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SUMMARY

At APTEK, Inc. we use an algorithm based probabilistic methodology to perform
lethality assessments for the Defense Nuclear Agency Single Pulse Laser Lethality
and Target Hardening (LTH-3) Program. The algorithms utilized relate the response
of laser illuminated targets to local effects (such as delivered impulse) induced by the
impinging laser radiation. In general the algorithms are functions of laser parameters
(eg., fluence and pulse duration) and target design details (eg., physical dimensions,
construction material properties, pressurization levels, etc.) Typically the correlation
between algorithm predictions and relevant experimental data is at best fair, and it is
always the case that target design details are imprecisely known since we are dealing
with foreign targets. Thus uncertainty is associated with our algorithm predictions
because of the uncertainty associated with algorithm parameters compounded with
the uncertainty attributable to the algorithms themselves. The goal of the work
described in this report was to develop and implement a numerical approach for
consistently compounding all sources of uncertainty in order to obtain a quantified
estimate of the overall uncertainty which should be associated with an algorithm and
the predictions obtained with it. The combined uncertainty estimates are vital inputs
to our lethality assessment activities.

When one is attempting to consistently combine contributing sources of error or
uncertainty to obtain an overall uncertainty estimate, it is necessary to consider sev-
eral important factors. Among these factors are the characteristics of the probability
distribution associated with each source of uncertainty, possible correlation between
different sources of uncertainty, the eventual use of the combined uncertainty esti-
mate, and practical aspects of implementing a procedure to obtain the combined
uncertainty estimates. To a varying extent all of these factors, and others besides,
influenced the development of the finished product of this effort, the BETAFACT
code.

BETAFACT is a Monte Carlo based code which enables the user to numerically
estimate the overall uncertainty associated with an arbitrary algorithm which has an
arbitrary number of contributing sources of uncertainty. Normal, lognormal, Beta and
generalized uniform probability distributions, as selected by the analyst, are used in
the code to model contributing uncertainties. At present, for a given analysis all un-
certainty sources must be modeled with the same type of probability distribution (i.e.,
all normal or all Beta distributed) and sources of uncertainty must be uncorrelated.
Since the code runs interactively, once an algorithm is defined it is an easy matter to
reanalyze the algorithm for different probability distributions and uncertainty level
specifications. The latter capability enables the user to perform sensitivity studies
which means that the code is also a useful decision making and program management
tool.

In this report we describe the technical background of the approach used to
combine uncertainty sources, discuss implementation of the theory in BETAFACT,

iii



present illustrative examples of the use of the code, and provide a user's manual.
Together these will rapidly acquaint a potential user with the operation of the code.
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CONVERSION TABLE

Conversion factors for U.S. Customary to metric (SI) units of measurement.
MULTIPLY-- - BY - - TO GET

TO GET - - BY - - DIVIDE
angstrom 1.000 000 x E -10 meters (in)
atmosphere (normal) 1.013 25 x E +2 kilo pascal (kPa)
bar 1.000 000 x E +2 kilo pascal (kPa)
barn 1.000 000 x E -28 meter2 

(m 2 )

British thermal unit 1.054 350 x E +3 joule (J)
(thermochemical)

calorie (thermochemical) 4.184 000 joule (J)
cal (thermochemical)/cm 2  4.184 000 x E -2 mega joule/m 2 (MJ/m 2)
curie 3.700 000 x E +1 giga becquerel (GBq)*
degree (angle) 1.745 329 x E -2 radian (rad)
degree Fahrenheit rK = (t 0f + 459.67)/1.8 degree kelvin (K)
electron volt 1.602 19 x E -19 joule (J)
erg 1.000 000 x E -7 joule (J)
erg/second 1.000 000 x E -7 watt (W)
foot 3.048 000 x E-1 meter (in)
foot-pound-force 1.355 818 joule (J)
gallon (U.S. liquid) 3.785 412 x E -3 meter 3 

(M3
)

inch 2.540 000 x E -2 meter (in)
jerk 1.000 000 x E +9 joule (J)
joule/kilogram (J/kg) 1.000 000 Gray (Gy) **

(radiation dose absorbed)
kilotons 4.183 terajoules
kip (!000 I'f' 1-44A 222 x E 3 newton (N)
kip/inch 2 (ksi) 6.894 757 x E +3 kilo pascal (kPa)
ktap 1.000 000 x E +2 newton- second/m 2

(N-s/m 2 )
micron 1.000 000 x E -6 meter (m)
mil 2.540 000 x E -5 meter (in)
mile (international) 1.609 344 x F +3 meter (in)
ounce 2.834 952 x E -2 kilogram (kg)
pound-force (lbf avoirdupois) 4.448 222 newton (N)
pound-force inch 1.129 848 x E -1 newton-meter (Nem)
pound-force inch 1.751 268 x E +2 newton/meter (N/m)
pound-force/foot 2  4.788 026 x E -2 kilo pascal (kPa)
pound-force/inch 2 (psi) 6.894 757 kilo pascal (kPa)
pound-mass (Ibm avoirdupois) 4.535 924 x E -1 kilogram (kg)
pound-mass-foot 2  4.214 011 x E -2 kilogram-meter 2

(moment of inertia) (kg-m 2 )
pound-mass/foot 3  1.601 846 x E +1 kilogram/meter 3

(kg/m
3

rad (radiation dose absorbed) 1.000 000 x E -2 Gray (Gy)**
roentgen 2.579 760 x E -4 coulomb/kilogram

(C/kg)
shake 1.000 000 x E -8 second (s)
slug 1.459 390 x E +1 kilogram (kg)
torr (mm Hg, 0°C) 1.333 22 x E -1 kilo pascal (kPa)
* The becquerel (Bq) is the S! unit of radicactiv;ity; I Bq = I event/s.
**The Gray (Gy) is the SI unit of absorbed radiation.
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SECTION 1
INTRODUCTION

The BETAFACT code was developed by APTEK to support the preparation of yearly
lethality assessments (APTEK, 1988 and APTEK, 1990) for the Defense Nuclear
Agency (DNA) Single Pulse Laser Lethality and Target Hardening (LTH-3) Program.
The results reported in these lethality assessments were generated using an APTEK
modified version of the DNA FAST (Failure Analysis by Statistical Techniques) code
(Rowan, 1974). Among its several uses, BETAFACT is utilized to generate input
required in the modelling and execution of FAST analyses.

The numerical models which can be analyzed with FAST are defined in terms of.
mathematical relations called algorithms. A typical algorithm consists of an output
quantity which is a function of several input parameters. In the usual case, each of
the input parameters does not have a precisely known value but does have a most
probable (or nominal) value and a distribution of possible values about the nominal.
Such a parameter is termed a parameter with associated uncert'irty in this report.
It is usually possible (besides being convenient) to characterize c -pproximate the
distribution of possible values for a parameter with associated uncer-Linty in the form
of standard probability distributions such as the normal and the uniform distributions.

Clearly, if an algorithm is a function of one or more parameters with associated
uncertainty, the output of the algorithm must also have associated uncertainty and a
distribution of possible results. The output uncertainty and output distribution are
functions of the input parameter uncertainties and distributions and the details of
the algorithm. A primary function of BETAFACT is to properly combine the input
parameter uncertainties and distributions in order to determine the uncertainty which
should be associated with the algorithm output.

An algorithm, viewed from an overall perspective, may also have an associated
uncertainty, regardless of whether or not its input parameters have associated un-
certainty. This situation can arise, for instance, if we know the values of input
parameters accurately (to within a few percent) while the correlation between the
parameters provided by the algorithm is only known approximately (e.g., within plus
or minus 50%). In this situation, the input parameter uncertainties could be viewed
as ignorable, and the uncertainty associated with the algorithm output would be that
applicable to the algorithm itself. However, if the input parameter uncertainties are
comparable in magnitude to the algorithm uncertainty or there are several input pa-
rameters with smaller but still not ignorable associated uncertainty, then all of these
sources of uncertainty have to be combined to obtain the uncertainty which should be
associated with the algorithm output. The BETAFACT code is capable of handling
both of these situations.

Since the code combines several sources of uncertainty into an overall uncertainty
associated with an algorithm output, BETAFACT can also be used to perform var-
ious types of sensitivity studies. For instance, suppose one has an algorithm of in-
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terest which has two input parameters, each with significant associated uncertainty.
By varying the uncertainty specified with each of the two parameters and observ-
ing the effect of the variations on the overall combined uncertainty estimated with
BETAFACT, the more significant of the two uncertainty sources in producing the
overall uncertainty can be identified. While such a procedure may not be necessary
in order to recognize the more significant uncertainty source in a simple algorithm,
recognition of that source can be much more difficult in a complicated algorithm. As
another example, again suppose an algorithm uses two parameters, each of which has
associated uncertainty and is obtained by experiment. A project manager or experi-
menter could use BETAFACT to evaluate the benefit of directing program resources
to reduction of the parameter uncertainties both in terms of resources expended and
reduction in overall uncertainty of the algorithm. In a later section of this report we
will provide examples illustrative of the above uses of BETAFACT.

The above overview provides a brief description of the function of BETAFACT
and some simple examples of how the program can be used. In the following report
section, we present background material on algorithms and treatment of their sources
of uncertainty and review some properties of the four types of probability distribu-
tions (normal, lognormal, Beta, and uniform) which are available in BETAFACT for
modelling parameter and algorithm uncertainties.

The manner in which algorithms, probability distributions, and uncertainties are
handled numerically in BETAFACT is the subject of Section 3. This section is par-
ticularly important to the user of the code since it defines the K-factor method we
employ to represent uncertainty specifications. In Section 4 we consider several ex-
ample problems which illustrate the use of BETAFACT and verify, in part, that the
theory presented in Section 2 is properly implemented in the code. This section also
addresses the method which must be used to get a user's algorithm into the code.

Section 5 of this report is the User's Manual for BETAFACT. Since the code runs
in an interactive mode, prompting for input as required, the user will likely find little
need for the User's Manual after the program has once been used successfully. In
Section 5 we will describe the actual steps required to setup and run the code and
explain each of the prompts delivered to the user by BETAFACT during execution.
We will then make some brief concluding remarks in Section 6. Finally, listings
of example problem algorithms are given in Appendix A and a complete listing of
BETAFACT is presented in Appendix B.

Before proceeding to Section 2, we make note that BETAFACT was developed
on a MicroVaxII computer operating under VMS. The code is written in standard
FORTRAN-77 and is nearly entirely flexibly dimensioned. Although not verified, it
is likely the program will also execute without modification on personal computers.
Finally we mention that the user of BETAFACT must have simple programming
experience with FORTRAN in order to use the code. This is a requirement because
the algorithm of interest to a user must be coded in a FORTRAN subroutine so that
it will be available to BETAFACT.
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SECTION 2
BACKGROUND ON ALGORITHMS AND

PROBABILITY DISTRIBUTIONS

The primary function of BETAFACT is to determine the overall uncertainty asso-
ciated with the output of an algorithm, given the uncertainties associated with the
algorithm and/or its input parameters and corresponding probability distribution
specifications. The code performs this function by numerically evaluating the algo-
rithm many times using probabilistically distributed values for its input parameters,
applying (if necessary) algorithm uncertainty to the result of each evaluation, and
computing statistics of the results distribution to quantify the uncertainty associated
with the output. This can be done for an algorithm with essentially any functional
form as long as the sources of uncertainty associated with the algorithm can be mod-
elled adequately using either normal, lognormal, Beta, or uniform probability distri-
butions. The present version of the code does not allow different sources of uncertainty
in an algorithm to be modelled with different types of probability distributions. All
uncertainties associated with an algorithm must be modelled as normally distributed
or Beta distributed, etc. In our applications, we have not found it necessary to mix
probability distribution types, and the code reflects this experience.

The purpose of the first subsection (2.1) of this report section is to provide addi-
tional information about what we mean by the concept of an algorithm, to describe a
simple method for quantifying the overall uncertainty associated with an algorithm,
and to give an explanation of why numerical treatment of algorithm output uncer-
tainty is desirable (and in some cases imperative). In subsection 2.2 we then present
some details concerning the probability distributions used in BETAFACT and rele-
vant characteristics of the distributions.

2.1 ALGORITHMS AND UNCERTAINTIES.

In the present context, an algorithm is a mathematical function which relates an
output or response (r) to one or more input parameters (xi, i - 1,..., number of
parameters N). Symbolically we write

r = r,(x, X2,... ,XN) (1)

in which the left hand side is the output of the algorithm and the right hand side
represents the functional form of the algorithm. There is really no restriction on the
form of the function on the right hand side of Equation 1 except that the output r
must not be an argument in the function (i.e., r as a variable must not appear in both
sides of the equation) and the function should be well-behaved (i.e. finitely bounded)
over the full range of response values anticipated. Otherwise, the function r(xi) can
be polynomial, exponential, sinusoidal, etc., and involve any combinations of these
functional types.
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A specific example of a simple algorithm is the elementary relation between the
peak bending stress a in a straight beam, the applied bending moment M, the area
moment of inertia I of the beam cross section, and the extreme fiber distance c from
the beam neutral axis.

SMc (2)
I

In this form, this relation is an algorithm for the peak bending stress o. Given M, c,
and I, we can predict the peak stress in the beam. However, we could also solve this
equation for M in terms of a, I, and c to obtain an algorithm for M. If we accept
the assumption that the formula in Equation 2 is exact, the output of the algorithm
would be uncertain only if some of the input parameters had associated uncertainty.

As an example of a somewhat more complicated algorithm, we consider one of-
ten used in the LTH-3 Program; the so-called HKL algorithm. One version of this
algorithm is

12S 2  

(3)2porh'

It is used to predict the peak axial strain e which results in a metallic cylinder of
thickness h, with wall material density p and ultimate strength 0', which is loaded
on its side with a cosine distributed impulse of peak intensity I. This algorithm is
derived based on theoretical considerations. Given good (i.e., known or measured
with low associated uncertainty) values for the parameters on the right hand side
of the equation, the strain predictions obtained with Equation 3 have been shown
to agree to within about ±50% with experimentally measured strains. It is thus
an example of an algorithm which has an associated algorithmic uncertainty. If we
used this algorithm to predict the axial strain resulting in a cylinder whose p and o
values were inaccurately known but we knew h and I with considerable precision, we
would have the situation of an algorithm with uncertainty associated with two input
parameters and the algorithm itself. All three sources of uncertainty contribute to
the uncertainty associated with the strain estimate for that cylinder.

Given an algorithm of the form of Equation 1, a simple standard method is avail-
able for estimating the uncertainty associated with the algorithm output if one or
more of its input parameters has associated uncertainty. First, let Ui represent the
uncertainty associated with the i-th parameter (xi) in the algorithm. We assume
that U, is not correlated with the uncertainty Uj associated with the j-th parameter
for all pairs i and j. (In this report and in the BETAFACT code, the uncertain-
ties associated with algorithm input parameters are all assumed to be uncorrelated.)
Typically U is selected or specified such that 95% of the possible values of xi fall in
the range associated with Ui about the nominal (or 50% or best estimate) value for xi.
(Relating the nominal value of xi, Ui and the applicable range for xi are considered
in greater detail in subsection 2.2.) Now if only the i-th parameter of the algorithm
is assumed to have associated uncertainty, then the corresponding uncertainty U'j in
the algorithm output can be evaluated as

=r u (4)
4xi



The usual situation is that several input parameters in the algorithm have associ-
ated uncertainty. Equation 4 can be evaluated for each of these uncertainty sources
considered separately, but the question then becomes one of how to combine the
individual contributions to obtain a reasonable estimate for the algorithm output
uncertainty. A recommended combination rule (Coleman and Steele, 1989) is to use
the root-sum-square (RSS) of the U,.. Thus, if we represent the combined output
uncertainty as U,., the RSS expression for U, in terms of the Uj is

N N

= -uI (5)
i=1 = "-i

Given the algorithm r and the parameter uncertainty specifications U, Equation 5 is
easily evaluated to yield U,.

It is sometimes found that a more convenient form of Equation 5 is to divide both
sides of it by r 2 (i.e., the algorithm squared) to obtain

(r)2 = 'V [L2lj2  (6)
r i=l ox

This equation often will give algebraically simpler expressions for U2 than will Equa-
tion 5.

Although the above results are straightforward, it is perhaps useful to apply them
to consideration of an example algorithm; a hypothetical one in this case. Suppose
r = A 2B/C for which the nominal parameter values are A = 10, B = 20, and C =
50 and the associated uncertainties are UA = ±2, UB = ±4, and UC = ±15. The
nominal output of the algorithm is 40. Differentiating the algorithm, we find that

1r UA l ar UB 1r Uc (7)-U = 2- -U - _ -- -  7
r 4A A r 0B B r 4C C

and thus
U, 4 C+2] r 2(8)

Substituting for the given values we find U, = ±21.5. If we set UB = UC = 0, then we
find that U, = ±16 which shows that UA accounts for the most significant portion of
the combined uncertainty even though the uncertainty associated with A(±20%) is
the same as that associated with B, but less than that associated with C(±30%). The
exponent of A in the algorithm, which has an absolute value greater than 1, is seen
to enhance the contribution of UA to the overall uncertainty. Of course the opposite
is also true; if the absolute value of the exponent were less than 1, the contribution
of UA would be lessened.

The above method for estimating U, does not explicitly account for the actual
probability distributions of the possible values of the parameters with associated un-
certainty. Thus the U, estimates obtained in this fashion are often faulty. In the
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special case that these parameter values are normally distributed, it can be shown
rigorously that the above expression gives the correct value for U(/, at least for algo-
rithms of the form r = Kzxaxb .... in which K is a constant and a, b, c, ... are also
constants (positive or negative). For other probability distributions for the possible
parameter values and for more complicated algorithms, the U, estimates obtained
from Equations 5 or 6 may or may not compare well with the true U. Numerical
evaluation of an algorithm using properly distributed values of the uncertain input
parameters and statistical analysis of the distribution of evaluated algorithm results
together appear to be the only method available for obtaining good estimates for
the combined uncertainty U, associated with the algorithm output. This is the ap-
proach used in BETAFACT. The actual implementation of the approach is described
in Section 3.

Numerical evaluation of an algorithm allows one to model its associated uncer-
tainty sources using essentially any distribution type desired. We have found it useful
to model parameter and algorithm uncertainties with normal, lognormal, Beta. and
uniform probability distributions. The forms and specific characteristics of these
distribution types are summarized in the following subsection.

2.2 PROBABILITY DISTRIBUTIONS.

The distribution of possible values of each parameter or algorithm with associated
uncertainty is modelled with a normal, lognormal, Beta, or uniform probability dis-
tribution in BETAFACT. Each of these probability distribution types has a more or
less convenient mathematical representation. Before presenting these functions and
summarizing some of their important characteristics, we very briefly review for the
reader the meaning of a probability distribution and describe several measures gener-
ally used to characterize a probability distribution. We will see in Section 3 how the
latter are related to a given specification of uncertainty for a parameter or algorithm.

Let f(x) represent the probability distribution associated with the distributed
variable x. Then f(x)dx is the probability that x has a value in the interval between
x and x + dx. Suppose we know variable x only takes on values in the range a < x < b.
Since x must fall in this range, the integral of f(x) over the full range of possible values
is unity, provided f(x) is normalized (which is the case for all four distributions we
will consider below). Thus

b (x)dx = 1 (9)

For some distributions, such as the uniform distribution, the limits a and b on the
range of x variable values are bounded; for others, such as the normal distribution,
they are not.

The mean p (or expectation value E(x)) of a probability distribution is defined
by the integral

= E(x)= xf(x)dx (10)
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and the variance, E(x - y)2 , by the integral

E(x - y)' = 1'(x - p)2f(x)dx (11)

From the variance we obtain the standard deviation a

o*= (12)

Now suppose we have collected a set of N values for the variable x. For instance,
if x is a physical parameter, the set of values could be the measured results for x
as found in many experiments. In the BETAFACT context, the set of values of
interest is the set of results obtained in the evaluation of a algorithm many times.
Let us further suppose that the set of x values have been sorted in ascending order
(smallest to largest), the range from the smallest to largest value has been divided
into M subintervals, and the number of times a value of the variable occurs in each
subinterval has been determined. Let xi be the variable value corresponding to the
midpoint of the i-th subinterval and fi be the number (or frequency of occurrence)
of x values in the i-th subinterval. Clearly N = M f,. Also if we plot f, as a
function of xi, we obtain a graphical representation of the probability distribution for
the variable x. Such a representation is often termed a histogram. If we have collected
a sufficient number of data points and have used a reasonable number of subintervals
in segregating the data into frequency of occurrence bins, then we might recognize
the plotted distribution as being representable by one of the standard mathematical
probability distributions.

The availability of the M pairs (xi, ft ) enables us to determine a mathematical
distribution which more or less closely replicates the actual distribution of variable
values once we have selected a type of probability distribution to model the variable
distribution. First we estimate the mean t of the variable distribution

lM

N (13)

and the variance s2
2 1 M
2 "_ _ )2f, (14)

i=1

The evaluated values i and s are then used to fit the appropriate mathematical
probability distribution to the distribution of x variable results using the relations
between the mean and standard deviation and the corresponding distribution given
in the following subsections for each distribution type in BETAFACT. We now turn
to a brief description of the general form and characteristics of these distributions.

2.2.1 Normal Distribution.

The functional form of the normal or Gaussian probability distribution is

_X 1 r(X~~
f v x) -~ exp [-20,2J(5
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Figure 1. Example normal probability distributions with constant mean and vari-
able standard deviation.

The mean of this distribution is y, the variance is o-, and the standard deviation
is a. The range of possible variable values is unbounded (-oo < x < co). The
distribution is centered on and symmetric about x = I. If a variable x is normally
distributed with mean p and standard deviation a, a randomly selected value for x
will fall 95% of the time in the range (p - 1.96ar < x < p + 1.96o). Only 2.5%
of the time will the randomly selected value for x be below this range and 2.5% of
the time above this range. Finally if we compute 1( p) from Equation 13 and
x(_ a) from Equation 14 for a set of variable values which appear to be normally
distributed and then substitute these values into Equation 15, we obtain the normal
distribution which will approximately fit the distribution of variable values. As an
aid in visualizing the normal distribution and the effect on the distribution as o, is
varied (with the mean fixed), Figure 1 shows 3 normal distributions for 3 different
values of a and a constant value for p.

2.2.2 Lognormal Distribution.

Suppose variable x has a probability distribution of possible values which has a mean
M. Further suppose the distribution for x is characterized by the existence of a
positive constant K(> 1.0) which has the property such that 95% of the time a
randomly selected value for the variable x falls in the range MIK < - < K x M

and equally as often above M as below M. Then the distribution of possible values
for x is lognormally distributed if the distribution obtained by the change of variable
y = In x is a normal distribution in y with mean p = In M and standard deviation

= InK/1.96. In the BETAFACT (and FAST) context, K is recognized as the

8
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Figure 2. Example lognormal probability distributions with constant mean and vari-
able standard deviation.

K-factor which characterizes (or quantifies) the uncertainty associated with variable
X.

The typical form of the lognormal distribution is exhibited by the three example
distributions shown in Figure 2. We see from this figure that the effect of increasing a
or K on the lognormal distribution is to shift the distribution peak to lower variable
values and significantly stretch out the high end tail of the distribution.

2.2.3 Beta Distribution.

The Beta probability distribution is defined on the unit interval 0 < x < I by the
two parameter function

f(x) = X- 0 - X)0 1  (16)
B(a,13)

in which the normalization factor B(a, fi) is given byI
B(a, ) = j X- 1 (1 - x)t -'dx (17)

In Equation 16, a and fi are two parameters whose values influence the shape of the
corresponding probability distribution. Both a and 0 are restricted to be greater
than zero, and in fact in our experience with BETAFACT, all the Beta distributions
we have used have had both a and j3 great than 1.

Figure 3 shows the Beta distributions obtained using 3 sets of ae,/3 pairs. From
the figure we see that if a = /3, the resulting probability distribution is symmetric and

9
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Figure 3. Example Beta probability distributions for different (a, ) parameter val-
ues.

looks somewhat like a normal distribution. If a < 3 (and a > 1.0), the distribution is
skewed to the left and the opposite is true if a >/0 (and 0 > 1.0). In the former case,
the distribution has an appearance similar to a lognormal distribution. The ability
to skew the Beta probability distribution to the right by propear choice of a and # is

a feature of the function not shared by either the normal or lognormal distribution.

The mean m(= M) of the Beta distribution with parameter values a and 3 is

M = a(18)

and the variance is
a2 a, (19)

(a + ,)2(a + 8 + 1)

Equations 18 and 19 can be inverted to give

a=mrm m 2  i 1 8= (1l- r)(m-m2~)(0a° "MM _ 20M ) M 2 _ 1 ( 2 0 )

However, since the standard deviation of the distribution must be positive, the fol-
lowing condition must also be satisfied (Simons, D.A., 1988):

a <_min m (1_M ,(1-M) ( 2_Mm )1 (21)

The implications of the above restriction on a will be considered in the section of this
report in which implementation of Beta distributions in BETAFACT is discussed.
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If we have a set of variable results which we think can be represented with a Beta
distribution, Equations 16 and 20 indicate how this might be done. First we evaluate
the mean m and the variance a2 of the set of variable results and use Equation 20 to
evaluate corresponding values for a and 3. Then we evaluate Equation 16 to obtain
the desired distribution. This is one approach used in BETAFACT. A somewhat less
demanding (and less accurate) method is also implemented in the code. This method
will be described in Section 3.

2.2.4 Uniform Distribution.

A generalized form of the uniform probability distribution is used in
BETAFACT. The function describing this distribution is defined on the interval
a<x<bas

ma x m (22)fPx) = 1 m- < x < bn(9.
2-b- m<x<b

The parameter m corresponds to the value of x such that 50% of the time the value
of x is less than m. The mean it of the distribution is

a+b+2m (23)
4

and the variance o2 is

1a 2 + b +m(a+b)+ 2M2 1 - [a+b+2m]2  (24)
6 Li 16

For m = !(a + b) these reduce to

I ( (b - a) (25)

as required for a symmetric uniform distribution. Figure 4 shows examples of the
generalized uniform probability distribution associated with three different values of
m for fixed a and b. Clearly, given a set of variable values which can be modelled
with a generalized uniform distribution, we need to determine only a, b, and m for
the set of variables to fit the required uniform distribution.

11
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SECTION 3
IMPLEMENTATION

Four types of probability distributions (normal, lognormal, Beta, and uniform) are
available in BETAFACT for modelling the distributions of parameters and algorithms
which have associated uncertainty. Some important characteristics of each of these
distributions are summarized in Section 2 of this report. The purpose of this sec-
tion is to describe the specifics of how the code uses the probability distributions to
model uncertainties, and the mechanics involved in developing the algorithm results
distribution which ultimately provides the information needed to quantify the overall
uncertainty associated with an algorithm output.

Several steps are involved in the processing of an algorithm with BETAFACT.
These steps, with minor modifications, need to be performed for any algorithm an-
alyzed with the code. The steps are briefly described in subsection 3.1. The precise
manner in which some of the steps are implemented in BETAFACT is dependent
on the probability distribution type used to model the uncertainties. Details of the
implementation are described, in turn, for each of the 4 probability distribution types
in subsections 3.2 through 3.5.

3.1 ANALYSIS PROCESS OVERVIEW.

In the following we assume that the algorithm to be analyzed with BETAFACT is
reduced to the form of Equation 1; i.e. the algorithm output is expressed strictly in
terms of input parameters, any number of which have associated uncertainty. It has
been our experience that at least one parameter in the algorithm may be regarded as
an independent parameter which does not have associated uncertainty. BETAFACT
expects there to be at least one such parameter. If there isn't explicitly such a
parameter, one can easily be introduced as a multiplier, with value of unity, which
acts on the entire right hand side of Equation 1.

To be available to BETAFACT, the algorithm must be coded in FORTRAN in a
subroutine (named TF) called by the code. This subroutine must be compiled and
linked with the BETAFACT object file to obtain the algorithm specific executable
form of the program. Details of how this is accomplished are given in Section 5 of
this report.

We have found on occasion that some parameters, either with or without uncer-
tainty, which are used in an algorithm are most conveniently obtained from subordi-
nate algorithms. For instance, the thickness parameter h in the algorithm of Equation
3 may be a known function of the impulse intensity I since the impulsive loading may
cause the cylinder wall to experience back-surface spall. Thus in this case, to obtain
the correct value of h for use in Equation 3. we would first need to evaluate the
functional (or algorithmic) relationship between h and I. BETAFACT provides for
this situation by allowing the user to write another FORTRAN subroutine (called
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AUXALGO) which is called by the program. This subroutine, too, must be compiled
and linked to BETAFACT, in the manner described in Section 5, to become available
to the code. Specific details concerning the structure and use of both the TF and
AUXALGO subroutines are provided in Section 5.

Once the executable file of BETAFACT containing the user's algorithm is pre-
pared, analysis of the algorithm by the code proceeds in an interactive mode. The
program prompts the user for all additional information required to initially analyze
the algorithm or re-analyze it according to user specified modifications. The addi-
tional information required include identification of the probability distribution type
to be used in modeling parameter and algorithm uncertainties, the nominal value
for each parameter with associated uncertainty and the specification (in terms of K-
factors) of that uncertainty, the values of independent parameters, and the number
of times the algorithm is to be evaluated to develop the results distribution.

After the problem to be processed is completely defined, BETAFACT first uses
the input data to determine the precise probability distribution for each parameter
and algorithm with uncertainty which will be used to model the uncertainty. The
code then proceeds to evaluate the algorithm the requested number of times. For
each evaluation, a different normally or uniformly (as appropriate) distributed ran-
dom number is used in conjunction with a parameter nominal value and associated
probability distribution to obtain a randomized value for each parameter with uncer-
tainty. Details of this process are described in the subsections below. The algorithm
is then evaluated with the set of randomized parameters, uncertainty is applied to
the result of the computation (if required), and the final result is then saved. In this
manner the algorithm results distribution is generated.

The algorithm results distribution contains all the information required for deter-
mining the combined uncertainty associated with the output of the algorithm. First
the results distribution is sorted and ordered from lowest to highest value. Next its
mean, variance, and standard deviation are evaluated using Equations 13 and 14.
These quantities (and in some cases the low and high extreme values of the algo-
rithm results distribution) are all the information needed to quantify the K- factor
uncertainty associated with the results distribution. These K-factors are reported
by the program and then the user is prompted to specify whether or not data files
containing the histogram of the results distribution and a probability distribution
fit to the histogram are to be generated. These files contain data pairs defining the
histogram and the fit and can be plotted with software external to BETAFACT. The
code finally prompts the user to interactively modify the problem and re-analyze it
or to terminate the program execution.

The above description of the algorithm analysis process used in BETAFACT em-
phasizes that input uncertainties and the overall algorithm output uncertainty are
in terms of what are called K-factors. We first briefly mentioned the K-factor ap-
proach for quantifying uncertainty in our description of the lognormal distribution in
subsection 2.2.2. In the following subsections, we will see that the meaning of the
K-factor specification for an uncertainty is dependent on the probability distribution
used to model that uncertainty. It is crucial that the user of BETAFACT thoroughly
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understand the K-factor uncertainty concept in order to be able to properly apply
the code and interpret its results.

3.2 NORMALLY DISTRIBUTED UNCERTAINTY.

Suppose that a parameter x with associated uncertainty is known to be or is modelled
as being normally distributed. If we assume the mean y and standard deviation a
of this parameter distribution are known, then the probability distribution for the
parameter is given by Equation 15. We recall that for a randomly selected value of
x, 95% of the time the selected value will fall in the range p - 1.96o" < x < p + 1.960'
and equally as often above p as below p. The definition of the K-factor specification
of the uncertainty associated with this parameter is

K = 1.0 + t.96- (26)

To use parameter x in BETAFACT, we specify it as being normally distributed
and enter its nominal value ANOM = p and K-factor uncertainty AK = K. (Here
and in the following we will use when possible variable names and expressions similar
or identical to those actually coded in BETAFACT.) Then the low and high side
values of x corresponding to the 95% range given above in terms of i and a are,
respectively, ALO = 2 * ANOM - AHI and AHI = AK * ANOM. Finally, if RN
is a normally distributed random number, then a randomized value A for parameter
z is given by

A = ANOM + RN * (AHI - ANOM)/1.96 (27)

Once an algorithm results distribution is generated using normally distributed
parameter and/or algorithm uncertainties, the mean y and standard deviation a of
the distribution is computed. Equation 26 is then used to estimate the appropriate
K-factor uncertainty which should be associated with the output of the algorithm.

3.3 LOGNORMALLY DISTRIBUTED UNCERTAINTY.

Suppose parameter x is lognormally distributed with mean ANO M. We recall from
subsection 2.2.2 that if 95% of the time a randomly selected value for x falls in the
range ANOMIK < x < K x ANOM, and equally as often below ANOM as above
it, then AK = K is the K-factor uncertainty specification for x. The lognormal
distribution for x can be transformed into a normal distribution in y = lnx with
mean and standard deviation given by

InK
y = In ANOM a = - (28)1.96

The low and high side values, respectively, of x corresponding to the 95% range
given above are clearly ALO = ANOMIK and AHI = K * ANOM. A randomized
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value A for parameter x is given by

A = ANOM * ALO * *(RN/1.96) (29)

in which RN is a normally distributed random number.

After we compute the mean it and standard deviation a of an algorithm results
distribution, the K-factor estimate to be associated with the algorithm output is given
by K = exp(1.96/s)

3.4 BETA DISTRIBUTED UNCERTAINTY.

Parameter x is Beta distributed if its distribution of possible values is given by Equa-
tion 16. This distribution is not as conveniently used as the normal and lognor-
mal distributions. In fact, we don't use the Beta probability distribution as such in
BETAFACT, but instead we use the cumulative probability distribution (CPD) asso-
ciated with a given Beta distribution. The CPD is simply the total area (cumulative
probability) under the normalized Beta distribution curve, integrated from y = 0 to
y = y', as a function of y'. We further use a discrete form of the CPD associated with
each Beta distribution which is referenced in the course of modeling uncertainties.
The discrete CPD in each case consists of a list of the 21 values for y' corresponding,
respectively, to 0%, 5%, 10%, ..., 100% of the cumulative probability. The eleventh
entry in such a list corresponds to the fraction of the unit interval (0 to 1) at which
50% of the area under the Beta probability distribution curve is to the left and 50%
is to the right of that unit interval location.

We complicate matters further by offering two options in BETAFACT regarding
the modelling of parameter uncertainties with Beta CPDs; the option to use the most
appropriate Beta CPD from a library of tabulated distributions or to have the code
calculate a Beta CPD specifically for the situation at hand. The former option is
the only one currently offered in the FAST code. The second option increases the
accuracy with which uncertainties can be modelled using Beta CPDs. As will be seen
below, however, there is a cost associated with each option.

Before considering in greater detail each option, we note that both require the
specification of two K-factors for each Beta distributed parameter. A K-factor is
required to characterize each side o' the distribution relative to the nominal value
ANOM of the parameter. The low side K-factor is named AKLO in BETAFACT
and the high-side K-factor AKHI. The meaning of these K-factors is that 100% of
the possible values of parameter x fall in the range ANOM/AKLO < x < AKHI *

ANOM, 50% of the time below ANOM and 50% of the time above. Thus the
low and high side extreme values of the parameter are ALO = ANOM/AKLO and
AHI = AKHI x ANOM, respectively.

A randomized value A for the parameter is obtained in a somewhat complicated
process using the 21 discrete y' values for a Beta CPD which are stored in an array
called BD. First a uniformly distributed random number RN is generated and used
to compute the number FLI = 20.0 * RN + 1.0. This latter number is decomposed
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into its integer part (0,1,2,...,20) and its fractional part. The integer part of FLI is
used to select 2 adjacent entries of the BD array. For instance, if the integer part of
FLI is i, then the i-th and (i + 1) -th BD entries are selected. The fractional part
F quantifies a fraction of the distance between BD(i) and BD(i + 1). It is used to
calculate the value of variable BDV;

BDV = (1 - F) * BD(i) + F * BD(i + 1) (30)

which is then used to evaluate the randomized value for the variable corresponding
to the random number RN;

A = ALO + BDV * (AHI - ALO) (31)

The easiest (and less accurate) method available in BETAFACT for modelling
uncertainties with Beta probability distributions is to use the Beta CPDs which are
tabulated in the code. There are 81 of these CPDs. Table 1 identifies the medians
of the distributions and the values of the parameters a and '3 which were used to
generate the distribution. The method we use in the program to associate a specific
tabulated Beta CPD to a parameter with uncertainty is a two step process. First
we compute the median (TEMP) on the unit interval defined by the nominal value
ANOM and K-factors (AKLO and AKHI) of the uncertain parameter:

ANOM - ANOM/AKLO 1 - 1/AKLO
TEMP = AKHI * ANOM - ANOM/AKLO = AKHI - 1/AKLO (32)

We then determine which of the 81 tabulated Beta CPDs has a median (11-th entry)
closest to TEMP. The closest CPD thereby identified is used to model the uncertainty
associated with the parameter.

The more accurate method in BETAFACT for modeling Beta distributed parame-
ter uncertainty is to have the code compute the Beta CPD which corresponds exactly
to the distribution desired. This is achieved by specifying for an uncertain parame-
ter not only its nominal value ANOM and associated K-factors AKLO and AKHI,
but also the standard deviation aq. The latter must satisfy the constraint given in
Equation 21 which BETAFACT computes and reports to the user. With these four
inputs, then, and using ALO = ANOM/AKLO, AHI = AKHI x ANOM, values
for m and o are computed (Simons, 1988),

ANOM - ALO _q (33)
AHI- ALO AHI - ALO

and then Equation 20 is evaluated to determine corresponding values for a and i.
Finally Equation 16 (with Equation 17) is evaluated and the corresponding Beta CPD
is computed and stored in the BD array used for modeling the parameter uncertainty.

BETAFACT generates three estimates for the K-factors to be associated with
a Beta distributed algorithm results distribution with mean It and low and high
extremes XLO and XHI, respectively. These are the low-side K-factor estimate,
KLO = /XLO, the high-side K-factor, KHI = XHI/p, and the average of the
two KAVE = 0.5(KLO + KHI).
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3.5 UNIFORMLY DISTRIBUTED UNCERTAINTY.

The generalized uniform probability distribution for parameter X is given by Equa-
tion 22. This distribution is characterized in terms of the nominal value ANOM
for the parameter and low and high side K-factors, AKLO and AKHI, respec-
tively. These K-factors mean that 100% of the possible range for parameter x is given
by (ANOM/AKLO < x < AKHI * ANOM) with 50% of the distribution below
ANOM and 50% above. As in the case of a Beta distributed parameter, the extreme
values for the parameter are ALO = ANOM/AKLO and AHI = AKHI * ANOM.

A uniformly distributed random number RN is used to obtain a randomized value
A for parameter x. If the value of RN is less than or equal to 0.5, then

A = ALO + 2.0 * RN * (ANOM - ALO) (34)

else
A = ANOM + 2.0 * (RN - 0.5) * (AHI - ANOM) (35)

The same three K-factor estimates produced by BETAFACT for Beta distributed
algorithm results are also generated for algorithm results distributions computed using
uniform distributions to model parameter and algorithm uncertainties.
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Table 1. Tabulated Beta cumulative probability distribution means and a and /3
parameters.

Dist. Dist.
Numb. Median a /3 Numb. Median a /3

1 0.167 1.04 4.0 41 0.500 4.0 4.0
2 0.172 1.07 4.0 42 0.512 4.0 3.83
3 0.179 1.11 4.0 43 0.524 4.0 3.66
4 0.185 1.14 4.0 44 0.535 4.0 3.52
5 0.192 1.18 4.0 45 . 0.545 4.0 3.39
6 0.200 1.23 4.0 46 0.556 4.0 3.26
7 0.208 1.28 4.0 47 0.565 4.0 3.15
8 0.217 1.33 4.0 48 0.574 4.0 3.05
9 0.227 1.39 4.0 49 0.583 4.0 2.95
10 0.238 1.46 4.0 50 0.592 4.0 2.86
11 0.250 1.54 4.0 51 0.600 4.0 2.77
12 0.256 1.58 4.0 52 0.608 4.0 2.69
13 0.263 1.63 4.0 53 0.615 4.0 2.62
14 0.270 1.68 4.0 54 0.623 4.0 2.55
15 0.278 1.73 4.0 55 0.630 4.0 2.48
16 0.286 1.79 4.0 56 0.636 4.0 2.42
17 0.294 1.85 4.0 57 0.643 4.0 2.36
18 0.303 1.92 4.0 58 0.649 4.0 2.31
19 0.313 1.99 4.0 59 0.655 4.0 2.26
20 0.323 2.07 4.0 60 0.661 4.0 2.20
21 0.333 2.16 4.0 61 0.667 4.0 2.16
22 0.339 2.20 4.0 62 0.677 4.0 2.07
23 0.345 2.26 4.0 63 0.687 4.0 1.99
24 0.351 2.31 4.0 64 0.697 4.0 1.92
25 0.357 2.36 4.0 65 0.706 4.0 1.85
26 0.364 2.42 4.0 66 0.714 4.0 1.79
27 0.370 2.48 4.0 67 0.722 4.0 1.73
28 0.377 2.55 4.0 68 0.730 4.0 1.68
29 0.385 2.62 4.0 69 0.737 4.0 1.63
30 0.392 2.69 4.0 70 0.744 4.0 1.58
31 0.400 2.77 4.0 71 0.750 4.0 1.54
32 0.408 2.86 4.0 72 0.762 4.0 1.46
33 0.417 2.95 4.0 73 0.773 4.0 1.39
34 0.426 3.05 4.0 74 0.783 4.0 1.33
35 0.435 3.15 4.0 75 0.792 4.0 1.28
36 0.444 3.26 4.0 76 0.800 4.0 1.23
37 0.455 3.39 4.0 77 0.808 4.0 1.18
38 0.465 3.52 4.0 78 0.815 4.0 1.14
39 0.476 3.66 4.0 79 0.821 4.0 1.11
40 0.488 3.83 4.0 80 0.828 4.0 1.07

81 0.833 4.0 1.04
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SECTION 4
REPRESENTATIVE ANALYSES

Besides having been used extensively in our lethality assessment activities for the
LTH-3 Program, BETAFACT has been exercised on many simple problems to verify
the implementation in the code of the probability distributions described in Section 2
and the methodology of Section 3. It has also been used to analyze more complicated
problems which more completely illustrate the several uses of the code. The results of
several simple BETAFACT analyses are reviewed in subsection 4.1. The application of
the code in the analysis of a more realistic algorithm is the central theme of subsection
4.2.

4.1 VERIFICATION ANALYSES.

We consider the simplest possible algorithm r = x in analyses to verify proper im-
plementation of the theory and methodology in BETAFACT. This algorithm has the
output r and the single input parameter x. The input parameter is assumed to have
associated uncertainty. Towards the end of this subsection, we also consider the case
in which the algorithm has associated uncertainty.

A listing of subroutine TF used to input this simple algorithm to BETAFACT is
given in Appendix A. The subroutine locally references variable x (which is passed to
the subroutine as the first element A(1) in array A as ADUM. The subroutine also
uses the independent parameter XVAL(1) which has an interactively specified value
of 1.0 and hence has no effect on the algorithm output r = YVAL. More details
about formulating subroutine TF are given in subsection 4.2.

In the situation when uncertainty is associated only with the input parameter x,
we know that the distribution of the algorithm results should be identical to that used
to model the input parameter uncertainty. In the following the latter is modelled, in
turn, using each of the four probability distribution types available in BETAFACT.
We assume a nominal value for the parameter of 50,000 and analyze the problem for
a few different values of the K-factor uncertainty. The algorithm is evaluated 5000
times in each of the referenced analyses in order to generate the results distribution.
A fewer number of algorithm evaluations (e.g., 1000) gives results not substantially
different from those we present below.

The initial set of analysis results we consider are obtained when the parameter
uncertainty is modelled as normally distributed with a K-factor specification of 1.25
or 1.50. Plots of the computed (solid line) and fitted (dash line) results distribution
for the two K-factor specifications are shown in Figure 5. The figures also report the
random number generator seed integer used at the start of each analysis. The value
of this seed integer is purposely and arbitrarily varied from one analysis to another.

The plots in Figure 5 show that the computed results distribution and the fitted
distribution generally have similar shapes. No significant effort is made in BETAF,'k CT
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(bottom) and normally distributed uncertainty.
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to obtain the "best fit" to the computed results distribution; a simple scaling proce-
dure is employed to approximately match the peak of the distribution. The purpose
of the plotted distributions is more of a qualitative rather than a quantitative check
of the results. What we are really after in using BETAFACT is the K-factor as-
sociated with the results distribution and the mean of the distribution. These two,
together with the probability distribution type, are sufficient to completely character-
ize the uncertainty distribution associated with the algorithm output for subsequent
use in FAST. Thus to verify that the code is functioning properly, we must compare
the computed statistics of the results distribution to the corresponding theoretical
values.

In defining this simple problem, we specified the nominal value of the parameter
as p = 50, 000 and its K-factor uncertainty as 1.25 or 1.50. Equation 26 enables
us to relate these values to the corresponding standard deviation a of the normal
probability distribution which exactly models the parameter and hence the algorithm
results uncertainty. Doing so, we find that the exact values for a are 6378 for K = 1.25
and 12,755 for K = 1.50. The values actually computed by BETAFACT for/t and
o, and for the K-factor estimate of the results distribution are reported in Table 2.
Compared to the theoretical values, the computed results are seen to be quite good.
Two reasons the comparisons aren't better are that an infinite number of algorithm
evaluations were not used to generate the results distribution (a small effect here) and
only 100 distinct frequency of occurrence bins were used to construct the histograms
(most significant effect).

The above simple analysis problem was repeated, this time modelling the param-
eter uncertainty distribution as lognormal. The plotted results from these analyses
are shown in Figure 6. The equation at the end of subsection 3.3 enables us to relate
the specified K-factor and mean to the corresponding theoretical standard deviation.
The theoretical values are compared to the BETAFACT computed values in Table
2. The latter are within a few percent of the theoretical values. The reasons given
above for the normal distribution computed results discrepancy apply here as well.

We next analyzed the simple algorithm using Beta cumulative probability distri-
butions to model the parameter uncertainty. The two analyses described above were
each performed twice, first using tabulated Beta CPDs and then using BETAFACT
computed distributions. The reader may recall that a standard deviation for the
uncertain parameter must bc specified to allow the use of computed rather than tab-
ulated distributions. The standard deviations computed when the uncertainties were
modelled with tabulated distributions were used as the exact input standard devia-
tions for the calculated distribution analyses. The computed results for both sets of
analyses are presented in Table 2. Figure 7 shows the distribution plots obtained in
the two computed Beta distribution analyses. The tabulated distribution results are
nearly identical to those shown in the figure.

Finally, we analyzed the simple algorithm example using a uniformly distributed
uncertainty model. Three combinations of K-factors were considered. For the first
two K-factor combinations ((1.25, 1.20) and (2.00,1.50)) Equation 25 provides the
theoretical value of the corresponding standard deviation. Equation 24 must be used
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Table 2. Simple algorithm analysis results.

Specified
Distribution K-Factors Exact Computed

Type KLO KHI a Y_ 0 KLO KHI
Normal 1.25 - 6378 49976 6249 1.245 -

1.50 - 12755 50152 12769 1.499 -

Lognormal 1.25 5692 50316 5829 1.255 -

1.50 - 10344 51167 10674 1.505 -

-Tabulated 1.25 1.25 - 50169 4223 1.254 1.245
1.50 1.50 - 50434 7877 1.513 1.487

-Calculated 1.25 1.25 4223 50054 4489 1.251 1.249
1.50 1.50 7877 50111 8284 1.503 1.496

Uniform 1.25 1.20 5774 49998 5806 1.250 1.200
2.00 1.50 14434 50002 14500 1.999 1.500
2.00 2.00 21949 48995 23046 1.960 2 .041

t- Analyses performed first with tabulated (unspecified a) and then with
calculated (specified a) Beta cumulative probability distributions.

t- Theoretical mean is 50000 for all cases.
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to evaluate the theoretical standard deviation associated with the third K-factor pair
(2.00, 2.00). The theoretical and BETAFACT computed values for the mean, standard
deviation, and K-factors of these analyses are given in Table 2. The agreement
between computed and theoretical values is quite good. Figures 8 and 9 show plots
of the computed and fitted results distributions.

While the plots in Figures 5 through 9 are useful in visualizing the output from
BETAFACT, it is the comparisons evident in Table 2 which indicate that the code is
functioning properly in the analyses of the simple algorithm r = x. These comparisons
show that the code adequately replicates the K-factors and nominal value specified
for the uncertain algorithm parameter. It is somewhat less successful in reproducing
the theoretical standard deviation. The limited structure (100 bins) of the histograms
compiled from the computed algorithm results distribution is believed to be the main
source for the error in the computed standard deviations.

As a final verification analysis, we considered the case in which both the input
parameter and the algorithm have associated uncertainty. If both of these uncertainty
sources are modeled as normally distributed, then the theoretical result is that the
variance (standard deviation squared) of the results distribution is equal to the sum
of the variance associated with the input parameter and that associated with the
algorithm. Specifying the parameter nominal value again as 50, 000, the parameter
K-factor as 1.25, and the algorithm K-factor also as 1.25, the parameter standard
deviation is 6378 (as is that of the algorithm), and the results distribution has a
theoretical standard deviation of 9020 (and corresponding K-factor of 1.354). When
this problem is analyzed with BETAFACT using 5000 evaluations, we obtain the
following computed values; ps = 50,067, a = 9088, and K = 1.356. The computed
values are in very good agreement with the theoretical results. Plots of the computed
histograms for this case are shown in Figure 10.

4.2 REALISTIC ALGORITHM EXAMPLE.

The analysis results presented in the previous subsection give us confidence that the
probabilistic theory we are using is correctly implemented in BETAFACT. In the
current subsection we illustrate how the code is used to analyze a realistic algorithm.
Specifically we consider a slightly modified version of the algorithm presented previ-
ously in Equation 3. The modified version of this basic algorithm is as follows:

= 2 (36)
2 ph4.5

This algorithm provides an estimate for the peak strain - in a metallic cylinder in
terms of the parameters on the right hand side of the equation. These parameters
are material density p, material ultimate strength o,, thickness h, and peak impulse
intensity I,. We assume that each parameter used in the right hand side of the
algorithm, as well as the algorithm itself, has associated uncertainty.

The algorithm given in Equation 36 is different from the Equation 3 algorithm
in three respects. First, we have arbitrarily changed the exponent of the thickness
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parameter from 2 to 1.5. We have then added the subscript r to h and I to indicate
that the actual thickness of the cylinder wall and the actual impulse intensity which
loads the structure are not used in the algorithm. Instead we assume we must first
compute these parameter values from auxiliary algorithms before the proper values
can be used in the strain algorithm. In this example analysis, we assume the following
forms for these auxiliary algorithms;

I, = [3.5 + 0.08(1 - 3.5)] (2h)' 1 2  (37)

and
h, = h - [0.05 + 0.001(1 - 3.5)] (2h) 1/2  (38)

In these equations h is the actual thickness of the cylinder wall before the impulsive
load is applied and I is the peak intensity of the actual applied impulsive load. The
two auxiliary algorithms are used here to model the situation in which the applied
impulsive load causes the inner surface of the cylinder wall to spall if the impulse
intensity is sufficiently high. When spall occurs, the thickness of the residual cylinder
wall is reduced and some of the momentum originally delivered to the wall is car-
ried away by the spall. The auxiliary algorithms enable us to estimate the residual
thickness of the wall, if spall occurs, and the momentum remaining in it. These are
the required inputs for the algorithm of Equation 36. The auxiliary algorithms are
intended to be used only if the actual applied impulse intensity is greater than 3.5.

Summarizing the problem defined so far, we have a basic algorithm which has four
input parameters with associated uncertainty . The algorithm itself is also assumed
to have associated uncertainty. Two of the parameters used in the algorithm must
first be computed from auxiliary algorithms. We now describe in some detail how all
these algorithms are made available to the code.

The basic algorithm, Equation 36, becomes available to the code via the user sup-
plied subroutine TF. In order to prepare the required subroutine, we first must decide
in what order we wish to refer to the uncertain parameters. This is necessary since
the randomized value for each parameter used in each evaluation of the algorithm is
stored in a particular location in an array called A. To code the basic algorithm in the
present example analysis, we elect to associate the randomized value for p with array
element A(1), the randomized value for o with A(2), Ir with A(3), and hr with A(4).
To accomplish this association, we simply input the nominal values (and associated
K-factors) for these parameters in this order when prompted for them during pro-
gram execution. Since both I, and h, will be computed by the auxiliary algorithms,
the nominal values we input for these two parameters can be anything (provided we
don't intend to use the input nominals in the auxiliary algorithm subroutine). We
typically input unity (1.0) as the nominal value for parameters such as I, and h,.
The actual nominal values for p and a are input. All of these nominal values are
stored by BETAFACT, in the order of their entry, in array ANOM. During program
execution, ANOM(1) is used in the computation of A(1) (the randomized parameter
value), ANOM(2) for A(2), etc.

If the basic algorithm under consideration is assumed not to have associated un-
certainty, then the nominal values described above are all the nominals expected by
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the code. With specified algorithmic uncertainty, however, it is necessary to enter
an additional nominal value (with a value which must be 1.0 in this case) and the
associated K-factor specifications. In our example, this nominal value can be thought
of as another parameter which is assigned to array element A(5) (or ANOM(5)). If
algorithmic uncertainty is to be applied in a BETAFACT analysis, its nominal value
(1.0) and associated K-factors must be the last set of uncertain parameter nominal
inputs to the code.

In most instances (though not in the present case) we use the values of independent
parameters in the evaluation of the basic algorithm in subroutine TF. The values
of these independent parameters are contained in array XVAL. The order of the
independent parameter values in this array is determined by the order in which the
independent parameter values are input at the appropriate prompt by the code. In
the present example there are two independent parameters; the actual applied impulse
intensity I which we choose to enter first and which is thus assigned to XVAL(1) and
the pre-spall thickness h which is stored in XVAL(2). The entries in array XVAL
are not changed during the execution of BETAFACT unless the user selects an option
which enables them to be altered interactively.

Once we have picked an ordering of the uncertain parameters and the independent
parameters, we can then proceed to formulate subroutine TF. The listing of TF which
codes the basic algorithm of this example problem is provided in Appendix A. The
algorithm is simple and its coding is straightforward. To facilitate checking of the
algorithm coding, we use local variable names in the subroutine mnemonic of the
respective variables in the algorithm. For instance, we set ARHO = A(1) since array
element A(1) is the randomized value of the density, ASIG = A(2) which is the
randomized ultimate stress, etc. (In the listing given for TF we also use a constant
multiplier 1.0 x 106. This multiplier serves to convert impulse intensity I, input in
ktaps, to taps for consistency with the units of the other algorithm input parameters.)

Subroutine AUXALGO, which contains the auxiliary algorithms, is prepared in
much the same way as subroutine TF. A listing of the AUXALGO subroutine used in
the present analysis is given in Appendix A. It is important to note that we use the
nominal parameter value array ANOM and not the array A (randomized parameter
value array) in order to compute the auxiliary algorithms. Once again mnemonic local
variable names are recommended to help the user understand and verify the coding
of the auxiliary algorithms. For instance, in this subroutine we use A] = XVAL(1)
to locally represent the applied impulse intensity and AH = XVAL(2) the original
cylinder wall thickness.

After both subroutine TF and AUXALGO are prepared, we compile and link
them to the BETAFACT object file to generate the executable version of the code
which applies specifically to our problem. The actual VAX/VMS commands needed
for compiling and linking the subroutines are described in Section 5. We can then
procecd to run the code interactively.

The first example analysis we consider of the realistic algorithm described above
is determination of the overall uncertainty associated with the output of the algo-
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rithm. As specific input we use p = 2.7 gm/cm3 with K = 1.05, o, = 3.45 x 101
dyne/cm2 (50ksi) with K, = 1.10, 1, (nominal) = 1.0 with K = 1.25, h, (nominal)
= 1.0 with Kh = 1.40, and algorithm (nominal) = 1.0 with K ,o = 1.25. We choose
to model all the uncertainties with lognormal distributions. For the independent
parameters we specify I (applied) = 10.0 ktap and h(original) = 0.38cm. We note
that the ,-ecifications for K1 and Kh are the K-factors associated with the outputs
of the auxiliary algorithms, I, and h, respectively. These K-factors represent the
effective uncertainty associated with the auxiliary algorithms, including all impor-
tant contributions to the overall algorithmic uncertainty. Two previous BETAFACT
analyses, one for each auxiliary algorithm, are assumed to have been used to generate
the combined uncertainty specification for each auxiliary algorithm.

Using the values described above, evaluating the algorithm 5000 times to generate
the results distribution, and then computing the statistics of the distribution, we find
that its mean is 1A = 3.69 x 10', its standard deviation is u = 1.42 x 10- 3 and

the associated K-factor uncertainty is K, = 2.13. A plot of the results distribution
(continuous line curve) and fit to it (dash line curve) is shown in Figure 11. The
theoretical mean for this problem is 3.47 x 10- 3, which is about 6% less than the
computed mean.

A very useful feature of BETAFACT is that, once a problem has been fully defined
for a set of input parameters and associated K-factors, it is easy to re-analyze the
problem using varied parameter values and/or uncertainties. Thus we can use the
code to perform algorithm sensitivity studies.
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As a first example of such studies, we determine which source of uncertainty in
our problem is the most significant contributor to the overall combined uncertainty.
Clearly the most significant source is either the uncertainty associated with the basic
algorithm or with one of the two auxiliary algorithms. If we re-analyze the prob-
lem described above, but with KI = 1.01 (ie., very little uncertainty), we find that
the code estimates the combined uncertainty to be K = 1.77; 17% less than K,
given above. For Kh = 1.01 and all other inputs as originally specified, we find that
K = 1.68; 21% less than K,. Finally, for K.1go = 1.01 and all other inputs with their
original values, we compute K = 2.02; only 5% less than K,. Thus the uncertainty
associated with the auxiliary algorithm which computes the cylinder wall thickness
is the most significant, that associated with the residual impulse intensity algorithm
only slightly less significant, and that attributed to the basic algorithm in relative
terms almost insignificant. While this ordering of uncertainty significance may have
been anticipated since Kh is numerically the largest of the three uncertainties con-
sidered, the greater exponent (2.0) on I in the basic algorithm compared to that
of h, (1.5) nearly reverses the ordering. A more complicated algorithm would make
determination by inspection of the most significant uncertainty source a much more
difficult task. However, it would be straightforward with BETAFACT.

Now suppose we are asked which of the following is more beneficial in reducing
the overall combined uncertainty; reducing Ki from 1.25 (its original value) to 1.10
or reducing Kh from 1.40 (its original value) to 1.25? Further suppose the reductions
will be achieved via test programs with the former estimated to cost $200K and the
latter $100K. Which test program should be pursued? BETAFACT enables us to
quantify justifiable answers to these questions. The code can thus be employed as a
useful management and decision making tool.

First consider the overall uncertainty reduction obtained by reducing the con-
tributing uncertainties. Re-analyzing the original problem with Kt reduced from
1.25 to 1.10, we find that the combined K-factor decreases from 2.13 to 1.83, a 14%
reduction. If instead we reduce Kh from 1.40 to 1.25, we find that K, decreases from
2.13 to 1.88, a 12% reduction. Thus the maximum benefit is obtained by reducing
KI in this case.

Now consider the cost factor. On the one hand, reducing 1f by reducing K1 costs,
on the average, $14.3K per percentage point. On the other, reducing If, by improv-
ing K costs only $8.3K, on the average, per percentage point. Thus a percentage
point improvement in the latter case costs only 58% what it does, on the average,
in the former. From the viewpoint of maximized uncertainty reduction, we would
recommend the option which reduces K1 . However, from a cost viewpoint, clearly it
would be more economical to pursue the K, reduction option.

Other sensitivity studies which can be accomplished using BETAFACT are prob-
ably evident to the reader. The above simple example clearly demonstrates that the
code is adept at performing such quantitative analysis.

32



SECTION 5
BETAFACT USER'S MANUAL

The analysis of an algorithm with BETAFACT is a two step process; preparation
of the problem definition (including formulation of user supplied subroutines) and
analysis of the problem with the code. Since BETAFACT executes interactively, the
bulk of the effort involved in analyzing a new algorithm is incurred in defining the
problem.

In the following, we describe some preliminaries to the execution of the code (sub-
section 5.1), review the steps involved in formulating a problem definition (subsection
5.2) and describe in detail the interactive execution of BETAFACT (subsection 5.3).
Many details of the problem definition phase are described more completely in pre-
vious sections of this report (especially Sections 3 and 4) and will be repeated only
briefly here. The reader should refer to the previous report sections for the additional
details.

5.1 PRELIMINARIES TO EXECUTION.

We first assume the user has installed the file containing the BETAFACT source code
(named for reference here as BETAFACT.FOR) and the object file (BETAFACT.OBJ)
on the computer to be used in the algorithm analyses. Installation here means simply
having a copy of each file in the user's local file area. A listing of the source code is
provided as Appendix B to this report. It can be used to verify the completeness of
the user's source file.

If the user does not have file BETAFACT.OBJ available, but does have the source
file, an object file can be generated with the command

FOR/CONTINUATIONS=99 BETAFACT.FOR

The above command applies to compilation of the code on VAX type computers
operating under VMS. Since BETAFACT is coded using standard FORTRAN-77,
probably it can be readily compiled on any computer (such as a PC) with a FOR-
TRAN compiler. A command similar to the above would have to be issued on the
non-VAX computer to generate the desired BETAFACT object file. The CONTINU-
ATIONS parameter in the above command is necessary since some data statements
in the BETAFACT source continue over 50 or more lines of coding.

In order to obtain an executable version of BETAFACT which is specifically for
analysis of the user's algorithm, the algorithm must be made available to the code
via the user supplied subroutine named TF (which stands for Transfer Function in
the FAST terminology). If the basic algorithm under consideration happens to use
auxiliary algorithms (i.e., algorithms which compute parameter values which are part
of the input to the basic algorithm), these must be made available to the code via the
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user supplied subroutine named AUXALGO (for auxiliary algorithm). These two sub-
routines contain the FORTRAN coding of the user's basic and auxiliary algorithms,
respectively.

Once the user's subroutines are written and compiled, they must be linked to the
BETAFACT object file as follows:

1. If auxiliary algorithms are used, then link with

LINK BETAFACT,TF,AUXALGO

2. If auxiliary algorithms are not used, then simply link with

LINK BETAFACT,TF

A nonfatal error message will be obtained with the second LINK above. This
merely notifies the user that AUXALGO is referenced in BETAFACT but is not
defined since no subroutine AUXALGO was linked. The code will execute properly
even though this nonfatal error was encountered during linking.

The result of the above linking procedures is a file named BETAFACT.EXE which
is the executable version of the code tailored specifically for analysis of the user's
algorithm. To begin interactive execution of this program file, it is only necessary to
issue the command (on VAX type computers).

RUN BETAFACT

From this point on, the user need only respond to the prompts issued by the code.

5.2 PROBLEM DEFINITION.

The user needs to understand three single index arrays and one variable used by
BETAFACT in order to write useful user subroutines for the code. The three arrays
are named ANOM(i), XVAL(i) and A(i) and the variable YVAL. The meaning of
each in the code is as follows:

1. ANOM(i) - This array contains the nominal values of the parameters with
associated uncertainty which are used in the basic algorithm. Each source of
uncertainty is identified with a specific entry in array ANOM. The user defines
the association of an uncertain parameter with say the i-th entry in ANOM by
entering it as the i-th parameter value when the code prompts for nominal values
of parameters with associated uncertainty. If the actual parameter nominal
value is to be determined by an auxiliary algorithm in subroutine AUXALGO
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(see subsection 4.2 for a specific example of this situation), the nominal value
specified interactively for the parameter can be any value, provided the input
value isn't used in AUXALGO. We recommend using a nominal value of 1.0
for such parameters. If the user's basic algorithm is to have an associated
uncertainty (again see subsection 4.2 for an example), this constitutes a source
of uncertainty which is treated in BETAFACT as a parameter with a nominal
value which must be 1.0. This parameter nominal must also be the last uncertain
parameter nominal value entered interactively by the user.

2. XVAL(i) - This array contains the values of parameters used in the user's
algorithms which do not have associated uncertainty. They are also referred
to as independent variables or parameters. The value of the i-th independent
parameter is associated with the i-th entry of array XVAL by it being the i-th
value entered at the BETAFACT prompt for the nominal values of independent
parameters.

3. A(i) - This array contains in its i-th location the current randomized value of
an uncertain parameter corresponding to the nominal parameter value stored
as the i-th entry in array ANOM. Section 3 describes how these randomized
values are generated.

4. YVAL - This variable has the value computed for the output of the user's basic
algorithm for the current set of randomized input parameters but before basic
algorithm uncertainty has been applied.

The arrays ANOM and XVAL are accessible in subroutine AUXALGO. Indeed,
the purpose of AUXALGO is to assign one or more of the values of array ANOM.
All three arrays can be used in subroutine TF. The user must be careful not to change
any of the array entries (particularly those of ANOM and XVAL) in that subroutine,
however. The value of the evaluated algorithm returned by subroutine TF must be
assigned to YVAL.

Listings of example TF and AUXALGO subroutines are given in Appendix A.
The examples given are discussed in Section 4, particularly subsection 4.2. The
example subroutines use mnemonic local variable names to code the algorithms. This
facilitates understanding and identification of the algorithm and is a practice we
recommend.

Once the user has developed an executable version of BETAFACT which is specific
to the algorithm(s) in question, only one step remains before interactive execution
of the problem can commence. This step entails simply the collection of all the pa-
rameter (both uncertain and independent) nominal values to be used in the analyses,
definition of the K-factor uncertainties associated with each uncertain parameter,
and selection of the probability distribution type which is to be used in BETAFACT
to model uncertain parameter distributions. Any one of four types of distributions
(normal, lognormal, Beta, and uniform) may be selected. The reader is cautioned
that the meaning of a K-factor uncertainty specification changes from one probability
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distribution type to another. Section 3 should be consulted for the precise meaning
of K-factors as a function of distribution type.

With the above data and a problem specific executable version of BETAFACT in
hand, interactive analysis of the subject algorithm may proceed.

5.3 INTERACTIVE EXECUTION.

In this subsection we describe the specific meaning of prompts issued by BETAFACT
during the course of interactive execution. The meaning of the majority of these is
self-evident or has been explained, perhaps obliquely, in earlier sections of this report.
We discuss them here for completeness and to illustrate what is encountered during
the proper execution of a BETAFACT analysis session.

We begin by first mentioning that much of what is entered interactively to BETA-
FACT is not forever lost once it scrolls off the user's monitor. Most input data
are echoed not only to the monitor but also to unit 2 (file FOR002.DAT on VAX
computers). This file remains after execution of BETAFACT is terminated. It can
be edited and printed at will. Some data are written to unit 3 (FOR003.DAT) only.
This data consists of the x - y pairs, one pair per line, which enable plotting of
computed and fitted algorithm results distributions exterior to BETAFACT. The file
also contains the cumulative probability distribution computed from the algorithm
results distribution. The file is generated only if the user requests plot file generation
in response to the corresponding program prompt. Under usual circumstances, neither
file is excessively large. If BETAFACT aborts during an interactive session, usually
because of an invalid input to a prompt, any data previously written to unit 2 or 3
will usually still be accessible. This is important since no coding is implemented in
the current version of BETAFACT which checks input as received and enables the
user to modify it if it is incorrect and may lead to an error termination.

A BETAFACT interactive session begins with the user entering the following
command (on VAX machines) and hitting return:

RUN BETAFACT

The program then begins to execute, issuing the following prompts (in some cases
we abbreviate the prompts here) as it proceeds:

1. 'Does the algorithm to be evaluated have an overall uncertainty associated with

its output? [Y/NJ'

If it does, the interactive user should type Y or y and hit return. If the basic
algorithm does not have associated uncertainty, the user enters N or n (or
anything else for that matter).

2. 'Are auxiliary algorithms required to determine nominal parameter values which
are dependent on the values of the independent variables? [Y/N]'
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Enter Y or y if subroutine AUXALGO is to be accessed, else enter N or n (or
anything else).

3. 'Enter the number of parameters (IPARAM) in the algorithm which have as-
sociated uncertainty (include in the count whether or not the algorithm has an
overall uncertainty), and select the distribution type for modeling the uncer-
tainties (1,2,3 or 4 for normal, lognormal, Beta, and uniform, respectively).'

Enter the number of parameters with associated uncertainty (number of actual
parameters plus 1 if algorithm uncertainty is to be applied) followed by a space
and then 1,2,3, or 4 to select a distribution type.

4. 'Enter the nominal values of the parameters which are normally (lognormally,
Beta, or uniformly) distributed and the corresponding K-factors.'

On a new line for each uncertain parameter enter its nominal value and K-
factors (one or two required depending on distribution type) with each entry on
the line separated by a space. If two K-factors are entered, enter the low-side
K-factor first and then the high-side K-factor. Hit RETURN after each line of
data.

After the entire set of uncertain parameter nominal values are entered, the data
are echoed to the monitor and execution proceeds.

5. 'Enter the number of independent variables (IXVAL) which appear in the
algorithm or are used in AUXALGO.'

Enter the number of independent parameters. At least one must be used. If
such parameters do not occur naturally in an algorithm, one may be included
as an algorithm multiplier with a value of unity.

6. 'Enter the values of the independent variables.'

Enter the values, one after another, separated by a space. Continue on addi-
tional lines if necessary.

After the entire set of independent variables are entered, the data are echoed
to the monitor.

7. 'Enter the number of evaluations of the algorithm to be made for generating
the results distribution and a negative seed integer for the random number
generator.
Enter a positive integer (say 5000), a space, and a negative integer (e.g., -5731)
and then RETURN. The random number generator uses a negative seed integer.
If the entered value is positive, the random number generator uses its negative
value.

If parameter uncertainties are to be modelled with Beta cumulative probability
distributions, the following series of prompts are then issued:

8. (a) 'Select whether to use tabulated or calculated Beta cumulative probability
distribution values; 1 - use tabulated, 2 - use calculated.'
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Enter 1 or 2, as appropriate.
If 1 is entered, the program determines and reports the number of the
tabulated distribution it will use to model the distribution associated with
each uncertain parameter.
If 2 is entered, the program computes and reports allowable standard de-
viation boundaries (see Equation 21) for each uncertain parameter and
prompts.

(b) 'Enter the standard deviations of the Beta distributed parameters.'
Enter the standard deviation for each parameter, separating by a space
and using as many lines as required.
The code echoes the input values and reports the Beta cumulative probabil-
ity distribution values (21 points) computed for each uncertain parameter.

TI, code then proceeds to evaluate the algorithm the requested number of times, com-
putes the statistics of the results distribution, and then reports the mean, variance,
standard deviation and K-factor(s) determined for the algorithm. It then prompts:

9. 'Do you want plot files of the results distribution and fit to be generated? [Y/N].'

Enter Y or y if x-y plot data are to be saved, else enter N, n, or any other
character.

Finally the code prompts:

10. 'Select option to quit or to run a modified version of the current problem
(0,1,2,...,16).1

A total of 17 options are available, one which terminates current execution
and the other 16 which enable various degrees of problem modification and re-
analysis. See the listing (subroutine OPTIONS) for the list of options available.
In response to this prompt, type the number of the option selection and hit
RETURN.

At this point, the program reissues one or more of the prompts described above and
execution proceeds as before. Thus the above list of interactions of the user with
BETAFACT is complete.
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SECTION 6
CONCLUSIONS/RECOMMENDATIONS

In this report we have described a numerical approach for statistically combining
many sources of algorithm uncertainty in order to quantify the overall uncertainty as-
sociated with an algorithm result. The interactive BETAFACT program was written
to accomplish this task. The code allows the user to model uncertainty distributions
using either normal, lognormal, Beta, or uniform probability distributions. We de-
scribed in detail how the code can be used to analyze essentially any algorithm with
uncorrelated parameter uncertainties. The only special skill required by the user to
use BETAFACT to achieve this end is moderate competency in writing FORTRAN
coding for the algorithms. During execution, the code prompts for all data required
to process the coded algorithms.

We have used BETAFACT extensively in our LTH-3 Program lethality assessment
activitieb. A code of this type seems to be essential in order to prepare algorithms
and define associated uncertainties which are then used as input to the DNA FAST
code. BETAFACT has also been shown to be a tool useful in program management
and decision making processes.

The current version of BETAFACT has some limitations which in some appli-
cations could be significant. We list below some of these limitations and gi ' our
recommendations concerning whether or not they should be alleviated.

1. The chief limitation of the code is that sources of uncertainty are assumed to be
uncorrelated. A substantial effort would be required to implement a correlated
uncertainty capability in the code. Such an effort is recommended if there is a
desire to enhance the generality of the code.

2. A possibly important limitation is the requirement that all sources of uncer-
tainty in a given analysis must be modelled with one type of probability dis-
tribution (e.g., all normal or all lognormal, etc.). It would be straightforward
to modify BETAFACT to allow modelling different sources of uncertainty with
different probability distributions in the same aaialysis. The resulting algorithm
results distributions would tend to be hybrid in this case and perhaps not easily
or accurately modelled by one of the standard types of distributions. If a tab-
ular form of the algorithm results distribution is useful (for instance, if FAST
was modified to accept and use arbitrary probability distributions), then mod-
ification of BETAFACT to allow mixing of distribution types in an analysis is
recommended.

3. Only four types of probability distributions (normal, lognormal, Beta, and gen-
eralized uniform) are available in BETAFACt. We recommend adding addi-
tional distribution types to the code. The effort involved would not be substan-
tial.
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APPENDIX A
EXAMPLE USER SUBROUTINES

1. This is the simple TF subroutine used in the verification analyses of the BETAFACT
code. For a discussion of the simple algorithm and the analysis results, see subsection
4.1 of the BETAFACT documentation.

SUBROUTINE TF (ANOM, A, XVAL ,YVAL)
C
C THIS EXAMPLE FOR SUBROUTINE TF CONTAINS THE FORTRAN CODING FOR
C THE SIMPLE ALGORITHM CONSIDERED IN SUBSECTION 4.1 OF THE BETAFACT
C CODE DOCUMENTATION:
C
C R= X
C
C THE VARIABLE X, WHICH HAS ASSOCIATED UNCERTAINTY, HAS A
C RANDOMIZED VALUE WHICH IS PASSED TO THIS SUBROUTINE AS THE
C FIRST ELEMENT, A(1), IN ARRAY A. THE LOCAL NAME FOR THIS
C VARIABLE IS ADUM. THE RANDOMIZED VARIABLE VALUE IS MULTIPLIED
C BY THE VALUE OF THE INDEPENDENT VARIABLE (WHICH HAS VALUE 1.0)
C WHICH IS STORED AS THE FIRST ELEMENT OF ARRAY XVAL. THE
C OUTPUT R OF THE SIMPLE ALGORITHM IS ASSIGNED TO YVAL, AS
C REQUIRED BY BETAFACT.
C

REAL*4 ANOM(*), A(*), XVAL(*)
ADUM = A(1)
YVAL = XVAL(1)*ADUM
RETURN
END
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2. The following are the AUXALGO and TF subroutines used in the realistic
algorithm example analyses described in subsection 4.2 of the BETAFACT documen-
tation.

SUBROUTINE AUXALGO(ANOM, XVAL)
C
C THIS SAMPLE SUBROUTINE CONTAINS CODING NEEDED FOR EVALUATING THE
C MODIFIED VERSION OF THE HKL ALGORITHM DESCRIBED IN SUBSECTION 4.2
C OF THE BETAFACT DOCUMENTATION.
C

REAL*4 ANOM(*), XVAL(*)
AI = XVAL(1)
AH = XVAL(2)
IF (AI.LT.3.5) THEN

ANOM(3) = AI
ANOM(4) = AH

RETURN
ELSE

FAC = SQRT(2.0*AH)
ANOM(3) = (3.5 + O.08*(AI - 3.5))*FAC
ANOM(4) = AH - (0.05 + O.O01*(AI - 3.5))*FAC
RETURN

ENDIF
RETRN
END

SUBROUTINE TF (ANOM, A, XVAL ,YVAL)
C
C THIS SAMPLE SUBROUTINE CONTAINS CODING FOR THE MODIFIED VERSION
C OF THE HKL ALGORITHM DESCRIBED IN SUBSECTION 4.2 OF THE BETAFACT
C DOCUMENTATION.
C

REAL*4 ANOM(*), A(*), XVAL(*)
ARHO = A(1)
ASIG = A(2)
AIR = A(3)
AHR = A(4)
YVAL = 0. 5*AIR*AIR/(ARHO*ASIG*AHR**1.5)
YVAL = YVAL*1O**6.
RETURN
END
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APPENDIX B
BETAFACT CODE LISTING

PROGRAM BETAFACT
C
C PROGRAM BETAFACT IS USED TO COMPUTE THE COMBINED UNCERTAINTY
C TO BE ASSOCIATED WITH AN ALGORITHM WHICH IS A FUNCTION OF
C SEVERAL PARAMETERS, EACH OF WHICH MAY HAVE ASSOCIATED
C UNCERTAINTY. THE ALGORITHM, ITSELF, MAY HAVE SPECIFIED
C UNCERTAINTY ASSOCIATED WITH ITS OUTPUT, REGARDLESS OF
C WHETHER OR NOT ITS PARAMETERS HAVE UNCERTAIN VALUES. ALL
C THESE SOURCES OF UNCERTAINTY ARE ACCOUNTED FOR IN BETAFACT

C IN ORDER TO OBTAIN THE FINAL UNCERTAINTY ESTIMATE FOR THE
C EVALUATED ALGORITHM. ALL UNCERTAINTIES USED IN THE PROGRAM

C ARE SPECIFIED IN THE FORM OF EQUIVALENT K-FACTORS.

C
C THE UNCERTAINTIES ASSOCIATED WITH PARAMETERS AND ALGORITHMS
C MAY BE MODELLED AS NORMALLY, LOGNORMALLY, BETA, OR UNIFORMLY

C DISTRIBUTED IN BETAFACT. THE USER IS PROMPTED TO DEFINE,
C INTERACTIVELY, THE REQUIRED DISTRIBUTION TYPES AND, IN FACT,
C THE ENTIRE SPECIFICATION OF THE PROBLEM TO BE SOLVED. IT IS

C ONLY REQUIRED THAT THE USER PROVIDE A SUBROUTINE (CALLED TF)

C TO THE PROGRAM WHICH CONTAINS THE CODING FOR THE ALGORITHM

C WHICH IS TO BE EVALUATED. THE USER MAY ALSO PROVIDE AN
C AUXILIARY SUBROUTINIE (CALLED AUXALGO) TO EVALUATE THE VALUES
C OF PARAMETERS USED IN THE MAIN ALGORITHM WHICH ARE OBTAINABLE
C FORM OTHER SIMPLE ALGORITHMS OR RELATIONS.
C
C
C BETAFACT WAS DEVELOPED ON A VAX TYPE COMPUTER OPERATING UNDER VMS.
C TO USE BETAFACT, THE USER FIRST MUST COMPILE THE SUBROUTINE TF
C (AND SUBROUTINE AUXALGO IF THERE IS ONE) AND THEN LINK BOTH TO
C THE BETAFACT OBJECT FILE AS FOLLOWS:
C
C LINK BETAFACT,TF,AUXALGO(if there is one)
C
C THE RESULT OF THIS PROCESS IS A FILE CALLED BETAFACT.EXE, WHICH
C IS THE BETAFACT EXECUTABLE FILE. ONCE THIS FILE IS CREATED,
C ITS EXECUTION IS ACHIEVED SIMPLY BY TYPING
C
C RUN BETAFACT
C
C HITTING RETURN, AND THEN ANSWERING THE PROMPTS ISSUED BY THE
C PROGRAM.
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C
C A SIGNIFICANT PORTION OF BETAFACT IS FLEXIBLY DIMENSIONED.
C ONLY THE ARRAYS EXPLICITLY RELATED TO THE LIBRARY OF 81
C BETA CUMULATIVE PROBABILITY DISTRIBUTIONS USED BY THE
C CODE HAVE FIXED DIMENSIONS. IF THE NUMBER OF LIBRARY
C BETA CUMULATIVE PROBABILITY DISTRIBUTIONS NEEDS TO BE
C INCREASED, THE DIMENSIONS OF THE FOLLOWING ARRAYS WILL
C HAVE TO BE CHANGED: BD, DBA, DBB, AMED, ALPH, AND BET.
C
C ALL OTHER ARRAYS USED BY THE PROGRAM ARE DIMENSIONED VIA
C A PARAMETER STATEMENT WHICH DEFINES THE FOLLOWING INTEGER
C VARIABLES:
C
C MAXPRM - MAXIMUM NUMBER OF VARIABLES WITH UNCERTAINTY.
C MAXVAR - MAXIMUM NUMBER OF INDEPENDENT PARAMETERS.
C MAXSIZ - MAXIMUM NUMBER OF ALGORITHM EVALUATIONS.
C MAXINT - MAXIMUM NUMBER OF INTERVALS USED TO CALCULATE BETA
C CUMULATIVE PROBABILITY DISTRIBUTIONS.
C MAXIN1 - MAXIMUM NUMBER OF INTERVALS USED TO DEFINE HISTOGRAMS.
C
C OTHER PRINCIPAL INTEGER VARIABLES AND CONTROL PARAMETERS
C USED BY THE CODE ARE AS FOLLOWS:
C
C IPARAM - NUMBER OF PARAMETERS WITH UNCERTAINTY.
C IPARA - EQUAL TO IPARAM IF ALGORITHM DOES NOT HAVE AN OVERALL
C SPECIFIED UNCERTAINTY; ELSE IPARA = IPARAM - 1.
C ITYPE - DISTRIBUTION TYPE USED TO MODEL UNCERTAINTIES:
C = 1 NORMAL DISTRIBUTION.
C = 2 LOGNORMAL DISTRIBUTION.
C = 3 BETA DISTRIBUTION.
C = 4 UNIFORM DISTRIBUTION.
C ISIZE - NUMBER OF ALGORITHM EVALUATIONS TO BE MADE.
C ISEED - SEED (NEGATIVE AND ODD) USED TO INITIALIZE THE RANDOM
C NUMBER GENERATOR.
C IALGO - FLAG INDICATING SPECIFIED ALGORITHMIC UNCERTAINTY:
C - 1 ALGORITHM HAS OVERALL UNCERTAINTY.
C = ANYTHING ELSE; DOESN'T HAVE OVERALL UNCERTAINTY.
C IXVAL - NUMBER OF INDEPENDENT PARAMETERS USED IN ALGORITHM.
C THESE DO NOT HAVE ASSOCIATED UNCERTAINTY.
C ITABL - FLAG DEFINING WHETHER TABULATED OR CALCULATED BETA
C CUMULATIVE PROBABILITY DISTRIBUTIONS ARE TO BE USED:
C = 1 USE TABULATED DISTRIBUTIONS.
C = 2 USE CALCULATED DISTRIBUTIONS.
C IXALG - FLAG WHICH SPECIFIES WHETHER OR NOT AUXILIARY
C ALGORITHMS IN USER SUPPLIED SUBROUTINE AUXALGO
C ARE TO BE ACCESSED: IF 1 1, THEN SUBROUTINE IS
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C ACCESSED, OTHERWISE NOT ACCESSED.
C IOPT - ANALYSIS MODIFICATION OPTIONS FLAG. SEE SUBROUTINE
C OPTIONS FOR AVAILABLE OPTIONS.
C NINTV - NUMBER OF INTERVALS USED TO CALCULATE BETA
C CUMULATIVE PROBABILITY DISTRIBUTIONS. RECOMMENDED
C NUMBER IS DEFAULT NINTV = MAXINT.
C NINC - NUMBER OF INTERVALS USED TO GENERATE HISTOGRAMS.
C RECOMMENDED NUMBER IS DEFAULT NINC = MAXINi.
C NINP - UNIT NUMBER FOR INTERACTIVE INPUT (DEFAULT = 5).
C NOUT - UNIT NUMBER FOR TERMINAL SCREEN OUTPUT (DEFAULT = 6).
C NPRT - UNIT NUMBER FOR PRINTABLE OUTPUT (DEFAULT = 2).
C NPLT - UNIT NUMBER FOR PLOT FILE (HISTOGRAM) OUTPUT (DEFAULT = 3).
C
C THE PRINCIPAL REAL ARRAYS AND VARIABLES USED BY THE PROGRAM ARE:
C
C ANOM - ARRAY OF NOMINAL VALUES OF PARAMETERS WITH UNCERTAINTY.
C AKLO - ARRAY OF PARAMETER LOW-SIDE K-FACTOR UNCERTAINTIES.
C AKHI - ARRAY OF PARAMETER HIGH-SIDE K-FACTOR UNCERTAINTIES.
C ALO - ARRAY OF PARAMETER LOW-SIDE EXTREME VALUES.
C AHI - ARRAY OF PARAMETER HIGH-SIDE EXTREME VALUES.
C A - ARRAY OF RANDOM VALUES OF PARAMETERS FOR A SINGLE
C ALGORITHM EVALUATION LOOP.
C XVAL - ARRAY OF INDEPENDENT PARAMETER VALUES.
C YVAL - RESULT OBTAINED IN SINGLE EVALUATION OF ALGORITHM.
C RESULT - ARRAY OF ALL COMPUTED YVAL RESULTS.
C ASIG - ARRAY OF SPECIFIED BETA DISTRIBUTION STANDARD DEVIATIONS;
C USED TO CALCULATE BETA DISTRIBUTIONS.
C BD - ARRAY OF LIBRARY OR CALCULATED BETA CUMULATIVE
C PROBABILITY DISTRIBUTIONS.
C ALPHA - BETA DISTRIBUTION ALPHA PARAMETER.
C BETA - BETA DISTRIBUTION BETA PARAMETER.
C ALPH - ARRAY OF ALPHA PARAMETER VALUES USED TO GENERATE THE
C LIBRARY OF BETA CUMULATIVE PROBABILITY DISTRIBUTIONS.
C BET - ARRAY OF BETA PARAMETER VALUES USED TO GENERATE THE
C LIBRARY OF BETA CUMULATIVE PROBABILITY DISTRIBUTIONS.
C AMED - ARRAY OF MEDIAN (50%) VALUES OF THE LIBRARY OF
C BETA CUMULATIVE PROBABILITY DISTRIBUTIONS.
C RN - VARIABLE EQUAL TO THE MOST RECENT RANDOM NUMBER.
C AMEAN - MEAN OF THE ALGORITHM RESULTS DISTRIBUTION.
C VAR - VARIANCE OF THE ALGORITHM RESULTS DISTRIBUTION.
C SIGMA - STANDARD DEVIATION OF ALGORITHM RESULTS DISTRIBUTION.
C AKEST - COMBINED EFFECTIVE K-FACTOR ESTIMATE FOR CASES OF
C NORMAL AND LOGNORMAL MODELLED UNCERTAINTIES.
C AKESTI - LOW-SIDE COMBINED EFFECTIVE K-FACTOR ESTIMATE FOR
C BETA AND UNIFORM MODELLED UNCERTAINTIES.
C AKEST2 - HIGH-SIDE COMBINED EFFECTIVE K-FACTOR ESTIMATE FOR
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C BETA AND UNIFORM MODELLED UNCERTAINTIES.
C AKAVE - K-FACTOR EQUAL TO THE AVERAGE OF AKEST1 AND AKEST2.
C
C THE PRINCIPAL INTEGER ARRAYS USED BY THE PROGRAM ARE:
C
C IBD - ARRAY OF THE BETA CUMULATIVE PROBABILITY DISTRIBUTION
C NUMBER ASSOCIATED WITH EACH BETA DISTRIBUTED PARAMETER.
C IFREQ - FREQUENCY OF OCCURRENCE ARRAY USED TO ACCUMULATE
C HISTOGRAM DATA.
C

PARAMETER (MAXPRM=20, MAXVAR=10, MAXSIZ=10000,
1 MAXINT=100, MAXINI=100)

COMMON /BLK01/ IPARAM, ITYPE, ISIZE, ISEED, IALGO, IXVAL, ITABL,
1 IXALG, IOPT, NINTV, NINC, NINP, NOUT, NPLT, NPRT
COMMON /BLK02/ BD(21,81)
REAL*4 ANOM (MAXPRM), ALO (MAXPRM), AHI (MAXPRM)
REAL*4 AKLO (MAXPRM), AKHI (MAXPRM), A (MAXPRM)
REAL*4 XVAL (MAXVAR), RESULT (MAXSIZ)
REAL*4 ASIG(2,MAXPRM), AREA(MAXINT), Y(MAXINT+1)
REAL*4 XINT(MAXIN1+1), XOUT(MAXIN1)
REAL*4 XXLN(MAXIN1+1), XXII(MAXIN1)
INTEGER*4 IBD (MAXPRM), IFREQ (MAXIN1)

C
C CONTROL PARAMETER 'IOPT' INITIALLY SET EQUAL TO 16
C SINCE A COMPLETELY NEW PROBLEM IS TO BE DEFINED.
C

IOPT = 16
NINC = MAXINT
NINTV - MAXIN1

C
C ASSIGN DEFAULT UNIT NUMBERS FOR INPUT, OUTPUT, ETC:
C
C NINP - UNIT NUMBER FOR INPUT FROM TERMINAL.
C NOUT - UNIT NUMBER FOR OUTPUT TO TERMINAL.

C NPLT - UNIT NUMBER FOR PLOT DATA.

C NPRT - UNIT NUMBER FOR HARDCOPY OUTPUT.

C
NINP = 5

NOUT = 6

NPLT - 3
NPRT = 2

C
C ASSIGN DEFAULT VALUES FOR OTHER CONTROL PARAMETERS.
C

IALGO = 0
IXALG - 0
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IXVAL = 1
ITABL - 1

C
C CALL SUBROUTINE CONTRL TO INPUT PROBLEM DEFINITION AND
C MAIN CONTROL PARAMETERS.
C

10 CALL CNTRL(ANOM, ALO, AHI, AKLO, AKHI, XVAL, ASIG, Y, AREA, IBD)
C
C CALL SUBROUTINE SOLVE TO EVALUATE THE PROBLEM ALGORITHM.
C

CALL SOLVE(ANOM, ALO, AHI, AKLO, AKHI, XVAL, A, IBD, RESULT)
C
C CALL SUBROUTINE SORT TO ORDER THE ALGORITHM RESULTS
C DISTRIBUTION FROM LOWEST TO HIGHEST VALUE.
C

CALL SORT(RESULT, ISIZE)
C
C CALL SUBROUTINE STATISTIC TO EVALUATE STATISTICS FOR THE
C ORDERED RESULTS DISTRIBUTION, TO ESTIMATE OVERALL ALGORITHM
C UNCERTAINTY, AND TO GENERATE PLOT FILES CONTAINING HISTOGRAM
C DATA AND FITS TO THE HISTOGRAM DATA.
C

CALL STATISTIC(RESULT, XINT, XOUT, XXLN, XXII, IFREQ)
C
C CALL SUBROUTINE OPTIONS TO MODIFY THE CURRENT PROBLEM
C DEFINITION WITHOUT EXITING FROM BETAFACT.
C

CALL OPTIONS
C
C TERMINATE THE PRESENT ANALYSIS ONLY IF IOPT = 0.
C

IF (IOPT.NE.0) GO TO 10
END
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SUBROUTINE CNTRL(ANOM, ALO, AHI, AKLO, AKHI, XVAL, ASIO, Y,
1 AREA, IBD)

C
C SUBROUTINE CNTRL CONTROLS THE INPUT OF THE DATA WHICH DEFINE A
C PROBLEM OR MODIFICATIONS TO A PREVIOUSLY DEFINED PROBLEM. THE
C SUBROUTINE INTERACTIVELY PROMPTS THE USER TO SPECIFY THE VALUES
C OF THE FOLLOWING CONTROL PARAMETERS AND INTEGER VARIABLES:
C
C IALGO - FLAG IDENTIFYING USE OF OVERALL ALGORITHM UNCERTAINTY.
C IXALG - FLAG CONTROLLING ACCESSING OF AUXILIARY ALGORITHMS.
C IPARAM - NUMBER OF PARAMETERS WITH UNCERTAINTY.
C ITYPE - DISTRIBUTION TYPE FOR MODELLING UNCERTAINTIES.
C ISIZE - NUMBER OF REQUESTED ALGORITHM EVALUATIONS.
C ISEED - SEED INTEGER (<0 AND ODD) FOR RANDOM NUMBER GENERATOR.
C
C WHETHER OR NOT ONE OR ALL OF THE ABOVE INTEGER VARIABLES NEEDS
C TO BE ENTERED IS DETERMINED BY THE CURRENT VALUE OF THE OPTIONS
C CONTROL PARAMETER IOPT.
C
C SUBROUTINE CNTRL ALSO CALLS TWO SUBROUTINES:
C
C SUBROUTINE INPUT - FOR ENTERING PARAMETER NOMINAL VALUES,
C ASSOCIATED UNCERTAINTIES, AND THE VALUES
C OF INDEPENDENT PARAMETERS WHICH DO NOT
C HAVE ASSOCIATED UNCERTAINTY.
C SUBROUTINE ASSIGNBETA - WHICH CONTROLS ASSOCIATION OF A SPECIFIC
C TABULATED OR COMPUTED BETA CUMULATIVE
C PROBABILITY DISTRIBUTION WITH PARAMETERS
C HAVING BETA DISTRIBUTED UNCERTAINTY.
C

COMMON /BLKOl/ IPARAM, ITYPE, ISIZE, ISEED, IALGO, IXVAL, ITABL,
1 IXALG, IOPT, NINTV, NINC, NINP, NOUT, NPLT, NPRT
REAL*4 ANOM(*), ALO(*), AHI(*), AKLO(*), AKHI(*), XVAL(*)
REAL*4 ASIG(2,*), Y(*), AREA(*)
INTEGER*4 IBD(*)
CHARACTER*1 ANS1

C
C THE VALUE OF THE OPTION CONTROL PARAMETER 'IOPT'

C EQUALS 16 ONLY IF THIS IS A NEW PROBLEM OR THE

C CURRENT PROBLEM IS TO BE COMPLETELY MODIFIED.

C FOR IOPT - 16, THE CONTROL PARAMETERS 'IALGO' AND
C 'IXALG' NEED TO BE SPECIFIED.
C

IF (IOPT.NE.16) GO TO 10
C
C SPECIFY CONTROL PARAMETER 'IALGO' WHICH FLAGS WHETHER OR NOT
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C THE ALGORITHM HAS AN OVERALL ASSOCIATED UNCERTAINTY.
C IF IALGO = 1, THEN THE ALGORITHM HAS OVERALL UNCERTAINTY.
C OTHERWISE IT DOES NOT.
C

WRITE(NOUT, 1000)
1000 FORMAT(/,' DOES THE ALGORITHM TO BE EVALUATED HAVE AN OVERALL',/,

1 ' UNCERTAINTY ASSOCIATED WITH ITS OUTPUT? [Y/N]' ,/)
READ(NINP,1001) ANSI

1001 FORMAT(A1)
IF ((ANS1.EQ. 'Y').OR.(ANS1.EQ. 'y')) IALGO = 1

C
C SPECIFY CONTROL PARAMETER 'IXALG' WHICH FLAGS WHETHER OR NOT
C THE ALGORITHM MUST ACCESS AUXILIARY ALGORITHMS TO OBTAIN VALUES
C FOR SOME OF ITS PARAMETERS. IF IXALG = 1, THEN AUXILIARY
C ALGORITHMS, CODED IN THE USER SUPPLIED SUBROUTINE AUXALGO,
C WILL BE ACCESSED. OTHERWISE AUXILIARY ALGORITHMS ARE NOT
C USED.
C

WRITE(NOUT, 1100)
1100 FORMAT(/,' ARE AUXILIARY ALGORITHMS REQUIRED TO DETERMINE' ,/,

1 ' NOMINAL PARAMETER VALUES WHICH ARE DEPENDENT ON',/,
2 ' THE VALUES OF THE INDEPENDENT VARIABLES? [Y/N] ',/)
READ(NINP, 1001) ANSI
IF ((ANS1.EQ. 'Y').OR.(ANS1.EQ. 'y')) IXALG a 1

C
C IF THIS IS A MODIFICATION ANALYSIS, CHECK THE VALUE OF 'IOPT'
C TO DETERMINE IF THE NUMBER OF ALGORITHM PARAMETERS AND/OR
C DISTRIBUTION TYPE SPECIFICATION NEED TO BE CHANGED.
C

10 IF ((IOPT.EQ.1).OR.(IOPT.EQ.2).OR.(IOPT.EQ.3).OR.(IOPT.EQ.5).OR.
1 (IOPT.EQ.6).0R.(IOPT.EQ.8).OR.(IOPT.EQ.11)) GO TO 20

C
C SPECIFY THE NUMBER 'IPARAM' OF ALGORITHM PARAMETERS WHICH
C HAVE ASSOCIATED UNCERTAINTY AND THE DISTRIBUTION TYPE 'ITYPE'
C TO BE USED TO MODEL THE PARAMETER UNCERTAINTIES.
C

WRITE(NOUT, 1200)
1200 FORMAT(/,' ENTER THE NUMBER OF PARAMETERS (IPARAM) IN THE' ,/,

1 ' ALGORITHM WHICH HAVE ASSOCIATED UNCERTAINTY ',/,
2 ' (INCLUDE IN THE COUNT WHETHER OR NOT THE ALGORITHM ',/,
3 ' HAS AN OVERALL UNCERTAINTY), AND SELECT THE ',/,
4 ' DISTRIBUTION TYPE FOR MODELLING THE UNCERTAINTIES ',I,
5 ' FROM THE FOLLOWING (ENTER 1, 2, 3, OR 4):',/,/,
6 ' 1 - NORMAL DISTRIBUTION.',/,
7 ' 2 - LOGNORMAL DISTRIBUTION.',/,

8 ' 3 - BETA DISTRIBUTION.',/,
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9 4 - UNIFORM DISTRIBUTION.',/)
READ(NINP,*) IPARAM, ITYPE

20 IF (IOPT.EQ.2) GO TO 30
C
C CALL SUBROUTINE INPUT TO ENTER DEPENDENT PARAMETER NOMINAL VALUES,

C ASSOCIATED K-FACTOR UNCERTAINTIES, AND THE VALUE(S) OF THE
C INDEPENDENT PARAMETER(S) FOR WHICH THE ALGORITHM IS TO BE
C EVALUATED.
C

CALL INPUT(ANOM, ALO, AHI, AKLO, AKHI, XVAL)
C
C IF THIS IS A MODIFICATION ANALYSIS, CHECK THE VALUE OF 'IOPT'
C TO DETERMINE IF THE NUMBER 'ISIZE' OF EVALUATIONS OF THE

C ALGORITHM AND/OR THE SEED INTEGER 'ISEED' FOR THE RANDOM
C NUMBER GENERATOR NEED TO BE CHANGED.
C

30 IF ((IOPT.EQ.1).OR.(IOPT.EQ.3).OR.(IOPT.EQ.4).OR.(IOPT.EQ.6).OR.

1 (IOPT.EQ.7).OR.(IOPT.EQ.10).OR.(IOPT.EQ.13)) GO TO 40

C
C SPECIFY THE NUMBER 'ISIZE' OF ALGORITHM EVALUATIONS TO BE
C PERFORMED AND A SEED INTEGER 'ISEED' FOR THE RANDOM NUMBER
C GENERATOR.
C

WRITE(NOUT, 1300)
1300 FORMAT(/,' ENTER THE NUMBER OF EVALUATIONS (ISIZE) OF THE',/,

1 ' ALGORITHM TO BE MADE FOR GENERATING THE RESULTS',/,
2 ' DISTRIBUTION AND A NEGATIVE SEED INTEGER (ISEED)',/,
3 ' FOR THE RANDOM NUMBER GENERATOR. ',/)
READ(NINP,*) ISIZE, ISEED

40 CONTINUE
C
C CALL SUBROUTINE ASSGNBETA IF THE PRESENT ANALYSIS INVOLVES
C MODELLING UNCERTAINTIES WITH CUMULATIVE BETA DISTRIBUTIONS.
C

IF ((IOPT.EQ.1).OR.(IOPT.EQ.2).OR.(IOPT.EQ.5)) GO TO 50
IF (ITYPE.EQ.3) THEN

CALL ASSGNBETA(ANOM, ALO, AHI, AKLO, AKHI, ASIG, Y, AREA, IBD)
ENDIF

50 CONTINUE
RETURN
END
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SUBROUTINE INPUT(ANOM, ALO, AHI, AKLO, AKHI, XVAL)

C
C SUBROUTINE INPUT INTERACTIVELY READS USER SUPPLIED DATA WHICH
C DEFINE THE NOMINAL VALUES OF ALGORITHM PARAMETERS WITH UNCERTAINTY,
C THE ASSOCIATED K-FACTOR UNCERTAINTIES, AND THE VALUES OF INDEPENDENT
C PARAMETERS WHICH DO NOT HAVE ASSOCIATED UNCERTAINTY. THE NUMBER
C OF THE LATTER TYPE OF PARAMETERS, IXVAL, IS PROMPTED FOR BY THE
C SUBROUTINE. THE PARAMETER NOMINAL VALUES AND K-FACTOR UNCERTAINTIES
C ARE USED IN THE SUBROUTINE TO COMPUTE THE EXTREME (LOW AND HIGH)

C VALUES CORRESPONDING TO EACH PARAMETER WITH UNCERTAINTY.
C
C THE PRINCIPAL ARRAYS DEFINED IN SUBROUTINE INPUT ARE AS FOLLOWS:
C
C ANOM - NOMINAL VALUES OF THE PARAMETERS WITH UNCERTAINTY.
C AKLO - LOW-SIDE K-FACTOR UNCERTAINTIES FOR THE PARAMETERS.
C AKHI - HIGH-SIDE K-FACTOR UNCERTAINTIES FOR THE PARAMETERS.
C ALO - LOW-SIDE OF THE RANGE FOR EACH PARAMETER.
C AHI - HIGH-SIDE OF THE RANGE FOR EACH PARAMETER.
C XVAL - VALUES OF THE INDEPENDENT PARAMETERS (NO UNCERTAINTY).
C

COMMON /BLKO1/ IPARAM, ITYPE, ISIZE, ISEED, IALGO, IXVAL, ITABL,
1 IXALG, IOPT, NINTV, NINC, NINP, NOUT, NPLT, NPRT

REAL*4 ANOM(*), ALO(*), AHI(*), AKLO(*), AKHI(*), XVAL(*)

C
C DETERMINE IF IOPT VALUE REQUIRES INPUT OF PARAMETER DATA.

C
IF ((IOPT.EQ.1).OR.(IOPT.EQ.2).OR.(IOPT.EQ.5)) GO TO 90

C
C ENTER DATA FOR PARAMETERS WHICH ARE NORMALLY DISTRIBUTED.

C
IF (ITYPE.EQ.1) THEN
WRITE(NOUT, 1000)

DO 10 I = 1, IPARAM
READ(NINP,*) ANOM(I), AKLO(I)
AHI(1) = ANOM(I)*AKLO(I)

ALO(I) = ANOM(I) - (AHI(I) - ANOM(I))

10 CONTINUE
C
C ECHO PARAMETER INPUT DATA AND COMPUTED RANGE.
C

WRITE(NPRT, 1100)
WRITE(NOUT, 1100)

DO 20 I = 1, IPARAM
WRITE(NPRT,1200) I, ANOM(I), AKLO(I), ALO(I), AHI(I)
WRITE(NOUT,1200) I, ANOM(I), AKLO(I), ALO(I), AHI(I)
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20 CONTINUE
C
C ENTER DATA FOR PARAMETERS WHICH ARE LOGNORMALLY DISTRIBUTED.
C

ELSE IF (ITYPE.EQ.2) THEN
WRITE(NOUT, 1300)

DO 30 1 = 1, IPARAM
READ(NINP,*) ANOM(I), AKLO(I)
ALO(I) - ANOMi(I)/AKLO(I)
AHI(I"# = ANOM(I)*AKLO(I)

30 CONTINUE
C
C ECHO PARAM~ETER INPUT DATA AND COMPUTED RANGE.
C

WRITE(NPRT, 1400)
WRITE(NOUT, 1400)

DO 40 I = 1, IPARAM
WRITE(NPRT,1500) I, ANOM(I, AKLO(I), ALO(I), AHICI)
WRITE(NOUT,1500) I, ANOM(I, AKLO(I), ALOCI, AHICI)

40 CONTINUE
C
C ENTER DATA FOR PARAMETERS WHICH ARE BETA DISTRIBUTED.
C

ELSE IF (ITYPE.EQ.3) THEN
WRITE(NOUT, 1600)

DO 50 I = 1, IPARAM
READ(NINP,*) ANOM(I), AKLO(I), AKHI(I)
ALOCI) - ANOM(I)/AKLO(I)
AHI(I) = ANOM(I)*AKHI(I)

50 CONTINUE
C
C ECHO PARAMETER INPUT DATA AND COMPUTED RANGE.
C

WRITE (NPRT, 1700)
WRITE(NOUT, 1700)

DO 60 I = 1, IPARAM
WRITE(NPRT,1800) I, ANOM(I),AKLO(I),AKHI(I),ALO(I)I,AHiI(I)
WRITE(NOUT,1800) I, ANOM(I),AKLO(I),AKHI(I),ALO(I),AHI(I)

60 CONTINUE
C
C ENTER DATA FOR PARAMETERS WHICH ARE UNIFORMLY DISTRIBUTED.
C

ELSE IF (ITYPE.EQ.4) THEN
WRITE(NOUT. 1900)

DO 70 I = 1, IPARAM
READ(NINP,*) ANOM(I), AKLO(I), AKHI(I)
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ALO(I) = ANOM(I)/AKLO(I)

AHICI) = ANOM(I)*AKHI(I)
70 CONTINUE

C
C ECHO PARAMETER INPUT DATA AND COMPUTED RANGE.
C

WRITE(NPRT,2000)
WRITE(NOUT, 2000)
DO 80 I = 1, IPARAM

WRITE(NPRT,2100) I, ANOM(I),AKLO(I),AKHI(I),ALO(I),AHI(I)
WRITE(NOUT,2100) I, ANOM(I),AKLO(I),AKHI(I),ALO(I),AHI(I)

80 CONTINUE
ENDIF

C
C CHECK THE VALUE OF 'IOPT' TO DETERMINE IF THE NUMBER AND/OR
C VALUES OF THE INDEPENDENT PARAMETERS USED BY THE ALGORITHM
C NEED TO BE ALTERED.

90 IF ((IOPT.EQ.2).OR.(IOPT.EQ.3).OR.(IOPT.EQ.4).OR.(IOPT.EQ.8).OR.
1 (IOPT.EQ.9).OR.(IOPT.EQ.10).OR.(IOPT.EQ.14)) GO TO 110

C
C SPECIFY THE NUMBER 'IXVAL' OF INDEPENDENT PARAMETERS WHICH
C APPEAR IN THE ALGORITHM.
C

WRITE (NOUT,2200)
READ(NINP,*) IXVAL

C
C ENTER THE VALUES OF THE 'IXVAL' INDEPENDENT PARAMETERS.
C

WRITE (NOUT,2300)
READ(NINP,*) (XVAL(I), I = 1, IXVAL)

C
C ECHO THE INDEPENDENT PARAMETER VALUES.
C

WRITE (NPRT,2400)
WRITE (NOUT,2400)
DO 100 I = 1, IXVAL

WRITE(NPRT,2500) I, XVAL(I)
WRITE(NOUT,2500) I, XVAL(I)

100 CONTINUE
110 CONTINUE

RETURN
1000 FORMAT(,' ENTER THE NOMINAL VALUES OF THE PARAMETERS ',/,

1 ' WHICH ARE NORMALLY DISTRIBUTED AND THE ',/,
2 ' CORRESPONDING K-FACTOR.',/)

1100 FORMAT(/,' PARAMETER NOMINAL K-FACTOR 95%. EXTREMES',!)
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1200 FORMAT(lX,I3,5X,1PE1O.4,2X,OPF1O.3,2X,1PE1O.4,2X,1PE1O.4)

1300 FORMAT(/,' ENTER THE NOMINAL VALUES OF THE PARAMETERS ',/,
1 ' WHICH ARE LOGNORMALLY DISTRIBUTED AND THE ',/,
2 ' CORRESPONDING K-FACTOR.',/)

1400 FORMAT(/,' PARAMETER NOMINAL K-FACTOR 95% EXTREMES',/)
1500 FORMAT(lX,I3,5X,1PE10.4,2X,OPF10.3,2X,1PE1O.4,2X, IPE10.4)
1600 FORMAT(/,' ENTER THE NOMINAL VALUES OF THE PARAMETERS ',/,

1 ' WHICH ARE BETA DISTRIBUTED AND THE K-FACTORS,',/,
2 ' (BOTH K-LOW AND K-HIGH, EVEN IF EQUAL, MUST',/,
3 ' BE ENTERED).',!)

1700 FORMAT(/,' PARAMETER NOMINAL K-FACTORS',
1 ' EXTREMES',/)

1800 FORMAT(1XI3,5X,PE1O.4,2X,OPF1O.3,2X,OPF1O.3,2X, 1PE1O.4,
1 1X,1PE1O.4)

1900 FORMAT(/,' ENTER THE NOMINAL VALUES OF THE UNIFORMLY ',/,
1 ' DISTRIBUTED PARAMETERS AND THE K-FACTOPS,',/,
2 ' (ENTER BOTH K-LOW AND K-HIGH).',/)

2000 FORMAT(/,' PARAMETER NOMINAL K-FACTORS',
1 ' EXTREMES',!)

2100 FORMAT(lX,I3,5X,1PEIO.4,2X,OPF1O.3,2X,OPFIO.3,2X,1PE10.4,
1 1X,1PE1O.4)

2200 FORMAT(/,' ENTER THE NUMBER OF INDEPENDENT VARIABLES (IXVAL)' ,/,
1 ' WHICH APPEAR IN THE ALGORITHM.',/)

2300 FORMAT(/,' ENTER THE VALUES OF THE INDEPENDENT VARIABLES.',/)
2400 FORMAT(/,' INDEPENDENT )VIA

1 ' PARAMETER VALUE ',/)
2500 FORMAT(X,I5,5X,1PE12.4)

END
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SUBROUTINE ASSGNBETA(ANOM, AL0, AHI, AKLO, AKHI, ASIG,
1 Y, AREA, IBD)

C
C SUBROUTINE ASSGNBETA PROMPTS THE USER TO SPECIFY WHETHER
C TABULATED OR CALCULATED BETA CUMULATIVE PROBABILITY DISTRIBUTIONS
C WILL BE USED TO MODEL PARAMETER AND ALGORITHMIC UNCERTAINTIES.
C THE CONTROL PARAMETER WHICH DICTATES WHICH OF THE TWO WILL BE
C USED IS 'ITABL' AND IS READ BY THE SUBROUTINE. THE ACTION
C RESULTING FROM A SPECIFIED POSSIBLE VALUE OF ITABL IS AS FOLLOWS:
C
C ITABL = 1: SUBROUTINE BETATABL IS CALLED IN ORDER TO ASSIGN
C THE APPROPRIATE TABULATED BETA CUMULATIVE PROBABILITY
C DISTRIBUTION TO EACH PARAMETER AND ALGORITHM WITH
C UNCERTAINTY.
C
C ITABL = 2: SUBROUTINE BETACALC IS CALLED TO CALCULATE THE SPECIFIC
C BETA CUMULATIVE PROBABILITY DISTRIBUTION WHICH SHOULD
C BE ASSOCIATED WITH EACH PARAMETER AND ALGORITHM WITH
C UNCERTAINTY.
C

COMMON /BLKO1/ IPARAM, ITYPE, ISIZE, ISEED, IALGO, IXVAL, ITABL,
1 IXALG, IOPT, NINTV, NINC, NINP, NOUT, NPLT, NPRT
REAL*4 ANOM(*), ALO(*), AHI(*), AKLO(*), AKHI(*)

REAL*4 ASIG(2,*), Y(*), AREA(*)

INTEGER*4 IBD(*)
C
C INQUIRE WHETHER TABULATED OR CALCULATED BETA CUMULATIVE
C PROBABILITY DISTRIBUTIONS ARE TO BE USED.
C

WRITE(NOUT, 1000)
1000 FORMAT(/,' SELECT WHETHER TO USE TABULATED OR CALCULATED',/,

1 BETA CUMULATIVE PROBABILITY DISTRIBUTION VALUES.',/,
2 ' 1 - USE TABULATED BETAS.',/,

3 2 - USE CALCULATED BETAS.',/)
READ(NINP, *) ITABL

C
C FOR ITABL = 1, DIVERT TO SUBROUTINE BETATABL TO ASSIGN THE
C APPROPRIATE TABULATED BETA CUMULATIVE PROBABILITY DISTRIBUTIONS.
C

IF (ITABL.EQ.1) THEN
CALL BETATABL(ANOM, AKLO, AKHI, IBD)

C
C FOR ITABL = 2, DIVERT TO SUBROUTINE BETACALC TO CALCULATE
C THE REQUIRED BETA CUMULATIVE PROBABILITY DISTRIBUTIONS.
C
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ELSE IF (ITABL.EQ.2) THEN
CALL BETACALC(ANOM, ALO, AHI, ASIG, Y, AREA, IBD)

END IF
RETURN
END
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SUBROUTINE BETATABL(ANOM, AKLO, AKHI, IBD)
C
C SUBROUTINE BETATABL USES THE USER SPECIFIED PARAMETER HIGH-SIDE
C AND LOW-SIDE K-FACTOR UNCERTAINTIES TO DETERMINE THE TABULATED
C BETA CUMULATIVE PROBABILITY DISTRIBUTION WHICH WILL BE USED TO
C MODEL THE UNCERTAINTY ASSOCIATED WITH EACH PARAMETER. THE
C SPECIFIED K-FACTORS FOR A PARAMETER ARE FIRST USED TO CALCULATE
C THE 'MEAN' (TEMP) OF THE ASSOCIATED DISTRIBUTION:
C
C TEMP = (I. - I./AKLO)/(AKHI - 1./AKLO)
C
C THIS 'MEAN' IS THEN COMPARED TO THE 'MEAN' (11-TH ELEMENT) OF EACH
C TABULATED BETA CUMULATIVE PROBABILITY DISTRIBUTION. THE LATTER
C WHICH HAS A 'MEAN' CLOSEST TO THAT DETERMINED WITH THE SPECIFIED
C PARAMETER K-FACTORS IS THEN USED TO MODEL THE UNCERTAINTY
C ASSOCIATED WITH THAT PARAMETER.
C
C THE MAIN ARRAYS USED BY THE SUBROUTINE ARE:
C
C BD - ARRAY CONTAINING 81 TABULATED BETA CUMULATIVE PROBABILITY
C DISTRIBUTIONS. EACH DISTRIBUTION CONSISTS OF 21 VALUES
C WHICH CORRESPOND TO THE FRACTION OF THE UNIT INTERVAL
C (FROM 0 TO 1) AT WHICH 5% INCREMENTS IN THE CUMULATIVE
C PROBABILITY ARE REACHED. FOR INSTANCE, IF THE FIRST THREE
C ENTRIES IN THE SET OF DATA FOR A DISTRIBUTION ARE 0.0, 0.113,
C AND 0.187, THEN THE CUMULATIVE PROBABILITY ASSOCIATED WITH
C THE ENTRIES IS 0.0, 0.05, AND 0.10, RESPECTIVELY.
C
C IBD - INTEGER ARRAY WHOSE I-TH ENTRY IS THE NUMBER OF THE TABULATED
C BETA CUMULATIVE PROBABILITY DISTRIBUTION WHICH IS IDENTIFIED
C AS HAVING A MEDIAN NEAREST IN VALUE TO THE COMPUTED MEDIAN
C OF THE I-TH PARAMETER WHICH HAS BETA DISTRIBUTED UNCERTAINTY.
C THE TABULATED DISTRIBUTION THUS IDENTIFIED IS USED TO MODEL
C THE UNCERTAINTY ASSOCIATED WITH THE PARAMETER.
C
C ANOM - ARRAY OF PARAMETER NOMINAL VALUES.
C AKLO - ARRAY OF PARAMETER LOW-SIDE K-FACTOR UNCERTAINTIES.

C AKHI - ARRAY OF PARAMETER HIGH-SIDE K-FACTOR UNCERTAINTIES.

C
COMMON /BLKO1/ IPARAM, ITYPE, ISIZE, ISEED, IALGO, IXVAL, ITABL,
1 IXALG, IOPT, NINTV, NINC, NINP, NOUT, NPLT, NPRT
COMMON /BLK02/ BD(21,81)
REAL*4 ANOM(*), AKLO(*), AKHI(*)
REAL*4 DBA(21,41), DBB(21,40)
INTEGER*4 IBD(*)
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DATA DBA/0.,.015,.029,.044,.059,.075,.091,.109,.127,.146,.167
* , .189,.213, .239,.269,.302,.340,.386,.446, .535,1.,
* 0.,.016,.031,.047,.062,.079,.096,.113,.132,.151,.172

* ,.195,.219, .245,.275,.308,.346,.392,.452, .540,1.,

* 0. ,.022,.038,.054,.070,.087,.104,.122,.141,.161,.182

* ,.205,.229, .255,.285,.318,.356,.402,.461, .548,1.,

* 0.,.020,.037, .053,.070,.088,.105, .124,.143, .163,.185
* ,.208,.232,.259,.289,.322,.360,.406,.465,.552,1.,

* 0.,.024,.042,.060,.077,.095,.113,.132,.151,.172,.194

* ,.217, .241,.268, .298,.331,.369,.415,.474, .560,1.,

* 0.,.024,.044, .062,.081, .099,.118, .137,.157, .178,.200

* ,.224, .249,.276,.305,.339,.377,.423,.481,.566,1.,
* 0.,.029,.050, .069,.088, .107,.126, .146,.166, .188,.210

* ,.233,.259,.286,.316..349,.387,.432,.490,.575,1.,

* 0. ,.030,.052,.072,.092,.112,.132,.152,.173,.194,.217

* ,.241,.266,.293,.323,.357,.395,.440,.498,.581,1.,

* 0.,.035,.058, .080,.100, .120,.141,.162,.183, .205,.227

* ,.251, .277,.304, .334,.368,.406,.450,.507, .590,1.,

* 0.,.039,.064,.087,.108, .129,.150, .171,.193,.215,.238

* , .263, .288,.316,.346,.379,.417,.461,.518, .599,1.,

* 0.,.043,.070, .094,.117, .138,.160, .182,.204,.227,.250
* ,.274,.300,.328,.358,.391,.429,.473,.529,.609,1.,

* 0.,.046,.074,.098,.121, .143,.165, .187,.210,.232,.256

* ,.281,.306,.334,.364,.397,.435,.479,.534,.614,1.,
* 0.,.050,.078,.103,.127, .150,.172, .194,.217,.240,.263

* ,.288,.314,.342,.372,.405,.442,.486,.541,.620,1.,

* 0.,.053,.083,.109,.133,.156,.178,.201,.224,.247,.271

* ,.295,.321,.349,.379,.412,.449,.493,.547,.625,1.,

* 0.,.057,.087, .114,.138, .162, .185,.208,.230,.254,.278

* ,.303,.329,.356,.386,.419,.456,.499,.553,.631,1.,

* 0.,.061,.093, .120,.145, .169, .192,.215,.239,.262,.286

* , .311,.337,.365,.395,.427,.464,.507,.560,.637,1.,
* 0.,.065,.098, .126, .152, .176, .200,.223, .246,.270, .294

* ,.319,.345,.373,.403,.435, .472,.514, .567,.643,1.,

* 0.,.070, .105, .134, .160, .184, .208,.232, .255,.279, .303

* ,.329,.355,.382,.412,.444,.481,.523,.575,.650,1.,

* 0.,.076,.111,.141,.168,.193,.217,.241,.264,.288,.313

* ,.338,.364,.391,.421,.453,.489,.531,.583,.656,1.,

* 0.,.082,.119,.149,.176,.202,.226,.250,.274,.298,.323

* ,.348,.374,.401,.431,.463,.498,.540,.591,.664,1.,
* 0.,.089,.127,.158,.186,.212,.237,.261,.285,.309,.334

* ,.359,.385,.412,.441,.473,.508,.549,.600,.671,1.,

* 0., .092, .131, .162,.190, .216,.241,.266, .290,.314,.338

* ,.363,.389,.417,.446,.478,.513,.554,.604,.675,1.,

* 0., .096,.136,.168,.196,.223,.248,.273,.297,.321,.345

* , .370,.396,.424,.453,.484,.519,.560, .609,.680,1.,
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* 0.,.100, .141,.173,.202,.228,.254,.278,.302,.327,.351

* ,.376,.402,.429,.458,.489,.524,.565,.614,.683,1.,

* 0.,.104,.145,.178,.207,.234,.259,.284,.308,.332,.357

* ,.382,.408,.435,.464, .495,.529,.569,.618,.687,1.,
* 0.,.109,.151,.184,.213, .240,.266,.290,.315,.339,.363

* ,.388,.414,.441,.470, .501,.535,.575,.624,.692,1.,

* 0.,.113,.156,.190,.219, .246,.272,.297,.321,.346,.370

* ,.395,.421,.448,.476,.507,.541,.580,.629,.696,1.,

* 0.,.119, .162,.196,.226,.253,.279,.304,.329,.353,.377

* ,.402,.428,.455,.483,.514,.548,.587,.634,.701,1.,
* 0.,.124, .168,.203,.233,.260,.286,.311,.336,.360,.385

* , .410,.435, .462,.490,.520,.554,.593,.640,.706,1.,

* 0.,.129, .174, .209,.240,.267,.294,.319,.343,.367,.392

* ,.417,.442,.469,.497,.527,.560,.598,.645,.710,1.,

* 0.,.136,.181,.217,.247,.275,.301,.327,.351,.375,.400

* ,.424,.450, .476,.504,.534,.567,.605,.651, .715,1.,
* 0.,.143,.189,.225,.256,.284,.310,.335,.360,.384,.408

* 1.433,.458, .484,.512,.542,.574,.612,.657, .721,1.,
* 0.,.149, .197, .233,.264,.292,.319,.344,.368, .393,.417
* ,.441,.466, .492,.520,.549,.582,.619,.663, .726,1.,
* 0.,.157,.205,.242,.273,.301,.328,.353,.378,.402,.426

* ,.450,.475,.501,.528,.557,.589,.626,.670, .731,1.,

* 0.,.164,.213,.250,.282,.310,.337,.362,.387,.411,.435

* 1.459,.484,.509,.536, .565,.597, .633,.676, .737,1.,
* 0.,.173,.222,.260,.291,.320,.347,.372,.396,.420,.444

* 1.468,.493,.518,.545,.573,.604, .640,.683, .742,1.,
* 0.,.182,.233,.270,.302,.331,.358,.383,.407,.431,.455

* ,.479,.503,.528,.554,.582,.613,.648,.691,.749,1.,

* 0.,.192,.243,.281,.313,.342,.368,.394,.418,.442,.465

* ,.489,.513,.538,.564,.591,.622,.656,.698,.755,1.,
* 0.,.202,.254,.292,.324,.353,.380,.405,.429,.452,.476

* ,.499,.523, .548,.573,.601,.630,.664,.705,.761,1.,

* 0.,.214,.266,.305,.337,.366,.393,.418,.442,.465,.488

* ,.511,.535,.559,.584,.611,.640,.674,.713,.768,1.,

* 0.,.225,.279,.318,.350,.379,.405,.430,.454,.477,.500

* ,.523, .546, .570,.595,.621,.650,.682,.721,.775,1./

DATA DBB/O.,.232,.287,.326,.360,.389,.416,.441,.465,.489,.512
* ,.535,.558, .582,.607,.634,.663,.695,.734,.786,1.,
* 0.,.239,.295,.336,.370,.399,.427,.452,.477,.501,.524

* ,.548, .571, .595,.620, .647,.676,.708,.746,.798,1.,
* 0.,.245,.302,.344,.378,.409,.436,.462,.487,.511,.535

* ,.558, .582, .606,.632, .658,.687,.719,.757,.808,1.,

* 0.,.251,.309,.352,.387,.418,.446,.472,.497,.521,.545

* ,.569, .593, .617,.642, .669,.698,.730,.767,.818,1.,

* 0.,.258,.317,.360,.396,.427,.455,.482,.507,.532,.556

* ,.580, .604, .628,.653,.680,.709,.740,.778,.827,1.,
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* 0.,.263, .324,.367,.403,.435,.464,.491,.516, .541,.565
* ,.589, .613,.638,.663,.690,.718,.750,.787, .836,1.,

* 0.,.269,.330,.374,.411,.443,.472,.499,.525,.550,.574
* ,.598, .622,.647,.672,.699,.727,.758,.795, .843,1.,

* 0.,.274,.337,.381,.418,.451,.480,.508,.534,.559,.583

* ,.607, .632,.656,.681,.708,.736,.767,.803, .851,1.,
* 0.,.279,.343,.388,.426,.458,.488,.516,.542,.567,.592
* ,.616,.640,.665,.690,.716,.744,.775,.811,.857,1.,

* 0. ,.285,.349,.395,.433,.466,.496,.524, .550,.576,.600

* ,.625,.649,.673,.699,.725,.753,.783,.819,.864,1.,
* 0.,.290,.355,.402,.440,.473,.503,.531, .558,.583,.608

* ,.633,.657,.681,.706,.733,.760,.791, .826,.871,1.,

* 0.,.294,.360,.407,.446,.480,.510,.538, .565,.590,.615
* ,.640,.664,.689,.714,.740,.767,.797,.832,.876,1.,

* 0.,.299,.366,.413,.452,.486,.517,.545,.572,.598,.623

* ,.647,.671,.696,.721,.747,.774,.804,.838,.881,1.,

* 0.,.304,.371,.420,.459,.493, .524,.552, .579,.605, .630

* ,.654,.679,.703,.728,.754,.781,.810, .844,.887,1.,

* 0. ,.308,.376,.425,.465,.499, .530,.559, .586,.612, .637

* , .661,.685,.710,.734,.760,.787,.816, .849,.891,1.,

* 0.,.313, .382,.431,.471,.505, .536,.565, .592,.618,.643

* , .668, .692,.716, .741,.766,.793,.822, .855,.896,1.,

* 0.,.317, .386,.435,.476,.511, .542,.571, .598,.624, .649

* , .673, .698,.722,.746,.772,.798,.827, .859,.900,1.,

* 0.,.320, .391,.440,.481,.516, .547,.576, .604,.630, .655
* ,.679,.703,.727,.752,.777,.804,.832,.864,.904,1.,

* 0.,.325,.396,.446,.487,.522, .554,.583, .611,.637,.662
* ,.686,.710,.734,.759,.784,.810,.838,.869,.908,1.,

* 0.,.329,.400,.451,.492,.527, .559,.588, .615,.641, .666

* ,.691,.715,.739,.763,.788,.814,.842,.873,.911,1.,

* 0.,.336,.409,.460,.502,.537,.569,.599,.626,.652,.677

* ,.702, .726,.750,.774,.798,.824, .851, .881,.918,1.,

* 0.,.344,.417,.469,.511,.547,.579, .609, .636,.662, .687
* ,.712, .736,.759,.783,.807,.832, .859, .889,.924,1.,
* 0.,.350, .425,.477, .519,.556,.588, .618, .645,.671, .697

* ,.721, .745,.768, .792,.816,.840, .866, .895,.930,1.,

* 0.,.357,.433,.486,.528,.565,.597,.627,.655,.681,.706
* ,.730, .754,.777, .800,.824,.848, .874, .902,.935,1.,
* 0.,.363,.440,.493,.536,.573,.605,.635,.663,.689,.714

* 1.738,.761,.785,.808,.831,.855, .880, .907,.939,1.,
* 0.,.369,.447,.501,.544,.581,.614,.644,.671,.697,.722
* ,.746,.770,.792, .815,.838,.862, .886, .913,.943,1.,

* 0.,.375,.453,.507, .551,.588,.621, .651, .679,.705,.729

* ,.753,.776,.799,.822,.844,.867, .891, .917,.947,1.,

* 0.,.380,.459,.514,.558,.595,.628,.658,.686,.712,.737

* ,.760,.783,.806,.828,.850,.873,.897,.922,.950,1.,
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* 0. ,.386, .466,.521, .565,.603, .636,.666, .694,.719, .744
* ,.768,.790,.813,.835,.857,.879,.902,.926,.954,1.,

* 0. ,.391, .471,.527, .571,.609, .642,.672, .700,.726, .750
* ,.773,.796,.818,.840,.862,.883,.906,.930,.957,1.,

* 0.,.401,.483,.539,.584,.622,.655,.685,.712,.738,.762

* ,.785,.808,.829,.851,.872,.893,.914,.937,.962,1.,

* 0.,.410,.493,.550,.595,.633,.666,.696,.724,.749,.773

* ,.796, .818,.839,.860,.881,.901,.922, .943,.966,1.,
* 0.,.419,.503,.560,.605,.643,.677,.707,.734,.759,.783

* ,.806,.827,.848,.868,.888,.908,.928, .948, .970,1.,

* 0.,.426,.511,.568,.614,.652,.685,.715,.743,.768,.791

* ,.814,.835,.855,.875,.895,.914,.933,.952,.973,1.,
* 0.,.434,.519,.577,.623,.661,.695,.724,.751,.776,.800

* ,.822, .843,.863,.882,.901,.920,.938, .956, .976,1.,
* 0.,.441,.528,.586,.632,.671,.704,.734,.761,.785,.808

* ,.830,.851,.870,.889,.908,.925,.943,.960,.979,1.,
* 0.,.448,.535,.594,.640,.678,.712,.741,.768,.793,.815

* ,.837, .857,.876,.895,.913,.930,.947, .964, .981,1.,

* 0.,.453, .541,.600,.646,.684,.718,.747,.774,.798, .821

* ,.842, .862,.881,.899,.917,.933,.950, .966,.982,1.,

* 0.,.460, .548,.608,.654,.692,.726,.755,.781,.806, .828

* ,.849, .869,.887,.905,.922,.938,.954, .969,.984,1.,
* 0.,.465, .554,.614,.660,.699,.732,.761,.787,.811,.833

* ,.854,.873,.892,.909,.925,.941,.956,.971,.985,1./

EQUIVALENCE (BD(1,1),DBA(1,1))

EQUIVALENCE (BD(1,42),DBB(1,I))
BDMAX=20.0

C
C LOOP OVER THE PARAMETERS WITH UNCERTAINTY TO BE MODELED WITH
C BETA CUMULATIVE PROBABILITY DISTRIBUTIONS.
C

DO 20 I = 1, IPARAM

C
C EVALUATE THE 'MEAN' = TEMP OF THE PARAMETER AS DETERMINED FROM
C ITS SPECIFIED K-FACTOR UNCERTAINTIES.
C

TEMP = (1.0-1.0/AKLO(I))/(AKHI(I)-I.0/AKLO(I))

C
C LOOPING OVER ALL THE TABULATED BETA CUMULATIVE DISTRIBUTIONS,
C COMPARE THE PARAMETER COMPUTED 'MEAN' TO THOSE (TEMPI AND TEMP2)
C OF THE TABULATED BETA CUMULATIVE PROBABILITY DISTRIBUTIONS. THE
C 'MEAN' OF THE J-TH TABULATED DISTRIBUTION IS THE 11-TH ELEMENT IN
C THE ARRAY BD(11,J). IF THE J-TH TABULATED DISTRIBUTION HAS A
C 'MEAN' CLOSEST TO THE COMPUTED 'MEAN' OF THE I-TH PARAMETER, ASSIGN
C THAT DISTRIBUTION TO THE I-TH PARAMETER (IBD(I) = J).

C
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TEMP1 = O.5*(BD(11,1)+BD(11,2))
TEMP2 - 0.5*(BD(11,80)+BD(11,81))
IF (TEMP.LE.TEMPI) THEN

IBD(I) -1
ELSE IF (TEMP.GT.TEMP2) THEN

IBD(I) z81

ELSE
DO 10 J 2, 80

TEMP1 = O.5*(BD(11,J)+BD(11,J-1))
TEMP2 =0.5*(BD(11,J)+BD(11,J+1))
IF ((TEMP.GT.TEMPI).AND.(TEMP.LE.TEMP2)) IBD(I) J

10 CONTINUE
EN',D IF

20 CONTINUE
C
C OUTPUT THE NUMBER OF THE CUMULATIVE BETA PROBABILITY
C DISTRIBUTION ASSIGNED TO EACH PARAMETER WITH UNCERTAINTY.
C

WRITE (NPRT, 1000)
WRITE(NOUT, 1000)
DO 30 I = 1, IPARAM

WRITE(NPRT,1100) I, ANOM(I, AKLO(I, AKHI(I), IBD(I)
WRITE(NOUT,1100) I, ANOM(I, AKLO(I), AKHI(I, IBD(I)

30 CONTINUE
RETURN

1000 FORMAT(,' SELECTED TABULATED BETA CUMULATIVE PDF '/
1 'PARAMETER NOMINAL UNCERTAINTY FACTORS BETA '/
2 ' NUMBER VALUE K-LOW K-HIGH NUMBER',!

1100 FORMAT(3X,I5,2X,lPE10.4,2X,OPF1O .3,2X,OPF1O.3,5X,I5)
END
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SUBROUTINE BETACALC(ANOM, ALO, AHI, ASIG, Y, AREA, IBD)
C
C SUBROUTINE BETACALC IS USED TO COMPUTE THE BETA CUMULATIVE
C PROBABILITY DISTRIBUTION TO BE USED TO MODEL THE UNCERTAINTY
C ASSOCIATED WITH EACH PARAMETER WITH BETA DISTRIBUTED UNCERTAINTY.
C FIRST THE NOMINAL, LOW, AND HIGH VALUES OF THE PARAMETER ARE
C USED TO COMPUTE THE 'MEAN' M OF THE DESIRED DISTRIBUTION:

C
C M = (ANOM - ALO)/(AHI - ALO)

C
C THIS 'MEAN' IS THEN USED TO COMPUTE THE POSSIBLE MAXIMUM
C STANDARD DEVIATIONS (SIG1 AND SIG2) FOR THE PARAMETER:
C
C SIGI = M*SQRT((l - M)/(1 + M))
C SIG2 = (1 - M)*SQRT(M/(2 - M))

C
C THE USER IS THEN REQUESTED TO SPECIFY THE STANDARD DEVIATION SIG
C FOR THE PARAMETER WHICH MUST SATISFY THE FOLLOWING:
C
C SIG LESS THAN OR EQUAL TO MIN(SIG1, SIG2)
C
C THE SPECIFIED STANDARD DEVIATION FOR THE PARAMETER IS NEXT USED
C TO COMPUTE A 'NORMALIZED' STANDARD DEVIATION SIGMA:
C
C SIGMA = SIG/(AHI - ALO)

C
C AND THE TWO PARAMETERS OF THE BETA DISTRIBUTION (ALPHA AND BETA)
C ARE THEN COMPUTED:
C
C ALPHA = M*[{(M - M*M)/SIGMA**2} - 1]
C BETA = (1 - M)*[{(M - M*M)/SIGMA**2} - 1]
C
C FUNCTION ROUTINE FX IS NEXT USED TO EVALUATE THE BETA DISTRIBUTION

C CHARACTERIZED BY THE iARAMETERS ALPHA AND BETA, AND THE ASSOCIATED

C CUMULATIVE PROBABILITY DISTRIBUTION (AT 5% AREA INCREMENTS) IS
C DETERMINED AND SAVED FOR USE IN MODELING THE PARAMETER UNCERTAINTY.
C

COMMON /BLKOl/ IPARAM, ITYPE, ISIZE, ISEED, IALGO, IXVAL, ITABL,
I IXALG, IOPT, NINTV, NINC, NINP, NOUT, NPLT, NPRT
COMMON /BLK02/ BD(21,81)
REAL*4 ANOM(*), ALO(*), AHI(*)
REAL*4 ASIG(2,*), Y(*), AREA(*)
INTEGER*4 IBD(*)

C
C DEFINE THE INCREMENT USED IN EVALUATING THE BETA DISTRIBUTION AND
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C CALCULATING THE AREA INCREMENTS UNDER THE DISTRIBUTION.
C

DELINC = 1.0/NINC
C
C COMPUTE THE MAXIMUM ALLOWABLE STANDARD DEVIATION FOR
C THE PARAMETER. LOOP OVER ALL PARAMETERS WITH UNCERTAINTY.
C

DO 20 I = 1, IPARAM

TEM = (ANOM(I) - ALO(I))/(AHI(I) - ALO(1))

ASIG(1,I) = TEM*SQRT((1.0 - TEM)/(1.0 + TEM))
ASIG(1,I) = (AHI(I) - ALO(I))*ASIG(1,I)

ASIG(2,I) = (1.0 - TEM)*SQRT(TEM/(2.0 - TEM))
ASIG(2,I) = (AHI(I) - ALO(I))*ASIG(2,I)

20 CONTINUE
DO 30 I = 1, IPARAM

WRITE(NPRT,1000) I, ASIG(1,I), ASIG(2,I)
WRITE(NOUT,1000) I, ASIG(1,I), ASIG(2,I)

30 CONTINUE
C
C INTERACTIVELY READ THE PARAMETER SPECIFIED STANDARD DEVIATION.
C

WRITE(NPRT, 1100)

WRITE(NOUT, 1100)

READ(NINP,*) (ASIG(1,I), I = 1, IPARAM)
C
C ECHO THE INPUT VALUES.

C
WRITE (NPRT, 1200)
WRITE(NOUT, 1200)

DO 40 I = 1, IPARAM
WRITE(NPRT,1300) I, ANOM(1), ALO(1), AHI(1), ASIG(1,I)
WRITE(NOUT,1300) I, ANOM(I), ALO(I), AHI(I), ASIG(1,I)

40 CONTINUE
WRITE(NPRT, 1400)
WRITE (NOUT, 1400)

C
C LOOP OVER PARAMETERS WITH UNCERTAINTY.
C

DO 90 I = 1, IPARAM

C
C COMPUTE THE NORMALIZED PARAMETER STANDARD DEVIATION, PARAMETER
C NORMALIZED MEAN, AND THE ALPHA AND BETA PARAMETERS FOR THE

C APPROPRIATE BETA DISTRIBUTION.

C
ASIG(I,I) = ASIG(1,I)/(AHI(I) - ALO(I))
TEM = (ANOM(I) - ALO(I))/(AHI(I) - ALO(I))
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TEMI = (TEM - TEM*TEM)/(ASIG(1,I)*ASIG(1,I)) - 1.0

ALPHA = TEM*TEM1
BETA = (1.0 - TEM)*TEM1

C
C OUTPUT THE COMPUTED ALPHA AND BETA PARAMETERS.
C

WRITE(NPRT,1500) I, ALPHA, BETA
WRITE(NOUT,1500) I, ALPHA, BETA

C
C COMPUTE THE BETA DISTRIBUT.ON WITH PARAMETER VALUES
C ALPHA AND BETA. USE THE IRAPEZOIDAL RULE TO COMPUTE
C THE TOTAL AREA (SUMNORM) UNDER THE COMPUTED BETA
C DISTRIBUTION.
C

Y(1) = 0.0
SUMNORM = 0..3
DO 50 J = 1, NINC

Y(J+I) = Y(J) + DELINC
FX1 = FX(ALPHA, BETA, Y(J))
FX2 = FX(ALPHA, BETA, Y(J+I))
SUMNORM = SUMNORM + 0.5*(FXI + FX2)*(Y(J+I) - Y(J))

5o CONTINUE
C
C COMPUTE THE NORMALIZED BETA DISTRIBUTION.
C

DO 60 J = 1, NINC+I
FX1 = FX(ALPHA, BETA, Y(J))
Y(J) = FX1/SUMNORM

60 CONTINUE
C
C EVALUATE AREA INCREMENTS FOR THE AREA UNDER THE NORMALIZED
C BETA DISTRIBUTION.
C

AREA(l) = 0.5*DELINC*(Y(1) + Y(2))

DO 70 J = 2, NINC
AREA(J) = AREA(J-1) + 0.5*DELINC*(Y(J) + Y(J+i))

70 CONTINUE
C
C DETERMINE THE ABSCISSA VALUES FOR THE 5%, AREA INCREMENTS
C (HENCE THE CUMULATIVE PROBABILITY DISTRIBUTION) FOR THE
C COMPUTED NORMALIZED BETA DISTRIBUTION. SAVE THE COMPUTED
C VALUES IN THE ARRAY BD(J,I) (J = 1, 21) FOR THE I-TH
C PARAMETER.

C
BD(1,I) = 0.0
BD(21,I) = 1.0

65



IBD (I) = I
DO 90 J = 2, 20

AAREA = 0.05*(J - 1)
DO 80 K = 1, NINC-1
IF (AAREA.GT.AREA(K+1)) THEN

GO TO 80
ELSE IF ((AAREA.GT.AREA(K)).AND.(AAREA.LE.AREA(K+1))) THEN

FRAC - (AAREA - AREA(K))/(AREA(K+ ) - AREA(K))
BD(J,I) = K*DELINC + FRAC*DELINC
GO TO 90

ELSE IF (AAREA.LE.AREA(K)) THEN
GO TO 90

ENDIF
80 CONTINUE
90 CONTINUE

C
C OUTPUT THE BETA CUMULATIVE PROBABILITY DISTRIBUTION COMPUTED
C FOR EACH PARAMETER WITH UNCERTPINTY.
C

DO 110 I = 1, IPAF~aM
WRITE(NPRT,1600) I
WRITE(NOUT, 1600) I
DO 100 J = 1, 10

FRAC1 = (J - 1)*0.05
FRAC2 = (J + 10)*0.05
WRITE(NPRT,1700) FRAC1, BD(J,I), FRAC2, BD(J+11,I)
WRITE(NOUT,1700) FRAC1, BD(J,I), FRAC2, BD(J+11,I)

100 CONTINUE
WRITE(NPRT,1700) 0.50, BD(11,I)
WRITE(NOUT,1700) 0.50, BD(11,I)

110 CONTINUE
RETURN

1000 FORMAT(' FOR PARAMETER',13,' THE STAN. DEV. MUST BE <',
1 ' MIN(',IPE1O.4,',',1PE10.4,') ')

1100 FORMAT(/,' ENTER THE STANDARD DEVIATIONS OF THE BETA',/,
1 ' DISTRIBUTED PARAMETERS.',/)

1200 FORMAT(/,' PARAMETER NOMINAL MINIMUM MAXIMUM '

1 ' STAN. DEV.',/)
1300 FORMAT(I5,5X, IPElO .4,2X, IPElO .4,2X, 1PEIO .4,2X, IPEIO .4)
1400 FORMAT(/,' PARAMETER ALPHA BETA',/)
1500 FORMAT(3X,I5,5X,F7.3,5X,F7.3)
1600 FORMAT(/,' FOR PARAMETER' ,I3,' THE CUMULATIVE BETA',/,

1 ' DISTRIBUTION VALUES AT 5% AREA INCREMENrS',/,
2 ' ARE AS FOLLOWS:',/,/,

3 ' AREA AREA',/,
4 ' FRACTION VALUE FRACTION VALUE',/)
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1700 FORMAT(5X,F5.2,5X,F7.3,5X,F5.2,5X,F7.3)
END
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SUBROUTINE SOLVE(ANOM, ALO, AHI, AKLO, AKHI, XVAL, A, IBD, RESULT)
C
C SUBROUTINE SOLVE EVALUATES THE USER ALGORITHM ISIZE TIMES IN
C ORDER TO GENERATE A ALGORITHM RESULTS DISTRIBUTION FROM WHICH
C THE OVERALL COMBINED UNCERTAINTY TO BE ASSOCIATED WITH THE OUTPUT
C OF THE ALGORITHM IS DETERMINED. THE ALGORITHM IS EVALUATED IN A
C TWO STEP PROCESS:
C
C 1. THE PARAMETER VALUES TO BE USED IN EVALUATION OF THE ALGORITHM
C ARE RANDOMIZED. A NEW RANDOM NUMBER (RN) IS USED EACH TIME
C TO GENERATE A NEW RANDOMIZED VALUE FOR EACH PARAMETER WITH
C UNCERTAINTY IN THE ALGORITHM. EACH RANDOM NUMBER USED FOR
C OBTAINING VALUES FOR PARAMETERS WITH NORMALLY OR LOGNORMALLY
C DISTRIBUTED UNCERTAINTY IS NORMALLY DISTRIBUTED AND OBTAINED

C BY CALLING SUBROUTINE FNRN. THE RANDOM NUMBERS USED FOR
C PARAMETERS WHICH ARE BETA OR UNIFORMLY DISTRIBUTED ARE OBTAINED
C BY CALLING SUBROUTINE UPRI AND ARE UNIFORMLY DISTRIBUTED. A RANDO
C VALUE FOR A PARAMETER IS A FUNCTION OF THE PARAMETER NOMINAL
C VALUE, THE UNCERTAINTY SPECIFICATION, AND THE CURRENT RANDOM
C NUMBER VALUE. IF NECESSARY, NOMINAL VALUES OF PARAMETERS

C WHICH ARE GENERATED FROM SIMPLE ALGORITHMS ARE FIRST OBTAINED
C BY CALLING SUBROUTINE AUXALGO. THIS WILL ONLY BE DONE IF IXALG =

C
C 2. THE ALGORITHM, WHICH IS CODED IN THE USER SUPPLIED SUBROUTINE TF,

C IS THEN EVALUATED USING THE CURRENT SET OF RANDOMIZED PARAMETER
C VALUES. THE RESULT OF THE EVALUATION IS RETURNED TO SUBROUTINE
C SOLVE AND, IF NECESSARY (IALGO = 1), ALGORITHMIC UNCERTAINTY IS
C APPLIED TO THE RESULT. THE FINAL COMPUTED VALUE FOR THE ALGORITHM
C IS THEN STORED IN ARRAY RESULT.

C
C THE ABOVE TWO STEP PROCESS IS REPEATED THE USER SPECIFIED ISIZE TIMES.

C
C THE MAIN VARIABLES AND ARRAYS USED BY THE SUBROUTINE ARE AS FOLLOWS:

C
C ANOM - ARRAY OF NOMINAL VALUES OF PARAMETERS WITH UNCERTAINTY.
C AKLO - ARRAY OF PARAMETER LOW-SIDE K-FACTOR UNCERTAINTIES.
C AKHI - ARRAY OF PARAMETER HIGH-SIDE K-FACTOR UNCERTAINTIES.

C ALO - ARRAY OF PARAMETER COMPUTED LOW-SIDE EXTREME VALUES.
C AHI - ARRAY OF PARAMETER COMPUTED HIGH-SIDE EXTREME VALUES.
C A - TEMPORARY ARRAY OF RANDOMIZED PARAMETER VALUES.
C XVAL - ARRAY OF INDEPENDENT PARAMETER VALUES (NO UNCERTAINTY).
C BD - ARRAY OF TABULATED OR CALCULATED BETA CUMULATIVE

C PROBABILITY DISTRIBUTIONS.
C IBD - ARRAY WHOSE ENTRIES IDENTIFY THE DISTRIBUTION NUMBER

C ASSOCIATED WITH EACH PARAMETER WITH BETA DISTRIBUTED
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C UNCERTAINTY.
C RESULT - ARRAY OF EVALUATED ALGORITHM RESULTS.
C RN - VARIABLE WHOSE VALUE IS THE CURRENT NORMALLY OR
C UNIFORMLY DISTRIBUTED RANDOM NUMBER.
C

COMMON /BLKO1/ IPARAM, ITYPE, ISIZE, ISEED, IALGO, IXVAL, ITABL,
1 IXALG, IOPT, NINTV, NINC, NINP, NOUT, NPLT, NPRT
COMMON /BLK02/ BD(21,81)
REAL*4 ANOM(*), ALO(*), AHI(*), AKLO(*), AKHI(*)
REAL*4 XVAL(*), A(*), RESULT(*)
INTEGER*4 IBD(*)
BDMAX = 20.0

C
C INITIALIZE THE SEED INTEGERS FOR THE RANDOM NUMBER GENERATORS.
C

NUMUR = ISEED

NUMNR = ISEED
C
C SET MAXIMUM LOOP COUNTER VALUE IPARA DEPENDING ON WHETHER OR NOT
C THE ALGORITHM TO BE EVALUATED HAS OVERALL ALGORITHMIC UNCERTAINTY.
C

IF (IALGO.EQ.1) THEN
IPARA = IPARAM - 1

ELSE
IPARA = IPARAM

ENDIF
C
C OBTAIN PARAMETER NOMINAL VALUES FROM SUBROUTINE AUXALGO IF REQUIRED
C AND THEN COMPUTE ASSOCIATED LOW-SIDE AND HIGH-SIDE VALUES.
C

IF (IXALG.EQ.1) CALL AUXALGO(ANOM, XVAL)
IF (ITYPE.EQ.1) THEN

DO 10 I = 1, IPARA
AHI(I) = ANOM(I)*AKLO(I)
ALO(1) = ANOM(1) - (AHI(I) - ANOM(1))

10 CONTINUE
ELSE IF (ITYPE.EQ.2) THEN

DO 20 I = 1, IPARA
ALO(1) = ANOM(I)/AKLO(I)
AHI(I) = ANOM(I)*AKLO(I)

20 CONTINUE
ELSE IF (ITYPE.EQ.3) THEN

DO 30 I = 1, IPARA
ALO(I) = ANOM(I)/AKLC(I)
AHI(I) = ANOM(I)*AKHI(I)

30 CONTINUE
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ELSE IF (ITYPE.EQ.4) THEN

DO 40 I = 1, IPARA
ALO(I) = ANOM(I)/AKLO(I)

AHI(I) = ANOM(I)*AKHI(I)
40 CONTINUE

ENDIF
C
C ALGORITHM EVALUATION FOR CASE OF NORMALLY DISTRIBUTED UNCERTAINTY.
C

IF (ITYPE.EQ.1) THEN
C
C EVALUATE THE ALGORITHM THE USER REQUESTED (ISIZE) NUMBER OF TIMES.
C

DO 60 I - 1, ISIZE
C
C RANDOMIZE THE PARAMETER VALUES.
C

DO 50 J = 1, IPARA
CALL FNRN (NUMNR, RN)
A(J) = ANOM(J) + RN*(AHI(J) - ANOM(J))/1.96

50 CONTINUE
C
C EVALUATE THE ALGORITHM USING THE RANDOMIZED PARAMETER VALUES.
C

CALL TF(ANOM,A,XVAL,YVAL)
C
C APPLY ALGORITHMIC UNCERTAINTY IF REQUIRED (IALGO = 1)
C AND STORE THE RESULT OF THE ALGORITHM EVALUATION.
C

IF (IALGO.NE.1) THEN
RESULT(I) = YVAL

ELSE
CALL FNRN(NUMNR,RN)
AHI(IPARAM) = YVAL*AKLO(IPARAM)
RESULT(I) = YVAL + RN*(AHI(IPARAM) - YVAL)/1.96

ENDIF
60 CONTINUE

RETURN
C
C ALGORITHM EVALUATION FOR CASE OF LOGNORMALLY DISTRIBUTED UNCERTAINTY.

C
ELSE IF (ITYPE.EQ.2) THEN

C
C EVALUATE THE ALGORITHM THE USER REQUESTED (ISIZE) NUMBER OF TIMES.

C
DO 120 I = 1, ISIZE
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C
C RANDOMIZE THE PARAMETER VALUES.
C

DO 110 J = 1, IPARA

CALL FNRN(NUMNR,RN)

A(J) = ANOM(J)*AKLO(J)**(RN/1.96)
110 CONTINUE

C

C EVALUATE THE ALGORITHM USING THE RANDOMIZED PARAMETER VALUES.

C

CALL TF(ANOM,AXVAL,YVAL)
C

C APPLY ALGORITHMIC UNCERTAINTY IF REQUIRED (IALGO = 1)
C AND STORE THE RESULT OF THE ALGORITHM EVALUATION.

C
IF (IALGO.NE.1) THEN

RESULT(I) = YVAL

ELSE

CALL FNRN(NUMNR,RN)

RESULT(I) = YVAL*AKLO(IPARAM)**(RN/1.96)
ENDIF

120 CONTINUE

RETURN
C
C ALGORITHM EVALUATION FOR CASE OF BETA DISTRIBUTED UNCERTAINTY.

C

ELSE IF (ITYPE.EQ.3) THEN
C
C EVALUATE THE ALGORITHM THE USER REQUESTED (ISIZE) NUMBER OF TIMES.

C
DO 220 I = 1, ISIZE

C
C RANDOMIZE THE PARAMETER VALUES.

C

DO 210 J = 1, IPARA

CALL UPRi(NUMUR,RN)

LL = IBD(J)
FLi = RN*BDMAX+1.0

L = FLI
LP1 = L+l

FL2 = L

FLi = FLI - FL2

FL2 = 1.0 - FLI
BDV = FL1*BD(LP1,LL) + FL2*BD(L,LL)

A(J) = ALO(J) + BDV*(AHI(J)-ALO(J))
210 CONTINUE
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C
C EVALUATE THE ALGORITHM USING THE RANDOMIZED PARAMETER VALUES.
C

CALL TF(ANOM,A,XVAL,YVAL)
C
C APPLY ALGORITHMIC UNCERTAINTY IF REQUIRED (IALGO = 1)
C AND STORE THE RESULT OF THE ALGORITHM EVALUATION.
C

IF (IALGO.NE.1) THEN
RESULT(I) = YVAL

ELSE
CALL UPRI(NUMUR,RN)
ALO(IPARAM) = YVAL/AKLO(IPARAM)
AHI(IPARAM) = YVAL*AKHI(IPARAM)
LL = IBD.IPARAM)
FLi = RN*BDMAX+1.O
L = FLi
LP1 = L+l

FL2 = L

FLi = FLI - FL2

FL2 = 1.0 - FLi

BDV = FLI*BD(LP1,LL) + FL2*BD(L,LL)
RESULT(I) = ALO(IPARAM) + BDV*(AHI(IPARAM) - ALO(IPARAM))

ENDIF
220 CONTINUE

RETURN
C
C ALGORITHM EVALUATION FOR CASE OF UNIFORMLY DISTRIBUTED UNCERTAINTY.
C

ELSE IF (ITYPE.EQ.4) THEN
C
C EVALUATE THE ALGORITHM THE USER REQUESTED (ISIZE) NUMBER OF TIMES.
C

DO 320 I = 1, ISIZE
C
C RANDOMIZE THE PARAMETER VALUES.
C

DO 310 J = 1, IPARA
CALL UPRI (NUMUR,RN)

IF (RN.LE.0.5) THEN
A(J) = ALO(J) + 2.0*RN*(ANOM(J) - ALO(J))

ELSE
A(J) = ANOMJ) + 2.0*(RN - 0.5)*(AHI(J) - ANOM(J))

ENDIF
310 CONTINUE
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C EVALUATE THE ALGORITHM USING THE RANDOMIZED PARAMETER VALUES.
C

CALL TF(ANOM,A,XVAL,YVAL)
C
C APPLY ALGORITHMIC UNCERTAINTY IF REQUIRED (IALGO = 1)
C AND STORE THE RESULT OF THE ALGORITHM EVALUATION.

C
IF (IALGO.NE.1) THEN

RESULT(I) = YVAL

ELSE
CALL UPR1(NUMUR,RN)
ALO(IPARAM) = YVAL/AKLO(IPARAM)
AHI(IPARAM) = YVAL*AKHI(IPARAM)
IF (RN.LE.O.5) THEN
RESULT(I) = ALO(IPARAM) + 2.0*RN*(YVAL - ALO(IPARAM))

ELSE
RESULT(I) = YVAL + 2.0*(RN - 0.5)*(AHI(IPARAM) - YVAL)

ENDIF
ENDIF

320 CONTINUE
RETURN

ENDIF

RETURN

END
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SUBRnrFiTE SORT(X, IjNU)
C
C SUBROUTINE SORT SORTS THE INUM VALUES IN THE ARRAY X FROM LOWEST
C TO HIGHEST VALUE. IN THE PRESENT CONTEXT, THE SUBROUTINE IS USED
C TO SORT THE ARRAY OF COMPUTED ALGORITHM RESULTS FROM LOWEST TO
C HIGHEST VALUE.
C

INTEGER*4 INUM
REAL*4 X(*)
NEND = INUM - 1

10 IDONE = 0
DO 20 I = 1, NEND

IF (X(I).GT.X(I+1)) THEN
XTEM = X(I)
X(I) - X(I+1)
X(I+l) - XTEM
IDONE = 1

ENDIF
20 CONTINUE

IF (IDONE.EQ.O) GO TO 30
NEND = NEND - 1
GO TO 10

30 CONTINUE
RETURN
END

74



SUBROUTINE STATISTIC(X, XINT, XOUT, XXLN, XXII, IFREQ)
C
C SUBROUTINE STATISTIC CALCULATES VARIOUS STATISTICS FOR THE ORDERED
C (FROM LOWEST TO HIGHEST VALUE) ALGORITHM RESULTS DISTRIBUTION WHICH
C IS PASSED TO THE SUBROUTINE IN ARRAY X. FOUR BASIC MANIPULATIONS OF
C THE ALGORITHM RESULTS DISTRIBUTION ARE PERFORMED BY THE SUBROUTINE:
C
C 1. GENERATE HISTOGRAM DATA.
C
C THE FULL RANGE (FROM X(1) TO X(ISIZE) WHERE ISIZE IS THE NUMBER
C OF COMPUTED ALGORITHM RESULTS) OF THE RESULTS DISTRIBUTION IS
C DIVIDED INTO NINTV EQUAL LENGTH INTERVALS, THE BOUNDARY VALUES
C OF WHICH ARE CONTAINED IN THE ARRAY XINT (NINTV+I ENTRIES). THE
C NUMBER OF RESULTS DISTRIBUTION VALUES OCCURRING IN EACH RANGE
C INTERVAL IS THEN DETERMINED AND STORED IN THE INTEGER ARRAY IFREQ.
C THE RESULT IS A HISTOGRAM FOR THE RESULTS DISTRIBUTION.
C
C 2. DETERMINE DATA MEAN (OR AVERAGE).
C
C FOR NORMALLY, LOGNORMALLY, AND BETA DISTRIBUTED ALGORITHM RESULTS,
C THE MIDPOINT OF THE I-TH RANGE SUBINTERVAL IS MULTIPLIED BY THE
C NUMBER OF OCCURRENCES OF THE ALGORITHM VALUE IN THE SUBINTERVAL;
C
C 0.5*(XINT(I) - XINT(I+I))*IFREQ(I)
C
C AND THE RESULT IS SUMMED OVER ALL SUBINTERVALS. THE EVALUATED
C SUM IS THEN DIVIDED BY THE TOTAL NUMBER OF ALGORITHM RESULTS (ISIZE)
C TO GENERATE THE APPROXIMATE MEAN OF THE RESULTS DISTRIBUTION.
C
C FOR UNIFORMLY DISTRIBUTED ALGORITHM RESULTS, THE FRACTIONAL POSITION
C IN THE INTERVAL CORRESPONDING TO THE ISIZE/2 RESULT IN THE ORDERED
C RESULTS DISTRIBUTION IS DETERMINED AND REPORTED AS THE MEAN (AMEAN)

C OF THE DISTRIBUTION.
C
C 3. ESTIMATE VARIANCE AND STANDARD DEVIATION:
C
C THE COMPUTED MEAN OF THE DISTRIBUTION IS SUBTRACTED FROM THE MIDPOIN
C VALUE (XAVE) OF EACH SUBINTERVAL TO DEFINE VARIABLE XDIF:

C
C XDIF = 0.5*(XINT(I+I) + XINT(1)) - AMEAN = XAVE - AMEAN

C
C THE VALUE OF XDIF FOR EACH SUBINTERVAL IS NEXT SQUARED, MULTIPLIED
C BY THE NUMBER OF ALGORITHM RESULTS OCCURRING IN THE SUBINTERVAL, AND
C THE RESULT FOR EACH SUBINTERVAL IS SUMMED OVER ALL THE INTERVALS.
C THE COMPUTED SUM IS THEN DIVIDED BY THE TOTAL NUMBER OF VALUES (ISIZE)
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C IN THE RESULTS DISTRIBUTION, AND THE RESULT (VAR) IS INTERPRETED AS
C AN APPROXIMATE VALUE FOR THE VARIANCE OF THE ALGORITHM RESULTS
C DISTRIBUTION. TEE SQUARE ROOT OF VAR THEN PROVIDES THE 2YTIMATE rCR

C THE STANDARD DEVIATION (SIGMA) OF THE RESULTS DISTRIBUTION.
C
C 4. ESTIMATE THE DISTRIBUTION K-FACTORS:
C
C NORMALLY DISTRIBUTED RESULTS:
C
C K = 1.0 + 1.96*SIGMA/AMEAN
C
C LOGNORMALLY DISTRIBUTED RESULTS:
C
C K = EXP(1.96*SIGMA/AMEAN)
C
C BETA AND UNIFORMLY DISTRIBUTED RESULTS:
C
C KLO = AMEAN/X(1)
C KHI = X(ISIZE)/AMEAN
C KAVE = 0.5*(KLO + KHI)
C
C THE SUBROUTINE THEN INQUIRES WHETHER OR NOT PLOT FILES FOR THE
C ALGORITHM RESULTS DISTRIBUTION AND FITS TO THE RESULTS ARE TO BE
C GENERATED. IF GENERATION OF PLOT FILES IS REQUESTED BY THE USER,
C THE SUBROUTINE CALLS SUBROUTINE HISTO.
C

COMMON /BLKO1/ IPARAM, ITYPE, ISIZE, ISEED, IALGO, IXVAL, ITABL,

1 IXALG, IOPT, NINTV, NINC, NINP, NOUT, NPLT, NPRT
REAL*4 X(*), XINT(*), XOUT(*), XXLN(*), XXII(*)

INTEGER*4 IFREQ(*)
CHARACTER*1 ANS2

C
C COMPUTE INCREMENT FOR RESULTS SUBINTERVALS.
C

DEL = (X(ISIZE) - X(1))/NINTV

C
C GENERATE RESULTS SUBINTERVALS.
C

XINT(1) - X(1)

XINT(NINTV+I) = X(ISIZE)
DO 10 I = 2, NINTV

XINT(I) = XINT(I-1) + DEL
10 CONTINUE

C
C DETERMINE THE NUMBER OF ALGORITHM RESULTS OCCURRING IN EACH
C RANGE SUBINTERVAL AND STORE IN ARRAY IFREQ.
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C
DO 20 I = 1, NINTV

IFREQ(I) - 0
20 CONTINUE

DO 40 I = 1, ISIZE
RES = X(I)
DO 30 J = 1, NINTV

IF (RES.GT.XINT(J+1)) THEN
GO TO 30

ELSE IF ((RES.GE.XINT(J)).AND.(RES.LT.XINT(J+1))) THEN
IFREQ(J) = IFREQ(J) + 1

GO TO 40
ENDIF

30 CONTINUE
40 CONTINUE

IFREQ(NINTV) = IFREQ(NINTV) + 1
C
C COMPUTE THE DISTRIBUTION MEAN FOR NORMALLY, LOGNORMALLY, AND
C BETA DISTRIBUTED ALGORITHM RESULTS DISTRIBUTIONS.
C

IF ((ITYPE.EQ.1).OR.(ITYPE.EQ.2).OR.(ITYPE.EQ.3)) THEN
AMEAN = 0.0
DO 50 I = 1, NINTV

AMEAN = AMEAN + 0.5*(XINT(I+I) + XINT(I))*IFREQ(I)
50 CONTINUE

AMEAN = AMEAN/ISIZE
GO TO 70

C
C COMPUTE THE DISTRIBUTION MEAN FOR UNIFORMLY DISTRIBUTED
C ALGORITHM RESULTS DISTRIBUTIONS.
C

ELSE IF (ITYPE.EQ.4) THEN
IRESULT = 0
DO 60 I = 1, NINTV

IDIF ISIZE/2 - IRESULT - TFREQ(I)
IF (IDIF.GT.0) THEN

IRESULT = IRESULT + IFREQ(I)

ELSE IF (IDIF.LE.0) THEN

FRAC = (ISIZE/2 - IRESULT)/IFREQ(I)
AMEAN = XINT(I) + FRAC*(XINT(I+l) - XINT(I))

GO TO 70
ENDIF

60 CONTINUE
ENDIF

70 VAR = 0.0

C
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C COMPUTE THE DISTRIBUTION VARIANCE FOR ALL ALGORITHM RESULTS
C DISTRIBUTION TYPES.
C

DO 80 I = 1, NINTV

XAVE - 0.5*(XINT(I+I) + XINT(I))
XDIF - XAVE - AMEAN
VAR = VAR + XDIF*XDIF*IFREQ(I)

80 CONTINUE
VAR = VAR/ISIZE

C
C COMPUTE THE STANDARD DEVIATION (SQRT(VAR)) OF THE DISTRIBUTION.
C

SIGMA = SQRT(VAR)

C
C OUTPUT THE COMPUTED MEAN, VARIANCE, AND STANDARD DEVIATION FOR

C THE ALGORITHM RESULTS DISTRIBUTION.
C

WRITE(NPRT,1000) AMEAN, VAR, SIGMA, ISIZE
WRITE(NOUT,1000) AMEAN, VAR, SIGMA, ISIZE

C
C COMPUTE AND OUTPUT THE K-FACTOR FOR NORMALLY DISTRIBUTED
C ALGORITHM RESULTS.

C
IF (ITYPE.EQ.1) THEN
AKEST = 1.0 + 1.96*SIGMA/AMEAN
WRITE(NPRT, 1100) AKEST

WRITE(NOUT, 1100) AKEST

C
C COMPUTE AND OUTPUT THE K-FACTOR FOR LOGNORMALLY DISTRIBUTED
C ALGORITHM RESULTS.

C
ELSE IF (ITYPE.EQ.2) THEN

AKEST = EXP(1.96*SIGMA/AMEAN)
WRITE(NPRT, 1100) AKEST

WRITE(NOUT, 1100) AKEST

C
C COMPUTE AND OUTPUT THE K-FACTORS (KLO, KHI, KAVE) FOR BETA AND

C UNIFORMLY DISTRIBUTED ALGORITHM RESULTS.
C

ELSE IF ((ITYPE.EQ.3).OR.(ITYPE.EQ.4)) THEN
AKESTI = AMEAN/X(1)
AKEST2 = X(ISIZE)/AMEAN
AKAVE = 0.5*(AKEST1 + AKEST2)
WRITE(NPRT,1200) AKESTi, AKEST2, AKAVE
WRITE(NOUT,1200) AKESTi, AKEST2, AKAVE

ENDIF
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C
C DETERMINE IF A RESULTS DISTRIBUTION PLOTFILE AND A FIT TO THE

C ALGORITHM RESULTS DISTRIBUTION ARE TO BE GENERATED. IF SO,
C CALL SUBROUTINE HISTO, ELSE EXIT SUBROUTINE.
C

WRITE(NOUT, 1300)
READ(NINP,1031) ANS2

1031 FORMAT(A1)

IF ((ANS2.EQ. 'Y').OR.(ANS2.EQ. 'y')) THEN
CALL HISTO(XINT, IFREQ, AMEAN, SIGMA, XOUT, XXLN, XXII)

ENDIF

RETURN

1000 FORMAT(/,' MEAN OF DISTRIBUTION = ',E12.5,/,
1 ' VARIANCE OF DISTRIBUTION = ',E12.5,/,
2 ' STANDARD DEVIATION [SQRT(VARIANCE)] = ',E12.5,/,
3 ' TOTAL NUMBER OF SAMPLES = ',6X,I6)

1100 FORMAT(/,' K-FACTOR ESTIMATE: K = ',F7.4,/)
1200 FORMAT(/,' K-FACTOR ESTIMATES:',/,/,

1 ' K-LOW = 1,F7.4,/,
2 ' K-HIGH = ',F7.4,/,

3 ' K-AVERAGE = ',F7.4,/)
1300 FORMAT(/,' DO YOU WANT PLOT FILES OF THE RESULTS',/,

I ' DISTRIBUTION AND FIT TO BE GENERATED? [Y/N)',/)
END
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SUBROUTINE HISTO(XX, II, AMEAN, SIGMA, XOUT, XXLN, XXII)
C
C SUBROUTINE HISTO GENERATES (X,Y) DATA FILES WHICH CAN BE USED
C TO GENERATE PLOTS OF THE ALGORITHM RESULTS DISTRIBUTION,
C COMPUTED FITS TO THE DISTRIBUTION RESULTS, AND THE CUMULATIVE
C PROBABILITY DISTRIBUTION FOR THE RESULTS. THE (X,Y) PLOT DATA
C ARE WRITTEN TO DEFAULT UNIT 3.
C
C THE BASIC DATA DELIVERED TO THE SUBROUTINE ARE AS FOLLOWS:
C
C XX - ARRAY OF DISTRIBUTION SUBINTERVAL BOUNDARIES.
C II - INTEGER ARRAY OF NUMBER OF ALGORITHM RESULTS
C OCCURRING IN EACH SUBINTERVAL.
C AMEAN - COMPUTED MEAN (OR AVERAGE) OF THE DISTRIBUTION.
C SIGMA - COMPUTED STANDARD DEVIATION OF THE DISTRIBUTION.
C
C THE SUBROUTINE PERFORMS THE FOLLOWING OPERATIONS:
C
C 1. OUTPUT HISTOGRAM DATA.
C
C THE MIDPOINT VALUE XOUT OF THE I-TH SUBINTERVAL IS COMPUTED
C
C XOUT(I) = 0.5*(XX(I) + XX(I+1))
C
C AND THE DATA PAIRS (XOUT(I), II(I)) FOR EACH SUBINTERVAL ARE
C OUTPUT TO THE PLOT FILE.
C
C 2. CURVE FIT TO HISTOGRAM DATA.
C
C A. NORMALLY DISTRIBUTED ALGORITHM RESULTS:
C
C THE SUBINTERVAL CONTAINING THE LARGEST NUMBER OF COMPUTED
C ALGORITHM RESULTS IS DETERMINED AND INTEGER VARIABLE IIMAX
C IS SET EQUAL TO THE NUMBER OF ALGORITHM RESULTS WHICH OCCURRED
C IN THAT SUBINTERVAL. NEXT, FOR EACH SUBINTERVAL THE DIFFERENCE
C BETWEEN THE MIDPOINT OF THE SUBINTERVAL AND THE DISTRIBUTION
C MEAN IS EVALUATED AND DIVIDED BY THE STANDARD DEVIATION TO
C PRODUCE VARIABLE TEM:
C
C TEM = (XOUT(I) - AMEAN)/SIGMA

C
C THEN THE NORMAL DISTRIBUTION FIT FOR THE I-TH INTERVAL IS
C COMPUTED;

C
C TEM = IIMAX*EXP(-0.5*TEM*TEM)
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C
C AND THE DATA PAIR (XOUT(I), TEM) IS OUTPUT TO THE PLOT FILE.

C
C B. LOGNORMALLY DISTRIBUTED ALGORITHM RESULTS:
C
C THE RATIO SSIGMA = SIGMA/AMEAN IS COMPUTED AND THE NATURAL
C LOGARITHM OF AMEAN IS SET EQUAL TO VARIABLE AMLN. NEXT THE
C NATURAL LOGARITHM OF EACH SUBINTERVAL BOUNDARY IS COMPUTED
C AND STORED IN ARRAY XXLN. THEN THE SUBINTERVAL CONTAINING
C THE GREATEST NUMBER OF ALGORITHM RESULTS IS DETERMINED AND
C INTEGER VARIABLE IIMAX IS SET EQUAL TO THE NUMBER OF ALGORITHM
C RESULTS WHICH OCCURRED IN THAT SUBINTERVAL. NEXT A NORMAL
C CURVE VALUE (TEMi AND TEM2) IS COMPUTED AT THE BOUNDARY OF
C EACH SUBINTERVAL;
C
C TEMi = (XXLN(I) - AMLN)/SSIGMA
C TEM1 = EXP(-O.5*T411*TEM1)
C TEM2 = (XXLN(I+l) - AMLN)/SSIGMA

C TEM2 = EXP(-0.5*TEM2*TEM2)
C
C AND THE AVERAGE OF THE TWO RESULTS (TEM) IS DETERMINED,
C MULTIPLIED BY THE WIDTH OF THE SUBINTERVAL (XXLN(I+i) - XXLN(I)),
C AND STORED IN ARRAY XXII. THE RESULTING LOGNORMAL DISTRIBUTION
C IS THEN SCALED BY IIMAX AND OUTPUT TO THE PLOT FILE.
C
C C. BETA DISTRIBUTED ALGORITHM RESULTS:
C
C THE INTEGER VARIABLE IIMAX IS OBTAINED AS ABOVE FOR THE NORMALLY

C DISTRIBUTED CASE. NEXT THE COMPUTED MEAN AND STANDARD DEVIATION
C OF THE RESULTS DISTRIBUTION ARE SUPPLIED TO SUBROUTINE BETAFIT
C IN WHICH AN APPROPRIATE TABULATED OR CALCULATED BETA DISTRIBUTION,

C CORRESPONDING TO THE COMPUTED MEAN AND STANDARD DEVIATION, IS
C GENERATED. THIS GENERATED CURVE IS THEN SCALED USING THE VALUE
C OF IIMAX AND THE RESULTING DISTRIBUTION IS OUTPUT TO THE PLOT FILE
C
C D. UNIFORMLY DISTRIBUTED ALGORITHM RESULTS:

C
C THE COMPUTED MEAN OF THE ALGORITHM RESULTS DISTRIBUTION IS
C COMPARED TO THE FULL RANGE (XX(1) TO XX(NINTV+1)) OF THE
C DISTRIBUTION TO DETERMINE ITS RELATIVE LOCATION IN THE FULL

C RANGE. A UNIFORM DISTRIBUTION WITH 50% OF ITS VALUES BETWEEN
C XX(1) AND AMEAN AND 50% BETWEEN AMEAN AND XX(NINTV+1) IS THEN
C COMPUTED AND OUTPUT TO THE PLOT FILE.
C

COMMON /BLKO1/ IPARAM, ITYPE, ISIZE, ISEED, IALGO, IXVAL, ITABL,
I IXALG, IOPT, NINTV, NINC, NINP, NOUT, NPLT, NPRT
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REAL*4 XX(*). XOUT(*), XXLN(*), XXII(*)
INTEGER*4 II(*)

C
C EVALUATE THE SUBINTERVAL MIDPOINTS AND OUTPUT THE HISTOGRAM
C DATA FOR THE COMPUTED RESULTS DISTRIBUTION TO THE PLOT FILE.

DO 10 I = 1, NINTV
XOUT(I) = 0.5*(XX(I) + xx(I+1))
WRITE(NPLT,1000) XOUT(I), II(I)

10 CONTINUE
C
C COMPUTE A FIT TO NORMALLY DISTRIBUTED ALGORITHM RESULTS.
C

IF (ITYPE.EQ.1) THEN
IIMAX = 0
DO 100 I = 1, NINTV

IF (II(I).GT.IIMAX) IIMAX = II(I)
100 CONTINUE

DO 110 I = 1, NINTV
TEM = (XOUT(I) - AMEAN)/SIGMA
TEM = IIMAX*EXP(-0.5*TEM*TEM)
WRITE(NPLT,1100) XOUT(I), TEM

110 CONTINUE
C
C COMPUTE A FIT TO LOGNORMALLY DISTRIBUTED ALGORITHM RESULTS.
C

ELSE IF (ITYPE.EQ.2) THEN
SSIGMA = SIGMA/AMEAN
AMLN = ALOG(AMEAN)
DO 200 I = 1, NINTV+l

XXLN(I) ALOG(XX(I))
200 CONTINUE

IIMAX = 0
DO 210 I = 1, NINTV

IF ((XX(I).LT.AMEAN).AND.(XX(I+1).GE.AMEAN)) IIMAX II(I)
210 CONTINUE

DO 220 I1 1, NINTV
TEM1 (XXLN(I) - AMLN)/SSIGMA
TEMi EXP(-0.5*TEM1*TEM1)
TEM2 =(XXLN(I+1) - AMLN)/SSIGMA
TEM2 =EXP(-0.5*TEM2*TEM2)
TEM =0.5*(TEM1 + TEM2)
XXII(I) - TEM*(XXLN(I+1) - XXLN(I)),

220 CONTINUE
DO 230 I = 1, NINTV

IF ((XXLN(I).LT.AMLN).AND.(XXLN(I+1).GE.AMLN))
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1 SCALE = IIMAX/XXII(I)
230 CONTINUE

DO 240 I = 1, NINTV
TEM = SCALE*XXII(I)
WRITE(NPLT,1100) XOUT(I), TEN

240 CONTINUE
C
C COMPUTE A FIT TO BETA DISTRIBUTED ALGORITHM RESULTS.
C

ELSE IF (ITYPE.EQ.3) THEN
IIMAX = 0
DO 300 I = 1, NINTV

IF ((XX(I).LT.AMEAN).AND.(XX(I+1).GE.AMEAN)) IIMAX =I

300 CONTINUE
C
C CALL BETAFIT TO EVALUATE THE ACTUAL BETA DISTRIBUTION FIT.

C
CALL BETAFIT(AMEAN, SIGMA, XX, XXLN)
SCALE =0.0
NSCALE =5
DO 310 I = IIMAX - NSCALE, IIMAX + NSCALE

SCALE = SCALE + 2.0*II(I)/(XXLN(I) + XXLN(I+1))

310 CONTINUE
SCALE = SCALE/(2*NSCALE + 1)
DO 320 I = 1, NINTV

TEN = 0.5-4(XXLN(I) + XXLN(I+1))*SCALE
WRITE(NPLT,1100) XOUT(I), TEN

320 CONTINUE
C
C COMPUTE A FIT TO UNIFORMLY DISTRIBUTED ALGORITHM RESULTS.

C
ELSE IF (ITYPE.EQ.4) THEN

SCALE = NINTV*(AMEAN - XX(1))/(XX(NINTV+1) - XX(l))
DO 400 I = 1, NINTV

IF (XOUT(I).LE.AMEAN) THEN

TEN = 0.5*ISIZE/SCALE
ELSE

TEN = 0.5*ISIZE/(NINTV - SCALE)
END IF
WRITE(NPLT,1100) XOUT(I), TEN

400 CONTINUE
ENDIF

C
C COMPUTE THE CUMULATIVE PROBABILITY DISTRIBUTION ASSOCIATED

C WITH THE COMPUTED ALGORITHM RESULTS DISTRIBUTION.
C
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WRITE(NPLT,1100) XX(1), 0.0

AREA = 0.0
DO 410 I 1, NINTV

AREA = AREA + (XX(I+I) - XX(I))*II(I)
410 CONTINUE

TOTAREA = AREA
AREA = 0.0
DO 420 I = 1, NINTV

AREA = AREA + (XX(I+I) - XX(I))*II(I)
WRITE(NPLT,1100) XX(I+I), AREA/TOTAREA

420 CONTINUE
RETURN

1000 FORMAT(El2.5,', ',15)
1100 FORMAT(EI2.5,', ',E12.5)

END
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C SIGMA = SIGMA/(XX(NINTV+1) - X(I))
C TEM = (AMEDIAN - AMEDIAN*AMEDIAN)/(SIGMA*SIGMA) - I.

C ALPHA = AMEDIAN*TEM
C BETA = (1.0 - AMEDIAN)*TEM
C
C ONCE THE ;ALUES FOR ALPHA AND BETA ARE AVAILABLE, FUNCTION ROUTINE FX
C IS CALLED TO COMPUTE THE (UNNORMALIZED) BETA DISTRIBUTION, THE AREA
C UNDER THE DISTRIBUTION IS COMPUTED, AND THEN THE DISTRIBUTION IS
C NORMALIZED. THE RESULTING DISTRIBUTION IS RETURNED TO THE CALLING
C SUBROUTINE IN ARRAY Y.
C

COMMON /BLKO1/ IPARAM, ITYPE, ISIZE, ISEED, IALGO, IXVAL, ITABL,

1 IXALG, IOPT, NINTV, NINC, NINP, NOUT, NPLT, NPRT

REAL*4 AMED(81), ALPH(81), BET(81)

REAL*4 XX(*), Y(*)

DATA AMED/0.167,0.172,0.179,0.185,0.192,0.200,0.208,0.217,0.227,
1 0.238,0.250,0.256,0.263,0.270,0.278,0.286,0.294,0.303,

2 0.313,0.323,0.333,0.339,0.345,0.351,0.357,0.364,0.370,
3 0.377,0.385,0.392,0.400,0.408,0.417,0.426,0.435,0.444,

4 0.455,0.465,0.476,0.488,0.500,0.512,0.524,0.535,0.545,
5 0.556,0.565,0.574,0.583,0.592,0.600,0.608,0.615,0.623,

6 0.630,0.636,0.643,0.649,0.655,0.661,0.667,0.677,0.687,

7 0.697,0.706,0.714,0.722,0.730,0.737,0.744,0.750,0.762,

8 0.773,0.783,0.792,0.800,0.808,0.815,0.821,0.828,0.833/
DATA ALPH/1.04, 1.07, 1.11, 1.14, 1.18, 1.23, 1.28, 1.33, 1.39,

1 1.46, 1.54, 1.58, 1.63, 1.68, 1.73, 1.79, 1.85, 1.92,

2 1.99, 2.07, 2.16, 2.20, 2.26, 2.31, 2.36, 2.42, 2.48,

3 2.55, 2.62, 2.69, 2.77, 2.86, 2.95, 3.05, 3.15, 3.26,
4 3.39, 3.52, 3.66, 3.83, 41*4.0/

DATA BET/41*4.0, 3.83, 3.66, 3.52, 3.39,
1 3.26, 3.15, 3.05, 2.95, 2.86, 2.77, 2.69, 2.62, 2.55,
2 2.48, 2.42, 2.36, 2.31, 2.26, 2.20, 2.16, 2.07, 1.99,
3 1.92, 1.85, 1.79, 1.73, 1.68, 1.63, 1.58, 1.54, 1.46,
4 1.39, 1.33, 1.28, 1.23, 1.18, 1.14, 1.11, 1.07, 1.04/

C
C COMPUTE THE MEDIAN OF THE ALGORITHM RESULTS DISTRIBUTION.
C

AMEDIAN = (AMEAN - XX(1))/(XX(NINTV + 1) - XX(1))
c

C DETERMINE ALPHA AND BETA FOR THE TABULATED DISTRIBUTION CASE.
C

IF (ITABL.EQ.1) THEN
TEMPI = 0.5*(AMED(1) + AMED(2))
TEMP2 = 0.5*(AMED(80) + AMED(81))
IF (AMEDIAN.LE.TEMP) THEN

IBET = 1
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ELSE IF (AMEDIAN.GT.TEMP2) THEN
IBET = 81

ELSE
DO 10 I = 2, 80

TEMPI = 0.5*(AMED(I) + AMED(I-1))

TEMP2 - 0.5*(AMED(I) + AMED(I+1))
IF ((AMEDIAN.GT.TEMP1).AND.(AMEDIAN.LE.TEMP2)) IBET = I

10 CONTINUE
ENDIF
ALPHA = ALPH(IBET)

BETA = BET(IBET)
C
C DETERMINE ALPHA AND BETA FOR THE CALCULATED DISTRIBUTION CASE.
C

ELSE IF (ITABL.EQ.2) THEN
SIGMA = SIGMA/(XX(NINTV + 1) - XX(1))
TEM = (AMEDIAN - AMEDIAN*AMEDIAN)/(SIGMA*SIGMA) - 1.0
ALPHA = AMEDIAN*TEM
BETA = (1.0 - AMEDIAN)*TEM

ENDIF
C
C INITIALIZE THE POINTS IN THE UNIT INTERVAL AT WHICH THE BETA
C DISTRIBUTION WILL BE COMPUTED.
C

Y(1) = 0.0
Y(NINTV+I) = 1.0
DO 20 I = 2, NINTV

Y(I) = (XX(I) - XX(1))/(XX(NINTV + 1) - XX(1))

20 CONTINUE
C
C COMPUTE THE UNNORMALIZED BETA DISTRIBUTION AND ITS AREA.
C

SUMNORM = 0.0
DO 30 I = 1, NINTV

FX1 = FX(ALPHA, BETA, Y(I))
FX2 = FX(ALPHA, BETA, Y(I+1))
SUMNORM = SUMNORM + 0.5*(FX1 + FX2)*(Y(I+1) - Y(I))

30 CONTINUE
C
C COMPUTE THE NORMALIZED BETA DISTRIBUTION.
C

DO 40 I = 1, NINTV+1
FX1 = FX(ALPHA, BETA, Y(I))
Y(I) = FX1/SUMNORM

40 CONTINUE

RETURN
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END
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FUNCTION FX(ALPHA, BETA, YY)
C
C FUNCTION FX EVALUATES THE FUNCTION:
C
C (ALPHA-i.) (BETA-i.)
C YY (i.-YY)
C
C FOR DELIVERED VALUES OF ALPHA, BETA, AND YY. THE ABOVE FUNCTION
C IS THE INTEGRAND IN THE INTEGRAL FORMULA FOR THE BETA
C PROBABILITY DISTRIBUTION WITH PARAMETERS ALPHA AND BETA.
C

IF ((YY.GE .i.0).OR.(YY.LE.0)) THEN
FX = 0.0

ELSE
IF(((ALPHA.GE.O.9).AND.(ALPHA.LE.1.1)).OR.

I ((BETA.GE..9).AND.(BETA.LE.i))) THEN
FACi = EXP((ALPHA - .0)*ALOG(YY))
FAC2 = EXP((BETA - .0)*ALOG(I.0 - YY))
FX = FACi*FAC2

ELSE
FX = (YY**(ALPHA - .0))*(i.0 - YY)**(BETA 1 .0)

END IF
END IF
RETURN
END
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SUBROUTINE OPTIONS

C
C SUBROUTINE OPTIONS ENABLES THE INTERACTIVE USER OF BETAFACT TO
C MODIFY THE PROBLEM BEING EXECUTED BY THE PROGRAM. THE SUBROUTINE
C LISTS THE AVAILABLE OPTIONS FOR THE USER AND PROMPTS FOR AN
C OPTION SPECIFICATION. CONTROL IS THEN RETURNED TO THE MAIN
C PROGRAM WHICH INTERPRETS THE USER SELECTED OPTION AND PROCEEDS
C ACCORDINGLY.
C

COMMON /BLKOl/ IPARAM, ITYPE, ISIZE, ISEED, IALGO, IXVAL, ITABL,
1 IXALG, IOPT, NINTV, NINC, NINP, NOUT, NPLT, NPRT
WRITE(NOUT, 1000)

1000 FORMAT(/,' SELECT OPTION TO QUIT OR TO RUN A MODIFIED VERSION',!,

1 OF THE CURRENT PROBLEM:',!,I,
2 0 - TERMINATE PROBLEM.',/,

3 1 - CHANGE INDEPENDENT PARAMETER VALUES.',/,
4 2 - CHANGE NUMBER OF ALGORITHM EVALUATIONS',/,

5 AND/OR THE RANDOM NUMBER SEED INTEGER.',/,
6 3 - CHANGE PARAMETER NOMINAL VALUES AND/OR',/,

7 ' ASSOCIATED K-FACTOR UNCERTAINTIES.',!,
8 ' 4 - CHANGE UNCERTAINTY DISTRIBUTION TYPE.',/,

9 ' 5 - OPTIONS 1 AND 2.',/,
* ' 6 - OPTIONS 1 AND 3.',/,

* ' 7 - OPTIONS I AND 4.',/,
* ' 8 - OPTIONS 2 AND 3.',/,

* ' 9 - OPTIONS 2 AND 4.',/,
* ' 10 - OPTIONS 3 AND 4.',/,
* ' 11 - OPTIONS 1, 2, AND 3.',/,
* ' 12 - OPTIONS 1, 2, AND 4.',/,
* ' 13 - OPTIONS 1, 3, AND 4.',/,
* ' 14 - OPTIONS 2, 3, AND 4.',/,

* ' 15 - OPTIONS 1, 2, 3, AND 4.',/,
* ' 16 - COMPLETELY MODIFY THE CURRENT PROBLEM.',/)

READ(NINP,*) IOPT
RETURN
END
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SUBROUTINE FNRN(NUMNR, RN)
C
C SUBROUTINE FNRN RETURNS A NORMALLY DISTRIBUTED RANDOM NUMBER
C WITH VARIABLE NAME RN. THE INTEGER NUMNR IS USED ONLY DURING
C THE FIRST CALL TO THE SUBROUTINE AND ITS VALUE IS NOT CRITICAL.
C HOWEVER, IF A DIFFERENT STRING OF RANDOM NUMBERS IS DESIRED
C EITHER DURING THE COURSE OF A SINGLE BETAFACT ANALYSIS OR FROM
C ONE ANALYSIS TO ANOTHER, THE VALUE FOR NUMNR MUST BE CHANGED
C AT THE BEGINNING OF EACH ANALYSIS. THE SUBROUTINE CALLS
C FUNCTION GASDEV WHICH COMPUTES A VALUE FOR RN.
C

DATA INFIRST /0/
IF (INFIRST.EQ.0) THEN

INFIRST = 1
IF (NUMNR.GE.0) THEN
IDUM = -NUMNR

ELSE
IDUM = NUMNR

ENDIF
ENDIF
RN = GASDEV(IDUM)
RETURN
END
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SUBROUTINE UPRI(NUMUR, RN)
C
C SUBROUTINE UPRI RETURNS A UNIFORMLY DISTRIBUTED RANDOM NUMBER
C WITH VARIABLE NAME RN. THE INTEGER NUMUR IS USED ONLY DURING
C THE FIRST CALL TO THE SUBROUTINE AND ITS VALUE IS NOT CRITICAL.

C HOWEVER, IF A DIFFERENT STRING OF RANDOM NUMBERS IS DESIRED
C EITHER DURING THE COURSE OF A SINGLE BETAFACT ANALYSIS OR FROM
C ONE ANALYSIS TO ANOTHER, THE VALUE FOR NUMUR MUST BE CHANGED
C AT THE BEGINNING OF EACH ANALYSIS. THE SUBROUTINE CALLS
C FUNCTION RANI WHICH COMPUTES A VALUE FOR RN.
C

DATA IUFIRST /0/
IF (IUFIRST.EQ.0) THEN

IUFIRST = 1

IF (NUMUR.GE.0) THEN
IDUM = -NUMUR

ELSE
IDUM = NUMUR

ENDIF
ENDIF
RN = RAN1(IDUM)
RETURN
END
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FUNCTION GASDEV(IDUM)
C
C THE FOLLOWING ROUTINE IS TAKEN FROM:
C NUMERICAL RECIPES - THE ART OF SCIENTIFIC COMPUTING
C W. H. PRESS, B. P. FLANNERY, S. A. TEUKOLSKY, AND
C W. T. VETTERLING; CAMBRIDGE UNIVERSITY PRESS 1988.
C P. 202-203.

C
C RETURNS A NORMALLY DISTRIBUTED DEVIATE WITH ZERO MEAN AND
C UNIT VARIANCE, USING RAN1(IDUM) AS THE SOURCE OF UNIFORM
C DEVIATES.
C

DATA ISET /0/
IF (ISET.EQ.O) THEN

1 Vl = 2.*RAN1(IDUM) - 1.
V2 = 2.*RAN1(IDUM) - 1.
RRR = Vl**2 + V2**2
IF (RRR.GE.1.) GO TO 1
FAC = SQRT(-2.*ALOG(RRR)/RRR)
GSET = Vl*FAC
GASDEV = V2*FAC

ISET = 1

ELSE
GASDEV = GSET

ISET = 0

ENDIF
RETURN
END
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FUNCTION RAN1 (IDUM)
C
C THE FOLLOWING ROUTINE IS TAKEN FROM:
C NUMERICAL RECIPES - THE ART OF SCIENTIFIC COMPUTING
C W. H. PRESS, B. P. FLANNERY, S. A. TEUKOLSKY, AND
C W. T. VETTERLING; CAMBRIDGE UNIVERSITY PRESS 1988.
C P. 196-197
C
C RETURNS A UNIFORM RANDOM DEVIATE BETWEEN 0.0 AND 1.0.
C SET IDUM TO ANY NEGATIVE VALUE TO INITIALIZE OR
C REINITIALIZE THE SEQUENCE.
C
C CONSTANTS ARE FOR COMPUTERS WHICH OVERFLOW AT POSITIVE
C INTEGER VALUES OF 2**31 - 1.
C

DIMENSION RR(97)
PARAMETER (Ml=259200,IAI=7141,ICI=54773,RMI=1./M1)
PARAMETER (M2.:134456, IA2=8121, IC2=28411 ,RM2=1./M2)
PARAMETER (M3=243000, IA3=4561, IC3=51349)
DATA IFF /0/
IF (IDUM.LT.O.OR.IFF.EQ.O) THEN

IFF = 1
IX1 = MOD(ICl-IDUM,M1)
IXI = MOD(IA1*IX1+IC1,M1)
IX2 = MOD(IX1,M2)
IXI = MOD(IA1*IX1+ICI,M1)
IX3 = MOD(IX1,M3)
DO 11 J = 1, 97

IXi = MOD(IA1*IX1+ICI,M)
IX2 = MOD(IA2*IX2+IC2,M2)
RR(J) = (FLOAT(IX1) + FLOAT(IX2)*RM2)*RM1

11 CONTINUE
IDUM = 1

ENDIF
IX1 = MOD(IA1*IX1+IC1,M)
IX2 = MOD(IA2*IX2+IC2,M2)
IX3 = MOD(IA3*IX3+IC3,M3)
J = I + (97*IX3)/M3

IF (J.GT.97.OR.J.LT.I) PAUSE
RAN1 = RR(J)

RR(J) - (FLOAT(IX1) + FLOAT(IX2)*RM2)*RMI
RETURN

END
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