them respond to the same events. Here, as for buttons, the ability to create
multiple instances of a module is essential.

// ruler window for pfig
module pruler

$(
#include <std.h>
#include <stream.h>
#include <Xinput.h>
#include "ptig.h"
$)
include "pruler.pi";
terminal expose = ’e’, pointer = ’'p’;
nonterm repaint_loop, work_loop, repaint, work;
private
Wstruct =*self;
$(
extern "C" void set_rulermark(int, int);
$)
grammar
create
Vindow v;
=>
$(

w = xi~>create_enable_context(self = Q@.ps);
cerr << "Ruler window ™ << hex(w) << "\n";
$)

returns (w);

95

destroy =>
$(
cerr << "Ruler destroy\n";
$);
S &>

repaint_loop work_loop;

repaint_loop =>
repaint#*;

repaint =>

expose
$(
cerr << "Ruler expose ctx " << hex(@.ctx) << "\n";
xi->refresh_contents(self);
$);
work_loop =>
workx*;
work
XMotionEvent *e;
=>
pointer
$(
// cerr << "Ruler motion ctx " << hex(@.ctx) << "\n";
e = (XMotionEvent *)xi->xevent();
set_rulermark(e->x, e->y);
$);

As pointed out in the discussion of the canvas window, the ruler windows do
not receive user input directly but have motion events forwarded to them from
the canvas area.

Menu module

The menu module handles the pop-up menu which is activated by clicking on the
right mouse button.

// menu window for pfig
module pmenu

$(

#include <gtd.h>
#include <stream.h>
#include <Xinput.h>
#include "ptig.h"

96

$

include "pmenu.pi";

terminal expose =

left =

)

.e)'
)1‘;

nonterm exposures, click;
nonterm repaint, work(int ni);

nonterm spawn,

external pbutton
include "pbutton.pi”;

private

$(
$)
grammar

create

module pbutton handle;
Wstruct *item_info;

Wstruct #*win;

extern "C" void pane_select(int);

Window

Wstruct

module pbutton
int

=>

$(

b = item_info = @€.is;

€.ps->height = (b->height + b->bwidth * 2) * @.ni;
W = xi->create_context(@.ps);

cerr << "Menu window " << hex(w) << "\n";

for (i = 0; i < Q@.ni; ++i, ++b)

{

$)
$(

}
$)

returns (w);

b->dpy = @.ps->dpy;
b->parent = w;

b->hoff = 0;
b->voft = ((b->bwidth * 2 + b->height) * i);
b->fgc = Q.ps->fgc; /* inherit from menu */

b->bgc = Q.ps->bgc;

b->fontname = €.ps->fontname;

b->eventmask = EnterWindowMask | LeaveWindowMask |
ExposureMask | ButtonPressMask;

B:create(b,i)

b->pg_mod = B;

destroy =>

$(
$);

&>

cerr << “Menu destroy\n";

repaint work(®@.ni);

repaint =>

exposures#*;
exposures =>
expose
$(
cerr << "Menu expose ctx " << hex(@.ctx) << "\n";
$);
work >
$(
register int i;
for (i = 0; i < @.ni; ++i)
{
win = &item_info[i];
handle = (pbutton *)win->pg_mod;
$)
spawn
$(
}
$)
click+;
spawn &
handle:S(win->self);
click

int i;

XAnyEvent *e;

XButtonEvent *b;

=>

1-1£%

$(
e = xi->xevent();
b = (XButtonEvent *)e;
cerr << "Menu left button ctx " << hex(0.ctx) << "\n";
cerr << "Panel " << (i = spare_slot(e)) << "\n";
pane_select(i);

$);

L
0 4]

The menu module is very simtilar to the panel window. One difference is that
its parent window (in X11 terms) is not the wrapper window but the background
window of the screen. This is because the menu is a pop-up window that should
not be clipped by the wrapper area. Again, each pane in the menu is assigned a
unique index which is used to identify the origin of a click forwarded from some
button.

B.2 Main program and auxiliary routines

Here 1s the main routine of the pfig program. It is written in C++ because it
does not deal with events and it requires actions that cannot be expressed with
PENGUIN code.

#include <stream.h>
#include <pglib.h>
#include <Xinput.h>
#include "xpfig.h"
#include "pfig.h"
#include "version.h"
#include "pwrapper.h"
#include “"resources.h"
#include "“switch.h"

int event_translate(XAnyEvent *e)
/*
** Translate an X event into a flat alphabet
*/
{
switch (e->type)
{
case KeyPress:
return (’k’);
case ButtonPress:
: switch (((XButtonEvent *)e)->button)
{
case Buttonl:
return (’1’);
case Button2:
return (’m’);
case Button3:
return (’r’);
}
case EnterNotify:
return(’f’);
case LeaveNotify:
return(’'F’);

99

case Expose:
return (’e’);
case MotionNotify:
return (’p’);
}

return (’?%);

The event_translate routine is called by the run time library to examine
the input token and return the appropriate value to the parser. Here it is used
to flatten the token record. Left, middle and right buttons can be distinguished
only by examining another field of the token record. This routine returns distinct
values for each button.

Wstruct wrapper_info =

{
WRAPPER_WIDTH, WRAPPER_HEIGHT, WRAPPER_BORDER,

0, O,
0, 0, 0,
0, 1, /* tg and bg colours, will be pgmed */
0, 0, /* normal and highlighted gcs */
0, 0, 0, 0, /* state x/
0, 0, O,
0
};
Wstruct panel_info =
{
PANEL_WIDTH, PANEL_HEIGHT, PANEL_BORDER,
PANEL_HOFF, PANEL_VOFF,
0, 0, O,
o, 1, /* £g and bg colours, will be pgmed */
o, 0, /* normal and highlighted gcs */
0, 0, 0, 0, /* state */
0, 0, 0O,
0
};
#define SWITCH_COUNT 42 /* should match panel.c */
Wstruct button_info[SWITCH_COUNT];
Wstruct capvas_info =
{

CANVAS_WIDTH, CANVAS_HEIGHT, CANVAS_BORDER,
CANVAS_HOFF, CANVAS_VOFF,

o, 0, O,

0, 1, /* 1g and bg colours, will be pgmed */
0, 0, /* normal and highlighted gcs */

0, 0, 0, 0, /* state */

0, 0, 0,

KeyPressMask]ButtonPressMask)ExposureMask|PointerMotionMask

100

};
Wstruct

{

};
Wstruct

{

};
Wstruct

{

};
Wstruct

{

};

Wstruct

hruler_info =

BRULER_WIDTH, BRULER_HEIGHT, HRULER_BORDER,
HRULER_HOFF, BRULER_VOFF,

0, 0, 0,

o, 1, /+ fg and bg colours, will be pgmed */
0, 0, /* normal and highlighted gcs */

0, 0, 0, 0, /* state */

o, 0, 0,

ExposureMask

vruler_info =

VRULER_WIDTH, VRULER_HEIGHT, VRULER_BORDER,
VRULER_HBOFF, VRULER_VOFF,

0, 0, 0,

0, 1, /* fg and bg colours, will be pgmed */
0, 0, /* normal and highlighted gcs */

0, 0, 0, O, /* state */

0, 0, O,

ExposureMask

message_info =

MESSAGE_WIDTH, MESSAGE_EEIGHT, MESSAGE_BORDER,
MESSAGE_BOFF, MESSAGE_VOFF,

0, 0, 0,

0, 1, /* fg and bg colours, will be pgmed */

0, o, /* normal and highlighted gcs */

0, 0, 0, 0, /% state =/

"fixed", O, O,

ExposureMask /* however, it gets sent fake key events */
menu_info =

MERU_WIDTH, MENU_BEIGHT, MENU_BORDER,
MEMU_HOFF, MENU_VOFF,

o, 0, O,

0, 1, /+ fg and bg colours, will be pgmed */
0, 0, /* normal and highlighted gcs */

0, 0, 0, 0, /* state */

"tixed", O, O,

0

item_info[ITEM_COUNT];

The preceding window structures describe all the interesting attributes of the
windows managed by the preceding modules. These structure initializations spec-
ify the physical position, size, text font used, if any, and the set of events that

101

each window responds to. Pointers to these structures are passed to the modules
attributes and thence to the library routines that interface to the presentation
component.

Note that forwarded events cannot be stopped by excluding the event from
event set in the window structure. Only the presentation component (X server)
obeys the event set. Forwarded events are always delivered, along with events
from the presentation, if requested in the event set.

Xinput *xi;

static void send_message(char *m)

{

{
register XAnyEvent *last_event = xi->xevent();
xi~->change_context(last_event, message_info.self);
spare_slot(last_event) = (long)m;
xi~>send_event(last_event);

}

static void send_button(int i, int etype)
register XAnyEvent *last_event = xi~>xevent();
XEvent e = *((XEvent *)last_event);
e.type = etype;
xi->change_context ((XAnyEvent *)&e, button_infol[il.self);
xi->send_event ((XAnyEvent *)&e);

}

extern F_switch switches[];

extern void (*sendmsg) () ;

extern void (*sendsw)();

main(int argc, char *argv[])

{
register int i;
register Wstruct *8;
extern MENUITEM pument_items{];
pwrapper a;
_pvrapper_create_attr wc_attr;
-pwrapper_S_attr wS_attr;
subparser sp;
XEvent e,

cerr << "Initializing FIG " << FIG_VERSION << MINOR_VERSION <<
" (PenGuin) ... \n";

ip = xi = new Xinput(0, event_translate); // needed by pglid

102

The input routines form a C++ class so we need to create one instance. Al-
though there is never any need for more than one instance at the moment, classes
are useful for hiding information.

sendmsg = (void (*)())send_message;

sendsw = (void (*)())send_button;

// 2111 in display info and root window id

menu_info.dpy = message_info.dpy =
hruler_info.dpy = vruler_info.dpy = canvas_info.dpy =
panel_info.dpy = wrapper_info.dpy = xi->Dpy();

menu_info.parent = wrapper_info.parent =
RootWindow(wrapper_info.dpy, 0);

// create the windows
wrapper_info.fgc = BlackPixel(wrapper_info.dpy, 0);
wrapper_info.bgc = WhitePixel(wrapper_info.dpy, 0);
wc_attr.wrapper_str = &wrapper_info;
panel_info.fgc = BlackPixel(panel_info.dpy, 0);
panel_info.bgc = WhitePixel(panel_info.dpy, 0);
wc_attr.panel_str = &panel_info;
canvas_info.fgc = BlackPixel(canvas_info.dpy, 0);
canvas_info.bgc = WhitePixel(canvas_info.dpy, 0);
for (s = button_info, i = 0; i < SWITCH_COUNT; ++s, ++i)
{
F_switch *x;
x = &switches([i];
8->bwidth = SWITCH_BORDER;
s->width = SWITCH_WIDTH;
s->height = SWITCH_HEIGHT;
s—>hoff = SWITCE_SPACIKNG +
(SWITCH_BORDER*2+SWITCH_WIDTH+SWITCH_SPACING) * x->x;
s->voff = SWITCH_SPACING +
(SWITCE_BORDER*2+SWITCHE_HEIGHT+SWITCH_SPACING) * x->y;
s->bgdimage = x->icon; :
s->state = 0;
s->legend = O;
}
wc_attr.button_str = button_info;
wc_attr.nbuttons = SWITCH_COUNT;
wc_attr.canvas_str = &canvas_info;
hruler_info.fgc = BlackPixel(hruler_info.dpy, 0);
hruler_info.bgc = WhitePixel(hruler_info.dpy, 0);
wc_attr.hruler_str = &hruler_info;
vruler_info.fgc = BlackPixel(vruler_info.dpy, 0);
vruler_info.bge = WhitePixel(vruler_info.dpy, 0);
wc_attr.vruler_str = &vruler_info;
message_info.fgc = BlackPixel(message_info.dpy, 0);
message_info.bgc = WhitePixel(message_info.dpy, 0);
wc_attr.message_str = &message_info;

103

n

menu_info.fgc = BlackPixel(menu_info.dpy, 0);
menu_info.bgec = WhitePixel(menu_info.dpy, 0);
wc_attr.menu_str = &menu_info;

for (s = item_info, i = 0; i < ITEM_COUNT; ++i, ++s).

{

s->bwidth = ITEM_BORDER;

s->width = ITEM_WIDTH;

s->height = ITEM_HEIGHT;

s->bgdimage = 0;

s->state = 0;

s->legend = pumenu_items([i].label;
}

wc_attr.item_str = item_info;
wc_attr.nitems = ITEM_COUNT;

The tedious code above initializes fields in the various window configuration
structures. Among other things, the spacings for the panel buttons are calculated
here. This code really should belong in the panel module.

compatibility(xi->Dpy(), BlackPixel(wrapper_info.dpy, 0),
WhitePixel(wrapper_info.dpy, 0));

w.create(&sp, wc_attr);

more_compatibility (xi->Dpy(), BlackPixel(wrapper_info.dpy, 0),
WhitePixel(wrapper_info.dpy, 0));

The first phase creates all the contexts needed. The other routines contain
kludgery to make a C++ program work with C routines.

pg_init(&sp, &w, O, 6, wc_attr.ctxl, wc_attr.ctxz, wc_attr.ctx3,
wc_attr.ctx4, wc_attr.ctx5, wc_attr.ctx6);

This call to pg_init lcads the initial set of valid contexts into the context
dictionary. Henceforth the dictionary is updated by forks and joins.

// start the purapper window
wS_attr.dpy = wrapper_info.dpy;
wS_attr.ctx = wc_attr.ctxi;
wS_attr.ctxl = wc_attr.ctx2;
wS_attr.nbuttons = SWITCH_COUNT;
wS_attr.ctx2 = wc_attr.ctx3;
wS_attr.ctx3 = wc_attr.ctx4;
wS_attr.ctx4 = wc_attr.ctx5;
wS_attr.ctx5 = wc_attr.ctx6;
w.S(&sp, wS_attr);

104

This tedious code to copy contexts is forced by the current implementation of
attribute passing. The call to w.S starts everything going.

// should never be called: catch last event
XNextEvent (wrapper_info.dpy, ke);
exit(0);

It should be possible to move much of the initialization code into the a run time
library module as the creation and execution phases are common to all PENGUIN
applications.

B.3 Example output from PENGUIN compiler

Here is the C++4 code automatically generated by PENGUIN compiler from the
PENGUIN code for canvas module.

#include <std.h>
#include <stream.h>
#include <Xinput.h>
#include "pfig.h"
#include “resources.h’
#include "pcanvas.h"
#include “pmenu.h"

extern "C" void redisplay_canvas();

extern "C" void pointer_move();

extern "C" void key_press();

extern "C" void null_proc();

extern void (*canvas_leftbut_proc)(int, int);
extern void (*canvas_middlebut_proc)(int, int);
extern void (*canvas_locmove_proc) (int, int);
extern void (#canvas_kbd_proc)(int, int);

static transentry _transtab(115] =

{

/%0%/ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
/*10*/ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
/#20%/ -1, -1, -1, -1, ~1, -1, -1, -1, ~1, -1,
/*30%/ -1, -1, -1, -1, ~1, -1, -1, -1, -1, -1,
/*40%/ -1, -1, -1, -1, -1, -1, -1, -1, ~1, -1,
/%50*/ -1, -1, -t, -1, ~1, -1, -1, -1, -1, -1,
/%60*/ -1, -1, -1, -1, ~1, -1, -1, -1, -1, -1,
/*70*%/ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,

105

/*80*/ -1, -1, -1, -1, -1, -1, -1, -1, ~1, -1,
/*90*/ _11 -11 -11 -1) -1, —lt —11 _1) -11 -1'
/*100%/ -1, 0, -1, -1, -1, -1, -1, 4%, 2, 3,

/%*110%/ -1, -1, 5, -1, 4,

};

static splitentry .S_split(] =

{
"\x080",
"\x07¢c",
o,

};

static predpair _predlist[] =

{
{ 0, offsetof(_pcanvas_repaint_attr,ctx) },
{-1, 01,
{ 5, offsetof(_pcanvas_work_attr,ctx) 1},
{-1, 01},
{ 1, offsetof(_pcanvas_work_attr,ctx) },
{-1, 01},
{ 2, offsetof(_pcanvas_work_attr,ctx) 1},
{-1, 01},
{ 3, oftsetof(_pcanvas_work_attr,ctx) },
{-1, 0},
{ 4, offsetof(_pcanvas_work_attr,ctx) },
{-1,01%,

>

static predentry _predtab(2] (7] =

{

/*0*/ &_predlist[0],0,0,0,0,0,0,
/*1%/ 0,&_predlist[2],&_predlist(4],& predlist[6],&_predlist(s],
& _predlist[10],0,

3

pcanvas: :pcanvas()

{
name = "pcanvas";
maxvalue = 114;
nterms = 2; terms = 7;
nprods = 6; nsprods = 5;
transtab = _transtab,
predtab = &_predtab[0][0];
M=0;

}

void pcanvas::repaint(subparser *sp, _pcanvas_repaint_attr& _1)
{

switch(pg_decide(sp, O/*repaint*/, (char #*)&_1))

{

106

case 0: repaint_000(sp, _1); break;
default: pg_error(); break;

}

void pcanvas::work(subparser *sp, _pcanvas_work_attr& _1)
{
switch(pg_decide(sp, 1/+*work*/, (char *)&_1))

{

case 1: work_001(sp, _1); break;
case 2: work_002(sp, _l); break;
case 3: work_003(sp, _l); break;
case 4: work_004(sp, _1); break;

case 5: work_005(sp, _1); break;
default: pg_error(); break;
}

}

void pcanvas::repaint_000(subparser *sp, _pcanvas_repaint_attrg _1)

{

pg_expect(sp,0/*expose*/, _1.ctx);
cerr << "Canvas expose ctx " << hex(_l.ctx) << "\n";
redisplay_canvas();

}

void pcanvas::work_001(subparser #*sp, _pcanvas_work_attr& _1)
{

XButtonEvent *e;

pg-expect(sp,2/*leftx/, 1.ctx);

cerr << "Canvas left button ctx " << hex(_l.ctx) << "\n";
e = (XButtonEvent *)xi->xevent();
(*canvas_leftbut_proc){e->x, e->y);

}

void pcanvas::work_002(subparser *sp, _pcanvas_work_attrZ _1)
{

XButtonEvent *e;

pg-expect(sp,3/+*middle*/,_1.ctx);

cerr << “Canvas middle button ctx " << hex{_1l.ctx) << "\n";
e = (XButtonEvent *)xi->xevent();
(*canvas_middlebut_proc)(e->x, e->y);

107

void pcanvas::work_003(subparser *sp, _pcanvas_work_attr& _1)
{

_pmenu_S_attr _2;

- pg_expect(sp,4/*right*/,_l.ctx);
cerr << "Canvas right button ctx " << hex(_l.ctx) << "\n";
xi->enable_context(m_info);

.2.ni = menu_count;
_2.ctx = mctx;
sp~>mod = M;
M->S(sp, _2);
sp~>mod = this;

}

void pcanvas::work_004(subparser *sp, _pcanvas_work_attr& _1)
{
XAnyEvent *e;

pg_expect(sp,5/*pointer*/,_l.ctx);
e = xi->xevent();
pointer_move(e);
xi->change_context(e, (Window)hctx);
xi->send_output(0, e);
// one ruler handles both

}

void pcanvas::work_005(subparser *sp, _pcanvas_work_attr& _1).
{

XAnyEver #e;

pg_expect(sp,1/*key*/,_l.ctx);
e = xi->xevent();
key_press(e);

}

void pcanvas::create{subparser *sp, _pcanvas_create_attr¥ _1)
{

-pmenu_create_attr -1;
Window w;

canvas_swfd = canvas_pixwin = w
= xi->create_enable_context(_1.ps);
cerr << "Canvas window " << hex(w) << "\n";

108

}

canvas_leftbut_proc = canvas_middlebut_proc =
canvas_locmove_proc = null_proc;

canvas_kbd_proc = null_proc;

menu_count = _1l.ni;

m_info = _1.Ms;

1.ps = _1.Ms;
~1.is = _l.is;
~1.ni = _1l.ni;
_l.ctx = _1.ctx;
M = new pmenu;
sp->mod = M;
M->create(sp, _1);
sp->mod = this;

mctx = _1.ctxl;

hetx = _1l.hctx;

vetx = _l.vctx;
l.ctxl = w;

void pcanvas::destroy(subparser *sp, _pcanvas_destroy_attr& _1)

{

}

cerr << "Canvas destroy\n";

void pcanvas::S(subparser *sp, _pcanvas_S_attr& _1)

{

~pcanvas_repaint_loop_attr& _0 = *new
~pcanvas_repaint_loop_attr;
.pcanvas_work_loop_attra _1 = *new

~pcanvas_work_loop_attr;

O.ctx _1.ctx;

_1l.ctx = _1l.ctx;

register branch =s;

register connector *c = conalloc(2);
c~>coninit(2,2,sp);

// Initialize connector element O

s = &c->branches([0];

s->brinit({mproc)repaint_loop,&_0);
s->spinit(sp->mod,1,&_0.ctx, (unsigned char #*)_S_split{0]);
// Initialize connector element 1

8 = gc->branches(1];

s->brinit ((mproc)work_loop,&_1);
s->spinit(sp->mod,1,&_1.ctx, (unsigned char *)_S_split[1]);
pg-fork(sp, c¢);

109

void pcanvas::repaint_loop(subparser #*sp,
-pcanvas_repaint_loop_attrg _1)

{
-pcanvas_repaint_attr _0;
static predpair _O_flist[]} = {
{ 0,offsetof(_pcanvas_repaint_attr,ctx) },
{-1,01},
};
static predentry _0_ttab{] = {
&_o_flist([o0],
0!
0,
o’
0,
0’
0,
};
O.ctx = _l.ctx;
while (pg.extend(sp,_O_ftab,(char *)&_1) >= 0)
repaint(sp, _0);
}

void pcanvas::work_loop(subparser *sp, _pcanvas_work_loop_attr& _1)

{

-pcanvas_work_attr _0;
static predpair _0_flist[] = {
5,0ffsetof(_pcanvas_work_attr,ctx) },
-1, 0},
1,oftsetof(_pcanvas_work_attr,ctx) },
-1, 0},
2,o0ffsetof(_pcanvas_work_attr,ctx) },
-1, 0},
3,0ffsetof(_pcanvas_work_attr,ctx) },
-1, 0},
4,0tfsetof(_pcanvas_work_attr,ctx) },
-1, 01,

Rl Y N iy

static predentry _0_ttab[] = {
o,

&_0_f1list[0],

&_0_flist{2],
&_0_flist[4],
&_0_flist[6],
&_0_f1list[s8],
0
}

’

110

_O0.ctx = _1l.ctx;
while (pg_extend(sp,_O_
work(sp, _0);

ftab, (char *)&_1) >= 0)

111

Bibliography

|Aho et ai., 1986] Alfred V. Aho, Ravi Sethi, and Jefirey D. Uliman, Compilers
— Principles, Techniques and Tools, Addison-Wesley, 1986.

[Apple Computers, 1986] Apple Computers, Using the Macintosh Plus. 1986.

[Bertin, 1983] Jacques Bertin, Semiology of Graphics, The University of W :scon-
sin Press, Madison, Wisconsin 53715, 1983.

[Donnelly and Stallman, 1988] Charles Donnelly and Richard Stallman, BISON:
The YACC-compatible Parser Generator, 1988.

[Edmonds, 1981] E. A. Edmonds, Adaptive Man-Computer Interfaces, pages 389-
426. Computing Skills and the User Interface. Academic Press, London, 1981.

[Flecchia and Bergeron, 1987] Mark A. Flecchia and Daniel R. Bergeron, “Spec-
ifying Complex Dialogs in ALGAE,” In Conference Proceedings of Human
Factors in Computing Systems and Graphics Interface, Toronto, Canada, April
1987.

[Foley and Wallace, 1974] James D. Foley and Victor L. Wallace, “The Art
of Natural Graphic Man-Machine Conversation,” Proceedings of the IEEE,
62(4):462-471, April 1974.

[Green. 1985] Mark Green, “The University of Alberta User Interface Manage-
ment System,” Computer Graphics, July 1985.

|Guest, 1982| Stephen P. Guest, “The Use of Software Tools for Dialogue Design,”
International Journal of Man-Machine Studies, 16:263-285, 1982,

[Haeberli, 1988] Paul E. Haeberli, “ConMan: A visual programming language
for interactive graphics,” In SIGGRAPH '88 Conference Proceedings, pages
103-111, August 1988.

[Hanau and Lenorovitz, 1980] Paul. R. Hanau and David. R. Lenorovitz, “Pro-
totyping and Simulation Tools for User/Computer Dialogue Design,” In SIG-
GRAPH 80 Conference Proceedings, pages 271-278, 1980.

(Ingalls et al., 1988] Dan Ingalls, Scott Wallace, Yu-Ying Chow, Frank Ludolph.
and Ken Doyle, “Fabrik: A Visual Programming Environment,” In OOPSLA
'88 Conference Proceedings, pages 176-190, September 1988.

[(ISO/IEC, 1987]) 1SO/IEC, Information Processing — Open Systems Intercon-
nection — Specification of Basic Encoding Rules for Abstract Syntax Notation
One (ASN.1), 1987, International Standard 8825.

[Jacob, 1983] Robert J. K. Jacob, “Using Formal Specifications in the Design of
a Human-Computer Interface,” Communications of the ACM, 26(4):259-264,
April 1983.

[Jensen and Wirth, 1975] Kathleen Jensen and Niklaus Wirth, Pascal User Man-
ual and Report, Springer-Verlag, New York, second edition, 1975.

[Kernighan and Ritchie, 1978] Brian W. Kernighan and Dennis M. Ritchie, The
C Programming Language, Prentice-Hall, Englewood Cliffs, New Jersey 07632,
1978.

[Knuth, 1968] Donald E. Knuth, “Semantics of Context-Free Languages,” Math-
ematical Systems Theory, 2(2):127-145, June 1968.

[Lesk and Schmidt, 1979} M. E. Lesk and E. Schmidt, Lez: A Lerical Analyser
Generator, 1979.

[Matthys, 1985] J. Matthys, “Recent Experiences with Input Handling at PMA,”
In User Interface Management Systems. Springer-Verlag, 1985.

[McCormack et al., 1988] Joel McCormack, Paul Asente,and Ralph R. Swick, X
Toolkit Intrinsics—C Language X Interface, 1988.

[McDonald and Dix, 1988] Chris McDonald and Trevor I. Dix, “Support for
Graphs of Processes in a Command Interpreter,” Software Practice and Ez-
perience, 18(10):1011-1016, October 1988.

[Meyer, 1988] Bertrand Meyer, Object-oriented Software Construction, Prentice-
Hall, 1988.

[Microsystems, 1986] Sun Microsystems, Ezternal Data Representation Protocol

Specification, Mountain View, California, February 1986, Part Number 800-
1324-03.

[Morse, 1979] Alan Morse, “Some Principles for the Effective Display of Data,”
Computer Graphics, 13(2), August 1979.

[Motorola, Inc., 1985] Motorola, Inc., MC68020 32-Bit Microprocessor User’s
Manual, 2nd edition, 1985.

113

[Newman, 1968] W. M. Newman, “A System for Interactive Graphical Program-
ming,” In SJCC 1968, 1968.

[Olsen, 1983] Dan R. Olsen, Jr., “Automatic Generation of Interactive Systems,”
Computer Graphics, January 1983.

[Olsen and Dempsey, 1983] Dan R. Olsen, Jr. and Elizabeth P. Dempsey, “SYN-
GRAPH: A Graphical User Interface Generator,” Computer Graphics, July
1983.

[Paxson, 1989] Vern Paxson, Flez: Fast Lezical Analyser Genertor, 1989.

[Pfaff, 1985] Giinther E. Pfaff, editor, User Interface Management Systems,
Springer-Verlag, 1985.

[Ritchie and Thompson, 1974] D. M. Ritchie and K. Thompson, “The UNIX
Time Sharing System,” Communications of the ACM, 17(7):365-375, July
1974.

[Scheifler and Gettys, 1987] Robert W. Scheifler and Jim Gettys, “The X Window
System,” ACM Transactions on Graphics, 6(2), April 1987.

[Scott and Finkel, 1988] M. L. Scott and A R. A. Finkel, “A Simple Mechanism
for Type Security Across Compilation Units,” IEEE Transactions on Software
Fngineering, 14(8):1238-1239, August 1988.

[Shneiderman, 1982] Ben Shneiderman, “Multiparty Grammars and Related Fea-
tures for Defining Interactive Systems,” IEEE Transactions on Systems, Man,
and Cybernetics, SMC-12(2):148-154, March 1982.

[Singh, 1985] Gurminder Singh, “Presentation Component for the U of Alberta
UIMS,” Master’s thesis, University of Alberta, 1985.

[Stroustrup, 1986] Bjarne Stroustrup, The C++ Programming Language,
Addison-Wesley., 1986.

[(Sun Microsystems, 1986] Sun Microsystems, SunView System Programmer’s

Guide, SMI, 1986.

[Thomas, 1983] James J. Thomas, “Graphical Input Interaction Technique
(GIIT) Workshop Summary,” Computer Graphics, January 1983.

{Tiemann, 1989] Michael D. Tiemann, User’s Guide to GNU C++, 1989.

[van den Bos, 1979] Jan van den Bos, “Input Tools - A new language construct
for input-driven programs,” In Proceedings of the European Conference on

Applied Information Technology of IFIP, September 1979,

114

[van den Bos, 1988] Jan van den Bos, “Abstract Interaction Tools: A Language
for User Interface Management Systems,” ACM Transactions on Programming
Languages and Systems, 10(2):215-247, April 1988.

[Woods, 1980] W. A. Woods, “Transition Network Grammars for Natural Lan-
guage Analysis,” Communications of the ACM, 13(10):591-606, October 1980.

[Yourdon and Constantine, 1979] Edward Yourdon and Larry L. Constantine,

Structured Design: Fundamentals of a Discipline of Computer Program and
Systems Design, Prentice-Hall, 1979.

115

