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I FOREWORD
The philosopher Charles an ers Peirce used the ter abduction for a form of inference
considered to be as import t deduction and induction. Peirce, 1931-1958). His description
of abduction was basicall : " he surprising fact C is obse But if A were true, C would
be a matter of course, h nce here is reason to suspect th A is tin . eirce's abductionI ~replaced his earlier the ~y oi the "method of hypothesis" ( hagard, 1981). . Abduction isI .concerned with explana ory r asoning and iR clos y related to the relatively modern notions

SI'backwardI chaining" and 'inference to the best explan~tlon' (Harman, 1965, Josephson,1999 . 1 . ErpSince explanations are important in many different aspects of intelligence, cognitive scien-

tists have become interested in computer programs that construct and evaluate explanations.I In artificial intelligence, a number of key tasks have come to be viewed in terms of abduc-I tion. In expert systems, the best known abduction problem is diagnosis. In natural language

comprehension, plan recognition is viewed as an abduction problem involvinI the inferencei of goas from observed behavior. In qualitative physics, postdliction is an abduction problemI Iinvolving explaining states of the physical world*i terms of processes and causal laws. In

machine learning, explanation-based lear ping ( L') strategies improve performance using
processes that construct explanations.

Abduction-related work has been d in ifferent areas of Al for nearly twenty years
(Pople, 1973), but until recently researchers working in different subfields often failed to
recognize that they might benefit from work on abduction by people in other areas. The
spring symposium on Automated Abduction, sponsored by AAAI and ONR and held at
Stanford in March of 1990, aimed to facilitate cross-fertilization in the hope of accelerating
research advances in all subfields of AI concerned with explanations.

Researchers with interests in business, planning, diagnosis, qualitative physics, machine
learning and discovery, and natural language processing gathered to discuss the role of abduc-
tion in their disciplines. Walter Hamscher pointed out the potential for applications in busi-
ness and introduced a system named after Sherlock Holmes's banker. Hamscher's CROSBY,
based upon de Kleer and Williams's model-based diagnosis program SHERLOCK, automati-
cally constructs plausib!e explanations for unexpected financial results. Charles Elkan's con-
tribution describe an approach to planning using abductive assumptions to generate approx-
imate, incremental plans (see also Elkan, 1990). Bruce Krulwich, Lawrence Birnbaum, and
Gregg Collins described a goal directed approach to learning strategic concepts from ex-
pectation failures during plan execution (for related work, see Birnbaum, Collins, Freed, &
Krulwich, 1990). Murray Shanahan presented abductive solutions to temporal projection
problems such as Henry Kautz's stolen car problem and the bloodless version of the Yale
shooting problem due to Hanks and McDermott.

Robert Goldman and Eugene Charniak began a session on abduction and natural lan-
guage understanding by presenting their work as a special case of a general probabilistic
approach to abduction (Charniak & Shimony, 1990). Mark Stickel described a general logic
and cost-based approach to abduction, and Jerry Hobbs provided an integrated approach to

iI
I



I

natural language processing and discourse interpretation based upon this abduction method. I
Elizabeth Hinkelman described her recent thesis work on abductive speech act recognition.
Ashwin Ram sketched his recent thesis work on a program called AQUA, which builds expla-
nations in order to find answers to questions that arise in the process of text comprehension U
(see Ram, 1989). Hwee Tou Ng and Raymond Mooney discussed the role of explanatory
coherence in natural language interpretation and observed that "Occam's Razor isn't sharp
enough" (Ng & Mooney, 1989, 1990). Preferring maximally general explanations doesn't al- I
ways work well. Coherence seems to be more important than generality. Peter Norvig and
Robert Wilensky pointed out some weaknesses of the current abductive approaches to NLP
based upon coherence, cost, and probability, listing a number of problems that still need to I
be addressed in constructing general abductive models of comprehension.

In a session on abduction and learning, I argued that progress in research on abduction can
be used to improve our ideas about explanation-based learning (EBL). In particular, I argued I
that replacing the theorem provers traditionally used to construct explanations in EBL with
abduction engines enables EBL systems to deal with the conflicting plausible explanations
that arise when theories are incomplete or incorrect. Furthermore, abductive inference makes I
it possible for EBL systems to learn at the knowledge level (O'Rorke, 1988, 1990). Steven
Morris presented an approach to theory revision using abduction for hypothesis formation and
illustrated the potential for learning at the knowledge level using an example based on the I
chemical revolution (O'Rorke, Morris, & Schulenburg, 1990). Bill Cohen presented another
approach to revising imperfect theories using abductive EBL. He illustrated the performance
of his method on the problem of learning the concept "good opening bid" in the card game
bridge (see also Cohen, 1989, 1990). Sridhar Mahadevan presented a technique for acquiring
rules that extend incomplete theories containing "determinations." Andrea Danyluk discussed
the importance of contextual knowledge in constructing explanations for EBL. She described
experiments from her thesis work testing her methods in network fault diagnosis domains.
Steve Chien presented results from his thesis work on EBL for incremental, approximate
planning. Gerald DeJong, the originator of EBL (DeJong, 1988; DeJong & Mooney, 1986)
argued that narrow conceptions of abduction do not provide the kind of plausible inference
necessary for explanation-based learning based upon imperfect knowledge.

The workshop included sessions on task independent methods and general theories of
abduction. A number of people working on tasks such as diagnosis and natural language
comprehension have devoted considerable time to the development of domain-independent
methods for constructing and evaluating explanations. I have already mentioned general
approaches to abduction arising out of work on NLP based upon logic, cost minimization,
coherence, "explanation patterns," and probability. Collaborative work such as the work of
Harry Pople and Jack Myers has led to insights into medical diagnosis as an abduction prob-
lem. Olivier Fischer and Jack Smith contributed an analysis and comparison of INTERNIST
and the RED-2 system developed by computer scientists and M.D.s at Ohio State. The gener-
alized set covering and parsimonious covering theories (PCT) of James Reggia and Yun Peng
were also inspired by work on diagnostic problem solving. Reggia sketched PCT (elaborated
fully in Peng & Reggia, 1990), described applications of PCT to non-diagnostic tasks such as
natural language processing, and compared PCT to a general theory of explanatory coherence
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(TEC) presented by Paul Thagard. Thagard showed how TEC could be used to provide a
model of decision making that can be implemented in connectionist networks. Roger Hartley
and Michael Coombs's contribution described an architecture called MGR extending gener-
alized set covering methods for abduction to model generative reasoning. Raymond Reiter
sketched abduction related work arising out of research on model-based diagnosis and the
foundations of assumption based truth maintenance systems and emphasized the importance
of computing prime implicants (see also Reiter, 1987; Reiter & de Kleer, 1987; de Kleer,
Mackworth, & Reiter 1990).

Several general, relatively formal logical approaches to abduction were discussed. David
Poole sketched his THEORIST system for abduction, relating it to default and hypothetico-
deductive reasoning and discussing its application to design. Douglas Appelt presented initial
work on using model preferences to generalize existing approaches to abduction based upon
Bayesian probability, minimizing abnormality, and maximizing defaults. Kurt Konolige pre-
sented a theory which included a general framework for abduction and which clarified the
relationship between abduction and diagnostic reasoning methods using closure, minimiza-
tion, and consistency (see also Junker & Konolige, 1990). Luca Console, Daniele Dupre,
and Pietro Torasso described related work providing a semantics for abduction and clarifying
the relationship between abduction and deductive reasoning. Peter Jackson also provided a
semantic account of abductive inference and showed how it can be done in terms of counter-
factual reasoning if completeness assumptions are introduced.

In addition to axiomatic characterizations of abduction and semantic theories of abduc-
tion, several analyses of the complexity of abductive computations were presented. It is
probably not surprising that abduction, like many other Al problems, is intractable in gen-
eral, but interesting results were presented by Tom Bylander and Bart Selman which more
exactly characterize when and why abduction is hard (see also Selman & Levesque, 1990).
It was encouraging to see that several general formal theories of abduction have begun to
develop and more encouraging to see these theories tied closely to each other and to the
algorithms being used in applications.

Lively discussions comparing different approaches, methods and implementations (e.g.,
Bayesian probabilistic reasoning vs. connectionist networks) took place both on and off-line.

I These discussions were sometimes quite heated. At one point I was asked why I had invited
a certain speaker since it was "like inviting a creationist to a scientific meeting." Another
participant wanted to know why Judea Pearl and Roger Schank were invited to give "back-
to-back" talks presenting their views of abduction.

Roger Schank gave an invited talk encouraging workshop participants to spend more time
on memory-based approaches to explanation and less time on approaches based upon prob-
lem solving, theorem proving and probability theory. Schank's views are described more
fully in his book "Explanation Patterns" (Schank, 1986). In his invited talk, Judea Pearl
made a strong case for a general probabilistic approach to abduction. He described proba-
bilistic methods for defining the primitive causal relationships underlying theories of causalexplanation. In addition, his submission discussed the relationship between probabilistic and
qualitative approaches to abduction. Pearl's views are stated more fully in Pearl (1988).

I The sharply contrasting invited talks were a result of scheduling constraints, but they
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highlighted the differences in the points of view of the participants. One participant stalked
out at one point, informing me that he had "had it up to here" with the logicists' view
of abduction. A surprisingly heated exchange occurred between a logicist and a cognitive
scientist. On the whole, however, the differences between participants were expressed in I
friendly and valuable constructive criticism.

Relationships between abduction and various forms of inference were explored by a number
of participants. Brian Falkenhainer discussed analogical reasoning and argued in his contribu-
tion that deduction, abduction, and analogy are closely related. John Josephson characterized
abduction in terms of an inference schema related to Harman's notion of inference to the best
explanation. Josephson also discussed the logical form of abduction and its relationship to de-
duction and induction. Randy Goebel described abduction as a "logical method of isolating
interesting hypotheses" and discussed its relationships to hypothetico-deductive reasoning,
deduction, induction, analogy, probability, and non-monotonic reasoning. Hector Geffner fo-
cused on the relationship to default reasoning and described a special class of default theories
using modal causal operators (Geffner, 1990).

The workshop provided a broad overview of the rapidly accumulating work on abduction
and brought together a number of researchers who ordinarily operate in disjoint subfields of
AL. Many participants found the technical exchanges and the discussions of relationships very
valuable. If I were forced to identify weaknesses of the workshop, I would admit to the fact
that little or no psychological data was presented about how people construct and evaluate
explanations and few formal evaluations or comparisons of alternative approaches or systems
were given. While there may be conferences on abduction in the future which will put a
stronger emphasis on evaluation, the quality of the work was quite high for a workshop. The
symposium provided a useful snapshot of an important, fundamental research area emerging
at the intersection of several subfields of AL.

My thanks to Hector Levesque, Carol Hamilton, and AAAI for making the symposium
possible. Thanks also to the other organizers and members of the program committee: Eu-
gene Charniak, Gerald DeJong, Jerry Hobbs, Jim Reggia, Roger Schank, and Paul Thagard.
Caroline Ehrlich and Steven Morris helped with preparations at UCI. AAAI and Alan Mey-
rowitz of the Al Program in the Office of Naval Research generously provided travel support
enabling graduate students to participate. My apologies if I have tread on anyone's toes. I
am happy to accept corrections of any errors I may have made in giving my impressions of
the workshop.

AAAI policy limits distribution of symposium working notes to attendees. However, with
encouragement from AAAI and SIGART and with permission of the authors (who retain copy-
rights) the working notes of the abduction symposium are now available as a UCI technical
report. Enjoy!
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Incremental Construction of Probabilistic Models for

Language Abduction
Work in Progress

Robert P. Goldman and Eugene Charniak*

Dept. of Computer Science, Brown University
Box 1910,

Providence, RI 02912

For some time we have been interested in the prob- tive. We also assume that actions are related to each
lems posed by uncertainty in story understanding. other only through the mediation of these plans. So,
Our particular interest is in plan-recognition as it for example, in reading stories about various people's
is needed in text understanding: understanding the day-to-day activities, we will make inferences about
meanings of stories by understanding the way the ac- an agent's travel based on plans to achieve everyday
tions of characters in the story serve purposes in their tasks. We would not take into acccunt a particu-
plans. Our work builds upon earlier work in script- lar person's systematic preference for walking, rather
and plan-based understanding of stories like that of than driving. For simple stories this does not seem to
Wilensky [1983], Charniak [1986] and Norvig [1987]. be a problem.

We see plan-recognition and text understanding as We have chosen to represent the resulting proba-
a particular case of the problem of abduction.' In bilistic inference problem using belief networks. 2 Be-
particular, for the case of simple, declarative text, we lief networks are directed acyclic graphs that can be
view the language user as a transducer. The language used to represent probability problems. In a belief
user observes some thing (event or object) in the 'real network, nodes represent random variables, and arcs
world', and translates this thing into language. Our represent direct influences between random variables.
task is to reason from the text to the intentions of the There are three advantages to belief networks as rep-
language user and thence to the thing described. resentations for probability distributions. First of all,

Because abduction problems involve uncertainty, properties of conditional independence can be read
we have adopted a probabilistic approach to the prob- off a belief network. Second, the probability distri-
lem of story comprehension. In order to make such an bution corresponding to a belief network may be rep-
approach feasible, a number of techniques have been resented locally. For each node, it suffices to provide
used: a conditional probability distribution for each com-

1. Simplifying assumptions bination of values of its parent nodes. Finally, while
in general the problem of determining the posterior

2 A graphical representation of the probabilistic distribution of a partially-instantiated belief network
model is NP-hard [Cooper, 1987], considerable attention has

construction and evaluation of the been devoted to finding efficient approaches to evalu-
3. Incremental osrobabilti odel. ating such networks.

representation of this probabilistic model. A sample belief network for the story "Jack got a

We represent the plans in an isa-hierarchy of rope. He killed himself." is given as Figure 1. The
frames. We assume that this set of plans is exhaus- nodes at the bottom represent the evidence, we have

*This work has been supported in part by the National Sci- observed: three words, "kill", "get" and rope an

ence Foundation under grants IST 8416034 and IST 8515005
and Office of Naval Research under grant N00014-79-C-0529. 2 Judea Pearl's book [Pearl, 1988] gives a thorough account

'See (Hobbs et al., 1988] for a statement of this position. of the properties of such networks.
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Figure 1: The Bayesian network for "Jack got a rope. He killed himself."

the fact that the rope is the object of the get. Nodes in a conventional TMS. They differ in that rules are
with arcs into the words represent possible causes for not restricted to adding justifications to some derived
the use of these words. E.g., one possible cause for statement. In fact, since we are trying to build net- I
using the word "rope" is that the author wishes to works for a diagnostic problem, our rules will typ-
talk about a rope: (rope r2). One reason for the rope ically be triggered by the heads of arcs they add,
being the object of the verb "get" is that it is the rather than by the tails. Our network-building rules
patient of the getting action the word refers to. If also provide more information than simple connec-
the kill referred to were a hanging, that would dic- tivity: they contain information used to compute the
tate the presence of a getting action whose patient is conditional probability matrices of the nodes in the
a rope. The getting action and the rope we've postu- network. I
lated might fill those roles (the equality statements). The technique of incrementally building belief net-

This example is simplified for the purpose of clar- works with production rules may be of more general
ity, showing only one possible interpretation for the applicability than language abduction. However, sev-
input. The actual diagrams used in our program are eral features of this domain make this technique par-
more complicated. This figure also illustrates how the ticularly appropriate. Because our program is pas-
posterior distribution over a belief net can determine sive, it cannot seek out new evidence. This helps us
the interpretation of a text. We are concerned with focus our search: we are always going to be searching
the probability that Jack has a plan to hang himself, from evidence to explanations. We do not need to
given the input we have observed. I.e., we are inter- look for new observations. Our domain also makes it
ested in possible to build up a model out of nodes of stylized I

types which can be parameterized. This approach
P((hang k1)1 (kill vl), (get 3), was suggested by Pearl [1988], who suggested "noisy-

(object v2 3), (rope w2)) or gates". We use these as well as noisy XORs, ORs
and ANDs. For example, our equality statements are

Because a full probabilistic model for any utter- parameterized noisy-ANDs: in order for the equality
ance might be infinite, we construct and evaluate to be possible, both terms must be of the same type
only small pieces of this model at any given time. (e.g., in Figure 1, both g3 and (get-step k1) must be
We have developed a language for writing network- gets in order for (get-step k1) = g3 to be possible.
building rules, and a set of such rules for our domain. There has been similar work contemporary with
These rules are similar to the forward-chaining rules ours. [Breese, 1989], and [D'Ambrosio, 1988] de-
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scribe techniques for constructing models on an as- [Charniak and Goldman, 1989a]
needed basis. (Levitt et al., 1989] discusses incremen- Eugene Charniak and Robert P. Goldman. Plan
tal model evaluation and extension. recognition in stories and in life. In Proceedings

This approach is being tested in a program called Workshop on Uncertainty and Probability in A.
Wimp3, which works as follows: Morgan Kaufmann Publishers, Inc., 1989.

1. A parser reads one word of the English text. It [Charniak and Goldman, 1989b] Eugene Charniak
produces statements which describe the words and Robert P. Goldman. A semantics for proba-
in the story and the syntactic relations between bilistic quantifier-free first-order languages, with
them. particular application to story understanding. In

Proceedings of the 11th International Joint Con-2. The output of the parser is taken by the network ference on Artificial Intelligence, 1989.
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tains rules for language abduction. It builds a [Charniak, 1986] Eugene Charniak. A neat theory of
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already been received. tional Conference on Artificial Intelligence, pages
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This provides the mathematical foundation of this (Goldman and Charniak, 1988] Robert P. Goldman
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Introduction tension of pure Prolog.

I Abductive inference is inference to the best explanation.
The process of interpreting sentences in discourse can Four Abduction Schemes
be viewed as the process of generating the best expla-
nation as to why a sentence is true, given what is al- In general, if the formula Qi A ... A Q,, is to be ex-
ready known [3]; this includes determining what infor- plained or abductively proved, the substitution 0 and
mation must be added to the listener's knowledge (what the assumptions Pi, ... , Pm would constitute one pos-I assumptions must be made) for the listener to know the sible explanation if (Pi A... A Pmo) D (Q1 A... A Qn)O is
sentence to be true. Some new forms of abduction are a consequence of the knowledge base.
more appropriate to the task of interpreting natural lan- It is a general requirement that the conjunction ofI guage than those used in the traditional diagnostic and all assumptions made be consistent with the knowledge
design synthesis applications of abduction. In one new base. With an added factoring operation and without
form, least specific abduction, only literals in the logi- the literal ordering restriction, so that any, not just the
cal form of the sentence can be assumed. The assign- leftmost, literal of a clause can be resolved on, Prolog-
ment of numeric costs to axioms and assumable literals style backward chaining is capable of generating all pos-
permits specification of preferences on different abduc- sible explanations that are consistent with the knowl-
tive explanations. Least specific abduction is sometimes edge base. That is, every possible explanation consistent
too restrictive. Better explanations can sometimes be with the knowledge base is subsumed by an explanation
found if literals obtained by backward chaining can also that is generable by backward chaining and factoring. It
be assumed. Assumption costs for such literals are deter- would be desirable if the procedure were guaranteed to
rined by the assumption costs of literals in the logical generate no explanations that are inconsistent with the
form and functions attached to the antecedents of the knowledge base, but this is impossible.
implications. There is a new Prolog-like inference sys- Obviously, any clause derived by backward chaining
tem that computes minimum-cost explanations for these and factoring can be used as a list of assumptions to

I abductive reasoning methods. prove the correspondingly instantiated initial formula
We consider here the abductive explanation of con- abductively. This can result in an overwhelming num-

junctions of positive literals from Horn clause knowledge ber of possible explanations. Various abductive schemes
I bases. An explanation will consist of a substitution for have been developed to limit the number of acceptable

variables in the conjunction and a set of literals to b2 explanations. These schemes differ in their specification
assumed. In short, we are developing an abductive ex- of which literals are assumable.

What we shall call most specific abduction has been
This abstract is condensed from Stickel [7]. The research was used particularly in diagnostic tasks [4,1]. In explaining

supported by the Defense Advanced Research Projects Agency, symptoms in a diagnostic task, the objective is to iden-
under Contract N00014-85-C-0013 with the Office of Naval Re-

search, and by the National Science Foundation, under Grant tify causes that, if assumed to exist, would result in theI CCR.8611116. The views and conclusions contained herein are symptoms. The most specific causes are usually sought,
those of the author and should not be interpreted as necessar- since identifying less specific causes may not be as use-
ily representing the officia polirlet, either expres.ed or implied, ful. in most specific abduction, the only literals that can
of the Defense Advanced Research Projects Agency, the National
Science Foundation, or the United States government. Approved be assumed are those to which backward chaining canI for public release. Distribution unlimited, no longer be applied.
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What we shall call predicate specific abduction has explained from

been used particularly in planning and design synthesis
tasks (2]. In generating a plan or design by specifying P1 A P2 D Q
its objectives and ascertaining what assumptions must P2 A P3 D R
be made to make the objectives provable, acceptable as- I
sumptions are often expressed in terms of a prespecified the explanation that assumes P1 , P2 , and P3 may be

set of predicates. In planning, for example, these might preferable to the one that assumes Q and R. Even if

represent the set of executable actions. Q and R are not provable, it might not be necessary to

The criterion for "best explanation" used in natural- assume all of P1, P2 , and P3 , since some may be provable. 3
language interpretation differs greatly from that used in
most specific abduction for diagnostic tasks. To inter- Assumption Costs
pret the sentence "the watch is broken," the conclusion
will likely be that we should add to our knowledge the in- A key issue in abductive reasoning is picking the best ex-

formation that the watch currently discussed is broken. planation. Defining this is so subjective and task depen- n
The explanation that would be frivolous and unhelpful dent that there is no hope of devising an algorithm that
in a diagnostic task is just right for sentence interpre- will always compute only the best explanation. Never-
tation. A more specific causal explanation, such as a theless, there are often so many abductive explanation
broken mainspring, would be gratuitous. that it is necessary to have some means of elimisating n

Predicate specific abduction is not ideal for natural- most of them. We attach numeric assumption costs to

language interpretation either, since there is no easy di- assumable literals, and compute minimum-cost abduc-

vision of predicates into assumable and nionassumable, tive explanations in an effort to influence the abductive

so that those assumptions that can be made will be rea- reasoning system toward favoring the intended explana- 

sonably restricted. Most predicates must be assumable tions.

in some circumstances such as when certain sentences We regard the assignment of numeric costs as a part

are being interpreted, but in many other cases should of programming the explanation task. The values used U
not be assumed, may be determined by subjective estimates of the likeli-

As an alternative, we consider what we will call least hood of various interpretations, or perhaps they may be
specific abduction to be well suited to natural-language- learned through exposure to a large set of examples.
interpretation tasks. It allows only literals in the initial If only the cost of assuming literals is counted in the I
formula to be assumed and thereby seeks to discover the cost of an explanation, there is in general no effective

least specific assumptions that explain a sentence. More procedure for computing a minimum-cost explanation.
specific explanations would unnecessarily and often in- For example, if we are to explain P, where P is assum-
correctly require excessively detailed assumptions. able with cost 10, then assuming P produces an explana-

We note that assuming any literals other than those tion with cost 10, but proving P would result in a better
in the initial formula generally results in more specific explanation with cost 0. Since provability is undecidable
and thus more risky assumptions. When explaining R in general, it may be impossible to determine whether
with P D R (or P A Q D R) in the knowledge base, the cost 10 explanation is best.
either R or P (or P and Q) can be assumed to explain The solution is that the cost of proving literals must
R. Assumption of R, the consequent of an implication, also be included in the cost of an explanation. An expla- I
in preference to the antecedent P (or P and Q), results nation that assumes P with cost 10 would be preferred
in the fewest consequences. to an explanation that proves P with cost 50 (e.g., in a

Although least specific abduction is often sufficient for proof of 50 steps) but would be rejected in favor of an
natural-language interpretation, it is clearly sometimes explanation that proves P with cost less than 10.
necessary to assume literals that are not in the initial There are substantial advantages gained by taking into
formula. We propose chained specific abduction for these account proof costs as well as assumption costs, in addi-
situations. Assumability is inherited-a literal can be tion to the crucial benefit of making theoretically possi- I
assumed if it is an assumable literal in the initial formula ble the search for a minimum-cost explanation.
or if it can be obtained by backward chaining from an If costs are associated with the axioms in the knowl-
assumable literal. edge base as well as with assumable literals, these costs

Factoring some literals obtaiiied by backward chaining can be used to encode information on the likely relevance
and assuming the remaining antecedent literals can also of the fact or rule to the situation in which the sentence
sometimes yield better explanations. When Q A R is is being interpreted.

6I
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We have some reservations about choosing explana- In least specific abduction, different occurrences of the
tions on the basis of numeric costs. Nonnumeric spec- predicate in the initial formula may have different as-
ification of preferences is an important research topic. sumption costs, but only literals in the initial formula
Nevertheless, we have found these numeric costs to be are assumable. The assumption cost ci for literal Q in
quite practical; they offer an easy way of specifying that the initial formula is arbitrarily specified; the assump-
one literal is to be assumed rather than another. When tion function fj for literal P in the antecedent of an
many alternative explanations are possible, summing nu- implication has value infinity.
meric costs in each explanation, and adopting an expla- In chained specific abduction, the most general case,
nation with minimum total cost, provides a mechanism different occurrences of the predicate in the initial for-
for comparing the costs of one proof and set of assump- mula may have different assumption costs; literals ob-
tions against the costs of another. If this method of tained by backward chaining can have flexibly computed
choosing explanations is too simple, other means may be assumption costs that depend on the assumption cost of
too complex to be realizable. We provide a procedure for the literal backward-chained from. The assumption cost
computing a minimum-cost explanation by enumerating c, for literal Q, in the initial formula is arbitrarily spec-
possible partial explanations in order of increasing cost. ified; the assumption function fj for literal P in the
Even a perfect scheme for specifying preferences among antecedent of an implication can be an arbitrary mono-
alternative explanations may not lead to an effective pro- tonic unary function.
cedure for generating a most preferred one. Finally, any We have most often used simple weighting functions of
scheme will be imperfect: people may disagree as to the the form f, (c) = wj x c (w. > 0). Thus, the implication
best explanation of some data and, moreover, sometimes
do misinterpret sentences. pZApW2 D Q

states that P and P2 imply Q, but also that, if Q is
Minimum-Cost Proofs assumable with cost c, then P is assumable with cost

w, x c and P2 with cost w2 x c, as the result of backward
We now present the inference system for computing ab- chaining from Q. If W 1 + W2 < 1, more specific explana-

ductive explanations. This method applies to predicate tions are favored, since the cost of assuming P 1 and P2

specific, least specific, and chained specific abduction. is less than the cost of assuming Q. If W1 + W2 > 1, less

Every literal Q, in the initial formula is annotated specific explanations are favored: Q will be assumed in

with its assumption cost c,: preference to PI and P2 . But, depending on the weights,
Pi might be assumed in preference to Q if Pj is provable.

We assign to each axiom A a cost aziom-cost(A)Q " nthat is greater than zero. Assumption costs
The cost ci must be nonnegative; it can be infinite, if Q assumption-cost(L) are computed for each literal L.
is not to be assumed. When viewed abstractly, a proof is a demonstration that

Every literal P1 in the antecedent of an implication in the goal follows from a set S of instances of the axioms,
the knowledge base is annotated with its assumability together with, in the case of abductive proofs, a set H
function fj: of literals that are assumed in the proof. We want to

count the cost of each separate instance of an axiom or
I I,...,I P/mf D Q assumption only once instead of the number of times it

may appear in the syntactic form of the proof. Thus, a
The input and output values for each fi are nonnega- natural measure of the cost of the proof is

tive and possibly infinite. If this implication is used to

backward chain from Q ', then the literals P1,..., Pm
will be in the resulting formula with assumption costs axiom-cost(A) + Z assumption-cosi(L)

AuE$ LEN

h (ei),., fm (C).

In predicate specific abduction, assumptions costs are In general, the cost of a proof can be determined by
the same for all occurrences of the predicate. Let cost(p) extracting the sets of axiom instances S and assump-
denote the assumption cost for predicate p. The assump- tions H from the proof tree and performing the above
tion cost c, for literal Qi in the initial formula is cost(p), computation. However, it is an enormous convenience
where the Q, predicate is p; the assumption function fj if there always exists a simple proof tree such that each
for literal Pj in the antecedent of an implication is the separate instance of an axiom or assumption actually
unary function whose value is uniformly cost(p), where occurs only once in the proof tree. That way, as the
the Pj predicate is p. inferences are performed, costs can simply be added to
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compute the cost of the current partial proof. Even if * each Gk+i (1 < k < p) is derived from Gk by res-
the same instance of an axiom or assumption happens to olution with a fact or rule, making an assumption,
be used and counted twice, a different, cheaper deriva- or factoring with a proved or assumed literal.
tion would use and count it only once. Partial proofs can h
be enumerated in order of increasing cost by employing * Gp has no unsolved literals.
breadth-first or iterative-deepening search methods and Predicate specific abduction is quite simple because
minimum-cost explanations can be discovered effectively, the assumability and assumption cost of a literal are de-

We shall describe our inference system as an extension termined by its predicate symbol. Least specific abduc-
of pure Prolog. Prolog, though complete for Horn sets tion is also comparatively simple because if a literal is
of clauses, lacks this desirable property of always being not provable or assumable and must be factored, all as-
able to yield a simple proof tree. sumable literals with which it can be factored are present

Prolog's inference system-ordered input resolution in the initial and derived formulas. Because assumability
without factoring-would have to eliminate the order- is inherited in chained specific abduction, the absence of
ing restriction and add the factoring operation to re- a literal to factor with is not a cause for failure. Such
main a form of resolution and be able to prove Q, R a literal may appear in a later derived clause after fur-
from Q ,- P, R ,- P, and P without using P twice. ther inference as new, possibly assumable, literals are
Elimination of the ordering restriction is potentially very introduced by backward chaining.
expensive.

We present a resolution-like inference system, an ex- Inference Rules
tension of pure Prolog, that preserves the ordering
restriction and does not require repeated use of the Suppose the current goal Gk is Qc',..., Q'- and that
same instances of axioms. In our extension, literals in Q,' is the leftmost unsolved literal. Then the following
goals can be marked with information that dictates how inferences are possible.
the literals are to be treated by the inference system,
whereas in Prolog, all literals in goals are treated alike Resolution with a fact
and must be proved. A literal can be marked as one of Lthe following: Let axiom A be a fact Q made variable-disjoint

from Gk. Then, if Qi and Q are unifiable with
proved The literal has been proved or is in most general unifier or, the goal

the process of being proved; in this infer-
ence system, a literal marked as proved Gk+1 = Q i Q . a.,

will have been fully proved when no lit- with
eral to its left remains unsolved.

assumed The literal is being assumed. cost'(G&+i) = cost'(Gk) + aziomncost(A)
unsolved The literal is neither proved nor as- can be derived, where Qoo is marked as proved

sumed. in Gk+1.

The initial goal clause Q1,. . . , Q, in a deduction con- The resolution with a fact or rule operations differ
sists of literals Q, that are either unsolved or assumed. from their Prolog counterparts principally in the reten-
If any assumed literals are present, they must precede tion of Qio" (marked as proved) in the result. Its reten-
the unsolved literals. Unsolved literals must be proved tion allows its use in future factoring.
from the knowledge base plus any assumptions in the ini-
tial goal clause or made during the proof, or, in the case Resolution with a rule
of assumable literals, may be directly assumed. Literals Let axiom A be a rule Q .- P1 ',...,PM made
that are proved or assumed are retained in all successor Lai om 1ade

goal clauses in the deduction and are used to eliminate ariables it fo g en, if o, an e
matching goals. The final goal clause P,..., Pm in a are unifiable with most general unifier u, the
deduction must consist entirely of proved or assumed goal

literals P. G =+1 = .... Qo, , . ,) , Q o,...
An abductive proof is a sequence of goal clauses

G1,..., Gp for which with

* G1 is the initial goal clause. cost'(Gk+1) = cost'(Gk) + aziom-cost(A)
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I can be derived, where Qio is marked as proved role of Shostak's C-literals. It also resembles Finger's or-
in Gk+1 and each Pjc is unsolved. dered residue procedure [2], except that the latter retains

assumed literals (rotating them to the end of the clause)I Making an assumption but not proved literals. Thus, it includes both the abil-
ity of the GC procedure to compute simple proof trees

The goal for Horn clauses and the ability of the ordered residue
Gk+1 = Gk procedure to make assumptions in abductive proofs.

with Another approach which shares the idea of using least
cost'(Gk+1) = cost'(Gk) cost proofs to choose explanations is Post's Least Ex-

ception Logic [5]. This is restricted to the propositional
can be derived, where Qi is marked as assumed calculus, with first-order problems handled by creating
in Gk+ 1. ground instances, because it relies upon a translation of

default reasoning problems into integer linear program-
i Factoring with a proved or assumed literal ming problems. It finds sets of assumptions, defined byf adefault rules, that are sufficient to prove the theorem,eIf Q and Q ( < i) are unifiable with most that are consistent with the knowledge base so far as itgeneral unifier ur, the goal has been instantiated, and that have least cost.
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An Integrated Abductive Framework
for Discourse Interpretation

Jerry R. Hobbs I
Artificial Intelligence Center

SRI International

Interpretation as Abduction. Abductive infer- speaker's. It is anchored referentially in mutual be-
ence is inference to the best explanation. The process lief, and when we prove the logical form and the con-
of interpreting sentences in discourse can be %iewed as straints, we are recognizing this referential anchor. This
the process of providing the best explanation of why is the given information, the definite, the piesupposed.
the sentences would be true In the TACITUS Project Where it is necessary to make assumptions, the infor-
at SRI, we have developed a scheme for abductive in- mation comes from the speaker's private beliefs, and
ference that yields a significant simplification in the de- hence is the new information, the indefinite, the as-
scription of such interpretation processes and a signifi- serted. Merging redundancies is a way of getting a I
cant extension of the range of phenomena that can be minimal, and hence a best, interpretation.
captured. It has been implemented in the TACITUS An Example. This characterizaticn, elegant though
System (Hobbs et al., 1988; Stickel, 1989) and has been it may be, would be of no interest if it did not lead to
applied to several varieties of text. The framework sug- the solution of the discourse problems we need to have
gests a thoroughly integrated, nonmodular treatment of solved. A brief example will illustrate that it indeed
syntax, semantics, and pragmatics, and this is the focus does.
of this paper. First, however, the use of abduction in (2) The Boston office called.
pragmatics alone will be described. This example illustrates three problems in "local prag-

In the abductive framework, what the interpretation matics", the reference problem (What does "the Boston
of a sentence is can be described very concisely: office" refer to?), the compound nominal interpretation I

problem (What is the implicit relation between Boston

To interpret a sentence: and the office?), and the metonymy problem (How can
we coerce from the office to the person at the office who

(1) Prove the logical form of the sentence, did the calling?).
together with the constraints that pred- Let us put these problems aside, and interpret the

icates impose on their arguments, sentence according to characterization (1). The logical
allowing for coercions, form is something like

Merging redundancies where possible, (3) (3 e, z, o,b)call'(e, z) A person(x) A rel(z,o)
Making assumptions where necessary. A offi:e(o) A nn(b, o) A Boston(b)

By the first line we mean "prove from the predicate That is, there is a calling event e by a person x related
calculus axioms in the knowledge base, the logical form somehow (possibly by identity) to the explicit subject
that has been produced by syntactic analysis and se- of the sentence o, which is an office and bears some
mantic translatioin of the sentence." unspecified relation nn to b which is Boston.

In a discourse situation, the speaker and hearer both Suppose our knowledge base consists of the following
have their sets of private beliefs, and there is a large facts: We know that there is a person John who works
overlapping set of mutual beliefs. An utterance stands for 0 which is an office in Boston B.
with one foot in mutual belief and one foot in the
speaker's private beliefs. It is a bid to extend the area (4) person(J), work-for(J, 0), office(O),
of mutual belief to include some private beliefs of the in(O, B), Boston(B) I

10I |I



I
Suppose we also know that work-for is a possible co- That is, if there is the determiner "the" from i to j, a
ercion relation, noun from j to k denoting predicate wu, and another

(5) (Vx, y)work-for(x,y) D rel(x,y) noun from k to I denoting predicate w2 , if there is a
z that w, is true of and a y that w2 is true of, and if

and that in is a possible implcit relation in compound there is an nn relation between z and y, then there is

nominals, an interpretable noun phrase from i to I denoting y.
(6) (Vy, z)in(y, z) D nn(z, y) These rules incorporate the syntax in the literals like

Then the proof of all but the first conjunct of (3) is v(j, k, p), the pragmatics in the literals like p'(e, z), and
straightforward. We thus assume (3 e)call'(e, J), and it the compositional semantics in the way the pragmatics
constitutes the new information. literals are constructed out of the information provided

Notice now that all of our local pragmatics problems by the syntax literals.
have been solked "The Boston office" has been resolved To parse with a grammar in the Prolog style, we prove
to 0. The implicit relation between Boston and the s(0, N) where N is the number of words in the sentence.
oftsL has been determined to be the in relation. "The To parse and interpret in the integrated framework, we
Boston office" ha- been coerced into "John, who works prove (3 e)s(0, N, e).
for the Boston office." Implementations of different orders of interpretation,

This is of course a simple example. More complex or different sorts of interaction among syntax, composi-
examples and arguments are given in Hobbs et al., 1990. tional semantics, and local pragmatics, can then be seen
A more detailed description of the method of abductive as different orders of search for a prcof of (3 e)s(0, N, e).
inference, particularly the system of weights and costs in a syntax-first order of interpretation, one would try
for choosing among possible interpretations, is given in first to prove all the syntax literals, such as np(i,j, y),
that paper and in Stickel, 1989. before any of the "local pragmatic" literals, such as

The Integrated Framework. The idea of inter- p'(e, x). Verb-driven interpretation would first try to
pretation as abduction can be combined with the older prove v(j,k,p) and would then use the information
idea of parsing as deduction (Kowalski, 1980, pp. 52-53; in the requirements associated with the verb to drive
Pereira and Warien, 1983). Consider a grammar writ- the search for the arguments of the verb, by deriving
ten in Prolog style just big enough to handle sentence Req(p', z) before back-chaining on np(i.j, y). But more
(2). fluid orders of interpretation are clearly possible. This
(7) (V i, j i A jk siformulation allows one to prove those things first which

S jare easiest to prove, and therefore allows one to exploit
(8) (Vi, j,k,l)det(i,j) A n(j,k) A n(k,l ) D np(i,l) the fact that the strongest clues to the meaning of a

That is, if we have a noun phrase from "inter-word sentence can come from a variety of sources-its syn-
point" i to point j and a verb from j to k, then we tax, the semantics of its main verb, the reference of its

have a sentence from i to k, and similarly for rule (8). noun phrases, and so on. The framework is, moreover,

We can integrate this with our abductive framework suggestive of how processing could occur in parallel, in-

by moving the various pieces of expression (3) into these sofar as parallel Prolog is possible.

rules for syntax, as follows: Acknowledgments. I have profited from dis-
cussions with Mark Stickel, Douglas Appelt, Stuart
Shieber, Paul Martin, and Douglas Edwards about this

(9) (Vi, j,k,e,x,y,p)np(i,j,y) A v(j,k,p) Ap'(e,X) work. The research was funded by the Defense Ad-

A Req(p, z) A rel(x, y) D s(i, k, e) vanced Research Projects Agency under Office of Naval

I That is, if we have a noun phrase from i to j referring to Research contract N00014-85-C-0013.

y and a verb from j to k denoting predicate p, if there References
is an eventuality e which is the condition of p being

I true of some entity z (this corresponds to call'(e, z) in [1] Hobbs, Jerry R., Mark Stickel, Paul Martin, and
(3)), if z satisfies the selectional requirement p imposes Douglas Edwards, 1988. "Interpretation as Abduc-
on its argument (this corresponds to person(z)), and tion", Proceedings, 26th Annual Meeting of the As-
if x is somehow related to, or coercible from, y, then sociation for Computational Linguistics, pp. 95-103,
there is an interpretable sentence from i to k describing Buffalo, New York, June 1988.
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I Abstract i.e. inferring cause from effect. The standard formal-
ization of abductive reasoning in artificial intelligence

Abduction is an important inference process under- defines an explanation as a set of assumptions which,
I lying much of human intelligent activities, including together with background knowledge, logically entails

text understanding, plan recognition, disease diagno- a set of observations [CM85].
sis, and physical device diagnosis. In this paper, we We have built a language understanding system
describe some problems encountered using abduction called ACCEL (Abductive Construction of Causal Ex-
to understand text, and present some solutions to over- planations for Language) that is capable of construct-
come these problems. The solutions we propose center ing deep, causal explanations for natural language text
around the use of a different criterion, called explana- (both narrative and expository text) through the use
tory coherence, as the primary measure to evaluate the of abduction. ACCEL includes a generic abductive in-
quality of an explanation. In addition, explanatory co- ference procedure, which computes abductive proofs
herence plays an important role in the construction of by backward-chaining on the input observations using
explanations, both in determining the appropriate level Horn-clause axioms in the knowledge base. The ab-
of specificity of a preferred explanation, and in guiding ductive procedure has the choice of making a subgoal
the heuristic search to efficiently compute explanations in a partial proof as an assumption, if it is consistent to
of sufficiently high quality. do so. An abductive proof represents an explanation,

or an interpretation of the input sentences.
S 1 Introduction

1 2 Problems and Solutions
Finding explanations for properties and events is an
important aspect of intelligent behavior. The philoso- 2.1 Occam's Razor Isn't Sharp Enough
pher C.S. Peirce defined abduction as the process of
finding the best explanation for a set of observations; Almost all previous work on abduction, whether ap-

_______________plied to plan recognition, language understanding, dis-

This research is supported by the NASA Ames Research ease diagnosis, or physical device diagnosis, only use
Center under grant NCC-2-429. The first author was also .. emplicity criterion, s thc
partially supported by a University of Texas MCD fellowship.

Thanks to members of the Explanation Group Meeting for help- basis for selecting the best explanation. For instance,I ful discussion and comments. in [Cha86], the best interpretation is one that maxi-
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rnizes E - A, where E = the number of explained ob- *Joh was happy. Th eam was eay."

servations, and A = the number of assum!.tions made. (
Other related work, though not explicitly utilizing ab- r J ) h i

duction, also relies on some kind of simplicity criterion sueed J a)

to select the best explanation. For example, [KA86]
explicitly incorporates the assumption of minimizing (ea a) Jasy a) (study J a) (take )

Int~erpretationI

the number of top level events in deducing the plan t - 1, A - 2

that an agent is pursuing. 1mplicity tri c - ./A - 1/2 I
Coherence meric£ - (1+1) /(7- (4-3/2)) - 0.04e

Though an important factor, the simplicity criterion Is

is not sufficient by itself to select the best explanation.
We believe that some notion of explanatory coherence (name J ohn) (happy J) (eam a) (easy a)

is more important in deciding which explanation is the t

best. This is especially true in the area of language un- (opit 1)

derstanding and plan recognition. In [NM89b], we have Interpretation 2

used the sentences "John was happy. The exam was simplicity ms ec - /A - 1l/

easy." to illustrate this point. Relying on the simplic- Coherence metric - 0

ity metric results in selecting the interpretation that lb

John was happy because he is an optimist, someone I
who always feels good about life in general (Figure Ib). Figure 1: The importance of explanatory coherence
This is in contrast with our preferred interpretation of
the sentence - John was happy because he did well relevant", "be informative", etc. However, to the best I
on the easy exam (Figure la). (See [NM89b, NM89a] of our knowledge, the work on abduction applying to
for the details of the axiomatization.) the tasks of text understanding and plan recognition

Intuitively, it seems that the first interpretation have not included this criterion in their evaluation of I
(Figure la) is better because the input observations are explanations. The use of explanatory coherence here
connected more "coherently" than in the second inter- attempts to remedy this problem.
pretation (Figure 1b). We manage to connect "John We have developed a formal characterization of what I
was happy" with the "easy exam" in the first interpre- we mean by explanatory coherence in the form of a
tation, whereas in the second interpretation, they are coherence metric, defined as follows:
totally unrelated. This is the intuitive notion of what I
we mean by ezplanatory coherence. It is clear that Nij
"Occam's Razor", i.e. making the minimum number C = •l
of assumptions, is not the dominant deciding factor N( 1 )
here at all. Rather, we select an explanation based on 2

its coherence, i.e. how well the various observations
are "tied up" together in the explanation.' where I

The notion that sentences in a natural language N = the total number of nodes in the proof graph

text are connected together in a coherent way is re- Nn)/ ls=lel-1)/2

flected in the well known "Grice's conversational max- 2 1(1 - 1)/2
ims" [Gri75], which are principles governing the pro- Nij the number of distinct nodes nk in the proof
duction of natural language utterances, such as "be graph such that there is a (possibly empty) sequence

1Thagard [Tha89J ha. independently proposed a computa- of directed edges from nk to ni and a (possibly empty) i
tional theory of explanatory coherence that applies to the eval. sequence of directed edges from nrs to nj, where ni and
uation of scientific theories. However, his theory of explanatory nj are observations.
coherence consists of seven principles - symmetry, explanation, We have developed and implemented an efficient
AnAln [y, d~ta prinrity, cnntrmidtnn, nsrnl eonher~nce, and aya- algorithm to compute the coherence Ietric[NM89b,
tern coherence. Independent criteria like simplicity and connect-
edness have been collapsed into one measure which he termed NM89a]. Based on the coherence metric, ACCEL has
"explanatory coherence". successfully selected the best interpretation for a num-
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ber of examples of expository as well as narrative text.(taft.kn

2.2 Deciding on the Appropriate Level wr ,.a.OV ,
of Specificity of Explanations

Another problem in constructing a good explanation (,. lam- .-. , ?w .1 (, t 91 al -

is determining the appropriate level of specificity of an
abductive proof. Previous approaches fall into one of
three categories : most specific abduction, least specific .M o
abduction, and weighted abduction. 2

In most specific abduction, the assumptions made pu .. pt..t put-.. 1 put-o ,)

must be basic, i.e. they cannot be "intermediate" as- (p:t-..... :or p:::7 Jo':sumptions that are themselves provable by assuming (thinor 1. MI) (ti"t-nt-n

some other (more basic) assumptions. This is the ap-
proach used in the diagnosis work of [CP87]. In least linst u1 uiform)

specific abduction, the only allowable assumptions are .J.h "At to the .upe.m..a.e

literals in the input observations. [Sti88 claims that g put o. th. ....m•

least specific abduction is best suited for natural lan- C@1*eo ..... (without backohaL.,,q on (Anst sal ffstaro.l

guage interpretation. It is argued that what one learns m-... 0.t7 4h 'C)°1 .8 0,, ,.1 ,a .
I from reading a piece of text is often close to its surface

form, and that assuming deeper causes is unwarranted. Figure 2: The level of specificity of explanation
In weighted abduction [HSME88], weights (or costs)
are assigned to the antecedents of backward-chaining
rules in order to influence the decision on whether to On the other hand, most specific abduction will not
backchain on a rule. In this case, the best interpreta- do the job either. Recall that most specific abduc-
tion is the one with assumptions that have the lowest tion always prefers backchaining on rules to prove a
combined total cost. subgoal if possible rather than making that subgoal

However, none of these approaches is completely sat- an assumption. Thus, applying most specific abduc-
isfactory. Consider the sentences "John went to the tion to this example results in backchaining on the in-
supermarket. He put on the uniform." Both least put literal (inst smi smarket) to the assumptions (inst
specific and most specific abduction fail to generate ?s smarket-shopping) and (store-of ?s smi), since in
the preferred interpretation in this case, which is that the present knowledge base, this is the only backchain-
John is working at the supermarket. Figure 2 shows ing rule with a consequent that unifies with (inst smi
the proof graph of the preferred interpretation of this smarket). That is, we explain the going action, its
example (excluding the dashed lines and boxes). (See agent and its destination by assuming that John is
[NM89a for the details of the relevant axiomatization.) working there, and we are also forced to assume, by

Note that nowhere in the input sentences is the word the requirement of most specific abduction, that there
"working" mentioned at all. It has to be inferred by is some supermarket shopping event to explain the su-
the reader. Since this preferred interpretation includes permarket instance! This is because most specific ab-
making the assumptions that there is a working event, duction requires that we have an explanation for why
that John is the worker of this working event, etc, it is John went to the supermarket as opposed to some
evident that least specific abduction, in which the only other workplace. This is clearly undesirable.
allowable assumptions are literals in the input obser- However, determining the level of specificity of an
vations, is incapable of arriving at this explanation. explanation based on coherence produces the desired

2[Sti88] describes yet another form of abduction known as interpretation. That is, we backchain on rules to prove
predicate specific abduction, which has been used primarily in the subgoals in an explanation only if doing so in-
planning and design-synthesis tasks. In predicate specific ab-
duction, the predicate of any assumption made must be one of creases its overall coherence, and thus we only make
a pre-specified set of predicates. assumptions just specific enough to connect the ob-
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servations. In the current example, backchaining on Explawaon Qualty venus Run line

(inst smin smarket) results in a decrease in the coher- QI

ence metric value, since the total number of nodes in :-o.. . -- .-

the proof graph increases by two but there is no in- -sm...... •
crease in the number of connections among the input - ,m

observations. Intuitively, explaining the supermarket OO- -

instance by assuming a supermarket shopping event 710-

is completely unrelated to the rest of the explanation 1W- -
that John is working there. The coherence metric has -

been successfully used in ACCEL to determine the ap- s.oo-•

propriate level of specificity of explanations, where the M0o- I
desired specificity is one which maximizes coherence. 4Soo-

4400-

The weighted abduction of [HSME88] would presum- 3&00-

ably arrive at the correct interpretation given the "ap- 30- I
propriate" set of weights. However, it is unclear how 21W-

to characterize the "semantic contribution" of each an- ,woo_
tecedent in a rule in order to assign the appropriate ,o -
weights. In contrast, our method does not rely on - I I - T<m)

tweaking such weights, and it produces the preferred &i

interpretation with the desired level of specificity in Figure 3: Explanation Quality versus Run Time
all of our examples. We believe that allowing arbi-
trary weights on rules is too much of a burden on the
knowledge engineer. It also provides too many degrees
of freedom, which can lead to the knowledge engineer b .st explanations are kept in the queue after complet-

"hackin& up" arbitrary weights in order to get the sys- ing the processing of each input observation. Within

tern to produce the desired explanation. the processing of an input observation, at mostAntr a
number of best explanations are kept in the queue.

2.3 Taming the Intractability Problem Figure 3 shows how the quality of the best explana-
tion varies with run time for the supermarket working

The abduction problem has been shown to be NP- example by using different values of OJ,,ter and ,ntro. I
hard and so is computationally intractable [RNW85, We use the ratio of the coherence metric value of an ex-
BATJ89]. As such, the use of heuristic search to ex- planation over that of the optimal explanation to rep-
plore the vast space of possible solutions seems to be a resent the quality of an explanation. All the run times I
good strategy to adopt. In fact, we have implemented reported in this paper are the actual execution times
a form of beam search that has successfully computed on a Texas Instruments Explorer II Lisp machine.

the preferred interpretation of a number of examples I
very efficiently. Each data point in the Figure represents a quality-

We use a beam search algorithm which uses two time pair obtained by using some specific values of

beam widths, called inter.observation beam width finter and .ntra. Each curve connects all the data

(Ater) and inira-observation beam width (intra), in points with the same f3i.ter but different /Anra. Note

order to reduce the explored search space. A queue of that without using any heuristic search (i.e. if a con-

best explanations is kept by the beam search proce- plete search is made), it takes more than 3 hours to

dure, forming the "beam" of the beam search. At all compute the optimal solution, while setting ,nt r = 3

times, explanations in the queue are sorted by coher- and Aintra = 8 yields the optimal solution in 0.89 min,

ence, where the best explanation is the one with the which represents a speed up of over 200 times!

highest coherence. 3 Only at most 8i.t, number of the

3Ties are broken based on the simplicity metric of EIA, where
E is the number of observations explained and A is the number of assumptions made.
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I 3 Conclusion [Gri75] H. P. Grice. Logic and conversation. In
P. Cole and J. Morgan, editors, Syntaz and

We are looking into the possibility of making the pro. Semantics 3 : Speech Acts, pages 41-58.
cessing more incremental by keeping track of the de- Academic Press, New York, 1975.
pendency among the assumptions and propositions
of various competing explanations. Assumption- [HSME88] Jerry R. Hobbs, Mark E. Stickel, Paul

based truth maintenance systems (ATMS) [dK86] have Martin, and Douglas Edwards. Interpre-

proven useful in device diagnostic and plan recognition tation as abduction. In Proceedings of the

systems. We plan to look into the potential efficiency 26th Annual Meeting of the Association forU gain which may be brought about by incorporating an Computational Linguistics, pages 95-103,

ATMS into the abductive inference procedure. Buffalo, New York, 1988.

In summary, we have described some problems en- [KA86] Henry A. Kautz and James F. Allen. Gen-
countered using abduction to understand text, and eralized plan recognition. In Proceedings of
have presented some solutions to overcome these prob- the National Conference on Artificial In-
lems. The solutions center around the use of explana- telligence, pages 32-37, Philadelphia, PA,
tory coherence to evaluate the quality of explanations, 1986.
to determine the appropriate level of specificity of ex-
planations, and to guide the heuristic search to effi- [NM89a] Hwee Tou Ng and Raymond J. Mooney.
ciently compute explanations of sufficiently high qual- Abductive explanation in text understand-
ity. ing: Some problems and solutions. Techni-

cal Report A189-116, Artificial Intelligence
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Problems with Abductive Language Understanding Models*

Peter Norvig and Robert Wilensky

University of California, Berkeley
Computer Science Division, Evans Hall

Berkeley, CA 94720, USA I
Introduction an ambiguity-preserving parser into a logical form, L. Each

Language interpretation involves mapping from a string of conjunct in the logical form is annotated by a number in-

words to a representation of an interpretation of those words. dicating the cost, $C, of assuming the conjunct to be true.

The problem is to be able to combine evidence from the lex- Conjuncts corresponding to "new" information have a low

icon, syntax, semantics, and pragmatics to arrive at the best cost of assumability, while those corresponding to "given"

of the many possible interpretations. Given the well-worn information have a higher cost, since to assume them is to

sentence "The box is in the pen," syntax may say that "pen" fail to find the proper connection to mutual knowledge. Each

is a noun, while lexical knowledge may say that "pen" most conjunct must be either assumed or proved, using a rule or

often means writing implement, less often means a fenced series of rules from the knowledge base. Each rule also has

enclosure, and very rarely means a female swan. Semantics cost factors associated with it, and the proper interpretation,

may say that the object of "in" is often an enclosure, and I, is the set of propositions with minimal cost that entails L.

pragmatics may say that the topic is hiding small boxes of As an example, consider again the sentence "The box is

illegal drugs inside aquatic birds. Thus there is evidence for in the pen." The cost-annotated logical form (in a shnplified

multiple interpretations, and one needs some way to decide notation omitting quantifiers) is:

between them. L = boz(z) 1 0 A pen(y)SO A in(z, y')$3

In the past few years, some general approaches to interpre- where PSI means the final interpretation must either assume
tation have been advanced within an abduction framework. P for $, or prove P. presumably for less. Consider the
Charniak (1986) and Norvig (1987, 1989) are two examples. pro es
In this paper we critically evaluate two later models, those of proof rules:
Charniak and Goldman (1989) and Hobbs, Stickel, Martin writingpen(z)"9 D pen() i
and Edwards (1988), These two models add the important enclosure(x)"3 A fenced(z) "3 A etct(D) 3  pen()

property of commensurability: all types of evidence are rep- female(z)"3 A swan(z) "6 D pen(z)
resented in a common currency that can be compared and enclosure(y)"3 A inside(z, Y)-6 D in(z, y)
combined. While this is an important advance, it appears a The firstrule says thatanythingthatisawriting-pen isalso
single measure is not enough to account for all processing. a member of the class 'pen'--things that can be described
We present other problems for the abductive approach, and with the word "pen". The superscripted numbers are pref-
some tentative solutions. erence information: the first rule says that pen(z) s10 can be

derived by assuming writing pen(z) s9 . Predicates of the
Cost Based Commensurability form etci(z), as in the second rule, denote conditions that

Hobbs et al. (1988) view interpreting sentences as"providing are stated elsewhere, or, for some natural kind terms, can not I
the best explanation of why the sentences would be true." In be fully enumerated, but can only be assumed. They seem to
this view a given sentence (or an entire text) is translated by be related to the abnormal predicates, ab(z) used in circum-

_____scription theory (McCarthy 1986).

'Sponsored by the Defense Advanced Research Projects Below are two interpretations of L. The first just assums

Agency (DoD), Arpa Order No. 4871, monitored by Space and the entire logical form for $23, while the second applies the

Naval Warfare Systems Command wder Contract N00039.84-C. t
0089. This paper benefitted from discussions with Michael Braver- rules and shares the enclosure(y) predicate common to one

man Dan Jurafsky, Nigel Ward, Dekai Wu, and other members of of the definitions of pen(y) and the definition of in(z, y) to
the BAIR seminar. arrive at a $20.80 solution.
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box(z) $10 A pen(y) °10 A in(z, y)$3. cost. Whether this is a sufficient explanation depends on the
box(t)S ° A enclosure(y)$3 A fenced(y)$3  task. For a casual observer it may will do, but for a rival ma-

A etcl(y) 3 A endcoure(i,)s A inside(z, y)sl. gician trying to steal the trick, a better explanation is needed.

I The second enclosure(y) gets a cost of $0 because it has (2) Translating, say, "the pen" as pen(y)$10 conflates two

already been assumed. Let me stress that the details here are issues: the final interpretation must find a referent, y, and it
ours, and the authors may have a different treatment of this must also disambiguate "pen". It is true that definite noun
example. For example, they do not discuss lexical ambigu- phrases are often used to introduce new information, and
* ex aleorh weex levwe, hve o n iscu l ex an- thus must be assumed, but an interpretation that does not dis-
ity, although we believe we have been faithful to the sense ambiguate "pen" is not just making an assumption--rather it
of their proposal.

This approach has several problems, as we see it: is failing altogether. One could accomodate this problem by
(1) Approah sil n era being used fortwo sepe m- writing disambiguation rules where the sum of the left-hand-*(1) A single number is being used for two separate mea- side components is less than 1. Thus, the system will always

sures: the cost of the assumptions and the quality of the ex-

planation. Hobbs et al. hint at this when they discuss the prefer to find some interpretation for "pen", rather than leav-

"informativeness-correctness tradeoff." Consider their ex- ing it ambiguous. In the case of vagueness rather than am-

oample "lbe-il al " which gets tmf"la de as: biguity, one would probably want the left-hand-side to total
greater than 1. For example, in "He saw her duck", the word

lubeoil(o)$5 A alarm(a)$5 A nn(o, a)$2°  "duck" is ambiguous between a water fowl and a downwardU where nn means noun-noun ompound. It is given a high movement, and any candidate solution should be forced to

cost, $20, because failing to find the relation means failing decide between the two meanings. In contrast, "he" is vague

to fully understand the referent. Intuitively this motivation between a boy and a man, but it is not necessary for a validE is valid. However, the nn should have a very low cost of interpretation to make this choice. We could model this with

assumption, because there is very strong evidence for it- the rules:

the juxtaposition of two nouns in the input-so there is little duck1.. i(z) 9  duck(z)

doubt that nn holds. Thus we see nn should have two num- duckmo,,.(x) 9  duck(z)

I bers associated with it: a low cost of assumption, and a low male(z) 9 A adult(4 2  Je(z)

quality of explanation. It should notbe surprising to see that male(z) '9 A child(z)'2 D he(z)
two numbers are needed to search for an explanation: even However, this alone is not enough. Consider the sentence

i in A* search one needs both a cost function, g, and a heuristic "The pen is in the box." By the rules above (and assuming
function h'. a box is defined as an enclosure) we could derive three in-

The low quality of explanation is often the sign of a need terpretations, where either a writing implement, a swan, or a
I to search for a better explanation, but the need depends on fenced enclosure is inside a box. All three would get a cost of

the task at hand. To diagnose a failure in the compressor, it is $20.8. To choose among these three, we would have to add
useful to know that a "lube-oil alarm" is an alarm that sounds knowledge about the likelihood of these three things being
when the lube-oil pressure is low, and not, say, and alarm in boxes, or add knowledge about the relative frequencies of

I made out of lube-oil. However, if the input was "Get me a the three senses of "pen". For example, we could change the
box of lube-oil alarms from the warehouse," then it may not numbers as follows:
be necessary to further explain the nn relation.1 Mayfield writing pen(z)"9 D pen(z)

I (1989) characterizes a good explanation as being applicable enclosure(z) "31 A fenced(z) "31 A etci(z) "31 D pen(z)
to the needs of the explanation's user, grounded in what is female(z) "4 A swan(z)-' D pen(c)
already known, and completely accounting for the input. This has the effect of making the writing implement sense

i To put it another way, consider the situation where a ma- slightly more likely than the fenced enclosure sense, and
gician pulls a rabbit out of his hat. One vossible explana- much more likely than the female swan sense. These rules
tion is that the rabbit magically appeared in the hat. This maintain the desirable property of commensurability, but
explanation is of very high quality-it perfectly explains the the numbers are now even more overloaded. Hobbs et

i situation-butit has a prohibitive assumption cost. Analter- al. already are giving the numbers responsibility for both
nate explanation is that the magician somehow used slight of "probabilities" and "semantic relatedness", and now we have
hand to insert the rabbit in the hat when the audience was dis- shown they must account for word frequency information,
tracted. This is of fairly low quality-it fails to completely and both the cost of assumptions and the quality of the ex-
specify the situation-but it has a much lower assumption planation, the two measures needed to control search. As

'Translating "lube-oil alarm" as (3o)lubeoil(o) is suspect; in our previous criticisms have shown, a single number cannot
I the case of an alarm still in the box. there is not yet any particular represent even the cost and quality of an explanation, much

oil for which it is the alum. less these additional factors.
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Also note that to constrain search, it is importaz, to con- (5) We would like to be able to go on and find alternative

sider bottom-up clues, as in (Charniak 1986) & Norvig explanations, perhaps one where Mary is speaking from the
1987). It would be a mistake to use the roles given i, e in a afterworld, or she is lying, or the speaker is lying. One could
strictly top-down manner, just because they are reminiscent imagine rules for truthful and untruthful saying, and such
of Prolog rules. rules could be applied to Mary's speech act. However, since

(3) There is no notion of a "good" or "bad" interpreta- the goal of the interpretation process is "providing the best
ion, except as an epiphenomenon of the interpretation rules. explanation of why the sentences would be true," it does not
In the "pen" example, the difference between failing com- seem that we could use the rules to consider the possibility of
pletely to understand "pen" and properly disambiguating it to the speaker being untruthful. The truth of the text is assumed
fenced-enclosure is less than 10% of the total cost. The num- by the model, and the speaker is not modeled.
hers in the rules could be changed to increase this difference,
but it would still be a quantitative rather than qualitative dif- Probability Based Commensurability I
ference. The problem is that there are at least three reasons Charniak and Goldman (19P8) started out with a model very
why we might want to maintain ambiguity: because we are similar to Hobbs et al., but became concerned with the lack
unsure of the cause of an event, because it is so mundane as of theoretical grounding for the numbers in rules, much as we
to not need an explanation, and because it is so unbelievable were. Charniak and Goldman (1989a, 1989b) switched to a
that there is no explanation. This theory does not distinguish system based strictly on probabilities in the world, combined
these cases. The theory has no provision for saying "I don't by Bayesian probability theory. Although this solves some
understand-the only interpretation I can find is a faulty one," problems, other problems remain, and some new ones are
and then looking harder for a better interpretation, introduced. For example:

(4) There is no way to enforce a penalty worse than the (1) The approach in (1989a) is based on "events and ob-
cost of an assumption. Consider the sentence "Mary said jects in the real world". As the authors point out, it cannot I
she had killed herself." The logical form is something like: deal with texts involving modal verbs, nor can it deal with

say(Mary, X)s3 A z = kill(Mary, Mary) s3. speech acts by characters, or texts where the speaker is un-

Thus, for $6 we can just assume the logical form, without cooperative. So problem (4) above remains.
noticing the inherent contradiction. Now let's consider some (2) Because the probabilities are based on events in the
rules. We've collapsed most of the interesting parts of these real world, the basic system often failed to find stories as
rules into etc predicates, leaving just the parts relevant to the coherent as they should be. For example, the text:
contradiction: Jack got a rope. He killed himself.

alive(p)"' A etc2(p, z) "9 D say(p, x) suggests suicide by hanging when interpreted as a text, but
-,alive(p)' s A etc3(m, p).5 D kill(m, P) when interpretea as a partial report of events in the world,

We've ignored time here, but the intent is that the alive pred- that interpretation is less compelling. (After all, the killing
icate is concerned with the time interval or situation after the may have taken place years after the getting.) It is only when
killing, including the time of the saying. Now, an alternative the two events are taken as a part of a coherent text that we as-
interpretation of L is: sume they are related, temporally and causally. In Charniak I

alive(Mary)S.3 A -alive(Mary)S1 5  and Goldman (1989a), the coherence of stories is explained
A etc2(Mary, x)$"' A etC3(Mary, Mary) $I'5  by a (probabilistic) assumption of spatio-temporal locality

between events mentioned in adjacent sentences in the text.

Presumably there should be some penalty (finite or infinite) Thus the story would be treated roughly as if it were: U
for deriving a contradiction, so this interpretaton will total Jack got a rope. Soon aer, nearby, a male wasfound to
more than $6. The problem is there is no way to propagate have killed himself.
this contradiction back up to the first interpretation, where a
we just assumed both clauses. We would like to penalize that The Bayesian networks compute a probability of hanging of

interpretation, too, so that it costs more than $6, but there is .3; this seems about right for the later story, but too low for
no way to do so. the original version.

A solution to this problem is to legislate that rather than Perhaps anticipating some of these problems, Chamiak
finding a solution to the logical form of a sentence, L, the and Goldman (1989b) introduce an alternate approach in-
hearer must find a solution to the larger set of propositions, volving a parameter, E, which denotes the probability that
L', where L' is derived from L by some process of direct, two arbitrary things are the same. They claim that in stories I"obvious' inference. We do not want the full deductive ibis parameter should be set higher than in real life, and that

closure from L, of course, but we want to allow for some this will lead, for example, to a high probability for the in-
amount of automatic forward chaining from the input. terpretation where the rope that Jack got is the one he used
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for hanging. But E does a poor job of capturing the notion assistance as to what to do. However, if the model were ex-
of coherence. Consider. tended from Bayesian networks to influence diagrams, then

John picked an integerfrom one to tn. Mary did so to. a decision could be made, and it would also be possible to
direct search to the important parts of the network.

sHere the probability wht they picked the same number Deliberate ambiguity is also a problematic area. In a pun,

should be. 1, regardless of whether we are observing real for example, the speaker intends that the hearer recover two
life or reading a story, and regardless of the value of E. distinct interpretations. Such subtlety would be lost on the

Charniak and Goldman (1989b) go on to propose a theory models discussed here. This issue is discussed in more depth
of "mention" rather than a theory of coincidence, but they do in Norvig (1988).
not develop this alternative. A number of arguments show that strict maximization of

(3) It seems that for many inferences, frequency in the probability (or minimization of cost) is a bad idea. First, as
world does not play an important role at all. Consider the we have seen, we must sometimes admit that an input is truly
text: ambiguous (intentionally or unintentionally).

Jack wanted to tie a mattress on top of his car. He also felt Second, there is the problem of computational complexity.
like killing himself. He got some rope. Algorithms that guarantee a maximal solution take exponen-

Now, the probability of getting a rope to hang oneself given tial time for the models discussed here. Thus, a large-scale
suicidal feelings must be quite low, maybe .001, while the system will be forced to make some sort of approximation,
probability of getting a rope for tying given a desire to secure using a less costly algorithm. This is particularly true be-
a mattress is much higher, maybe .5. Thus the Charniak- cause we desire an on-line system-one that computes a par-
Goldman model would strongly prefer the latter interpreta- tial solution after each word is read, and updates the solution
tion. With the "mention" theory, it would like both interpre- in a bounded period of time.
tations. Yet a sample of informants mostly found the text Third, communication by language has the property that
confusing-they reported finding both interpretations, and "the speaker is always right". In chess, if I play optimally
were unable to choose between them. It would be useful and my opponent plays sub-optimally, I win. But in lan-
to find a better characterization of when frequencies in the guage understanding, if I abduce the "optimal" interpreta-
world are useful, and when they appear to be ignored in favor tion when the speaker had something else in mind, then we
of some more discrete notion of "reasonable connection." have failed to communicate, and I in effect lose. Put an-

other way, there is a clear "evolutionary" advantage for op-
Problems With Both Models timal chess strategies, but once la -' age has evolved to the

Neither model is completely explicit on how the final expla- point where communication is possible, there is no point for

nation is constructed, or on what to do with the final explana- a hearer to try to change his interpretation strategy to derive

tion. In a sense, Hobbs et al.'s system is like a justification- what an optimal speaker would have uttered to an optimal

based truth-maintenance system that searches for a single hearer-becauss there are no such optimal speakers. Indeed,
consistent state, possibly exploring other higher-cost states there is an advantage for communication strategies that can

along the way. Charniak and Goldman's system is like be computed quickly, allowing the participants to spend time

an assumption-based truth-maintenance system (ATMS) that on other tasks. By the second point above, such a strategy

keeps track of all possible worlds in one grand model, but must be sub-optimal.

needs a separate interpretation process to extract consistent Earlier we said that Charniak and Goldman (1989b) intro-
solutions. Thus, the system does not really do interpretation duced the parameter E to account for the coherence of sto-
to the level that could lead to decisions. Rather, it provides ries. But they also provide a brief sketch of another account,
evidence upon which decisions can be based. one where, in addition to deriving probabilities of events in

Both approaches are problematic. Imagine the situation the world, we also consider the probability that the speaker
where a hearer is driving a car, and is about to enter an in- would mention a particular entity at all. Such a theory, if

tersection when a traffic officer says "don't - stop". The worked out, could account for the difficulty in processing
hearer derives two possible interpretations, one correspond- speech acts that we have shown both models suffer from.
ing to "Don't stop." and the other corresponding to "Don't. However, a theory of "mention" alone is not enough. We
Stop." Hobbs et al.'s system would assign costs and chose also need theories of representing, intending, believing, di-
the one with the lower cost, no matter how slight the dif- rectly implying, predicting, and acting. The chain of reason-
ference. A more prudent course of action might be to rec- ing and acting includes at least the following:
ognize the ambiguity, and seek more information to decide H attends to utterance U by speaker S
what was intended. Charniak and Goldman's system would H infers "S said U to H"
assign probabilities to each proposition, but would offer no H infers "L represents U"
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H infers "L directly implies Ll" tern. But the models discussed here have serious limitations, i
H infers "S intended H to believe S believes L" due to technical problems, and due to a failure to embrace
H infers "S intended H to believe L" language as a complex activity, involving actions, goals, be.
H believes a portion of L' compatible with H's beliefs liefs, inferences, predictions, and the like. We don't believe 3
H forms predictions about S's future speech acts that knowledge of probability in the world, plus a few gen-
H acts accordingly eral principles (such as E) can lead to a viable theory of lan-

This still only covers the case of successful, cooperative guiage use. This "complicated" side of language has been
communication, and it leaves out some steps. A successful studied in depth for over a decade (a list very similar to our
model should be able to deal with all these rules, when nec- chain of reasoning and acting appears in Morgan (1978)), so
essary. However, the successful model should also be able to our task is clear to marry these pre-theoretic "complicated"
quickly bypass the rules in the default case. We believe that notions with the formal apparatus of commensurable abduc- I
the coherence of stories stems primarily from the speaker tive interpretation schemes.
presenting evidence to the hearer in a fashion that will lead
the hearer to focus his attention on the evidence, ard thereby Refereitces
derive the inferences intended by the speaker. Communica- Charniak, E. A neat theory of marker passing, AAAJ-86.
tion is possible because it consists primarily of building a Charniak, E. and Goldman, R.
single shared explanation. It is only in unusual cases where interpretation, Proc. of the 26th Meeting of the ACL.
there are mwtiple possibilities that must be weighed against
each other and carried forth. Charniak, E. and Goldman, R. (1989a) A semantics for

Both models seem to have difficulty distinguishing ambi- probabilistic quantifier-free first-order languages, with
guity from multiple explanations. This makes a difference particular application to story understanding, IJCAI-89.
in cases like the following: Charniak, E. and Goldman, R. (1989b) Plan recognition in

John was wondering about lunch when it started to rain. stories and in life, Uncertainty Workshop, IJCAI-89. IHe ran into arestaurant. Hobbs. J. R., Stickel, M., Martin, P. and Edwards, D. i

Here there are two reasons why John would enter the (1988) Interpretation as abduction, Proc. of the 26th
restaurant-to satisfy hunger and to avoid the rain. In other Meeting of the ACL.
words there are two explanations, say, A D R and B D R, Mayfield, J. M. (1989) Goal analysis: Plan recognition in l
and we would like to combine them to yield A A B D R. dialogue systems, Univ. of Cal. Berkeley EECS Dept.
As we understand it, Hobbs et al. appear to use "exclusive Report No. UCB/CSD 89/521.
or" in all cases, so they would not find this explanation. -
Chamiak and Goldman allow competing explanations to be McCarthy, J. (1986) Applications of circumscription to for-

joined by an "or" node, but require competing lexical senses malizing common-sense knowledge. Artificial Intelli-
to be joined by "exclusive or" nodes. So they would find gence, 26(3).
A v B D R. In other words, they would find both explana- Morgan, J. L. (1978) Toward a rational model of discourse
tons probable, which is not quite the same thing as finding comprehension. Theoretical Issues in Natural Lan-
the conjunction probable. Now consider guage Processing.

He's a real sweetheart. Norvig, P. (1987) A Unified Theory of Inference for Text
This has a straignt and an ironic reading: sweetheart(z) Understanding. Univ. of Cal. Berkeley EECS Dept.
and -,sweetheart(z). The disjunction is a tautology and the Report No. UCB/CSD 87/339.
conjunction is a contraliction, so in this case the Hobbs ap- Norvig, P. (1988) Multiple simultaneous interpretations of
proach of keeping the alternatives separate seems better than ambiguous sentences. Proc. of the 10th Annual Con- I
allowing their disjunction. Finally, consider:, ference of the Cognitive Science Society.

Mary was herding waterfowl while dodging hostile gun. Norvig, P. (1989) Marker passing as a Weak Method for
fire. John saw her duck. Text Inferencing. Cognitive Science, 13, 4, 569-620. I
Here we do not want to combine two the interpretations into a
single interpretation. If we amend a model to allow multiple
explanations, we must be careful that we don't go too far.

Conclusions
Abduction is a good model for language interpretation, and
commensurability is a vital component of an abduction sys-
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Introduction using unification, producing a set of possible speech acts.

My recent dissertation [Hinkelman, 1989] describes an The linguistic rules allow for the arbitrary nature of
application of automated abduction to speech act recog- linguistic conventions, but treat these conventions uni-
nition. It includes a unification pattern matching com- formly as incremental evidence for some range of ac-
ponent, which allows lexical and syntactic cues to sug- tions. This method allows the system to distinguish

gest possible speech act interpretations, and a weighted between "Can you pass me the salt?", which is likely a

heuristic search component which explores an inference request, and "Are you able to pass me the salt?" which

space of plan recognition rules. Much of the interest is likely a yes/no question.

of this system is that it can handle a broad range of The more general method is based on Allen's [Allen,

examples precisely because of the integration of two ab- 1983. It takes an action as input and uses weighted
duction techniques. My experiences with this system heuristic search through a space of plan recognition in-
have led to a number of conclusions about automated ferences. The inference rules are obtained by inverting
abduction. a set of plan construction rules. This general method

is appropriate for domain plan recognition as well as
speech act recognition, and serves as a backup to the

Speech Act Recognition more efficient, specialized linguistic scheme. It captures
The problem of reconstructing an agent's intentional the relationship between asserting "I need X" and re-
structure from observed actions, or plan recognition, is a questing the hearer to provide X, making full use of
fundamental application of automated abduction. Plan contextual information.
recognition occurs in the domain of natural language Integration between these two components is achieved
processing in two forms. The more obvious is the recon- by invoking the general method only when the linguistic
struction of plans and goals that are unrelated to lan- method fails to provide a suitable interpretation. 'Suit-

guage, from linguistic observations. I will refer to such ability' is determined by a mechanism interesting in its
goals and plans as domain plans. Domain plans may own right; please see the accompanying papers for de-
be described in texts such as stories, or discussed as in tails. The above is simply background for subsequent
ordinary talk. In ordinary talk, however, it is necessary discussion points.
to know whether a described action is being suggested,
requested, asserted, denied, forbidden, and so on. Thus Discussion
the second type of plan recognition arises. It becomes Experience with abductive speech act recognition leads
useful to view the utterances themselves as actions, from to several observations.
which communicative intentions can be recognized. My
work to date has concentrated on the recognition of such A Question of Methodology
speech acts [Searle, 1969], and integrates general, the- The goal of this work is to provide a model of human
oretically powerful mechanisms with a more specialized language processing. It addresses the phenomenon of
linguistic scheme for broad coverage of the phenomena. "indirect" speech acts, and as such must provide an ac-

The input utterances are first processed by the purely count of various classes of these acts and how they are
linguistic scheme, which makes no use of context. The identified from what is said. I therefore evaluate the sys-
linguistic scheme consists of unification-based pattern tem according to its ability to provide the same identi-
matching. Patterns of linguistic features are matched fications of speech acts that people do. Presently "what
against a pre-parsed string, yielding sets of partial people do" is as much a matter of the linguist's intu-
speech act descriptions. The descriptions are composed itions as of psycholinguistic studies of subjects [Gibbs,
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19861 and one hopes that more psycholinguistic studies to learning of lower level correlations, and vice versa.
will appear. With appropriate architectural considera- My theory of speech act recognition includes the claim I
tions, tasks which are easy for people should be easy that many of the correlations embodied in the linguis-
for the system, and tasks which are difficult for people tic component do in fact originate from extended infer-
should be difficult for the system. Such evaluation meth- ence; one way of doing this was described by Pazzani
ods are clearly inappropriate for systems which seek to in the explanation-based learning paradigm (Pazzani, ]. 1improve on human performance. Such learning may not be desireable in all abductive in-

ference domains, but in those which model intelligent
The Two-Level Architecture agents the flexibility is crucial. Serial, inference-based
Two-level systems such as this one are instances of a methods may be slow or brittle, but the main weakness I
general principle of computer systems design [Lampson, of the speech act inference component is in the area of
1983], which specifies that the vast majority of ordi- controlling search.
nary tasks should be performed by an ordinary method I
which is kept simple and efficient by offloading the dif- Inference Methods
ficult cases to a more powerful, expensive, and rarely
invoked mechanism. Care must be taken to allow the The relationships among methods of inference for plan
two components to integrate smoothly. For those ab- recognition have been discussed in detail by Kautz I
duction applications in which there is a similar division (Kautz, 1987]. Kautz himself presents a deductive
of tasks into common, simple and uncommon, difficult method of plan recognition, with circumscription. The
tasks, a two-level design would be appropriate, data structure is a hierarchy of (multistep) actions, de-

In an abductive planning system, for example, the fined by an abstraction (is-a) and decomposition (step I
otput plans can be viewed as an "explanation" of en- of) relation. For each observed action, the relations are
vironmental stimuli in terms of their role in meeting the used to identify all possible ways for this action to par-
agent's goals. One can imagine a planning system that ticipate in actions marked as being ends in themselves.
has a reactive component, a production system map- A series of observed actions can be explained as the min- i
ping sensory stimuli onto rather immediate actions, and imal set of end actions necessary to account for these
a plan construction component, which may screen im- steps. The best explanation is defined as the most par-
mediate actions or search for longer-term methods. Such simonious, corresponding to minimization of the End
an approach is being pursued by Feist [Feist, 1. predicate in the model theory. Further criteria for a

best explanation are given, but without correspondence
Knowledge Representation to a feature of the model theory.
The two-level design concept applies to the underlying Kautz shows how this circumscription method can be I
knowledge representation as well. In the speech act applied to domain plan recognition in the cooking do-
interpreter, for example, the pattern matching compo- main, to medical diagnosis, and to speech act recog-
nent may be amenable to a stochastic, massively parallel nition. I cannot speak to the aptness of the medical
treatment such as a connectionist network. Stochastic diagnosis application. For speech act recognition, what I
massive parallelism shows great promise as a form of I have found is that speech acts have a role in ordinary
knowledge representation suitable for artificial intelli- domain plans which is ad hoc rather than prototypical
gence. However, as a methodological strategy discrete to these plans. This makes incorporation of speech act
methods avoid certain tedious knowledge engineering steps expensive because they would have to be inserted i
tasks and promote clear, testable theories. They also at every point where they may rarely be needed. And
avoid unresolved issues in connectionist representations, although it may be possible to construe the linguistic
such as the role and method of variable binding, or the features as action observations, using linguistic pattern i
incorporation of the temporal continuity of input. For matching rather than the step-of relation provides more
example, most connectionist models of word recognition robustness in accounting for the variable phenomena.
must replicate their structure for subsequent time inter- Thus we sacrifice the model-theoretic semantics, which
vals [McClelland and Elman, 1986]. It is interesting to in any case did not incorporate all aspects of a best I
note that FOPC has the inverse problem with respect explanation.
to variable binding, a solution to which was proposed Kautz's method has a clearly specified inference pro-
by Charniak [Charniak, ]. cedure. It therefore has better-defined results than dy-

The plan reasoning component requires representa- namic logic or default logic, in which the results depend
tion of very general inference patterns which are much on the order of rule application. Statistical methods
more difficult to formulate in such low-level terms. Ad- require an acceptance rule, such as "accept the expla-
vances in knowledge representation may someday illumi- nation with the highest probability", and counterexam- I
nate a relationship between a slow, serial reasoner and plea to any such rule seem inevitable in real applications.
the 'lower' level, and this would make it much easier Thus although all of these methods show promise, they
to explain how learning paths of reasoning could lead all have remaining difficulties.
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A Problem of Belief Revision Rumelhart, editors, Parallel Distrbuted Processing.
A fundamental feature of abductive methods is that MIT Press, Cambridge, MA, 1986.
what appears to be the best explanation of some phe- [Pazzani, ] M. Pazzani. Learning indirect speech acts.
nomenon may later prove to be wrong. Subsequent in- Submitted to Association for Computational Linguis-
put can therefore require non-incremental changes to tics, 1989.
the state of knowledge, if explanations are incorporated (Searle, 1969] John Searle. Speech Acts. Cambridge
into stored knowledge. Methods of truth maintenance [Ser, 1969.

have been proposed to allow retraction of explanations University Press, New York, 1969.

if any of their links are invalidated. But even when
applicable, these methods too leave unspecified how to
determine which explanation is "better". The problems
in detecting a need for belief revision, arbitrating it, and
updating the database can all be formidable.

Conclusion
Application of abduction to speech act recognition has
used a methodology oriented toward obtaining perfor-
mance analogous to that of human intuitions and be-
havior. It has shown the utility of a two-level system in
which the common cases are handled efficiently and the
difficult ones with greater power. It raises specific prob-
lems for current knowledge representation and inference
methods. And it may yet be illuminated by reports on
abductive methods from other areas.

References
[Allen, 1983] James F. Allen. Recognizing intentions

from natural language utterances. In M. Brady and
R. C. Berwick, editors, Computational Models of Dis-
course. MIT Press, Cambridge, MA, 1983.

[Charniak, ] Eugene Charniak. Motivation analysis, ab-
ductive unification, and non-monotonic equality. Un-
published Manuscript, Brown University, Providence,
RI.

[Feist, ] Steven Feist. Integrating symbolic planning
and reactive execution. Thesis Proposal, University
of Rochester Department of Computer Science, 1989.

[Gibbs, 1986] Ray W. Gibbs. What makes some indirect
speech acts conventional? Journal of Memory and
Language, 15:181-196, 1986.

[Hinkelman, 1989] Elizabeth Ann Hinkelman. Linguis-
tic and pragmatic constraints on utterance inter-
pretation. Technical Report TR 288, University of
Rochester Department of Computer Science, 1989.

(Kautz, 1987] Henry A. Kautz. A formal theory of plan
recognition. Technical Report TR 215, University
of Rochester Department of Computer Science, May
1987.

[Lampson, 1983] Butler W. Lampson. Hints for com-
puter systems design. Operating Systems Review,
17(5):33-48, 1983.

[McClelland and Elman, 1986] J. L. McClelland and
J. L. Elman. Interactive processes in speech percep-
tion: The trace model. In J.L. McClelland and D. E.

25



I
I

Goal-based explanation

Ashwin RI

Georgia Institute of Technology
School of Information and Computer Science I

Atlanta, Georgia 30332-0280
(404) 853-9372

ashwin@gatech. edu

In order to learn from experience, a reasoner must be (3) Because red, the symbol of warning, is the I
able to explain what it does not understand. When a color of the fire brigade's uniform.
novel or poorly understood situation is processed, it is (4) Because red suspenders look funny if they
interpreted in terms of knowledge structures already in aren't part of a uniform.
memory. As long as these structures provide expecta- Consider (1). This does not seem like an explanation I
tions that allow the reasoner to function effectively in for S-1. The reason isn't that (1) is false, but rather that
the new situation, there is no problem. However, if these there seems to be no causal connection between (1) and
expectations fail, the reasoner is faced with an anomaly. S-1. Thus it is not sufficient for a proposed explanation
The world is different from its expectations. In order to to be true; an explanation must be causally connected
learn from this experience, the reasoner needs to know to the anomaly. It must contain a set of premises and
why it made those predictions. It also needs to explain a causal chain linking those premises to the anomalous
why the failure occurred, i.e., to identify the knowledge proposition. If the reasoner believes the premises, the
structures that gave rise to the faulty expectations, and proposition ceases to be anomalous since the causal in- I
to understand why its domain model was violated in teractions underlying the situation can now be under-
this situation. Finally, it must store the new experience stood.
in memory for future use. Abduction, the construction However, not all causal structures are explanations. I
of explanations, is a central component of this learning For example, (2) is causally relevant to S-1, but it still
process. doesn't feel like an explanation. To understand why, let

Abduction is often viewed as inference to the "best" us make the anomaly in S-1 explicit. The real question
explanation. However, the definition of "best" is depen- isn't "Why do firemen wear red suspenders?", but rather
dent on the goals of the reasoner in forming the explana- one of the following:
tion and not just on the correctness of the causal chain
underlying the explanation. In situations where there is S-2: Why do firemen wear only red suspenders?
no one "right" explanation, the "best" explanation must If firemen are a representative sample of the gen-
be more than a causal chain that describes the domain; eral population, we would expect them to wear sus-
it must also address the reason that an explanation was penders of various colors, and even belts.
required in the first place. This in turn determines what S-3: Why doesn't everyone wear red suspenders?
the reasoner can learn from the explanation. If red suspenders are indeed attractive or desirable,

we would expect everyone to wear red suspenders,
What is an explanation? not just firemen.

The need for an explanation arises when some observed The reason that the joke is funny is that (2) misses I
fact doesn't quite fit into the reasoner's world model, the point of the question. If the point is made explicit
i.e., the reasoner detects an anomaly. An explanation as in S-2, (3) is a possible explanation for the anomaly.
is a knowledge structure that makes the anomaly go Alternatively, if the real question is intended to be S-3,
away. To illustrate the nature of such a structure, let us (4) is a possible explanation. The point is that, in order
consider some candidate explanations for the anomaly to qualify as an explanation, a causal description must
underlying the following popular joke: address the underlying anomaly.

S-1- Why do firemen wear red suspenders? To state this another way, an explanation must ad- i
dress the failure of the reasoner to model the situation

(1) Because it is always raining in New Haven. correctly. In addition to resolving the incorrect pre-
(2) To keep their pants up. dictions, it must also point to the erroneous aspect of
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I the chain of reasoning that led to the incorrect predic- should be used to re-index the knowledge structure ap-

tions. An explanation is useful if it allows the reasoner propriately.
to learn;' the claim here in that an explanation must be Knowledge organization goals can be categorized by
both causal and relevant in order to be useful, the type of gap that gave rise to them, or by the type

An explanation, therefore, must address two types of of learning that results from their satisfaction:
questions: 1. Missing knowledge - learn new knowledge to fill
1. Why did things occur as they did in the world? gap in domain model

This question gives rise to knowledge acquisiiion goals, 2. Unconnected knowledge - learn new connection
which are goals to collect information or knowledge or new index
about the domain that the anomaly has signalled as
being missing. 3. Implicit assumption - learn heuristics for when to

I 2. Why did I fail to predict this correctly? This ques- check assumption explicitly

tion gives rise to knowledge organization goals, which 4. Calculated simplification - learn heuristics for
are goals to improve the organization of knowledge in when to check assumption in detail
memory. 5. Explicit assumption - learn new knowledge to cor-

The answer to the firmt question is called a domain rect the assumption
explanation since it is a ',.atement about the causality 6. Conjunctive assumptions - learn new interac-
of the domain. The answer to the second question is tions
called an introspective or meta-explanation since it is a
statement about the reasoning processes of the system. Domain explanations: Addressing
The claim here is that an explanation must supply both knowledge acquisition goals
answers in order to be useful. Let us consider the second Knowledge acquisition goals seek causal knowledge
one first. about the domain. A domain explanation is a causal

Introspective explanations: Addressing chain that demonstrates why the anomalous proposition
organization goals might have occurred by introducing a set of premisesknowledge othat causally lead up to that proposition. If the reasoner

One of the questions an explanation must address is why believes or can vcrify the premises of an expls ation, the
the reasoner failed to make the correct prediction in a 4xinclusion is said to be explained. Explanations are uf-
particular situation. This could happen in one of the ten verbalized using their premises. However, the real
following ways: explanation includes the premises, the causal chain, and

1. Novel situation: The reasoner did not have the any intermediate assertions that are part of the causal
knowledge structures to deal with the situation. chain.

Domain explanations can be divided into two broad
2. Incorrect world model: The knowledge structures categories, physical and volitional.

that the reasor,.r applied to the situation were incom-
plete or incorrect. Physical explanations Physical explanations i'.

3. Mis-indexed domain knowledge: The reasoner events with the states that result fom them, and furti-
did have the knowledge structures to deal with the events that they enable, using causal chains sim'

situation, but it was unable to retrieve them since those of [Rieger, 1975] and [Schank and Abelso, ..,'

they were not indexed under the cues that the situa- Physical explanations answer questions about the phys-

tion provided. ical causality of the domain.

I When an explanation is built, the reasoner needs to Volitional explanations Voli-
be able to identify the kind of processing error that oc- tional explanations link actions that people perform to
curred and invoke the appropriate learning strategy. For their goals and beliefs, yielding an understanding of the
example, if an incomplete knowledge structure is applied motivations of the characters. Volitional explanations
to a situation, the resulting processing error represents thus correspond to the filling out of the "belief-goal-
both the knowledge that is missing, as well as the fact plan-action" chain [Schank and Abelson, 1977; Wilks,
that this piece of knowledge, when it comes in, should 1977; Wilensky, 1978; Schank, 1986], although we need
be used to fill in the gap in the original knowledge struc- to expand the vocabulary of this chain in order to model
ture. Similarly, if an error arose due to a mis-indexed such explanations adequately [Ram, 1989]. A volitional
knowledge structure, the explanation, when available, expladation relates the actions in which the characters
_ _ _in the story are involved to the outcomes that those ac-

' Learning is often performed in the service of a problem. tions had for them, the goals, beliefs, emotional slates
solving task; thus knowledge goals of the type described here and social states of the characters as well as priorities
often arise from the problem-solving goals of the reasoner. or orderings among the goals, and the decision processI This issue is beyond the scope of this paper. that the characters go through in considering their goals,
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goal-orderings and likely outcomes of the actions before The explanation cycle
deciding whether to do those actions. A detailed voli- An explanation-based understander must be able to de-
tional explanation involving the planning decisions of a tect anomalies in the input, and resolve them by build-
character is called a decision model (Ram, 1989]. ing motivational and causal explanations for the events

Decision models provide a theory of motivational co- in the story in order to understand why the characters
herence for stories involving volitional agents. When acted as they did, or why certain events occurred or did
a decision model is applied to the actions of a given not occur. This process characterizes both "story un-
character in a story, it may give rise to questions based derstanders" that try to achieve a deep understanding
on faulty assumptions or inconsistencies identified in the o the stories that they read, as well as programs that I
application of the decision model to the story. These in- need to understand their domains in service of other
consistencies signal anomalies, which must be explained problem-solving tasks.
by determining whether different parts of the decision The process model for the task of explanation consists
model (e.g., the goals of the agent, his beliefs about the of the following steps: I
outcome, or his volition in deciding to perform the ac-
tion) are actually present as assumed. These anomalies 1. Anomaly detection: Anomaly detection refers to
give re lto a set of knowledge acquisition goals which the process of identifying an unusual fact that needsgive risoe treso s t sfy e auisngvitionoal ew - explanation. The anomalous fact may be unusual inthe reasoner tries to satisfy by building volitional expla- the sense that it violates or contradicts some piece of I

information in memory. Alternatively, the fact may
be unusual because, while there is no explicit contra-

Components of explanation patterns diction, the reasoner fails to integrate the fact satis- I
Standard domain explanations known to the reasoner factorily in its memory.
are called explanation patterns [Schank, 1986]. Explana- 2. Explanation pattern retrieval: When faced with
tion patterns (XPs) have four main components [Ram, an anomalous situation, the reasoner tries to retrieve
1989]: one or more explanation patterns that would ex-

plain the situation. These patterns could be abstract
1. PRE-XP.NODES: Nodes that represent what is causality templates, such as those of (Schank, 1986],

known before the XP is applied. One of these nodes, or descriptions of causality underlying specific cases I
the EXPLAINS node, represents the particular action known to the reasoner, such as those used by case-
being explained, based reasoners (e.g., [Kolodner, 1988; Hammond,

2. XP-ASSERTED-NODES: Nodes asserted by the 1989]).
XP as the explanation for the EXPLAINS node. 3. Explanation pattern application: Once a set
These comprise the premises of the explanation. of potentially applicable explanation patterns is re-

trieved, the reasoner tries to use them to resolve the
3. INTERNAL-XP-NODES: Internal nodes as- anomaly. This involves instantiating the XP, filling

serted by the XP in order to link the XP-ASSERTED- in the details through elaboration and specification,
NODES to the EXPLAINS node. and checking the validity of the final explanation. An

4. LINKS: Causal links asserted by the XP. These XP is instantiated by unifying the EXPLAINS node

taken together with the INTERNAL-XP-NODES are of the XP with the description of the situation be-

also called the internals of the XP. ing explained, and instantiating the INTERNAL-XP-
NODES and LINKS. If all the PRE-XP-NODES and

An explanation pattern states that the XP- INTERNAL-XP-NODES of the XP fit the situation,
ASSERTED-NODES lead to the EXPLAINS node the hypothesis is applicable. If the unification fails, I
(which is part of a particular configuration of PRE- the hypothesis is rejected.2

XP-NODES) via a set of INTERNAL-XP-NODES, the 4. Hypothesis verification: The final step in the ex-
nodes being causally linked together via the LINKS. planation process is the confirmation or refutation I
In other words, an XP is a causal chain composed of possible explanations, or, if there is more than
of a set of nodes connected together using a set one hypothesis, discrimination between the alterna-
of LINKS (causal rules or XPs). The "antecedent" tives. A hypothesis is a causal graph that connects
of this causal chain is the set of XP-ASSERTED- the premises of the explanation to the conclusions via I
NODES, the "internal nodes" of the causal chain are a set of intermediate assertions. At the end of this
the INTERNAL-XP-NODES of the XP, and the "conse- step, the reasoner is left with one or more alterna-
quent" is the EXPLAINS node. The difference between tive hypotheses. Partially confirmed hypotheses are
XP-ASSERTED-NODES and INTERNAL-XP-NODES maintained in a data dependency neLwork called a
is that the former are merely asserted by the XP with-
out further explanation, whereas the latter have causal 2There is also the possibility of modifying the hypothesis
antecedents within the XP itself. to lit the situation [Schank, 1986; Kass et al., 1986].

I
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I hypothesis tree, along with questions (knowledge ac- References
quisition goals) representing what is required to verify [Hammond, 1989] Kristian J. Hammond, editor. Pro-
these hypotheses. ceedings of a Workshop on Case-Based Reasoning.

Morgan Kaufmann, Inc., Pensacola Beach, FL, May
Evaluating explanations 1989.

There are five criteria for evaluating the goodness of an [Kaa et al., 1986] Alex Kass, David Leake, and
explanation: Christopher Owens. SWALE: A Program That Ex.
1. Believability: Do I believe the XP from which the plains, pages 232-254. Lawrence Erlbaum Associates,

hypothesis was derived? This is not an issue when all Hillsdale, NJ, 1986.
XPs in memory are believed, but for a program that (Kolodner, 19881 Janet L. Kolodner, editor. Proceedings
learns new XPs, some of which may be incomplete, of a Workshop on CaseBased Reasoning. Morgan

the believability of the XP is an important criterion in Kaufmann, Inc., Clearwater Beach, FL, May 1988.

deciding whether to believe the resulting hypothesis.
(Ram, 1987] Ashwin Ramn. Aqua: Asking questions

2. Applicability: How well does the XP apply to this am, 198]rshwin an . Au Askingsons
and understanding answers. In Proceedings of thesituation? Did it fit the situation without any modi- Sixth Annual National Conference on Artificial In-fications? telligence, pages 312-316, Seattle, WA, July 1987.

I 3. Relevance: Does the XP address the underlying American Association for Artificial Intelligence, Mor-
anomaly? Does it address the knowledge goals of the gan Kaufman Publishers, Inc.
reasoner? [Ram, 1989] Ashwin Ram. Question-driven under.

4. Verification: How definitely was the explanation standing: An integrated theory of story understand.
confirmed or refuted? ing, memory and learning. PhD thesis, Yale Univer-

5. Specificity: How specific is the XP? Is it abstract sity, New Haven, CT, May 1989. Research Report
and very general (e.g., a proverb), or is it detailed and #710.
specific? [Rieger, 1975] C. Rieger. Conceptual memory and infer-

Intuitively, a "good" explanation is not necessarily ence. In Roger C. Schank, editor, Conceptual Infor.
one that can be proven to be "true" (criterion 4), but mation Processing. North-Holland, Amsterdam, 1975.
also one that seems plausible (1 and 2), fits the situa- [Schank and Abelson, 19771 Roger C. Schank and
tion well (2 and 5), and is relevant to the goals of the Robert Abelson. Scripts, Plans, Goals and Under-
reasoner (criterion 3). standing: An Inquiry into Human Knowledge Struc-

tures. Lawrence Erlbaurn Associates, Hillsdale, NJ,
Conclusion 1977.

Abduction, or inference to the best explanation, is a (Schank and Ram, 1988] Roger C. Schank and Ashwin
central component of the reasoning proceo. The iest" Ram. Question-driven parsing: A new approach to
explanation is not one that is the most "correct," if cor- natural language understanding. Journal of Japanese
rectness is even measurable in the domain of interest, Society for Artificial Intelligence, 3(3):260-270, May
but one that is most useful to the process that is seek- 1988.
ing the explanation.

These ideas have been explored in the AQUA pro- [Schank, 1986] Roger C. Schank. Explanation Pat-
gram, a computer model of the theory of question-driven terns: Understanding Mechanically and Creatively.
understanding [Ram, 1989; Ram, 1987; Schank and Lawrence Erlbaum Associates, Hillsdale, NJ, 1986.
Ram, 1988]. AQUA learns about terrorism by reading [Wilensky, 1978] Robert Wilensky. Understanding
newspaper stories about terrorist incidents in the Middle Goal-Based Stories. PhD thesis, Yale University,
East. AQUA's model of terrorism is never quite com- Department of Computer Science, New Haven, CT,
plete; knowledge structures may have "gaps" in them, 1978.
or they may not be indexed correctly in memory. When (Wilks, 1977] Yorick Wilks. What sort of taxonomy
AQUA reads a story, these gaps give rise to questions of causation do we need for language understanding.
about the input. The point of reading is find answers Cognitive Science, 1:235, 1977.
to these questions, to learn by filling in the gaps in its

world model.
Questions, therefore, represent the "knowledge goals"

of the understander, things that the underctandcr wants
to learn about. AQUA builds explanations in order to
find answers to its questions. Thus AQUA is an exam-
ple of a system based on the goal-directed explanation
process presented in this paper.
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Inference and Learning Abductive Inference I
Since Peirce's time, a great deal of work has been done

Most machine learning methods involve some form of in- on explanations and abduction. This work has taken

duction or inference from specific to general statements, place both outside of Al in fields such as philosophy

consequently they are often called "data-driven", "em- (Harman 1965; Peirce 1958; Thagard 1981), and psy-

pirical", or "similarity-based" learning methods (see, chology (Donaldson 1986) and within Al in research

e.g. (Quinlan 1979). Recently, attention has been given areas such as expert systems, naive physics, and nat-

to a complementary class of "knowledge-driven", "ana- ural language comprehension (Charniak 1986; Joseph-

lytical", or "explanation-based" (EBL) learning meth- son 1987; Morris 1987; Pople 1973; Reggia 1984; Reiter

ods (see, e.g., DeJong 1988), but these methods have 1987; Schank 1986). Within Al the term abduction is

been characterized in terms of deduction. There is a probably being used more broadly than Peirce originally
third form of inference called abduction, and it is argued intended, In many Al tasks, it must be decided which

that abductive inference is at least as fundamental and of several possible explanations is the best one. In these

important as inductive and deductive inference, situations, it is often necessary to evaluate competing ex-
planations. Al researchers often use the term abduction

I claim that the models of EBL proposed in (Mitchell to mean something roughly equivalent to Harman's in-
1986) and even in (DeJong 1986) and (O'Rorke 1986) ference to the best explanation (Harman 1965). In other
should be viewed as first attempts at capturing the in- words, in AI the term abduction is often used so as to
formal idea of EBL. Intuitively, EBL is "learning based cover both the generation and evaluation of. explana-
upon explanations." So it seems reasonable to expect tions. I go along with this trend: whenever I speak of
EBL theories and systems to include some component abduction informally I mean any method for generating
aimed at describing or implementing processes for con- and evaluating explanations. I
structing explanations. Weaknesses in the explanation A survey of the Al literature reveals a number of dif-

component may reasonably be viewed as weaknesses in ferent proposals for automating abduction. I focus on a
EBL formalizations or implementations. particular kind of automated abduction closely related

I claim that the initial attempts at formalizing and im- to ideas of Peirce and Hempel. Peirce (1958) used the

plementing EBL can be improved upon by introducing term abduction as a name for one particular form of

more sophisticated models of the explanation process. explanatory hypothesis generation. His description was

A good first step in this direction is to view explana- basically: "The surprising fact C is observed; But if A

tion as a kind of plausible inference process - one that were true, C would be a matter of course, hence there

is not often deductive. The particular forms of plausi- is reason to suspect that A is true." Hempel (1965)

ble explanatory inference explored here are based upon suggested viewing some explanations as deductive ar-
Charles Sanders Peirce's notion of abduction. guments where the thing to be explained follows from

a set of general laws and specific facts. Hempel called

In the following sections, I first attempt to be a bit explanatory accounts of this kind "explanations by de-
clearer about my usage of the term abduction. Then I ductive subsumption under general laws, or deductive-
briefly describe one early model of EBL and two more re- nomological (D-N) explanations. (The root of the term
cent EBL methods integrating abduction and learning. nomologicalis the Greek word nomos for law.)" The ver-
I argue that incorporating improved abduction meth- sions of abduction focused on here combine these ideas
ods yields specific improvements over the early model of as follows. As a first approximation, Peirce's "C is a
EBL. mattcr of course if A is true" is represented as "A im-
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i plies C." Observations C are explained in terms of laws terich (1986)). The deductive closure of the knowledge-
such u "A implies C" and facts or hypotheses such as base does not change as a result of learning because
A. Abduction attempts to reduce observations to known the macro-learning method specializes existing general
facts by repeatedly backward chaining on laws cast as knowledge, even though it generalizes given examples.
logical implications. This early model of EBL rests on a purely deduc-

It is a commonly held misconception that "deductive tive model of abduction. Integrating more sophisticated
abduction" is an oxymoron because deduction and ab- models of the explanation process with learning leads to
duction are fundamentally incompatible. They are corn- interesting new models of EBL.I patible in the sense that deduction may serve abduction: For example, a new model of EBL can be had by in-
when something is shown to be true, the process of de- tegrating Pople's mechanization of abduction with the
duction usually supplies a proof that may be considered usual EBL macro learning procedure. An implemen-
to be an explanation of why the conclusion is true. tation based on this idea called AMAL was reported

However, deduction fails when a deductive procedure in (O'Rorke 1988). AMAL used abductive inference to
cannot find a proof (explanation) of a conjecture (or ob- "leap to conclusions" during the process of explaining
servation) from a given set of facts. Abduction generally an observation. While the macro-learning componenti does not simply fail when no explanation of a given ob- of AMAL did not contribute new knowledge, AMAL's
servation can be found from given facts. Instead, abduc- episternic state could change because assumptions were
tion often involves making new assumptions. For exam- often needed in order to explain observations. Adding
ple, in order to explain observed symptoms, a physician these assumptions changed the knowledge base. ThisI or a medical expert system may assume that a patient improved upon the EBG version of EBL by allowing a
has an infection, even though the infection has not been limited form of learning at the knowledge level. How-
observed, perhaps because it is internal, ever, the assumptions made by AMAL were typically

Pople's (1973) mechanization of abductive logic goes very specific statements closely related to the observa-
beyond deduction and provides an EBL model or system tion being explained in given examples.
with a limited capability for making assumptions in or- AMAL also suffered from the weakness of Pople's ini-
der to complete explanations. Pople's abduction method tial mechanization of abduction, namely its inability toi includes a synthesis operator which merges hypotheses, evaluate alternative explanations. Including methods
assuming the unified result. for evaluating explanations leads to more powerful con-

The major problem with this early mechanization of binations of abduction and learning. The abduction en-
abduction is that it does not address issues that arise gine AbE, a PROLOG meta-intepreter originally basedI when there are many competing explanations. Hw on AMAL, does heuristic search for plausible explana-
does one avoid a combinatorial explosion of possibilities tions. AbE is now in use in several case studies of abduc-
while searching for plausible explanations? How does tion and learning. One such study is aimed at exploring
one weigh the evidence and decide that one explanation the possibility that abduction can provide a handle on
is more plausible than another? how one might automate massive changes in systems of

One class of approaches to these problems involves in- beliefs. O'Rorke, Morris & Schulenburg (1989) sketches
troducing scoring functions that assign numeric "costs" this case study based on an episode in the history of
to potential (partial) explanations. For example, Stickel science known as the chemical revolution. The learning
(Hobbs et al. 1988) has suggested a heuristic approach process of interest in this study is not macro-learning.
to evaluating explanations in the context of natural lan- It is a theory revision or knowledge-base refinement pro-
guage processing. O'Rorke and his students have experi- cess. The process starts out with an incorrect theory or

i mented with a best first heuristic search program named knowledge-base and is confronted with an anomaly, an
AbE using several different heuristic scoring functions in observation that contradicts a prediction of the initial
the context of physical (O'Rorke, Morris, & Schulenburg theory. Abduction is used to explain the anomalous ob-
1989) and psychological (Cain, O'Rorke & Ortony 1989) servation and to form hypotheses corresponding to cru-
explanations. cial parts of a revised theory. In this study, abduction

contributes to knowledge level learning of very general
Combining Abduction and Learning theoretical statements.

In the influential model of EBL presented by Mitchell Acknowledgments
et al (1986) and in the implementation presented in
(Kedar-Cabelli 1987), learning is based upon explana- This material is based upon work supported by the
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An Approach to Theory Revision Using AbductionN
Steven Morris Paul O'Rorke

1 Department of Information and Computer Science
University of California, Irvine

Irvine, CA 92717

Revising theories using abductive questionable beliefs. However, it is not necessary to start
hypothesis formation by trying to identify an individual incorrect belief or

even a small set of culprits. Instead, the approach ex-

I This extended abstract sketches an approach to theory plored in this paper assumes that the initial theory has

revision using abductive hypothesis formation. The need some internal structure and that more general funda-

for theory revision is typically recognized when a theory mental principles can be separated from relatively spe-

is found to be in contradiction with new observations. cific, less basic statements. A "core" subset of the orig-

The task is then to determine what revisions will result inal theory, a set of basic statements having nothing to

in a new theory that is in accord with observation. Most do with the anomaly, is retained while less central beliefs

approaches to theory revision involve direct transforma- are suspended. Then the unexpected new observation is

tions producing the new theory from the original "old" explained in terms of the remaining, relatively solid ba-

theory. These transformations are generally very much sic principles. As we will see in the example presented,
like "editing" or "patching". Two combinatorial prob- this explanation process can generate hypotheses, sug-I lerms occur in these transformations. The first involves gesting extensions to the basic theory that will result in

the identification of the erroneous subset of the origi- proper explanation of the new observations.

nal theory. The second involves the identification of the this approach to theory revision is sketched in Fig-

correct changes in the erroneous parts of the original the- ure 1 using Venn diagrams. In the first stage (a) of

ory. In some situations, these combinatorics are likely theory revision an anomaly is noted. A new observation
to overwhelm editing approaches to theory revision, contradicts a prediction of the old theory, as indicated

There seems to be some psychological evidence that by the X linking a point in the old theory and a point

I people sometimes do not do this sort of editing. In outside of it. In the next stage (b) the old theory is

Shrager and Klahr's "instructionless learning" experi- reduced to the core subset.' Starting from this subset,

ments, subjects were asked to "figure out" devices such an explanation of the new observation is abduced with

as the BigTrak toy programmable tank. Shrager (1987) hypotheses being introduced in the process. These hy-

comments: pothess then form the basis for extensions to the core
theory resulting in a new theory (c). This revised the-

... we observed that between interactions ory no longer makes the erroneous prediction of the old
with the BigTrak, subjects changed their the- theory.
ory of the device. A number of empirical gen- We do not explore here the initial step of falling back
eralizations seem to hold about the nature of on basic principles and shrinking the original theory. In-
these changes... Instead of trying to deter- stead, we focus on the step from Figure 1(b) to Fig-
m:ne in detail what led to a failed prediction, ure 1(c). We concentrate on the claim that the process
subjects usually observed what (positive be- of explaining unexpected new phenomena can lead by
havior) took place and changed their theory
according to that observation... N that neither the prediction nor the surprising observa-

tion are included in the reduced core subset of the original theory.
When a surprising observation contradicts a predic- The circles and ellipses designate theories closed under deductive

inference, The figure captures the notion that neither the predic-

tion of the original theory, the approach to theory re- tion nor the contradictory observation should be implications of
vision explored in the present paper involves retracting the core theory.
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Figure 1: Theory revision using abduction for hypothesis formation.

abductive inference to new hypotheses which can form are facts, usually observations, that are relevant to the
crucial parts of new theories. We then discuss some of observation being explained.)
the issues involve in arriving at a new, revised theory. The root of the tree is the observation that the weight

of a combusting piece of some substance, S, is decreas-
ing. This is expressed as: The time derivative's sign, ds,

A case study in chemistry of weight(S) is neg(ative). The nodes beneath the ob-

servation have been generated by backchaining on rules,
Let us consider in more detail some aspects of the above and unification with facts. Qprop stands for 'qualita-
theory revision framework by looking at a case study of tively proportional'. Qprop(x,y,pos) means that as r in-
the chemical revolution. Using the language of Qual- creases, y increases, and vice versa; and qprop(x,y,neg) I
itative Process theory (Forbus, 1984) we have encoded means that as z increases, y decreases, and vice versa.
into rules and facts a domain theory, PT, that captures a Phlog stands for phlogiston. 72 is a Skolem constant
portion of the phlogiston theory of the Middle Ages, in- that represents an unspecified list of amounts of compo-
cluding some basic knowledge concerning complex sub- nents of S. These would be the portions of S left after
stances, and some key laws of QP theory. Using an burning.
abductive inference system named AbE, we have done The explanation in Figure 2 is intended to reflect the
a case study of the shift from the phlogiston theory to kind of generalization a scientific theory would assert. It i
the oxygen theory (O'Rorke, Morris, & Schulenburg, in- is based on specific explanations of specific combusting
press). substances that would have been observed and explained

Phlogiston theory was developed to explain, among by PT. Such generalization is one means by which a the- l
other things, the phenomenon of combustion. It explains ory predicts. This generalized explanation predicts that
combustion as an outflow of a component called phlogis- any combusting substance loses weight. For example,
ton from the combusting material. The theory predicts when told that a quantity of phosphorus is combusting,
that a combusting piece of substance loses weight due to PT predicts that the phosphorus is losing weight. The I
this outflow. 2  explanation would be that of Figure 2 instantiated with

Figure 2 shows a generalized explanation of weight S = phosphorus.
loss during combustion using our encoding of PT. Thi- PT predicts weight loss in that, if all the leaves of
explanation is represented by an AND-tree with eac, the explanation in Figure 2 are grounded in fact, the
line of the figure showing one tree node. The children of weight loss follows deductively. This generalized expla-
a node are indicated by equally indented lines following nation is a schematic proof of weight loss, and perhaps
the node. For example, the nodes 'member(amt-in...)' the leaves should be referred to as potential facts. It
and 'amt(S) =...' are siblings. Each leaf of the tree should be noted that the various facts at the leaves of
is followed by a box indicating that it is an hypothesis this explanation have different statuses. For a partic-
H, a background fact F, or a case fact CF. (Cases facts ular instantiation of S, the facts process(combustion)

2 Although the phlogiston theorists may not have originally and active(combustion,S), asserting that S is undergoing

taken weight into account, we extend our encoding PT to include combustion, would be grounded in observation, whereas -

weight considerations. a "fact" such as component(phlog,S) would not be an

I
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I ds(weight(S),neg) ds(weight(phos),pos)

qprop(weight(S),amt(S),pos) [ ] qprop(weight(phos),amt(phos),pos) [ ]

ds(amt(S),neg) ds(amt(phos),pos)

qprop(amt(S),amt-in(phlog,S),pos) qprop(amt(phos),amt-in(.6, phos),pos)

member(amt-in(phlog,S),[amt-in(phlog,S)1.72]) F member(amt-in(6. phos),[amt-in(.6, phos).931)

amt(S) = sum-of-amts([amt-in(phlog,S)1.72])) amt(phos) = sum-of-amts([amt-in(.6, phos)-93]))

complex(s) [F complex(phos) [

amts-components-of([amt-in(phlog,S),1.72],S) amts-components-of([amt-in(-6,phos)l-93],phos)

amt-component-of(amt-in(phlog,S),S) amt-component-of(amt-in(.6,phos).phos)

complex(S) [ complex(phos) El

component(amt-in(phlog.S),S) [l component(.6,phos) [
amt-in(phlog,S)=amt-in(phlog,S) jF amt-in(6,phos)=amt-in(.6,phos) ['

ats-components-of(J-72,S)],S) 7F amts-components-of(.93,phos) MH

ds(amt-in(phlog,S),neg) ds(amt-in(.6, phos),pos)

process(combustion) CF process(combustion)I active(combustion) CF active(combustion) CF

influence(combustion, amt-in(phlog,S), neg) EF influence(combustion, amt-in(.6, phos), pos) m-

I Figure 2: Why weight of burning substance S decreases. Figure 3: Why weight of burning phosphorus increases.

I observation, but rather a theoretical assertion of PT. observation and PT's prediction of weight loss. Further

However, we will continue to refer to literals like com- assume, that as a result, AbE falls back to a core sub-

ponent(phlog,S) as facts (d la PROLOG). set of PT comprising the basic laws about Qualitative
Processes and the basic laws about complex substances
(a complex substance has components; the amount of a

Generating new theory elements complex substance is the sum of the amounts of its com-
ponents; etc.) This core theory excludes the law that

We now consider the example of burning a piece of wood. states that combustion causes a decrease in the amount

The weight of the wood before burning will be greater of phlogiston in a combusting substance:

than the weight of the ash left after burning. The phlo- influence(combustion,amt-in(phlog,S),neg).I giston theorists's model of this combustion would be AbE is now asked to explain the new contradictory
that wood = phlogiston + ash, and that the combustion observation using only this subset. AbE does this by

is the outflow of phlogiston. For a phlogiston theorist, attempting to generate an explanation that reduces the

the decrease in weight would make sense. observation to the given facts. Failing this, AbE gen-

Today we know that the burning of wood is a much erates an explanation that has some hypotheses at its

more complex process. Not only are some of the formed leaves.
oxides missing in the ash (for example, carbon monox- The explanation produced by AbE is shown in Fig-H ide), but also, due to the heat of combustion, other ure 3. It states that some some hitherto unknown com-

weighty components such as water escape in gaseous ponent -6 of the piece of combusting phosphorus has in-

form. Thus the weight increase due to oxidation is creased in amount, and is thus responsible for the overallI confounded by other losses which result in an appar- increase in weight. In summary, a new explanation of

ent weight decrease when looking only at the residual combustion involving an increase of a component rather

ash. However, if one burns an elemental substance such than a decrease of a component is proposed. AbE ab-

as phosphorus, suh a confoundment does not occur. A ductively generates the hypotheses that the piece of com-

combusting piece of phosphorus gains weight. busting phosphorus is a complex substance, and that it

Our system AbE, using PT as a domain theory, is contains a component, -6, the amount of which increases

presented with the observation that a combusting quan- during combustion. This hypothesized new component

l tity of phosphorus is garntng weight, Assume that some may be interpreted as corresponding to oxygen. This

mechanism has detected the contradiction between this demonstrates that abduction can be used to form hy-
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potheses corresponding to essential parts of new theo- considered accurate, one is still left with the question of
ries. A generalized version of the explanation in Fig- the prior observations of weight loss during combustion.
ure 3 could be proposed producing new theory corn- Clearly NT as it stands can not explain these observa-
ponents such as influence(combustion, amt-of-in(.6,S), tions.

pos). 3 These generalized components, along with the One of the theories can prevail over the other if it I
core theory, would provide a theory of combustion that can demonstrate that the other theory is misapprehend-
predicts weight increase for any combusting substance. ing the phenomena it purports to explain. The wood

burning case with its missed confounding influences and I
missed phenomena provides an example of such misap-Revising the theory prehension. Arriving at an expanded NT that explains
burning wood requires reasoning along the lines of: "Let n

There are many possible reactions within a scientific us believe the new model of combustion. Perhaps there
community to a new contradictory observation. These are confounding influences present in the old combustion
range from questioning the observation to taking the events. The simplest model explaining these observa-
new observation as a sign that a current theory is flawed tions would involve -6 entering and some other substance
and in need of revision. We discuss here this latter leaving (perhaps even phlogiston?) with a net decrease
course, in weight. But what process could be responsible for the

In the above combustion example, new theory com- departing substance?" n
ponents are hypothesized, which, in conjunction with Arriving at a suitable hypothesis for such a confound-
the core theory, explain the new observation. However, ing process will usually require experiment and the gath-
the process of falling back to the core theory may have ering of more observations that allow the proposal of
thrown out parts of PT that are not responsible for the other active processes. By manually making such new
prediction of weight loss in combustion. In order to de- data available to our system, we hope to model the sub-
termine which components of PT should be blamed, one sequent hypothesis generation that would result in ex-
may compare the generalized explanation of Figure 2 planation of prior observations that are in conflict with 3
and the specific explanation of Figure 3 to determine the new, revision-provoking observation.
differences between each explanation that arise from the When one admits confounding influences, the door
non-core theory components in each theory. Doing so opens for arbitrarily complex theorizing. One would like
identifies two such discrepancies between the explana- to entertain hypotheses in a conservative manner. One
tions: would like a heuristic that strives for simple processes

I component(amt-in(phlog,S),S) 1(a) and a minimal number of them. For example, simplicity m
vs. component(amt-in(6,phos),phos) l(b) argues for trying a model of combustion that involves the 3

flow of only one substance, and not a model that involves
* influence(combustion,amt-in(phlog,S),neg) 2(a) the flow of two substances in opposite directions, with

vs. influence(combustion,amt-in(.6,S),pos). 2(b) one flow dominating the other with respect to weight
change.Neither pairs of assertions are necessarily contradic- Thus one might consider either of two models, in

tory. However, the close parallel between the two ex- which weight change discrepancies are explained by a n
planations suggests that these pairs of theory elements second process acting in one subset of the observations:
have similar roles in their respective models of combus- (1) Combustion = outflow of phlogiston. Weight loss
tion. On this basis, one may consider l(a), 2(a), and observations are due to combustiosonly. Weight gain

their specializations as candidates for excision. For ex- observations are due to combustion plus a heavier inflow n

ample: component(amt-in(phlog,wood), wood) and process.
influence(combustion,amt-in(phlog,wood),neg). Other (2) Combustion = inflow of -6. Weight gain obser-
non- core components of PT not blamed in this compari- vations are due to combustion only. Weight loss obser-
son should be considered for inclusion in the new theory. vations are due to combustion plus a heavier outflow I
Thus a new theory, NT, may be obtained as: core + hy- process.
pothesized components + unblamed old components. Heuristics that propose such minimal revisions are

The above revision procedure produces a candidate necessary to reduce the r.ombinatorics of hypothesis gen-
new theory that may be capable of explaining the new eration. Another potential and difikult problen i6 that
observation of weight gain during combustion. If one as the new theory components added to NT might com-

sumes that the new observation has been checked and is bine with old components remaining in NT, such that n
3 AbE does not currently perform this generalization, contradictions may be deduced.
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* Editing versus deep revision Related work

One may view various types of theory revision as ly- Falkenhainer (1988) and Rtajamoney (1988) describe ap-
ing on a spectrum ranging from minor corrections and proaches to theory revision in QP domains, including
adaptations of theory to deep, revolutionary change, as constrained hypothesis generation and the role of exper-
exemplified by major scientific shifts. We suggest that imentation. Thagard (in-press) examines the concep-
the above method of theory revision is appropriate for tual changes that occurred during the overthrow of theI situations in which substantial changes are required. An phlogiston theory, and gives a conceptual map of several
editing approach to theory revision is at the other end stages of the transition.
of the spectrum. Such an approach is more oriented to-
ward a theory which is slightly incorrect or incomplete, Acknowledgments
but can be slightly modified to explain new observations.

One difficulty that editing approaches may have is in- Ideas in this paper have evolved in discussions with
troducing new relations between objects in a principled members of the machine learn:ng community at the Uni-I way. Edits that revise relationships between objects, versity of California, Irvine. Special thanks to Pat Lan-
or that introduce new objects, have a relatively small gley, Deepak Kulkarni, and Don Rose for discussions of
chance of being correct. Consequently, a large number scientific discovery. Discussions with Paul Thagard onI of candidate revisions may need to be introduced and Peirce, abduction, the chemical revolution, and scien-
tested. Even then, there is no guarantee of proposing tific revolutions were inspirational. This paper is based
the right edit without guidance from first principles. On on work supported in part by an Irvine Faculty Fellow-
the other hand, theory driven approaches to revision, ship from the University of California, Irvine AcademicI such as ours, can use relatively solid knowledge to guide Senate Committee on Research and by grant number
the revision process, and thus stand a better chance of IRI-8813048 from the National Science Foundation.
hypothesizing appropriate new relations and objects.

* We view these two approaches to revision as comple- References
mentary. If one has a theory that is essentially adequate,
then the editing approach may be a useful technique for Falkenhainer, B. (1988)., Learning from physical analo-I arriving at a more finely tuned, final theory. However, gies: A study in analogy and the explanation pro-
when the theory is very wrong, falling back to a core cess. Ph.D. thesis (Report Number UIUCDCS-R-
theory may be a necessary prelude to the type of the- 88-1479). Urbana-Champaign, IL: University of
ory revision processes needed to create new theoretical Illinois, Department of Computer Science.
entities. We consider detecting which method of theory
revision is appropriate to be an interesting problem. Forbus, K. D. (1984). Qualitative process theory. Ar-

tificial Intelligence, 24, 85-168.

Conclusion O'Rorke, P., Morris, S., & Schulenburg, D. (in-press).ConclsionTheory formation by abduction: A case study
based on the chemical revolution. Proceedings of

Theory revision can profitably be viewed as a process the Symposium of Computational Models of Scien-
that involves hypothesis formation by abduction. When
a new observation contradicts a prediction of the theory,
one approach is to suppress questionable details of the Rajamoney, S. (1988). Explanation.based theory revi-I original theory and to derive an explanation of the ob- sion: An approach to the problems of incomplete
servation based on more solid, basic principles of a core and incorrect theories. Ph.D. thesis (Report Num-
subset of the theory. The abductive generation of this ber UILU-ENG-88-2264). Urbana-Champaign:
explanation can lead to new hypotheses that can form University of Illinois, Coordinated Science Labo-
crucial parts of a new theory. Comparison of the expla- ratory.
nation of the new observation, to an explanation of the Shrager, J. (1987). Theory change via view application
contradictory prediction under the old theory, can pro- in instructionless learning. Machine Learning, 2,

I vide a focus for blame assignment. A candidate new the- 247-276.
ory results from a conjunction of the core theory, the new
hypotheses, and the unblamed non-core theory. How- Thagard, P. (in-press). The conceptual structure of theI ever, re-explaining old observations may require more chemical revolution. Philosophy of Science.
sophisticated revision involving interacting processes.
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Learning from Examples and an "Abductive Theory"
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Rutgers University
Department of Computer Science

New Brunswick, NJ 08903

Summary. Deductive and abductive reasoning use make some assumptions about the form of the un- I
a common representation of knowledge: a theory of known concept. These assumptions are usually syn.
the world that allows reasoning from causes to effects. tactic constraints on the form of the concept to be
This paper describes a system which performs induc- learned; for instance, that it be expressed as a conjunc- I
tive reasoning using knowledge represented in a similar tion of certain features, or as a well-balanced decision
form. The benefit of this approach is that a common tree. These constraints are typically the only sort of
knowledge base can be used for inductive, abductive world knowledge available to a concept learner.
and deductive reasoning. The similarities and differ- This paper describes a concept learning system
ences between this learning system and abductive rea- which learns using examples and knowledge about the
soning systems are discussed. world written in cause-to-effect form. Due to the simi-

larities between this form of knowledge and the knowl-
Introduction edge used by model-based diagnosis systems, I will call

a theory written in the appropriate format an "abduc-

There are three types of reasoning: deduction, abduc. tive" theory. One benefit of this approach is that a
tion, and induction. Broadly speaking, these types of common knowledge base can be used simultaneously
reasoning can be described as reasoning from causes (at least in principle) for inductive, abductive and de-
to effects, from effects to probable causes, and from ductive reasoning. Another benefit is that knowledge

specific facts to general cause-effect relationships, re- in this format is easier to acquire and maintain.
spectively. Via a short case study, I will show that this can

The knowledge used for deductive reasoning is al- also be an appropriate and natural way of representing

most always represented in "cause-to-effect" form: knowledge for an inductive learner.
that is, a theory which describes the effects of vari- Space constraints preclude inclusion of proofs or de-ous uner ying causes. Whi e much of the earlier work tailed experimental results. The interested reader is

on abductive reasoning used knowledge in "effect-to. referred to (Cohen 1989).
cause" form, most recent work has concentrated on
abductive reaso..r- techniques that use knowledge Statement of the problem
in "cause-to-effect" form as well (this problem has
been called "diagnosis from first principles" or "model- Preliminary Definitions
based diagnosis".) It is generally agreed that knowl-
edge in "cause-to-effect" form is easier to acquire and Consider a Horn clause theory e. Let 0 be the set
maintain, of all possible ground atomic formula in the Herbrand

Inductive reasoning systems, in contrast, rarely rep- universe of 0. I will call these formula possible obser-
resent knowledge about the world in any explicit form. vations. The target concept is some set T C 0. The
The prototypical inductive reasoning task is concept target concept represents the set of observations which
learning, the problem of finding an unknown concept are true' m the real world. An ezample of T is an
given positive and negative examples of members of element of z E 0, labeled with "+" if z E T and
that concept. In order to make concept learning pos- if z 0 T.
sible at all, generally a concept learning system must Let p, denote any AND-OR proof of the formula z
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in the theory e, and let a, be the generalized version of tasks. In both cases, the problem is to come up with a
that proof (the "explanation structure" for the proof) hypothesis which explains a particular set of observed
obtained by using Mitchell's goal-regression algorithm effects. Ideally, the hypothesis should exactly coincide
(Mitchell, Keller, & Kedar-Cabelli 1986). I will call a. with the true underlying causes of the effects; how-
valid if Vy, (y provable using a.) * y E T. Finally, ever, this ideal goal is not attainable except in trivial
a theory is called abductive for T if Vz E T, 3a. : circumstances. Learning systems and abductive rea-
a. is valid. soning systems differ in how this goal is relaxed. Ab-

Intuitively, each proof in an abductive theory is a ductive reasoning systems typically produce as output
"tentative explanation" of the observation which it the set of all possible hypotheses which satisfy some

proves, and the generalized proof represents the "chain relatively weak definition of minimality (for instance,
of reasoning" used to produce the proof. These chains minimality under the partial order of set inclusion).
of reasoning can be either "valid" - i.e., that same The criterion of success is whether this set contains
chain of reasoning always holds - or "invalid" - i.e., all of the most likely hypotheses. Learning systems,
that same chain of reasoning can sometimes be used to in contrast, usually produce a single hypothesis ex-
support a conclusion which conflicts with reality. The plaining a set of phenomena, using a relatively strong
crucial property of an abductive theory is that for ev. definition of minimality (usually small syntactic size,
ery true observation, there is some valid explanation relative to a particular encoding). Various measures of
- in other words, one of the explanations suggested success have been proposed for learning systems. The
by the theory is correct. learning goal used in this paper is Valiant's criterion

This definition seems to fit many cases of practical of probably approximately correct learning (Valiant
interest. For example, consider a theory that involves 1984), in which a learner succeeds if future predictions
some element of plan . -cognition. The goals of one or made by the hypothesis are correct in a probabilistic
more agents are typ. -fly unknown and must be as- sense.
sumed. Often, any of several assumptions which could More precisely, let T be a space of possible tar.
be introduced would suffice to explain an action, but get concepts, let T E T be a target concept, let D
only explanations based on the correct assumption will be a probability density function, and let size(T) be
be valid. some complexity measure on concepts. Define the er-

The definition also fits theories for which are not ror of a hypothesis H with respect to T and D to be

normally considered abductive. For example, con- error(H, T, D) -D(T - H) + D(H - T). A learning
sider an abductive theory E for opening bids in algorithm LEARN is a function which takes as input
the game of contract bridge. One of the predi- a sample of T containing m examples and outputs a
cates defined in this theory might be the predicate hypothesis: that is, a guess as to what T is. A learn-
opening-bid(Hand, Bid), where Hand is a term de- ing algorithm is said to be polynomially probably ap-
scribing a bridge hand, and Bid describes a possible proximately correct for T if there is some polynomial
opening bid. function m(1/e, 1/6, n) such that for any probability

If this theory is abductive, it need not be correct, in distribution function D, for any T E T
the sense that some of the opening.bid goals provable 1. LEARN runs in time polynomial in its inputs
in the theory might be for incorrect opening bids. For
instance, the theory might contain some overly gen- 2. For a sample S of size m(l/e, 1/6, n) of some tar-
eral, heuristic rules for how to make opening bids, but get concept T such that size(T) :_ n,
might not contain knowledge about when these heuris-
tic rules should be applied. So given a bid, the approx- Prob(error(LEARN(S, T, D)) > e) < 6
imate theory could not be used to to determine if the
bid was correct or not, but could be used to construct In other words, LEARN probably - with probability
tentative explanations of why the bid was made. If the at least (1 - 6) - returns an approzimately correct
theory is abductive for the target concept of "correct hypothesis - a hypothesis with error less than e -
opening bid", then for each correct bid, one of these and is constrained to run in time polynomial in 1/c,
explanations is always valid. 1/6, and the size of the target concept.

The function .(1/c, 1/6,n) is callcd the sam,plE
The goal of learning complezity of the function LEARN; it indicates how

many examples are needed to ensure that the hypoth-
Inductive learning and abduction are very similar esis is probably approximately correct.
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Note that the error is defined with respect to the Theorem 1 A-EBL(S) is a polynomial probably ap. 
same probability density function D from which ex- prozimately correct learning algorithm for Te with
amples were drawn. This can be interpreted as say- sample complezity of
ing that the accuracy of the hypothesis produced by 1 1 = 0, 111 Inog IE(l nlog JE)Ie2
the learner is guaranteed only for the same population m(, - ,n) = O o ,
from which the training examples were drawn. 6 eog

Furthermore, there ezist theories E such that every
A learning algorithm probably approzimately correct learniag algorithm for I

Te must have a sample complezity of at least

The algorithm m(,11, n)= 1(n 1 +n)

A simple learning algorithm is the following.
Discussion of the Algorithm

Algonurtm aEl() Abduction is often thought of as finding the best ex-

1. Enumerate all the generalized proofs aS1,... as. planation of a set of phenomena. When there are mul-
of the positive examples in the sample S. tiple explanations, as is assumed to be the case here,

2. Discard those asi's which can be used to prove simpler explanations are preferred.

some negative example. This is precisely the intent of the algorithm given
above. It uses the heuristic set cover technique to

3. Use a greedy algorithm to find a minimal sub- minimize the complexity and number of explanations I
set COV of the remaining a=,'s such that ev- considered. The hypothesis output by this algorithm

ery positive example x+ can be proved by some is the set of observations predicted by a disjunctive
ai E COV. The greedy algorithm always adds explanation of the example observations. The formal
to COV an ai that maximizes the ratio of the analysis shows that this technique works whenever the U
number of uncovered examples to the size of a55 . target concept T corresponds exactly to the set of ob-

servations predicted by some set of generalized expla-
4. Return the hypothesis nations; that is, whenever e is abductive for T. In I

short, A-EBL is very similar to many abductive rea-
H = {z x is provable with some a.i E COVI soning systems.

The major difference between A-EBL and abduc-

The size of a generalized proof a. is defined to be tive reasoning systems is that the goal of A-EBL is II
the number of nodes in the proof tree. Further details different. A-EBL is attempting to produce a hypoth-
of the algorithm can be found in (Cohen 1989). esis which will make reasonably accurate predictions

on later problems, if these problems are drawn from
Formal Analysis the same population from which the training samples

were drawn. Theorem 1 shows that the simple heuris.

It can be shown that this algorithm satisfies the learn- tics used in A-EBL are sufficient to satisfy this goal.
ing goal described in the previous section, and that its Ea
sample complexity nearly optimal. Experimental Results

Let Te denote the set of all specializations T of a
domain theory E such that T = G1 U ... U Gk, where Theorem 1 shows that effective learning algorithms
Vi, 1 < i < k, there is some proof p,, such that Gi is can be designed which make use of knowledge repre-
the output of EBG(p.,). In other words, Te is the set sented as an abductive theory. It remains to be shown
of all possible target concepts T which are explainable that the knowledge to needed solve real-world learning I
by a some set of generalized proofs: in the terminology problems can be expressed as an abductive theory.
introduced above, T is the set of all target concepts As an experiment, an introductory text on bridge
such that E is abductive for T. Let the size of T E Te play (Sheinwold 1964) was used as a source of back-
be the sum of the sizes of the abstract explanations ground knowledge (in thc form of a thIleory), exam-
which define T; finally, let iEt denote the number of ples, and test data. Almost all of the rules in the
clauses in E. theory were clearly and explicitly presented in (Shein-

In (Cohen 1989) is a proof of the following theorem. wold 1964), and could be easily transcribed into a Horn
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Figure 1: Accuracy of A-EBL's Hypothesis as a Function of Training Set Size

I clause theory. However, the resulting theory was not generated and classified by the hand-coded theory. A-
a complete and correct theory of bridge bidding. It is EBL was then given progressively larger subsets of the
clear (from the accompanying text, if from no other training set, and the accuracy of each theory special-I source) that the bidding rules are overly-general. Of- ization produced was measured by using it to classify
ten the text explicitly states that a rule is merely a the hands in the test set, and comparing the classifi-
heuristic, and should not always be followed. In most cations to the correct ones. This experiment was re-
of these situations, a series of examples are used to peated 10 times and the error rates were averaged,i clarify the use of a heuristic rule. The approximate using the same test set in each trial. The result is
bidding theory can be interpreted, as in the exam- the "learning curve" shown in Figure 1. Performance
ple above, as an abductive theory: each proof can be of the hand-coded theory is also shown for the pur-I thought of as a tentative explanation of why a bid pose of comparison. This experiment shows that, as
might have been made. predicted by the theory, A-EBL has good convergence

The A-EBL algorithm, and a variant of it, was then properties on randomly selected data.
used to construct a hypothesis for the unknown tar- In this case, a good argument can be made that the
get concept "good opening bid". This hypothesis was knowledge used for learning was appropriate, in the
tested using a sample test in (Sheinwold 1964). Both sense that it allowed learning to proceed effectively,
A-EBL and its variant scored well, at 87% correct or and natural, in the sense that transcribing this in-

i above. The original theory e scores at only 75% cor- formation into usable form was straightforward. Of
rect; in 25% of the test cases incorrect bids, as well as course, to argue that this is usually (or even often)
the correct bids, were proposed by e. the case requires many more data points, in the form

An additional experiment was conducted to test A- of other learning problems which can be treated in a

EBL's behavior on randomly generated training exam- similar manner.

ples. A test set of 1000 hands was randomly generated
iHand classified by the a hand-coded bridge bidding the-

ory. Then a separate training set of 300 hands was
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Conclusion

This paper describes a learning system that uses
knowledge about the world written in cause-to-effect
form to learn. The inputs and outputs of the learning
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was argued that this is an appropriate and natural way I
of representing knowledge for an inductive learner.
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Abstract planation process and compute particular operational
A major limitation of explanation-based learn- descriptions of the target concept.Comparing PED to abduction-based techniques, suching (EEL) is that the domain theory used to as LFP [Wirth, 1988], reveals two constraints on theexplain training instances must be complete. gap-filling process that make PED more tractable thantheo problem [Mitchell et al., 1986. In this abduction-based techniques. One, PED only abduces

paper we present PED, a technique that ex- predicates in the RHS of a determination. Two,-PEDconstrains the search for relevant predicates to those in
tends EEL to incomplete theories containing the LBS of a determination.
determinations, a type of incomplete knowl-
edge (Davies and Russell, 1987]. The key 2 Determinations
idea underlying PED is that training exam-
ples of a concept can be used to fill in gaps Intuitively, determinations try to capture the notion ofin a domain theory by propagating the in- relevance. We say that an attribute P is relevant to anformation that they satisfy the target con- attribute Q if knowing that P holds for some object tellscept. Comparing PED to abduction-based us something about whether Q holds for that object. Atechniques, such as LFP [Wirth, 1988], reveals more precise definition is as follows:1
two constraints on the gap-filling process that
make PED more tractable than abduction- Definition 1 Let P(zy) and Q(zz) be any two first-based techniques: one, only abduce predicates order sentences, where z represents the set of variablesin the RHS of a determination; and two, con- that occur free in both P and Q, while y and z represent
strain the search for relevant predicates to the set of free variables that occur only in P and Q re-those in the LHS of a determination. spectively. We say P(zy,) totally determines Q(z,z), or

P(z,y) >- Q(z,z), iff
1 Introduction Vy, z[[3zP(x, y) A Q(z, z)] * Vz[P(z, y) =* Q(z, z)]]A major limitation of explanation-based learning (EEL) For example, let P(z, y) denote the predicate
is that the domain theory used to explain training in- Nationality(z, y), meaning that individual z has na-stances must be complete. This problem has been tionality y. Also let Q(z,z) denote the predicate* termed the incomplete theory problem [Mitchell et al., Language(z,z), meaning that z speaks language z.19861. In this paper we present one approach to the Then, the above definition states that if there exists anincomplete theory problem based on extending EBL to individual z whose nationality is y, and who speaks adomain theories containing determinations, a type of language z, then all individuals of nationality y speak
incomplete knowledge proposed by Davies and Russell language z.
[Davies and Russell, 1987, Russell, 19861. 2.1 Determinations as a Form of Incomplete

In particular, we describe PED, a techique Knowledgethat extends PROLOG-based EBL implementations,
e.g. PROLEARN (Prieditis and Mostow, 1987), to An example will help illustrate how determinationsdetermination-based theories. The key idea underly- be viewed as a form of incomplete knowledge. Froming PED is that training examples can be used to fill Nationality(z, y) >- Language(z, z)* gaps in the domain theory by propagating the informa-tion that they are instances of the target concept; in iSee (Runw)), 1986] for a description of other types of
contrast, EBL uses training instances to focus the ex- total determination.
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and Tsnd C,-wa

Natioriality(John, Us) A Language(John, English)

it follows that

(Vz)Nationality(z, Us) =€- Language(z, English) Gap Imp ,..,As

However, just knowing that nationality determines lan- A D@Wubabe

guage is not sufficient to compute an individual's lan- A
guage from his nationality. Examples are required to fill
in this knowledge. •

In general, from
Trabf iaiam Dmuw~bep(X, Y)>- Q(Z' Z) Figure 1: General Structure of Explanation in

and Determination-based Theories 3
P(A, B) A Q(A, C7)

the implication 4 PED: A Technique for Refining
VnP(z, B) Q(z, C) Incomplete Theories

This section describes PED, a technique for refiningfollows. This inference is a form of single instance gen- incomplete domain theories containing determinations.
eralization. We will make extensive use of this inference Figure 2 presents a high level description of PED. The
step later in the paper. top level procedure is called assume. Given the clas-

sification of the training instance Q (as an instance of
3 One View of the Incomplete Theory the target concept), assume tries to explain Q from the

Problem training instance description. The procedure explainin Step 3 is basically EBL, implemented in techniques
We begin by presenting one view of the incomplete the- such as PROLEARN [Prieditis and Mostow, 1987]. The
ory problem, which is based on a discussion in [Russell, second argument G of assume represents a generalized
1987]. Rajamoney and Dejong [Rjamoney and DeJong, (operational) sufficient condition of the target concept
1987] proposed a classification of imperfect theory prob- returned by PED.
lems in EBL. In their terminology, the problem being The important steps are Step 2 and Step 4. Step 4
studied here is the "broken explanations" problem. In is invoked when EBL fails. Step 4 first retrieves a de-
other words, a complete explanation cannot be given be- termination whose RES unifies with Q. Next, it checks
cause of missing rules in the domain theory. The missing whether two of three conditions for single instance gen-
rules manifest themselves as broken links in the expla- eralization hold: the query Q representing an instance
nation tree. of the RHS of the determination must be fully instanti- I

A central assumption in our approach is that the gaps ated, and the instantiated LHS P (under the same vari-
in the domain theory are specifiable as total determina- able bindings) of the determination must hold. At this
tions. The domain theory is incomplete because there point PED has located a possible gap in the domain
is insufficient information to evaluate queries using the theory, which if filled may allow the training example
determinations. Examples are needed to refine the de- to be explained. The only remaining condition is that
termination into a set of implicative rules. It is this the query Q must hold. PED asserts P >- Q as a failed
process of refinement that we study in this paper. determination, and then backtracks trying other ways

Figure 1 illustrates the general structure of the refine- of showing that the example is an instance of the target
ment process. Determinations may occur somewhere in concept.
the middle of an explanation path leading from the tar- Step 2 is invoked when the explain procedure fails to
get concept to the training example description. The show that the training example is an instance of the tar- I
idea is to propagate the fact that the training instance get concept. PED first checks to see whether the cause
satisfies the target concept, and show that the predicate of the failure was a failed determination, by retrieving
P in the RHS of a determination holds. Similiarly, the the failed determination P >- D (which was stored in
predicates Q in the LHS of a determination are proven Step 4). PED now makes a type of closed world as- I
from the training instance description. Then, using the sumption: since all explanation paths except for the
single instance generalization rule described above, a one using the determination P >- D failed, the RHS D
new implication can be added to the domain theory. (Pe must be true in order for the training example to be an Iand Ph are particular subsets of the domain theory.) instance of the target concept.
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assume(QG) %- V. Step 1 %. target concept definition

explain(Q,G) stack(l,Y) -- frag(Y,low) V lighter(l,Y).

assume(Q,G) +- % Step 2 % domain theory
Retrieve failed determination P >- D mat(X,X) A constr(X,C) >- frag(X,F).
Explain the Dgh P lighter(X1,X2) +- wt(XI,Wl), wt(X2,W2),
Use single instance generalization to W1 < W2.
create a no rule Dg +- Pg mat(XY) *- made.of(X,Y).
Assert the new rule in the knowledge base constr(XY) -- body(X,Y).
assume(Q,G).

%. training example description.
explain(Q,G) %- V. Step 3 made.of(boxl,lead). made.of(box2,steel).
% This step corresponds to standard EBL wt(boxl,100). wt(box2,1O).

body(boxl,rigid). body(box2,rigid).
iexplain(Q,G) 4- %, Step 4

Retrieve P >- Q Figure 3: Example to Illustrate PED
If the lhs P can be explained, and

Q is ground
Then assert P >- Q as a failed knowledge base. 2 Since the instantiated LHS of the de-
determination. Backtrack and try termination

mat(box2,steel) 
A constr(box2,rigid)

Figure 2: The PED Procedure can be shown from the training example, Step 4 de-

clares the instantiated frag determination as a gap in the
domain theory, which if filled could allow the example

PED next shows that P follows from the training in- to be explained. PED then backtracks trying to prove
stance. At this point, since instances of both the LHS stack through the other disjunct lighter (boxi ,box2).
and RES of the determination have been shown, PED This fails because boxi is heavier than box2. Note that
carries out the single instance generalization inference due to predicate completion, the sufficient condition for
step, and creates a new implication. PED then adds lighter is also a neccessary condition. 3

the new rule to the domain theory, and recursively in- At this point, Step 2 of PED is invoked. The failed
yokes the assume procedure. If this implication filled goal frag(box2, low) is retrieved, which is now assumed
the only gap preventing the successful explanation of true. Note that since the sufficient condition for stack is
the training example, the second invocation of explain also a neccessary condition (due to completion), PED's
should terminate successfully, and return an operational reasoning at this point is of the form
sufficient condition for the target concept. Otherwise,
further gaps in the domain theory may need to be filled "from P +-+ Q V R and -,R and P, infer Q"
using the above procedure. which is deductively valid. In the next part of Step

2, the LHS of the determination for frag is evaluated.
4.1 Example The instantiated LBS and RHS of the determination are

Consider the example domain theory shown in Fig- generalized to the rule

ure 3 (this originally appeared in [Russell, 1987]). The mat(X,steel) A constrCl,rigid) --+ frag(X,low)
target concept is stack(X,Y) meaning the class of pairs which is subsequently asserted. The procedure
of objects that can be safely stacked on one another. assume is invoked again on the original query. This time
The determination in the domain theory specifies that the call to explain succeeds, and PED finally returns
the material (mat) and construction (constr) of an with the result G =
object determine its fragility (frag). Suppose PED
is given the query assume(stack(boxl,box2) ,G). The mat(Y,steel) A constr(Y,rigid) -+ stack(XY)
predicates mat, constr, and wt (meaning weight) are
assumed to be operational. 2 Determinations can also be incorporated in a theorem.

First, the query explain(stack(boxl ,box2) ,G) is prover, such as PROLOG, as a form of analogy [Davies and
generated, which creates the goal irag(box2,iow). Russell, 19871.

This goal fails because no information on box2's frag 'PED uses predicate completion [Lloyd, 1984] to treat
exists, and furthermore the determination for f rag can- the disjunction of all the suffcient conditions of a predicate
not be used analogically as there is no precedent in the as a neccessary condition.
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5 PED As A Constrained Abduction in gaps in an incomplete but correct Horn theory.5

System The steps behind LFP are as follows. Given a training
instance, LFP first tries to explain the training instance

In this section we discuss the relation between abduction using the partial domain theory. If a particular predi-
and PED, showing how PED can be viewed as doing a cate fails in the proof process, for example if it is not
constrained form of abduction. We also compare PED defined, LFP asks an oracle if that predicate in true. If
to several techniques that are based on abduction, such it is true, then LFP proceeds to the next subgoal, oth.
as LFP [Wirth, 1988]. erwise it backtracks. Eventually, the first phase termii-

To see how PED can be viewed as performing a re- nates in a partial proof tree. Leaves in this partial proof I
stricted version of abduction, we return to Example 1 tree that were justified by the oracle are denoted by a
above (see Figure 3). From special label, since these represent gaps in the domain

stack(X,Y) .- lighter(X,Y) V frag(Y,low) theory that need to be filled. c r
To illustrate the operation of LFP, let us consider the

two explanations for the tar- domain theory in Figure 3 with the fragility determina-
get concept instance stack(boxl,box2) follow, namely tion deleted. At the end of phase 1, LFP will construct
lighter(boxl,box2) and frag(box2,lou). PED ab- the partial proof tree
duces that the latter is the best explanation because it
is defined using a determination, even though both hy- safe-to.stack(boxl,box2) - fragility(box2,low)
potheses cannot be shown from the implicative portion LFP will affix a special label to fragility predicate
of the domain theory. Therefore PED can be viewed as since the oracle was used to justify the truth of the pred-
using the heuristic - Given a choice, abduce predicates icate, and thereby bottom out the proof.
that appear in the RHS of a determination4 - to filter The second phase of LFP is constructing a complete -
out the set of possible hypotheses that can explain a proof tree. Since the domain theory is incomplete, LFP
given fact. can only approximate the complete proof tree. Basi-

Sometimes this heuristic is not sufficiently powerful cally what LFF does is to examine the training instance
since there may be several predicates that are defined us- description for facts that are relevant to labelled leaf
ing determinations. To deal with such situations, PED predicates in the partial proof tree. The idea is to find
needs to be extended to use additional heuristics, such some link between the labelled leaf nodes and facts in
as simplicity, for selecting among competing predicates. the training instance, which can be used to complete

Comparing PED with Abduction-based Tech- the partial proof tree. LFP uses heuristics to guide
niquesC Wnowompare PEh uton-th e Towing nit in computing the relevant facts. Using Example 1niques We now compare PED to the growing hum-

ber of learning techniques that are based on abduc- again, LFP might decide that uad,,_oi(box2,se el),
tion, such as LFP[Wirth, 1988], a technique used in the weight(boz2,10), and body(box2,rigid) are relevant

because the constant symbol box2 appears in them (and
aDYSBU yte [W1988 , a teciuedescribeo by in the labelled fragility predicate also). (This is an ac-and untne, 988, an a echnquedescibe by tual heuristic used in LFP to compute relevance.) In
O'Rorke[O'Rorke, 1989]. There are two differences be- contrast, PED uses determinations to compute the rele.
tween PED and these other techniques: one, PED as-
sumes that the gaps in the domain theory are filled vant facts. LFP finally hypothesizes the following com- _

by determinations; two, PED selectively abduces pred- plete proof tree:
icates that are defined using determinations. As a con- safe.to-stack(boxl ,box2)
sequence of these two differences, PED suffers less from T
the combinatorial explosion of possible predicates that tragiliy(box2,low)
can be abduced, as well as the many possible ways in T
which rules can by hypothesized to fill the gaps. On made.of(box2,steel) A weight(box2,10) A
the other hand, abduction-based techniques are more body(box2,rigid) I
powerful than PED in filling in gaps in a domain the-
ory since they do not require that the determinations be The complete of tre by forardchining note
known. in the complete proof tree by forward chaining on the

To illustrate the point that abduction-based tech- implicative rules in the domain theory. In particular,

niques are faced with a more serious combinatorial using the following implications in the domain theory
explosion problem, let us examine the LFP tech- in a subsequent paper[Wirth, 199, Wirth describes
nique proposed by Ruediger Wirth[Wirth, 1988, Wirth, an improved technique LFP2 that relies less on an oracle
1989]. LFP is based on Muggleton's idea of incmrsc to construct partial proof trees, and which also can invent I
rerolution(Muggleton and Buntine, 1988]. LFP is si- new terms using Muggleton's inverse resolution technique.
miliar to PED in that it uses a training example to fill It is more appropriate to compare here PED to LFP since

it highlights better the main differences between PED and
'I thank Thorne McCarty for this observation, abduction-based techniques.
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I material(X,Y) +- made.of(X,Y) fills the gaps by extracting implicative rules from deter-

construction(X,Y) -- body(X,Y) minations. An example was presented that illustrated
PED's ability in refining the determinations in a domain

LFP constructs the following modified complete proof theory. Finally, PED was compared to abduction-based

tree techniques.

saf e-to.stack (box 1,box2) ReferencesT
fragility(box2,low) [Davies and Russell, 1987] T. Davies and S. Russell. A

T logical approach to reasoning by analogy. In IJCAL
material(box2,steel) A weight(box2,10) A Morgan Kaufnann, 1987.

construction(box2,rigid) [Lloyd, 1984] J. W. Lloyd. Foundations of Logic Pro.

LFP next compares the partial proof tree and the gramming. Springer-Verlag, 1984.
complete proof tree to try to hypothesize missing rules in [Mahadevan, 1990] S. Mahadevan. An Apprentice-based
the domain theory. For Example 1, it may hypothesize Approach to Learning Problem-Solving Knowledge.
the following rule: PhD thesis, Rutgers University, 1990.

fragility(box2,lo) +- material(box2,steel) A (Mitchell et al., 1986] T. Mitchell, R. Keller, and
weight (box2,10) A S. Kedar-Cabelli. Explanation-based generalization:
construction(box2,rigid) A unifying view. Machine Learning, 1(1), 1986.

Finally, LFP generalizes the above rule using heuris- (Muggleton and Buntine, 1988] S. Muggleton and
tics. In the description of LFP, Wirth uses heuristics W. Buntine. Machine invention of first-order pred-I that are particular to natural language parsing, which icates by inverting resolution. In Proceedings of the
is the domain of application. Subsequently, in LFP2, Fifth IML Conference. Morgan-Kaufmann, 1988.
Wirth uses inductive techniques such as maximally spe- [O'Rorke, 1989] P. O'Rorke. Theory formation by ab-
cific generalization to generalize from multiple examples duction: Initial results of a case study based on the
of such instantiated rules. chemical revolution. In Proceedings of the Sizth Ma-

The differences between LFP and PED should be chine Learning Workshop. Morgan Kaufrnann, 1989.
clearer now. First, PED uses determinations to com-

pute the relevant facts, whereas LFP uses heuristics. [Prieditis and Mostow, 1987]
I The heuristic used above can easily be fooled by many A. Prieditis and J. Mostow. Towards a PROLOG

irrelevant facts. For example, the predicate weight may interpreter that learns. In Proceedings of the Sizth
not be relevant to fragility. In fact, if the predicate AAAI. Morgan-Kauftnann, 1987.
owns (box2,john) was present in the training instance [Rajamoney and DeJong, 1987]
description, LFP would have included this in the body S. Rajamoney and G. DeJong. The classification, de-
of the rule hypothesized to fill the gap in the domain tection, and handling of imperfect theory problems.
theory. Second, PED uses a justified form of single in- In IJCAI. Morgan Kaufmann, 1987.
stance generalization, whereas LFP uses inductive learn- (Russell, 1986] S. Russell. Analogy and Inductive Rea-
ing techniques whose effectiveness depend on the gen- 8 ] 5. Rsse A and nive Re8 -
eralization language containing the right abstractions. soning. PhD thesis, Stanford University., 1986.
Thirdly, all the phases of LFP could potentially lead to [Russell, 1987 S. Russell. Analogy and single instanceI a combinatorial explosion of possibilities. For example, generalization. In Proceedings of the Fuurth IML Con-
the third phase of LFP involves forwarding chaining on ference. Morgan-Kaufmann, 1987.
the rules in the domain theory which could lead to many [Wilkins, 1987] D. Wilkins. Knowledge base refinement
alternative possibilities for abstracting the leaf nodes in using apprenticeship learning techniques. In LTCAI.E the proof tree. Morgan Kaufmann, 1987.

A detailed comparison of PED with the other
abduction-based techniques cited above is given in [Wirth, 1988] R. Wirth. Learning by fnilure to prove. In

[Mahadevan, 1990]. 3rd European Working Session on Learning. Pitman,
1988.

6 Conclusions [Wirth, 1989] R. Wirth. Completing logic programs by

In this paper we described the PED technique, which ex- inverse resolution. In 4th European Working Session

tends EBL to incomplete determination-based domain on Learning, 1989.

theories. PED uses training examples to fill gaps in
a domain theory by propagating the information that

I they satisfy the target concept definition. Gaps in the
domain theory are specified using determinations. PED
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Introduction problem, which is intuitively well stated (though a bit

The process of constructing explanations is particu- circular) in [Genesereth87]:

larly relevant to Explanation-Based Learning research- Most universally quantified statements will have to
ers. It has become clear that the notion of explana- include an infinite number of qualifications if they
tions as a deductive proof as manifested in EBG are to be interpreted as accurate statements about

[Mitchell86] and EGCS [Mooney86] is limited in scope the world.

and constrains EBL systems to relatively sterile The problem was introduced by McCarthy as an
micro-world domains. The number of things that can aspect of the frame problem lMcCarthy69] and has I
be proved is small and the set contains little of interest been discussed much. As an example, consider the clas-
that could not be inexpensively constructed from first sic implication about birds flying:
principles as needed. Something more than truth- I
entailment inference is needed to drive explanation V z [Bird(z) = Flies(z)]
construction.

When confronted with experiences from the real This FOPC sentence overstates the case for flying

world (or even an artificial but r*ch domain) EBL sys- because, after all, not all birds fly. In particular,
tems react with brittleness. In particular, world penguins do not fly so to be faithful to the world the

experiences often include observations which directly rule must be amended:
contradict deductive conclusions of the system. This I
results in the system entering some kind of internal V z {[Bird(z) A -- Penguin (z] = Flies(x))
should-not-occur state from which conventional EBL
systems cannot recover. Let us (somewhat generously) But, of course, ostriches cannot fly, nor can emu's, nor

define a non-brittle EBL system: can kiwi's, nor can many other increasingly exotic

birds. The rule could be patched for these, but there

A non-brittle EBL system Is one which tolerates are other problems. A bird with a broken wing carnot
any observation or set of observations of the fly so the rule must again be amended. A dove missing I
real world. more than five flight feathers on one side cannot fly,

nor can an eagle missing more than 12, nor can... Once
Of course, if a system is intentionally or uninten- again the rule must be fixed. But, of course, we are not I

tionally given contradictory experiences, it may reach a finished. A bird that has been appropriately condi-

should-not-occur state. The observations of such tioned in a Skinner box cannot fly, a bird that has been
experiences could not have been of the real world since cooked for dinner cannot fly, a bird that is attached to

the real world is always self-consistent. A non-brittle an anvil cannot fly, etc. The list is endless. This prob-
system need not tolerate any input; only those that are lem is not specific to birds and flying. As pointed out
faithful to the real world; as lor g as we do not lie to it by Genesereth and Nilsson it applies to nearly all

by faking world observations, its code must not hang. universally quantified sentences intended to describe I
Now consider what such an EBL system's etplana- the real world.

tion structures might look like. Logical proofs nust be If we are to allow our system's domain knowledge

rejected as explanations because of the quotificdon to specify general statements about the world (i.e., I
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* universally quantified sentences) those statements must explanation construction in explanation-based learn-

necessarily entail some conclusions which are contrad- ing. While abduction is not truth preserving, it is still
icted by reality. Thus, a logically sound inference pro- too strong an inference formalism. The reason can be
cedure like resolution or backward chaining through seen as an interaction between the non-brittlenessI horn clauses, will necessarily violate the non-brittleness definition and the qualification problem.
definition. Let us consider the source of abduction's unsound-

To achieve non-brittle EBL systems the process of ness. Informally, we can see that the above abduction
constructing an explanation must take on more the rule suggests that B, which is observed in the training
flavor of imposing an interpretation on an example and example, came about because of A. The rule is unsound
less of theorem proving. The veracity of the explana- because there there is the possibility of other implica-
tion can no longer guaranteed, nor can the "generalisa- tion rules in the system that may have lead to B. Our
tion" of such an explanation be defined via strict inclu- knowledge might, for example, have included the sen-
sions of possible world states. To allow such inferences tence C = B. Clearly, then, C is as good an explana-
the force of logical entailment invites contradictions. tion for B as A. Without ruling out the possibility of a
It is highly desirable that the EBL process not be truth C B rule being responsible for the truth of B, the
preserving. This statement would surprise many. inference of A from B and A B is unsound. The
However, the complexity of real-world situations and problem is that there exists enough information in the
the impossibility of engineering a complete and correct axiom set to make the inference sound.
domain theory dictates it. A sentence describing the conditions for the sound

Unburdened by the thorny crown of truth- inference of A as the explanation of B is alreadyI preserving inference, EBL systems must substitute entailed by the background knowledge. We simply
some other mechanism to take advantage of existing include sufficient antecedents in the implication to
background knowledge. insure that no other possible cause of B can apply. For

example, if C =* B and A =* B were the only ways to
Abduction infer B, the resulting entailed sentence would be

The obvious possibility is abductive inference. B A -C =* A. A finite such sentence can be con-Abduction has long been associated with the notion of structed for any explanation. Thus, the qualification
"explanation". Furthermore, abductive inference, as problem does not arise and we can be sure that our sys-
commonly construed, is not sound in the formal logic tem no longer applies to the real world.
sense. Since explanation-based learning systems must This works because there is a necessary and
support their explanations through some formalism, sufficient specification of B entailed by the domain
and since EBL systems seem to benefit from some kind theory. The above argament is valid only if we have
of unsoundness, abduction may serve well as a formal closed the world on our domain theory. If there is no
basis for explanation-based learning, way to collect all sentences of the form i =* B, then

The standard interpretation of abduction is as an the new sentence cannot be constructed. So perhaps the
inference rule of the form: argument is not against abduction so much as against

closing the world of our domain theory. An unsound
A =* B inference (say abduction) along with a domain theory
B that is never assumed to be closed, neither runs afoul

of the qualification problem nor violates the non-
A brittleness principle. But such a system only

superficially has the right properties and it has them
That is, from knowing an implication and its conse- for all the wrong reasons. If a world observation is
quent, hypothesize that its antecedent holds, inconsistent with a conclusion of the system, the sys-

A straightforward use of abduction in EBL might tern simply takes it back; none of its conclusions are
identify B with the goal concept, A = B as an element particularly believable since it has an unsoundof the the complete and correct background knowledge, inferencer. If a world observation is outside the scope
and A as the operational sufficient condition. Abduc- of its theory it can be blamed on its admittedly incom-
tion offers a way to conjecture A as the explanation of plete model. It avoids brittleness and the qualification
.D. problem by not having many opinions and not believ-

While abduction has many desirable properties, I ing strongly in the ones it has.
believe it is deficient as an underlying formalism for
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Plausible Inference used. This is, in a sense, the dual of the abduction

Instead, I believe that some form of "plausible" approach in which unsoundness is introduced directly
knowledge and inference is needed, which must neces- by the inference rule. The advantage for EBL is that
sarily be rather different from abduction, at least in its the unsoundness of a conclusion is a function'of the
normal gu e. Semantics will be altered to weaken knowledge used in the explanation which is declara-
domain theory statements rather than to compensate tively specified in the explanation, while the inference I
for their inaccuracies through incompleteness and rules (modus tolens, resolution, abduction...) are impli-
inferential unsoundness. Unlike [Collins861, however, cit. Schemata (or macro-operators) generalized from
the motivation of this form of plausible inference is explanations can thus be i.idependently evaluated for
entirely computational adequacy. No psychological their adequacy in the real world. For some applica-
claims or justifications are being advanced. tions, at least, this property supports a kind of conver-

In a theory of plausible inference an explanation is gence for the learning that would be difficult or impos-
3n educated, somewhat abstract guess at why the pro- sible using abduction. I
position is likely to be true given what is believed. For
example, one might plausibly reason that since it is An Example
autumn in Central Illinois, tomorrow will be a windy This notion of plausible inferencing has been imple- I
day. This illustrates the two hallmarks of our plausi- mented in an EBL system that learns to plan in con-
ble inferences: First, they are not certain. It is entirely tinuous domains. Its primary domain is that of con-
possible that tomorrow will not, in fact, be windy in trolling the speed of a single gear automobile by mani-
Central Illinois. Second, plausible inferences are often pulating the gas and clutch controls. The domain
abstract. It is not plausible to conclude that the winds knowledge is in the form of plausible qualitative pro-
will be out of the north northwest at 22 mph. To be portionalities among quantities. For example, there is
an acceptable rule the characterization of the wind a quantity that represents the current position of the
must be much more abstract, gas control. Call it GAS-PEDAL-POSITION. There

I propose an approach to plausible inference where is another quantity that represents the rate of GAS-
implication has a different semantics. I will continue to FLOW. One domain theory rule specifies that these
write sentences like: are qualitatively positively proportional:
A= B

But by this I mean INCREASE(GAS-PEDAL-POSITION, interval) =
4 A A B A i INCREASE(GAS-FLOW, interval)
using the standard semantics for implication. and

There may be conditions under which "A" is DECREASE(GAS-PEDAL-POSITION, interval) •
satisfied but "B" is not true. 4' represents a DECREAE(GAS-FLOW, interval) I
specification of the context in which the plausible rule
is guaranteed. 4, specifies the implicit assumptions which means that in some implicit context the flow of
built into the plausible rule "A =* B". *, on '.he other fuel can be increased by advancing the throttle. This is
hand, specifies those things in the world that are not always the case - the tank may be empty, the fuel
guaranteed even though there is no explicit way to con- line blocked, etc.
clude them from the plausible implication. The system is given the goal concept of accelerating

To be a useful rule to the plausible inference sys- the car from 0 to 30mph. It allowed to observe a train- I
tem, the conditions that make 4' false should be, for ing episode in which an expert solves the problem by
the most part, infrequent or otherwise uninteresting, manipulating various controls (including the air condi-

Much of the power of this approach is traceable to tioner temperature, the throttle, the car radio, and the I
the fact that no attempt is made to specify the context clutch). The system pieces together a plausible expla-
conditions of a domain rule (such as ""' in the above nation for the expert's actions from its domain theory.
implication), while acknowledging the possibility that Chaining plausible implication rules together yields a
they may not be met. Such context conditions must valid conclusion only when the rules' implicit contexts
not be represented or directly reasoned about. overlap with each other and with the real world situa-

In this view of plausibie inference, the requisite tion. This overlap can never be confirmed, but it can
unsoundness is removed from the inference rule and be denied if a world observation contradicts the conclu- I
embedded in the world knowledge itself. Thus, modus sion. The system first assembles a plausible explana-
ponens and other sound inference mechanisms can be tion for the car going faster tracing the car's velocity
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Introduction Additionally, it may focus attention away from attributes
of that learned knowledge in order to make it more

The use of deduction as a mechanism for generating good generally - yet still correctly - applicable later.
explanations is appealing. It is truth-preserving and can be
performed on an example-by-example basis. The problem This paper is organized as follows. Section 2 introducs
with deduction is the reliance upon a theory, or base of different types of contextual knowledge that might be

laws, from which inferences are made. In many - or, more brought to bear in completing partial explanations

realistically, most - domains, it is not safe to assume that generated by deduction. Section 3 describes a mechanism

such a theory will be perfect. In the explanation-based for evaluating the effectiveness of various types of

learning (EBL) community, which uses deduction as a contextual knowledge as well as the explanations derived

basis for its method, this is now being addressed as a major using them. In Section 4 we describe work completed to

probhkm. (See, for example, [Rajamoney and Delong date. We conclude with a discussion of our further goals in
87] for a discussion of imperfect theory problems in EBL. the investigation of context.
The relationship between EBL and abduction was first

described in [O'Rorke 88].) An alternative to deduction is
to use techniques such as statistical methods that require Contextual Knowledge:
less in the way of built-in application-specific theories. Identification and Application
These, however, generally require large example bases,
which are not always readily available. Consider explanation constnction in the domain of

network fault diagnosis, specifically an ethernet/token-ring
In this paper, we take abduction to be inference to the best network. In this domain, a fault is signalled by the
explanation. Given this, we make two claims here. The inability of one user to reach another connected to the same
first is that we believe an effective mechanism for network. The knowledge used by the performance system•
abduction can be found by combining elements of both is encoded on a level that enables isolation of a fault to a I
deduction and induction. Treating inductive methods as a particular segment of a network, but does not allow deeper
nt - ,ty stems from the belief that the domain theories analysis of the problem. Given an input pair consisting of a

.. I for deductive inference will often be imperfect. diagnosis as well as a frame description of the network's
are three major ways in which a theory may be state at the time of diagnosis, an explanation might be

taulty: it may be incomplete; it may be incorrect; or it constructed linking particular features of the state
might be intractable to use. This paper does not assume description to the diagnosis, as in Figure 1. The
that the theory used by deductive inference is perfect explanation is drawn as a proof tree with the diagnosis, or
However, it concentrates solely on incomplete theories, goal, at its root. Leaves refer to features of the input state
That is, we assume that correct partial explanations can be description. Abbreviations are used, as the tree shown is
generated. Although falling back on induction as a system output; the tree may be read from the bottom as
realistic necessity for completing partial explanations, follows: I
much knowledge can be brought to bear from the partial

explanations as well as from the deductive process in If the target of an incomplete communication responds
general. We refer to this as contextual knowledge. Such in general, while the user initiating the incomplete
information may be used to provide focus on past connection cannot seem to reach anything in the
examples in order to form a set from which the knowledge network, then the problem appears to lie with the
missing from a domain theory can be learned and then source of the incomplete connection (rather than with
instantiated to complete a partial explanation. the destination). If the problem appears to lie with the
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source, and the user at the source is on a token ring * Attributes of the domain theory - for example, the
network, then etc. origin of the theory, etc.

The explanation in Figure 1 is constructed deductively by

backward chaining from the goal to the input state * Attributes of the history of the explanation system - for

3 description using a domain theory for network fault example, the number of explanations constructed, the

diagnosis. A problem would occur if any of the content of explanations constructed, relationship of past

information in the domain theory were missing. An complete explanations to a current one, etc.

example of this type of problem is shown in Figure 2. In In general, this information can be used by either focusing
order to complete such a partial explanation one might attention toward or away from specific attributes.
apply an inductive method that would consider other
examples of the concept LOOKS-LIKE-SOURCE-PROB in Criteria for Evaluating
order to find those features that correctly imply it. the Application of Contextual Knowledge
Alternatively, one can look more closely at the domain
theory as well as the partial explanation derived. Say this
domain theory is constructed in such a way that input There are many possible sources of contextual knowledge,

features are never referred to more than one time in any as described above. Clearly, not all of this is necessarily

S given explanation. Then in determining those that best useful. T\,o potential issues for concern are correct and

imply the uninferred subgoal, one can ignore all those efficient application of contextual knowledge. We ideally

features already used. This is an example of the use of want to use this additional information to generate correct

contextual knowledge when completing an explanation. In explanations. We also want to do so in an efficient

general, contextual knowledge includes: manner. There is no reason to expend resources to use
... .. ...... Artknowledge whose application, while not incorrect, does not
Attiutes o inputs - for example, features and teir provide any additional information. This section addresses

ivalues, combinations of features, etc. the issue of using contextual knowledge appropriately.

* Attributes of both partial, and earlier complete,

explanations - for example, the specific explanation Certain types of information about the structure of

goal, parts of the domain theory used in constructing contextual knowledge can guarantee the correctness of

the explanation, structure of the explanation (i.e., shape applying it. For example, if we know that a domain theory

of the proof tree), etc. is structured in such a way that individual input features
are never used multiple times within a single explanation,

SPOSS-Filut-01CABEPB

POSS-FAILURE-SRC-TRU ISA FAULTIS TD-LOCAL-FIR-RfMR-LOM-L T-W? T

I LOOKS-LIKE-SOURCEIFROS-TN 15A FAULT15 COND-TD-ES-PC-DT-flLvUrI TI ISA FAUILT15 TD-USUt-SAYS-CJWT-DaTIALZK? T

LOOS-LIK -SOURCK-PR01 ISA FAULT15 TD-THE-VSE-rs-ON-A-TW? TI
ISA, FAULTIS C'OND-TGT-NODE-RESPOkJDS-TO-?ING? T

ISA FAULTI5 TD-CAN-USU-RlCI-ANOTit-NI? F

Figure 1: An Explanation for Network
Fault Diagnosis
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Figure 2: A Partial Explanation for
Network Fault Diagnosis

then we can prove that those already used in an incomplete the theory in order to answer the following questions:
explanation will not play a role in the part that is missing. 1. Can the missing rules be created using contextual
This, of course, requires that we make assumptions about knowledge in order to complete partial explanations
the correctness of the partial explanation derived. In that would have been complete had the rules not been
general, we cannot expect assumptions of this type to hold deleted? In order to evaluate the relative effectiveness
true. Nor can we expect to have a complete theory of the of various types of context knowledge we must
contextual knowledge for any particular domain, evaluate the explanations derived using them. The
Therefore, we are concentrating on empirically criterion we are using is the closeness of the
characterizing the performance of various types of explanation to the one that would have been generated
contextual knowledge. deductively had the theory been complete. Closeness

of the derived explanations to those specified by the [
In order to clarify the scope of our investigation, we make original theory provides at least one reasonable

a number of assumptions. The first is that our domain measure of "goodness", assuming that the domain

theory, represented as a rule base, does not contain any theory was designed by an e t

incorrect rules, as indicated in the introduction. We also I
assume that the domain theory is tractable. The nature of 2. If created rules differ from those deleted, to what
the missing knowledge is that entire rules are missing. In extent do they differ? Ideally, if efficiency is one of
our representation, this means that there is either no way to our goals, we would like to find not just the correct
deduce a given subgoal with the partial domain theory, or instantiation of a particular rule to complete a partial
that there are disjunctive ways but one or more of the explanation, but its correct generalization, so that it can
disjuncts is missing, thus not covering all the cases in be used later. That is, we would like to learn rules for
which a subgoal should be deducible. We assume that the later use. I
system receives no noisy input. We define noisy input to 3. What combinations of contextual knowledge appear to

be any pair of a goal and an example, where the goal 3. t bt os of ckl?
would not be deducible from the example using any correct lead to better rules most quickly?
theory. We are performing extensive tests varying parameters

corresponding to the selected domain, the degree of

In order to generally characterize the applicability of completeness of the domain theory, and subsets of the
contextual knowledge, we are investigdung a number of various possible contextual types. All tests are being
domains. To date we have looked at network fault performed within a system developed by us, called Gemini.
diagnosis, radio fault diagnosis, and terrorist event news Gemini is described in detail in [Danyluk 89a].
stories. For each domain, we begin with a complete,
correct, and tractable domain theory. We delete rules from
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Investigation of the Effectiveness Test III was yet another variation on Tests I and II, but
of Using Context Information: here retrieval was done randomly. Results were,

understandably, most varied. They ranged from being
Results to Date general and correct to over-general, and thereforei incorrect.

In this section we discuss some of the results of our

investigation into the application of contextual knowledge In Test IV we used the same three context sets as for TestI to explanation completion. Specifically, we describe some I, but instead applied them to a case where the gap in the
of the test runs performed with Gemini. All runs described partial explanation would be essentially in the middle of a
in this section were done in the domains of network fault proof tree, rather than at its leaves. Again, results were
diagnosis and radio fault diagnosis. The complete rule good, giving only correct explanations and rules.
base for the network fault diagnosis domain described However, the rules were judged to be less generally
above contains 56 rules. It was encoded from a prototype applicable than those found for Test I.
knowledge base that was extracted from experts
maintaining the CMU campus computer network Test V was performed in the radio fault domain, using the
[Eshelman 88]. same parameters as in Test I. Results here were similar to

Test I in that better results were obtained when more
The radio fault diagnosis domain is similar to the network contextual knowledge was used. With as few as threeI domain in that the theory is encoded on a level that enables examples being retrieved from the system's memory,
isolation of a fault to a particular major radio component, however, the explanations derived using the largest context
but does not allow deeper analysis of the problem. The set were identical to those that would have been found by
specific radio is a military communications radio. The rule the initial complete theory. That is, at that point essentiallyI base, containing 35 rules, was encoded from "perfect" explanations and rules were being found.
troubleshooting charts published in the operations manual
for the radio [Radio Manual 86]. Input frames for this The results of the test runs may be summarized briefly as
domain contain 21 slots. follows. Applying explicit contextual knowledge can

indeed result in better rules (and thus explanations) than
Test I was performed in the domain of network fault can be found by an inductive method alone. They act to
diagnosis. For this test a single rule was removed from the significantly reduce the number of examples that must be
complete domain theory. Instantiation of this rule in a considered. Furthermore, the selection of examples
proof tree would always place it at the leaves. In this test, contextual information in its own right - has potentially
three separate sets of contexts were studied. The first set significant impact on the generality of the learned rule.
used very little contextual information: to complete the Examples too similar to each other leave less room forI explanation it selected common features from past generalization, while selecting examples too different may
examples that were most similar to the example being result in incorrect generalization. Finally, although it is
explained. This is essentially an implementation of possible to use contextual information to complete
similarity-based learning (SBL). The second set used explanations with gaps in the middle, the new explanation
additional context information that removed all features will tend to be less good than when the gap is at the leaves.
already appearing in the partial explanation. The third set This occurs because less information is available from the
additionally used a third type of contextual knowledge: it partial explanation. These, as well as other tests, are
removed from consideration input features found discussed in detail in [Danyluk 89b].
consistently in examples throughout the history of the
system's operation. The number of past examples Further Work in
considered was varied from 2 to 10. We found that no set the Investigation of ContextI of context knowledge produced incorrect results (i.e.,
either explanations or rules), although the rules created in
the second and third sets were more general, with the third In this paper we have discussed the use of contextual
set giving best results. As expected, the results were better information to complete partial explanations that have beenI for each test set as more past examples were considered. derived deductively. Contextual information is varied,
Results were averaged over ten runs. however, and is not necessarily correct or useful to

consider in all cases. We have performed a number of tests
Test II was almost identical to Test I, except for the in order to determine the relative effectiveness of someI mechanism used to retrieve past examples. A less different types of contextal knowledge. A great deal of
conservative approach was used where examples were investigation remains to be done before we have a clear
sclected randomly from a set of examples considered tu be understanding of the role each type of knowledge plays.
similar to the current one within a specified threshold. As a step toward a more complete characterization of the
Results here were generally better than those of Test I for effectiveness of using context knowledge, we are in the
all test sets run. Results were averaged over two runs. process of performing more complete and varied tests
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using Gemini. These include more tests in the domain of
terrorist event news stories as well as an extended version I
of the radio fault domain. We have recently formalized
our notion of contexts and their use so that their
combinations may be systematically generated. This will
assure us greater coverage in testing.
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I Abstract tion learned plans are not necesstrily correct. Since simplifica-
This paper analyzes the utility of using incremental tions are caused by the limited inference, when a plan

roreduce the ceofconstruct- incorrectly predicts goal achievement it must be due to limitedr e a s o n in g t o r e u e t ec o m p u t a t o n a l e x p e n s e o f c n t u ti n e e c . W n t h s y e m b e r s o r x p i n e s a l n
ing plan expianations for explanation-based learning. In inference. When the system observes or experences a plan
particular this paper analyzes an approach in which an ini- failure it constructs an explanation for the failure and uses thisI tial explanation is constructed considering a limited subset explanation to refine the plan to avoid the failure in the future.
of all possible operator effects. This limited consideration This refinement represents the checking of an inference path
corresponds to a set of non-monotonic persistence simplifi- missed in the initial analysis due to inference limitations.
cations. Later incorrect predictions made by the explana. By using feedback from plan execution as direction the sys-I tions can then be used to direct consideration of previously tem avoids the computationally ietractable blind search for in-
unconsidered operator effects. This paper focusses upon terains ihe inpaation ntructio in a coplex
comparing this incremental approach to plan explanation to teractions inherent in explanation constructon in a complex
theconventional approachofexhaustivereasoningaboutop- domain. Additionally, because the system has a known in-
erator effects in three ways: 1) completeness and soundness stance of the failure to explain, the process of determining
properties; 2) computational complexity analysis; and 3) on- faulty simplifications is facilitated.
going empirical evaluation. While this approach has a strong intuitive appeal, relatively

little work has been directed towards concretely justifying the
Introduction benefits of the simplification-based approach. This paper fo.

In real-world domains, large amounts of knowledge are need- cusses upon exactly that area, namely formalizing and quanti-
ed to adequately describe world behavior. With the requisite fying the strengths and weaknesses of our particular
complex domain theory, complete reasoning becomes a com- simplification-based approach to reasoning. This analysis
putationally intractable task. Even in game domains, such as compares the simplification-based approach to that of conven-
chess, the combinatorics of brute-force computation are in- tional exhaustive reasoning in three ways:
tractable [Tadepall189]. Unfortunately many AI techniques 1.completeness and soundness properties of the two ap-

I such as planning and explanation-based learning [DeJong86, proaches are discussed
Mitchel1861 involve construction of explanations, and hence 2. computational complexity properties of the two approaches
reasoning. In Explanation-based Learning, this problem of a are described
domain theory with a high computational cost is called the In- 3. an ongoing empirical evaluation of the two approaches is
tractable Domain Theory Problem [Mitchell86]. outlined.

One method of dealing with this problem is to use simplified The remainder of the paper consists of three main sections.
explanations. In our particular approach [Chien89a], these ex- In the first section, we describe our simplification-based ap-
planations are used to perform explanation-based learning of proach to reasoning, including , short example. Next our sim-
plans to learn a general partially-ordered plan to achieve a plification-based approach to reasoning is compared to
goal. In this approach, a system is given weak methods knowl- exhaustive reasoning based upon the three criteria described
edge and heuristic simplifying assumptions. When construct- above. Finally, we discuss related work and sunmarize the re-I ing plan explanations to perform explanation-based learning suits of this paper.
of plans the system uses limited inference and these potentially Overview
unsound (non-mono!onicI Qmn1fications to reduce the corn- Our ipcrmntai approach to eyiaining plans consists of four
plexity of the explanation process. This limited inference in- steps:
volves checking only a small subset of the possible subplan 1.Lni.LalLeoming The system learns an initial plan based
interactions. Because of this limited inference used in explana- upon a simplified explanation constructed using limited in-
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ference. This initial simplified explanation can be learned plan will work for any time of day of operation and only re-
from observation (as described in [Chien89a]) orcan be con- quires normal readiness and supply status for the ainnobile in-
structed using a problem-solving component (as described fantry.
in (Chien89b]). The system next attempts to use this plan in a case whb,- Oe

2. Expectation Violation: Our approach uses expectation viola- ground travel for the airmobile infantry unit takes piace at
tions [Schank821 to indicate flawedplan explanations. There night. The plan is executed and the infantry reaches the final

are two types of expectation violations. Unexpected failures location but at a decreased readiness and supply status, which
can result from problem-solving or observation and occur results in an inadequate amount of force level at the goal loca-
when a plan explanation for goal achievement (either ob- tion. The system queries the simulator to determine the causes
served or constructed by the planner) is applicable but the forthis failure. The system explains the failure as follows. The
goal is not achieved. An unexpeciedsuccess occurs when the airmobile unit suffered a reduction in readiness from prolonged
system observes a plan from its plan library and predicts fail- air travel. This low readiness was further reduced by a night
ure (due to an applicable failure explanation attached to the maneuver (the ground movement from the airfield). The night
plan in the plan library) but observes the plan to succeed. maneuver additionally caused greater than expected supply ex-

3. Explanation of Expectation lolation: The sy:item con- penditures because it took place at night. The factors together

structs an explanation of the violated expectation. produced a readiness reduction in the infantry unit sufficient to
4. Knowledge Modification: The system analyzes the ex plana- cause the goal to fail.

tion of the violated expectation to determine which simplifi- This failed plan is then repaired by an analysis of how the
cation from the initial explanation is incorrect and corrects causes of the failure could be prevented. First, the system notes
the plan explanation via a process which removes the simpli- that the failure depends upon the fact that the ground movement
fication. occurred at night. In cases where the movement can be sched-
This approach to constructing and refining explanations has uled during daylight hours the failure can be prevented. Sec-

been tested by implementation of a prototype refinement sys- ond, the system notes that the failure is a reduction in the
tem. This refinement system uses a representation based upon strength at the final location and notes that using a unit with a
situation calculus which allows representation of conditional higher intrinsic strength will still allow the goal of having the
effects of operators similar to (Pednault88]. This system con- desired strength at the final location to be achieved. Conse-
structs initial plan explanations considering only a reduced set quently the plan is modified to state that when a night ground I
of operator effects when checking for interactions between movement is specified by the plan a higher strength unit is re-
subportions of the plan. Because considering the complete set quired.
of operator effects is a computationally expensive task, in our Evaluation
approach, a system considers subplan interactions as directed This section contrasts the incremental planning approach de-
by expectation violations. For a more detailed description of scribed in this paper with the more conventional exhaustive
our initial learning and refinement approach see [Chien89a]. planning approach. This comparison examines three aspects of

An Example each approach: 1) soundness/completeness guarantees of each
In order to clarify the plan refinement process, a simple exam- approach, 2) computational complexity evaluations of compu-
ple from a mission planning domain will be described. In this tational cost, and 3) ongoing empirical evaluations ofcomputa-
example, the system is given the goal of getting a certain tional cost.
amount of military force to a goal location (where military Soundness i'id Completeness
forcepresentdependsuponthenumberandtypeofunitsatthe In general, pitning involves constructing an explanation/
location and their readiness and supply state). The systemcon- proof that a set of actions will achieve a goal state. Because we
structs a plan which uses air transport for a number ofairmobile assume a correct domain theory, soundness of a planning pro-
infantry units to move these units to an intermediate airfield cedure means that any plans constructed using this procedure
and then moving them by ground a short distance to the goal lo- are guaranteed to work. In order to produce a sound explana-
cation. A number of support units are also moved entirely by tion a system must search all of the potentially relevant rules
ground to the final location. The system expects that this plan and check them. For example, proving that a fact F persists
achieves the goal of getting the goal .amount of force to the goal from situation A to situation B through the execution of opera-
location. tor 01 would involve checking that all of the possible effects of

This initial plan works for the current problerm instance and 01. This would include performing all of the inferences to
correctly generalizes the plan to many other situations. Forex- compute the new situation B. For example suppose F is (alive
ample, the exact airport used for the air transport can be gener- Fred) and 01 is (drive Fred home work). Exhaustively proving
alized within distance constraints of the air transport, the exact the persistence of (alive Fred) would require proving that nu-
units are not critical (although the unit types are), and the goal merous unlikely events do not occur. Due to the lack of com-
location is generalized (although it must be near the airfield and mon sense knowledge, an exhanstive reasoning system would

the starting locations of the support units). have to prove that the car seats would not explode when
However, in this case incomplete checking for interactions warmed by the body heat of a passenger. And investigating just

causes a faulty plan. The system incorrectly believes that this one of these possibilities is computationally quite expensive.
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I Consider investigating the exploding car seat possibility. Dis- fect, persistence from initial state). Our method also considers

missing this possibility requires determining the maximum all of the operator effects forgoal establishment. Hence any ex-
temperature of the seat caused by the body temperature and the planation for goal achievement can be generated in incomplete
passenger compartment temperature, the combustion tempera- form as an initial explanation. Because there are a finite num-E ture of the seat, and many other factors. In general because the ber of operators in the domain theory, a finite number of effects
exhaustive reasoning approach examines every possible rea- per operator, and a finite initial state, there are a finite number
soning path it must follow many potential reasoning paths that of plans to achieve a goal using a plan of a set number of opera-
do not influence the final explanation. However, due to this ex- tors. Let N be the number of operators in the shortest plan cor-
haustive consideration of possible proofs an exhaustive reason- rectly predicting goal achievement over our set of examples E.
er can guarantee soundness of its plans. Generate plans explaining goal achievement in increasing

Next consider the property of completeness which we de- number ofoperators. If a plan cannot be refined to correctly ac-I fine as guaranteeing that if a solution exists the planning proce- count for an example it predicts identical to an exhaustive ex-
dure will find it. This means that a procedure attempts every planation which does not cover E. This will eventually happen
method of goal achievement so it considers every spot in the for any incorrect choice of initial explanation as guaranteed by
search space. Exhaustive reasoning planners [Chapman87, the sound model convergence property. Discard this plan andU Pednault88] can guarantee completeness in planning as we generatethenextlargerplan. Becausethereareafinitenumber
have defined it. of plans for goal achievement of size less than or equal to N we

While conventional exhaustive reasoning planners guaran- will eventually arrive at the shortest plan which can correctly
tee completeness and correctness our incremental planning ap- predict for E and refine it to the sound predictiveness.
proach cannot guarantee soundness of an initial explanation As a result of these properties, a system using our refine-
because our procedure intentionally does not check all poten- ment approach is guaranteed to eventually produce a correct
tial inferences. However, it can guarantee convergence upon solution if one exists.

I soundness defined as follows:
SoundModel Convergence (soundness): As an initial plan i Computational Complexity Analysis

refined the predictiveness of the plan will eventually become As shown above, our approach guarantees convergence upon
exactly that of the exhaustive reasoning explanation and refine- soundness and completeness. However, because the main mo-I ment will cease. Because refinements are triggered by incor- tivation for our approach is computational efficiency, a direct
rect plan predictions, the refinement process will occur as long comparison of the computational expense of incremental rea-
as the incrementally learned plan makes incorrect predictions soning and exhaustive reasoning is now discussed.I (i.e. predictions contradicting those made by the exhaustive In general the cost of constructing a plan explanation con-
reasoning plan). An initial plan is constructed using the same sists of two parts: establishments - ensuring that facts that you
analysis process as the exhaustive reasoning approach except want true are true at or before the time that you need them to be
that it considers only a subset of the possible operator effects. true; and protection - ensuring that facts stay true from the timeI With each refinement it adds for consideration the set of opera- they are established until the time they are needed. Becauseour
tor effects whose previous omission caused the incorrect pre- approach performs exhaustive reasoning about establishments
dictions. When the set of operator effects considered becomes in order to retain completeness, the computational expense of
the set of actual relevant operator effects for the plan (i.e. those reasoning about establishments is the same in the incremental
appearing in the exhaustive analysis) the predictions made by and exhaustive reasoning approaches.
the plan will be the same as those made by the exhaustively The cost ofchecking protections is the cost of checking each
derived plan. Because the plan contains a finite number of op- possible effect of an operator to see if it negatively affects anyI erators and each operator has a finite number of effects the total facts pertaining to the successful completion of the plan. These
possible set of operator effects for the plan must be finite. Since facts pertaining to the successful completion of the plan are
the total possible set of operator effects is an upper bound on the called protected facts and include facts used as preconditions of
set of actually relevant operator effects, the set of actually rele- operators (including conditional preconditions for conditionalI vant operator effects must also be finite. Because each refine- effects used in the plan) and facts used to satisfy the goal in the
ment adds a non-empty set of operator effects to the plan final state. Any effect that could potentially falsify a protected
analysis and the number of operator effects needed for correct fact requires that the plan be constrained to prevent such a falsi-
prediction is finite, eventually the refinements will lead to a fication. Because we use a partially-ordered plan representa-
plan predicting the samae as the exhaustive reasoning plan. tion, each of these checks is a expensive action. This is because

Completeness: For a given class of input examples E. it determining the exact context in which the operator will be ex-
there exists an explanation whose complete modl correctly ecutedinvolvesdeterininingthetruthvalueoffacts iapartial-
predicts goal achievement over E. the system will eventually ly ordered plan vwith conditional effects (an NP-hard problem
generate-such anexplanation. This property relies upon the [Chapman871). Let:
sound model convergence property described above. Our plan E be the average number of effects per operator
explanation method considers all of the methods of goal estab- C be the cost ofdetermning whether an effect e can occur in
lishment (i.e. via direct operatoreffect, conditional operatoref- a particular context of a given plan and if so tinder exactly
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what conditions pies the system can refine all of them and the system will re-

P be the number of preconditions per operator quire less than X failures. I
G be the number of items in the goal criterion To summarize the computational complexity results, the in-
N be the number of operators in the plan cremental reasoning approach provides significant computa-

The number of protected facts in a plan is proportional to the tional savings over the exhaustive approach if. either 1) the
number of preconditions of operators in the plan plus the num- actual number of effect-protection interactions is much less
ber of facts in the goal specification or O(NP+G). The number than the potential number of effect-protection (e.g. X <<
of effects to check against these protected facts is O(NE). The EN(NP+G)) 2r 2) the examples of actual interactions provide
total cost of checking protections in the exhaustive approach is significant guidance through intermediate points in the expla-
the product of the protected facts and the effects times the cost nation (e.g. C' is significantly less than C). However, these
of checking a single protection for a total expense of: savings are contingent upon the ability to use failure instances

O(ENC(NP+G)) to isolate faulty simplifications.
In the worst case C will be the cost of constructing a separate Empirical Evaluation (in progress)
explanation for each possible ordering of each possible set of
operators preceding the operatorwhose effect we are determiin- This section describes ongoing empirical evaluation of the
ing. This is at worst o(2NN!) explanations. The cost of con- computational savings from using incremental reasoning in ex-
structing a support explanation for a single ordering would be planation construction. This evaluation consists of using a
O(KN) where K is the branching factor of the domain theory. In planner to solve mechanically generated problems. The first
general the number of possible contexts to investigate would be set ofexperiments involves using hand-coded domain theories
much less than o(2NN!KN) as this presumes totally unordered operating in: 1) a simple workshop domain involving a drill,
c pators. Additionally, heuristics for preferring certain order- roller, and oven; and2) a mission planning domain involving
ings [Drummond88] offer promise in reducing the number of simple logistics. The second set of experiments involves the
ordenngs for consideration. use of machine-generated domain theories from the parame- IIn contrast, the computational cost of our incremental ap- ters of E =# of effects per operatorand PIE = #of preconditions
proach depends upon the actual number of interactions occur- per operator effect. These experiments will provide empirical
ring in the plan. This is because in our approach a protection is figures on:
not checked until an incorrect plan prediction upon an example The # of potential interactions in a plan and the # of actual
indicatesthataprotection violation can actually occurforagiv- interactions and how this figure is affected by E and P/E. We
en effect-protection pair. Let: have shown analytically that increasing P or E increases both
X be the actual number of interactions occurring in the plan. the potential and actual # ofinteractions. Additionally, increas-

Note that X < EN(NP+G). ing P/E should decrease thepercentage of potential interactions
C'be the cost to determine the exact circumstances under which which turn out to be actual interactions.

an effect e will occur ir a plan given an example of the effect the# of nodes searched i verfying an nteracton via the ex-
occurrence. Note that in most cases C' will be less that C be- haustive approach & the # of nodes searched in verifying an in-cause we can construct an explanation using the particular teraction via the incremental approach. This will empirically
concrete failure example we have observed. If this explana- measure the values of C and C'.
tion of the effect is of size S, the cost of constructing the ex- the # of examples required by the incremental approach to
planation without guidance (as required by the exhaustive . . ...
approach) is 0(ks ) where k is the branching factor in the do- a
main theory. This is because there are S choices of k altema- error rate of the concept.
tives in the search space. In contrast, if there are Trelatively One goal of these empirical tests is to attempt to derive a
uniffomily spaced intermediate points in the concrete exam- static test which will indicate the expected performance of an
pie to constrain the explanation process the cost of deriving our incremental reasoning approach to an arbitrary domain

the same explanation in the simplify and refine approach is theory. This static test would use the E and P/E properties of the
O(TkSr). domain theory to predict the expected costs of applying the in-
Thus the computational cost of the simplify and refine ap- cremental and exhaustive reasoning approaches.

proach is: O(XC'). Because these tests are not yet complete, we can offer only
However, the simplify and refine approach also requires a tentative empirical results. These results indicate that increas-

number of examples to converge upon a correct plan. Because ing P/E strongly influences the ratio of potential to actual inter-
we assume that the system has the capability to isolate a faulty actions (the ratio X/(EN(NP+G)). These initial empirical
cimplification in a Ringle example the simplify and refine ap- results also indicate that the number of intermediate guidance
proach will fail on X examples( where again X is the actual points gained by the incremental reasoning approach in investi-
number of interactions) before convergence upon a correct gating an actual interaction is O(N). This infomfation is of in-
concept. If multiple isolatable failures occur in single exam- terest because it determines the ratio of C' to C.
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Discussion and Summary number of actual interactions is small bittb numberofpoten-

While there have been a number of problem-solvers based hal interactions is large; and 2) the directi,.. given by the incor-

upon the approximate and refine approach to problem-solving rect prediction provides significant guidance in determining

[Gupta87, Hammond86], relatively little work has addressed the cases in which a previously unconsidered effect is relevant

directly comparing the approximate and refine approach to the Finally, we discussed an ongoing empirical evaluation of our

exhaustive approach. Unruhand Rosenbloom [Unruh89] pres- approach to incremental reasoning which is ixected at provid-

ent interesting empirical results but do not provide a computa- ing strong information upon the applicabilk, of our approach.
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Introduction For example, in reasoning about action, we may know
that the sprinklers were turned on last night, and so

We presen t a general theory of abduction. This theory predict that the lawn will be wet in the morning. This

is intended to formalize a notion of abduction within a is the so-called temporal projection problem: how to
logical framework that is general enough to represent infer the consequences of a set of actions in an initial I
the typical uses of abduction in Artificial Intelligence, situation. On the other hand, we may observe that the

e g., diagnosis, explanation, plan recognition, and so lawn is wet, and so infer that the sprinklers were turned
forth. The main features of the theory are: on. This assumption explains the observation by giving

I. The generalization of the logic of abduction to in- a cause for it.
corporate default assumptions. The prediction of effects from causes often demands

2. A clear separation of the role of default assump- the use of defaults, since the knowledge of a situation I
tions fro thear sep tionofteroeoea assumption pto may be imperfect. The lawn may not be wet even af-
explain observations s ter the sprinklers are turned on, because they may fail

to work properly. Through the use of defaults, it is

3 Analysis of the relation of the theory to nonmono- possible to state the conditions that normally would be I
tonic formalisms that have been used for abduc- caused by an action: the best we can do in complex do-
tion; in particular we show that a subset of the the- mains. Such defaults are obviously defeasible, because
ory can be treated as a closure and minimization if better information becomes available, the initial de-
operation, using defaalt logic or circumscription, fault conclusions may be retracted.
This result shows the relation between consistency The assumption of causes from effects is abductive
and abduction-based treatments of diagnostic in- in nature. Roughly speaking, we seek the best expla-
ference. nation for the observed effects. Abductive reasoning is

4. Implementation of the theory by a Doyle-style obviously defeasible: knowing the lawn is wet might be

(justification-based) TMS. The implementation is sufficient evidence to conclude that the sprinkler was

exact only for a restricted form of the theory. We on as the best explanation (especially in a dry climate).
Further knowledge that it had rained would make thisshow how the TMS generalizes the ATMS in an ocuso nfudd

abductive framework. conclusion unfounded.
The fact that both prediction of effects and assump-

Prediction and Explanation tion of causes are defeasible can lead to a confusion of
the two in a formal account of reasoning. The approach

The general framework we assume is that there are we take in the next section distinguishes them clearly.
causal relations among events in the world, and we can
model the world by representing and reasoning about A Logical Theory of Abduction
these relations. There are two basic types of reasoning
operations: The account of abduction that we are interested in has I

been termed "'ogic-based". That is, the causal rela-1. Prediction of effects from causes, and tions among events in the world are treated as a theory

2. Assumption of causes from effects. in some logical framework, and observations and as-
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sumptions are expressed as sentences in the logic This would conclude that the lawn is still dry in succeeding
approach is weaker than probabilistic accounts in its situations.
ability to order the plausibility of assumptions, it is In a simple form of temporal projection, the sequence
stronger in its ability to represent complex domains, of events and (perhaps) some information about the

Within the logical approach, there have been many initial situation is given. The assumption vocabulary
different accounts of abduction, some with respect to consists of properties of the initial situation, since these
particular domains (e g., [Reiter, 198t] for diagnosis), are the causes (along with the events) of properties in
others of a more general nature (e.g., [Poole, 19881). subsequent situations. The observational vocabulary
The account we give here draws on ideas from these, contains the properties of situations after the initial one,
and formalizes them in a general way. The abductive since these are to be explained.
inference problem is stated with respect to an abductive In a typical case, we might know:
frame giving the appropriate language and background suc(O) = 1,suc(1) = 2 given
theory.

rain(l) given
DEFINITION 1 An abductive frame is a tuple dry-road(O) given

(,E,A,0), where dry-lawn(l) observation
* 2 is a logical system.

E2 is a set of sentences of C, the background From this initial information, we can predict from the
background theory alone that the road will be dry in

ter.situation I and wet in situation 2. To explain the ob-
A is the assumption vocabulary. servation of the lawn being dry in situation 1, we will

* 0 is the observation vocabulary, have to assume that it was dry in situation 0.

The logical system is arbitrary, as long as it has a We now state the general form of abductive reason-
well-defined notion of consequence, which we express ing.
by r t- 4,, that is, the sentence 4 follows from the set
of sentences r in the system C. The background theory DEFINITION 2 Let (C E, A, 0) be an abductive frame.

expresses knowledge of the causal relations of the world. Let S, the situational facts, be a finite set of sen-

The observation and assumption vocabularies are used tences not containing the vocabulary of 0. Let 0,

to express what we observe about the world and what the observations, be a sentence from the vocabulary

we are willing to assume to explain these observations, of 0.

For example, consider the domain of reasoning about An explanation of the observations is a finite set
action. We'll choose the logical system to be default A C A such that
logic. The background theory expresses knowledge of i. E U S U A I-,c 0.
the way in which actions change the world. For the 2. A is consistent with E.
lawn example, we might have: 3. A is minimal.

Vt rain(t) D wet-lawn(suc(t)) A cautious explanation is the disjunction of all the
Vt rain(t) D wet-road(suc(t)) explanations, that is, Vi Ai.
Vt sprinkler(t) D wet-lawn(suc(t)) For the example above we have
Vt sun(t) D dry-road(suc(t))

wet-lawn(t): wet-lawn(suc(t))/wet-lawn(suc(t)) S = {rain(1),dry-road(O),suc(0)= 1,suc(1)= 2)
dry-lawn(t) : dry-lawn(suc(t))/dry-lawn(suc(t)) 0 = dry-lawn(1)
wet-road(t): wet-road(suc(t))/wet-road(suc(t)) The only possible explanation is dry-lawn(O), which
dry-road(t) :dry-road(suc(t))/dry-road(suc(t)) thus must be the cautious explanation. From the

Vt dry-lawn(t) -wet-lawn(t) background theory the conclusions are dry-lawn(1),
Vt dry-road(t)- "wet.road(t) dry-road(1), wet-road(2), and wet-lawn(2), and corre-

This is a simple situation-calculus theory, with proper- sponding negative literals.

ties like wet-lawn being true in a given situation, and Remarks. The situational facts are meant to include
events like rain occuring at a given situation and having any knowledge of the particular situation at hand that
effects in the succeeding one. The persistence of prop- does not need to be explained. We could include such
erties from one Rituation to the next is represented by information as part of the background theory, but it
the default rules. Given an initial situation in which is more convenient to separate it, since an abductive
the lawn is dry and no events occur, for example, we frame will be useful over many particular situations.
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The restrictions on the form of A deserve comment. In fact, even without the restriction to Horn clauses,

A must be a minimal set of expressions from the as- the ATMS could be used to compute explanations, as
sumption vocabulary A; by mi ,imal is meant there is long as all the Horn clauses relevant to the observations
no other explanation that is a proper subset The idea were derived from the background theory and added to
is that these expressions constitute valid causes of the the ATMS. I
observed effects, and if there is an explanation which The ATMS is not sufficient when £ is default logic.1

contains fewer causes, it should be preferred. Other Recent work with Ulrich Junker Junker and Konolige,
than this we say nothing about preferences among mul- 1990] has shown that the TMS can be regarded as -an
tiple explanations. It is obvious that often such prefer- implementation of default logic. In particular, when
ences will be required for reasoning, e.g .we may want the first-order part of a default theory is Horn, there is
the most specific explanation, or the most probable, or a simple mapping to a TMS such that the extensions
the X-est, where X is some measure on explanations. of the default theory correspond to the extensions (ad-
The preference could be expressed mat hematically by missible labelings) of the TMS. We will use this results,
a partial order on the subsets of A. Since such an or- and show how to generalize the notion of extension of
der will be closely related to the domain of application, a TMS to generate explanations.
and we have no way of making any general statements We take the TMS to be the formal version given in
about the order, we omit it from further consideration [Reinfrank and Freitag, 1988], but extend it by adding a
here. special symbol J. for contradiction. Nodes of the TMS

In a given problem domain, we may he interested in are atoms (including 1). A justification is of the form
the best explanation, or the cautious explanation, or (MIN -. c), where M is a set of nodes (the monotonic
even any (satisficing) explanation. For example, if we antecedents), N is a set of nodes (the nonmonotonic
want to predict the possible states of the world under a antecedents), and c is a node (the conclusion). A TMS I
series of events, then the cautious explanation might be theory is a set of justifications.
most appropriate. Tasks like plan recognition usually Informally, a node n is provable from a set of nodes
require the best explanation. And for some problems, E in a theory J if there exists a noncircular application
like the N-queens problem, there is no ordering of solu- of justifications of J, leading to n, that are valid in E.
tions, and any one would be acceptable. E is grounded if every node in it is provable from it.

This theory of abduction presented here is a general It is closed if it contains the conclusion of every valid
one because the logical system C and the background justification of J. An extension of J is any set that is
theory are not restricted to a particular type of first- both grounded and closed.

order theory, as is often done. In particular, we are From the results of [Junker and Konolige, 1990], we
free to use a nonmonotonic logic for C, to express de- can show the following connection between extensions I
fault predictive conclusions in a causal theory, as in the of a default theory and a corresponding TMS theory.
example above. DEFINITION 3 Let W be a set of Horn clauses of

Implementation using a TMS the form Pi A ... A pn D q, where q may be
1. Let D be a set of defaults a, A ... A am :

The definition of abduction just given is very general, b/c where ai, b, and c are atoms. The de-
and if it is to be used as the basis for building reasoning fault theory (W, D) is called a Horn default the-
systems, there must be a proof theory and implemen- ory. The corresponding TMS theory is given by
tation. In the general case, the problem of deriving the set of justifications ({p,'-',p,} 10 - q) and
explanations is (a) r.e. when 1 is first-order, and (b) ({a,.. " ,am}Ib -c) formed from W and D.
non-r.e. when Z is default logic. For finite propositional THEOREM 1 Let (W, D) be a Horn default theory, and I
languages, both these cases are decidable, although the
complexity may be high. What we will do here is relate J the corresponding TMS theory. Let Cn(E) be
the abductive theory (in a restricted propositional case) the propositional consequences of the set E. Then
to the ATMS [de Kleer, 1986] and TMS [Doyle, 1979], E is an extenion of J if and only if Cn(E) is an
and then show how this relationship can be generalized extension of the default theory (W, D).
to yield an approximate procedure for the general case. 'There have been recent attempts to generalize the

From the results of [Reiter and de Kleer, 1987], it ATMS algorithm to the nonmonotonic case [Reinfrank et
is e.asily shown that the ATMS can compute all exp!a- al., 1989, Junker, 19891. but there are still problems; in par-

ticular, the language is restricted so that contradiction is
nations of observations 0 for a background theory and excluded. Here we view the TMS as a generalization of the
situational facts E U S, when 0 is a single (positive) ATMS, and allow contradiction (or NOGOODS in the ter-
atom and E and S can be expressed as Horn clauses. minology of [de Kleer, 1. t",
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The TMIS, while able to compute default extensions the abduction is straightforward. A typical example is

for Horn default theories, differs from the ATMS in that the N-queens problem Here the algorithm produces a
it does not compute the minimal assumption sets for solution to the 10-queens problem every 0.1 seconds,
which a given conclusion would hold in the theory. This and a solution to the 500-queens problem every 12 sec-
is what we require. We generalize the definition of ex- onds.
tension along the lines of (Reinfrank et al., 1989], by
introducing a set A C A of assumptions that are unjus- Closure + Minimization implies
tified. E is an A-ex tension of J if E U A is closed and Abduction
every node of E has a proof in E U A. Note that this
differs from the pre ious definition of extension only in In this section we prove a result about the relation
that the nodes of A do not need proofs. An explanation of general abduction to closure and minimization for
of a node n in theory J is a minimal assumption set A causal theories. There are two distinct logic-based ap-
such that n is a member of some A-extension of J. The proaches to diagnosis, a type of abductive task using a
following theorem shows the essential equivalence of ab- causal theory. In one, the abductive approach, a system
ductile theory explanations and TMS explanations. is diagnosed by finding causes for the observed symp-
THEOREM 2 Let (4,2,A,O) be an abduclive frame, toms. This type of diagnosis is readily represented in

and let E U S lie a Horn default theory wih J s the general abduction formalism presented here: the
corresponding TMS theory. Then A is an explana- background theory contains the relation between causes
ton for o E C) f and only if A is an explanatin and symptoms, and explanations give the diagnosis of
for o fn e. observed symptoms. On the other hand, accounts of

diagnostic reasoning have also been given in terms of
To pursue the example given in the last section: al- minimization and logical consistency. For example, in

though it is not in the form of a Horn default theory, [Reiter, 19871, a diagnosis is a minimal set of abnormal-
minor modifications will make it so. First, replace all ities that is consistent with the observed behavior of a
the universally-quantified statements with their instan- system.
tiations for situations 0, 1, and 2, e.g., At first glance, these two approaches seem fundamen-

rain(0) D wet-lawn(l). tally different in at least two respects. First, as we
noted already, the form of inference is distinct, since

Next, change the equivalences to simple contradiction, abduction from the background theory E to observa-

NOWthethery-i ra n cA etran slate int a. diffnt is not the samne as the consistency of E and
, dry-lawn(0) A wet-lawn(0) .L. 0. Second, they encode knowledge of the domain in

Now the theory is Horn, and can be translated into a different ways: in the abductive framework, there are
justification network. The only explanation containing implications from the causes to the effects, while in the
dry-laivn(1) has A {dry-lawn(O)}, just as for the ab- consistency-based systems, the most important infor-
ductive theory. mation seems to be the implication from observations to

I At this point, we have shown that a suitably defined possible causes. For example, in Reiter's reconstruction
TMS is a generalization of the ATMS, allowing non- of the set-covering model of diagnosis [Reiter, 1987], he
monotonic justifications. We are left with two tasks: to uses axioms of the form:
extend the TMS translation to non-Horn default the-
ories, and to construct algorithms for computing ex-
planations of TMS theories. In (Junker and Konolige, where rn is the observed symptom and di are diseases
1990], the first results on extending the translation to that cause the symptom.
less restricted default theories are given; in general the While these differences exist, from a more abstract
translated TMS will be only an approximation of the point of vew there is a clear connection between the
default theory. two approaches: they are different implementations of

For the second task, we can take advantage of a causal abduction. To see this, consider a particular el-
large body of research on constraint-satisfaction meth- ement o of the observation vocabulary. In terms of the
ods. We have been using a type of forward-checking general abduction theory, o will have a set of explana-
algorithm. Although in a preliminary stage of analysis, tions Al, A2 , ... , A,, relative to a background theory
this algorithm has proven to be efficient in a variety of E. Let us call these the causes of o. Now suppose we
tasks, especially where only a satisficing explanation is add to the background theory a statement

necessary. We have concentrated mostly on problems in
which the constraints are difficult to satisfy, but where 0 D Al V A 2 V ... V An,
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where we understand each Ai to be the conjunction of minimization of causes.
its elements. This expression says that whenever o is
present, it must have been caused by one of the A,. Let Acknowledgements. The research reported in this
' be the result of adding to 1 one such statement for paper was partially supported by the NTT Corporation,

and by the Office of Naval Research under Contracteach o. As a background theory, V. is much stronger NoN00-8-005

than E, since it contains the closure over all possible
causes for each observation. k-heferences

Now suppose we observe o. This observation is con-
sistent with V', and A, V A 2 V ... V A, is true in all de Kleer, 1986] Johan de Kleer. An assumption-based
consistent models of o and V'. If we now try to mini- truth maintenance system. Artificial Intelligence,
mize causes, that is, to assert -'Ai (again understanding 28.127-162, 1986.
A, as a conjunction) for as many causes as possible, we [Doyle, 1979] John Doyle. A truth maintenance system. 1
will eliminate possible causes from the disjunction, un- Artificial Intelligence, 12(3), 1979.

til we ae left with a single cause. Thus %e can perform [Junker and Konolige, 19901 Ulrich Junker and Kurt
abductive reasoning in the consistency-based apprcach, 1givn cosue oer auss nd iniizaionof auss. Konolige. Computing the extensions of autoepistemicgiven closure over causes and minimization of causes. and default logics with a TMS. In Conference on
We make this more precise with the following theorem. andodefal Aogics with a bTMS I noee

Theoretical Aspects of Reasoning about Knowledge,
THEOREM 3 Let (,C.,A,O) be an abductive frame, Asilomar, CA, 1990.

with £ first-order. Construct ' D £ as descri bed [Junker, 1989] Ulrich Junker. A correct non-monotonic
above, by adding the closure of all causes for each ATMS. In Proceedings of the International Joint
observation. If A is an explanation for the obser- Conference on Artificial Intelligence, Detroit, Michi-
vaton sentence 0, then for some maximal subset gan, 1989.
X = {-,ala E A) such that XUE is consistent with
0, A is a logical consequence of ' t9 X anid O. [Kautz, 1987] Henry Kautz. A formal theory for planrecognition. Technical Report TR-215, University of

The converse of this theorem is not true in general, Rochester, 1987.
since closure and minimization is a more powerful tech-
nique than abduction. For example, if a particular ef- (Poole, 1988] David Poole. A methodology for using a

fecto i no oberve an isnota coseqenc ofthedefault and abductive reasoning system. Technicalfact o is not observed and is not a consequence of the report, Department of Computer Science, Universitybackground theory, then the consistency-based system of Waterloo, Waterloo, Ontario, 1988.

concludes its negation, while abduction does not.
The relation of general abduction to consistency- [Reinfrank and Freitag, 19881 Michael Reinfrank and

based approaches should now be fairly clear. In the Hartmut Freitag. Rules and justifications, a uniform

latter case, for :xainple with diagnostic systems such as approach to reason maintenance and non-munotonic

Reiter's, or I. tutz's theory of plan recognition [Kautz, inference. In Proceedings FGCS-88. Tokyo, Japan,
1987], abductivc inferences are obtained by adding clo- 1988.
sure axioms to the backgzuuna ttory, and minirriz- [Reinfrank et al., 19891 Michael Reinfrank, Os-

ing causes. Fror. among the resulting explanations, kar Dressler, and Gerhard Brewka. On the relation
still further refinements are possible: in Kautz's system between truth maintenance and autoepistemic logic.
causes which are minimal in cardinality are preferred" In Proceedings of the International Joint Conference
this corresponds to choosing a preference criterion on on Artificial Intelligence. Detroit, Michigan, 1989.
explanations in general abduction. [Reiter and de Kleer, 1987j Raymond Reiter and Jo-,

Whether it is preferable to use one or the other ap- han de Kleer. Foundations of assumption-based truth
proach depends on the nature of the domain and the maintenance systems: preliminary report. In Pro'
task. In those cases where reliable closure knowledge is ceedings of the Amerca, 4ssociation of Artificial In-
not available, the consistency-based approach will force telligence. Seattle, WA, 1987.
conclusions that are incorrect. Where this knowledge [Reiter, 1987] Raymond Ratter. A theory of diagnosis
is available, it can lead to stronger conclusiors than [ritrn1987] Aymod cil Athe of digoi
the r -;uctive approach. Finally, the genera ,')duction from first principles. Artificial Intelligence, 32, 1987.
framework presented here has the advantage of inte-
graing default reasoning about causation; to do the
same fol the consistency-based approach it would be
necessa-y to introdtce an ordering on defaults aad the
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- A Theory of Abduction Based on Model Preference

I
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1 Introduction clusions. Levesque convincingly demonstrates that no
purely semantic criterion can be used to distinguish

A number of different frameworks for abductive reason- competing assumptions, and proposes a syntactic met-
I ing have been recently advanced. These frameworks ap- ric based on the number of literals comprising the syn-

pear on the surface to be quite different. These different tactic representation of the assumptions. This criterion
approaches depend on, for example, statistical Bayesian will admit a number of competing explanations, each of
methods (see Pearl [4] for a survey), minimization of which is minimal according to this criterion. Certainly
abnormality (Reiter [6]), default-based methods (Poole in a large number of practical problems, one is very
[5]), or assumption-based methods, in which unproved much interested in distinguishing a "best" explanation
literals may be added to the theory as assumptions dur- among all those that meet the syntactic minimality cri-
ing the course of a proof (Stickel (9], Hobbs et al. [2]). terion. Typically such preferences depend on particular

Although these abduction methods are grounded in facts about the domain in question. It would there-
the particular theories on which they are based, e.g., fore be desireable -f there was some way of expressing
probability or default logic, there has not yet been a domain-speLific preference information within the the-
completely satisfactory theory of abduction in general ory so that syntactically minimal alternatives could be
that can account for the variety of reasoning and repre- compared.
sentation schemes encountered in all of these methods. A number of proposals have been advanced for se-

I The best effort to date in this direction has been under- mantic criteria for comparing different sets of assump-
taken by Levesque [3], who characterizes an abduction tions. For example, if the theory of a domain can be
problem as finding all sets of explanations a for an ob- expressed naturally in terms of the normality and ab-
servation # within a thec -'. A proposition a is an ex- normality of the individuals in that domain, as is often
planation for /3 if T h (a D 0) and T K -,a. Levesque the case with diagnostic problems, an obvious criterion
alters this definition slightly by the introduction of a to distinguish assumption alternatives is the number of
belief operator to T, which allows him to abstract from abnormal individuals that are implied by the assump-
the particular rules of inference that may be used to tions. Minimization of abnormality is a very natural
I-onclude 0. He considers two possibk :efinitions of the preference criterion in such domains. However, not all
belief operator, each with different algorithms for com- abduction problems are best viewed in terms of abnor-
puting assumptions that have different computational mality of individuals. In fact, in natural-language pro-
properties. cessing, minimization strategies are quite inappropri-

"ith-in any albductive reasoning method there will ate. If a speaker says, "My ,.,atch is broken," minimiza-
generally be a set of assumptions, which could be used tion strategies would consider why a typical speaker's
together with the theory to derive the desired con- own beliefs might support such an utterance. For exam-
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pie, he might believe that the mainspring was broken, or they call model preference default logic, in which the

perhaps a dozen different equally likely mental states. individual default rules of the theory are interpreted as

However, the hearer of such an utterance is really trying local statements of model preferences. For example, the

to infer what the speaker intends him to believe. In this default rule p - q is interpreted model-theoretically as I
case the intention is most likely reflected by the con- a preference for models that satisfy q among all models

tent of the utterance itself, i.e., the speaker's watch is that satisfy p.

broken, and not by any more specific cause that would If abductive reasoning is to be done within a the- I
support such a belief for the speaker. Stickel [9] pro- ory, it is possible to give an interpretation to impli-

poses a different comparison criterion, which he calls cations within that theory as expressing local prefer-

least specific abduction, which is argued to be more ap- ences among models in a manner similar to Selman

propriate for natural-language interpretation problems. and Kautz's default rules. For example, if p D q is

An alternative to abnormality-based approaches is a rule, and q is an observation, then the fact that p can

to encode information about the desirability of differ- be assumed as an explanation for q suggests an obvi-
ent assumptions in the theory itself. In a Bayesian ous model-preference interpretation of the rule: Among

framework, this is expressed by the prior probabilities models satisfying q, models that satisfy p are "by and

of the causes, and the probabilities of observations given large" preferred to models satisfying -'p.

causes. Another alternative, proposed by Hobbs et al. The reason the hedge "by and large" is used in the

[2] involves encoding preferences among assumptions as above definition is that it cannot be the case that the I
weighting factors on antecedent literals of rules. abductive interpretation of p D q is that, for all models

In this paper, I propose a model-theoretic account of that satisfy q, every model that satisfies p is preferred

abduction that represents domain-specific preferences to every model that satisfies -'p. It may be the case that Ii
among assumptions as preferences among the models other rules in the theory imply preferences that may be

of the theory. This proposal is directed toward the goal consistent with q, but inconsistent with p. In general,

of developing a theory of abduction which character- this criterion is too restrictive to permit the existence of

izes domain-specific preference information abstractly, a consistent model preference ordering for many theo-

and which hopefully can be unified at some point with ries of practical interest. A weaker interpretation of the

model theoretic accounts such as Levesque's. It is work relation between a rule and the model preference or-
in progress, and at this point consists more of definitions der is that every model satisfying p is prefered to some

than theorems, but I believe the proposal is worthy of model satisfying ppAq. Adding an assumption to a the-

consideration in the search for a unified theoretical ap- ory restricts the models of the theory. If this restriction

proach to abduction. I shall use the weighted abduction is such that it rules out some models that are known

theory of Hobbs et al. [2] as an example of a possible to be inferior to every model of the theory plus the as- I.
computational mechanism to realize this approach. sumptions, and the theory plus the assumptions entails

2 A Theory of Abduction Based on the observations, then the assumptions are a potential

solution to the abduction problem. A set of assump-
Model Preference tions A1 is preferred to a set of assumptions A2 for a

Shoham (8] introduced the idea of model preference as given theory T, if every model of TU AI is preferred to

a general way of expressing various forms of nonmono- some model of TuA 2. Abduction can thus be regarded

tonic inference. He postulates a partial preference order as a problem of finding a set of assumptions that imply

on the underlying models of a theory, and the desired a greatest lowei b und on the model-preference relation

conclusions of the tieury vrc those propositions that are among other com.peting sets of assumptions.

satisfied in all the maximally preferred models of the A further possibility that needs to be considered is

theory. In contrast with this global notion of preferen- that, once an assumption set is found, there may exist
tial entailment, Selman and Kautz (7 introduce a logic models satisfying sets of assumptions that are inconsis-
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tent with the assumption set under consideration, and the problem. The greatest lower bound condition guar-I every one of their models are preferred. Interpreted in antees that the assumption set that constitutes the so-
terms of domain specific preferences, thiswould be a lution to the problem is one that is preferred to other

I situation in which p is a possible explanation for q, but assumption sets, provided that it is not defeated. An
p and r cannot be true simultaneously, and r is almost assumption set that is potentially defeated is still ad-
always true. In such a situation, we say that the as- missable as a solution, provided that it meets the defeat
sumption of p is defeated, unless r can be ruled out by exception condition, i.e., that assumptions can be added
further preferred assumptions. to the set so that every model is superior to some model

The following is a precise definition of abduction in of the potentially defeating assumption set. Of course
terms of model preference. this extended assumption set will no longer be syntac-

Given a theory T, a total, antireflexive, antisymmet- tically minimal, and hence will not be a solution to the
ric preference relation >- on models of T, and an obser- abduction problem. However, its existence guarantees
vation 9, an abduction problem consists in deriving a the admissibility of the original assumption set.
set of assumptions A that satisfies the following condi-
tions: 3 An Algorithm for Computing

Abduction

1. Adequacy. T UA A dcto

2. Consistency. T U A - Hobbs et al. [2] propose an abduction theory character-
ized by horn-clause rules in which antecedent literals are3. Syntactic miniinality. If ¢ E A then T U A - associated with weighting factors. I shall refer to such{I) K 0 a theory as a weighted abduction theory; it provides a

4. Semantic greatest lower bound. There is no candidate for a computational realization of a model-
assumption set A' such that: preference abduction theory outlined int the previous

(a) TU A' is adequate, consistent, and syntacti- section. A weighted-abduction theory is characterized

cally minimal by a set of literals (facts) and a set of rules expressed
as implications. A general example of such a rule is(b) There exists M k TUA such that for every

M' kTUA', M' >-M pw4' A...Ap w" D q.

5. Defeat condition. There is no set A" such that Each rule is expressed as an implication with a sin-

(a) There is some 0 E A such that TUA" = -,0 gle consequent literal, and a conjunction of antecedent

and there is some M k T U A such that for literals pi, each associated with a weighting factor wi.
every model M" k= T U A", M" >- M. The goal of an abduction problem is expressed as a con-

(b) Defeat exception. There is no set of as- junction of literals, each of which is associated with an

sumptions A.' such that assumption cost. When proving a goal q, the abductive
i. if M k= T U A"', then M I- T U A, and theorem prover can either assume the goal at the given
. tcost, or find a rule whose consequent unifies with q,ii. there exists M" = T U A" such that for and attempt to prove the antecedent rules' as subgoals.

The assumption cost of each subgoal is computed by

The adequacy and consistency requirements of this multiplying the assumption cost of the goal by the cor-
definition should be obvious. Because it may be possi- responding weighting factor. Each subgoal can then
ble to restrict the models of a theory to a favored subset be either assumed at the computed assumption cost, or
by making assumptions that have nothing to do with unified with a fact in the database (a "zero cost proof"),
the observaLion, the syntactic minimality problem im- or unified with a literal that has already been assumed
poses the requirement on the assumption set that every (the algorithm only charges once for each assumption

assumption must actually contribute to the solution of instance), or another rule may be applied. The best
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solution to the abduction problem is given by the set of preference relation.

assumptions that lead to the lowest cost proof. A candidate interpretation of the weighting factors in I
A solution to an abduction problem is admissible terms of model preference relations is that if the weights

only when all the assumptions made are consistent with on the antecedent literals of a rule sum to less than one,

each other, and with the initial theory. Therefore, a then every model that satisfies the antecedent is pref- l
correct algorithm requires a check to filter out poten- ered to some model that satisfies the conjunction of
tial solutions that rely on inconsistent assumptions.1  the negation of the antecedent together with the conse-

Another possibility that must be accounted for (and quent.

which was ignored in Stickel's original formulation) is The relative magnitudes of the assumption weight-

that in the frequent case in which the goal and its nega- ings can be viewed as establishing preferences among

tion are both consistent with the theory, it will be possi- the conclusions of different rules of the theory, provided
ble to prove both the goal and its negation abductively, that they obey certain constraints. If a theory contains

in the worst case by assuming them outright. This ab- the following two rules:

duction algorithm guarantees that it is impossible defeai p, D q 1
a proof by proving the negation of any of its assump- Cr q <

tions at a cost that is cheaper than the cost of the proof
itself. it expresses a preference for models satisfying p over

The complete abduction algorithm can be described those satisfying r among those models that satisfy q.

as follows: Given an initial theory T and a goal €, gen- Note that if r entails p, then there will be no models I
erate all possible candidate assumption sets {A 1 . . .A, } that satisfy r A -ip, and therefore, the preference rela-

and sort them in order of increasing cost. Then for each tion must be circular. If the abduction algorithm were

successive assumption set A, = {i¢b1. ... , tm}, for each to operate on such a theory, in would incorectly com-

pute {p) as the best assumption set, whereas {r} isassumption 0, in Ai, attempt to prove -,¢i given as-

sumptions ? 1,.. .,i-ly+F1,. . .,im. If this proof fails clearly superior by the model preference criterion, be-

(or succeeds only by assuming - ,bj) for each j, then Ai cause it entails p, therefore excluding every model ex-

is the best assumption set. If any -'j is provable with cluded by assuming p, and other less-preferred models

zero assumptions, then A, is inconsistent and must be as well. In general, weighted abduction theories must

rejected. The remaining possibility is that -,0j is prov- be constrained so that the assigned weights do not im-

able by making some assumptions. If the cost of the ply any circularities in the model-preference relation.

best proof of any -,Oj is less than the cost of Ai, then 4 Conclusion
A, is defeated because its assumptions can be defeated 4
at a lower cost than they can be assumed, and Ai is re- The idea of characterizing domain-dependent pref-

jected in this case as well. Otherwise, Ai is contested, erence among abductive assumptions as preferences I
but not defeated, and we accept it as the best assump- among models of a theory is worthy of further inves-
tion set. tigation. What remains to be done is a full character-

This algorithm can be viewed as computing solutions ization of the relationship between weighted abduction '.
to an abduction problem according to the definition in and model-preference abduction, including a full speci-
the previous section, if the weighting factors on the lit- fication of the relationship between rule weightings and
erals can be interpreted as constraints on the model- model preferences. The incorporation of a belief opera-

'A vs ot aoh ab iltor to abstract away from particular rules of inference,1A version of this algorithm has been implemented in the following Levesque's proposal, is another interesting ex-m

TACITUS text understanding system [2]. A version of this .i s o l to anh ct r a- I
algorithm that is more fathful to the theory presented in this teasiun. This could lead to a knowledge-level charac-
paper has been employed in plan recognition applications terization of abduction theories with domain-dependent
[1]. preferences.
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Introduction that the cause-effect relationship between A and B is
represented in the theory as the implication "A -- B";

Many logical formalizations of abductive reasoning the suitability of implication to model causation is
have been proposed over the last few years. Most of beyond the scope of the paper, see [17] for an in-depth
these approaches provide meta-level definitions of the discussion) and the problem of determining an explana-
notion of abductive explanation and introduce (different) tion for an atom "q". Suppose that the theory T contains
procedures to compute the causes for a set of events the following formulae having "q" as their consequent:
(see, for example, [1,5,7,9,10,12,13,15]). IWe believe that all these approaches are grounded on P2 - q
some implicit assumptions on the "alxuctive meaning" P2 q
of a domain theory and we claim that a very clean "' q
semantics for abduction can be provided if these assump- Pe q
tions are made explicit. In this paper we introduce an (where each p is a formula).
object-level definition of abduction which is proved to be If we consider the "classical" (meta-level) definition of
equivalent to the other definitions proposed in the litera- abduction, the process to determine the explanations for I
ture. The object-level definition allows us to characterize "q" (i.e. to explain why "q" is present) is based on the
abduction in a very simple way and to single out quite implicit assumption that if "q" is present, then at least
clearly the relationship between abduction and deduction one of its causes must be present and must be involved
[4]. in the explanation. In particular, since "Pl, "P2", .... "P'm

are the only direct causes of "q" in T, then, in order for
T to explain "q", at least one of them must be present.

On the Abductive Meaning Notice that this assumption does not mean that I
of a (Causal) Theory knowledge about "q" must be complete, but simply that

one is reasoning at best of the given knowledge; i.e. it
In order to discuss the assumptions which are impli- means that abduction is a defeasible form of reasoning I

cit in most of the definitions of abduction, let us first (see [5,6] for more comments).
introduce a characterization of abd'ictive explanation If one agrees that the assumption above expresses
which geneializes in some way those proposed in the the actual abductive meaning of a domain theory T (we
literature: given a theory T and a formula IF, an explana- shall prove that this is the case, at least as far as the
tion for IF in T is a set E of formulae such that definitions of abduction up to our knowledge are con-
- T u E is consistent, cemed), an interesting problem is that of looking for a
-TuE -F, syntactic transformation of T that makes such an abduc- I
- E has some properties that make it an interesting expla- tive meaning explicit. Such a transformation, in fact,

nation. Typical properties are non-triviality (i.e. E 14-- would provide a new semantics for abductive reasoning
IF) and minimality (i.e. no subset of E is an explana- and would allow us to provide a clean definition of the
tion). notion of abductive explanation. The discussion above

suggests that the kind of transformation that is needed is
Let us consider now a causal theory T (we assume some form of circumscription (completion) of the
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explainable atoms; we shall elaborate on this in the fol- and Tc the completion of non-abducible atoms in T.
lowing sections. The explanation formula for IF given T is the most

specific formula F in the language of abducible
atoms such that:

An Object-level Account of Abduction Tc, '' -- F

In this section we introduce a formal object-level where F is more specific than F' if? I- F - F'.

account of abduction (see also [4] for a more accurate Notice that the explanation formula characterizes all the
discussion). In the following, for the sake of simplicity, solutions to an abduction problem P. We are interested
we shall assume th4" the domain theory T is a set of pro- in the most specific formula since it is the one having
positional definite clauses ,,-th acyclic dependency graph the highest information content among those that can be
(the extension to the first-order case is straightforward obtained from the observations IF. The concept ofand also the extension to more complex clauses requires explanation formula is well defined since it can be
only some more technicalities, see [3]). We shall proved from the definition that such a most specific for-
assume, moreover, that: mula exists and is unique (up to equivalence). In the fol-

the set of predicate symbols in T is partitioned into lowing we give a procedure to determine it.
the two disjoint subsets of the abducible syniVo"ls
(those that can be accepted as explanations of Procedure ABDUCE.
observed data) and the non-abducible symbols; Rewrite T using the equivalences in Tc (from left
the abducible symbols are exactly those not occur- to right)
ring in the head of any clause1.  until a formula F containing only abducible atoms is

obtained.

Definition 1. An abduction problem is a pair <T,> This procedure halts since the dependency graph of T
where: dos o c ont a inc e The depend e n pr o -

IT (the domain theory) is a set of propositional(thedomin heoy) s a et f popoitinal does not contain cycles. The following correctness po
non-atomic definite clauses whose atoms are pard.- perty can be proved2 :
tioned into the sets of abducible and non-
abducible atoms (and whose abducible atoms are Theorem 1. Given an abduction problem P i <T,=>,
exactly those not occurring in the head of any procedure ABDUCE determines the explanation for-
clause); mula F for P.

- P is a consistent conjunction of literals with no
occurrence of abducible atoms (IP represents the We do not argue that procedure ABDUCE is the most
observations). efficient way to obtain the set of explanations: we regard

it as a simple specification of such a set.
Let us consider a set T of definite clauses: the comple- Some comments on the definitions above are
tion [2] of non-abducible atoms in T is a set of worthwhile before moving to discuss the equivalence
equivalences (p, (-9 Ei / i".1,..,n 1, where Pl,..,Pn are all between our definition and the meta-level definitions pro-I the non-abducible atoms (notice that on the class of posed in the literature. First of all, notice that completing
theories we are considering the completion is equivalent the non-abducible atoms in the theory T corresponds to
to parallel circumscription, see [11]). making explicit the "abductive meaning" (abductive

power) of T as discussed in the previous section. Such a
Definition 2. Let P-<T,'P> be an abduction problem completion should be automatically performed by the

abductive reasoning system. The designer of a
A complete discussion about the critetia to partition the knowledge base (theory), however, should have in mind

set of symbols into the subsets of abducible and non abducible that the abductive process is based on a completion
symbols is beyond the scope of the paper. We regard this prob- semantics, i.e. that the abductive process is based on thelem as task or domain dependent (see also the discussion in assumption that all the causes of each non-abducible
[181): the criteria to be adopted in causal diagnostic reasoning atom are present in the model. The fact that abduction is
(where the symbols not occurring in the head of any clause are based on a completion semantics suggests that:
abducible) are discussed in [4,5]; the criteria to be adopted in
... planring fraiuework a c diwusse-d in (8] while the criteria
to be adopted in natural language interpretation are discussed in 2 The complete proof of this and the following theoremI [18]. can be found in [3].
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(1) the "plausibility" of an abductive explanation is Each v such that v = F can be considered as an expla-
related to the completeness of the model; nation for P (notice that the case where there is no m-

(2) one should represent explicitly the fact that some explanation to a problem P corresponds to the case

part of the model is incomplete. where the explanation formula is inconsistent). If one
wants to give a syntactic characterization of the notion of

In particular, the fact that not all the causes of an event object-level explanation, one should consider the disjunc-
A have been explicitly modeled in a theory T can be tive normal forms of the explanation formula, as in the
represented by adding to T a formula "a -+ A", where ox following definition.
is an abducible atom and denotes some unknown or
unspecified cause of A (see [5,6] for more comments on Definition 4. Given an abduction problem P, each con-
the possibility of dealing with incomplete models within sistent disjunct of any disjunctive normal form of
abductive reasoning). the explanation formula for P is an explanation for

Abducible atoms are not completed since their P.
causes are not modeled in the theory (but this does not
mean that they are false as their completion would sug- From the practical point of view, the interesting disjunc-
gest). tive normal form is the minimum one (i.e. the one

obtained by applying the equivalences "X V false r. V
and "X v (X A Y) m X"): it can be proved that there is a

Correspondence between one-to-one correspondence between the positive parts of
the Object-level Definition the disjuncts in the minimum disjunctive normal form of
and the Meta-level Ones the explanation formula and the minimal (wrt set inclu-

sion) m-explanations.
Let us consider now the problem of drawing the Interestingly the object-level definition we propose

correspondence between the object-level definition of is more explicit than the meta-level ones in the sense
abduction presented in the previous section and the clas- that it allows us to obtain explanations in terms of bothsical meta-level definitions. We shall refer, in particular, positive and negative pieces of information. Negativeto the following meta-level definition of explanation: pieces of information are not provided explicitly by

meta-level approaches (each m-explanation is a set of
Definition 3. Let P=<Tq'> be an abduction problem, abducible atoms): given an m-explanation E, negative

the set (conjunction) E of abducible atoms is a m- information about an abducible atom a is implicit in
explanation of T' iff whether it can be consistently added to E (i.e. whether E
(a) for every positive literal f occurring in TF, we u {a} is an m-explanation too). However, it could be

have that T u E -- f important to distinguish clearly between
(b) for every negative literal -,f occurring in ', wehave that T E redundant hypotheses, which appear only in non- -

minimal m-explanations;

The following theorem shows a one to one correspon- - hypotheses which do not appear in any m-
dence between rn-explanations for an abduction problem explanation, because they can be explicitly ruled
P and assignments of truth values to abducible atoms out on the basis of a set of 'bservations.
satisfying the explanation formula for P. This may be particularly useful in diagnostic applications

Theorem 2. Let P-<T,'F'> be an abduction problem to determine the corrections (repair or therapy) to be

having F as the explanation formula. Let E be a set applied t the system.
of abducible atoms and v an assignment of truth
values to the abducible atoms of T such that

vlet true iffaeE RankingExplanations
Then E is an re-explanation for P iff v 6== F.

Given an abduction problem P, in general there is

Theorem 2 is our fundamental result showing that the more than one explanation for P. An interesting prob-
eta-level definitions of abduction are indeed based on a lem, therefore, is that of defining some criteria to single-

opt the "best explanation" to a problem or to rank alter-
comnpletion semnantics and iiigiaighling the bridge ou Ah "bi an

between abduction and deduction through the completion native explanations. Many researchers suggested that
such a problem is just a matter of pragmatics and that no
logical criterion can be used to support the choice (see
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I
I for example, the comments in [13,16]). Our object level and is homogeneous with the definition of explanation.

characterization, on the other hand, allows us to intro-
duce a logical criterion (homogeneous to the definition of
explanation) to compare alternative explanations and to An Example
single out the best explanation for a problem P. From
the intuitive point of view, the criterion we use is the Let us consider, as an example, a simple interpreta-
one of minimal information: we prefer those explanations tion problem borrowed from [14]. Consider the follow-I which involve a minimal number of abducible literals ing theory TI:
(those that are necessary to explain the observations). T, - { rained last right- grass is wet,
The following definition characterizes which abducible rainedlastnight-- road'is-wet

* atoms are necessarily true or false in a given case. sprinerwason igh grass wet,

sspI - -ras iso and shiny,

Definition 5. An abducible literal L (i.e. an abducible grass-iswet -4 grassis acold

atom ax or its negation -,a) is confirmed for an grass-is wet shoes are wet }

abduction problem <T,'TP> having F as the explana- The atoms rained last night and sprinkler wason,
don formula iff F I- L which do not appear in the head of any clause, are

regarded as "abducible" atoms that can be accepted as
I This is an expression of the fact that L is necessary in explanations of observed data.

order to explain the observations (see [3] and [4] for In this case the completion gives:
more comments and for the proof of the fact that if L is
confirmed then L is a necessary assumption in order to Ti = {grassis.wet rained _last g
explain TI). The notion of confirmation can be easily sprinkler was on,
extended to explanations as follows: grass is.cold and shiny (-) grass is wet,

rained last.night ) road is wet
I Definition 6. An explanation E is confirmed iff F I- E shoes-are.wet 4 grass is wet }

Let us consider the following abduction problem:
This corresponds to the case where the minimum dis-

junctive normal form of F has E as the unique disjunct Pi - <T', 'F>

(i.e. F a E) and E contains only confirmed abducible where 'F, n grass is cold and shiny A
literals. It should be clear that, given a problem P, there --roadi swet
is at most one confirmed explanation for P. By applying the procedure "ABDUCE", we obtain the

following explanation formula (and explanation since theThe following relationships can be proved to hold formula contains only one disjunct):(as a corollary of our main theorem):

given the confirmed explanation, the set of its posi- F1 u sprinklerwas..on A -,rained last night
tive literals is the minimum m-explanation; The example points out that our object-level approach

allows us to obtain explanations in terms of both positive
conversely, each atom in the minimum - and negative pieces of information. Negative explana.I explanation is confirmed. tions are not provided explicitly hy meta-level

In case the minimum disjunctive normal form of the approaches (some approaches cannot deal at all with

explanation formula has more than one disjunct, then negative literals in the observation formula) most ofexplnaton frmua ha moe tan oe dsjunt, hen which would return the explanation:
there is a similar correspondence between the positive

parts of the disjuncts and the minimal (wrt set inclusion) El - {sprinklerwas-on}
m-explanations (as observed also in the previous section (the negative part of the explanation is implicit in the
while commenting definition 4). fact that rained last night cannot be consistently added

Notice that the correspondence is not exact since to any explanation).
our object-level framework treats in the same way posi-I tive and negative information about abducible atoms
while the criterion to prefer a minimal set of abducible Conclusions
atoms (intended as abAormality assumptions) is asym-
metric. In this paper we have introduced an object-level

In conclusion, it is important to notice that the cri- characterization of abduction and we have proposed a
terion to rank explanations has been logically supported
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I Abduction and CounterfactualsI
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H McDonnell Douglas Research Laboratories
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P.O. Box 516, St Louis, MO 63166, USA

E Ginsberg (1986) showed how counterfactual logic could be satisfies p, written w I= p, if and only if p e w, and if p e
used to model a kind of diagnostic inference known as w then w 1= -p. Such worlds are essentially propositionalI 'Diagnosis From First Principles' (see e.g., Genesereth, calculus models, as specified in Chang & Keisler (1973,
1984; Reiter, 1987). Reiter subsequently showed that Ch.1). Satisfaction conditions for a compound statement
there was a close correspondence between Ginsberg's W4 follow the normal truth-functional recursion on the
counterfactual-based method of generating diagnoses and complexity of W.I his own consistency-based method. However, both We assume the existence of a causal theory,
approaches assume a complete structural description of the consisting of a set of proper axioms constructed over a
device under diagnosis, i.e., axioms which describe all finite alphabet and having the general form: fault A. .. AI components of the device and the relationships between faultm 3 symptom, v ... v symptomn. The axioms are
them. The present paper concentrates on an alternative used to predict how faults will manifest themselves as
application of counterfactual logic to diagnosis which defective behaviour or unusual instrument readings.
assumes only a causal theory of the domain, i.e., axioms However, the theory may not be complete, and it will not
which link cause and effect. The logic employed also normally amount to a full description of the device. We
corrects a number of problems with Ginsberg's original also assume the existence of case data, consisting of a
formulation. The main result is a model-theoretic finite set of literals representing such things asI demonstration of how reasoning from effects to causes measurements, properties of objects (such as components)
(abduction) can be systematically related to belief revision and relationships between them.
using counterfactuals. Such a comparison requires precise The account of propositional abduction to be found inI definitions of abductive and counterfactual consequence. Jackson (1989a) is most easily described in terms of
These are derived from the definitions in Jackson (1989a) model-theoretic forcing (Keisler, 1977). In the
and Jackson (1989b) respectively, each of which are terminology of forcing, a condition C for a theory T is a
primarily semantic accounts based on propositional logic, finite set of literals consistent with T, and C 11-T QScdenotes that C forces Q, i.e., that T, C I- Q, where I-Abductive consequence denotes logical implication. In abduction, we are most

interested in those minimal conditions which force the
Our notation is as follows. Letters in the range p, q, r, data to be true, where minimality is defined in terms of set
are variables ranging over atomic formulas (atoms) of the inclusion.
propositional calculus (PC), while letters in the range 0,I y, W, ... are variables ranging over arbitrary PC formulas. Definition 1. An explanation E for a data set D in terms
Upper case letters in the range A, B, C, ... denote sets of of causal theory T is a condition for T such that E forces
literals (atoms or their negations), while letters in the D, i.e., E 1I-TD. E is minimal iff there is no E' c E such
range S, T, U, ... denote sets of arbitrary formulas. that E' 11-- D; non-trivial iffE o D = 0, and less trivial

Letters in the range w, v, u range over possible than E iff [E r) D) c c' D). If E is minimal, and
worlds. A possible world w will be represented by a set le tivil th a o explanation, then E i a
of atomic propositions, [pl, ..., Pnh; the square brackets preferred explanasion. II

I will serve to distinguish possible worlds from syntactic

objects, such as sets of atoms. If p is an atom, then w

7
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Definition 1 is consistent with many other definitions A world w r (T, D v-satisfies Ew , written w I=v Ew , iff
of the term 'explanation' that can be found in the literature w 1= Ew and there is no w' r aT, D such that w' 1= Ew
(e.g. Reggia, Nau, & Wang, 1984; Cox &
Pietryzykowski, 1986). However, the formulation in and (w', w e v.
terms of forcing leads naturally to a semantic account of The subsumption relation EI c EW' indicates thatabductive inference. In forcing theory, G is a generic setfor T iff each C a G is a condition for T and G 11-T P or G the rival world w' overexplains the data explained by w.

11-T -P for all P. In other words, the deductive closure of The subsumption relation Rw c Rw , indicates that the

T v G is a maximal consistent set of PC formulas. As rival w' underexplains the data, in that its canonical

such, it characterizes a PC-model, or possible world. explanation is wholly or partly trivial. Finally, we can

Given incomplete knowledge, we are most interested in show that all (and only) the preferred explanations are v-

sets of such worlds, and we shall call these situations. satisfiable (see Jackson, 1989a, Theorem 6).

Intuitively, a situation for some theory is the set of all Theorem I. E is a preferred explanation of D in terms of
PC-models that satisfy the theory. T iff w I V E for some w r aT, D.

Definition 2. A situation, T, D, for theory T and data D Iis a set of maximal consistent sets This logistic system has been dubbed PABLO,
standing for 'Propositional Abductive Logic.' The

(Th(T u G) I G is a generic set forT that forces D). following example will illustrate the method and later I
serve as a basis for comparison with counterfactual logic.

T, D is a set of models (wj, ..., W) such that wi 1= T L
andw i l=Dforallw i e aT,D. II rxdmPI.1. Letourcausal theory Tbe

(f :).-r, d :) --ir, f :D-s, g :)-ns}

We shall instantiate Shoham's (1988) notion of a
preferential model to capture our preference for minimal, and let our data set D be
non-trivial explanations in the semantics. The following
definition will be useful for characterizing preferences. {"1'" -

Definition 3. A set of literals Ew is a canonical Imagine that the propositional constants in T have
explanation of a world w e aT, D iff E w satisfies the the following meanings: f = 'flat-battery', r = 'radio
following conditions: working', d = 'radio disconnected', s = 'car starts', and g =

'the car is out of gas'. Then
(i) w 1= Ew;
(ii) Ew 11-TF for all F such that w I= F and F II-T D. crT, D = [], f],[d,fJ, f. g], [d, g], [d,f, g]}

The trivial residue, Rw g Ew , of w is Ew o D. 11 with v-ordering

The canonical explanation of a world is the smallest 1f], [d, g] > [], [d,fl, If, gi, [d,f, g].
set of assumptions from which all explanations of D
satisfied by that world follow, while the trivial residue The preferred models are f and [d, g], representing 'he v-
represents the unexplained a satisfiable explanations {aa and {d, g}.

Definition 4. A preference for non-trivial, minimal Counterfactual consequence
explanations of D in terms of a theory T is a strict partial Iorder, v, on arT, D' such that, for w , w' aT, D' (w , w) The following account assumes a propositional language
riff E , E11,, and Rw c Rw,. The preferred models L, defined over a finite alphabet A. We can construct 2

t/l
interpretations 

over 
this 

alphabet, 

and 
consider 

each 
as

of CT, D are given by the set possible world. Let this set of interpretations be W. A

theory S c: L describes a situation, W- r_ 2W. Thus WS
{w E aT, D I --(3w' aT, D)(W, w) E v). c W is the set containing just those possible worlds in W

which satisfy S.

781



I
The semantics that we shall give for counterfactualsI of the form V > 0 with respect to a theory S depends N,(WS) = {Wiw}

upon a very simple idea. We consider W: 2w. 2 as a else Wm} xWs.

revision function that we can apply to S to return those
worlds where V holds which are close, or most similar, to Definition 10. % > 0 is a counterfactual consequence of S
some world in WS.W > 0 is then a consequence of S just iff w 1= 0 for all w 6 N(Ws). II

in case 0 holds in each of these worlds. This construction has been dubbed BERYL: a failed

Definition 5. If B Q A, then AB = (28, c) is a world acronym for 'Belief Revision Logic.'

I lattice for B. II
It is easy to demonstrate the following result, which

Definition 6. If AB = (2B, c) and W, V C 2B, then vdoes not hold for Ginsberg's construction (see Jackson,

V is a world close to w e W, written vmw, iff 1989b, Theorem 1).

B w v (3u e 2B)(u f V A Bu w A V -u), Theorem 2. If S and T are logically equivalent
propositional theories and S* and T* are equivalent, then

where By,w iff glb(v, w) or lub(v, w), for all propositions %y and 0, V > 0 is a counterfactual

gIb(v, w) iff {v'E 2B I v c V =0c w) , and consequence of S iff V > 0 is a counterfactual consequence

lub(v, w) iff fv' E 2B I w c v' c v) =. of T.

e sSyntax independence is obviously a good property for
The set of all worlds in V that are close to worlds in W, a belief revision function to possess. GArdenfors (1988)
written V=W, is given by identifies a number of other criteria for the classification

SWIof belief revision functions, two of which are the

V =W = {v 6 V I (Bw 6 W)vw). preservation criterion (K*P) and the monotonicity

We need to complicate the picture slightly by criterion (K*M). The former states that if 0 follows from

I introducing 'bad worlds', i.e., worlds which do not satisfy S and W is consistent with S, then 0 will still follow

certain propositions that we shall deem to be protected from the revision of S by V. The latter states that if S

from revision, and T are theories and T contains S, then the revision of T
will contain the revision of S. We can show that the

I Dfinition2. If B g A, and X c-. 2B , then AB,X = (28, revisions sanctioned by BERYL are always preservative

c, X) is a world lattice for B w.r.t. 'bad worlds' X. I! but not always monotonic.

D efiniina. If AB X = (2B, c, X) and W, V C 2B, then Theorem 3. BERYL satisfies the preservation criterion:

v 6 V is among the closest worlds to w 6 W avoiding If S 1* -,W and S 1= 0, then ty> .

worlds in X, written v-xw, iff This result holds for Ginsberg's PWA but does not
hold for Winslett's (1988) 'Possible Models Approach' to

(By,w A V E (V - X)) V belief revision, known as PMA (see Jackson, 1989b,
[-(3v' 6 (V - X))(BV. w) A Theorems 3 and 4). This distinction is important if one

(3u e 2B)(u g (V - X) A B, A wxu)], wishes to extend a belief revision system to incoporate a
probabilistic model, since Bayes' Theorem endorses the
preservation criterion. Thus the revision functions of

The set of closest worlds in V to W avoiding X, written BERYL and PWA are amenable to a Bayesian extension,
Vt--W, is given by (v r V I (3w e W)v -Xw). II while that of PMA is not.

BERYL is a genuinely nonmonotonic logic because,

Dinition.9. If S* c S c L, where S* is a set of unlike PMA, it does not satisfy the monotonicity
I protected propositions, W 6 L, B Q A contains those criterion (see Jackson, 1989b, Theorem 5).

members of the. alphabet of L occurring in either S or 1t,
and ABX is a world lattice for B w.r.t. X = 2B - WS,, Theorem 4. BERYL does not satisfy the monotonicity

I then the semantic revision of S by V w.r.t. X, written criterion: If WT g WS, then V(WT) r W(WS).

V(Ws), is given as follows
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gs fr fS gr dr ds fg df dg

I
I

Eigu1. Part of the world lattice for Example 2. Dark shading indicates models of S; light shading
indicates models of (--,r A --,s); and dark borders indicate models of (---r A -,s)(Ws). I

Finally, we redo Example 1, using counterfactual The procedure whereby we transform the causal theory
logic to perform the causal reasoning required for T to the augmented theory T' resembles that outlined inlognis toperforthe u al opeasoningvo ued for Reiter (1987, 7.1) for effecting a 'logical reconstruction' ofdiagnosis. The fundamenta l operation involved is belief the GSC (Generalized Set Covering) model of Reggia,revision. We revise our original theory that the device is Nau, & Wang (1984). The crucial thing to notice is thatfault-free by the data to obtain a set of models representing this tran amouns The su ption that I
diagnoses, this transformation amounts to the assumption that all the

causes of symptoms are known. Suppose that we don't
Exmple 2. First we transform the causal theory with the make this assumption, and attempt to revise the
assumption that we know all the possible causes of the augmentation of the untransformed theory
symptoms -nr and -is. We write the transformed theory, T
S*, as S'= T u {r, s--d,-,,g)

(_r f v d, --,s )fv g), by (-nr A --s). Then the only model of (-,r A -is)(Ws,) is
[], and the minimum revision of our beliefs is to attribute

and protect every proposition in it. Then we augment S* the symptoms to causes unknown!
by assuming that all is well with the device. Thus we add C
the negation of all literals denoting faults or symptoms to Conclusions & related work
derive

In the work of Reiter and Ginsberg, we saw that there was
S -7' u (r, s,--d, -i, --g). a connection betwren diagnosis from first principles using

a complete s.;uctural description and counterfactual
These literals are not protected, however. We revise S by reasoning. Essentially, Reiter showed that you could do
the data (-,r A --S), as follows. the former in terms of the latter. The present work

establishes a connection between abductive reasoning from(--rA- -sXW S) = ((/1, [d,g]). an incomplete causal theory and counterfactual logic.
Again we show that the former can be done in terms of

The relevant fragment of the world lattice for this the latter, but that a particular kind of completeness
problem is reproduced in Figure 1. [] is the closest world assumption is required in the latter (counterfactual)
to [r, S] in W{_.,,.A --%S,). but this world does not satisfy the treatment which is not present in the former (abductive)protected propositions, S*. The closest worlds to [] in case. Further integration of abductive and counterfactualW (.,r A .--,J) that satisfy S* are Lf] and [d, g]. Note that styles of reasoaing could perhaps be achieved by a closer

these are precisely the preferred models of PABLO (see study of the modal foundations of conditional logic
Example 1). (Chellas, 1975; Segerberg, 1989).
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Our counterfactual approach to causal reasoning does

not require that propositions be ordered in any way, unlike
Simon & Rescher's (1968) account, for example.
However, this is not to say that the introduction of such
orderings would not be beneficial for certain applications.
The introduction of probabilities may also be highly
desirable, e.g., along the lines explored in GardenforsI (1988).
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Abstract the type of explanation as computed by an ATMS (de
Kleer 1986a; Reiter and de Kleer 1987).'

Reiter and DeKleer (1987) give a precise def- An ATMS computes all possible explanations for a
inition of what constitutes an explanation as given query. Since there may exist exponentially many
computed by an ATMS. We analyze the inher- such explanations, the worst-case complexity of the
ent computational complexity of finding such ATMS task is clearly exponential. However, there are
explanations. situations in which one is interested in finding only one
When our underlying logical theory consists explanation or possibly a few of them. We will explore
of arbitrary clauses, the task of finding any the complexity of this task.
non-trivial explanation is easily shown to be
NP-hard. However, when the theory contains 2 Definitions
only Horn clauses, we show that some non-
trivial explanation can be found in time poly- In this section, we will repeat the main definitions of
nomial in the size of the theory, but that find- the logical reconstruction of the ATMS as given by Re- 
ing certain other explanations is NP-hard. We iter and de Kleer (1987). We will assume a standard
the ATMS renders the generation of an ex- (possibly with subscripts) to denote propositional let-planation computationally intractable. These ters. A clause is a disjunction of literals (a literal isresults hold even for acyclic Horn theories either a propositional letter, called a positive literal, orralyts holdthvenforaclc wHn teciorie. its negation, called a negative literal). We will represent
Our analysis suggests that when searching for a clause by the set of literals contained in the clause. 3
certain explanations, the method of simply A clause is Horn if and only if it contains at most one
listing all of them, as employed in the ATMS, positive literal. A set of Horn clauses will be called a
cannot be improved upon. Moreover, these Horn theory.
results show that there may not exist an ap>- Central to Reiter and de Kleer's analysis is the notion f
propriate restriction on the general form of
the underlying theory to allow for efficient ab-
duction. What seems to be required is some Definition: Prime Implicant
notion of an "approximate" explanation or a A prime implicant of a set of clauses E is a clause C such
well-defined notion of incomplete abduction. that:

i. E k C, and

I Introduction 2. For no proper subset C' of C does E k C'.

Formal characterizations of abduction, i.e., the task of Example: Let E be the set {{p}, {q}, {f,F, s)}. The m

finding explanations, can be divided into two camps: the prime implicants of E are {p}, {q}, { , s}, {r,1}, and
set-based approaches (e.g., Reggia 1983) and the logic- {8,8}

based ones (e.g., Poole 1988). Here we will only be con- 1The various forms of logic-based abduction are closely
cerned with the latter. In particular, we will consider related (Levesque 1989).
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I
I Definition: Formal Specification of the ATMS with k > 0 (if no such clause exists, return "no non-

Given a set of Horn clauses E and a letter p, the ATMS trivial explanation"). Now, clearly a = (q, A ... A qk)

procedure computes the following set:2  with E implies p. Subsequently, try removing a'letter

* A[E,p] = {(ql A ... A qk) I k > 0 and { ... ,QkP) from a while ensuring that the remaining conjunction

is a prime implicant of El together with E implies p (testing can be done in lin-
ear time, using the procedure by Dowling and Gallier

Since E together with any element from A logically im- (1984)). Repeat this process until no more letters can
plies p, the elements of A are called explanations for p be removed. If the remaining conjunction is non-empty
given E. and combined with E is consistent, return that one; oth-

Example: Let E again be the set {{p}, {q}, {pf, 8}}. erwise consider another clause containing p and repeat

With query s the ATMS returns the following explana- the above procedure. When all clauses containing p have

tions for s: r and s. We call s the trivial explanation been explore and no explanation is found, return "no

for s; our interest lies of course in the other, non-trivial non-trivial explanation."

explanation. From the algorithm, it is clear that we find only cer-
tain, very particular explanations - which ones will

3 ostrongly depend on the particular form in which the3 Computati. nal Complexity background knowledge E is written down. This raises
Given a query p, the ATMS returns the set A[E,p] O; the question whether there is an efficient procedure to
all explanations for p. It is well-known that even when generate other explanations. In particular, suppose one

I E contains only Horn clauses, there may exist exponen- ik '-,; sted in only those explanations for p that con-
tially many of such explanations (McAllester 1985; de tain given set of letters S, can one efficiently find such
Kleer 1986b). And thus, the worst case complexity of explawitions? The set S could be used, for example, to
the ATMS is exponential. However, this leaves open the identify components that have a high failure rate when
question of what the complexity of finding some expla- doing circuit diagnosis. We will term this form of rea-
nation is. In particular, what is the complexity of finding soning goal-directed abduction.
a non-trivial one? Note that the notion of goal-directed abduction is es-

* In case E contains arbitrary clauses, finding any non- pecially relevant in light of the fact that there are often
trivial explanation is easily shown to be NP-hard.3 How- exponentially many explanations; simply listing them all
ever, the following theorem shows that when E is Horn, would be prohibitive. One therefore has to be selective
a non-trivial explanation (if one exists) can be computed in generating explanations. Goal-directed abduction al-
efficiently. lows one to consider only certain subsets of explanations

Theorem 1 Given a set of Horn clauses E and a let- that are of particular interest.4 But what is the compu-
ter p, a non-trivial explanation for p can be computed tational cost of such reasoning?
:n time O(kn), where k is the number of propositional Unfortunately, the following theorem shows that there
letters and n is the number of occurrences of literals in is no efficient algorithm for goal-directed abduction.
S ." Theorem 2 Given a set of Horn clauses E, a letter p,

Here we only give an outline of the algorithm. Consider and a set of letters S, the problem of generating an expla-
a Horn clause in E of the following form: {,.... )V, P} nation for p that contains the letters from S is NP-hard.3 2De Kleer identifies a subet A of the set P of proposi- The proof of this theorem is based on a reduction from

tioal letters in E, and requires that each element in A[E, p] the NP-complete decision problem "path with forbidden
contains only elements from A. For now, we will assume that pairs" defined by Gabow, Maheshwari, and Osterweil
A = P. This does not affect the notion of explanation. We (1976) (see also Garey and Johnson 1979). We will give
will return to this issue later on.3We haven't actually defined the notion of explanation the details of this reduction in the full paper.

given a non-Horn theory. However, the definition follows Intuitively speaking, theorem 2 shows that certain ex-
from a straightforward generalization of the ATMS, in which planations will be hard to find, even if our background
we simply allow arbitrary clauses in E. Since non-trivial theory E is Horn. This result also holds when S contains
explanations can only exist when E is consistent, satisfiabilityI testing of CNF formulas can be reduced to the problem of 4For a related approach, see De Kleer and Williams
finding a non-trivial explanation. (1989).
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only a single letter and when E consists of an acyclic Horn theories. Thus, the exponential worst-case corn-
Horn theory.5  plexity of the ATMS is not just a consequence of the fact

Finally, we consider the influence of the use of an as- that the ATMS may have to list an exponential number

sumption set in the ATMS. An assumption set A is a of explanations; even if we Insist only on the generation
distinguished subset of the propositional letters in E. of one or a few explanations that contain letters from

Given a query p, the ATMS will generate only explana- the given assumption set, the task remains inherently
tions that contain letters from among those in A. Note intractable. Thus, it appears unlikely that the efficiency
that the assumption set again allows one to select a cer- of the ATMS algorithm can be significantly improved.
tain subset of all possible explanations. An assumption Our results show that abduction is inherently hard.
may represent a hypothesis that one is willing to consider In fact, there may not exist appropriate restrictions on
as part of an explanation of the query.' The following the general form of the underlying theory to allow for
theorem shows that the use of such an assumption set efficient abduction. This situation should be contrasted
dramatically increases the complexity of finding a non- with that for deductive and default reasoning: there ex-
trivial explanation (compare with theorem 1): ists a linear time procedure for dealing with proposi-

Theorem 3 Given a set of Horn clauses E, a letter p, tional Horn theories (Dowling and Gallier 1984); and

and a set of assumptions A C P, finding a non-trv:al there are polynomial algorithms for dealing with certain
explanaton for p with letters among A is NP-hard acyclic default theories (Selman and Kautz 1988; Kautzand Selman 1989). What seems to be required is same
The proof of this theorem is based on a modification of notion of an "approximate" explanation or a well-defined
the reduction used in the proof of theorem 2 (details will notion of incomplete abduction (a proposal for the latter
be given in the full version of the paper). is given in Levesque 1989).

This theorem shows that apart from the fact that the
ATMS (with A C P) may have to list an exponential Acknowledgments
number of explanations, merely finding one of them may I would like to thank Hector Levesque for introducing
require exponential time. to me the problem of computing explanations based on
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tially many prime implicants for the query p. Therefore, comments.
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When Efficient Assembly Performs Correct Abdikucion

and Why Abduction Is Otherwise Trivial or Intractable 3]
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Introduction We require that pl satisfies a weak version of Occam's

We have formally analyzed several classes of abduction Razor:
problems, which fall into the following three categories: VH, H' E H.11(H C H' --+ pl(H) > pl(H'))
(1) intractable (NP-hard) because of combinatorial in-
teractions among hypotheses; (2) "trivially" tractable That is, a composite hypothesis cannot be more plau-
because a polynomial hypothesis space is guaranteed; sible than any of its subsets.
or (3) tractable by hypothesis assembly (Josephson H is complete if:
et al., 1987) within a "nontrivial" hypothesis space. e(H) = D0 n
While our analysis does not exhaust all possible classes
of abduction problems, it strongly suggests that effi- That is, H explains all the data.
cient and effective abduction in nontrivial domains is H is parsimonious iff:
possible only by satisfying the constraints required for
hypothesis assembly. H' C H(e(H) g e(H'))

In this extended abstract, we describe our model of That is, no proper subset of H explains what H does.
abduction and the above classes of problems. Consid- H is an explanation iff
erably more detail and the historical progression of our
analysis can be found in Allemang et al. (1987) and complete(H) A parsimonious(H)
Bylander et al. (1989a; 1989b). That is, H explains all the data and has no superfluous

elements.

The Model H is a best explanatton iff:

Our model of abduction characterizes the abductive explanation(H) A
task as finding the most plausible explanation of a set of 7H' C Hall (explanation(H') A pl(H') > pl(H))
data. We use the following notational conventions and
definitions. d will stand for a datum, e.g., a symptom. In other words, no other explanation has a higher plau-
D will stand for a set of data. h will stand for an indi- sibility than H. Because the range of pl is permitted
vidual hypothesis, e.g., a hypothesized disease. H will to be a partial ordering, there might be several "best

stand for a set of hypotheses, which can itself be con- explanations."

sidered a composite hypothesis, e.g., an hypothesized Our model leaves e and pl virtually unconstrained.
set of diseases. We exploit this freedom below by defining and analyz-An abduction problem is a tuple (DsasHase,pl), ing natural constraints on e and pl without consideringwhere: the representations-logical, causal, or probabilistic-underlying the computation of e and pl.

Dal is a finite set of all the data to be explained, We do assume, though, the tractability of e and pl,

Hall is a finite set of all the individual hypotheses, as well as an "inverse" function, denoted as e- 1 , from
Dail to subsets of Hall, defined as:

i a man from subqpt.q of Ha:) to subsets of L-,,
(H explains e(H)), and e-'(d) = {hI 3H C Haii(d e(H) A d E e(HU{h}))

pl is a map from subsets of Hall to a partially or- That is, e-(d) is the set of individual hypotheses that
dered set (H has plausibility pl(H)). can contribute to explaining d. We denote the time
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I complexity of e, e- 1, and pl with respect to the size "trivial." Trivial does not imply unimportant, though.
of an abduction problem as Ce, Ce-,, Cpl, respectively. To the contrary, knowledge engineering of abductive
These functions are not necessarily tractable (Pearl, systems should try to satisfy, if possible, the above con-I 1987; Reiter, 1987), but making the assumptions sim- straints because they guarantee efficient and effective
plifies our analysis. abduction. However, for complex domains, it is un-

These definitions and assumptions simplify several likely that such knowledge can be engineered.I aspects of abduction. For example, we define composite
hypotheses as conjunctions of individual hypotheses. In The Intractable
reality, the relationships between the parts of an abduc-
tive answer can be much more complex, both logically First, we shall consider different constraints on e, andH and causally. Despite this and other simplifications, then consider properties of pl.
our analysis provides powerful insights concerning the
computational complexity of abduction. Independent Abduction Problems

* Using our model of abduction, we discuss, in or- In the simplest problems, an individual hypothesis ex-
der, trivial classes of abduction problems, intractable plains a specific set of data regardless of what other
classes, and tractable, but nontrivial, classes, individual hypotheses are being considered. Formally,

an abduction problem is independent iff:
The Trivial

VH C Hl (e(H) = U e(h))
A trivial class of abduction problems is when some he H

* constraint guarantees a polynomial hypothesis space. That is, a composite hypothesis explains a datum if
There are several ways this can occur. and only i one of its elements explains the datum.

The esng,e fault constraint. If the individual hypotne- This constraint makes explanatory coverage equivalentU ses are mutually exclusive, then no multi-part hypothe- to set covering (Reggia et al., 1983). Many other ab-
ses need to be considered. More generally, if the size of duction approaches make similar assumptions (de Kleer
composite hypotheses is limited by a constant k, then and Williams, 1987; Eshelman et al., 1987; Miller et al.,
there are 0(nk) composite hypotheses. 1982; Pearl, 1987; Peng and Reggia, 1987; Reiter,

The rule-out constraint. Let plo be the lowest possi- 1987).
ble plausibility value. Let H = {hI pl(h) = plo}, i.e., One way to find a best explanation would be to gen-
H is the set of individual hypotheses that are ruled out erate all explanations and then sort them by plauzibil-I from consideration in any composite hypothesis. If all ity. Unfortunately, for the class of independent abduc-
but 0(log n) individual hypotheses are ruled out, then tion problems, generating all erplanations is NP-hard.
only 0(n) composite hypotheses need to be considered. If this task were tractable, then the minimal set cover

The pathognomonic constraint. A datum might have problem (Garey and Johnson, 1979) could be tractably
only one individual hypothesis that can explain it, i.e., solved by first generatiig all parsimonious set covers
the datum is pathognomonic for that hypothesis. Let and then selecting the smallest one. But minimal set
H = {hI 3d E Dail (e-I(d) = {h})}. That is, H is the cover is known to be NP-hard; thus, so is generating allN set of hypotheses that are indicated by pathognomonic explanations. However, the definition of best explana-
data. If e(H) = Dail, then H is the only explanation. tion does not require that all explanations be explicitly
More generally, if only 0(log n) individual hypotheses enumerated, a fact that we shall later rely on.I can contribute to explaining the remaining data Dail \
e(H), then only 0(n) composite hypotheses need to be Monotonic Abduction Problems
considered (assuming no cancellation effects).

The pathognomonic-after-rule-out constraint. A da- A more general kind of problem is when a compositefl tum might have only one plausible individual hypoth- hypothesis can explain additional data that are not ex-
esis that can explain it, i.e., the other individual hy- plained by any of its elements. Formally, an abduction
potheses explaining the datum are ruled out. The sameI analysis as in the previous paragraph applies if only VH, H' C Hal (H C H' -- e(H) C e(H'))
non-ruled-out individual hypotheses are considered. Since the clasa of monotonic abduction problems is a

These constraints trivialize complexity analysis be- superset of independent ones, for the class of monotonicI cause exhaustive search over the possible composite hy- abduction problems, generating all explanations is NP-
potheses becomes a tractable strategy, hence the label hard.

I
87

I



I
Incompatibility Abduction Problems The Best-Small Plausibility Criterion
So far we have assumed that any collection of individ- Clearly, finding a best explanation for incompatibil-
ual hypotheses is possible. In general, however, the ity and cancellation abduction problems is NP-hard.
negation of a hypothesis can also be considered a hy- To determine the complexity of finding a best expla- I
pothesis. nation in independent and monotonic abduction prob-

Formally, an incompatibility abduction problem is a lems, properties of plausibility must be analyzed.
tuple (Dail, Hall, e, pl, 1), where Dail, Hall, e, and pi Everything else being equal, smaller explanations are
are the same as before and I is a set of two-element preferable to larger ones, and more plausible individual
subsets of Hall, indicating pairs of hypotheses that are hypotheses are preferable to less plausible ones. Thus,
incompatible with each other. No composite hypothesis in the absence of other information, it is reasonable
containing an incompatible pair can be an explanation. to compare explanations based on their sizes and the I

Even if an abduction problem is otherwise indepen- relative plausibilities of their elements.
dent, it is difficult to even find a single explanation. For The best-small plausibility criterion formally charac-
the class of incompatbolty abduction problems, deter- terizes these considerations as follows:

mining whether an explanation exists is NP-complete. pl(H) > pl(H') +-+
This is because it can be difficult to choose between in- 3m: H - H' (m is 1-1 A
compatible hypotheses. Only 0(n) incompatible pairs Vh E H (pl(h) pl(m(h))) A
are needed for this result. (IH = IH'I - I

3h E H (pl(h) > pl(m(h)))))

Cancellation Abduction Problems That is, to be more plausible according to best-small,

Another interaction not allowed in independent or the elements of H need to be matched to the elements of
monotonic abduction problems is cancellation, i.e., H' so that the elements of H are at least as plausible
when one element of a composite hypothesis "cancels" as their matches in H'. If H and H' are the same
a datum that another element would otherwise explain, size, then in addition some element in H must be more
Cancellation can occur when one hypothesis can have plausible than its match in H'. Note that IHI > IH'I
a subtractive effect on another (Patil et al., 1982). pl(H) ;% pl(H').

Formally, we define a cancellation abduction problem Even for independent abduction problems, it is dif- Ias a tuple (Dail, Halt, e)pli, e,, e-). e+ is a map from ficult to find any best explanations according to best-

Hatt to subsets of Dail indicating what data each hy- small. For the class of independent abduction problems
pothesis "produces." e- is another map from Hall to using the best-small plausibility criterion, given an e-

subsets of Dail indiating what data each hypothesis planation, it is NP-complete to determine whether a
"consumes." d E e(H) iff the number of hypotheses better explanation exists. This class of problems is hard
in H that produce d outnumber the hypotheses that because it is difficult to choose between individual hy-
consume d. That is: potheses with equal or similar plausibility. U

d Ee(H) The Tractable
{hI h E H A d E e+(h))l > I{hl h E H A d E e_(h)}I What if the individual hypotheses all have different U

Admittedly, this is an oversimplified model of cancel- plausibilities? We call such an abduction problem or-
lation effects, in the sense that it captures only one kind dered, formally defined as:
of cancellation interaction. Nevertheless, for the class Vh, h' E Hall (h $ h'
of cancellation abduction problems, it is NP-complete (p1(h) < pl(h') V pl(h) > pl(h')))
to determine whether an explanation exists. Even if a
complete composite hypothesis is found, for the class It turns out that this condition permits tractable ab- [
of cancellation abduction problems, it is NP-complete duction. For the class of ordered independent abduc-

to determine whether a complete composite hypothesis tion problems using the best.smallplaussbilty criterion,
is not parsimonious. The difficulty arises when sev- there is an 0(nCe+nCe_,+nCpl+n2) algorithm forfind-
oral data each h6 si-verral consumers. Eithpr o diffiriIt i.g a bes? eX. .a' nw.. Algorithm 1 performs this tpok
choice between the consumers of each datum must be within this order of complexity. The explanation found
made, or sufficient producers must be added for each by this algorithm is a best explanation because it al-
datum, possibly violating parsimony. ways chooses the most plausible individual hypotheses
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W scover. Thus, even for ordered independent abduction

Sstands for the working composite hypothesis. problems, it is intractable to gene':ate all the best ex-

Nil is returned if no explanation exists. planations.
F From these results, we can describe what kinds ofFind a complete composite hypothesis. mistakes will be made by Algorithm 1. While the expla-More plausible individual hypothesis are preferred nation it finds will be able to match up qualitatively to

For each d E Da,1 any other explanation, there might be smaller explana-If eI d = 0 then tions that are better based on quantitative information.
Return nil Similar results hold for ordered monotonic abduction

else W - WU{h} such that problems.

h E e-1 (d)A
Vh' E e-(d) (p1(h) > pl(h')) Conclusion

Find a parsimonious subset. Based on these results, we propose that one of the fol-
Try to remove less plausible hypotheses first. lowing properties must be satisfied for abduction to be
For each h E W from least to most plausible effective and efficient.

If e(W\{h}) = e(W) thenI W W\{h} The domain is trivial in the sense described above.
Return W In other words, sufficient knowledge exists to engi-

neer abduction problems so that exhaustive search

Algorithm 1: Finding a Best Explanation in Ordered is tractable, i.e., by selecting appropriate data and
Independent Abduction Problems hypotheses and by constructing powerful e and pl
i__functions.

The domain satisfies the monotonic and ordered
to keep, and the least plausible individual hypotheses properties, and there exists one best explanation
to remove. This algorithm is a variant of the hypothesis according to best-small. This, too, might call for
assembly strategy described in Josephson et al. (1987). considerable knowledge engineering. Hypothesis

Because best-small in general imposes a partial or- assembly is directly applicable to such domains.
dering on the plausibilities of composite hypotheses,
there might be more than one explanation. Suppose Incompatibility relationships, cancellation interac-
that an ordered independent abduction problem had tions, and unordered hypotheses must be sparse
only one best explanation according to best-small. Be- (< O(logn)), and otherwise the domain satisfies
cause Algorithm 1 is guaranteed to find a best explana- the monotonic, ordered, and one-best-explanation
tion, then it will find the one best explanation. For the properties. In these domains, the best explana-
class of ordered independent abduction problems using tion can be found by invoking hypothesis assem-
the best-small plausibility criterion, if there is exactly bly a polynomial number of times, i.e., by varying
one best explanation, then Algorithm 1 finds the best the choices from incompatible pairs of hypotheses,
explanation. This can be informally restated as: In a consumers of each datum, and unordered hypothe-
well-behaved abduction problem, if it is known that some
explanation is clearly better than any other explanation,
then it is tractable to find it. Of course, if more than one property can be satisfied,

Unfortunately, it is difficult to determine if there so much the better.
is exactly one best explanation. For the clads of or- Our analysis supports the following thesis: :f hypoth-
dered independent abduction problems using the best- es:s assembly cannot be used to find the best explanation
small plausibility criterion, it is NP-complete to deter- in a complex domain, then the domain is intractable.
mine whether there is more than one best explanation.
The reason for the difficulty is that any other best ex- Acknowledgments. Thanks to Dean Allemang, Mike
planations will be smaller than the one found by Algo- Tanner, and .John Jsephson for their comments This
rithm 1. Consequently, determining that no other best research has been supported by the National Heart,
explanation exists is equivalent to determining that the Lung and Blood Institute, NIH Grant 1 R01 HL 38776-
explanation found by the algorithm is a minimal set 01.
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ow Introduction Knowledge Level Analysis of TwoAbductive Systems
In this abstract we will summarize some of the results
of our knowledge and symbol level analysis of two We will now individually describe the two systems in
medical Al systems: RED-2 [Josephson, et. al.19871 terms of the type of domain problem they solve and
[Smith, eual. 19861 and INTERNIST-1 [Miller, eL al. their problem solving methods. We describe their
1982], (Pople, et. al.., 1975], [Pople, 1977]. RED-2 methods in terms of their abstract goals, subgoals, and
and INTERNIST-I were both intended to encode an the kinds of knowledge they attempt to apply to
abluctive problem-solving method for different kinds achieve them. We will then compare the two systems
of domain problems and with different problem-solving along several dimensions. We argue that they encode
methods. in different forms very similar goals, methods, and

For this analysis we adopted Newell's view of what a kinds of knowledge. We then suggest that general
knowledge vs. symbol level analysis should address characteristcs of their respective domain problems and
[Newell, 1981]. In this view, a knowledge level analy- similar assumptions underlying their methods are the
sis of a system should focus on a representation reason why the designers of RED-2 and INTERNIST-
independent description of the system's goals and the I made similar content but different form decisions.
bodies of knowledge it brings to bear to satisfy :hese
goals. At the symbol level, the analysis should center INTERNIST-I
on the representations that attempt to realize this

knowledge level. For this purpose we adopted a similar Following Clancey, the problems INTERNIST-I tries
analysis methodology and set of terms to Clancey to solve are diagnostic. In his problem taxonomy diag-
[Clancey, 1985]. In particular, we use his taxonomy nosis problems are a kind of interpretation problem
of kinds of problems and his method of specifying the requiring the identification as faulty some part of the
content of a knowledge base by describing the methods system that is being diagnosed with respect to a pre-
and knowledge applied. We also borrow the concept ferred model of the system. Interpretation is concerned
types and conceptual relations he used in describing the with making assertions about a working system in some
heuristic classification method. environment while identification requires taking

Clancey performed such an analysis on a wide variety descriptions of input/output behavior and mapping it
of rule-based systems with interesting results. Similar- onto a system. More specifically, a solution to INTER.
ly, interesting similarities and differences emerged in NIST-I's problems is a combination of diseases(faults
our analysis when the two systems we studied were de- of the human body) which are the cause of the patient's
scribed using the same framework and a common manifestations (data). INTERNIST-I is designed to
vocabulary. search for these diseases using a method which selects

the best explanation found for the manifestations using
the subgoals shown in Figure 1. The two top subgoals
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Cons-uct the Best Explanation
for the Manifestations(Data)

Construct a NonredunantExpla nation Selectthe Diseases(Solution) That Explain I
for the Manifestations (Data) the Important Manifestations (Data)

Select the Best of these Diseases(Solution) to
Explain the Manifestations (Data)

Prefer the Disease(Solution) that Explains
the Important Manifestations (Data) Prefer Disease(Solution) that was

most Frequently the Explanation forPrefer the Disease(Solution) with the Maifestations(Datz)

Least Unsatisfied Expectations
Prefer the Disease(Solution) I
that Fits Together With the I
Currently Selected Diseases Determine the Unsatisfied Expecta-
Stions of Disease(Solution) Determine the Satisfied Expectations

/t of Disease (Solution)

Determine the Manifestations(Data) Expected to
be Present if the Disease(Soludion) Is Present

Figure 1. Problem-Solving Method Goal/Subgoal Structure in INTERNIST-1

the important manifestations(data) and construct a best with the currently selected diseases, and has the
nonredundant explanation. least unsatisfied expectations. The combined degrees

Determining that all the important mani- festations of satisfaction of a disease to these criteria determines
are explained is achieved by encoding for every the degree of satisfaction of the individual disease to
manifestation a qualitative importance of it being explain the data.
explained by the final diagnosis. INTERNIST-I will INTERNIST-1 explicitly encodes for every individual
attempt this goal until all the important data above a manifestation qualitative knowledge regarding the fre-
certain importance value is explained. The goal of quency with which disease(s) are found to be the best I
explaining the important manifestations is decomposed explanation for the manifestation. This knowledge is
into a series of instances of the goal of selecting the used to prefer the disease with the highest value for the
best individual disease to explain the manifestations manifestations at hand. The goal of selecting the
that remain unexplained. This goal decomposition is disease that best explains the manifestations is achieved
justified assuming that the causal processes underlying by selecting the disease whose expected manifestations
the diseases have minimal interactions. More match the most important manifestations in the case at
precisely, the designers of INTERNIST-I explicitly hand. Also, for each disease INTERNIST-I has
assume the diseases defined in the system are mutually knowledge encoded regarding the frequency with
exclusive causes of any datum. This allows for which a manifestation occurs if the disease is present.
explaining the manifestations by performing a Selecting the disease with the least unsatisfied I
succession of single-disease diagnoses. expectations can be accomplished by selecting the

The goal of choosing the best single disease disease whose expected manifestations are the most
is then decomposed into four subgoals to prefer the completely matched by the case at hand. Knowledge is
single disease that: explains the remaining encoded to allow for diseases to be preferred that are
manifestations best, mo.,q frequently waS the best expLa- knon. to pedisp or ... e. causally re.lat.ed to-.-. .....

nation for the manifestations in the past ( in their diseases that has already been determined to be part of
terminology has the highest evoking strength), that fits the solution. This knowledge is used to determine the
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degree of fit of a diseas to the current solution. similar knowledge of the manifestations(data) expected
The top-level goal of constructing a non-redundant if an individual disease(solution) were present.

final diagnosis is achieved partly by discarding the These expectation are then used to achieve many
manifestations related to diseases already included in similar goals to those in INTERNIST- I's method. For
what will become the final diagnosis. This is consistent example, in a manner similar to INTERNIST-I the
with the assumption of exhaustivity and mutual match of expectations to the test reactions is combined
exclusivity of the diseases which we have already noted in RED-2 with knowledge of the frequency of
as a basic premise of INTERNIST-1. Therefore the occurrence of these reactions to evaluate an individual
knowledge applied to avoid redundant explanations in antibody as a solution.
the final diagnosis is knowledge indicating what The similarities in the knowledge which maps expec-
manifestations each disease can account for and the tation associated knowledge to evaluations of solutions
knowledge of what diseases have already been is interesting because of the difference in encoding
established as parts of the final solution. In addition, used. For example, degrees of plausibilities derived
there is the assumption that once a disease is selected from matching individual manifestation expectations
as part of the solution to the problem, the are dynamically combined using a fixed non-linear
manifestations it explains do not need an explanation weighting scheme in INTERNIST-1. INTERNIST.1
anymore and cannot help in selecting other diseases. therefore includes a set of operations and functions to

utilize and manipulate these plausibilities. In RED-2,
RED-2 the knowledge mapping from the frequency of

occurrence of matched expectations and plausibility of
By contrast, RED-2 does not solve medical diagnosis a solution is also static. However, in RED-2 this fixed
problems but a medical identification problem. RED-2 weighting is represented as numerous instances of
solves problems which involve interpreting laboratory specific production rules. This evaluation knowledge is
tests to identify red cell antibodies in the serum of of the same kind and fills the equivalent evaluation
patients in order to safely transfuse red cells. The pres- role to knowledge that INTERNIST-I utilizes to
ence of these antibodies do not indicate malfunctions of evaluate diseases, although a cursory view of the form
the human body. A combination of antibodies which of the knowledge would lead one to conclude
are the cause of the test reactions is considered a otherwise. The difference is more form then content,
solution to this problem. Using Clancey's terminology, INTERNIST-i computes a static mapping whereas
the systems to be described are the test tubes where the RED-2 matches static structures to accomplish the
potential recipient's serum is mixed with the other mapping. On the one hand, INTERNIST-I seems
components of the test system(like standardized red more flexible than RED-2 as it can combine the contri-
cells). Abstractly, the problem involves taking bution of data patterns to solution evaluations
descriptions of the output behavior of the test system in dynamically. However, it is just a shorthand for the
the form of test reactions and mapping it back onto the same static view of how knowledge related to various
test system by determining what antibodies in the frequency measures of expectations can be mapped to
serum give rise to the reactions. solution evaluations.
The problem-solving method RED-2 is designed to This encoding difference is, we believe, related to the

apply is shown in Figure 2. To select the best characteristics of the data in the two domains. In the
explanation found during this search, RED-2 prefers RED-2 domain, the discriminable effects of the under-
combinations of antibodies(solution) which non- lying processes giving rise to the test reactions are of a
redundantly explain all the test reactions(data) explain- limited number Types of processes which could give
able, are compatible, and that have the highest fre- rise to non-discriminable patterns can largely be ig-
quency of occurrence of expected reactions which nored without effecting problem-solving accuracy. This
match the test reactions, makes it practical to pre-enumerate data patterns,

Many of these goals and the kinds of knowledge that frequency measures, and their desired effect on plausi-
are used to attempt to achieve them are quite similar to bility of a solution. In the INTERNIST-1 domain on
those in the INTERNIST- I method. For example, the other hand, the possible combinations of datum are
knowledge of the test reactions(data) expected to be numerous given the more then 4,000 potential
present if a particular antibody (solution) is present are individual manifestations. It is therefore less practical
used to determine what test reactions the presence of an for the INTERNIST-I knowledge base to be created by
antibody would explain. INTERNIST-1 encoded pre-enumerating all the data patterns and their desired
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Construct the Best Explanation for the
Test Reactions (Data)

Construct the Most Nonedundant

Explanation for the Teat Reactions (Data) P th..i.........hs
. ... e th Mos CopeePefer the Antiboy(Soluon) Whose

o lete Matching Expectations Frequency of I
Explanation of the Explainable Test Ocurence of is Greater
Reactions (Data) A Prefer th Antibodies tat ye [

Select the Antibodies(Solutions) Essentialmost Compatible with the
for a Complete Explanation of the Test Prsec of each other
Reactions(Data) Determine the Unsatisfied

Determine the Satisfied Expectations Expectations of Antibody
of Antibodies(Solution) (Solutions)

Find the Antibodies(Solution) ch Pr'I)
Explain the Most Significant Test
Reaction(Data) Determine the Reactions(Data) Expected

to be Present If Antibody (Solution) Is
Present

Figure 2. Problem-Solving Method: Goal/Subgoal Structure in Red

effect on plausibility. This route would translate into a above. In the INTERNIST-1 domain, on the other
large knowledge base without a clear means to exclude hand, causal interactions are frequent and potentially
knowledge from application for a particular case. numerous. It is therefore much less justifiable for the

RED-2, like INTERNIST-1, decomposes into possibly INTERNIST-1 designers to adopt such a decomposi-
numerous instances the subgoal of constructing the best don strategy. There may be a robustness to the decom-
explanation into selecting the best individual antibod- position of such goals in the context of the multiple di- I
ies. This decomposition is justifi'd for this domain mensions used for evaluation of potential candidate so-
since the effect on the test reactions(data) of causal lutions that has not been previously appreciated.
interactions between concurrently present antibodies is Another apparent exceptions to the similarity in IN-
always additive, predictable, and easily computed. TERNIST-I and RED turns out to be more form then
The search for a complete explanation is decomposed content. In RED-2 there is nothing that on the surface
into possible numerous instances of explaining the is comparable to INTERNIST-I's evoking strength that
most significant individual test reaction remaining to be is used to evaluate a solution element. However, RED- I
explained. RED-2, like INTERNIST-i, encodes 2 searches for antibodies which are essential for
knowledge to determine the importance of explaining explaining some reaction. Selecting essentials does
each test reaction value. The goal of non-redundant not appear as an explicit subgoal in INTERNIST-1. It 1
explanations is pursued by applying the knowledge of is interesting to see this notion does exist, implicitly, in
what each individual antibody can explain and INTERNIST-1. Let us assume we have a symptom that
knowledge of what combinations of antibodies can can be explained by only one disease. If the import of
explain. As in INTERNIST-l, the data that are account- the symptom is below the threshold, it might never get
ed for by the expectations of the current combination of explained and therefore the corresponding essential
accepted solution elements are considered explained disease would not be included in the diagnosis. If the
and additional candidate solution elements are generat- import is above the threshold however, it will be
ed based on the remaining data left to explain, explained. As soon as the disease explaining this

This similarity in method is striking given the finding is ranked the highest, the system will consider
differences in the characteristics of the causal processes it. Since there is only one disease to explain the given
underlying the problems in the two domains. In the manifestation, the partitioning algorithm will isolate it
RED-2 domain, the causal processes giving rise to the (it has no competitor since it explains a datum no other
test reactions are causally independent and give rise to disease can explain). INTERNIST-I will either
largely discriminable patterns of data on the tests. This integrate the disease in the final diagnosis or will list it
makes it justifiable to apply problem-solving methods as a likely present next to the final diagnosis.
which assume that overall goals can be decomposed as Therefore, we can conclude that INTERNIST- I has the
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ing theoretical and experimental results and improving cial Intelligence, vol. 27, 289-350,1985.
knowledge engineering practice for domain problems
approached from the perspective of abductive problem-
solving. For example, such a taxonomy would help the
knowledge engineer in selecting the appropriate
methods and knowledge representations when
confronted with a domain problem.
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1 Motivation turbance to each exogenous variable is hypothesized in I
each, they mention only the variables through which the

We wish to automatically construct plausible, parsimo- disturbance propagates, and they do not mention any
nious, and adequate explanations for unexpected finan- irrelevant variables. The first two are adequate, in the
cial results. We also wish to generate leading questions sense that the hypothesized disturbance entails the re- I
to help disambiguate among alternative explanations. suit. The third (*) is inadequate because it does not

Figures 1-3 show a very simple example, abbreviated entail what we wanted explained: if both Sales and Pro-
from that in (Kosy and Wise, 1984]. Figure 1 shows five duction Cost increased, then Gross Margin might have
equations relating eight financial and operational vari- either increased, decreased, or stayed the same.
ables. Of these eight, we take the variables Unit Cost, Because there are multiple explanations, we need to
Unit Price, and Volume to be exogenous. know what to ask next in order to disambiguate among

them. Figure 3 shows four relevant queries. All four I
Figure 1: Sample Financial Relations

Figure 3: Disambiguating Queries
Gross Margin = Sales - Production Cost

Sales = Volume x Unit Price Did Sales increase, decrease, or remain steady? I
Variable Cost = Volume x Unit Cost *Did Production Cost ... ?

Production Cost = Variable Cost + Indirect Cost **Did Variable Cost ... ?
Indirect Cost = Variable Cost x 15% **Did Indirect Cost ... ?

Suppose we observe that Gross Margin has decreased queries are equally discriminating, since we could use
since last period. Some plausible explanations are shown the query result to rule out two of the explanations in
in Figure 2. All three of the explanations propose dis- Figure 2. However, we find the last two (**) to be un-

desirable, because neither quantity appears directly in
Figure 2: Potential Explanations the computation of Gross Margin, the anomaly that we

are trying to explain. Also, the second query (*), like
Unit Price decreased the last two, are undesirable queries because financial

Sales decreased reports seldom report these quantities directly.
Gross Margin decreased Protocol analysis has shown that this abductive style

of reasoning manifests itself in tasks such as financial
Unit Cost increased assessment [Bouwman, 1983], going concern evaluation

-- Variable Cost increased [Selfridge et al., 1986], and auditing [Dhar et al., 1988,
-- Production Cost increased Peters, 1989]. Informal study indicates that it also plays

Gross Margin decreased a role in variety of other settings, such as tax planning, •
in which inuch of the effort is devoted to analyzing dif- f

*Volume increased ferences between prior cases and the case at hand. Fa-
- Sales increased cilities for abductive reasoning will play a key role in the
- Variable Cost increased Business Understander, the embodiment of a vision of a U

Indirect Cost increased next generation knowledge-based computerized facility
-- Production Cost incre,..d 4 L.r t... ,- ,_.J 4- .. 1: .-- ..

turbances in the exogenous variables Unit Price, Unit Price Waterhouse practitioners lHamscher et al., 1989].
Cost, and Volume. All three are parsimonious: one dis- The current example shows an essentially financial
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model, in which all of the parameters are quantitative For example, the parameter (0 Unit Cost) may take on
and most of them refer to amounts of money. Expla- the values [0], [+], or [-] with prior probabilities .80, .15,
nations referring only to dollar quantities may be ade- and .05 respectively.
quate in a technical sense, but often unsatisfying for the

* tasks we envision; in the example above, a more satisfy- Conflict Detection Some combinations of key vari-
ing explanation would refer to (say) increased competi- able assignments are inconsistent and need to be ruled
tion to account for decreasing Unit Price. To generate out. In CROSBY, as in SHERLOCK, each value in the
such explanations requires operational models, in which domain of each key variable is associated with an ATMSI the parameters refer to aspects of business such as the domin f e ach ney dedi n isquality of the products, the lead time for new products, assumption [de Kleer, 1986]. Each new deduction is
the brand loyalty of customers, and so forth Hamscher, given a label corresponding to the sets of minimal sets18We b eandlietalt fcustheressenti fertatursthe ab of assumptions needed to deduce that value. As pointed1989]. We believe that the essential features of the ab- out in [Levesque, 1989], the construction of a label for

* ductive reasoning will remain unchanged in spite of the oti Lvsu,18] h osrcino ae o
resulting shift in the character of the model. a proposition constitutes an abductive inference for thatThe next two sections elaborate on the construction proposition with respect to implicit beliefs (that is, theof explanations and discriminating queries in this do- underlying assumptions). Hence by propagating labels

I main. First, we present CROSBY a reimplementation of through a network of the Horn clauses resulting from
the diagnosis engine SHERLOCK [de Kleer and Williams, inferences made by the constraint propagator, explana-
1989]. Next, we discuss approaches to the challenges en- tions are constructed for every explicit belief (that is,
countered. These difficulties include the traditional is- the assignments of values to variables). When values

sues arising from the interaction of a domain model with deduced using different assumptions disagree, the set of

our abductive reasoning engine, as well as some nontra- underlying assumptions is declared to be in conflict. All
ditional issues encountered arising from the difficulty of supersets of that conflict set are inconsistent.
modeling business operations.

Interpretation Construction An interpretation is a
2 Implementation consistent set of assumptions that is maximal in the

sense that no assumption can be added to it without
* The current implementation of CROSBY follows the tra- making it inconsistent. SHERLOCK performs heuristic

ditional architecture of a model-based diagnosis program best-first search through the space of interpretations.
[Davis and Hamscher, 1988]: The evaluation function for each interpretation is the

upper bound of its prior probability, assuming indepen-
Prediction There is a domain model that supports dence among its key variables, conditioned on any ob-
predictions about the behavior of the system under servations made so far, normalized with respect to all
tudy; that is, given some facts about its behavior, theto

model predicts what behavior will be observed subse- interretations cerd t o be inon ssnt
quently. In CROSBY this is based on local propagation any inter retation discovered to be inconsistent.

of constraints [Sussman and Steele, 1980 over the do- For each set of assumptions ("environment"), there is
main of signs of each quantity and its first derivative a network of Horn clauses whose conclusions are sup-
with respect to time, as in many qualitative reasoning ported in that environment. These are called the "ac-
systems [Bobrow, 1985, Williams, 1988]., For example, if tive" clauses of that environment. Each network of ac-
Unit Cost increases (denoted [0 UnitCost] = [+]) while tive clauses supports some observations that the user
Volume is constant ((0 Volume] = [0]) and both are pos- may wish to see an explanation for given a certain en-

- itive ([UnitCost] = [Volume] = [+]) then Variable Cost vironment. Each fact (such as (0 Sales] = [-]) may be
will increase ([8 VariableCost] = [+]). supported by several active clauses, and for clarity it is

best to select just one to display to the user. Three local
Hypothesis Space Definition The space of poten- criteria are used to make this choice among the support-
tial explanations is defined by the cross product of values ing clauses of the fact: (i) The clause chosen must be
that can be taken on by selected key variables. In other active in the interpretation that the user is examining
domains these key variables may be boolean-valued and (ii) the clause must be that which is active in the envi-
refer to diseases [Reggia el al., 1983], states of compo- ronment of smallest cardinality, and (iii) the clause mustI nents in designed artifacts [de Kleer and Williams, 1987, have the fewest antecedent facts. Recursive application
Reiter, 1987], or they may be multiple-valued and re- of these local criteria within an interpretation yields a
fer to behavioral modes of components [de Kleer and directed graph of active clauses that forms an explana-
Williams, 1989, Hamscher, 1990]. In CROSBY the key tion structure. There is no guarantee of global economy
variables are simply the signs of the exogenous param- in terms of facts or clauses, but the results are easily
eters of the financial model and their first derivatives, comprehensible in practice. Examples were shown in
A prior probability is estimated for each variable assign- Figure 2. CROSBY displays the directed graph omittingI ment, with independence assumed among the parame- facts in which variables are asserted to be unchanged,
ters, and the resulting distribution summing to unity. such as [& Volume] = [0].
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Query Generation Some set of model parameters are the additional constraints in Figure 4 are added, the in-
declared to be observable. The model will have deduced consistency would be discovered upon observing (0 Unit
one or more values for each such parameter, depend- Margin].
ing on different sets of asumptions. Since a probabil-
ity is associated with each interpretation, and ideally Figure 4: Additional Financial Relations
each interpretation assigns a value to each observable
parameter, a conditional probability for each value given Gross Margin = Volume x Unit Margin
each interpretation can be computed, and Bayesian di- Unit Margin = Unit Price - Unit Cost
agnois can be used to select the observation with the
most information [de Kleer and Williams, 1987]. Let Combinatorics It is worrisome that the number of I
Pik = p(V = O,), the probability that the observation interpretations is exponential in the number of key vari-
of V has outcome Ok conditioned on all observations ables, since the SHERLOCK procedure can in principle
made so far. Then the best observation on average is that explore them all. However, since they are explored in
with the minimum Shannon entropy E = pik logp,k the order of the likeliest interpretations first, we believe

In this domain, variables corresponding to financial that the performance will be acceptable in practice, and
statement items (Sales, Gross Margin) are easily observ- this is supported by some empirical evidence. The Sym-
able, certain operational variables (Volume) can be ob- bolics 3645 implementation of SHERLOCK by its origi-
served with varying degrees of difficulty, and the remain- nal authors already diagnoses combinational digital cir-
der are virtually impossible to observe directly because cuits with up to a hundred gates in a matter of seconds
normal accounting systems to not record them as such. [B. C. Williams, personal communication]. CROSBY is
An extension of the entropy-based scheme estimates the also implemented on a Symbolics 3645, but its under-
desirability of observations having varying costs. The lying ATMS is not as fast. Its largest example to date
program selects the observation with minimum expected involves 15 variables, 6 of them exogenous, and corn-
total cost Ti = ci + C(E, - D), where: pletes in 82 seconds. This 82 seconds does not in'lude

the I/O time to solicit four observations from the user.
" ci is the cost of observing i,

* D is the entropy of the current set of interpretations Incoherent Lines of Questioning In the applica-tions that we envision, the role of the abduction engineI, that is, D - _j p(jj) log p(I,), is to help the human user formulate plausible theories

" (Ei - D) estimates the residual uncertainty after and subsequent lines of investigation [Hamscher ef al.,
observing Vi, 1989]. Bayesian diagnosis is notorious for giving the

user an uncomfortable sense of "jumping around" be-
" Ci is the average cost of observing the remaining tween different hypotheses [Szolovits and Pauker, 1978,

unobserved variables, Ci = Ekti ck. Pople, 1982]. We plan to explore several different ap-

As intended, CROSBY generally selects observations proaches to this latter issue:
with minimum ci, except when there is a more expen- Use Guided Probe Perhaps Bayesian diagnosis
sive observation that would discriminate more strongly is simply irrelevant when the goal is comprehensibility
among competing interpretations. rather than optimality. For example, in the domain of

digital circuit troubleshooting, the "guided probe" algo-
3 Discussion rithm involves a methodical step-by-step upstream trac-

ing of causal paths; while the resulting sequences are
Test cases run with CROSBY highlight some issues both suboptimal, it requires that little state be retained and
familiar to those working in the area of automated diag- as a result is easy to follow.
nosis, as well as some that are unique to the domain.

Use More Layers Perhaps the sense of "jumping
Ambiguity and Incompleteness Qualitative rea- around" is simply an artifact of having constructed ex-
soning has the advantage of allowing a discrete range planations with too many steps, which in turn is an arti-
of values for key parameters and hence a finite space fact of having descended to too low a level of detail. Sup-
of explanations. However, it sometimes fails to detect pose that the abductive engine were extended to perform
inconsistent interpretations. For example, the interpre- hierarchic diagnosis, and consider the earlier example: if
tation corresponding to the *'d explanation in Figure 2 the model had several layers, each one involving only a
is inconsistent with [9 Gross Margin] = [-] if [Volume] small increase in the number of variables, then as long as
= [+J, but the propagator fails to detect this. There are the abductive engine stayed at a single level there would
numerous known approaches to this problem involving be less jumping around - simply because there would
quantity Rpaepsq integrated numric and quialitative ap- be fewer variables of vnterp t _-y g,,n le"el, hence
proaches, and so forth. In the short term CROSBY uses fewer places to jump to. Thus, perhaps the problem is
the straightforward approach of employing multiple for- not Bayesian diagnosis, but rather that the models used
mulations of the same underlying model. For example, if are not richly enough layered.
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Dynamically Bias Observation Costs Perhaps to purchase was considered an important external deter-

Bayesian diagnosis could yield the same sense of con- minant of sales" (Elliott and Uphoff, 1972 justify the
trolled focus as the guided probe algorithm. The esti- inclusion of one or another factors in a given equation,
mated cost of each new observation could be dynani- in this case the inclusion of GNP as a contributing fac-

I cally adjusted to prefer those observations that are more tor to the sales of a given firm. Unfortunately, achieving
closely related to the most recent observations made. For a completely independent set of parameters is impossi-
example, having observed the variable (0 Gross Margin], ble in general and in any specific case leaves much room
the next observation would be biased toward [Gross Mar- for debate: for example, the equation for prices in [El-E gin], and toward (8 Production Cost] or [8 Sales] because liott and Uphoff, 1972] is a function of capital expendi-
these variables appear in a relation with Gross Margin tures, rather than production costs, even though the lat-
(Figure 1). ter seem to be more directly related to the way firms set

The current implementation of CROSBY strikes a their prices. Assuming that the model can be justified,
balance between (myopic) guided probing and (global) subsequent regression will tell one what the parameters
Bayesian diagnosis. CROSBY defines the cost of observ- are, and tell one how well the historical data fit them.
ing V, to be c' = (1 - a)c, + ad,, where di is the number But what does one do if the fit is poor - conversely,
of relations intervening between V, and the most recently what does it really mean if the fit is good? The causal
observed variable, and a is a "locality bias" parameter story is no longer explicit in the equations, yet that was
ranging between 0 (global) and 1 (myopic). For compu- the background against which one must do all debugging
tational simplicity, the observation is selected to mini- and interpretation. In other words, if one uses the resultE mize T = c' + C,(E, - D). However, the models con- of a regression (or related techniques such as smoothing)
structed up to this time have not been large enough to to make a prediction, how should one interpret data that
provide a useful test of this scheme. either agrees or disagrees with the prediction? These

difficulties argue against the use of regression-based ex-
I Finance is Not Enough As noted earlier, an expla- trapolation, but it appears that the field of economics

nation of declining gross margins that simply refers to currently offers few alternatives.
prices, costs, and volumes is fundamentally unsatisfying.
What explains them? Most current Artificial Intelligence 4 Conclusion
work in model-based reasoning is grounded in classical
physics. Reasoning tasks involving business operations We wish to automatically construct plausible, parsimo-
are not grounded in physics, but rather in the disciplines nious, and adequate explanations for unexpected finan-U of economics, accounting, marketing, human resource cial results. We have constructed an initial prototype ab-
management, and so forth. These disciplines are rich ductive engine based on a model-based diagnosis engine
in quantitative methods, and appeal to similar types of and are exploring several issues in modeling, diagnosis,
assumptions (continuity, linearity, closed worlds, and so and explanation.I forth), but do not approach the breadth and predictive
power of classical physics. Acknowledgements
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I Introduction Event Calculus axioms, and employs circumscription to
achieve default persistence. The axioms are as follows. All

After Hanks and McDermott demonstrated that variables are universally quantified unless otherwise shown.
formalising default persistence to overcome the frame
problem was less straightforward than it at first seemed holds.at(P,2) - (E.1)
(Hanks and McDermott, 1987], several authors developed 3E,TI [happens(E) A success(E) A time(ETi) A
more robust formalisations, such as Lifschitz [1987] who Ti < 72 A initiates(E,P) A -, clipped(Ti,P,72)J
uses circumscription, Shoham [1988] who uses model
preference, and Evans (1989] who uses regation-as-failure. clipped(TJ,P,T3) - (E.2)I These formalisations can describe the so-called Yale 3E,72 [happens(E) A success(E) A time(E,T2) A
shooting scenario which Hanks and McDermott introduced, terminates(EP) A Ti 72 A 72 < T3J
and they yield the intended predictions. However, these
formalisations of default persistence need to be modified to success(E) * (E.3)I cope with Kautz's stolen car problem [Kautz, 1986], and the time(E,T) -. ( VP[precond(EP) -4 holds-at(PT)]
bloodless variation of the Yale shooting scenario. A few
authors have proposed solutions to these problems, such as time(E,Ti) A time(E,72) -4 Ti=72 (E.4)
[Morgenstern and Stein, 1988], [Lifschitz and Rabinov,
1989] and [Shanahan, 1989a]. act(E,A1) A act(EA2) -4 AI=A2 (E.5)

In [Shanahan, 1989a], a solution to Kautz's stolen car
problem is suggested which uses abduction. However, the These axioms are very similar to those used in
paper concentrates on the issue of explanation in temporal [Shanahan, 1989a]. The basic ontology includes events,
reasoning, and the proposed solution is not discussed in time points and properties. The predicate happens(E)
depth. Also, the proposed solution uses negation-as-failure represents that event E occurs, time(E,T) represents that E
to achieve default persistence. This apparently restricts the occurs at time T, act(E.A) represents that event E is of typeI solution to extended Hom clause representations Gf change, A and holds-at(P,T) represents that property P holds at time
such as the shortened version of Kowalski and Sergot's T. The predicate clipped(Ti,P,72) represents that property P
Event Calculus used in the paper. But the principle behind is terminated at some time between times Ti and 72. The
the solution is equally applicable to full first-order predicate domain is represented by the predicates initiates andE calculus representations. This paper seeks to present the terminates. Respectively, initiates(EP) and terminates(EP)
abductive solution to both Kautz's stolen car problem and represent that the pruperty P is initiated by the event E and
the bloodless Yale shooting problem, using a version of the terminated by the event E. The predicate precond(E,P),
Event Calculus which employs circumscription rather than which is taken from [Lifschitz, 1987], represents that P
negation-as-failure. must hold at the time of event E for it to have any effect.

To achieve default persistence, whereby a property, once
initiated, persists by default until an event occurs which

1. A Circumscriptive Event Calculus terminates it, we circumscribe the theory E uD uH, where
E is the theory cowaprising (E.1) to (E.5) (and including an

The different versions of the Event Calculus presnted in. implicit ePnalitv and inpns,,a~tu thasw, /A o. _-t ^f nv,
for example, [Kowalski and Sergot, 1986], [Kowalski, defining initiates, terminates and precond and H is a set ofI 1986] and [Shanahan, 1989a], all use negation-as-failure to axioms describing a history of events in terms of happens,
achieve default persistence. This paper uses a variation of the act and time. The circumscription policy minimises
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hoppens, initiates, terminates and precond, and also holds-at
with a lower priority. Now, the Yale shooting scenario can be represented by

the following history, comprising four events - birth then
Circum(E u D u H ; holds-at < happens, initiates, load then wait then shoot.

terminates, precond)
happens(eO) (111.1) happens(el) (H1.4)

As in (Lifschitz, 1987], the introduction of the precond time(eO,to) (111.2) time(el,tl) (H1.5)
predicate allows the preconditions of axioms to be act(eO,birth) (11.3) act(elJoad) (H1.6)
minimised independently of anything which varies over t) > tO (11.7)
time. Lifschitz also introduced a causes predicate for the
similar reasons, and the initiates and terminates predicates of happens(e2) (I1.8) happens(e3) (141.12)
the Event Calculus serve the same purpose. An alternative time(e2,t2) (11.9) time(e3,t3) (H.13)
formulation results if holds-at is not minimised, and Axiom act(e2,wait) (HI.10) act(e3.shoot) (111.14)
(E.1) is written as an equivalence rather than an implication. t2 > t] (HI.11) t3 > t2 (H1.15)
But this form of Axiom (E.1) excludes the possibility of
discovering other ways in which a property can hold. In t4 > t3 (111.16)
[Shanahan, 1989b], for example, an addditional holds-at I
axiom is introduced to cope with continuous change. But I In all models of the circumscription of E u D) u Hi,
will return to this alternative formulation later, because it minimising happens, initiates, terminates and precond, and
also yields an apparently straightforward solution to the then minimising holds-at with a lower priority, we have
bloodless Yale shooting problem and Kautz's stolen car holds-at(loadedt3) and therefore holds-at(deadt4) and -holds- I
problem. at(alive,t4). Anomalous models, in which the gun is

There is a potentially serious problem with this unloaded by the wait event or by some other event, do not
circumscriptive formulation of the Event Calculus which I arise because they are less minimal in either happens or
don't propose to tackle in this paper, but which needs to be terminates than models in which the loaded property
pointed out. As well as extra holds-at axioms to describe persists.
continuous change, most domains require the addition of
extra holds-at axioms defining non-primitive properties, that
is, properties which are not initiated and terminated 3. The Bloodless Yale Shooting Problem
themselves, but which ate derived from those which are. For
example, in the Blocks World, we might define the property In the bloodless variation of the Yale shooting problem,
clear(X) to hold if nothing is on top of the block X, where we have the same history of events - namely load then I
the property on(Y.X), representing that block Y is on top of wait then shoot - but we are also told that alive holds
X, is a primitive property initiated and terminated by events, afterwards. Somehow, the addition of this fact must block
Unfortunately, whilst the formulation given will work well the inference that dead holds as a result of the shoot event.
with many axioms defining non-primitive properties, some There are two ways to view this problem. We might I
such axioms will give rise to unexpected models. This consider that the addition of this new fact simply results in a
difficulty also arose for Lifschitz [1987], who proposes a different prediction problem, which understandably produces
solution which may carry over in some form to the different predictions. Since the predictions rely on default l
formulation given here. persistence, which is non-monotonic, there is nothing

strange about the fact that the addition of a new fact results
in the retraction of a previous prediction. Alternatively, we

2. The Yale Shooting Problem might regard the new fact as requiring an explanation. On U
this latter view, it is not sufficient simply to derive new

The simple domain of the Yale shooting problem predictions from the new fact. Rather, we have to seek
comprises only three types of event - load, wait and shoot possible explanations for the new fact, and only derive new
- and three properties - alive, dead and loaded. A fourth predictions from these explanations. I
type of event - birth - is introduced to comply with the The first approach might be realised by expressing
basic intuition behind the Event Calculus that all properties Axiom (E.1) as an equivalence rather than an implication.
which hold must have an explanation in terms of events. Then, the addition of holds-at(alive,t4) to HI implies that
These events and properties are axiomatised as follows. Note nothing happened before t4 to clip alive. But since the shoot
that there are no axioms for the wait event, since it has no event e3 happened before t4, and since shooting terminates
effect. alive, either the shooting was unsuccessful, or a second birth

event took place which isn't mentioned in the history, or a
initiates(E,loaded) 4- act(E,load) (DI.1) completely new type of event took place which initiates
initiates(E/ead) 4- act(Eshoot) (D1.2) alive, say a resurrection event. The first possibility - that
initiates(Ealive) f-- act(E,birth) (D1.3) the shooting was unsuccessful - implies that either the
terminates(Ealive) f- act(Eshoot) (D1.4) wait event unloaded the gun, or that some other event I
precond(E,loaded) f--act(E shoot) (D1.5) happened to unload'the gun which wasn't mentioned in the
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I history. In short, as well as requiring an arnmendment to the Explanations which differ only in the symbols they use for
axioms which could turn out to be false, adding holds- new constants are considered the same.
at(alive,t4) to HI yields only a very weak disjunction. This formal apparatus allows us to tackle a variety of
Incidentally, this disjunction does not exclude the possibility temporal explanation problems. For the bloodless Yale
that dead also holds at t4, but this could be rectified by shooting problem, we want explanations for holds-
adding a suitable axiom to D1. at(alive,t4). But the question arises, which predicates do weThe second approach regards the problem as having an make abducible. For many explanation problems, it is
explanation component as well as a prediction component. It appropriate to make the temporal ordering predicates
is not appropriate simply to add holds-at(alivet4) to Hi and abducible along with the predicates happens, time and act.
then to derive new predictions. Rather, holds-at(alive,t4) has That is, the only abducible predicates are those which can
to be explained. The set of possible explanations of this fact feature in a history of events. If these are the only abducible
can then be added to Hi, generating a set of ammended predicates, then given the domain Di which does not include
histories, and new predictions can be made with these new any types of event which can unload the gun, the only
histories. From a logical point of view, the problem preferred explanation for holds-at(alive,t4) involves a
involves an abductive component for the explanation and - reincarnation: (happens(e), time (e,t), act(e,birth), t < 4. t3I deductive component for the prediction. The abductive < t). Making domain predicates abducible gives a different
component is to find an explanation A which is consistent result. In particular, if we make terminates abducible, the
with E v Di v HI such that holds-at(alive.t4) is in all only preferred explanation is fterminates(e2joaded)), that is
models of the circumscription the wait event unloads the gun.

I Circum(E v DI v HI , A; holds-at < happens,
initiates, terminates, precond) 4. The Stolen Car Problem

Hand the deductive component is to make predictions by Kautz (1986] posed the following problem. Suppose that
finding those sentences which are in all models of the such I park my car in the morning and go to work. At lunch
circumscriptions. Of course, there may be many A's to time, without going to look at my car, I might reasonably
explain any given fact. So the definition of an acceptable apply default persistence and infer that the car is still where I
explanation is further refined. A set of predicates is left it. However, when I return to the car park in the evening
distinguished as the abducibles. In general, gven a domain I find that it has been stolen. My previous conclusion that
theory D and a history H, an acceptable explanation A for a the car was still there at lunch time is clearly now open to
fact G is a set of atomic sentences involving only abducible question. The car may have been stolen at any time after I
predicates, such that G is in all models of the parked it and before I observed that it was gone, so I cannot
circumscription say anything about its whereabouts at lunch time. Any

formalisation of default persistence should deal satisfactorilyI Circum(E u D u H u A ; holds-at < happens, initiates, with this kind of scenario.
terminates, precond) The domain can be trivially formalised as follows, using

two types of event - park and steal - and the single
and there is no A* comprising atomic sentences p in-car-park.I involving only abducible predicates such that A - A* and

G is also in all models of the circumscription initiates(Ein-car.park) ifact(Epark) (D2. 1)
terminates(Ein-car-park) f act(Esteal) (D2.2)

Circum(E v D v H v A* ; holds-at < happens,
initiates, terminates, precond) There is only one event, that of parking the car, which

we can represent as follows.
There may still be many acceptable A's to explain ai given fact. The set of sentences which is the intersection of happens(eO) (H2.1)

all such A's is called the set of defeasibly necessary acteOpoark) (H2.2)
conditions for the fact. Each individual A is a set of time(eOmorning) (H2.3)
defeasibly sufficient conditions for the fact. Finally, a furtherI preference relation << can be defined on A's, which captures We also have
the idea of a good explanation. For example, A's may be
preferred which introduce fewer new events - l <<A 2 iff morning < lunch-time (H2.4)
the set of all happens sentences in Al is a proper subset of lunch-time < evening (H2.5)
the set of all happens sentences in A2. A preferred
explanation is any acceptable explanation A such that there With these axioms alone, in all models of the
is no acceptable explanation A* where A* << 4. Note that circumscription of E L/ D2 L/ H2, minimising according toI an explanation may introduce constants which do not appear the policy in Section 1, default persistence gives us holds-
in E u D u H, to name new events for example. at(in-car-park,lunch-time) and holds-at(in.car-park,evening).

However, if we now seek an explanation for -,holds-at(in-
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car-parkevening), we find that the only preferred explanation explanation, it may still be important to keep these two 1

is A = (happens(e), act(e,steal), time(e,t), morning < t, t < uses of abduction conceptually distinct.
evening). Circumscribing E u D2 u H2 u A yields only As discussed above, another approach to the temporal
models in which we have--holds-at(in-carparkevening), but projection problems tackled in this paper is to use deduction
because the relative ordering of t and lunch-time is not with circumscription or some other form of default
known, we have some models which include holds-at(in.car- reasoning [Morgenstern and Stein, 1988], [Lifschitz and
park,lunch-time) and others which include holds-at(in-car- Rabinov, 1989]. This might be achieved by writing Axiom
park,lunch-time). In other words, we cannot conclude (E.1) as an equivalence instead of an implication. There are 1
anything about the whereabouts of the car at lunch time. several objections to this approach, but none of them seem I

Does this constitute a solution to Kautz's stolen car overwhelming. First, it might require writing equivalences
problem, or is it cheating? The acceptability of the abductive which are, strictly speaking, false and should be written as
approach to such problems hinges on a view of knowledge implications. Second, it seems counter-intuitive to view
assimilation which goes beyond the idea of simply adding explanation problems like the bloodless Yale shooting 1
new facts directly into the knowledge base. Suppose that we problem and the stolen car problem as deductive. But then
have a knowledge base in the form of a set of sentences T. again, any method which uses circumscription can't really be
Under a classical view of knowledge assimilation, new facts viewed as purely deductive anyway. Third, the large
are added directly to T. With an abductive view of knowledge disjunctions which can result from this approach don't
assimilation, new facts are added to the set of logical convey as much information as the set of defeasibly
consequences G of the knowledge base, demanding the necessary conditions plus the set of sets of defe.sibly
addition of a set of sentences A to T such that T u A - G. sufficient conditions which are obtained with abduction. A
That is, each new fact must be explained. Using abduction thorough exploration of the relationship between these two
with the Event Calculus, assimilating a new holds-at fact, approaches is another topic for further work.
such as the fact that my car is not in the car park in the Finally, it is worth adding a few words about 1
evening, demands the addition of a whole set of happens, implementation. Axioms (E.1) to (E.6) were derived from
time, act and temporal ordering sentences, so that the new the axioms presented in [Shanahan, 1989a], which are all
fact becomes a logical consequence of the knowledge base. extended Horn clauses. It is quite straightforward to compile
With the stolen car problem, there is a unique preferred Axioms (E.1) to (E.6) back into extended Horn clauses, and
explanation, but this is not necessarily the case. we might expect this to be true of most extensions to the
Complications arise when there are many preferred axioms. When they are expressed in extended Horn clause
explanations for a fact, but I will not address this problem form, a simple extension to resolution will perform
here. One approach is to add the disjunction of all the most abduction, and a Prolog interpreter will suffice for deduction
preferred explanations to the knowledge base. [Shanahan, 1989a].
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Abstract repertoire of tools and methodologies for using these
tools. Under this analysis, research should consist of

Is a default more than just an assumed premise in a learning how to use this set of tools and only adding Ilogical argument of what to predict? Is recognition to it when it cau be shown to be inadequate. We don't
just conjecturing causes that can be used as premises make advances by increasing the number or complexity
to imply the observations? Is design just choosing of tools, but rather we make advances when we have
components that can provably do the job? An on- fewer and simpler tools together with useful ways to U
going research programme by this author and others use these tools.
is to try to answer these questions. Rather than advo-
cating complex sophisticated theories, we are trying to 2 Logic and Monotonicity
find out where simple solutions break down and only M
add complexity where it is needed. In this paper, I One of the primary arguments for using logic is that I-
argue for this "minimalist" approach to Al, argue for the notion of semantics is important (see discussions
a particular representational theory as an appropriate in [Levesque88]). The notion of logical consequence
starting point, and then report on what we have found (P k c) is usually taken to mean that c is true in all
by such an endeavour. The starting point is a simple models of P. In other words there is no way that P
form of hypo-deductive reasoning where the user pro- can be true with c being false. If the conclusion c is
vides the forms of hypotheses they are prepared to false, then the premises P must be false. This primary
accept as part of a logical argument. tenet of logic can be summed up procedurally in the

statement:

1 Minimalist Al If you don't like the conclusion of a logical

As in any scientific endeavour we have to come up with argument, don'l criticise the logic, criticise
theories. What should an Al theory look like? What the premises.
should a theory of representation look like? This paper Suppose we have a logical argument that Tweety
is an attempt to justify one representational theory. flies based on Tweety being a bird, and "birds fly". If

A reasonable way to proceed is to do vhat could we subsequently learn that Tweety is an emu, then the
be called "minimalist A". We only use tools that are conclusion (that Tweety flies) is wrong, but the logical
demonstrably required, and only augment them when proof is still valid. This problem of the "monotonic-
they are proven inadequate for the sort of reasoning ity" of logic has lead to many new "logics" to handle
we want to do. In this way many people have argued exceptions.
that any reasoning system should incorporate at least The logical argument is valid; we don't like the con-
the first order predicate calculus. clusion, so we should criticise the premises. What is

One problem with this is that even a very weak logic the wrong premise? The wrong premise is "birds fly".(e .. , Horn clauses with function symbols) can repre- This is a premise we don't want to use when the object
sent any computable function. Therefore a theory that under consideration is an emu. The idea that there are
says all we need is logic is, at one level, vacuous. We premises that we want to use some of the time, but not
already know, if Al is possible, we can represent intel- all of the time is the basis behind Theorist [Poole88a].
ligent reasoning with a Turing machine. Logic tells us the consequences of our assumptions,

Just as a hammer is not just a piece of steel we it doesn't tell us where the assumptions come from.
can buy at a hardware store (we can use a rock as a What should be the premises of a logical argument?
hammer), an Al theory is more than the invention of The example above shows that they should be what
a new logic, new formalism or even a new system. Al we know (our "facts" - what we are not prepared to
is about how to use tools to reason intelligently, give up) together with hypotheses we are prepared to

Ideally an AI theory must come up with a limited accept as part of an argument. I
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The Theorist conjecture is that we don't need any- 4 Representational Methodology

thing more than this. We don't need new logics, new
rules of inference, new semantics, we can do all rea- 4.1 Abduction, Default Reasoning and
soning in terms of theory formation using normal logic Design

I (the idea is independent of the logic, but we assume Different uses of Theorist can be characterised by (a)
the first order predicate calculus as we can also argue who chooses the assumptions and (b) whether the goal
that we need at least this if we want to represent in- is known or not. The first considers whether the sys-
directly described individuals, disjunction and explicit tem is free to choose any hypothesis that it wants or
negation). whether "nature" has already chosen the hypothesis

Where should our "hypotheses" come from? The and the system has to try to guess the hypothesis cho-
answer to this is "I don't know". How should we go sen. The second is whether the goal is known to be

I about answering this question? It seems as though true or whether it is something that has to be deter-
the simplest idea is to allow the user to be able to mined.
provide the forms of assumptions they are prepared Abduction is where the system knows that the goal
to accept as part of an explanation. By using such a (the observation of the world) is true, but it is not free

i sy'tem we can learn the principles behind such possible to choose just any hypotheses. Which object is in a
haypotheses. There seems to be no way, a priori, to say scene, or which disease a person has, has already been
that something should or should not be a hypothesis; determined; all we can do is to guess what is in the
it is only by gaining experience that we will learn this. world based on our observations of the world. We thus
For a start we let the user provide the form of the consider all explanations of the observations as being
hypotheses. possible descriptions of the world. We only need to

consider the minimal and least presumptive explana-
tions, as if the set of all explanations is covering, the

3 Theorist set of minimal and least presumptive explanations will
be as well [Poole89a].

Theorist [PGA87, Poole88a] is defined in terms of: Default reasoning can be seen as where the sys-
i tem does not know whether the goal is true, and is

F a set of closed formulae, called the "facts"; these are not free to choose any defaults it likes. One appeal-
regarded as true of the domain under considera- ing framework is to predict something only if is ex-
tion. As such, they are assumed to be consistent. plained even when an adversary chooses the hypothe-

ses [Poole89a], which corresponds to membership in
H a set of possible hypotheses, instances of which can all extensions (which corresponds, propositionally at

be used as premises of a logical argument. least, to circumscription [Etherington88]). This is a

very sceptical sort of default prediction.
Definition: A scenario is F U D where D is a set Design can be defined as when the system can

of ground instances of elements of H such that F U D choose any hypothesis it wants. For example, a sys-
is consistent. tem can choose the components of the design in order

A scenario is a possible partial description of the to fulfill its design goal, or choose utterances to make
world based on what we know and what we are allowed in order to achieve a discourse goal. The consistency
to assume. Consistency means that we do not want to check is used to rule out impossible designs. All other
make assumptions that we know are false; this seems sets of components that fulfil the goal are possible,
like a minimal requirement for rationality., and the system can choose the "best design" to suit

Definition: If g is a closed formula, an explana- its goal. Design can be done in an abductive way to try
tion of g is a scenario that implies g. to hypothesise components in order to imply a design

Definition: an extension is the set of logical con- goal. Alternatively, design can be done in a default

sequences of a maximal (with respect to set inclusion) reasoning way to prove a design from goals and any

scenario, hypotheses we care to choose.
Note that these frameworks are different ways to

Theorist is an attempt to be a minimalist systim. use the same formal system for different purposes. All
It is an attempt to see how far we can go with a very ways to use the system may be present in the same
simple hypothetical reasoning framework. It is also system [Poole90].
of interest because exactly the same formal definition
provides a definition for default reasoning [Poole88a] 4.2 Recognition
abductive reasoning (where we want an explanation of We have divided the sorts of assumption based reason-
an observation in terms of clauses [PGA87, Poole88b]), considered here into 3 sorts.1 To fully define the

pothesize a system which provably fulfils some design 'Note that learning and scientific theory formation are
requirements [Finger85]). conspicuous by their absence. This is in order to simplify

I 107

I



I
theory it remains to specify how such reasoning should so that if 8 is observed we can conclude that one of
be used. the possible causes was responsible. We also need

Suppose the problem is a recognition task: given an the facts ci * s for 1 < i < k in order to be'able
observation about the world to find out what could to rule out causes if we know the symptom is not
be the underlying reality that it corresponds to. This observed. Formula 1 forms an explicit statement U
problem can be cast into the hypothetical reasoning of complete knowledge (i.e., that these are all of
framework of Theorist in at least two different ways the possible causes).
[Poole88b, Poole89]: (b) We can write down local causal rules

1. We can treat recognition as an abductive problem,
where we find a set of hypotheses that can be a A di * ci

added to the knowledge base in order to prove for i = l..n as facts, and have di as defaults.
the observations. .Again, we also need the facts c = 8 for I < i < k.

2. We can treat this as a prediction problem where There are a number of problems with such a rep-

the problem is to find what follows from the re.ientation including
knowledge base and the observations, perhaps be- -- Given s we can conclude the conjunction of
ing able to hypothesise defaults. the ci as opposed to the disjunction of the

We can think of recognition as finding the "causes" ci. When we have multiple observations we
of the observations. For abduction we have to axioma- do not group the causes together in a natu-
tise cause -- effect knowledge. For prediction we ral manner (for example, instead of conclud-
have to axiomatise effect -- cause knowledge. Note ing (cold A ezercise) V flu when we observe
that the axiomatization of the knowledge does not de- aching.limbsA sneezing, we find we can con-
pend on the problem domain but rather in the way clude coldAezerciseA flu. There is, however,
that the knowledge is to be used. no evidence for the conjunction)

For the propositional case, suppose cl, ..., c,, to be - There is a problem pointed out by Pearl
the possible causes 2 of symptom 8, where c1 , ... , Ck are [Pearl87a] of cascading causal conclusions
those causes that always produce s. There are a num- with evidential reasoning. For example, from
ber of ways this knowledge can be represented: ezercise concluding aching-limbs, and using

1. For the abductive systems, we need ci * s as a this as evidence for flu.
fact for 1 < i < k (as we want -s to rule out There seems to be two solutions to these prob-
ci). We need cj =: a to be a possible hypothesis lems:
for k < j < n (we don't want to rule out cj by
finding out -s). We also need ci for i = 1..n to be (i) To solve the second problem we can add extra
a possible hypothesis that can be hypothesised if preconditions to the rules to ensure the evidential
we observe a [PoolegO. rules is only used if the effect has been concluded

We have to be able to anticipate all possible things by virtue of evidential reasoning and not by causal

that can be observed, as we need to be able to find reasoning [Pearl87a]. It is, however, not so obvi-

an explanation of all observations, even observa- ous how to use this idea to solve the firEt problem.
tions of normality for which "s is acting normally" There is also a problem that arises when we have

both causal and evidential reasons for a particularmay be a reasonable hypothesis. effect. The preconditions will allow us to hypoth-

2. For the prediction representation we have a esise extra causes for the evidence.
choice: (ii) We can add disabling rules to the knowledge base. i

(a) We can write the closure of the causes explicitly. In order to get the same answers (in all exten-
Thus we can write the formula sions) as the completion case 2(a), we need to add

the rules i $ j A di -- d. Then di V ... V d,, is
ciV ... V c (1) in all extensions, from which we can derive equa-

the development of the theory and also is following a corn- tion 1. To make sense of these cancellation ax-
mon theme in AI that we should try to understand the ioms, the default di should be read as "c is the
process of reasoning before we consider the problems of primary cause of symptom 8" (and we only want I
how such reasoning can be learnt, one primary cause).2This notion of causality is very weak, for example one If we are considering what is in any extension

cause may be "it just happened that s", or "the normal c onsieing ha s in anye
state of affairs for 8" (in which case we don't really want we can still get into the second problem above.
a deeper explanation of why s occurred). Causality is not From cl we can use causal rules to conclude a
to be r ...arde s ...an p - , eIc as ,n then assuite 2 I~u allow us to conclude C2.
view that is imposed on the world, and is not necessarily To fix this problem we can add the cancellation
intrinsic in the world. axiom ci * -di for i 0 j. This, however, lets I
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us conclude -ce by assuming dj. Concluding the If the speaker can choose any assumptions then the
negation of causes may not seem like a problem, best the hearer can do is conclude what is in all ex-
however it is if some proposition and its negation tensions. If however the hearer follows some rules to
can be a cause. For e,.:arnple, getting an "A" in restrict his assumptions, then the hearer can also fol-
a course may be the .-ause of some actions, and low the rules in order to give a more refined sense of
its negation may be the cause of other actions. prediction (thus effectively broadening the band-width
Peculiar side effects may follow from assuming the of the communication channel).
negation of got-A. What is important about this is that we need both

One of the important differences between the first abductive reasoning and prediction style reasoning in

and the second is in the level of detail required of the each case, but we still have a choice as to which we

result. In the abductive case the explanation needs use for generation and which we use for recognition.
to be at the detail to logically imply the observation. What trade-offs are involved is a question we are still

The detail of the explanation is thus determined by investigating [Csinger90].
the observation. For the second case the level of detail 4.5 Problems with cancellation axioms.
is determined by the knowledge base and not by the
observation. We have considered a number of choie that we can

make in our representational methodology, and have4.3 Hybrid Abduction-Prediction system discussed some alternatives that do not seem to work

One intuitively appealing architecture we have consid- for various reasons. When building the representa-
ered [Poole89a, Poole90] is where the different modes tional methodology it is important to keep trying
of reasoning ar combined, and reasoning proceeds by break the system and determining what ideas do not
first abducing causes and then using membership in all work. Although we have only very limited experience,
extensions to see what is predicted from these causes. there are a couple of problems that we have found

The major advantage of this architecture is that we arise with the naive system presented so far (and many
only need cause -- effect rules, and these same rules other systems too).
can be used for both explanation and prediction. The first has to do with the facilities available to

In order to make this work we need to distinguish prevent the applicability of defaults. In this discussion
two types of possible assumptions; those used for ab- we have used a form of cancellation axioms. If we want
duction and those used for prediction. In most do- c * s to be a default that is not applicable under
mains there are possible hypotheses that we want to condition e, then we "name" the default [Poole88a],
use for abduction that we do not want to use for pre- with name d, make d a possible hypothesis, make d A
diction. c =: s a fact, and make e =:-.d a fact. It is interesting

See [Poole90] for a detailed examination of a repre- to know that, while this works for simple examples, it
sentational methodology for this architecture. runs into problems for larger problems.

As an example, consider representing the defaults
4.4 Design-Recognition Duality "birds fly","emus are birds that don't fly" and "if
Another piece that we have to fit into this jigsaw is our something looks like an emu it is an emu". Suppose
notion of design. I want to argue that there is a du- the first default is named bf(X), so we have the axiom

ality between the design problem and the recognition bf(X) A bird(X) * flie8(X). If we want to conclude
problem. that an emu flies, we need to cancel this default for

To understand this duality consider a discourse emus and use the axiom emu(X) * -bf(X). Using
where the speaker is designing her utterances and the this axiom we can conclude that any individual not

hearer is trying to recognise the beliefs or goals under- known to be an emu is not an emu by assuming bf for
lying the utterance. A useful assumption may be that that individual. For something that looks like an emu
they share their assumptions. we need to cancel the defaults that lets us conclude

If the speaker is using assumption-based reasoning the object is not an emu. We thus need the axiom

to derive an utterance (i.e., he proves an utterance iooks.Jike.emu(X) #- -bf(X)
based on assumptions), in order to share the assump-
tions, the hearer should do abductive reasoning to find This knowledge base gets the "right" answer for most
what assumptions were needed to imply the utterance. simple examples, but it doesn't work for the case where

Suppose, however, the speaker did a form of abduc- some object looks like an emu, is not an emu, but
tive reasoning where he hypothesised actions (in this is a bird. In this case we cannot conclude that the
case utterances) that would allow him to conclude his object flies. The reason is that we were forced to add
goal. In this case to share the forms of assumptions the above cancellation axiom which blocks the correct
the hearer w,,,ud need to o .... :1: 0 L. - "......... ... ~ ~ u us JL A, at Ll t o 1A. b 1, lg JJc.Iulso

n .

tries to see what follows from the utterances based on Brewka [Brewka89] gives other arguments based
assumptions that the speaker may be using. on complexity as to why simple cancellation doesn't
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4.6 7ractability [Brewka89 G. Brewka, "Preferred Subtheories: an I
extended logical framework for default reasoning"

To test our representational conjecture we don't try Proc. IJCA1-89, 1043-1048.
to find examples where it works, but rather we try to [Csinger90] A. Csinger and D. Poole, "Hypothetical
show that it is false. We could show that it is false by Reasoning and Discourse Structure", forthcoming.
showing that it is incapable of representing the sort of
reasoning we need for real problems, by showing that [Etherington88] D. Etherington, Reasoning with In-
it is not able to be implemented, or by showing that complete Information, Morgan Kaufmann.
it is inherently inefficient. [Finger85] J. Finger and M. Genesereth, "Residue: I

Showing Theorist is intractable or undecidable do a deductive approach to design synthesis", Report
not prove it is useless. These indicate that it is pow- STAN-CS-85-1035.
erful, not that it is inefficient. The property that we [Levesque88 H.
would like, is that representing a problem in Theo- Levesque (Ed.), "Taking Issue/Forum: A Critique
rist does not increase the computational complexity ofesue Red.), Ctatin Is eu A 3(3),
of the problem. We want the ability to solve simple of Pure Reason", Computational Intelligence, 3(3),
problems simply, while preserving the ability to solve 4
difficult problems. [Pearl87a] J. Pearl, "Embracing causality in formal I

reasoning", Proc. AAAI.87, 369-373.

5 Conclusion [PGA87 D. L. Poole, R. G. Goebel, and R. Aleliu-

One of the aims of this paper was to convince the nas, "Theorist: a logical reasoning system for de- I
reader that Theorist is a natural and commonsense faults and diagnosis", in N. Cercone and G. McCalla
way to reason with defaults. The Theorist research is (Eds.) The Knowledge Frontier: Essays in the Rep-
interesting, I believe for a number of reasons: resentation of Knowledge, Springer Varlag, 331-352.

It is simple, powerful, and can be motivated in a [Poole88a] D. Poole, "A Logical Framework for De-
very natural way. fault Reasoning", Artificial Intelligence, 36(1), 27-

It can be simply and efficiently implemented' 47.
[PGA87]. It has been used for many applications. (Poole88b] D. Poole, "Representing Knowledge for I

Exactly the same formal system can be seen as a ba- Logic-based diagnosis", Proc. International Con-
sis for default reasoning, abductive reasoning and for ference on Fifth Generation Computing Systems,
design. Thus there are independent ways of motivating Tokyo, 1282-1289.
the same system. [Poole89aI D. Poole, "Explanation and prediction: anThere is a conjecture that the Theorist framework [ rchect r D. P e"xlt and precon:n
is all that is needed for all forms of reasoning. By architecture for default and abductive reasoning",
showing how this conjecture is false we will have found Computational Intelligence, 5(2), 97-110.
a principled reason to add more advanced features to [Poole89b] D. Poole, "What the lottery paradox tells I
our repertoire. us about default reasoning", Proceedings of the

Theorist is probably most important for what it is First International Conference on the Principles of
not. It is not a new logic, it does not need a new Knowledge Representation and Reasoning, 333-340.
semantics, there are no new operators or rules of in- [Poole89c] D. Poole, "Normality and Faults in Logic-
ference. I have tried to be careful in arguing that we based Diagnosis", Proceedings IJCAI-89, 1304-1310.
should consider useful ways to use normal logic to build
Al programs and applications rather than inventing [Poole90] D. Poole, "A Methodology for using a de-
formalisms that we may not need anyway. fault and abductive reasoning system", to appear

International Journal of Intelligent Systems.
3A compiler from Theorist to Prulog is available elec-

tronically from the author.
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I Incremental, Approximate Planning:

Abductive Default Reasoning

Charles Elkan3Department of Computer Science
University of Toronto*

I
ABSTRACT: This paper presents an abductive strat- It is not clear how existing planning strategies can be
egy for discovering and revising plausible plans. Can- made approximate and incremental. We therefore first
didate plans are found quickly by allowing them to de- outline a strategy for finding guaranteed plans using a
pend on unproved assumptions. The formalism used for new formalism for describing planning problems, and
specifying planning problems makes explicit which an- then show how to extend this guaranteed strategy to3 tecedents of rules have the status of default conditions, make it approximate and incremental.
and they are the only ones that may be left unproved, so
only plausible plans are produced. Candidate plans are Our approach draws inspiration from work on abduc-

refined incrementally by trying to justify the assump- tive reasoning. A plan is an explanation of how a goal

tions on which they depend. The new planning strat- is achievable: a sequence of actions along with a proof

egy has been implemented, and the first experimental that the sequence achieves the goal. An explanation is
results are encouraging. abductive (as opposed to purely deductive) if it depends

on assumptions that are not known to be justified. We
find approximate plans by allowiug their proofs of cor-

1 Introduction rectness to depend on unproved assumptions. Our plan-
ner is incremental because, given more time, it refines

Because of uncertainty and because of the need to re- and if necessary changes a candidate plan by trying to

spond rapidly to events, the traditional view of planning justify the assumptions on which the plan depends.

(deriving from STRIPS [Fikes et aL., 1972] and culminat- The critical issue in abductive reasoning is to find
ing in TWEAK [Chapman, 1987]) must be revised dras- plausible explanations. Our planning calculus uses
tically. That much is conventional wisdom nowadays. a nonmonotonic logic that makes explicit which an-

rOne point of view is that planning should be replaced tecedents of rules have the epistemological status ofby some form of improvisation (Brooks, 1987]. However dfutcniin.Tedsigihn rpryo

improvising agents are doomed to choose actions whose default condition is that it may plausibly be assumed.

optimality is only local. In many domains, goals can These antecedents are those that are allowed to be left

only be achieved by forecasting the consequences of ac-

tions, and choosing ones whose role in achieving a goal unjustified in an approximate plan. Concretely, every
is, ndct. hostrdinonal planerse mse inm edn adefault condition in the planning calculus expresses ei-

is idisre. ther a claim that an achieved property of the world
persists in time, or that an unwanted property is notThis paper addresses the issue of how to design a plan- achieved. Thus the approximate planning strategy only

ner that is incremental and approximate. An approxi-

mate planner is one that can find a plausible candidate proposes reasonable candidate plans.

plan quickly. An incremental planner is one that can Sections 2 and 3 below present the formalism for spec-
revise its preliminary plan if necessary, when allowed ifying planning problems and the strategy for finding
more time. (n-n u .4 T- -2

*For correspondence: Department of Computer Science, Uni- to become approximate and incremental. Section 5 con-

versity of Toronto, Toronto M5S 1A4, Canada, (416) 978-7797, tains experimental results, and finally Section 6 dis-
cpstai.toronto.tlu. cusses related and future work.
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2 The planning formalism Given rules (1) and (2),a particular planning domain
is specified by writing axioms that mention the actions

Different formal frameworks for stating planning prob- and fluents of the domain, and say which actions cause
lers vary widely in the complexity of the problems they or cancel which fluents. In the world of the Yale shoot-
can express. Using modal logics or reification, one can ing problem, there are three fluents, loaded, alive, and I
reason about multiple agents, about the temporal prop- dead, and three actions, load, wait, and shoot. The re-
erties of actions, and about what agents know [Moore, lationships of these fluents and actions are specified by
1985; Konolige, 1986; Cohen and Levesque, to appear in the following axioms: I
1990]. On the other hand, the simplest planning prob-
lems can be solved by augmented finite state machines cause8(S, load, loaded) (3)
[Brooks et al., 19881, whose behaviour can be specified hold8(loaded, S) - causes(shoot, S, dead) (4)
in a propositional logic. The planning problems consid- holds(loaded, S) - cancels(shoot, S, alive) (5)
ered here are intermediate in complexity. They cannot holds(loaded, S) - cancel8(8hoot, S, loaded). (6)
be solved by an agent reacting immediately to its envi- d aa o , e
ronment, because they require maintaining an internal The initial state of the world 8o is specified by saying
theory of the world, in order to project the indirect con- which fluents are true in it:
sequences of actions. On the other hand, they involve
a single agent, and they do not require reasoning abor. holds(alive, so). (7)
knowledge or time.Ornoledge oti. fAccording to the nonmonotonic semantics of PERFLOG

Our nonmonotonic first-order logic for specifying golcin frlscollections of rules,
this type of planning problem is called the PERFLOGcalculus.1 The formal aspects of the calculus will be holds(dead, do(do(do(so, load), wait), shoot))

discussed elsewhere; for the purposes of this paper PER-

FLOG axioms can be understood intuitively as logic pro- is entailed by rules (1)-(7). The Yale shooting problem
gram rules, and we shahA just use the Yale shooting prob- is thus solved.
lem [Hanks and McDermott, 1986] to introduce the cai-
culus by example. 3 Finding guaranteed plans I

Two "laws of nature" are central. In the following
rules, think of S as denoting a state of the world, of A as The previous section showed how to state the relation-
denoting an action, and of do(S, A) as denoting the state ships between the actions and fluents of a planning do-
resulting from performing the action A in the initial main as a PERFLOG set of axioms. This section describes
state S. Finally, think of P as denoting a contingent a strategy for inventing plans using such a set of axioms;
property that holds in certain states of the world: a the next section extends the strategy to be approximate
fluent. and incremental.

causes(A, S, P) - holds(Pdo(SA)) (1) A PERFLOG set of axioms is a set of general logic
program clauses, and the strategy presented here is in

holds(P, S) A -' cancels(A, S, P) fact a general procedure for answering queries against a
-- holds(P, do(S, A)). (2) logic program.

Iterative deepening. The standard PROLOG query-
Rule (1) captures the commonsense notion of causation, answering strategy is depth-first exploration of the
and rule (2) expresses the commonsense "law of inertia": space of potential proofs of the query posed by the user.
a fluent P holds after an action A if it holds before the Depth-first search can be implemented many times more
action, and the action does not cancel the fluent. Note effciently than other exploration patterns, but it is li- I
that since in addition to A, one argument of causes able to get lost on infinite paths. Infinite paths can be
and of cancels is S, the results of an action (that is, the cut off by imposing a depth bound. The idea of itera-
fluents it causes and cancels) may depend on the state tive deepening is to repeatedly explore the search space
in wh; ;..r-,'-, . ...A th .;a .... Vlt * A4-, .4 - A, t; C 44. : p*tS GS a G SS. .O.. A p45 .I.,. A

action it is. [Stickel and Tyson, 1985].
1 PERFLOG is an abbreviation for "performance-oriented perfect Iterative deepening algorithms differ in how the depth I

model logic": the formal meaning of a set of PERFLOG axioms is of a node is defined. One depth measure that performs
it3 perfect model as defined in [Przymusiriski, 19871. well, called conspiracy depth, is presented in [Elkan,
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19891. Informally, this measure says that a subgoal is may generate. One way to define a class of approximate
unpromising if its truth is only useful in the event that explanations is to fix a certain class of subgoals as the
many other subgoals are also true. only ones that may be taken as assumptions. Looking

Negation-as-failure. Given a negated goal, the at the PERFLOG formalism, there is an obvious'choice
negation-as-failure idea is to attempt to prove the un- of what subgoals to allow to be assumptions. Negated
negated version of the goal. If this attempt succeeds, the subgoals have the epistemological status of default con-
negated goal is taken as false; otherwise, the negated ditions: the nonmonotonic semantics makes them true
goal is taken as true. Negation-as-failure is combined unless they are forced to be false. It is reasonable to
with iterative deepening by limiting the search for a assume that a default condition is true unless it it is
proof of each un-negated notional subgoal. If this search provably false.
terminates without finding a proof, then the original There is a second, procedural, reason to allow negated
negated subgoal is taken as true. If a proof of the subgoals to be assumed, but not positive subgoals.
notional subgoal is found, then the negated subgoal is
taken as false. If exploration of the possible proofs of the Without constructive negation, negated subgoals can
notional subgoal is cut off by the current depth bound, only be answered true or false. Negation-as-failure never3it remains unknown whether or not the notional subgoal provides an answer substitution for a negated subgoal.
is provable, so for soundness the actual negated subgoal Therefore unproved negated subgoals in an explanation
ist r be s fs ess tnever leave "holes" in the answer substitution induced

s bby the explanation. Concretely, a plan whose correct-
Negation-as-failure is only correct on ground negatedsubgoals, so when a negated subgoal is encountered, it

is postponed until finding answers for other subgoals never change because those defaults are proved to hold.

makes it become ground. This process is called freez- Incrementality. An approximate explanation can be
ing (Naish, 1986. If postponement is not sufficient to refined by trying to prove the assumptions it depends
ground a negated subgoal, then an auxiliary subgoal is on. If an assumption is proved, the explanation thereby
introduced to generate potential answers. This process becomes "less approximate". As just mentioned, prov-
is called constructive negation [Foo et al., 1988]. ing an assumption never causes a plan to change. On

The performance of the planning strategy just de- the other hand, if an assumption is disproved, the ap-I scribed could be improved significantly, notably by proximate plan is thereby revealed to be invalid, and it
caching subgoals once they are proved or disproved is necessary to search for a different plan.
[Elkan, 1989]. Nevertheless it is already quite usable. Here are the details of the modifications made to

the planning strategy of the previous section. When
4 Finding plausible plans a negated subgoal becomes ground, the proof of its no-tional positive counterpart is attempted. If this attempt

This section describes modifications to the strategy of succeeds or fails within the current depth bound, the

the previous section that make it approximate and in- negated subgoal is taken as false or true, respectively,

cremental. In the same way that the guaranteed plan- as before. However, if the depth bound is reached dur-

ning strategy is in fact a general query-answering proce- ing the attempted proof, then the negated subgoal is

dure, the incremental planning strategy is really a gen- given the status of an assumption.

eral procedure for forming and revising plausible expla- Initially any negated subgoal is allowed to be as-
nations using a default theory. sumed. Each iteratiou of iterative deepening takes place

Any planning strategy that produces plans relying on with an increased depth bound. For each particular
unproved assumptions is ipso facto unsound, but by its (solvable) planning problem, there is a certain minimum
incremental nature the strategy below tends to sound- depth bound at which one or more approximate plans
ness: with more time, candidate plans are either proved can first be found. Each of these first approximate plans
to be valid, or changed. depends on a certain set of assumptions. In later iter-

Approximation. The idea behind finding approximate ations, only subsets of these sets are allowed to be as-
plans is simple: an explanation is approximate if it de- sumed. This restriction has the effect of concentrating
pends on unproved assumptions. Strategies for forming attention on either refining the already discovered ap-
approximate explanations can be distinguished accord- proximate plans, or finding new approximate plans that
ing to the class of approximate explanations that each depend on fewer assumptions.
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5 Experimental results Using the guaranteed planning strategy of Section 3, the
query holds(eats(lion,christian),P)? is first solved I

Implementing the planning strategies described above is with conspiracy depth bound 19, in 4.75 seconds.2 The
straightforward, because the PERFLOG calculus is based plan found is
on definite clauses. In general, it is insufficiently real- P = do(do(do(do(e0,pounce(lion,trainer)), I
ized how efficiently logics based on definite clauses, both jp(lion)),

monotonic and nonmonotonic, can be implemented. drop(lion,trainer)),
The state of the art in PROLOG implementation is about pounce(lion,christian)).
nine RISC cycles per logical inference [Mills, 1989]. Any
PERFLOG theory could be compiled into a specialized Using the approximate planning strategy of Section 4,
incremental planner running at a comparable speed. the same query is solvable in 0.17 seconds, with conspir-

The experiment reported here uses a classical plan- acy depth bound 17. The candidate plan found is I
ning domain: a lion and a Christian in a stadium. The P a do(do(do(sopounce(lion,trainer)),
goal is for the lion to eat the Christian. Initially the jup(lion)),
lion is in its cage with its trainer, and the Christian is pounce(lion,christian)).
in the arena. The lion can jump from the cage into the
arena only if it has eaten the trainer. The lion eats a This plan depends on the assumption that no Z exists
person by pouncing, but it cannot pounce while it is al- such that
ready eating. The following PERFLOG theory describes
this domain formally. holds(eats(lion,Z) ,du,(d (so,pounce(lion,trainer)),

juzp(lion))).

% rules for how the world evolves Although the assumption is false and the plan is not cor-
rect, it is plausible. Note also that the first two actions

holds(P,do(S,A)) it prescribes are the same as those of the correct plan:
causes(A,S,P). the approximate plan is an excellent guide to immediate

holds(P,do(S,A)) action.
holds(P,S), not(cancels(AS,P)). 6

% the effects of actions
The work reported here ties together ideas from a num-

causes(pounce(lion,X),S,eats(lion,X)) ber of different research areas.
can(Z,pounce(lion,X)). Approximate planning. From a knowledge-level point

can(pounce(X,Y),S) of view, the strategy for finding plausible plans is search-
holds(in(X,L),S), holds(in(Y,L),S), ing in an abstraction space where the available actions
not (call(X - Y)), are the same as in the base space, but they are stripped
not(Z,holds(eats(X,Z),S)). of their difficult-to-check preconditions. Compared to

causes(jup(X),S,in(X,arena)) other abstraction spaces [Knoblock, 1989], this space
can(jump(X),S), holds(in(X,cage),S). has the advantage that the execution of a plan invented

can(jump(lion) ,S) :-
holds(eats(lion,trainer) ,). using it can be initiated without further elaboration, if

cancels(drop(X,Y) ,S,eats(X,Y)) immediate action is necessary. I
can(drop(IY),S). Incremental planning. An incremental approximate

can(drop(X,Y),S) planner is an "anytime algorithm" for planning in the
holds(eats(X,Y) ,S). sense of [Dean and Boddy, 1988]. Anytime planning al-

holds(in(X,H),S) gorithms have been proposed before, but not for prob-
holds(eats(lion,X),S), holds(in(lion,H),S), lems of the traditional type treated in this paper. For

example, the real-time route planner of [Korf, 1987] is
a heuristic graph search algorithm, and the route im-. the initial state of thA world
provement algorithm ot [Hoddy and Dean, 1989J relies

holds(in(christian,arena) ,sO). on an initial plan that is guaranteed to be correct.

holds(in(lion,cage) ,so). 2 All times are for an implementation in CProlog, running on
holds(in(trainer,cage) ,sO). a Silicon Graphics machine rated at 20 MIPS.
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Goal-Directed Diagnosis of Expectation Failures
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ABSTRACT house in the morning, he finds that the car won't start.

Expectation failure diagnosis involves explaining A skeletal explanation for this problem is that the car
why a faulty belief was inferred. Typical ap- isn't starting because it was left outside overnight on I
proaches to failure diagnosis have taken this prob- a cold night, and cold weather is bad for cars. With-
lem to be an independent task, ignoring the goals out elaborating the explanation further, it can be seen
of the system desiring the diagnosis. This piper that, if the explanation is correct, the problem can be I
discusses the effect that such higher-level goals prevented in the future by not leaving the car out on
can have on the process of failure diagnosis, and cold nights, e.g., by garaging it. If the person is con-
suggests that failure-driven learning should be cerned only with making sure that the car will work in
viewed explicitly as a goal-directed planning task. the future, this plan will suffice to meet his needs, and

Expectation failure diagnosis no further explanation is necessary.
If, on the other hand, it is crucial that the car be re-

Expectation fadure diagnosss is the problem of determin- stored to working condition immediately, more explana-
ing why a problem-solving system has inferred a faulty tory effort will be required. In particular, the explana- I
belief, usually in the service of fixing the system so that tion will have to be elaborated far enough to pinpoint
the same mistakes won't be repeated in the future (see, a problem that can be quickly corrected, such as a run-
e.g., (Sussman, 1975; Schank, 1982]). The most common down battery or a frozen gas line. To generate such I
approach to this problem is to start from a description of an explanation, the person will have to search through
the failure and perform a more or less undirected search a large space of causal knowledge about cars, involving
for a causal chain showing why it occurred. In addition qualitative reasoning about the car's engine, quantitative
a number of diagnosis systems have been proposed that knowledge of fluid freezing points, and electrical poten-
utilize knowledge of the assumptions that the system tials, and knowledge of the precise weather conditions
used in initially inferring the belief [deKleer, 1987; Sim- This search is potentially very expensive.
mons, 1988; Chien, 1989; Collins, Birnbaum, and Krul- Most aspects of a car are not, however, accessible to
wich, 1989]. Such knowledge can constrain the search for our person, assuming that he is not an auto mechanic.
a failure explanation to beliefs and inferences that were Thus, his aim in elaborating the explanation should not
relevant to the original faulty belief, be to search the entire space, but rather to determine as

Very few systems, however, take the higher-level quickly as possible whether what is wrong is something
goals of the system into account in performing expla- that he is able to fix on his own. As soon as it becomes
nation, and those that do (e.g., [Kedar-Cabelli, 1987; clear that the problem is not going to be fixable, further
Leake, 1988]) treat this as a seperate step that occurs effort expended on explanation is useless as far as the
before or after the explanation component is invoked, goal of getting the car going is concerned. A good strat- i
We will see that the actual process of constructing a egy might, therefore, be to consider whether the problem
functionally useful explanation will be affected by these can be fixed by adding a fluid, recharging the battery,
goals. Further, we will propose that the process of di- or getting the car rolling, and, if not, suspending further
agnosing and correcting failures can best be viewed as effort and calling a mechanic.
a planning task, since a consideration of the impact of There are several points made by this example. First,
goals on the explanation process leads to a concern with the extent to which an explanation must be elaborated
standard planning problems such as goal interaction, will depend upon whether it is currently sufficient to ful-

To understand the effect of higher-level goals on the fill the planner's overall goal in carrying out the explana-
diagnosis process, consider the situation of a person who tion process. Explantions aimed at suggesting plans of
decided to leave his car outside on a snowy night when tction, for example, can be halted as soon as a workable
the temperature went below zero. Upon leaving his plan is found. Second, the order in which the explainer
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searches the space of possible explanations will critically while the opponent was able to make a move with his

depend upon the goals being addressed. In particular, pawn that captured it. The computer could decide that
the planner should focus effort on determining quickly it's sufficient to inerely satisfy the higher-level goal of
whether the result of the explanation is likely to be use- ensuring that pawns will not be taken in this manner in
ful for the explainer's purposes, or, as in the case of a the future. For this goal, the skeletal explanation will
mechanical explanation of a car problem that does not suffice as it stands, because the fact that the computer's
suggest a fix, will represent a wasted effort. Third, deci- advancing its pawn two squares enabled the computer's
sions regarding when the explainer shculd stop explain- move can lead the computer to decide never to advance
ing and what parts of the explanation it should elabo- its pawn two squares. On the other hand, the computer
rate first cannot be made a priori, but must be made could decide to elaborate the explanation further. To
in the course of explaining the failure, since the decision do this completely involves explaining why the computer
depends upon the precise nature of the explanation sug- advanced the pawn, why the threat detection mechanism
gested. In short, this ex'imple demonstrates the need for failed to signal a threat, and how the opponent was able
explicit consideration of higher-level goals in the process to execute the undetected threat. If the computer's goal
of diagnosis. is specifically to prevent the incorrect expectation from

A fourth point, which is not our main thrust in this being made in the future, the system should focus on ex-
actly why its threat detection mechanism didn't signal apaper, but which arises from our analysis, is that an threa. This will lead to the explanation that there did

explanation process can take full advantage of the con- te is willreadeto th aton tht theredi
straints offered by the consideration of the explainer's nott e a threat detector that could detect the threat
goals only if the explanation is generated hierarchically. that tie opponent made.
In our example, for instance, it is critical that the ex- Each of these two explanations will be used to learn
plainer generates the explanation that the car is the vic- from the failure, and the way in which the system will
tim of cold weather before it attempts to elaborate the avoid making the mistake after learning will depend on
precise causal mechanism through which the weather af- the goal that was assumed by the diagnosis mechanism.
fected the car. An explanation process that tried to pro- If the system sufficed to ensure in the simplest way that
ceed at a single, predefined level of granularity would risk pawns are not taken in this manner in the future, the
missing the fact that, for some purposes, the explanation explanation will be that the computer had advanced its
blaming cold weather is good enough. pawn and the opponent had captured it. This explana-

Let's look now at an example within the domain of tion could lead to the computer's decision never to ad-

our system, which learns strategic concepts from expec vance its pawns two squares at a time. Alternatively, this

tation failures that arise in plan execution, in the domain explanation could lead the c,-mputer to modify the plan

of chess (Krulwich, Collins, and Birnbaum, 1989]. Our it was in the process of exe, :ing to include a counter-

system constructs its explanations by searching through plan that eleminates the threat. This would only handle

explicit justification structures that are maintained for en passant threats when the computer is executing the

its beliefs by examining these justifications in light of a plan, but this is the cost of not performing the de-

description of the failure that occurred. It is designed to hoede, of the system's detection mechanism. If,

start out playing chess at a novice level and improve by however, the system decided to pursue the general case

learning strategic concepts. Suppose that our system has of not expecting the pawn to be safe in similar situations

a set of threat detectors that cannot detect en passani the explanation will be that there did not exist a threat

pawn captures [Birnbaum, Collins, and Krulwich, 1989]. detector that detected the opponent's move. This expla-

These threats, which are unknown to many novice chess nation will lead the system to add a new threat detector

players, involve a pawn that has just made a two-square for en passant captures.

forward move being captured by another pawn moving Several of the points made about the car example
(diagonally) into the square that the first pawn skipped should be clear from this example as well. First, a hierar-
over. Such a system may have a pawn which it expects chical diagnosis mechanism is needed so that the system
to be safe from attack even though it is in fact suscep- can focus on aspects of the explanation that are relevant

tible to an en passant capture. The justification for the to the active higher-level goal. Second, the decisions
expectation that the piece is safe from attack would be regarding which aspects of the explanation should be
that there is believed to be no threat against the pawn, elaborated must be made with respect to the higher-level
which would in turn be justified by the fact that none of goals of the system. If the goal is not to expect the pawn
the system's threat detectors signal a threat against it. to be safe, it's irrelevant why the computer advanced the
The expectation that the piece is safe from attack will pawn in the first place, while if the goal is to ensure the
fail if the opponent takes the piece using an en Passant pawn's safi.ty in the future it may be irrelevant why the
capture, and the system will need to explain why this computer was unable to detect the threat. Third, the
expectation failed. A skeletal explanation of the fail- constraints of the goals on the explanation can only be
ure is simply that the computer advanced the pawn two determined in the process of diagnosis, because they de-
squares, thinking that there were no threats against it, pend on the usefulness of the specific components of the
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skeletal explanation. e Explanation aspect: Negation referring to the

Goal-directed diagnosis system's decision-making
Goal: Make the implied belief not be inferred in

Let's now consider a diagnosis mechanism that is capable the future I
of performing these diagnoses. This mechanism will ex- Method: Explain why the aspect was true, with
plain failures in two steps. The first step is to develop a the goal of having it not be true in the future
skeletal explanation of the failure which will be a deduc- * Explanation aspect: Negated bounded existen-
tively correct explanation but will lack explanations for tially quantified expression
any of the details. In the car example above this skele- Goal: Make the bounded existentially quantified
tal explanation was the car isn't starting because it was expression true
left outside overnight on a cold night and cold weather is Method: Done, with aspect as instruction to ad i
bad for cars. In the example of en passant captures, the to quantified-over set
skeletal explanation was the computer advanced its pawn
two squares, having not detected any threats against t, Figure 1: Explanation metho-as for higher-level goal pre-
and the opponent was able to make a move with his pawn vent inferencethat captured it. These skeletal explanations do in fact
explain their respective failures, but they are at too high
a level of granularity to be useful in most situations.
The second step in the diagnosis, therefore, is to elab- can be directly used to achieve the goal. The learning I
orate the aspects of the skeletal explanations that are component of the system will handle this by taking the
considered important for the higher-level goals of the statement "there does not exist a threat detector that,
system. This is achieved using diagnosis methods, which detects a threat in this situation" as a command to add
give a method of furthering the explanation for a given a threat detector.
aspect of an explanation and a higher-level goal. This To complete this failure diagnosis, the system still has
mechanism makes the simplifying assumption that the to explain exactly how the opponent moved his pawn to
higher-level goals are available a priori and can be used capture the computer's. The diagnosis system should
to direct the search for an explanation. Components of attempt to elaborate on this aspect of the explanation,
a skeletal explanation are maintained along with their but it will be unable to do so because the system doesn't
own subgoals, which reflect how they relate to the fail- know about the en passant move used by the oppo-
ure being explained. Each component of the top-level nent. At this point it can try to use general notions of Iskeletal explanation is tagged with the same goal as the move enablement along with standard explanation-based
higher-level goal given to the diagnosis system. As the generalization techniques [DeJong and Mooney, 1986;
explanation is elaborated the lower level aspects of the Mitchell, Keller, and Kedar-Cabelli, 1986], but it may U
explanation may have different goals, reflecting how they have to ask the user for help in correctly characterizing
relate to the failure. the move.

To demonstrate the woikings of such a diagnosis sys- In diagnosing the failure with respect to this higher-
tem, consider the first of the possible higher-level goals level goal, the system used the diagnosis methods shown p
in the en passant example: in figure 1. Now consider the second of the possible

• Don't expect the pawn to be safe in future similar higher-level goals in the example:
situation's , Ensure that the pawn will be safe in future similar

situationsThe system should realize that the most important stain

aspect of the skeletal explanation to elaborate is that The system should realize here that the aspect of the
the threat detection mechanism didn't detect any threats explanation that says !he computer advanced its pawn
against the pawn. Its goal in explaining why this was the two squares is ur'er che control of the computer, and I
case is to make it untrue in the future, because this will that if it is avoided in the future the opponent will not be
lead to the higher-level goal's being achieved. This sub- able to make the move that it did. The learning system
goal is equivalent to the subgoal to have it be true in should realize from this that if it avoids this being the
similar future situations that the threat detection mech- case in the future, that is, if it never advances a pawn I
anism detects a threat. The diagnosis mechanism should two squares, the opponent will not be able to capture
then use the explicit justification structures to elaborate pieces in this way. This diagnosis method is shown in
the statement the detection mechanism didn't detect a figure 2.
threat into no threat detectors detected a threat. The We saw in the examples above that particular aspect.q
goal in explaining this is also elaborated, becoming the of a skeletal explanation are likely to have several meth-
goal to have a threat detecton detect a threat in similar ods to elaborate on them, each of which is applicable in =
future situations. This aspect of the skeletal explanation a different situation. The potential complexity of choos- I
does not have to be elaborated any further, because it hg among and combining different diagnosis methods
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Parsimonious covering theory (PCT) is a Reggia et at, 1983, 1985; Reiter, 1987]. Previous
mathematical model of abductive reasoning for notions of plausibility have largely been based on
diagnostic problem-solving [Reggia et al, 1983, subjective criteria; we consider two of these here.
1985; Peng & Reggia, 1990]. It provides a for- An early criterion of plausibility used In PCT
mal, application independent theory of the under- and by others is called minimal cardinaity: expla- I
lying causal knowledge and the reasoning natory hypotheses with the fewest number of
processes involved in diagnostic inference, as hypothesized components are preferable. In
well as criteria for plausibility (coherence, accep- applying PCT to specific diagnostic problems, it I
tability) of explanatory hypotheses. This paper quickly becomes evident that minimal cardinality
begins to examine the extent to which the princi- is an inadequate measure of plausibility. For
pies and results of PCT, originally formulated for example, in medical diagnosis two common
diagnostic reasoning, can be applied to non- diseases may together be more plausible than a
diagnos'ic tasks. A brief introduction and sum- single rare disease in explaining a given set of
mary of PCT is given first. Then, PCT is com- symptoms [Reggia et al, 1985, and in electronic
pared to a theory of explanatory coherence in diagnosis analogous examples exist [Reiter, I
abduction and related to various aspects of 1987]. For this reason, PCT as well as other
natural language processing. models of diagnostic inference have adopted a

more relaxed criterion of plausibility which we call
irredundancy: a set of disorders Do that covers

Parsimonious Covering Theory (PCT) (causes all of) the manifestations in M+ is irredun-
In the simplest form of PCT there is a set of dant i it has no proper subsets which also cover
disorders D and a set of manifestations ("symp- M+. Although this criteria does not directly favor
toms") M. For each disorder d,, there is a con- the smallest set of propositions, irredundancy is a
nection (association) between di and each man- preferable criterion because it handles cases like
ifestation m, that can be caused by d,. A subset the medical and electronics examples referenced I
of M, denoted M+, represents the set of all man- above while still constraining the number of
ifestations known to be present. A set of disorders disorders in an hypothesis. However, irredun-
D1 is called a cover of the given M* when the dancy has the problem that in applications it may
disorders in Di can cause all of the manifestations identify many implausible hypotheses as well as
in M*. A set of disorders D, is an explanatory the plausible ones, and as indicated below, may
hypothesis if 1) D, is a cover of M, and 2) D, is in some cases still fail to identify the most reason-
parsimonious. A difficult issue in diagnostic rea- able hypothesis. I
soning theories in general, including PCT, has These criteria, used in most theories of expla-
been precisely defining what is meant by the natory plausibility, including PCT, are subjective.
"best", "most plausible", "simplest" or "most par- An important issue is whether one might devise
imonlous" explaation, for a given se! ol N-b, Objctivoe 1easures of plausibilit Iy and then ask I,

[deKleer and Williams, 1986; Josephson et al, under what conditions various subjective criteria
1987; Pople, 1973; Peng and Reggia, 1987; would work or fail according to the objective
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I criteria. Recently, we generalized Bayes' Roughly speaking, asserting the
Theorem to apply to diagnostic problems formu- presence/absence of manifestation mi or disorderE lated in PCT [Peng and Reggia, 1987. Each di In PCT corresponds to a proposition in TEC,
disorder d, is associated with its prior probability and a parshionious cover represents specification
p,. Each causal link is associated with a number of the function which defines system coherence
cj, the causal strength from di to mi representing (TEC Principle 7). Because of its restricted appli-I how frequently d, causes m,. Under assumptions cability to diagnostic problem-solving, PCT does
less restrictive than those traditionally made with not address some Issues of TEC (e.g., analogy).
Bayesian classification, the relative likelihood However, like TEC, PCT precisely defines theI L(D1,M*) of any potential explanatory hypothesis notion of explanatory hypotheses and what makes
D, given the presence of M+ can be calculated them plausible, has been applied to specific appli-
using relevant p, and c, values. L(D, M+) can be cations, and has been formulated as a connec-
proven to differ from the posterior probability tionist model [Peng & Reggia, 1989; Wald et al,
P(DIIM*) by only a constant. Using the objective, 1989].
albeit limited, measure L(D1,M*), one can ask We now focus on comparing some of the fun-
under what conaitions various plausibility criteria damental principles or assumptions underlyingI such as minimal cardinality, irredundancy, and TEC and PCT. The first observation is that, to
others would be guaranteed to identify the most the extent they can be compared, these two
probable hypothesis. independently-developed theories are in broad

Analytical treatment of this question leads to a and general agreement. Starting from elementary
number of interesting results [Peng and Reggia, hypothesis elements, both theories are concerned
1987]. For example, minimal cardinality is only an with the construction of composite hypotheses
appropriate criterion when, for all disorders d, the that can account for observed data. Both theoriesI prior probabilities are very small and about equal, give priority to observational data, and both adopt
and the c,, are fairly large in general. Otherwise, some notion of parsimony in judging the plausibil-
it may be that the most probable explanation does ity of competing hypotheses. This broad, top-
not have minimal cardinality, supporting the con- level correspondence between the basic principles
clusion above that counting is not sufficient. In in TEC and PCT allows one to conclude that,
fact, there are situations where the most probable whatever the impreciseness in our current
expianation does not even satisfy irredundancy. definition of abduction, there is at least the begin-

With this brief background, we now turn to the nings of a concensus on some of the fundamental
issue of whether the principles and resuts in PCT properties of an abductive inference system.
can be adapted for use in non-diagnostic prob- However, the differences between TEC andI lems. The general area of theory formation is PCT are more interesting. Two of them are
considered first, followed by some aspects of briefly considered here. Consider first one of the
natural language processing. central principles of TEC:

TEC Principle 2c:
"If P1, ... ,Pm explain 0, then...Theory of Explanatory Coherence (TEC) the degree of coherence is inversely

The Theory of Explanatory Coherence (TEC) is a proportional to the number ofI general framework for considering the plausibility propositions P1, . . . , Pm."
of explanatory hypotheses [Thagard, 1989]. TEC TEC's measure "degree of coherence" is related
is intended to apply to both scientific reasoning to the notions of plausibility and probability ofI and "reasoning in everyday life", which certainly explanatory hypotheses in PCT. As noted above,
includes diagnostic inferences. Its foundations our experience with PCT and diagnosis suggests
are a set of seven heuristic principles that that counting propositions (TEC Principle 2c) can
describe the "coherence" and "acceptability" of be an inadequate measure of "coherence" or
explanatory hypotheses. TEC differs from PCT in plausibility.
it informal (as ..p ..... fo mathmtc. , rmu.- it has been pointed out [Thagard, i989]
tion and TEC's boader orientation towards general correctly that in some nondiagnostic domains the

I abductive reasoning rather than diagnosis. probabilities do not exist. They do not really exist
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in most diagnostic applications either. However, processing such as inferring the plans of the parti- I
since TEC and PCT are intended to be theories cipants in a dialog.
that encompass diagnostic reasoning, they cannot As an example, an analogy between diagnostic
ignore measures of likelihood that go beyond problem-solving as formulated in PCT and word
counting, be they numeric probabilities or other sense disambiguation in natural language pro-
nonnumeric, subjective measures. Some meas- cessing can be identified:
ure of "prior plausibility" or "intrinsic merit" and WordSense
"conditional plausibility" of causation is essential PCTDs b n
in diagnosis, and seems to be just as important in PCT___abigutio
scientific and legal reasoning as well. Basing
coherence on counting propositions as in TEC manifestation word
Principle 2c would therefore need revision, disorder sense

Another TEC principle states that if many causal relation word-sense assoc.
relevant obse."iations are unexplained, then the In terms of the knowledge used, both tasks
coherence of a hypothesis component is reduced. involve the use of associative knowledge. Like I
Specifically, disorders and manifestations associated by causal

TEC Principle 6b: relations in diagnostic problems, natural language
"If many results of relevant experimental processing involves associations between linguis- I
observations are unexplained, then the tic entities (e.g., word senses) and their manifes-
acceptability of a proposition P that tations (e.g., words). Such associative knowledge
explains only a few of them is reduced." in both tasks is ambiguous. Similar to a manifes-

This seems to imply that the plausibility of a tation having multiple possible causative disord-

hypothesis element increases when new evidence ers, a word (e.g., fly) may also have multiple pos-

supporting it is given. However, a consequence sible senses or meanings (e.g., small insect,

of the Bayesian analysis of PCT [Peng & Reggia, baseball hit high in the air, perform a task rapidly,

1987] is the conclusion that this apparently rea- etc.). The similarity also exists in problem-

sonable heuristic is not always correct. A new solving. Like an explanation for a set M+ of

observation may sometimes cause a decrease in present manifestations, the "meaning" of a
the likelihood of a hypothesis component that can sequence W+ of words as a multiple-component
cause/explain that observation if that observation hypothesis must be constructed from individual
supports a rival hypothesis element more strongly elementary semantic concepts such as word
at the same time. senses. Disambiguation of a word is context- I

It can be concluded that the general heuristic sensitive, and thus a parsimony principle may
principles of TEC and the diagnosis-specific play a role in this disambiguation. Probabilistic
framework of PCT are in agreement about central krowledge about the uncertainty of associations
issues. However, the experiences with PCT sug- and about the average frequency of occurrence of
gests that some of the details of TEC will need to entities may also play some role in disambigua-
evolve further if it is to serve as a general theory tion (e.g., the word "ball" is more likely to be

of abduction. associated with the "toy" sense than with the
"dance" sense).

There are some substantial differences, of
course, between diagnostic inference and natural i
language processing. For example, the order of -

Recently, a growing number of Al researchers manifestations in diagnostic problem-solving is
have been working with the assumption that often insignificant to a plausible solution, but the
abductive inference underlies natural language order of words in a sentence is usually an impor-
processing. For example, natural language pro- tant piece of information used in word sense
cessing involves context-sensitive disambiguation disambiguation. Also, in diagnosis, if several
of word senses and inferences about plausible hypotheses cannot be further discriminated, they
expianations at a iow ievei (e.g., garden path sen- may all be accepted as a tentative problem solu- "
tences, ellipses, and anaphora resolution). Simi- tion. In natural language processing a single
lar examples exist for high level natural language coherent explanation is generally desired.
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Despite these differences, the strong similarities Conclusion
between these two categories of problems sug- This paper has briefly considered some ways in
gest the possibility of applying parsimonious cov- which PCT, a formal model of abductive inferenceI ering theory to solve certain natural language pro- in diagnosis, can be related to abductive inference
cessing problems. in general. It seems likely that the methods and

An exploratory study was undertaken to exam- principles used in PCT, extended to encompass a
ine this issue [Dasigi & Reggia, 1989]. This work more general knowledge representation, could
focused on an experimental prototype which provide a fairly general theory of abductive infer-
automatically generates natural language inter- ence. Such a theory would encompass not only
faces for expert systems. The prototype is diagnosis but also inference in natural language
domain-independent in the same sense that a processing, legal inference, scientific discovery,
generic expert system shell is domain- etc. Producing a generalized PCT of this breadth
independent. Given a knowledge base for a would require a major research effort. We have

I specific application, a vocabulary extractor indicated some of the significant generalization
extracts and indexes the linguistic information that would be needed elsewhere [Chu & Reggia,
which it contains. In adJition, an indexed domain- 1990; Peng & Reggia, 19901.
independent knowledge base that contains linguis- In its current form, PCT can still be useful toI tic knowledge common to many domains is used. those attempting to develop other models/theories
A natural language interface is generated for the of abductive inference. As illustrated for the
specific application domain defined by the heuristics in TEC, PCT can serve as a useful
knowledge base using this knowledge plus a par- "test case", suggesting potential limitations of a
simonious covering inference mechanism. more general theory.
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This abstract briefly describes a theory of explana- Principle 3. Analogy.
tory coherence and its implementation using a connection- If P explains Q,, P2 explains Q2, P1 is analogous to
ist program called ECHO. I show how explanatory coher-
ence considerations can play a large role in decision mak- P2, and Q, is analogous to Q2 then P, and P2
ing in cases where decisions depend on evaluation ofI competing hypotheses. The abstract discusses the deci- cohere,andQ andQ cohere.
sion made in July 1988 by Captain Rogers of the USS c a
Vincennes to shoot down what appeared to be an attack- Principle 4. Data Priority.
ing aircraft. ECHO has been used to simulate the reason- Propositions that describe the results of observation
ing underlying this decision. have a degree of acceptability on their own.

Explanatory Coherence Principle 5. Contradiction.
A theory of explanatory coherence (TEC) can be If P contradicts Q, then P and Q incohere.

stated using the following seven principles (Thagard Principle 6. Acceptability.
1989). S is a system of propositions P, Q, and P ...P (a) The acceptability of a proposition P in a system
Local coherence is a relation between two propositions. 71 S d he rnceptithtthe proposition s in
coin the term "incohere" to mean that two propositions areS depends on its coherence with the propositions in
incoherent, which is stronger than saying that they do not
cohere. (b) If many results of relevant experimental obser-

p 1vations are unexplained, then the acceptability of aPrinciple 1. Symmetry. proposition P that explains only a few of them is
(a) If P and Q cohere, then Q and P cohere. reduced.
(b) If P and Q incohere, then Q and P incohere. Principle 7. System coherence.

Principle 2. Explanation. The global explanatory coherence of a system S of

propositions is a function of the pairwise local
If P- "'"PexplainQ,then: coherence of those propositions.

Principle 2, Explanation, covers cases where( Ir ec P ihypotheses explain evidence or are themselves explained

cl(b) For each Pi and P in P d " Pr Pi and P. by higher level hypotheses. Clauses 2(a) and 2(b) state
m' j that hypotheses that explain a proposition cohere with that

cohere, proposition and with each other. Clause 2(c) is a simpli-city principle, suggesting that the greater the number of
) Ihypotheses needed to explain a proposition, the less they

and b degree of coherence cohere with it and with one another. Principle 3, Analogy,

inversely proportional to the number of propositions s explain similar pieces of
s evidence cohere. Te fourth principle, Evidence, is

P straightforward. Principle 5 Contradiction, marks con-
Oe peting hypotheses as incoherent with each other if they
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are contradictory. The last two principles state that the ECHO has been used to simulate many cases of
previous five principles establishing local relations of scientific and legal reasoning (Thagard 1989, forthcom- I
explanatory coherence are all that is needed to determine ing; Thagard and Nowak 1988, forthcoming; Ranney and
the overall coherence of a set of propositions and the Thagard 1988; Nowak and Thagard forthcoming-a,
acceptability of particular propositions. These contentions forthcoming-b). I will now briefly describe its application
have been put to the test by development of a computer to naturalistic decision making.
program that allows simulation of judgments of explana- Naturalistic Decision Making
tory coherence. Decision making can sometimes straightforwardly

ECHO take place using an assessment of possible actions with
Connectionist networks consist of units, roughly respect to probabilities and utilities of results of the

analogous to neurons, that are connected by excitatory actions. Often, however, it is necessary to form and
and inhibitory links (Rumelhart and McClelland, 1986). evaluate hypotheses concerning the nature of the situation. I
ECHO is a Common LISP program that constructs net- For example, a fire chief may need to infer the source and
works for evaluating the explanatory coherence of sets of nature of a fire before deciding how best to fight it.
propositions. Propositions that cohere are represented by Although in Al it is becoming common to refer to both the
units connected by excitatory links, while ones that formation and the evaluation of explanatory hypotheses as
incohere have units connected by inhibitory links. For abduction, I shall follow the use of its inventor C.S. Peirce
input, ECHO is given formulas describing the explanatory and reserve the term for hypothesis formation only (Tha-
relations of propositions. If two hypotheses HI and H2 gard 1988). TEC and ECHO are concerned, not with
together explain a piece of evidence El, ECHO is given abduction in this narrow sense, but with hypothesis
the LISP input: evaluation.

(EXPLAIN '(HI H2) El). Judges and juries are frequently called upon to
In accord with the second principle of explanatory coher- evaluate explanatory hypotheses in criminal trials, asking,
ence, ECHO then sets up symmetric excitatory links for example, whether the proposition that the accused
between units representing HI and El, H2 and El, and HI murdered the deceased is the best explanation of the death I
and H2. If H1 and H3 are contradictory, ECHO gets the and other evidence. But inference to the best explanation
input: in such cases is not just a matter of considering what

(CONTRADICT 'Hi 'H3). hypothesis explains the most evidence, since it is standard
This sets up a symmetric inhibitory link between HI and in trials to consider a motive that could explain why the
H3. That El and E2 are to be treated as pieces of evi- murder was committed. The acceptability of a hypothesis
dence is represented by the input: increases on the basis of there being explanations of it, as

(DATA '(El E2)) well as on the basis of what it explains. Everyday deci-
sions that involve other people often involve explanatoryIn accord with principle 4, Evidence, links are then set up inferences concerning their beliefs, desires, and inten-

from a special evidence unit to El and E2. tions. In adversarial situations such as competitive games,
Connectionist networks make decisions by repeat- business, diplomacy, and war, it is often necessary to infer

edly updating the activation of units in parallel until the the plans of the adversary. Plans can sometimes be
whole network settles into a stable state in which the inferred as part of the best explanation of what the adver-
activation of each unit has reached asymptote. ECHO sary has done so far.1
adjusts the activation of a unit u. by considering all the Let us now look in more detail at an actual case of a
units to which it is linked. An Jexcitatory link with an decision that is naturally understood in terms of explana-
active unit will increase the activation of u., while an inhi- d
bitory link with a unit with positive Jactivation will tory coherence. On July 3, 1988, the USS Vincennes was

involved in a battle with Iranian gunboats in the Persiandecrease it Activation of units startsat and is allowed Gulf. A plane that had taken off from Iran was observed
to range between 1 and -1. Repeated adjustments of to be flying toward the Vincennes. On the basis of the
activations results in a stable state where some units end information provided to him by his officers, CaptainI
up with high activation and others with activation below fro r ovi ded t ha tbhe plers an

0. Equations and algorithms are fully presented elsewhere Rogers of the Vincennes concluded that the plane was an

(Thagard 1989). Parallel constraint-satisfaction tech- attacking Iranian F-14 and shot it down. Unfortunately, 1
(TUas 1989. C aVe e h- the plane turned out to be a commercial flight of Iran Air

Wl-a L, t ~ E b ea o Ubte UI 655. Nevertheless, the official investigation (Fogartyinvestigating analogy (Holyoak and Thagard 1989; Tha- 1988) concluded that Rogers acted in a prudent manner.
gard, Cohen, and Holyoak 1989; Thagard, Holyoak, Nel- An ECHO-analysis of the information available to Rogers
son, and Goclifeld, in press).
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I supports that conclusion. (proposition 'E8 "Track 4131 was reported to be--

Rogers' decision to fire a missile at the plane increasing in speed.")
depended on evaluation of competing hypotheses con- (proposition 'E9 "Track 4131 was reported to be

I cerning its nature and intentions. The hypothesis that it decreasing in altitude.")
was a commercial flight was considered and rejected in (proposition 'NE9 "Track 4131 was reported to be

favor of the hypotheses that the plane was an F-14 and increasing in altitude.")
that it was attacking. Captain Rogers recalled numerous (proposition 'EIO "Track 4131 was CBDR to USS Vinc-
"indicators" used in declaring the plane hostile and decid- ennes and USS Montgomery.")
ing to engage (Fogarty 1988, p. 40). From the perspective (proposition 'Ell "Track 4131 was reported by USS
of TEC, the F-14 hypotheses were more coherent than the VINCENNES' personnel squawking Mode II-1100 which
alternatives for several reasons. First, they explained why correlates with an F-14.")
the plane did not respond to verbal warnings, was not fol- (proposition 'E12 "No ESM was reflected from track
lowing commercial air corridors, was veering toward the 4131.")
Vincennes, and was reported to be descending. (This (proposition 'E13 "F-14s have an air-to-surface capabil-
report turned out to be erroneous.) Second, the ity with Maverick and modified Eagle missiles.")
commercial-airline hypotheses predicted (explained) th- (proposition 'E14 "The aircraft appeared to be

negation of this evidence. Finally, the F-14 attack could maneuvering into attack position; it veered toward the
I be explained by hostile Iranian intentions for which there USS Montomery.")

was ample evidence. (proposition 'E 15 "deleted in published report")
(proposition 'E16 "Visual identification of the aircraft

Here is the actual input given to ECHO. Note that was not feasible.")
* the quoted propositions are for information only: unlike a (data '(EQ El E2 E3 E4 E5 E6 E7 E8 E9 El0 El1 E12

program that would be capable of forming the hypotheses E13 E14 E15 E16))
and generating hypotheses about what explains what,
ECHO does not use the content of the propositions. For HYPOTHESES:
S ase of cross-reference, I have numbered propositions in (proposition 'Al "Iran is intending to mount an

correspondence to the list in the Fogarty report (p. 40), attack.")
although a few of the pieces of evidence do not appear (proposition 'A2 "The plane is an F-14.")
relevant to an assessment of explanatory coheren e. (proposition 'A3 "The plane intends to attack.")

(proposition 'A4 "The F-14 is flying 'cold-nose'.")
EVIDENCE: (proposition 'Cl "The plane is a commercial airliner.")

(proposition 'EQ "Gunboats were attacking the Vinc- (proposition 'C2 "The plane is taking off.")
ennes.") EXPLANATIONS:

(proposition 'El "F-14's had recently been moved to (explain '(Al) 'EO)
Bandar Abbas.") (explain '(Al) 'El)

(proposition 'E2 "Iranian fighters had flown coincident (explain '(Al) 'E4)
with surface engagement on 18 April 1988.") (explain '(A1) 'A3)

(proposition 'E3 "The aircraft was not responding to (explain '(Al) 'A2)
I verbal warnings over IAD or MAD.") (explain '(A2 A3) 'E3)

(proposition 'E4 "There had been warnings of an (explain '(ES) 'Al)
increased threat over the July 4 weekend.") (explain '(A2) 'E6)

(proposition 'E5 "There had been a recent Iraqui vic- (explain '(Cl) 'NE6)
tory.") (explain '(A2) 'E7)

(proposition 'E6 "The aircraft was not following the air (explain '(Cl) 'NE7)
corridor in the same manner as other commercial aircraft (explain '(A2 A3) 'E8)

I had been seen consistently to behave.") (explain '(CI C2) 'E8)
(proposition 'NE6 "The aircraft was flying in the com- (explain '(A2 A3) 'E9)

mercial air corridor.") (explain '(C2) 'NE9)
(proposition 'E7 "The aircraft was flying at a reported (explain '(A3)'ElO)

altitude which was lower than COMAIR was observed to (explain '(A2) 'Eli)
... ,,p*lln V 'Al A AN\ 11:'1%O

f l y i n t h e p a s t ) %'. , e , ", 1 - ', ;J - L , ,

(proposition 'NE7 "The aircraft flew at COMAIR's (explain '(Cl) 'E12)
usual altitude.") (explain '(A3) 'E14)
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Figure 1. Network created by ECHO using Vincennes input. Solid lines indicate excita-
tory links, while dotted lines indicate inhibitory links. Al-A3 represent units hypothesiz-
ing an attack. C1-C2 represent units concerning a commercial airliner.
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I Figure 2. Activation history of units in Vincennes simulation. Each ,mph 5how5 e.
activation of a unit over 110 cycles of updating, on a scale of -1 to 1, with the horizontal
line indicating the initial activation of 0. The network has settled by 60 cycles.
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Abduction in Model Generative Reasoning

Roger T. Hartley and Michael J. Coombs
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Model Generative Reasoning Such a method is used extensively in backward-
chaining expert systems and is the basis of Pro-

At CRL, we have developed the Model Generative log's proof technique. Most of these, however,
Reasoning (MGR) architecture in order to study set up the A's as intermediate goals to be car-
the relationship between structure and semantics ried on further in the method i.e. they are not
in coping with brittleness (Coombs and Hartley, asserted as true, or as possibly true. Another way
1987; 1988). Formally, MGR is related to the to look at such a mechanism is that if B is true,
generalized set covering (GSC) model of abduc- and A -- B, then A explains B. This is the basis
tive problem solving, where, given knowledge of of the methods described by Levesque (Levesque,
a set of observations (facts), the task is to find 89) and Poole (Poole, 89). Explanations are hy-
the best explanatory hypothesis in terms of the pothetical structures generated to fit some set of
most parsimonious "cover" of facts by hypothe- observations, (not just one, as the above simpli-
ses. However, whereas GSC deals with atomic fication implies) and have only possible status in

explanatory hypotheses and pre-defined relevance the system. However, if they were true, then the
relations between hypotheses and facts, it is nec- consequent would follow naturally by deduction.I
essary in a noisy or novel task environment to: (i) Finding an explanation in a logical system then
create new hypotheses from conceptual fragments, amounts to finding an expression, that if it were
and (ii) identify problem facts as some subset of true would imply the input (the axioms). In order
the set of available observations, to find out how this works, we need to analyze the

use of rules (logical implications) in such systems.
There are four main uses of a rule:

Hypotheses, explanation and . as a selectional constraint on types, e.g. all 1
abduction W's are V's:

All problem solvers generate hypotheses, and in Vx U(z) - V(x) (1)

general we can classify all such mechanisms as ab- * as an Aristotelian definition, e.g. if something
ductive. However, the use to which these subse- has properties A, B, C etc. then it is a V
quent hypotheses are put separates what we might U
called logical abduction from the more pragmatic Vx A(z) A B(z) A C(x) ... --- V(x) (2)
use of the term in scientific reasoning (Peirce, 57).

Many authors have pointed out that abduction 9 as a contingent, or schematic definition, e.g.
is an unsound logical inference from consequent to if sonething is a V, then it has properties A,,
antecedent, as in: B, C etc.

B Vz V(z) -- A(z) A B(z) A C(z) •.. (3)

A * to express causality, e.g. if P, Q, R all happen,
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then X, Y, Z will happen as a direct conse- This, with the same rule as in 3, gives the infer-
quence ence:

P A Q A R.... -. X %Y AZ... (4) possible(3z person(z) A car(b) A

To illustrate these types of rule, consider the drive(a, b) A location(z)) (10)
following abductive inferences:fFinally 

an example that gets closer, we believe to
car(a) the reason why abduction is important. If we have

Vz ford(X) -. car(z) the facts:

possible(ford(a)) (5) at(a, b) and (11)

In other words, if a car a is observed, then it hasEngine(c) (12)
is possibly a ford. Of course, this is not an ex-
planation of why a is a car, but it does shed a which seem to be unconnected, the job of abduc-I little more light on the subject. There may well tion is to glue them together in a single hypothesis.
be other types of car (chevrolet, subaru etc.) and The inference we might look for, and one that is
these would be equally likely inferences. The ques- clearly an explanation of why these two pieces of
tion of the goodness of an texplanation is one for data are observed together is:
the pragmatics of abduction. Poole has pointed
out, however, (Poole, op. cit.) that there are sev- person(a) A car(c) A drive(a, c) A
eral possible accounts of what constitutes the best location(b) A at(c, b) (13)explanation.

car(a) This hypothesis glues the facts together, through
SAAthe definition of a car and the driving rule.Vz hasWheeis(z) A hasEngine(x) A

hasDriversSeat(z) -. car(z)
possible(wheels(a) A hasEngine(a) A An operator for abduction:

hasDriversSeat(a)) (6) specialize
This abductive inference stands a little better We will describe an single operator, specialize,

as an explanation; it at least shows why a is a which mechanizes the process of abduction illus-
car, based on the limited knowledge to hand about trated in the above examples. It is composed of
cars. Note that if both of the above rules were two more primitive operators, cover and jai that
available and a criterion of goodness was expressed operate on conceptual graphs (Sowa, 84). This
as the simplest explanation is the best, then the leads to the slogan:
first would be preferred over the second. Abduction = cover + join

at(ab) Conceptual graphs are connected, directed, bi-
Vzyz person(x) A car(y) A drive(z, y) A partite graphs where the nodes are labeled with ei-

location(z) -, at(x, z) A at(y, z) ther a concept type or a relation name. There are

possible(3yperson(a) A car(y) A restrictions on the edges, however, that are used

drive(a, y) A location(b)) (7) to preserve semantic coherence (Sowa calls this
canonicality). A relation node may have only one

Here we infer an existential result (as pointed out ingoing edge, but any number of outgoing edges.
by Poole) because we have no evidence about the A concept node may have any number of edges, in
car if we assume a is a person. The other possible or out.
inference is: The functionality of specialize is:

possible(3y person(y) A car(a) A .IA N . o (14)
drive(y, a) A location(b)) (8)

observations are exis- where Y is a set of input graphs, V is a set of
It is also possible that th the fat: definitions (conforming to the rule types 2, 3 and4 above) and Wt is the resultant set of hypotheses

3xy at(a, z) A drive(y, b) (9) produced by cover and join.
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The operator cover I
It is the job of cover to choose an appropriate sub- G

set of a set of stored graphs D, that cover all of the
concepts in a given subset of graphs taken from a A AIH
set Y. If the conceptual content of a graph g is 1'\
given by C(g) and the maximal common subtype iC-
of two concepts cl and c2 is given by Mb(CI,c 2 )
then the functionality of cover is given by:

cover: Y x 21 - 2V (15)
where for f E ", Vc E C(f)Bcd, d I Figure 1: An example of maximal join

Cd E C(d) for some d E D (Mb(D, F) = H).

and M(c, cd) exists

In other words, every concept in f must have at is given in Figure 1. The functionality of join is:
least one concept in the set of graphs V¢, where maximal join : g x g - 20 (17)
their maximum common subtype exists i.e. is not
bottom. There are problems with graphs contain- There can be more than one maximal join, hence
ing duplicate labels, but these can be solved by the powerset notation on the set of all graphs g.
ensuring that there are sufficient quantities of cov- Join is a binary operation but multiple graphs can
ering concepts from graphs in V for the concepts be joined by composing it with itself. Unfortu-
in f. nately, there is good reason to believe that join

The choice of an appropriate subset, since there is not commutative when semantic considerations
can be many which satisfy the above condition is come into play (Pfeiffer and Hartley, 89), but for
a matter for the pragmatics of the problem. The now we will assume there is no problem.
Maryland group (Nau and Reggia, 86) have used Since restrictions are allowed, it is clear that
this idea of set covering (as have many others) in two nodes are joinable as part of a maximal join
their diagnostic work, but deal with expressions at operation if they contain types that have a maxi-
the propositional level rather than at the object mal common subtype. So PET can be restricted to
level as we do here. They point out that although DOG, and so can MAMMAL. Thus nodes contain-I
a parsimonious cover may be appropriate when ing PET and MAMMAL join to produce DOG. If
-;mplicity is called for (cf. Occam's razor) there two concepts have only 1 (bottom) as their com-

be cases when less than parsimonious cover mon subtype, then the maximal common subtype
er, or simply better as an explanation. is not considered to exist. The reason why the

arsimonious cover may be produced by mini- same constraint was placed on the operator cover
mizing the boolean expression: was so to ensure that the covers returned are max-

imally joinable i.e. that the fact graph f is joinable
A V d,, where c E C(f), C(di) (16) to the graphs that cover it. That this is an abduc-
C i tive inference in the logical sense may be seen from

the following equivalent presentation: IThe operator join PTa

Cover just produces an appropriate subset of V. M MA(a)

The job of producing an explanatory hypothesis is MAMMAL(a)
left to the binary operation join (actually maximal VzDOG(x) -. PET(x)

join). As an operation on single concept nodes, VxDOG(x) - MAMMAL(x)
join merges two graphs at a single point where DOG(a)
both graphs contain the same concept label. Mar-
imaljoin (we will usually refer to this as just jon) If we now look at the last car example above, the
will not only allow restrictions in that a concept facts might be represented as in Figure 2, and the
label can be replaced by a label of any subtype but covering graphs in Figure 3. These graphs add
also will merge the two graphs on the maximum information that the logical representation leaves
number of nodes (see Sowa, op cit). An example ou , however these are mandated by the need to
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Figure 2: The 'driving' facts. Figure 4: The maximal join of Figs, 3 and 4.
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Figure 3: The covering graphs for Fig. 3.

form canonical graphs. The equivalent in a logic Figure 5: Specialize in a set diagram form.
would be a full intensional logic with type restric-
tions on the place-holders, but the graphs have
not prejudiced the argument that the appropriate other objects, for instance the engine, at b. This
hypothesis is obtained by joining all four graphs sort of thing may produce a violation of canoni-
together, as shown in Figure 4. The major addi- cality (e.g. giving a pipe three ends instead of two
tion to the driving graph is the actor node in the ends and a middle), but may also be prevented
diamond-ended box. In a extension to conceptual by knowledge of the conformity of individuals to
graphs (Hartley, forthcoming), these nodes can ex- types. Again, the FOPC form does not contain
press the temporal relationships between states this information, but a may conform to PERSON,
and events in order to represent procedures quali- but not to ENGINE.
tatively. However, these extra nodes play no part In essence, therefore, the resultant graphs pro-in cover or join, and will not be discussed further. in nbe een as re nes
The join will only occur if the following type rela- duced by join can be seen as abductive inferences

tionships hold: from the facts and definitions, causal or Aris-
totelian that cover them. The result is hypothet-

Mb(CAR, PHYS - OBJ) = CAR ical in nature because the maximal common sub-

Mb(CAR, TRANSPORT) = CAR type restriction of two types leads to the same un-
sound inference rule that an logical abductive rule
maKes. AduUitiuaiiy, however, constraints stem-

It should be noted that a person, an engine and ming from canonicality and conformity increase
a drivers-seat are all physical-objects, in addition the likelihood of the inference. Figure 5 contains
to the car. These relationships potentially give a more intuitive Venn-like diagram of specialize
alternative joins. Thus instead of placing the per- where each enclosed region contains at least one
son a at the place b, the join could place any of the concept node.
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Abduction as Similarity-Driven Explanation

Brian Falkenhainer
Xerox Palo Alto Research Center

3333 Coyote Hill Road, Palo Alto, CA 94304

I 1 Introduction These systeils sufer from the adaptability problem: they
are unable to revise or extend an imperfect domain the-

l)eduction, abduction, and analogy are processes whose ory to make conjectures about unanticipated events, and
differences are normally reflected by distinct computa- unable to apply knowledge of one domain to the under.
tional mechanisms. In this paper, I suggest that pro- stamcding of another.
cv(lural separations between these processes are super- On the other hand, theory formation typically tii-
fluous for the l)urpose of constructing plausible expla- volves making assumptions about both the situation and
nations of a given phenomenon A single miechanisin the incompleteness or incorrectness of ct rrent theories
that proposes explanations of phenoineia by their sim- It includes inferences of the form
ilarity to understood phenomena is sufficient, providing
smoother adaptability to unanticipated or undersl)eci- given CA USE(A, C) A A -C, A. C
fled events and enabling transfer of knowledge from one infer CAUSE(A, C)

I (domain to another. Tlhis siuiilarity-drivrn view of ex-
planation also let .ne extend or revise in perfect tvie .- Theory formation must face the problem of generating
tis when they fa o produce an explanatiose . Im this theory-revising hypotheses and establishing a preference

aprchn oneyfito proesadduct explanation.n hi among a possibly infinite set of hypotheses.
approach, one provides it deductive explanation if possi- 'lo address these problems, we note the strong coin-
ble, and extends or revises the underlying theory when monalities between traditional abduction and analogy,
necessary to make explanation possible. Rather than be- and develop a model that enicompasses both. For ah-
ing produced by separate processes, distinctions between duction, this unified model provides the power to ex-
the different explanation types result from the preferen- tend the underlying domain theory when needed. For
tial ordering impo,,ed when competing hypotheses are theory formation, it enables existing knowledge, possi.
evaluate.l i bly of other domains, to influence hypothesis generation

The plausibiliy of this conjecture is demonstrated by and evaluation, thus taking into account knowledge of
PHIEAS, a program that uses a single similarity-driven the way things normally behave in the world and the
explanation mechanism to focus its search for explana- way theories about those behaviors are normally x-
tions using its existing knowledge and to (evelop novel pressed. This view of explanation is based on the con-
theories when its existing knowledge is insufficient. jecture that search for similarity between the situation

This paper begins with a discussion of '.he relation- being explained and some understood phenomenon suf-
ship between abductive explanation and analogy, sug- fices as the central process model for explanation tasks.

i gesting that they share a common core: the search for In support of this view, consider the explanation see-
explanatory similarity. It then briefly describes PHINEAS narios summarized below:
and outlines some of the examples used to test its be-
havior Deduction scenario: Given phenomenon P, where P

represents a set of observables, a complete explanation
2 Similarity-Driven Explanation of P' deductively follows from existing knowledge. The

only open question is whether it is the explaiuation, as
Abduction is traditionally characterized as using a fixed there may be others. For example, suppose fluid flow is
set of background theories. Assumptions needed to fill observed and all of the preconditions for fluid flow are
gaps due to incomplete knowledge of the situation are known to hold (e.g., the source pressure is greater than
limited to ground atomic sentences (i.e., no new or re- the destination pressure, the fluid path is open, etc.).
vised rules are considered , as in '.n flu i..: b ..... x a :.n....i.. t....- "

give CASE(, C, C infr Atihe observed behavior and the existing preconditions, we

given CAUSE(A, C), C ,nfrr A could say that the situation is literally similar (Gentner,
198:3) to liquid flow.
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Assumption scenario: Phenomenon P is given, where as the search for maximal, explanatory similarity be-
P represents a set of observables. No explanation can tween the situation being explained and some previ-
be found using current knowledge because the status of ously explained scenario. It suggests using a single corn-
some requisite facts is unknown. However, a complete putational architecture for explanation processes. Dis-
explanation follows from the union of existing knowledge tinctions between explanation types only influence the
and a consistent set of assumptions about the missing weighing of evidence and the decision as to whether a
facts. For example, if one observes liquid flow but does new conjecture represents a revision of existing knowl-
not know if the fluid pat, valve is open or closed, one edge or a new separate body of knowledge.
can assume the valve is open if there is no evidence to
the contrary. 3 The PHINEAS System

Generalization scenario: Phenomenon P is given, The similarity-driven model of explanation discussed in
where P represents a set of observables. Existing knowl- the previous section is illustrated by PHlioAS, a pro-

edge indicates that candidate explanation C cannot ap- th previous sec tion xplnat by iUearo-

ply because condition C, is known to be false in the gram that offers qualitative explanations of time-varying
physical behaviors. The system uses remindings of simi-

current situation. However, C does follow if condition lar experiences to suggest plausible hypotheses, and uses
C1 is replaced by the next most general relation, since qualitative simulation to analyze the consistency and ad-
Ci's sibling is true in the current situation. This is a
standard knowledge-base refinement scenario.

PHINEAS uses three sources of knowledge during its
reasoning process. First, its uses an initial domain the-

Analogy scenario: Phenomenon P is given, where P ory consisting of a collection of qualitative theories about
represents a set of observables. No candidate explana- physical processes (e.g., liquid flow), entities (e.g., fluid
tion C is available directly, but .b is available if a series paths), and general physical principles (e.g., mechani-
of analogical assumptions are made, that is, if the situa- cal coupling). This qualitative knowledge is represented
tion explained by b is assumed analogous to the current using the language of Forbus' (1984) QP theory. Sec-
situation. For example, if heat flow is observed, but lit- ond, when comparing a new observation to prior experi-
tie is known about heat phenomena, an explanation may ence, PHINEAS consults a library of previously observed
be constructed by analogy to liquid flow. phenomena (i.e., structure and behavior descriptions).

Each scenario requires the interpretation-construction The final source of PHINEAS' information is the observa-
task: retrieve from memory explanatory hypotheses that tion targeted for explanation, which includes the original
match the current situation. Each also requires the scenario description (e.g., open(beaker)), the behavior
interpretation-selection task: select from a set of can- across time (e.g., Decreasing [Amount-of(alcohol)]),
didate hypotheses the one that is most probable, plau- and behavioral abstractions that apply to the observa-
sible, or coherent. Importantly, each scenario represents tion (e.g., asymptotic).
the same process when viewed as different forms of sim- In response to a given observation, PHINEAS attempts
ilarity to an existing theory: to produce an explanatory "theory" and the envisioned

" Deduction scenario: complete match of identical behaviors it predicts. A theory consists of a set of pro-

features cess descriptions, entity descriptions, and atomic facts.
The process and entity descriptions may be elements

" Assumption scenario: partial match of identical of the existing domain theory or new postulated theo-
features ries. The system makes this distinction during hypothe-

sis evaluation. The atomic facts are assumptions about
" Generalization scenario: matches between features the scenario required to complete the explanation.

having a close generalization PHINEAS operates in four stages (see Falkenhainer,

" Analogy scenario: a range of matches between dif- 1988 for more details):

ferent features and relations Access. A new observation triggers a search in mem-

A system based on this view would offer the best ex- ory for understood phenomena that exhibit analogousI,..k..."~~~~~~-- -- -- ------"'-' .. J~.; IIV--pianation avaiabie, ranging from appiication of an ex- V, aio... '.IAis Ielrivd In1vove tw stage.
isting theory to distant analogy. It assumes that all First, behavioral abstractions of the observed situation

interpretation-construction tasks may be characterized are used to provide indices to a potentially relevant sub-
set of memory. Second, each phenomenon in this sub-
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set is inspected more carefully by matching its detailed on fully developed hypotheses. A complete account of
structural and behavioral description to the current sit- theory selection requires consideration of many complex
uation. This partial mapping provides an indication of factors, such as a theory's plausibility, coherence, effectI what objects and quantities correspond by virtue of their on prior beliefs, simplicity, and specificity in accounting
behavioral similarity, and will serve as an important for the phenomenon. However, a number of important,
source of constraint during the mapping process. The more specific preference criteria are readily available and
match also indicates where the phenomena correspond have been found useful in PHINEAS for establishing pref-
and thus what portion of the base analogue's behavior erence between competing hypotheses. These are:
should be considered relevant.

CcE Conjectured entities. Does the hypothesis conjec-
I Mapping & Transfer. The objective of the second ture the existence of a novel kind of entity, and if

stage is to generate an initial hypothesis about the cur- so, how many?
rent observation. This has two components. First, the CVE Vocabulary extensons. Does the hypothesis re-

I modeis used to explain analogous aspects of the recalled quire the creation of new predicates, and if so, how
experience are retrieved and analogically mapped into many?
the current domain. This mapping is guided by the
initial correspondences found during access. Second, CCA Composite assumptions. Does the hypothesis con-
any unknown entities and properties in the hypothe- jecture the existence of new physical processes or
sis must be inferred from the domain theory or their new knowledge structures (e.g., schemas, etc.), and
existence must be postulated. The model of mapping if so, how many?
used in this work is called contextual structure-mapping
(Falkenhainer, 1988), a knowledge-intensive adaptation CAE Assumed entities. Does the hypothesis assume the
of Gentner's (1983) structure-mapping theory of anal- presence of a known type of entity not mentioned
ogy. Comparisons are performed by SHE (Falkenhainer, in the original scenario description, and if so, how

Forbus, & Gentner, 1989). many?

CAA Atomic assumptions. Does the hypothesis make
Qualitative simulation. The predictions of a pro- additional assumptions about the properties and
posed model are compared against the observed behav- interrelationships of objects in the scenario, and if
ior, enabling the system to test the validity of the anal- so, how many?
ogy and sanction refinements where the analogy is in-
correct. The system generates an envisionment of the The single preference criterion used to evaluate a hy-
scenario, which it then compares to the original obser- pothesis or compare two competing hypotheses is a func-vation. If the envisionment is consistent and complete tion of these five metrics. They are ordered according

with respect to the observation, then the explanation to an approximate measure of decreasing "cost" and ap-
is considered successful. If it is inconsistent or fails to plied sequentially to prune the space of hypotheses:
provide complete coverage, then revision is aimed at the
points of discrepancy. LEF = (CCE, CVE, CCA, CAE, CAA)

Thus, an explanation that postulates the existence ofa
Revision. If an initial hypothesis fails, or an old hy- novel kind of entity (CcE) is at all times deemed inferior
pothesis is inadequate for a new situation, an attempt to one that does not. Each criterion returns a number

I is made to adapt it around points of inaccuracy. Re- (N > 0) as described above, where a value of zero in-
vision relies on past experiences to guide the formation dicates success and a value greater than zero indicates
and selection of revision hypotheses. It considers behav- failure. The function is used to select the most prefer-
ior analogous to the current anomaly and considers how able explanation(s) from a given set as follows: First,
the current anomalous situation differs from prior situa- each proposed explanation is evaluated by criterion CCE
tions that were consistently explained. This is the only and those that pass CCE are retained. The process is
component of PHINEAS that is not fully implemented. repeated with the next criterion on the set of retained

hypotheses until only a single hypothesis remains or ther- r*,,o"ertea is exhauste', ",at ary Poi, all" l}yput te- 'I A & ~MA VAAL .dlt A CL Uav 1L3 UL 1~~ 11 1zA~~, U. IL 41 U1L411y~L~

ses evaluated by a particular criterion fail, the processi An explanation system should focus on the most promis- stops and the current set is returned in increasing order
ing explanations first and provide a preferential ordering according to their score, N, for that criterion.
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This evaluative function produces an interesting prop- (a) A beaker contains more water than a vial to which it
erty when viewed from the perspective of the four ex- is connected by an unknown object. Why does the
planation scenarios described in Section 2: water level in the beaker decrease and the. water

level in the vial increase?
Deductive scenario: This corresponds to explana- (b) Two containers sharing a common wall of unknown I
tions passing every criterion. It occurs when all of the substance each hold some solution. Why does one
antecedent features of the base are present in the target. solution's level decrease and concentration increase

while the other solution's level increases and con-
Assumption scenario: This corresponds to explana- centration decreases?
tions passing every criterion but one of the last two,
CAE and CAA. It occurs when some of the antecedent (c) What causes a hot brick and cold water to change
features of the base have no correspondent in the target, to the same median temperature when the brick is I
but may be consistently assumed to hold in the target. immersed in the water?

Generalization scenario: This corresponds to ex- In each case, PINEAS bases its explanation on the
case's similarity to liquid flow. In the first, the phe-

planations passing the first two criteria, CCE and CVE, nomenon most similar to an observation of liquid flow
but failing CCA, in which a knowledge structure is viewed is liquid flow itself, thus suggesting that the unknown
as "new" if it represents a modification of an existing object may be a fluid path. In this work, identicality
knowledge structure. It occurs when some of the an- is viewed as an extreme form of similarity. The second
tecedent or consequent features of the base match an behavior, called osmos:s, represents a close generaliza-
analogous set of features in the target, thus mapping the tion of liquid flow when viewed as flow of solute under
base theory to a situation beyond its declared scope. osmotic pressure through a selective kind of fluid path.

In the final "heat flow" observation, PHINEAS draws an
Analogy scenario: This corresponds to explanations across-domain analogy to liquid flow phenomena and
failing one of the first three criteria, CCE, CVE, or CCA. conjectures the existence of a new type of fluid that af- I
It occurs when some of the features of the base match fects an object's temperature. Its predictions based on
an analogous set of features in the target, or new vocab- this new heat flow model are shown in Figure 2. All three
ulary must be created to complete the mapping. interpretations are produced by a single mechanism that

All four scenarios arise as a result of the same ba- forms its explanations from theories about phenomena
sic mechanism. The evaluative function causes PHINEAS most similar to the current situation.
to propose standard, deductive explanations if any are
found. In their absence, conventional abductive expla- I
nations will be preferred. If existing theories are insuffi- 5 Discussion
cient to provide an explanation, explanations adapting
knowledge of potentially analogous phenomena will be This paper has described a unified, similarity-driven method fl
offered. By using similarity as the single source for ex- for explanation that seeks the best match between an
planation generation, PHINEAS is able to offer a "best observation to be explained and understood phenom-
guess" in the presence of an imperfect or incomplete do- ena. This addresses imperfect theory problems by en-
main theory. abling matching of analogous rather than identical fea- I

tures, reducing the need to have a precisely defined set

4 Examples of PHINEAS' Behavior

PHINEAS has been tested on over a dozen examples in-
cluding explanations of evaporation by analogy to boil- kW twa

ing, liquid flow, and dissolving; torsional and LC circuit
oscillators by analogy to a spring-mass harmonic oscil-
lator; osmosis by analogy to liquid flow; and floating of
a balloon by analogy to an object floating in water. For
-vnr l],i ,h .. , . ;". . ....givenofli:.id A .... .L , . 'b.* h .b + DUV~Ae k. I; . ,

system is able to interpret the three situations shown in their similarity to liquid flow: (a) liquid flow, (b) osmo-
Figure 1: sis, (c) heat flow.

138 n

I



I
lI QuniyI S2-1 I S2 I SO I sl-i I S1 1 32-1

Ds[FLOW.RXTE1PI0)] .. l -DsFO-RA'< l -1 -1 :--- - -
Ds AMOUNToOI SK.CS-WATEli- BEAKER- 1 ! -1 -1 0

DA F SK-CS-WATER-VIAL-) 1 0 - -

D.r rIRES9URVWSK.CS.WATERVItAL-I]I I I

' .1 - 0 1 1 so
S RE-INWATER01 I 1 0 -1 .1

A MOUNT-F(SK-US.WATbI1B9AKER- >0 >0 >0 >0 =0
AX AMOUNT-OF(SK-CS. WA ITEB-VIAL- 1 ! =0 >0- >0 >0 >0 1 3

X *I LMPEtAT UR-IN(Bt K)]> > = < <
A TEMPERATURE-IN(WATERI)l

_ACTIVEPll_ T T F F F
31-I

Processfes:
P10 PROCESS-I(SK-WATER- I WATERI SK-CS-WATER-VIAL-1 BRICK SK-CS-WATER-BEAKER-1 (COMMON-FACE BRICK WATERI))
PII PROCESS.I(SK-WATER-I BRICK SK-CS-WATER-BEAKER-l WATERI SK-CS-WATER-VIAL.1 (COMMON-FACE BRICK WATERI))

Figure 2: Envisionment produced by the hypothesized caloric model when applied to the brick immersed
in water scenario. States are distinguished only by derivative and process values. They are split when
this distinction produces a state lasting an interval of time (S2) and also lasting for an instant (S2-I).
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Introduction: Evidence, Inference, and Beyond the judgment of likelihood, willingness to ac-
Justification cept the conclusion should (and typically does) depend

I take it that there is a distinctive kind of evidential on:
support which follows a pattern pretty nearly as follows: i

D is a collection of data (facts, obeervations, b r onad the eit o
givens)being wrong and the benefits of being right,

H explains D (would, if true, explain D).
No other hypothesis is able to explain D as * how strong the need is to come to a conclusion at

well as H does. all, especially considering the possibility of seeking
further evidence before deciding.

Therefore, H is probably true.

This is the pattern I identify with the term "abduc- The core intuition is that a body of data provides ev-
tion." Really, when we want to be precise, we should idence for a hypothesis that satisfactorily explains or

distinguish "abductive support" (for an evidence rela- accounts for the data (or at least it provides evidence
tionship), "inference to the best explanation", "abduc- if that hypothesis is better than other hypotheses).
tive inference," and "best-explanation reasoning" (for Of course it remains to elucidate what makes a hy-
inference processes), and "abductive justification" for pothesis explanatory relative to some presumed fact,
an appeal to evidence to support a conclusion. Three and what makes one explanation better than another.
faces of abduction: evidence, inference, and justifica- The relationship between a body of given facts, and
tion. some conclusion for which those facts gives evidence,

The judgment of likelihood associated with an ab- may be deductive whether we know it or not. More pre-
ductive conclusion should depend on the following con- cisely, the statements of some set of facts might deduc-
siderations (and it typically does in the inferences we tively entail certain other statements of fact, whether or
actually make): not we are aware of that entailment. We might not hap-

pen to make the inference from one to the other, even
" how decisively H surpasses the alternatives, though we would be logically justified if we were to do

so. Thus evidence relationships can be considered to
" how good H is by itself, independently of consid- exist as a matter of objective (logical) fact, apart from

ering the alternatives (e.g. we should be cautious the making of actual inferences, and apart from actual
about accepting a hypothesis, even if it is clearly attempts to justify one's conclusions.
the best one we have, if it is not sufficiently plau- In this suort paper I assume without argument that
sible in itself), abductive support really exists, that inference to the

" judgments of the reliability of the data, and best explanation is common in ordinary life (and in
Uuliag t. 16 A ui-uu, V.'), ad '"al, abdULVclt jIItii-

* how much confidence there is that all plausible cations are commonly appealed to in ordinary life, in
explanations have been considered (how thorough the law courts, and in the justifications for scientific
was the search for alternative explanations). conclusions.
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hypotheses) into positive evidence (for alternative ex-
planations).

Deduction and Abduction Another apparent connection between deduction and
abduction occurs if one tries to give a deductive account

Deductions support their conclusions in such a way that of explanation. There have been two main traditional
the conclusions must be true, given the premises; they attempts to analyze explanations as deductive proofs,

I convey conclusive evidence. Other forms of evidential neither attempt particularly successful (at least in my
support are not so strong, and though significant sup- judgment). Aristotle maintained that an explanation is
port for a conclusion may be given, possibility of error a syllogism of a certain form (Aristotle 1941) (actually
remains. Abductions are typically of this kind. c. 330 be) that also satisfies various (informal) condi-

To a great degree the patterns of (valid) deductive tions, one of which is that the middle term is the case
inference have been well characterized by formal logic, of the thing to be explained. More recently (consider-
from the syllogistic logic of Aristotle, through modern ably) Hempel has modernise the logic and proposed

I mathematical logic. Yet despite the great successes of the "covering law" or "deductive nomological" model
modern formal logic, especially in capturing the forms of explanation (Hempel 1965). For a brief summary of
of justification that occur in mathematical proofs (but deductive and other models of explanation see (Bhaskar

I see Goodman (1987)), it is nevertheless not correct to 1981). The main difficulties with these accounts (be-
think that all forms of deductive inference have been sides Hempel confounding the question of what makes
satisfactorily analysed. Deductive logic is not a finished an ideally good explanation with the question of what
science. A worse mistake is to completely identify valid it is to explain at all) is that being a proof appears to
deductive inference with one particular mathematical be neither necessary nor sufficient for being an expla-
system, such as First Order Predicate Calculus. nation. Consider the following:

Consider the following logical form, commonly called Why does he have burs on his hand? Expla-
"disjunctive syllogism." nation: He sneezed while cooking pasta and

PVQvRvSv.... 
upset the pot.

But - Q, - R, -, S,-. The point of this example is that an explanation is
given, but no proof; and while it could be turned into a

Therefore, P. proof by including additional propositions, this would
amount to gratuitously completing what is on the face

This form is deductively valid. Moreover, the abduc- of it an incomplete explanation. Under the circum-

tion schema fits this form, if we assert that we have ex- stances (incompletely specified), sneezing and upsetting

haustively enumerated all of the possible explanations the pot were presumably causally sufficient for the ef-
i for the data, and that all but one of the alternative fect, but that is quite different from being logically sf.

explanations has been decisively ruled out. Typically, ficient. Tho cae that explanations are not necessarily

however, we will have reasons to believe that we have proofs becomes even stronger if we consider psycholog-
considered all plausible explanations (i.e. those which ical explanations, and explanations which are funda-

I have a significant chance of being true), but these rea- mentally statistical (e.g. where quantum phenomena

sons stop short of being conclusive. For example we are involved), since it is clear that causal determinism
may have struggled to formulate a wide variety of po. cannot be assumed, and so the antecedent conditions

sible explanations, but cannot be sure we have covered cannot be assumed to be even causally sufficient for the

all plausibles. Under these circumstances the we can as- effects.

sert a proposition of the form of the first premise, but Conversely, there are many proofs which fail to be
assert it only with a kind of qualified confidence. Typ- explanations of anything, for example in classical me-
ically, too, alternative explanations can be discounted chanics an earlier state of a system can be deduced
for one reason or another, but not decisively ruled out. from a subsequent state, but the earlier state cannot
The lesson to be drawn is that abductive inferences can be said to be explained thereby. Also note that P can
actually under some circumstances be valid deductive be deduced from P A Q, but is not explained thereby.
inferences, and that abductions are deductive in the Thum T concl!ude that -Yl-a-ti-',-- a. not %U

r "
a

limit. any particularly interesting sense (of course they can
It is also worth noting that abductions have an inter- always be PUT as proofs; the point is that this does

esting way of turning negative evidonce (against some not succeed in capturing anything essential or especially
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useful.) 1972, 1974).

Abductions are (or can be) truth producing, that is,
at the end of an abductive process, having accepted a Inductive Generalization and Abduction
best explanation, we may have more information than I
we knew before. The abduction, so to speak, stands Harman (1985) argued that "inference to the best
upon the old information of its premises, and make explanatio (ME) is the baic form of non-deductive
new information not previously encoded there at all. inference, subsuming "enumerative induction' and all
This can be contrasted with deductions, which can be other forms of non-deductive inference. He argued
thought of as extracting out explicitly in their conclu- quite convincingly that IBE is a common and important
sions, information that was already implicitly contained pattern of inference, and that it subsumes sample-to-
in the premises. While abductions do not typically of- population inferences, i.e., inductive generalintions, as
fer the truth-preserving certainty of valid deductions, a special case. (This is my way of putting the mat-
and are almost always accompanied by some degree ter.] The weakness of his overall argument was that •
of doubt, they are capable of accomplishing something other forms of non-deductive inference are not seem-
else that deductions cannot, namely the introduction ingly subsumed by MBE, most notably population-to-
of new vocabulary. Valid deductive inferences cannot sample inferences, i.e., predictions. The main problem
contain terms in their conclusion that do not occur in is that the conclusion of a prediction does not seem to
their premises. Abductions can "interpret" the given explain anything. Nevertheless Harman's basic argu-
data in a new vocabulary. ment (suitably augmented) seems quite sound, if the

Abductions can display "emergent certainty,' that conclusion is restricted to be that inductive generaliua-
is, the conclusion of an abduction can have, and be tions are a special class of abductions. (See Josephson
deserving of, more certainty than any of its premises. (1982) pp. 107-130 for more detai.)
This is unlike a deduction, which is no stronger than
the weakest of its links (though separate deductions
can converge for parallel support). For example I may Probabilities and Abduction
be more sure of the bear's hostile intent, than of any Bayes's Theorem can be viewed as a way of describ-
of the details of its hostile gestures; I may be more ing how simple alternative causal hypotheses can be
sure of the meaning of the sentence, than of my initial weighed. Thus, if suitable knowledge of probabilities is 
identifications of any of the words; more sure of the available, the mathematical theory of probabilities can,

overall theory, than of the reliability of any of the single in principle, guide our abductive evaluation of explana-
experiments on which it is based. tory hypotheses to determine which is best. In practice,

In summary we may say that deductions are 'truth- however, it seems that rough qualitative confidence lev-
conserving', while abductions are " truth-producing. els on the hypotheses are enough to support abductions,

which then produce rough qualitative confidence levels
for their conclusions. It is certainly possible to model

Causality and Abduction these confidences as continuous, and on rare occasions

The relationship of explainer to explained is better de- one can actually get knowledge of numerical confidences
scribed as "cause' than as "implies." An explana- (e.g. for Blackjack), but for the most part numerical I
tion is an assignment of causal responsibility; it tells confidences are unavailable and unnecessary for reason-
a causal story. (At least this is the sense of the term ing. People are good abductive reasoners in the absence
"explanation' relevant for abduction.) Thus abduc- of close estimates of confidence. In fact it seems that, if
tion is basically a process of reasoning from effect to confidences need to be estimated closely, then it must
cause. Finding possible explanations is finding certain be that the best hypothesis is not much better than
interesting possible causes of the thing to be explained, the next best, in which case no conclusion can be confi-
(There we apparent counterexanples to this view, but dently drawn. (Recall the condition, mentioned earlier, I
I claim they all trade on an overly narrow view of cau- that the confidence of an abductive conclusion depends

sation. "Cause' in this context must be understood on how decisively the best explanation surpasses the
somewhat more broadly than its usual modern senses alternatives.) Thus it appears that confident abduc-
of "mechaniea' or "efficient" or "event-event" cauxa- tiona ar p il only if confidenem do not teed to be
tion. There is not room to argue that here, however.) estimated closely!
For a well-developed historical account of the connec- Furthermore it appears that accurate knowledge of
tions between causality and explanation see (Wallace probabilities is not commonly available, because the
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I probability associated with an expected possible event tially to be explained. For example there may be a

is not even well-defined. This is what I have been call- need to distinguish between explanatory alternatives,
ing "the scandal of probabilities.* There is almost al- or for help in forming hypotheses, or help in evaluatingI ways a certain arbitrarine about which reference clas them. Thus often abductive processes are not immedi-
is chosen to bae the probabilities, the larger the ref- ately concluded, but rather suspend to wait for answers
erence clas the more reliable the statistics, but then to information-seeking questions.
the less relevant they are; while the more specific the Humans can understand sentences, form little causal
clam, the more relevant, but the lem reliable. Is the theories of everyday events, and so on, apparently
likelihood that the next patient has the flu best esti- performing complex abductive inferences very quickly,
mated based on the frequency in all of the people in even in fractions of a second. Yet when we set out to

* the world over the entire history of medicine? It seems form a hypothesis for some body of data, we have in
better to at least control for the season and narrow the general no advance assurance that the best explanation
clas to include just people at this particular time of will turn out to be a simple hypothesis. In fact it is typ-I the year. (But then causal understanding is starting to ical that an abductive conclusion be a multi-part com-
creep into the considerations, but that isn't probabili- posite hypothesis, with the parts playing differing roles
ties.) Furthermore each flu season is somewhat differ- in explaining different parts of the data. For example
ent, so we would be best to narrow to just considering the meaning of a sentence must be some kind of cor-

H people THIS year. Then of course the average pltient posite hypothesis, formed on the fly as the sentence is
is not the same as the average person, etc., etc., so the understood, including components that function to ex-
clas should probably be narrowed further to something plain the word order, choice of vocabulary, intonation,I like: people who have come LATELY to doctors of this and so on.
sort, of this particular age, race, gender, and social sta-
tus. Now the only way the doctor could have statistics It is not in general a computationally feasible strat-
that specific, would be to rely on his or her own most r- egy for finding the best explanation for a given body of

I cent experience, which would only allow for very rough data to consider all posible combinations of elementary
estimates of likelihood. There is a Heisenberg-like un- hypotheses, comparing each composite hypothesis with
certainty about the whole thing - the closer you try to each to see which is the best. It would be better notto need to explicitly generate all of the combinations,
measure them, the rougher the numbers get. The con.
clusion to draw is that using real numbers for confidence since the number of them is an exponential function
levels is misplaced precision. "In general the problem of the number of elementary hypotheses available, and

it rapidly becomes an impractical computation unlessfaced by intelligence isn't reasoning with uncertainty,
b yu iteligecesnt reasoning wertain th anceran, almost all elementary hypotheses can be ruled out inI bu resonng espte ncerainy."(Chndrsekran advance. Thus a general strategy for abduction must1987). That is, Even If we could define some ideal rea-

soner who worked completely rationally on the basis of avoid generating more than a small number of com-
probabilities, and Even If strategies could be devised posite hypotheses, either by ruling out all but a few
that would make it possible to actually feasibly make elementary hypotheses, or by generating a small num-
all the computations, tbn it Would Be Wasted Effort ber of composdtes by methods that implicitly compare

anyway, because almost all of the numbers would only those generated to the large number of thoe that are
be rough approximations, and all that would still have not.
to be translated into Tentative Categorical Judgments We may hypothesize that the functional needs of ab-
in order to support hypothetical reasoning and action. ductive information processing are similar across widely

different domains. If this is so, then there may be a
single generic architecture for the generic information

Abduction as an Inference Process processing task of forming a confident explanation (if

An abductive process aims at .a satisfactory explana- possible) for a given body of data. (Or perhaps there
tion, one that can be confidently believed (accepted are a small number of such architectures.) In fact I have
into memory). It might, however, be accompanied in proposed elsewhere (Josephson 1989) that at a certain
the end with some explicit qualifications, for example level of description both "deliberative," and "compiled"
some degree of assurance, or some doubt. (One main or "perceptual" abductions, can be accommodated by a
form of doubt is just hesitation from being aware of single architecture, and thus that the information pro-
the possibility of alternative explanations.) Along the cessing that occurs in diagnosis, story understanding,I way an abductive protess might seek further informa- vision, scientific theory formation, hearing, understand-
tion beyond that which is presuppoeed in the data ini- ing spoken language, and so on, are all accomplished
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by variations, incomplete realizations, or compilations Goel, A., Sadayappan, P., and Josephson, J. R. (1988).
(domain-specific optimizations) of one basic computa- Concurrent synthesis of composite explanatory hy-
tional mechanism. potheses. In Proceedings of the SeenteentA Inter.

However this claim to extreme generality turns out, national Conference on Parallel Processing, pages
my colleagues and I at Ohio State have been developing 156-160. i
a series of generic mechanisms for abductive processing,
and at least some degree of generality has already been Goodman, N. (1987). Intensions, chrch's thesis, and
achieved (Josephson et al. 1987) (Goel, Sadayapan, and Dme Journal of Formal Logic, 28:473-489.
Josephson 1988) (Punch at al. 1989). 

Harman, G. (1965). The inference to the best explana-
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Abstract deduction, subgoals in a successful derivation have
their truth grounded in the original theory; in hypo-

Abduction is an unsound rule of inference of the form thetical reasoning, the hypotheses are not deductivel)
"from P and Q - P, infer Q." To emphasize the dis- established.
tinction between abduction and sound rules of infer- The following section provides a thumbnail sketch
ence, Q is called a hypothesis, thus abduction provides of a simple hypothetical reasoning system based on
the basis for hypothetical reasoning systems. first order clausal logic without equality. It is "hy-

We describe a simple system of hypothetical rea- pothetical" or "abductive" because it explicitly dis-
soning whose essentials are familiar to anyone who tinguishes formulas whose truth conditions are estab-
has analyzed the reasoning strategy of INTERNIST, lished (either by asserting them as axioms or demon-
worked on residue resolution, done any kind of strating their deductive derivation) from those which
"explanation-based" z where x is "learning," "rea- are not. The latter are called hypotheses, which can
soning," "concept formation," etc. We then provide participate in any derivation as long as there is suffl-
terse descriptions of the system's relationship to de- cient evidence to assume them. As we shall discuss,
duction, induction, analogy, probabilistic reasoning, the notion of what constitutes sufficient evidence is a
and nonmonotonic reasoning. central issue in drawing the boundaries between dif-

ferent kinds of hypothetical reasoning.

1 Introduction

Abduction is an unsound rule of inference of the form 2 A brief description of a hy-
"from P and Q - P, infer Q." To emphasize the dis- pothetical reasoning system
tinction between abduction and sound rules of infer-
ence, Q is called a hypothesis, thus abduction provides Using Prolog as a systems programming language, we
the basis for hypothetical reasoning systems. have implemented many variations of the following

Whether a reasoning system is actually doing ab- hypothetical reasoning system specification[GFP86,
duction or not has a lot to do with the form of the the- GG87, Poo88].
ory from which reasoning proceeds. For example, the The logic is full first order clausal logic without
abductive rule of inference is indistinguishable from equality; the proof theory is a goal-directed theorem
any attempt to constuct an ordinary first order de- prover based on Prolog but modified with Loveland's
ductive proof in a goal-directed way. From the theory MESON proof procedure idea to get a full clausal
Q, Q -- P, P, a goal-directed deductive proof of Q prover (see [PGA87] for details).
necessarily proceeds to the subgoal P by using what The essence of the abuctive component arises from
amounts to the abductive rule of inference; a com- a simple distinction in any applied theory e%ery
pleted derivation relies on the subgoal (hypothesis) database DB of sentences is separated into facts F
being directly derivable from the initial theory. and hypotheses H. In the goal-directed search for

So, if goal-directed theorm-provers use abduc- a derivation of an alleged theorem (goal) G, an or-
4.' lo . .... c su$ goa!S: , V ... l-a '- .... ' -,1_s5 Je _ J" _.. Jluc, ive _t u L.; j UI . 1" " 4L -h U -b;LA

tive theorem-proving from abductive or hypothet- from both F and H. If the derivation succeeds with-
ical theorem-proving? Of course it is the truth- out using any sentences from H, then the derivation is
conditional status of the subgoals or hypotheses. In wholly deductive and G is a logical consequence of F
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Otherwise, the participation of any sentences from H 4 Relationship to induction
must be accompanied by some kind of rational sup-
port (cf [Isr8O, Isr83, Isr88]). Although the extra The simplest description of induction is typically

evidence in support of hypotheses varies from imple- given as the rule of universal generalization, as fol-

mentation to implementation (see below), all systems lows: from p(a), infer p(X), for all X. To see the

insist t tt any member of H must be consistent with relationship to abduction, consider the situation with

the existing facts F and all other hypotheses partici- G = p(a), F = {} and H consists of all sentences in I
pating in a derivation. 1  the language (or at least a generator that produces

Before continuing to address the relationship to the potentially infinite set in some well-defined order).

other styles of reasoning, we conclude with a simple The hypothetical reasonixsg system is doing induction

example. Let whenever it constructs derivations of p(a) that use in-
stances of any sentence of H that is more general than

F = {bird(tueety), emu(X) -- -flies}, p(a). For example, selecting p(X) from H to create
H = f{bird(X) .- flies(X)}, the explanation T = {p(a)} is boring, but it is still
G = flies(tweety). induction. We might consider the restriction to more

"interesting" hypotheses, e.g., p(X) -- q(X),q(X)
Note that all variables are universally quantified. The if we have any rational well-defined reason for doing I
appropriate derivation is so. It is already well-known that fabricating rational

inductive schemas (i.e., waiting for the appropriate
flies(tweety) member of H to be generated) is not a simple prob-
flies(tweety) .- bird(tweety) lem.bird(tweety)

and the use of the instance of the hypothesis is sup- 5 Relationship to analogy
ported by verifying that F does not derive the nega- a
tion of the hypothesis, i.e., it is consistent. We name If you believe that analogical reasoning is not deduc-
the instance of the hypothesis as the "theory" T that tive (some don't, e.g., [DR87]), then perhaps it is
explains the goal G. This use of the word "theory" is abductive? Consider [
consistent with the notion of nomological explanation F =p(a)}

(e.g., [Hem65)). H = X = Y )
Note that this style of reasoning is nonmono- G = p(b) l

tonic, as augmenting F with emu(tweety) will have
-'flies(tweety) as a consequence, but will not support Since everyone will admit that analogy reasoning is
flies(tweety) as the required T = {bird(tweety) - somehow related to some kind of equality (e.g., par- n
flies(tweety)) is not consistent with the augmented tial equality, partial relevant equality, etc.), we might
F. simply treat various kinds of equality definitions as

hypotheses. In this case, p(b) can be derived if we
assume T = {a = b} as an instance of the hypoth- I

3 Relationship to deduction esis X = Y, i.e., F U {a = b} k p(b). As shown in
[Goe89], there are plenty of possible equality defin-

As suggested above, it is easy to confuse some forms tions possible. The essential relationship suggests
of deduction with abduction because the backward that we are doing analogical reasoning whenever we I
or goal-directed application of modus ponens is in- do abductive reasoning that involves assuming some-
distinguishable from the abductive rule of inference, thing about some kind of equality.
The simplest way to state the relationship between In the above example, so called "source" and "tar-
the two is that the truth-conditional status of ab- get" knowledge consists only of the single fact p(a),
duced sentences is not established in any deductive The only similarity assumption is the hypothesis

way, and so must be supported by a variety of ratio- schema H = {X = Y}, which we interpret to mean I
nalizations, including consistency, lack of evidence to that any X is equal to any Y. In the vocabulary of
the contrary, high probability, etc. analogical reasoning, we have concluded p(b) on the

basis of source knowledge p(a) and mapping a = b.
. ...... ............ ....... ± b1 L .UlLLuT .A :L_ - I

expressive power for default reasoning [Poo88]; Lin and Goebel the "analogical conclusion," but the general struc-
show how Przymusinski's circumscriptive theorem proving t provie for atrar-
[Prz89] is equivalent to a conservative form of prediction, based ture of hypothetical reasoning provides for arbitrar-
on this hypothetical reasoning system. ily complex justifications of arbitrary theories (e.g.,
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see [GG89]). The simple point is that assumptions So abduction can produce explanations and rely
about equality are the substance from which map- on some system of conditional probability to help3 pings are made; theory preference is a generalization choose the best explanation. Two different ap-
of the methods developed for ranking analogical map- proaches to this amalgamation are provided in [LG89]
pings (e.g., [Hal89]). and [GG89]. The former uses a monadic first order

Note further, that this example has no explicit ax- language in graphical form, and attributes a proba-
ioms for equality (other than the hypothesis). Be- bility value to each link in the network (cf. [Pea861).
cause of this, both the goal and the fact must be writ- Reasonable assumptions about independence and Io-
ten according to the standard transformation that ex- calization of probabilistic influences allow abduction
plicitly introduces equality (cf. [Cla78, LvE84]), viz. to the most probable explanation in time that is expo-

nential in the number of atomic goals (observations),
p(a) becomes p(X) A X = a which are usually few. The algorithm uses a Steiner

the goal p(b) becomes p(X) A X = b tree algorithm to find explanations, and incremen-

where variables in goals are existentially quantified. tally computes the accumulating probabilities during
In this way the derivation can be constructed without construction of the explanation.
the explicit need for a full equality axiomatization. The latter approach, [GG89] uses hypothetical rea-
This is not fully general, as shown in (Goe89]. soning directly, together with an extended metalan-

Also note that the predicate symbol = is often as- guage for expressing independence relations on cate-
sumed to mean identity in an interpretation, as op- gories of events (predicates). Inference with the in-
posed to an arbitrary equivalence relation. Many the- dependence statements is combined with explanation
ories of nonmonotonic reasoning that exploit model- generation to identify those most likely.
theoretic minimization (cf. [Rei87]) assume unique
names axioms, viz.

a 1 a002 A C2 :A 3...

I where each a, is an individual constant of the lan- 7 Relationship to nonmono-
guage, and the intended interpretation of the symbol tonic reasoning
= is identity. Usually, because of the proof-theoretic
difficulties presented by equality axioms, this use of As illustrated above, hypothetical reasoning based on
identity is not explicit. This specification of analog- abduction is nonmonotonic. The nonmonotonicitVical reasoning based on abduction suggests an intu- Irs beas.h e fepantosfo ie

itive interpretation of the symbol = is something like is not montonic with respect to a montonically en-

"sufficiently similar, according to what is currently iagng F. As illustrtedci te Twet y e n
known." larging F. As illustrated in the Tweety example in

Section 2, new facts invalidate previously determined

explanations.

6 Relationship to probability It is likely that there is no domain independent

Sc hstrategy for selecting the best T (cf. [Ale88, DW89]),
Since hypothetical reasoning is nonmonotonic, it is so the best one can hope for is to build systems that
not surprising that there is a relationship between find the best domain dependent Ts as efficiently as
abduction and probability. While the debate over possible. In this regard, we have investigated ways
probability versus logic has been somewhat polarized in which deductive attempts to establish consistency
(e.g., [Me88]), it is simple to argue that one way to are related to truth maintenance systems(TMS), con-
address the rational choice of competing explanations straint programming and general techniques for im-
is to choose the most probable. For example, if we proving the efficiency of theorem provers [SG89].
have Note that, despite the pessimism as regards the unde-

I = fp(a),p(b)} cidability of truth maintenance systems for first order

H = {X = X) systems (e.g., [RJ87]), we have constructed such sys-

G = p(c) tems that are empirically more efficient than DeKleer-
style TMSs. Our empirical improvements, motivated

we get two explanations T = fa = cl. and T9 = {b = by the impossibility of asymptotic analysis, exploit
c}. It is desirable to have a probability measure such the properties of the finite failure derivation tree de-
that P(a = cIF) was different from P(b = cIF) in veloped in attempts to establish hypothesis consis-
order to rank explanations. tency.

I 147

.I



8 Conclusion [GG87] RGoebel and S.D. Goodwin. Applying I
theory formation to the planning problem

Abduction is a logical method of isolating interest- In Proceedings of the AAAI Workshop on
ing hypotheses, and so is naturally applicable in ev- The Frame Problem in Ar:tfical Intelli.
cry situation where goal-directed reasoning proceeds gence, pages 207-232, Lawrence, Kansas,
within the context of uncertain or incomplete infor- April 12-15 1987.
mation. Our research strategy has been to attack S
such problems with the undecidable version of a hypo- (GG89] S.D. Goodwin and R. Goebel. Statistically
thetical reasoning specification based on abduction, motivate defaults. (manuscript), 1989.
and to empirically determine necessary improvements [Goe89] R. Goebel. A sketch of analogy as reason- 1
in both specification and implementation, for various ing with equality hypotheses. In K Jan-
applications. tke, editor, Analogical and Inductive Infer-

ence, volume 397 of Lecture Notes in Com-
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1 Introduction Causal theories have been analyzed in detail in
[Geffner, 19,%a] where they are shown to provide a un:-

We explore the relation between default and abduc- fying framework for several domains of interest to A,
tive reasoning. Default reasoning is concerned with the including temporal and abductive reasoning, and logic
adoption of assumptions in the absence of conflicting in- programs with negation (see also [Geffner, 1989b] for re-formation, while abductive reasoning is concerned with luted ideas). In this extended abstract I will summarize -the adoption of hypotheses that increase the coherence the main concepts and results, with special emphasis on

of a set of beliefs Formal accounts of default reasoning the application of causal theories to abductive reason.
have encountered the problem of spurious arguments: mng. Due to the distinction between explained and un-
arguments which rely on acceptable defaults but which explained expectation failures, causal theories not only
support unacceptable conclusions. General accounts of eliminate spurious default arguments, but also permit
abductive reasoning, on the other hand, have encoun- to identify what needs to be explained, what counts as
tered the problems of identifying what needs to be ex- an explanation, and what hypotheses increase the co-
plained, what counts as an explanation, and what hy- herence of a set of beliefs.
potheses can be postulated.

The connection between default and abductive rea- 2 Causal Theories
soning lies in the notion of expectation failures or "ab-
normalities." Default reasoning arises from the mini- A causal theory is a classical first order theory aug-
mization of such abnormalities (e.g. [McCarthy, 1986]), mented with the causal operator 'C', in which certain
while abductive reasoning arises from the need to ex- atoms, abnormalities, are expected to be false [Mc-
plain them. However, not all "abnormalities" are equal. Carthy, 1986]. We use the symbol a possibly indexed
Many examples illustrate that in cases of conflict, one to denote abnormalities. Furthermore, for an interpre-
abnormality may be preferred to others (e.g. the fa- tation M, A(M], called the gap of M, denotes the set
mous "Yale shooting problem" [Hanks and McDermott, of abnormalities true under M. As usual, an interpre-
1987]). Often the source of such preferences is related tation M that satisfies a causal theory T is said to be
to the notion of explanation: some scenarios explain a model of T. A class C of T with a gap A[C] stands
the abnormalities they introduce, while others do not. for the non-empty collection of models M of T with a
As expected, among the competing scenarios that arise gap A[M] C A[C]. Intuitively, since the negation of ab-
from conflicting defaults, the most coherent ones usually normalities are assumptions expected to hold, a class
capture the intuitive default expectations, while less co- C with a gap A[C] represents the collection of models
herent ones give rise to spurious expectations. which validate all assumptions -,a for abnormalities a

Causal theories are default theories which explicitly not in A[C]. We say that a proposition p holds in a class
address the distinction between explained and unex- C of T, if p holds in every model in C. Proof-theoretically
plamed abnormalities. They embed a "causal" opera- this is equivalent to require that p be logically derivable
tor 'C' in the language such that for an abnormality a, from T and a set of assumptions compatible with A[C].
the literal Ca is supposed to hold when a is explained. The operator C is most commonly used to encode
Such an operator permits to make explicit the causal causal or explanatory rules of the form "if a then b"
or explanatory character of rules like "irregular ignition as sentences of the form a * Cb (see [Pearl, 1988]).
causes power decrease," "being sick explains being un- A rule such as "rain causes the grass to be wet" may I
able to go to alasr," and so on The in.rnreftahinn of thiq he. expressed as rain =t- Cgraasvet. which can
causal theories makes use of such rules to identify most be read as saying that if rain is true, then gras-.et
coherent scenarios and determine the conclusions which is explained. The operator C obeys certain constraints;
causal theories legitimately support. here, for simplicity, we will only require a to hold when
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Ca holds (namely, a must be true when a is explained), legitimized while the latter is not.
The operator C induces a preference relation on

classes of models of the theory T of interest, which is Example 2 (Reasoning about change) Let us con-
used to determine the propositions (causally) entailed sider now a bare bones description T of the Yale shoot-
by T (see [Shoham, 1988], for this non-classical form ing problem [Hanks and McDermott, 1987]
of entailment). Such preference relation depends on (1) loaded0 A -ab 1 * loaded1
the abnormalities and the explained abnormalities sanc- (2) alive1 A -'ab2 =* alive 2
tioned by the different classes. An abnormality a is ex-
plained in a class C when the literal Ca holds in C. If (3) shoot 1 A loaded1 * C-alive 2
we denote by Ae(C] the set of explained abnormalities (4) shoot 1 A loaded1 * Cab 2
in a class C of a theory T, then the preference relation (5) loaded0 A alive1 A shoot 1
on classes can be described as follows. This simplified version preserves the main features of

A class C is as preferred as a class C' iff A[C] - AC[C] _ the original problem and gives rise to the same anoma-
A[C']. A class C is preferred to a class C' iff C is as lies pointed out by Hanks and McDermott. The causal

preferred as C' but C' is not as preferred as C. operator, however, makes now the causal character of
In other words, a class C is preferred to a class C' when rules (3) and (4) explicit. In the context of T, the as-

every abnormality in C but not in C' has an explanation, sumption -,ab1 about the persistence of loaded is in
but not vice versa. If there is no class preferred to C, conflict with the assumption -,ab2 about the persistence
then C is said to be a preferred class. A causal theory of alive, and thus two minimal classes of models arise:
T (causally) entails a proposition p if p holds in all its a class C, of models in which the former abnormality
preferred classes, holds, and a class C2 of models in which the later ab-

It is simple to show that in order to determine the normality hold. However, since the assumption -,ab1
propositions which are entailed by a theory T it is suffi- explains the abnormality ab2 in T, i.e. T, -,abj I- Cab2 ,
cient to consider the minimal classes of T; namely, those but not vice versa, the latter class of models is preferred.
classes C of T with a minimal gap A[C]. As a result, the expected literals loaded 1 and -,alive2

Example 1 Let us consider first a simple causal theory are (causally) entailed by T.
T given by the single sentence -'ab1 * Cab2 , where abj
and ab2 are two different abnormalities. Such a theory Example 3 (Logic Programs with Negation)
admits two minimal classes: a class C1, comprised by Consider a logic program P given by the rules:

the models of T which only sanction the abnormality c '- a, --b
abl, and a class C2 , comprised of the models which only d - -c
sanction the abnormality ab2 . Thus C1 has an asso- a 4-

ciattd gap A[Cl] = {abl), while C2 has an associated
gap A[C 2] = {ab 2 l. Both classes represent the mini- and the causal theory C[P]:
mal classes of T, as there is no model of T that satisfies Ca A -b * Cc
both assumptions -,ab 1 and -iab2 , together with the -,c * Cd
restriction Ca * a. The abnormalities a explained in t=* CaI each class C can be determined by testing which liter-
als Ca hold in C. As we said, this amounts checking obtained by translating each rule
whether there is a set of assumptions legitimized in C 7 -a,..., a,,-,. .. ,I which together with T logically imply Ca. In the class in P, into a causal rule:
C2, hence, the abnormality ab2 is explained as the lit- Cal A ... A Can, A A ... A flm * C'y
eral Cab2 logically follows from T and the assumption-,a I lgitmizd i C2 Ontheothr hndtheabhr- Provided that all non-causal atoms (atoms which do
-abj legitimized in C2. On the other hand, the abnor- not involve the operator C) are considered 'abnormal,

* mality ab I is not explained in C1 , as there is no set
of assumptions validated by C1 which supports the lit- it can be shown that the canonical semantics of P [Apt
eral Cabj. It follows then, that the class C2 is causally et al., 1987] and the interpretation of the causal theory

preferred to C,, as A[C 2] - AC[C2] = 0 C A[C1], but C[P] legitimize the same behavior. Moreover, the same
ib - equivalence holds for any stratified program P [Geffner,

[since C and C2 are the only minimal classes of T, C2  1989a]. In other words, causal theories provide an alter-

remains as the single causally preferred class of T, and native semantics for characterizing logic programs with

the propositions -ab 1 and ab2 are (causally) entailed negation.

byT. 3 Abductive Reasoning

Note the asymmetry established by the causal opera- Having illustrated the generality of causal theories, we
tor in the sentence -,abl * Cab2 ; while the assump- focus now on their application to abductive reason-
tions -,abj and --ab2 are incompatible, the former is ing [Peirce, 1955, Charniak and McDermott, 1985]. The
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central idea is to associate a coherence measure to con- 5
trzts (theories) as opposed to classes of models, all( pistons.xings-uued oil-cup-oled
to identify abduction with the adoption of hypotheses os k I
which render a theory more coherent. Intuitively, tile oldparkplugs
coherence --or, for that matter, the incoherence-- of a o
context 7' will depend on whether the abnormalities it oilIack
declares are explained. irregular-ignition

Formally, if C., i = 1, . n are the preferred classe's highengine-temp
of T, we define the incoherence set 1(71 of 7' to be the
collection of sets A"[C,] = A[C.J - Ac[Cil, i= 1_ . .,
where A[Ci] and AI[Ci] stand for the gap and the ex-
plained gap of class C, respectively. melted.pistons power-.dcroase

A context 7' is as coherent as as a context 7' then,
if for every set S in 1[71 there is a set S' in 1(7"] such
that S C S'. Furthermore, 'F is more coherent than 7" Figure 1: A causal network
if T is as coherent as 7", but T' is not as coherent as T, I

For example, a context in which Tim is known to be
a sick non-flying bird, is more coherent than a cont'xt Let us assume now that power-.dcrease is observed,
in which all that is known is that Tweety is a non-flying and let 7' refer to the resulting context. Such context
bird, as the former provides an explanation for Tim's accepts a single preferred class of models in which the I
unexpected feature, abnormality power-dcrease holds but is not explained.

Any belief state 131 = (7',Ej) with a non-empty set of
Given a pool S of possible conjectures that cal be conjectures E, will explain such incoherence away, and

adopted as hypotheses (see |Poole, 1987]), we define bc- indeed, any such belief state will be mazamally-coherent.
ICfstates as contexts T+- that result from augmenting However only those states containing a single hypoth-
a causal theory T with a set of conjectures F, E E I,, esis from E will qualify as admissilble belief states.
logically consistent with 7'. We often denote such states Thus, there are three admissible belief states, involving
as pairs (7', S) to distinguish the solid evidence ' from three singleton hypothesis sets {pistons-rings-used),
the hypothetical beliefs E. The definitions below will {oil-cupholed}, and {old-spark.plugs) respec-
Ipermit us to derive E from T in such a way that the re- tively. If -high-angina.tsmp is further observed,
suiting theory 7'+ E is maximally coherent and devoid however, only one admissible hypothesis would re- I
of unnecessary commitments. main: old.spark-plugs; both pistons-rings-used

First, we say that a belief state 3 = (7',--) is less and oil-cup-holed require high-onginstemp in or-
committed than a belief state ' = (', s), if EE C S'. der to explain power-ecrease. Note that if
Likewise, we say that 5 = (T, E-) is a maxmally-coherent -,irrsgularAgnition also becomes available, no ad- 1
belief state if there is no other belief state 0' = (,1') missible hypothesis would remain. In such context,
more coherent than B. there would be a single (incoherent) belief state involv-

Finally, a maximally-coherent belief state B = (7', R) ing no conjecture at all. Such behavior is thus different
is admissible, when there is no maximally-coherent be- from the behavior sanctioned by approaches in which
lief state B' = (7, ') less committed than 8. Intu- abduction is viewed as deduction in a completed model
itively, admissible belief states (T, E), represent belief (e.g. [Kautz, 1987] and [Console et at., 1989]).
states which a rational agent with the information in) 7'
may choose to adopt. We also say in that case that E isan admissible hypothesis set in TF, and that the coiljec- It is common to find two different types of diagnos-
tures in are admissible hypotheses, tic tasks in the Al literature: abductive diagnosis, inwhich the search is for hypotheses that imply the obser-
Example 4 (Simple Abduction) Consider the cau- vations, and consste ncy-based diagnosis, in whit.! the
sal network depicted in fig. 4 describing a fragment of search is for hypotheses that render the model and the
the knowledge relevant to the diagnosis of a malfunc- observations consistent (see [Poole, 1989]). The example
tioning car (Console et al., 19891. We encode such a net- above, for instance, belongs to the first category. There Iwork by mapping each causal link a - Pi to a causal ru!e is, however, a natural way in which consistency-based

a * C#, and by regarding each token in the net as all diagnosis can also be accommodated within the present
'abnormality' that needs explanation. Furthermore, we framework. All that is needed is to stipulate that 'ab-
assume a pool 3 of conjectures which includes only the normalitis' ar, elf- xpa-etory, "d to wm
top propositions pistons.rings.-usad, oil-cup-holed, expressions of the form a =, Ca for every relevant 'ab-
old.spark.plugs, all of which are assumed to be self- normality' a. In that case all minimal clases will be
explanatory; namely, for each such conjecture we ts- perfectly coherent, and thus, no need for abductive hy-
sume Q C . potheses would ever arise.
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There are however other patterns of abductive infer- d6 dl d2  d3  d4
ence which cannot be accommodated so easily. For in- N
stance, we may wish to express above that the hypothe-

sis pistons.rings.usod is more likely than the hypoth-
esis oil.cup.holed. For that we not only need to be
able to specify the pool of conjectures, but also how al R2  23
such conjectures are supposed to be ordered. The ex-
tension below addresses this limitation and shows how dl >- d2 >- d3 >- d4 >- d5
this additional information can be used to prune the
space of admissible hypotheses.

A preference relation on conjectures is a strict partial Figure 2: A simple diagnostic model
order on the set E of conjectures. We denote such an
ordering by the symbol '>-.' The expression >- t' is
thus to be read as stating that conjecture t is preferred again to three admissible belief states; however, while

to conjecture t'. The preference relation is extended to conjectures d2 and d3 remain admissible singleton hy-I sets of conjectures as follows. potheses sets in new context, the third hypothesis set is
A set of conjectures E is preferred to a set of conjec- now given by the compound hypothesis {dl,dS}. Fur-

tures ', if every conjecture in s-- ' is preferred to some thermore, due to the preference order on conjectures,
conjecture in 'E' - 1 Similarly, a mazim ally-coherent the hypothesis d2 becomes the single preferred hypoth-
belief state B = (T, ) is a preferred belief state in con- esis, as is preferred to d3 and d5 .
text T, if there is no other max:mally-cohereni belief Finally, let us assume that 23 is observed. The new
state B' = (T,' ') with an hypothesis set 'E' preferred to context gives rise again to three admissible belief states,
e involving the admissible hypotheses sets {dj, d4 , d5},
The pair formed by a causal theory and an ordered {d 2 ,d4 }, and {d 3 } respectively. However, due to the

set of conjectures constitute an abducive causal theory. preferences on conjectures, this time d3 remains as the
We illustrate the application of abductive causal theo- single leading hypothesis, followed by the compound hy-

I ries in a diagnostic task of the type considered by Reg- potheses {d2 ,d4 }, and only then by {dl,d 2 ,d6 }.
gia et al. [1985.
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I Probabilistic and Qualitative AbductionII

Judea PearlI
Computer Science Department

University of California
Los Angeles, California 90024

Abstract ly established (i.e., conjectured) and subject each type to a
different set of inference rules [Pearl 1988a; Pearl 1988b;

This paper discusses relations between the probabilistic and Geffner 1989]. The second method is to regard abduction
qualitative approaches to abduction; it then offers a proba- as a he me c ess that.od ts o a au sal
bilistic account of the connection between causation and theory (Poole 1987; Reiter 1987].
explanation, and proposes a non-temporal probabilistic se- The obious weakness of the qualitative approach is the
mantics to causality, lack of rating among competing explanations and, closely

1. Introduction related to it, the lack of ratings of pending information
sources. On the other hand, qualitative strategies demand

In the probabilistic approach, abduction is considered the fewer judgments in constructing the knowledge base.task of finding the "most probable explanation" of the evi- In qualitative theories simplicity is enforced by explicitly

dence observed, namely, seeking an instantiation of a set of encoding the preference of simple theories over complex
explanatory variables that attains the highest probability, ones, where simple and complex are given syntactical
conditioned on the evidence observed. The qualitative ap- definitions, e.g., smallest number of (cohesive) propositions
proaches make explicit appeal to explanatory scenarios, and [Thagard 1989], minimal covering [Reiter 1987; Reggia et
seek scenarios that are both coherent and parsimonious. al. 1983]. These syntactic ratings do not always coincide

The major challenge for both the probabilistic and the with the notion of plausibility, for example, two common
qualitative approaches is to enforce an appropriate separa- diseases are often more plausible than a single rare disease
tion between the prospective and retrospective modes of in explaining a given set of symptoms [Reggia 1989). In
reasoning so as to capture the intuition that prediction probabilistic theories, coherence and simplicity are
should not trigger suggestion. To use my favorite example: managed together by one basic principle - maximum pos-
"Sprinkler On" predicts "Wet Grass," "Wet Grass" sug- teior probability.
gests "Rain," but "Sprinkler On" should not suggestI "Rain." In the probabilistic approach such separation is 2. Explanation and Causation
enforced via patterns of independencies that are assumed to
accompany causal relationships, cast in conditional proba- we say that "a explains b" we invariably assume the ex-
bility judgments. In the qualitative approaches the separa- istence of a causal theory according to which "a tends toItion is accomplished in two ways. One is to label sentences isncofaaulthryaodngowih"aedso

cause b" and, furthermore, that in the particular situationas either causally established (i.e., explained) or evidential- where b was observed, "a actually caused b." The subtle

* This work was runnorted in nart by Naiona hi S;.n,- * difference between "tends to explain" and "actually
Grant #IRI-88-21 444 and Naval Research Laboratory Grant caused" has been the subject of much discussion in the phi-I #N00014.89-J-2007. losophical literature, a summary of which can be found in
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Skyrms & Harper [1988]. The classical example amplify- have given the term "explain" a procedural semantics, at-
ing this difference is that of a skillful golfer who makes a tempting to match the way people use it in inference tasks, I
shot with the intention of getting the ball in the hole; the but were not concerned with what makes people believe
shot is actually quite poor, but the ball hits a tree branch that "a explains b," as opposed to. say, "b explains a"
and is deflected into the hole. Here, we are likely to say or "c explains both a and b." The quest for an empirical
that the golfer's skill and attention "tended to cause." but semantics of explanation has a long history in the literature
did not "actually cause" the ball to get in the hole. Expla. of probabilistic causality, where the focus has been finding
nation is connected with the latter, not the former, the an operational definition of causation. (see Reichenbach I
phrase "tends to explain" is hardly in use in the language, [1956]; Simon (1957]; Good [1961]; Salmon [1984];
instead, we use the phrase "is normally suggested by." Suppes [1970]; Glymour et al. [1987]; Skyrms [1988]).

In the language of probability thir distinction can be re- ith the exception of Simon [1957] and Glymour et al. I
lated to a difference between two conditional probabilities. [1987], temporal precedence was assumed to be essential
If C has a tendency to cause E, then we expect P (E I C) to for defining causation. For example, Reichenbach (1956,
be high. If C is identified as the event that "actually page 204) says that C is causally relevant to E if:
caused" E, then we expect P(CIE, context) to be high
where, by context, we mean other facts connected with the (i) P (E IC) > P (E)

observation of E (e.g., hitting the tree in the golfer exam- u
ple). (ii) There is no set of events earlier than, or simultaneous

In general, the probability P(EI C) stands for a mental with, C such that conditional on these events E and C

summary of a vast number of scenarios leading from C to are probabilistically independent. I
E. Some of these scenarios involve contingencies such as Suppes [1970] subscribes to a similar definition, with an ex-
trees intercepting golf balls, and some involve micro plicit requirement that C precedes E in time.
processes that can be articulated only at more refined levels These criteria offer a working definition for causation
of abstraction, for example, the interactions between the provided that the observed dependencies are not produced
golf ball and the ground particles. When we confirm the by hidden causes and provided that the set of events men-
sentence "C actually caused E" we normally mean that tioned in condition (ii) is restricted to be "natural" events,
some path of contiguous micro events either can be excluding artificial events, syntactically concocted to meet
presumed to have taken place or was actually observed. condition (ii) [Good 1961; Suppes 1984].
Such events are encoded in a knowledge strata more refined I would like now to propose a non-temporal extension of
than the one used in the main discourse. For example, a the Reichenbach-Suppes definition of causation, one that
pathologist may assert that the bullet was the "actual" determines the direction of causal influences without resort-
cause of death only if a collection of kty anatomical ing to temporal information. It should be applicable, there-
findings are observed confirming the existerce of a contigu- fore, to the organization of concurrent events or events
ous physiological process leading from the bullet entry to whose chronological precedence cannot be determined em-
death. pirically. Such situations are common in the behavioral and

medical sciences where we say, for -xample, that old age

3. What's in an Explanation, a Probabilistic explains a certain disability, not the other way around, even

Proposal though the two occur together (in many cases it is the disa-

If abduction is defined as "inference to the best explana- bility that precedes old age). Similarly, we say that an in -
ion", a tuon sin ask isre how we defi explaa- coming rain storm explains the falling barometer although,
tion", a natural question to ask is how we define an expla- perceptually, the latter precedes the former in time.
nation. Both the probabilistic and qualitative approaches to The intuition behind my definition revolves around the
abduction have so far treated the term "explaxl" as a given perception of voluntary control [Simon 1980] and its proba- l
pximitive reationship among events, from which a *best bilistic formulation in terms of conditional independence -

overall explanation is to be assembled. Both approaches (see Pearl [1988], page 396). The reason we insist that the
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I rain caused the grass to become wet and not that the wet ers. For example, I often hope thet m broker would ex-

grass caused the rain is that we can create conditions which, plain the falling prices of my stock in terms of investors'
without disrupting the natural dependence between rain and panic and other transitory phenomena, so as to allay my

I wet grass, can get the grass wet without affecting the rain. fears of more profound explanations.
We can, of course, also create a situation where the rain Any non-temporal definition of causation immediately
falls and the grass remain dry, say by seeding the clouds raises the question of consistency, for example, is it possi-H and covering the grass, but under such conditions the ble that using criteria (i) through (iii) we would generate
dependence between rain and wet grass is disrupted, which two incompatible assertions: "C cause E" and "E causes
violates the symmetry betweer the two procedures. C?" It can be shown, however, that for a larger class ofI As was stressed in Pearl [1988, page 396], the perception probability distributions these criteria are safe from such in-
of voluntary control is not a necessary element in this consistencies. Moreover, for those distributions that are un-
asymmetry between cause and effect, but may in itself be a safe, we can constrain (iii) by an additional restriction:I bi-product of dependencies observed among uncontrolled
variables. In medical research, for example, we often (iv) For every set of events S' that does not contain E and
search for a causal culprit of a disease much before attain- C, if there is an event E' (not in S') such that

I ing control over such cause. P (C IS', E')> P (CI '),
Articulating these considerations in probabilistic terms,

we come up with the following non-temporal extension of then

I the Reichenbach-Suppes definition. P(EIS',E') *P(E IS').

Definition: (non-temporal causation) An event C is said This restriction guarantees that we certify C as a direct

* to be a (tentative) direct cause of E if cause of E only if the criterion (iii) is violated when we in-
terchangeCandE.

(i) P (E I C) > P (E) The definition above is a translation of that given in Pearl
[1988b] to the language of Reichenbach and Suppes, where

(ii) There is no set of events such that conditional on causes are propositional events having "positive"
these events E and C are independent, influence, hence the inequality in (i). In Pearl [1988b] these

conditions were articulated in terms of variables rather than
(iii) There is an event C' and a set S of events not con- positively influencing events. A similar definition, in terms

tamining C, E and C' such that: of variables, was introduced in Spirtes et al. [ 1989].
Another variant of this definition can be articulated using

P(EIS,C') >P(EIS), and the graphical language of Bayesian networks, by consider-
ing all n! orderings in which such a network can be con-

P(CIS,C')P(CIS) structed. We say that a variable C is a direct cause of vari-

The set S in (iii) represents conditions needed for elim-

I inating possible spurious dependencies between C and C'. (1) C and E are adjacent in all orderings, and
Event C' represents our means for gaining control over E,
namely, an event that can cause E without affecting C, thus (2) There is an ordering in which C is a free parent of E,

I providing an alternative explanation to E. Ironically, and i.e., non-adjacent to some other parent of E, and there
almost circularly, explanations are defined in terms of their is no ordering in which E is a free parent of C.
very destruction by other explanations; C qualifies as an This formulation reveals the type of empirical asymmetry
explanation of E only if it can be "explained away" or that is responsible for evoking the perception of directional-
rendered superfluous by some alternative explanation of C'. ity i causal relaion lships.
This is not surprising in view of the fact that people often t pa c tical sips
seek an explanation for the sole purpose of ruling out oth- On the practical side we also must address the question of
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computation complexity since, in principle, conditions (ii) tario).
and (iii) call for testing all subsets of events. It can be I
shown that, for a larger class of probability distributions, Reggia, LA. 1989. Measuring the plausibility of explanato-
effective algorithms exist that determine the direction of ry hypotheses. Behavioral and Brain Sciences Vol.

causal influences without testing all subsets of events 12(3): 486.487.

[Geiger 1990; Verma 1990].
A question of a more philosophical flavor concerns the Reggia, J. A., Nau, D. S., and Wang, Y. 1983. Diagnostic

relation between temporal precedence and the orientations expert systems based on a set-covering model. Intl. I
determined by our definition: Why is it that we never ob- Journal of Man-Machine Studies 19: 437-60.

serve a clash between the two? The answer, I believe, lies H
in the flexibility of our language; whenever the flow of Reichenbach, H. 1956. The direction of time. Berkeley, I
dependency-based causality seems to clash with the direc- CA: University of California Press.
tion of time we invent new variables (hidden causes) that Reiter, R. 1987. A theory of diagnosis from first principles.
reverse the former to comply with the latter. Artificial Intelligence 32(1): 57-95.
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