
Technical Report 1351
July 1990

Engineering and Project
Management Oriented

o Development System
0o (EPOS)
NReview and Analysis

R. Liu

Stt C

Approved for public release: distribution Is unr&nlted.

NAVAL OCEAN SYSTEMS CENTER
San Diego, California 92152-5000

J. D. FONTANA, CAPT, USN R. M. HILLYER
Commander Technical Director

ADMINISTRATIVE INFORMATION

The study covered in this document was conducted from August 1988 to October 1989. It was
block funded out of Code 423 of the Naval Ocean Systems Center (NOSC), San Diego, California. The
project no. is ECB3 03, agency accession no. DN088690, and program element 602234N. The work was
performed by Code 411 of NOSC, San Diego, California.

Released by Under authority of
D. L. Hayward, Head A. G. Justice, Head
Computer Systems Software Information Processing
and Technology Branch and Displaying Division

RT

SUMMARY

OBJECTIVES

The objectives of this CASE experiment were to

" assist a Navy project in using a Computer-Aided Software Engineering (CASE) tool

* evaluate the CASE tool to determine if it provides the level of functionality the Navy

application requires

" inform the vendor of what is lacking in the technology and thereby improve the tool's

effectiveness for Navy use

* produce this report that describes the CASE experiment and documents its results.

RESULTS

A set of evaluation criteria was developed along with a rating scheme. The CASE tool was used

experimentally in a project-specific context, and the results were evaluated according to the criteria. The

tool was found to provide rigorous software methodologies to reinforce good software design practices,

such as abstraction, decomposition, structuring, and information hiding. The software development
process and configuration control are more rigorous by using the Engineering and Project Management

Oriented Development System (EPOS) project and configuration management support facility. The
project staff was pleased with the system design quality that resulted from using the tool and its underlying
methodologies. However, EPOS lacks the user friendliness and robustness to make it wholly satisfactory.

EPOS does not employ the power of modern workstations to provide a user interface that is (1) graphi-

cally oriented, (2) iconically animated, (3) has windowing, and (4) is pop-up/pull-down/pull-right menu

driven.

RECOMMENDATIONS

Based upon the results of this experiment, the following is recommended for the further development,

use, and implementation of EPOS:

* use EPOS's rigorous software engineering notational schemes to serve as a common basis for

communicating complex design information to designers and users. Through its explicit design

iule checking, EPOS can reinforce modern software practices, such as abstraction, decompo-

sition, structuring, and information hiding.

" use the underlying methodologies in EPOS to provide criteria to judge the completeness and

quality of the design specification. However, EPOS may include a methodology guidance

facility (an intelligent help system) to furthcr assist users to comply with methodologies during

the design process.

" EPOS can be much more effective if it reinforces software engineering methodologies while

simultaneously providing the interactive graphical user interface needed to prevent the use of

EPOS from slowing down the creative process. Successfully using the CASE application de-
pends heavily on the power of tools and workstations to provide interactive graphics, iconic

interfaces, windowing, and context-sensitive menus. However, EPOS does not have these
capabilities.

NOTE

The opinions expressed in this report are those of the author and do not reflect an official government
position.

Accession For

NTIS GRA&I
DTIC T.B C3

Jus t 11' o.n.

ty 't1 _Ofl/

CONTENTS

SUMAYARY..

1.0 CASE EXPERIMENT PROJECT BACKGROUND..............................1

2.0 CASE EXPERIMENT PROJECT GOALS.................................... 1

3.0 SPECIAL SECURITY COMMUNICATIONS CENTER (SSCC)
PROJECT BACKGROUND .. 1

4.0 SELECTING A TOOL .. 1

5.0 APPROACH..................... 3

5.1 Step 1-Identify Key Capabilities .. 3
5.2 Step 2-Derived Evaluation Criteria.....................................3

5.3 Step 3-Evaluate EPOS as a CASE Tool.................................4

5.4 Overview of EPOS...4

6.0 FINDINGS.. 4

6. 1 Use of the EPOS Design Specification Language (EPOS-S)...................4

6. 1.1 General Description .. 4
6.1.2 PDL Generation from EPOS-S Specifications 6
6.1.3 Results of Using EPOS-S..6

6.2 Use of EPOS Document Generator (EPOS-T) to Generate
DoD-STD-2167A Software Design Document.............................6

6.2.1 General Description of Use......................................6
6.2.2 Results of Using EPOS-T..6

6.3 Use of EPOS Specification Language EPOS-P to Automate
Project Management ana Configuration Control...........................9

6.3. 1 General Description and Use 9
6.3.2 Results of Using EPOS-P....................................... 11

6.4 Use of EPOS RE-SPEC to Reverse Engineer the Design of SSCC 12

6.4.1 General Description and Use 12
6.4.2 Results of Using EPOS RE-SPEC 12

6.5 EPOS' Problems Encountered 13

6.5.1 User Interface Problems .. "
6.5.1.1 EPOS Response Speed 13
6.5.1.2 User Data Entry.....................................13
6.5.1.3 Error Recovery 14
6.5.1.4 Graphics Interface 14

6.6 User Support 14

7.0 EVALUATION RATING .. 14

8.0 CONCLUSIONS AND RECOMMENDATIONS...............................14

8.1 Conclusions ... 14
8.2 Recommendations .. 17

9.0 BIBLIOGRAPHY.............................. 17

iii

CONTENTS (continued)

FIGURES

1. EPOS Design object "ACTION" . .. 5

2. EPO S Petri N et D iagram 5

3. EPO S-generated Azia PDL 7

4. Example of a 2176A SDD Document Specification 8

5. Excerpt of the 2167A SDD Detailed Design Section for the SSCC
Project Generated by the EPOS Document Generator 9

6. Overview of Available Types of Management Objects 10

7. EPOS-P Change Proposal .. 10

8. Docum entation of Existing Versions 11

9. Example of an EPOS M enu Interface 13

10. Example of an EPOS Unintelligible Error Message 14

TABLE

1. EPO S Evaluation Rating ... 15

IV

1.0 CASE EXPERIMENT PROJECT BACKGROUND

Today's Navy projects are seeking to use Computer-Aided Software Engineering (CASE) tools
because of their potential for improving the quality and lowering the cost of Navy software systems.
Emerging CASE tools must be evaluated in a Navy context to determine and ensure that the tools provide
the level of functionality Navy applications require. When CASE technology is evaluated early in system
development, both the Navy and the CASE vendor benefit. The Navy determines what is lacking in the
technology and provides this information to the vendor to promptly correct the deficiency, thereby making
the tools more relevant for Navy use.

The Theater Communications Branch, Code 851, had a requirement for CASE tools. The Computer
Systems Software and Technology Branch, Code 411, already investigating CASE tools, assisted
Code 851 by demonstrating that the tools were available for immediate application. Code 411 also wanted
to support the tool's early transition to Navy use.

2.0 CASE EXPERIMENT PROJECT GOALS

Personnel in the Special Security Communications Center (SSCC) project were motivated to use a
CASE tool because they considered that the quality and responsiveness to chge were the most critical
success factors for the new system. They also realized that the traditional systems development process
was inadequate. Project personnel needed to improve their design and analysis skills and utilize the tools
to support new techniques. Moreover, an automated life-cycle support document generator was needed.
Project personnel also felt that the use of computer-generated graphics documents was important, because
communications using graphics, rather than words, would be more effective during the analysis and design
phases of the project. (Note: The SSCC project was a project in Code 851 that was discontinued in 1989.)

3.0 SPECIAL SECURITY COMMUNICATIONS CENTER (SSCC)
PROJECT BACKGROUND

The AN/MSC-63A Special Security Communications Center (SSCC) provided semiautomatic data
communications support for processing record-sensitive, compartmented information (SCI) to United
States Marine Corps (USMC) personnel operating in a tactical environment. The SSCC's hardware
system consisted of USMC mobile shelters containing modems, cryptographic devices, displays, two digital
computers (dual AN/UYK-44s), and data storage/retrieval devices. The SSCC's software system consisted
of two components. The first component was a CMS-2M SDEX/M runtime executive to support realtime,
multitask processing. The second component was the event-driven operational software, which had to
meet stringent time constraints for performing realtime processing.

4.0 SELECTING A TOOL

The SSCC project staff soon realized that a project's use of software engineering disciplines and
methodologies is far more important than using any specific CASE tool. They also agreed that tools,
though important, are only useful when they support, simplify, and facilitate the application of disciplined
approaches. Therefore, the first decision of the project staff was to use good software engineering
disciplines coupled with the use of tools. The second decision was to identify specific project needs and to
evaluate available tools to determine if a match could be found. Third, a potential match had to be
analyzed in terms of risk, in order to confine selections within the constraints of project risk. The potential
benefits envisioned from an ideal CASE toolset environment for the SSCC project included

0 Support of standardized procedures and management policies to aid the development process.

* Enforcement of good software engineering practices.

* Improvement of productivity and software reliability through automation and process stan-
dardization and control.

* Improvement (-f software portability.

* Spport of reuse of software design and code.

* Support of rapid prototyping/incremental development.

" Support of a standardized communication process to provide ongoing development informa-
tion.

" The ability to coordinate, control, and automate the documentation process using SSCC's
documentation standard, DoD-STD-2167A.

CASE toolsets are considered an emerging technology. As such, use of a CASE tool has certain
associated risk elements. These elements of risk must be balanced with potential benefits. The perceived
elements of risk for a CASE toolset used on the SSCC project were as follows:

* CASE tools are characterized as high cost items and can be computer-resource intensive.
CASE tools often require graphical tool resources (graphics workstations), with some tools
requiring graphics support throughout the development cycle. While this in itself is not a risk,
it implies a procurement cycle in a government context that may cause schedule delays in
both software and hardware deliveries.

* The decision to use improved software engineering disciplines created new problems and risks
that had to be addressed and minimized. The existing knowledge of the system needed to be
transitioned into the new tool, and personnel needed a "phase in" period to learn how to
utilize the tool.

* A high-level design document of the SSCC project was not available. Therefore, "reverse
engineering" had to be performed manually, using low-level documentation (source only).

The Engineering and Project Management Oriented Development System (EPOS) was initially
identified as one of the more suitable CASE toolsets for experimental use at the time of the project
(August 1988) for the following reasons:

" EPOS supports the integrated use of multiple software engineering methods, besides the
Yourdon-Demarco approach, that include realtime methods, based on Petri nets and event/
interrupts; as well as Parnas's module-oriented techniques, including module/functional
breakdown and device-oriented methods.

" EPOS provides both multiple notations and the ability to use different methodologies during a
session for a single system development. These notations include Jackson data-structure dia-
grams for data-driven modeling, hierarchy diagrams for top-down-driven modeling, data-flow
diagrams for data-flow-driven modeling, flowcharts for function-driven modeling, Petri nets
for event-driven modeling, and block diagrams for module-driven modeling. EPOS also pro-
vides bar/milestone charts, network diagrams, progress charts, responsibility/assignment
matrices, and work breakdown structures for project management.

" EPOS integrates development and project management support based on interrelated model-
ing of project management and technical information. EPOS also provides computer-assisted
project control and assessment.

2

e EPOS generates source code in all of the following standard languages: Ada, Pascal, C, and
FORTRAN, and proxides a code feedback mechanism to automatically update the design to
agree with the code changes. EPOS runs on a variety of host computers currently used by
NOSC and its contractors, including the Z-248 (IBM PC-AT compatible), Sun, Apollo, and
DEC VAX.

5.0 APPROACH

The approach used for this effort involved three steps: (1) identify the key capabilities a CASE tool
requires to support SSCC, (2) derive evaluation criteria to judge these capabilities, and (3) evaluate
EPOS as a CASE tool within the context of an existing Navy application development project.

5.1 STEP 1-IDENTIFY KEY CAPABILITIES

Since SSCC employed a realtime multiprocessing system, the CASE tool had to provide the key
capabilities to support the design, analysis, development, and documentation processes for environments
involving distributed- and parallel-processing software development. The difficult, realtime system-design
issues (such as representations for system behavior, critical timing, multitasking, and multiprocessor
architecture) required support by the CASE design mechanism. Furthermore, successful use of the CASE
tool had to be assessed using the following evaluation criteria:

* functionality

" power of tool

* ease of use

* robustness

* user support

5.2 STEP 2-DERIVED EVALUATION CRITERIA

The tool functionality criterion addresses multiple attributes. Since our experiment focused on the use
of EPOS in the software design phase, we identified high-level coverage requirements, including support
for

0 formal design specification and validation.

0 structure and module specification.

* data-dictionary specification and validation.

0 interface specification and checking.

* programming design language (PDL) generation/validation.

0 multiple-design methodologies.

* the DoD-STD-2167A documentation standard.

During our experiment, the power of each tool was assessed according to cost and schedule reductions
by (1) how well the tool performed a specific engineering task, (2) how quickly it did so, (3) how easily it
supported multiple users, and (4) how well it shared information across users and across tasks.

3

Factors affecting a tool's ease of use were (1) intuitiveness, (2) tailorability, (3) intelligence and
helpfulness, (4) predictability, and (5) error handling.

The robustness of a CASE tool consists of (1) trouble report history, (2) consistency of the tool,
(3) fault tolerance, and (4) self-instrumentation.

Finally, the quality of user support was assessed using the following criteria: (1) tool and vendor
history; (2) purchasing, licensing, and maintenance; (3) support personnel; (4) user-group feedback;
(5) installation and system integration; (6) training; and (7) documentation.

5.3 STEP 3-EVALUATE EPOS AS A CASE TOOL

This step involved evaluating EPOS as a CASE tool within the context of an existing Navy application
development project. It entailed actually applying EPOS to the SSCC software development process.

5.4 OVERVIEW OF EPOS

EPOS is a software development tool that includes the following four components:

1. EPOS-S-a design specification language that specifies both high- and low-level design.

2. EPOS-T-a document specification language that generates software design documentation.

3. EPOS-P-a specification language that automates project management and configuration con-
trol.

4. EPOS RE-SPEC-a reverse-engineering tool that recreates the EPOS design specification
(EPOS-S) from a programming language source code.

6.0 FINDINGS

6.1 USE OF THE EPOS DESIGN SPECIFICATION LANGUAGE (EPOS-S)

6.1.1 General Description

EPOS-S was used to create a high-level SSCC system design and detailed design for selected system
components. such as an asynchronous driver and a synchronous driver. Results showed that EPOS-S was
suitable for all levels of the design (both high level and low level) and that it was useful for designing
components such as device drivers and realtime processing algorithms. Moreover, EPOS's functionality
was versatile enough to handle AN/MSC-63A (SSCC).

T. - following example illustrates how to use EPOS-S to specify partitioning of hardware/software
functions and realtine system behaviors, such as critical timing, multitasking, and multiprocessing. The
SSCC's operational Message Processing (MSGPRO) program performed such functions as link coordina-
tion, message protocol control, message validation, message reformatting, message distribution, and so on.
These functions were independent processing entities that executed simultaneously on two AN/UYK-44
processors. Using the EPOS-S design object "ACTION" (figure 1), software partitioning was accom-
plished by designating concurrent tasks. Hardware partitioning was accomplished by assigning concurrent
tasks onto desired CPUs and defining the parallel processing of the system. The designer could also
designate synchronization and communication mechanisms between objects (mutual exclusion and
rendezvous), as well as prioritized concurrent tasks. Finally, the EPOS document generator could display

4

these partitioning assignments and system behaviors in a Petri net diagram (figure 2). The design
specification was also supported by automated design rule checking for analyzing synchronization and
determining the presence of deadlocks, completeness, type conflicts, etc.

ACTION PROCEDURE MSGPRO. (Mssage Processing Program)
DESCRIPTION:
PURPOSE:
"The MSGPRO program performs the operational message processing functions of the SSCC. These functions include Link Coordi-
nation. Message Protocol Control, Message Validation, Message Archive, Report Generation, Message
Retrieval, Configuration Control, etc.'.
CATEGORY: 'MSGPRO'.
DESCRIPTIONEND
DECOMPOSITION:
PARALLEL (AD. AR, AT, CC, CRCKPW, CRCNGPW, CRCNVRT, CRDIST,

CREDIT, CRENCRP, CRGENPW, CRSTRIP, CRSVCGEN , DH, DK,
IC. IH, LM, MA , MD , ME , MM , MP, MO, MR. PH. PI,
PM . PO , RG, R, , RO, RR , SD, SR . ST, TC , TH , TM,
VH. VI , vO).

SYNCHRO: EXCLUSIV (AD REENTRANT PRIO, SD ENENTRANT).
PERFORMANCE:

FOR AR (Asynchronous Receive) I/0 Response Block Task,
execution time to form complete messages from an incoming
message block is less tan 1 second.
For AD (Asynchronous Driver) use 5000 "

PROCESSED : . First AN/UYK-44 processor".

ACTIONEND

The PARALLEL keyword indicates the subactions "AD", "AR", "AT", "AC", etc., are preformed concur-
rently, with respect to the control flow.
The SYNCHRO keyword indicates AD(Asynchronous Driver) and SD (Synchronous Driver) cannot take
place simultaneously. If both tasks are triggered at the same time, then AD task has priority over the SD
task.
The PERFORMANCE keyword specifies performance requirements for AR's execution time and AD
task's memory allocation (it allocates 5000 memory units for AD).
The PROCESSED keyword specifies our two-processor configuration (dual AN/UYK-44 configuration).
The MSGPRO program is to be performed in the first AN/UYK-44 processor.

Figure 1. EPOS design object "ACTION."

10-REQUEST 10-REQUEST
INT RUPT NT RUPI

A Petri net generated by the EPOS documentation tools, based upon the EPOS-S description.

Figure 2. EPOS Petri net diagram.

5

6.1.2 PDL Generation from EPOS-S Specifications

After EPOS-S had created tasks, data, and procedural abstractions, we used the EPOS code generator

to generate Ada PDL from our EPOS-S specification. The automated PDL provided legal Ada

programming construction as specified in the language reference manuals (DOD83). We also used the

Ada compiler to perform type checking of all interfaces between packages, subprograms, and tasks,

reducing time spent on debugging. This automated Ada PDL was excellent for design reviews and reports.

Figure 3 is an example of an EPOS-generater' Ada PDL.

6.1.3 Results of Using EPOS-S

Project personnel felt that by using EPOS-S's rigorous notational schemes, we acquired a common

basis for communicating complex design information between designers and users. Furthermore, EPOS-

S's explicit design-rulc checking reinfoiced good design practices, such as information hiding, process

abstraction, decomposiJon, and module structuring. We also found that the graphics-oriented approach

during the design phase was essential for providing effective communication between analysts, designers,

programmers, and us.ers. The EPOS graphics generator aided us greatly in this experiment. I haps more

important, the design modifications requested due to the changing system requ.rement. needed much less

effort to complete than during our previous experience using other development techniques.

In our opinion, the use of EPOS-S and its underlying methodologies did not constrain our creativiv,

during the design phase. On the contrary, we were relieved of many of the more tedious tasks, such as

producing hand-drawn models and writing extensive descriptions. Consequently, we became more

productive and could concenTrate on the more important design issues, such as system partitioning and

critical timing.

6.2 USE OF EPOS DOCUMENT GENERATOR (EPOS-T) TO GENERATE
DoD-STD-2167A SOFTWARE DESICN DOCUMENT

6.2.1 General Description of Use

An example of the DoD-STD-2167A Software Design Documcnt (DID No. DI-MCCR-80012A) for

SSCC was generated using the EPOS document specification language EPOS-T, which is a search-and-

query language. It provides options to search the EPOS project database and sort by database entries to

define a series of documentation segments-and include general descriptions and diagram data. Since all

interrelated representations (requirements, system design, detailed design, etc.) were available in the

EPOS database, the specific documentation standards, such as DoD-STD-2167A, could be gene;ated

from the current database and not from possibly outdated diagrams and files. Our first step was to create

the overall documentation specification for the Software Design Document (SDD). Then the cover sheets,

footers, headers, and the appropriate outline (e.g., of the Data Item Descriptions in DoD-STD-2167A)

were also specified using EPOS-T. Figure 4 shows an example of specifying the SDD document, and
figure 5 presents an excerpt of the SDD Detailed Design section for the SSCC project generated by the

EPOS document generator.

6.2.2 Results of Using EPOS-T

In coaclusion, we found the EPOS document generator (EPOS-T) had the flexibility to generate

project Jocumentation in a project-independent fashion. However, we hope that templates of DoD-

STD-2167A will be provided in the future to assist users in developing documentation according to Data
Item Descriptions.

6

-- This is Asynchronous Driver Subprogram (AD) which shall perform the AN/UYK-44 machine level
-- Input/output processing for the asynchronous mode external channel Interfaces. For further details
-- and descriptions, see AD Functional Specification.

generic
type I/O_Block input Is private -- I/O block used as Input to AD

(Asynch Drive)
type I/O_Block Output is private -- I/O block used as output from AD

package Asynchronous_Drlver Is -- package specification starts here

procedure I/ORequest (Data_1n In i/O Block Input ;
Data out : out i/OBlock_Output

-- The purpose of this procedure is to perform i/O request processing. It receives requests from a
-- specific channel, processes them, and then returns control to the subprogram called SDEX/M
-- based upon the occurrence of I/O Interrupts and/or timeouts.

private

type I/O_BlockInput is -- I/O block record for Input
record

Function Code : TED -- type of I/O request
Physical Channel : TBD -- physical channel for I/O

request
Relnitiate_lnputFlag TBD -- flag to control Input
BufferAddress : TBD --- output buffer address
Buffer-Length : TBD ;-- output buffer in bytes
Baud Rate : TBD : -- data transmission rate In bps
Character Coding : TBD : -- type of message characters
Parity : TBD : -- parity setting for the channel
StopBit : TBD - stop bits for the channel

end record ; --

type I/OBlock Output is -- I/O block record for output
record

CallerTaskID TBD -- ID number of the caller
i/O_CompleteStatus TBD -- status Indicating result

of request
BufferAddress : TBD -- buffer address
BufferLength TBD -- buffer length in bytes

end record ;
end AsynchronousDriver end of Asynchronous_Driver
package body AsynchronousDriver Is

task IOCDiscrete-Interrupt -- These interrupts and timeouts
processings

end IOC_DiscreteInterrupt;

task CryptoDelay Tlmeout Is -- has the duty of controlling the
I/O request processing.

end CryptoDelay Tlmeout;

task IOC input_Chaln_Interrupt Is
entry InputChainInterrupt;
for Input_ Chain_Interrupt use at InputChain_Interrupt Address;
-- Calls

-- Entry call to consumer process
end IOC InputChain_lnterrupt ;

Figure 3. EPOS-generated Ada PDL.

task InputBuffer_Timeout
end Input_BufferTimeout,

task IOC_OutputChajn_lnterrupt
entry IOC OutputChain_Interrupt:
for IOCOutputChain_lnterrupt use at OtitputChajn_lnterruptAddress
-- Calls

-- Entry call to consumer process
end IOC_OutputChain Interrupt;

task Output Buffer Timeout
end Output_ ButferTimeout;

task body IOCDiscrete_lnterrrupt is separate
task body CryptoDelayTimeout is separate :
task body IOC InputChainlnterrupt is separate;
task body InputBufferTimeout is separate;
task body IOC_OutputChajn Interrupt is separate;
task body OutputBufferTimeout is separate:

-- This package is designed for a real-time application that the
-- size of the program is very critical. Therefore, it is designed

- without using the message buffering technique.
end Asynchronous Driver:

Figure 3. EPOS-generated Ada PDL (continued).

SECTION(4; "Detailed Design";)
SECTION(4.1; "SSCC OP S/W - MSGPRO";)
WRITE"The MSGPRO program shall perform the operational message processing functions of the SSCC.
These functions include Link Coordination, Message Protocol Control, Message Validation, Log, Message
Archive, Report Generation, Message Retrieval, Configuration Control, Training Simulation and the back-
ground and operational test functions of System Test.":)

USING ALL 'ACTION' WITH 'MODULE' IN DESIGN DO

means : select all design objects that are actions
with sub type MODULE

[FOR DESIGN-LEVEL IN 1 TO MAXLEVEL DO
USING ALL ON LEVEL DESIGN-LEVEL IN USE DO

means: search all design levels for the above
mentioned class of design objects

[SORT-BY SORT-KEY

means : bring them into alphabetical order as per
name for output

FOR OBJ IN 1 TO MAXOBJECT DO

NAME := GETVALUE (OBJ, 'NAME')
SECTION (4.1, OBJ; NAME;)
EXEC-TEXT PURPOSE-ONLY (NAME, $)

COLUMN TEXTCOLUMN

means: determine name of the next object of selected
class, output a headline for the object stating
its name execute the macro purpose-only with
its two parameters

Figure 4. Example of a 2176A SDD document specification.

8

SSCC DoD-STD-2167A(SDD)
8-8-87

4. Detailed Design

The MSGPRO program shall perform the operational message processing functions of
the SSCC. These functions include Link Coordination, Message Protocol Control,
Message Validation, Log, Message Archive, Report Generation, Message Retrieval,
Configuration Control, Training Simulation and the background and operational test
functions of System Test.

MSGPRO

Operational Message Processing Program (MSGPRO) Hierarchy

4.1 Asynchronous Driver (AD)

AD performs the machine level input and output processing for the asynchronous
mode external channel interfaces. AD ensures that the input data is associated with
the correct channel and passes the input data to the Asynchronous Receive (AR) sub-
program. AD also multiplexes the output request to the correct interface.

4.2 Asyncrhonous Receive (AR)

AR accepts input data from AD. Except for the COMP message, the input data shall
be passed to the Message Examiner (ME) subprogram.

Figure 5. Excerpt of the 2167A SDD detailed design section for
the SSCC project generated by the EPOS document generator.

6.3 USE OF EPOS SPECIFICATION LANGUAGE EPOS-P TO AUTOMATE
PROJECT MANAGEMENT AND CONFIGURATION CONTROL

6.3.1 General Description and Use

The specification language EPOS-P is used to describe information related to project management and
product configuration control. Its basic language elements are so-called "management-objects"-thie
equivalents to the design objects in EPOS-S. Figure 6 gives an overview of the available types of
management objects.

A faculty of every configuration management system is the capability to report and track errors, as
well as to propose, evaluate, and include approved parts of the product. From a configuration
management point of view, these parts are baselines that are established at certain times, e.g., at the end
of a project phase after a review. They consist of a certain agreed upon version of the development
results. Any subsequent changes of these baselines-starting with a proposal for a change and ending in its
implementation and test-must be carefully controlled.

9

Management Object
Type Information Described

ACTIVITY Work Breakdown Structure
PERT Planning

TEAM MEMBER Project Organization Structure
Functions and Responsibilities

PROGRESS-REPORT Report on Progress, Trouble
Status Changes

CHANGE-PROPOSAL Change Proposal and
Evaluations

ERROR-REPORT Reports on Errors

Figure 6. Overview of available types of management objects.

EPOS-P provides management objects of types ERROR-REPORT and CHANGE-PROPOSAL to
specify any error and to formulate, justify, and evaluate suggested modifications. Figure 7 shows an
example of a proposed change in a project.

CHANGE-PROPOSAL EXTENSION-ERROR-TRACING.

CATEGORY: 'process start', 'critical', 'general'.

IDENTIFICATION: 'Xenus Ltd. (Peter Joans) 2/86'

CHANGE: 'Not only static sources of errors, but also dynamic ones should be
considered, especially during close-down."

REFERENCE: ERROR-5-85,

ERROR-6-85

CONCERNS: CONSIDERS P5.2, P5.3

REASON: *Security can not be assured If data will be lost during close-down."

CH ANGE-PROPOSALEND

Figure 7. EPOS-P change proposal.

All objects in EPOS can exist in different versions-as different changes in time and/or variants as
different forms at the same time.

The granularity of the version/variant control extends from single unstructured information objects, as
the smallest ("atoms"), to parts of a representation or representations, consisting, themselves, of a
structure of specification objects (e.g., a module). Therefore, at one end of the scale, the developers are
assured by keeping track of their (atomic) changes; whereas, at the other, configuration management can

10

trace versions/variants of configuration items that are normally structured objects. Figure 8 shows

documentation of existing versions of single unstructured objects.

Design Object Version Author Date

INPUT-CONTROL-VARIABLE 2.2.0 Liu 12-17-89
2.1.2 Sutton 12-18-89
2.1.0 Tran 12-20-89

READ-MEASURED-VALUE 2.2.4 Smith 11-02-89
1.1.3 Jackson 12-03-89
1.1.2 Liu 12-02-89

Figure 8. Documentation of existing versions.

Besides the pure administration of versions/variants of configuration items, there are also the
procedural aspects of identifying baselines and formal control of changes to these baselines.

A baseline is an (intermediate) project result, "frozen" at some point in time to form a fixed-
reference configuration. Of key importance are the different representations of the system (requirement
specification, design, source code, etc.). These, or at least part of these, will be identified as baselines.
During developtient, and especially during maintenance, requests for changes can occur on different
levels of representations-with differing significance. If new requirements or errors in a representation
require a change in a representation that is already baselined, EPOS enforces a configuration management
procedure. EPOS baseline status accounting includes the automatic documentation of all baselines, and all
change proposals and their current status, as well as details on the responsible project team members.
After completion of the change activity, a new baseline can be fixed.

6.3.2 Results of Using EPOS-P

The experiment team felt that during the software design phase, EPOS had aided the project
significantly. This section details what occurred during the software design phase.

The computer environment used for this experiment was typical of many such installations-a
combination of a local-area networked Sun Workstation connected to a VAX mainframe. The main
problem our design team had before using a CASE environment was coordinating and controlling design
data across the workstations and among designers. Typical difficulties the design group encountered
during the design phase were

0 A new version of a design library component was released halfway through the project, but all
the designs that used this component were not updated.

* A software engineer modified a component "on the fly" to complete a target simulation on
the mainframe. The changes were not reflected in the design document. This oversight
resulted in inconsistencies in the design; i.e., different versions of the same component were
used.

* Product release took more time than expected because of time spent tracking down the cor-
rect versions and resolving the associated integration problems.

11

Our solution was to use the EPOS-P project specification language to control the version and variant

administration of the design documents. By using EPOS-P and EPOS-M, software design releases were

controlled through EPOS. Whenever a designer was ready to release a subsystem, a new configuration was

created by activating EPOS-P's CHANGE-PROPOSAL attribute. Only the latest released configuration

could be used for sharing intermediate designs with other designers. The project database always

contained the most recent versions of all designs. The system bound all the current versions of the design

files defined by EPOS-P into a new version of the database. This procedure eliminated the frustrations

and possible errors of manually looking for the current versions of various files.

6.4 USE OF EPOS RE-SPEC TO REVERSE ENGINEER THE DESIGN OF
SSCC

6.4.1 General Description and Use

EPOS RE-SPEC is a reverse-engineering tool for re-creating the EPOS design specification (EPOS-S)

from a programming language source code.

Since a substantial body of design and software had already been written for SSCC before EPOS was

used, the ability to perform reverse engineering was a critical feature. EPOS provides a reverse-

engineering tool (RE-SPEC) to re-create EPOS design specifications from a programming language source

code.

Using EPOS RE-SPEC to reestablish the SSCC design specifications consisted of the following

activities:

a. Formal source code analysis

b. Functionality determination

c. Establishment of interrelated specifications

d. Verification

The formal source code analysis was used to capture all basic software structures, such as the

hierarchical calling structure, module interfaces, internal/external data structure, control flow and data

flow, interfaces to language-dependent library routines, and low-level input/output functions. The
runctionality determination was used to capture software structures from another spectrum of informa-

tion sources, such as low-level design representations and internal documentation (e.g., comments or

names/labels) within the source code. The process of establishment of interrelated specifications was

used to form links between the different descriptions available as project documentation. It also updated

the specifications so they reflected the current status of the software represented by the source code. The

process of verification of the results of the reverse engineering was essential. After assuring completeness

and consistency of the representations, themselves, source code in the original programming language was

regenerated from the EPOS-S design specification and compared for functional equivalence with the

original piece of software. EPOS RE-SPEC automated all of the above described steps.

6.4.2 Results of Using EPOS RE-SPEC

Unfortunately, we were unable to have any hands-on experience using RE-SPEC during our

experiment, because, at that time, RE-SPEC did not support CMS-2.

12

6.5 EPOS' PROBLEMS ENCOUNTERED

6.5.1 User Interface Problems

EPOS has several user interface problems that can result in frustration, delays in generating diagrams,

an4 lost work. These interface problems are described in the following paragraphs.

6.5.1.1 EPOS Response Speed. EPOS has a slow response time. Under the Sun3 workstation configura-
tion, when the "menu input" is entered, several seconds may pass before a new menu appears. This delay
may cause the user to conclude that the system has crashed. The user may then try several input/enter

commands to revive the system. Then, when a menu finally responds, processing that menu may cause the
loss of a design-object input or inactivate a terminal. The slow response time is not only frustrating, but
contributes to delays in creating documents.

6.5.1.2 User Data Entry. The data entry method for EPOS is difficult to use. EPOS' menu interface
sometimes frustrates the user because it focuses field paths or presents inconsistent information (see
figure 9).

EPOS-S

B a sic fu nc tio: Inp ut Ty eG r p iDOCUMENTATION Diagra tyeGir-hic --

Text selection: Object
Function:

ANALYSIS Type of analysis: Standard-Analysis
Start object:

PROGRAMMING SUPPORT Function:
Standard: Yes

Basic function- S: Input .. I
Documentation .. 2
Analysis .. 2
Management . .4
Programming- Support.. 5

Figure 9. Example of an EPOS menu interface.

13

6.5.1.3 Error Recovery. EPOS does not offer the user a means of graceful recovery from unexpected
errors, and error messages are unintelligible to the average user (see figure 10).

\4

Keine Weiteren
Marken

Mehr Moeglich

Figure 10. Example of an EPOS unintelligible error message.

6.5.1.4 Graphics Interface. In order to specify design graphics, we have to purchase third-party soft-
ware. Once EPOS-S generates the graphics, we cannot modify the existing graphics output, because the
graphics editor is not completely integrated with EPOS-S.

6.6 USER SUPPORT

Vendor support in this country is inadequate. The more experienced support engineers are not in this
country, and the support staffs that are here can answer only simple questions. EPOS should provide a
higher level of user support.

7.0 EVALUATION RATING

Five key capabilities were evaluated as specified in paragraph 5. 1. An evaluation rating scheme of 1
through 5 was developed, where 5 represents an outstanding capability, and a 1 represents a minimal or
nonexistent capability. Table 1 lists the results of this evaluation rating.

8.0 CONCLUSIONS AND RECOMMENDATIONS

8.1 CONCLUSIONS

EPOS was sufficiently functional to handle the AN/MSC-63A (SSCC). We feel that the underlying
methodologies in EPOS reinforced good software design practices and provided criteria to judge the

14

0

E

CL

0

0 x

00

01

0

0
w M __ __ _____

-)< < xl as

.2.

0.0

kv t
6

) "0 (4F)1 5

U. IN xn xxx xDxi W

L ~ 1-6

C 05

CD

0

0

E
C

0

x x. x x 4

0

C.E

0) LO _______

03

00

0

*00

00

0 c
E~ 0 c

3 >0

LU 0

-3 U- cnE :R

00w Xn X cc XXX
LU

XX 1X

completeness and quality of the system design specification. However, EPOS' lack of user friendliness and
robustness made it not fully satisfactory. It does not utilize the power of modern workstations to provide a
user interface that is graphically oriented, iconically animated, has windowing, and is pop-up/pull-down
/menu driven. In the final analysis, by using EPOS, the SSCC project benefited in terms of system quality.
We did not expect much productivity gain in the design phase. A thorough evaluation of the effectiveness
of a CASE environment cannot be conducted until the maintenance phase. Furthermore, we feel the
CASE environment is dynamic and requires ongoing monitoring and enhancement.

8.2 RECOMMENDATIONS

EPOS can be used to provide criteria to judge the completeness and quality of a design specification.
In addition, the rigorous software engineering notational schemes provided by EPOS can serve as a

common basis for communicating complex design information to designers and users. However, to make
EPOS much more effective, it should provide interactive graphics, iconic interfaces, windowing, and

context-sensitive menus. These features would enable EPOS to reinforce software engineering methodolo-
gies while simultaneously providing the interactive capabilities required to prevent its use from slowing

down the creative process.

9.0 BIBLIOGRAPHY

Lempp, P. 1988. "Support Environment Concepts for Cost-Effective Transition to Ada Technology,"
Proc. Sixth National Conference on Ada Technology. 14-17 March 1988, Arlington, VA.

Software Products and Services, Inc. "EPOS Reference Manual," version 4.0.

17

Form ApprovedREPORT DOCUMENTATION PAGE OMB No. 0704-0188

Pubhc reporling burden fot this collection of Intoimation Is esutmated to average I hour pet response. including the tIme or o ev,lw g instructions searching ex!stno data sources gathering ar.
maintaining the data needed, and completrg and reviewing the collection of Information Send comments regardIng this burden estimate or any othor aspect ofthis collection of Informatro Cud l
s~ggestons for reducing this burden, to Washington Headquarters Services, Directorate for Informaton Operations and Reports 1215 Jetferson Davis Highway Suite 1204 Arlington VA 22202-434;2
and to the Office of Management and Budget Paperwork Reduction Project (0704-0188). Washington DC 20503

I AGENCY USE ONLY (Leave blank) 2 REPORT DATE 3 REPORT TYPE AND DATES COVERED

July 1990 Final: FY88 - FY89

4 TiTLE AND SUBTITLE 5 FUNDING NUMBERS

ENGINEERING AND PROJEC'F MANAGEMENT ORIENTED DEVELOPMENT
SYSTEM (EPOS) PE: 602234N
Review and Anailysis PR: ECB3 03

WU: I)N088690

6 AUTHOR(G)
k. Liiu

7 FERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8 PERFORMING ORGANIZATION
REPORT NUMBER

Naval Ocean Systems Center
San Diego, CA 92152-5000 NOSC TR 1351

g SPONSORING/MONITORING AGENCY NAME(S) AND ADORESSIES) 10 SPONSORING/MONITORING
AGENCY REPORT NUMBER

Naval Ocean Systems Center
San Diego, CA 92152-5000

11 SUPPLEMENTARY NOTES

12a DISTRIBUTiON/AVAILABLITY STATEMENT 12b DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13 ABSTRACT lMairnum 200 wods)

I An experiment was conducted to assist a Navy project in using and evaluating a Computer-Aided Software Engineering
(CASE) tool to determine if it provided the level of functionality the Navy's application required. Any technological deficiencies
were to b, reprorted to the vendor for correction to improve the tool's effectiveness for Navy use. The CASE tool selected for this
e.xperiment was the Engineering and Project Management Oriented Development System (EPOS) because of its multiplicity of
ases within the context of an existing Navy application development project. A set of evaluation criteria was developed along
with a rating scheme.

The tool was found to provide rigorous software methodologies to reinforce good software design practices, such as
abstraction, decomposition, structuring, and information hiding. By using the EPOS project and configuration management
support facility, the software development process and configuration control are more rigorous. The project staff was pleased
with the quality of the system design that resulted from the tool and its underlying methodologies. However, EPOS's lack of
user friendliness and robust ness cause it to be not totally satisfactory. That is, EPOS does not utilize the power of modern
workstations to provide a user interface with graphic orientation, iconical animation, windowing, and a pop-up/pull-down/
pull-right menu.

14 SUBJECT TERMS 15 NUMBER OF PAGES

computer-aided software engineering (CASE) tool 25
engineering t nd project management oriented development system (EPOS) 16 PRICE CODE
software engineering methordolrgies

17 SECURFTY CLASSIFICATION 18 SECURItY CLASSiFICATION 19 SECURITY CLASSIFICATION 20 LIMITAl ION OF ABSI RACT
OF RIEPO IT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAME' AS REI1)RT

NSN 7540-01280 5500 Standad forrn "98

