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Abstracet

A numerical analysis is made of developing
and developed turbulent flow in the annular
reglion between a cylinder moving at constant
velocity within a fixed concentric tube.
Turbulent shear (s modeled by eddy viscosity,anc a
uniform velocity {3 assumed at the entrance to the
annular reglon. The computations extend and
modify the method of Sud and Chaddock (1981) to
arbitrary Reynolds numbers and radius ratios.
Approximate formulas are given for both developing
and developed values of pressure drop, shear
stress on the inner and outer walls, and total
cylinder drag.

Nomenclature

a = rat/ry

b = ro/ry

c = parameter defined in Eq. (1l1)
Dp = hydraulic ditamater, 2(rgo-rj)
t = frictton factor, Eq. (10)

F = drag force, Eq. (14)

Lt = entrance length, Flg. 7

n = eddy viscosity parameter, Table 1
p = pressure

r = radlal coordinate

rmg = radius of maximum veloclity, Fig. 2

Rey = Uyry/v

Rep = UpDp/v

= axial velocity

= average annular velocity, Eq. (1)
inner cylinder or vehicle velocity
= {inviscid core velocity, Fig. 2

v*# - friction velocity, (1,/p)!/2

X = axlal coordinate

y = coordinate normal to wall, Fig.2

y‘g = eddy viscosity crossover point, Table 1
§ = boundary layer thickness

p density

v = kinematic viscosity

T = shear stress

™ = 21/pUy2

Superscript

+ = law-of-the-wall coordinates, Eq. (4)
Subscripts

i = {nner wall

[¢] = outer wall

w = either wall

€d =« fully developed
= i{nviscid core value
in the entrance region
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Avail and/or |

The problem of turbulent flow in a concencrr
annulus has been of interest for at least eight
decades, beginning with the experimental resalts
of Becker (1907). Numerous papers have treaced
the problem of pressure-driven flow between lixed
cylinders. For fully developed flow, the eddy
viscosity theory of Quarmby(l1968) is in good
agreement with his experimental results (QJuarmby
1966). For both laminar and tiurbulent flow in a
fixed annulus, the point of maxi . axfal veloctry
rmg 18 closer to the inner radius (Lawn and Elliot
1972).

Developing annular flow is less well
documented, but an integral analysis by Wilson and
Medwell (1971) shows a development length for
turbulent flow of about ten hydraulic diameters
for Reynolds numbers from 104 to 3x10% and radius
ractios from 1.25 to 5.,0. Thelr results agree
reasonably well wir'. data by Okiishi and Serovy
(1967).

The problem under study here 13 the annalar
flow driven by uniform axial motion of the tnner
cylinder, which simulates the motion caused by
vehicles travelling in tubes or by the launching
of torpedoes or cylindrical buoys. Experimental
data on vehicles in tubes are summarized by
Davidson (1974), and theoretical results are given
fn the book by Hammft (1973). Implicit in the
analysis of the annular flow induced by a moving
cylinder is the assumption that the volume swept
out by the vehicle passes through the annulus to
f111 the void behind the vehicle, as {n Figure 1.
This simulates a very long outer tuba, whereas in
a short tube the inlet and outlet can serve as a
source and sink of fluid, with less volume passing
through the annulus. The only detailed analysis
of the flow shown in Figure 1 is given by Sud and
Chaddock (1981), for both developing and developed
flows. After presenting a general analytical
technique, Sud and Chaddock give computed results
for only a single case, ro = 8 frv (2.44 m), ry = 6
tt (1.83 m), and Uy, = 200 fr/s (61 m/s), at two
air densities (Reynolds numbers).

It {s the purpose of the present paper to
extend the analysis of Sud and Chaddock to

arbitrary radfus ratios and Reynolds numbers, for
both developing and developed flow. The developed
flow analysis is tdentical to Sud and Chaddock.
For developing flow, corrections are made to their
analysis, as it is felt that Sud and Chaddock's
results in the entrance region are somewhat
{naccurate.
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Figure 1. 1If a vehicle moves through a

long tube, the volume swent out
passes through the annulus.

Fully Developed Flow

The geometry of the flow i3 shown in Figure 2.

With coordinates fixed to the vehicle, both the
upstream fluid and the outer tibe wall appear to
move at vehicle velocity Uy,. Based on the
displacement concept of Figure 1, the
fncompressible continuity ralation requires that
the average velocity Uy in the annular region be
related to vehicle veloeity by

Up = Uyb2/(02-1) (1)

where b = ro/ry is the principal geometric
paramecer tn the analysis.

In the fully developed regton, u = u(r) only,
and the flow may be divided into an {nner region
"i" and an outer region "o", separated by the
point of maximum velocity, rpy. Since there is no
acceleration in the developed region, a momentum
balance shows that the inner and outer wall shear
stresses are related by

Yo, -4
T

(2)
1 D(az-l)

where a = rpp/ry.

There are two characteristic Reynolds
numbers: for the vehicle motion, Rey = Uyry/v,
and for the annular flow, Rep = UyDn/v, where Dy =
2(ro-ry) is the hydraulic diameter. The two are
related by geometry and continuity:

Rep = 2$?Rev/(b‘1) (3

The analysis follows Sud and Chaddock (1981).
Both the inner and cuter regions are divided into
two computational reglons as in Fig. 2: (1) the
sublayer, and (2) the turbulent core. The flow is
assumed steady, {ncompressible, and turbulent,
with impermeable walls, The variables are
non-dimensionalized in law-of-the-wall fashion:

+*

+ +*

0t e a/vE gt e yvMiy v e (1) 172 (4)
The sublayer, 0 <y < yy, is modeled with
Deissler's eddy viscosity formulation:

* . 7
I8
dn o

h * R

dy 1+ nzu’y'[l - exp(-neu‘y')]

The turbulent core, Y i y i Ymr» !9 modeled witn
Karman's similarity hypothesis for eddy viscosity:

+

o 3 (du'/dy’)z

Q.
n

—_— = 0.36 14}

2 . 12 "
dy* (v/1y = du /dy )
In both cases, the local shear stress i3 related
to local radius through a momentum balance:

2 2
r (r° -r° )
T W mt
- " 5 5 (7)
W r{r- -r )
W mt

At high Reynolds numbers, Deissler's damping
parameter ne equals 0.0154 with the cross-over
point y} = 15.0. At lower Reynolds numbers, values
of n2 and y% were taken from a graph given by
Quarmby (l9g8). Some typical values are given
here in Table 1. These values are not thought L2
be especially accurate but are retalned for
comparison to the analyses of Quarmby (1968) and
Sud and Chaddock (1981).

Equations (5,6,7) are a set of differential
equattions to solve {or the velocity profiles u,

and ug in the tnner and outer regions. From Fig.
2, the boundary conditions are
yg = 0 ug = 0

(8)
Yo = 0 g = Uy

The equations are solved by an iterative technijue
similar to Sud and Chaddock but modified by Korlow
(1985). One begins by guessing 1, and a ({or
mg). whence 71y can be computed and the velocity
profiles uy and u, computed by numerical
(Runge~Kutta) integration of Eqs. (5,6,7). The
value of 15 is gradually adjusted and the
integrations repeated until the core velocity

Uso exceeds Up. If the two profiles do not meet
at rypy with Ug; =Ugo then a new value of a

i{s computed from the relation

2
b( 1l + ba ) l4 - + + 9 )
» (——)1, a u 5 o/ U st (
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Figure 2. Velocity and boundary layer

development of fluid in
the annular region (modified
from Sud and Chaddock 1981).




Thne enctire process is tnen repeated until the
value of a converges. The profiles are then
integrated to determine the average velocity Uy,
which i3 compared with EqQ. (1). If there is a
mismatch, the value of ty is again adjusted and
the entlire double-fteration process is repeated
antil final convergence. With the profiles known,
the pressure drop, friction factor, and other
parameters are computed,

Table 1 Eddy Viscosity Parameters at Low Reynol:is
Numbers
- +
Ymt n® Rep Y
100 0.0074 10000 26.7
200 0.0127 20000 20.0
300 0.0142 30000 17.6
soeQ 0.0150 4onn0 P
Z duv 0.0154 2 50000 15.0

Using the above procedure, Kotlow (1985) has
tabulated fully-developed flow parameters for a
range of Rey = 104-108 and radins ratios b =

1.01-2.0. The fully-developed friction factor is
deftned by

(-dp/dx) Dh a(POTo + ri‘i)
r - - (10)
fd 1 U2 (r +r. ) pU 2

z P Y o1’ Py

Values of fgq are plotted i{n Fig. 3 from the above
theory. The presasure drop {3 very large at small
values of b due to the high bulk velocity in the
annulus, Eq. (l1). The curves in Fig. 3 can be
collapsea approximately {nto a Moody-chart type of
curve by scaling Reynolds number and pressure drop
with Up rather than U,. Note the agreement in
Fig. 3 with the two computed points of Sud and
Chaddock (1981) for b = 1.33.

The computed curves in Fig. 3 may be fit to
the following algebraic formula with good
accuracy:

feq = C2 [0.001 + 2.8/(logjyRe*)3:1], (11)
2 2
where C = bl and Re* = %%T Rev
2(b"-1)

The error when comgar:g to Fig. 3 is about 3% in
the range Rey, = 10°-10°.

Kotlow (1985) also tabulates values of the
dimensionless inner and outer wall shear stresses.
The inner stress is the higher and, for
fully-developed flow, these stresses may be
estimated by the following curve-fit formulas:

- 81, B = 1.005 pl-543+0.2195 log sRe, (15
£, (b+1)
TN as

where frgq i3 to be estimated from Eq. (11).
Equations (12) and (13) have an accuracy of about
+4% over the range Re, = 105-108 and v - 1.01-2.0.
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Figure 3. Theoretical fully-developed
friction factors in the
annular region.

In the fully-developed regton, the drag
experienced by the vehicle would be a combination
of pressure difference and inner wall shear. For
a cylinder of length L, the drag would be

- -r 2
Ffd ‘n’l’ib( 21l rax ) (14)
This estimate must be supplemented by values of
nose drag, wake drag, and the increased pressure
drop and shear in the developing region (Davidson
1974).

Finally, the moving inner cylinder causes
the point of maximum veloCity to shift toward the
outer wall, unlike the fixed annulus case. This
position is shown in Fig. 4 and becomes closer to
the outer wall as Reynolds number and radius ratio
increase. The same qualitative effect occurs for
laminar flow.

Developing Flow in the Entrance

Experimentally, the pressure and shear stress
in the entrance region are dependent upon exact
entrance conditions: sharp-edged, rounded-edge,
bellmouth, etc. Some experimental results for a
fixed annulus are given by Oktishi and Serovy
(1967), Rothfus et al. (1955), and Olson and
Sparrow (1963). These results are discussed by
Kotlow (1985).

The present analysis follows Sud and Chaddock
(1981) by assuming that the entrance velocity
profile is uniform, u = Uy, as in Fig. 2.

Boundary layers &1 and §, grow on the walls until
they meet at x = L*, cthe entrince length. At any
x, the core velocity Us(x) is assumed uniform.
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Figure 4. Computed position of maximum
velocity in the annulus for
fully-developed flow.

At any given x, variables u* and y* are
scaled with local shears ty(x) and t5(x) and the
boundary layer profiles ug; and ug computed by
integration of Eqs. (5) and (6). Since t(y) is not
known in the developing region, the linear profile
assumption of Wilsocn and Medwell (1971) was
adopted

w(y) = ty,(l - y/8) (15)
for both the inner and outer regions.

The study began by repeating the computations
of Sud and Chaddock (1981) for the spectial case
given in their Figures 3 and 4. Only qualfrative
agreement was obtained, and the computations
{ndicated that local mass and momentum balances
were not accurately sactisfied. The discrepancy,
if any, was difficult to analyze, for Sud and
Chaddock used the transformation technique of
Wilson and Medwell (1971), resulting in a double
integral with extremely complex arguments. In any
case, the Sud and Chaddock approach was abandoned
and instead a local mass and momentum balance was
used to compute incremental changes in velocity,
pressure, and shear. Developing flow was thus
computed for the ranges Re, = 105-107 and b =
1.01-2.0.

A momentum balance over a short distance ax

of inner boundary layer gives Eq. (20) of Sud and
Chaddock (1979):

p 2_,2 , 7 .
5 [(r1461) rl] + T,r Ax

it
ri*él rt*Gi »
- ugal [ eurarl -ar | puyr dr] (16)
r r

1 i

where T; 1s the average inner wall shear. An
exactly similar relation holds tor the outer
boundary layer.

A moment im balance of tne entire annilir i w

gtves
8 2.2y, A T T - 7)
20 (ro re) s P (riv, + roro) al, (173
ri*dl P ro_do > ro >
where [ = I u;r dr + I Uér dr « I u_r dar
r r. +§ r -6 °
t t i o o

Using values of (t1y,15,8,) from the previous step
and estimacting a new value for &, the velocities
1y and u, were computed from Eqs. (5,6,15) for tne
next step x+Ax. The integrated average of the
velocity profile was compared with Up from Eq. (1)
and 1y was adjusted until mass balance was
achieved. At the same vime, 15 was continually
adjusted within an inner loop to meet rthe
conditton Ugy = Ugo. The three momentum balances
were used to estimate Ax and §, was adjusted and
the procedure repeated iteratively unttl cthe
location of u, matched that of uj.

The inviscid-core Bernoullt relatrion, dp =
-pUédU , was omicted in favor of simultaneously
balanc?ng the inner, outer, and overall momentum
relations, Use of the Bernoulli relation seemed
to induce numerical instabilities or errors, such
that the pressure gradient or wall shears fell
below their fully-developed values (Kotlow 1985).
Several discrepancies of this type are zeen in the
tabulated results of Sud and Chaddock (1979), who
used the Bernoulli relation.

A direct comparison was made with the special
case computed by Sud and Chaddock (1979,1981): rj
= 1.83m, rg = 2.44 m, U, = 61 m/s, for air at
37°C and 0.25 atm. The results are shown in Fig.
5 for the local pressure drop. The two results
are similar, but the present compitations are
smoother and perhaps slightly more accurate.

A i i

Q - SUD & CHADOOCK (1979, 188%)

«30+
dp/dx
(Pa/m)

-84
PRESENT

— COMPUTATIONS

-204
O
o I
15 Y
- —— e - =
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19 T T y
[ ] $ 10 1" 20

x - (m)

Figure 5. Comparison with the special case
comnuted by Sud and Chaddock. (Bars
denote numerical uncertainty.)
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Figure 6. Computed overall friction
factors in the
developing region.

Figure 6 shows the computed friction factors
{n the entrance region,defined as the
dimensionless pressure drop between x=0 and x=L*,
the entrance length. These values everywhere
exceed the fully-developed friction factors from
Fig. 3. They may be curve-fit by the relation

0.2

€. £, +0.032 C2 Re, (18)

E fd
where frq i3 estimated from Fig. 3 or Eq. (11).
he overall accuracy is :3% in the range Rey =
105-107 and b = 1.01-2.0.

Similarly, the integrated average Llnner-wall
shear stress over the entrance length L* may be
curve-fit by

T = ¥
i

: . 0.0068 2 b0-559 Re;o.zos

.rd (19)
where t* = 21/9U72 and the fully-developed value
{s estimated from Egs. (12) and (13). The overall
accuracy of Eq. (19) is £3.5% for Re, = 105-107
and b = 1,01-2.0,

Finally, the computed entrance lengths L* are
shown in Fig. 7 as a function of Reynolds number
and radtus ratio. These results are larger than
the integral estimates for a fixed annulus flow by
Wilson and Medwell (1971). They may be curve-fit
by the formula

2 - 1.1
L'/Dh (4.17 logloRev 7.875) b (20)

with an overall accuracy of $if,

If the cylinder is of length L, great=r tran
L*, its overall drag coetficient is the sum of an
entrance drag plus {aully-developed drag o2n tne a't
portion (Ly~L*):

L#* % .
o} -D— (u(b—l)x‘. e F) e

b "B, £ TE
(L -L*)
A T S Y S (21)
D, Ti,rd fd ¢

Each of the parameters in this expression may ve
estimated from the previous curve-fit formalas
(11) to (20). The overall accuracy for the drag
{s :6%.

Although not shown here, the inner and outer
velocity profiles, when plotted in law-of-the-wall
coordinates, 1* versus y* and (u*-U%) versus y7,
were in excellent agreement with the traditional
linear sublayer and logarithmic layer for~—.'cz.
This was true for all Re, and b computed, in
poth the developing and developed regions.

However, in thelr fixed-annulus experiment, Lawn
and Elliot (1972) report that inner-wall velocity
data failed to correlate with the law-of-the-wall
for their largest b = 11.36. Such large radfus
ratios were not computed here.

Conclusions

The use of straightforward eddy viscosity
models and integral mass and momentum balances
leads to a complete set of analytical results for
the turbulent annular flow between a fixed outer
cylinder and a moving concentric inner cylinder.
The results are in good agreement with the two
special cases computed earlier by Sud and Chaddock
(1979,1981) and with the data of Davidson (1974).

S0 Y v v MRS | T \J A T T

10 -

] 'Y U | a P G WSt

10
%, = UT /Y

Figure 7. Computed entrance lengths for
various radius ratios.




The pressure drop and wall shear streses in
both the developing and fully-developed reglons
are smoothly varying functions of Reynolds number
and radius ratio. Tha8y may be fit Lo simple
algebralc correlations which have an accuracy of
about five percent. The friction factor in the
fully-developed region may be directly related by
scaling faztors to the ordinary Moody-chart
friction factor for circular pipe flow.
Development lengths vary from ten to forty
hydraulic diameters, t{ncreasing slowly with both
Reynolds number and radias ratio.
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