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I. INTRO™UCTION

.1 Background. Onc of the missions of the Depantment of Defense Explosives Safety Board
«DDESB) is the characterization of airblast effects relative to structural damage in order to cstablish
quantity-distance (Q-D) standards for ordnance uscd by the armed services. The present published
safety manual (Ammunition and Explosives Safety Standards) has many tables establishing the safe
distances for vanous wypes of buildings and cquipment. These distances are based on the amount
of cxplosive stored and how it is stored (i.c., in the open with barricades, in carth-covered
magazines, or in underground storage sites). The Q-D criteria established for explosives stored in
underground storage sites arc bascd on the distance at which a given peak overpressure would
accrue from known quantitics of ¢xplosive. The point to be made here is that only the peak
overpressure is considered and not the duration of the overpressure or the impulse of the pressure
pulse.

1.2 Objectives. The general objectives of this rescarch project is to experimentally investigate

the refationship, if any, between the side on overpressure wave shape and impulse cxiting a shock
tube or underground storage tunnel and the peak side-on overpressure recorded at selected distances

i front of the tbe exit.

A sccond objective s to determine what relationship exists between the exit-pressure wave
shape and side-on overpressure impulse exiting the shock tube, and the side-on impulse recorded at
selected distances in front of the tube exit.

2. TEST PROCEDURES

2.1 Shock Tube Description. The experimental phase of this project was conducted in a

lorge, enclosed arca with a controlled environment. A 2.54-cm inside diameter shock tube was
sclected for use because it could be operated indoors without resorting to remote control. To look
at the cffect of changing the exiting overpressure impulse, the length of the driver section was
varied.  The driver section was 22.86 ¢m in length to produce a decaying shock wave at the exit of
a 133-cm driven section. To produce a flattop-type shock wave at the tube exit, a driver section of
150 cm in length was used with a 133-cm-length driven scction. A sketch of the two shock tube
configurations is shown in Figurc 1, as well as a ficld test model. Results from those tests will

also be compared with the shock tube tests.
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2.2 Instrumentation Description. A schemadic ol the data acquisition-reduction system is given
in Ficure 2. Quartz piczoelectric transducers were used to record the side-on overpressure vs. time,
from which impulse vs. time can i calculated. ‘The transducers are coupled through a power
supply and data amplificrs 10 a digitizing oscilloscope.  On-site compansons of the results were
made directly from the hard copies ol ihe pressure-vs.-time records.  Final dita processing and
generition of the overpressure and overpressure impulse vs, time were completed with the computer,

printer, and plotter.

2.3 Transducer Locations.  The pressure transducers were located at selected distances from
the shock tube exit. The inside diameter of the wbe is 2.54 c¢m, and because the decay of peak
overpressure appears to be a function of the ratio of distance from the tube exit (RY divided by the
tube diameter 1D, the focations are listed in units of tube diameters. There were cight locations
along the zero line. They were 1S, 6.5, 10, 15, 23, 35, 54 and 100 diameters. The distances can

be read direetly in inches or multiplied by 2.54 10 be read in centimeters.
3. RESULTS

31 Peak Overpressure vs. IDistance - Decaying Exit Pressure. One of the o iectives of this
project is to determine whether the shape of the overpressure phlsc has influence on the decay of
peak overpressure vs, distance oulside of the shock tbe. The peak overpressure recorded at the
transducer stations outside of the shock tube are listed in Table 1 for the 22.86-cm driver. The
peak overpressures, AP, are listed in units of kPa and also as ratios of AP divided by the exit
pressure P, These values are plotted in Figure 3 1o determine how well they fit an equation from
Reference 4 (Kingery 1989), which was developed by the Norwegians (Skjeltrojs, Jensen, and

Rinuan 1977). The cquation is:
APP, = 124 (R/D)D D 7 (1 + (0/56)), (N

where AP/P, is the free-ficld:blast-pressure-to-exit-pressure ratio found at a radial-distance-to-tunnel-
diameter ratio R/Dp and 0 degrees from the tunnel exit. The data presented in Table 1 are taken

along the zero degree line, and, therefore, only the first part of Equation [ is used.

The peak overpressure data listed in ‘Table 1 are presented in graphical form in Figure 3 as
AP/, vs. R/D. The solid line was calculated from Equation |, and, as can be seen, the scatter of

data from the recorded pressure vs.time records is quite acceptable. The only trend noted s thit
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Figure 3. Pressurc Ratio AP/P, vs. Distance Ratio R/D; for a Short-Duration,
Decaying Exit-Pressure Shockwave.




the ratios from the lower cxit pressurc (478 - 491 kPa) fall below the solid line with one exception.
The mid-level cxit pressure (654 - 747 kPa) and the upper-level exit pressure (1,196 - 1,222 kPa)
ratios of AP/P,, both fall above and bclow the solid line.

3.2 Peak Overpressure vs. Distance--Flattop Exit Pressure. To alert the reader to the type of

pressure-vs.-time records exiting the shock tube, plots of the shock tube flattop wave and decaying
wave are shown in Figurc 4. Also shown in Figure 4 is a long-duration decaying wave as

measured from the high explosives tests (Coulter, Bulmash, and Kingery 1988). 1t is not expected
that a flattop pressure pulse will occur from accidental explosions in underground munition storage
sitcs.  But if there is an cffect on outside peak overpressure or impulse because of the overpressure

vs. time in the exit-pressure pulse, then it should become apparent from these two condidivus.

The data using the 150-cm-long driver from three different exit pressure ranges (503 to
553 kPa), (917 to 1,317 kPa) and (1,824 to 1,953 kPa) arc listed in Table 2. The same parameters
are listed here as in Table 1 and the listed pressure data are plotted in Figure 5. It can be seen in
Figure 5 that beyond a distance of 10 diameters the ratios of AP/P,, are all plotted above the solid
line representing Equation 1 (Skjeltrojs, Jensen, and Rinuan 1977). This figure would imply that
there is some influence or a rclationship between the exit-pressure wave shape and the pressure

mcasured along the zero line outside of the tunnel.

It should be noted that some high explosives tests have also shown a trend where most of the
data points of AP/P, vs. R/D; fall above the solid linc cstablished from Equation 1 (Coulter,
Bulmash, and Kingery 1988). The exit pressures from this test were decaying shock waves but
were also long-duration (relative to ours) waves (see Figure 4). Thus, the data points might be
cxpected to fall in between the short-duration rapid decay and the longer duration flattop wave. By
way of comparison, data from Test 3 (Coulter, Bulmash, and Kingery 1988) are plotted in Figure S,
and the ratios fall above the solid line.

3.3 Impulse vs. Distance--Decaying Exit Pressure. The positive pressure impulse has usually

been ignored in establishing the Q-D criteria. The scaling procedure for impulse is different than
for peak overpressure. As the yield or mass of explosive is increased, the distance from the
cxplosion at which you would expect a given peak overpressure is a function of the cube root of
the mass. The peak overpressure is not scaled. When scaling impulse, one must remember that as
the amount of explosive is increased the distance and impulse are both increased. The scaling

rclationships are well established for explosives detonated in the atmosphere without confinement.
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Figure 5. Pressurc Ratio AP/P, vs. Distancc Ratio R/D; for a Flattop and
Long-Duration, Decaying Pressure Pulse.
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In this report, we are dcaling with a shock wave crcated from a compression chamber, then
cxiting into the atmosphere. The mecthod for scaling the pecak pressure and impulse propagating
into the atmosphere as a function of the pressure or impulse at the end of the shock tube is quite
complex. Efforts to establish methods for predicting this free-field impulse outside of shock tubes
and gun barrcls have been ongoing for many years. One of these methods uscs the decay time of
the energy efflux for the jet flow as a significant paramecter for predicting free-field impulse
(Fansler 1986). Equation 1 appcars to be adequate for predicting AP for many decaying exit

pressure-time conditions but did not fit the data from flattop shock waves.

The positive pressurc impulses I, from the short-duration decaying waves exiting the shock
tube arc listed in Table 2. Also listed in Table 2 are the impulse values I recorded at the selected
distance along the zcro line. The impulse ratios of I/I, vs. distance ratio R/Dy are plotted in
Figure 6. It appears from this plot that the magnitude of the exiting impulse I, has some influence
on the ratios at distances less than 10 tube diameters. That is, the larger the exit impulse, the
smaller the ratio. At 10 diamcters and beyond, the ratios follow a reasonable trend. The following
cquation,

I/1, = 0.5 R/Dy) %, 2
appcars to fit the data rcasonably well for R/Dy greater than 10.
The exponent -1.35 is the same as developed in Equation 1 for the pressure ratios.

If we assume that the impulse recorded at the end of the shock tube can be treated as a
mcasure of cncrgy, then it may be possible to establish a method of scaling that would show better
corrclation of results than Figure 6. From Table 2, the listed values of I, are assumed a measure
of energy, and cube-root scaling will be attempted (i.e., the values of R/Dy and I, will be divided
by (1,)'”). These "scaled” values arc presented in Table 3. Columns 3 and 6 of Table 3 are
plotted in Figure 7. An cquation, in the form of

L/ = 1.9 {RD)/1)PY, 3)

gives a reasonably good fit to the data presented in Figure 7 for (R/Dp)/A,"°

greater than 1.0.
There is still some scatter at scaled distances less than 1.0. It is quite possible that the vortex
cxiting the tubc may have some effcct on the duration of the pressure-vs.-time record and,

therefore, the impulse, and this may not be a scaleable parameter closc to the tunnel exit.

11
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Moving lw”3 to the nght side of Equation 3, we find we can calculate I from Equation 4. If
we know 1, then

I, =19 (R/Dp) " (1), )

Equations 3 and 4 arc good only for short-duration decaying exit pressures at (R/D,,-)/(Iw)”3 greater

than 1.0.

3.4 Impulsc vs. Distance--Flattop Exit Pressure. The ratios of I/1, vs. R/D; listed in Table 2

were plotted on log-log paper, but there was no correlation between the different ranges of cxit
impulscs; in order to determine the trend of impulse vs. distance, the individual values of 1, vs.

R/D; were plotted in Figure 8.

The measured impulses I werc normalized to an average I, for the three different exit impulse

levels. That is, the lower level I values plotted in Figure 8 are 1,420/1, x I, = I, when I is the
nomalized value. The mid-level values were normalized to an 1, of 4,000 kPa-ms, and the high-
level values were normadized to an I, of 10,500 kPa-ms. These three nomalized curves arc plotied
in Figure 8 Here it can be scen that there is an initial decay, then a rise in impulse, followed by

a second decay in impulse vs. distance.

The same cube-root scaling techniques used to cstablish the curve presented in Figure 7 for the
decayving exit-pressure impulse has been applied (o the “"flat-top” exit-pressure impulses in Table 4.
The values of (R/DPAT)' vs. 1/41,)"" from Table 4 have been plotted in Figure 9. While there is
some scatter of data points, the trend shown in Figure 8 is still evident in Figure 9. No attcmpt
s been made to develop an equation for the curve in Figure 9, but if 1, is known, then the side-

on impulse can be determined for different distance ratios of R/Dy.
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4. CONCLUSIONS

In the previous scctions we have looked at two quite different blast waves simulating an
cxplosion in a storage magazine tunncl. A 2.54-cm-diameter shock tube was used to simulate the
blast waves. The effects in the "ficld” overpressure, duc 10 an exiting, short-duration blast wave
and that due to a flattop, long-duration blast wave, werc considercd to determine if the durations of

the waves had the same relationship and influence on the blast measurements.

Principally, it was found that the short-duration exiting wave’s pressures were adequately
handled by a standard equation developed by the Norwegians (Skjeltrojs, Jensen, and Rinuan 1977).
The impulse was better predicted and correlated when impulse and nondimensional distance R/D;
were both scaled by I,'7, the cxit impulse to the 1/3 power. The intent here was to account for
the cnergy exiting the tube and is analogous to the 1/3-powers law for free-field explosions.

On the other hand, for the long-duration, flattop cxiting wave, subtle differences are noted,
when the overpressure data are plotted following the standard procedure P/P,, vs. R/D;. Such a
rcsult suggests that the wave duration does have an influence on the peak overpressure field
measurcments. Additionally, using the 1,'” scaling on the long-duration impulse data produces a
rather good corrclation of the data (Figure 9) as was scen for the short-duration data. Thus,
whatever the wave shape or blast-wave duration exiting, it seems possible, with a measurement of

the exit impulse, to predict with greater assurance the resulting impulse outside.
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APPENDIX:
DATA FROM DETONATIONS OF HIGH
EXPLOSIVE IN MUNITION STORAGE MODELS
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INTRODUCTION

The data from high explosives dctonations presented in this appendix were taken from two
sources, which are References 2 and 6 (Coulter, Bulmash, and Kingery 1988; Zardas, to be
published). The methods used in acquiring the results and analysis of results are fully documented
and will not be repeated here. The work presented in this report is from a small-diameter
(2.54 cm) shock tube where two different driver lengths were used to develop different exit-pressure
pulscs, a decaying shock wave and a flattop shock wave.

The data from the two refcrences are of interest because they are based on a long-duration,
decaying shock wave, which more ncarly represents the type of pressure pulse that would exit an

underground storage site in the cvent of an accidental cxplosion.
PEAK OVERPRESSURE OUTSIDE THE TUNNEL EXIT

The peak overpressures recorded outside of the tunncl exit vs. distance along the zero-degree
linc arc listed in Table A-1 (Coulter, Bulmash, and Kingery 1988). The values of peak side-on
ovcrpressure are plotted in Figure A-1 as pressure ratio AP/P,, vs. distance ratio R/D;. Here, as in
Figure 5, the values of AP/P, are above the standard curve at distance ratios R/D; greater than 1.
There appears to be a correlation between the increase in the duration or impulse in the exit

pressure and an increase in the pressure ratio AP/P,,.

A similar scrics of tests as described in Coulter, Bulmask, and Kingery (1988) was also
conducted and described in Zardas (to be published). The data from Zardas are listed in Table
A-2. The pressurc-distance values are plotted Figure A-2 as pressure ratio AP/P,, vs. distance ratio
R/D;. Here again, the plotted pressure ratios are higher than the standard curve and also appear to
have a greatcr negative slope. An cquation was developed which fits both sets of data.

AP R -1.58
5 =16 (—D—T) . M

This cquation should not bc uscd at R/Dy less than 7 or greater than 100.
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Figure A-1. Prcssurc Ratio AP/P, vs. Distancc Ratio R/Dy (from Reference 2).
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PEAK OVERPRESSURE IMPULSE OUTSIDE THE TUNNEL EXIT

The overpressure impulses from References 2 and 6, both side-on (I,) and exit (I,), have been
treated as described in Section 3.3 of the main report. The measured values, scaled values, and
scaled ratios are listed in Tables A-1 and A-2. The impulse data from Tables A-1 and A-2
are plotted in Figure A-3. It can be seen in Figure A-3 that, at scaled distance values less than
0.7, there is a trend similar to that noted from the shock tube data in Figure 9. At scaled distance

ratios greater than 0.7, a simple equation,

Als L ( R/DT )-1.35
(AIW)VJ - IW‘B ’ (2)

gives a reasonable fit to the plotted data beyond (R/Dy)/(1,)"” equal to 0.7.
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CONCLUSIONS

There arc two conclusions bascd on the munition storage sitc model results.  First the long-
duration, decaying shock wave docs have an cffect on the peak overpressure measured at sclected
distances in front of the tunncl. The pressure ratio valucs arc higher at given distance ratio valucs

than the standard curve (Equation 1 in the text), and the negative slope is greater (sec Equation 1).

A second conclusion based on the long-duration dccaying wave is that the scaled values for
the impulse ratio are lower at similar scaled distance ratios than the short-duration results in
Figure 7. There is a similarity in the data presented in Figure A-3 for the long-duration decaying
wave and that presented in Figure 9 for the long-duration, flattop shock wave. Based on the results
measured from the shock tube and from the high-explosive test using a scaled model, it can be
stated that the shock wave parameters exiting the tube or tunnel have an influence on the blast
parameters measurced outside of the tube.
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