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Abstract

The nonlinear, large amplitude free vibration of composite helicopter blades under
large static deflection is investigated analytically. A new model capable of handling
large amplitudes as well as large deflections was developed, based on the work in a

previous report by Minguet. The model can deal with large displacements and rota-
tions by use of Euler angles and can account for structural couplings such as bending-
twist and extension-twist. The reduction of this large deflection model to a commonly
used moderate deflection model is also shown. A Newton-Raphson type iterative so-
lution technique based on numerical integration of the basic large deflection equations
is seen effective for the present analysis. Two different lay-ups [0/90],,, [45/0],, of
graphite/epoxy flat beams have been selected to demonstrate the large am-litude
analysis. The behavior of the first and second bending, the first fore-and aft, and the
first torsional modes is presented as tip static deflection and tip amplitudes increase.
It is found that both large static deflection and large amplitudes can affect the fore-
and-aft and torsion modes significantly, but bending modes are not influenced much

by the geometrical nonlinearities.
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Chapter 1

Introduction

The behavior of nonlinear, large amplitude free vibration of composite helicopter rotor
blades under large static deflections is investigated. A previous report by Minguet,
Ref. 1 indicates that under large static deflections, natural frequencies and mode
shapes of the blade, particularly those of the fore-and-aft and torsion modes show
interesting trends that are not apparent from the characteristics of undeform.ed
cantilever beams. The influence of the large static deflections on the modes was
found by linearizing the governing equations of motion around a given static position
to yield the small amplitude vibrations of the beam around that large static position.
In the present analysis, the amplitudes of motion are also allowed to be large, and
emphasis is given on how the vibrational behavior of the blades is affected by not
only the static deflection but also the an:plitude level at the tip. This type of free
vibration analysis should give insight into more general aeroelastic problems where
large amplitude motion is accompanied by nonlinear exciting forces such as nonlinear
periodic forces due to gravity or aerodynamic loads due to dynamic stall. A simple
such analysis, dealing only with geometrical nonlinearities of the rigid blade, was given
by Chopra and Dugundji in Ref. 2. More recently Dunn and Dugundji have given
another such analysis, this time dealing only with aerodynamic stall. A fully nonlinear
aeroelastic analysis involving both structural and aerodynamic nonlinearities would be
of interest. Flexible helicopter blades are good examples in which these nonlinearities

play important roles, and the present analysis should serve as an introduction to the




understanding of such complex phenomenon.

There exist two types of nonlinear helicopter blade equations that can be readily
available for the purpose of present analysis; the equations that are based on various
geometrical ordering schemes, and the ones that are not based on ordering schemes.
The former group of equations approximate large displacements and rotations mostly
up to second order(e.g. Ref. 4, 5) while the latter group preserve the complete
nonlinearities in them (e.g. Ref. 1). Since strong couplings between various static and
dynamic parts of the equations are expected in the nonlinear large amplitude
vibrations, the set of complete nonlinear equations of the latter group is preferred.
The nonlinear equations derived by Minguet in Ref. 1 are used here for their simplicity
and immediate availability for analysis of composite blades. However, to illustrate
correspondency between these two different types of equations, an attempt is made to
reduce the nonlinear equations by Minguet t .e second order equations for moderate
deflections that are given by Hodges and Dowell in Ref. 4, and Boyd in Ref. 5.

A new technique based on harmonic balance and iterative Newton-Raphson
algorithm is introduced to solve for the modes and their frequencies as functions of
amplitudes of interest under moderate to large static deflections. Results of numerical
analysis are given for two lay-ups [0/90]3,, and [45/0], of graphite/epoxy composite
beams under various static deflections.

All assumptions made earlier in Ref. 1 are retained throughout the analysis. They
are, the blade itself is long enough to be treated as a one-dimensional model, shear
deformation can be neglected, and warping of the cross section of the blade can
be neglected. Also, material nonlinearity is not considered here. As indicated by
Friedmann in Ref. 6, this model has some limitations since it does not include shear
deformation and warping of the blades which may be present to a small extent in
realistic helicopter blades. However, it is only a matter of refining to include such
structural effects, and for the purposes of current analysis the model is found to

~ be adequate to show the basic characteristics of large amplitude free vibration of




composite helicopter blades.




Chapter 2

Analytic Modeling

2.1

Basic Equations

There are twelve first-order, nonlinear differential equations that describe the statics

and dynamics of composite blades completely. For thorough derivation of the equa-

tions see Ref. 1. All the equations are derived based on the following transformation

matrix that transforms the global coordinate z,y, z into the local one §,7,{ (see figure

1),i. e.,

(T]

[ cos B cos ¢

—cos§ siny
—sin 6 sin 3 cosy

sin 8 sin ¢
—cos § sin 3 cos ¢

L

cos 3 siny

cos 8 cos Y
—sinf sin g3 siny

—sin @ cosy
—cos 6 sin 3 siny

sin 3

sin§ cos 3

cos § cos 3

Here ¥, 3,0 are the local Euler angles. The transformation matrix is orthogonal and

related to the rotation (or curvature) matrix as follows.




with

where
I‘Cf =
Kp =
K( =

7t =(1)"
a|T
20 - )
0 Ke —Kp
(Kl=1] -n¢ 0 &
Ky — K¢ 0
8 . _Ov
6—3 +sin 3 5;—

—cosﬁ?£ +sin 8 cosﬁa—w

ds ds

sin@gé + cos§ C0553_¢

Os Os

Inverting the above differential equation yields

6_0
Os
éé
ds
9y
Os

(twist rate)

(bending about n axis)
(2.4)

(bending about ¢ axis)

= K¢ —sinf tan 3K, — cos 8 tan B

= —cosfx,+sinbdx;

sin 4 cos §
—= —_=
cos3 " cosf3 ¢

The global displacements z,y, z are related to Euler angles via

-Z—:: = (1 +¢€)cosf cosy
%Z— = (l1+¢€)cosBsiny
%’z_ = (1+¢)sing

(2.6)

where € is the axial strain along the reference line. In addition to the above six

compatibility equations, one has to consider equilibrium of forces and moments of the




beam. The equilibrium equations can be written either in global or local coordinates.
Here they are written in local coordinate in order to take into account the large
deformation of the beam in space. The first three differential equations that describe

the equilibrium of the local force resultants Fi, F,, F3 are

aF

—67‘—KcF2+RnF3+T11P:+T12Py+Tl3pz+Pl =0

aF.

—6-3—2+ch1—N€F3+T21p,+T22PV+T23P,+})2 = 0 (27)
0F;

'53__"inFl+K£F2+T31P2+T32py+T33px+p3 =0

with

pL : applied load vector in local axis = py, p2, p3

pc : applied load vector in global axis = p,, p,, P:

The other three differential equations describe the equilibrium of the local moment
resultants M, M., M;.

oM
"5':’—1—K<M2 +K,,M3 +T11m, +T12mv +T13m, +m, = 0
oM,
55 + K¢ M, - K¢ M+ T, m; + ngmv +Tysm, +my—F3 = 0 (28)
OM;
s — KoMy + ke My + Taym; + Tsomy + Tagm, +m3+F, =0
with
m; : applied moment vector in local axis = m,;, m;, m3
mg : applied moment vector in global axis = m;, m,, m,

In helicopter problems, generally two kinds of loadings are arised; inertial loads that
include normal and angular acceleration, Coriolis acceleration, centrifugal and gravi-
tational forces, and aerodynamic loads that include both steady and unsteady parts.

The former group usually appears as the global pg, Mg while the latter group appears




as the local py, and ;. In the present analysis only the normal, angular acceleration

and gravitational loads are considered. Hence for a blade without mass centroid offset

P = ~mzZ

pyp = -my

p: = -mi—-myg (2.9)
m, = m, = m, =0

and

I
o

P = p2 = P3
my, = —I,8 (2.10)

me = m3=0

Finally, a set of generalized stress-strain relations are incorperated via tke following

six linear equations.

[ Fy ) [ Eyw En, Ez Ey Es E] | €
F, Ey Euy Eyy Ejs Egg Yen
| _ Eyy Esy E3s Esg Ye¢ (2.11)
M, B Ey Ess Eg K¢ )
Mz SYI\’I E55 E55 Rn

L M3 [ | Ees | | n¢ |

Here ¢, v¢c represent the two transverse shear strains. In its most general case, the
ahove stiffness matrix can be full, i. e. there can be couplings between all of three
force resultants, three moment resultants and all of six strain components. However in
consistancy with the earlier assumptions of a Bernoulli-Euler beam, the calculations

of the two shear strains are completely ignored during the current analysis.




2.2 Reduction of Basic Equations for Moderate
Deflections

Before proceeding with the large amplitude vibration solution of the basic nonlin-
ear equations presented in the previous section, the equations of motion in u, v, w,
and ¢ that were derived by Hodges and Dowell, Ref. 4, and Boyd, Ref. 5, for mod-
erate deflections will be rederived from the twelve general nonlinear equations 2.5
through 2.8. Only the case of isotropic blade with no mass centroid offset is consid-
ered here for illustration. In this way, the approximations of the moderate deflection
analysis can be assessed.

The first step in the reduction process is to rewrite the force and moment equi-
librium equations in global z, y, z directions instead of local £, 7, ( directions. One
can write the local force equilibrium equations 2.7 in vector form as

%ﬁ;—L +[s]T FL+ (TP +pL =0 (2.12)
where L, and G refer to local and global components. Multiplying by [T)7 and noting

the basic kinematic relations given by equation 2.2 gives,

8F, oTT = . .
T L T =
(T} 7 1 5, FL+pc+(T) pL=0 (2.13)
and upon rearranging,
0Fs | ..
=0 2.14
5, T PCT (2.14)

where one has

per = b+ [T) pL

Fe = [T]TF, (2.15)
F, = [T Fg




In scalar form, equation 2.14 becomes,

oF,

6.’ - pzT

OF,

8—;’ = —pr (2.16)
OF,

68 - pzT

Similarly, one can write the local moment equilibrium equations 2.8 in vector form

as,
y 0
M 3 - - -
gg—L-i-[n]T‘WL%-[T]mgﬁ-mLﬁ- -F =0 (2.17)
s F,
Applying the same transformations as for the force equilibrium equations results in,
+ mer + [T] -F; > =0 (2.18)
Os F
2
where one has defined,
mier = thg+ (T) g
Me = [T)"M; (2.19)

M, = [T|Mg

In scalar form, equation 2.18 becomes

aMr

Ey +mr Ty F+TywF, = 0

oM,

aav+muT-T22F3+T32F2 = 0 (220)
oM,

s +m,r —TuF3+ Tk, = 0

The local force components are related to the global components from equations 2.15

as




F, = TuwF,+T,F,+TF,
F = TnF,+TnF,+TyF, (2.21)
F3 = T31F,+T32FV+T33F,

One places the above into equations 2.20 and simplifies by using the following relations

obtained from noting that {T]~' = [T}7 and applying Cramer’s rule with |T| = 1.

Tu = T22 T33 - T23 T32
T12 = T23 T31 - T21 T33 (2-22)
T13 = T21 T32 - T22 TJI

This will result in the three scalar equations,

oM,

Os +sz_T13Fy+T12Fz =0

oM,

63v+myT+T13F,—THFz =0 (223)
oM,

s +m,r-T, F;+Th F, =0

Taking the derivatives of the last two equations and introducing the force equilibrium

equations 2.16 gives

52My amvT 3 aTll
597 + s + 5;(T13Fz)+Tllpr "Fz—a—s' 0
0*M, Om,r 0O 8Ty,
a7 + 3e 5;(7’12 F;)-Tupsr+ F, . = 0 (2.24)

In addition to these, it is convenient to keep the local moment equilibrium in the §

direction,

oM,
Os

The above moment equations together with the three global force equations 2.16 are

the equivalent of equations (71 b, ¢) (74), and (69 a, b, c) of Hodges and Dowell, Ref.

- K¢ M2+n,,M3+m17- =0 (225)

5. No approximations have been made as yet in equations 2.16, 2.24, 2.25.

10




The second step in the reduction process is to look at the kinematics and to
approximate the Euler angles, ¥ and 3 in terms of global deflections, v and w in the

z and y directions respectively. From the kinematic relations equations 2.6, one has

v = Oy = cosf siny
Os
N
wo= Zo = sinf (2.26)

where
(y=2)

and the axial strain € has been neglected relative to unity. These equations give rise

to the trigonometric relations, to second order,

sinf = v
cos@ ~ 1-—w?/2
singy ~ (2.27)

cosyp ~ 1—1v'%2

so that effectively, the two Euler angles 3 and ¥ are approximated to second order as

1
g

12
<

" ' (2.28)

By differentiating equations 2.27, then solving for 3’ and ¥’ keeping terms only to
second order, one obtains the same expressions as would have been obtained by
simply differentiating equations 2.28 directly. Finally, substituting the 3’ and %’ into
the three curvature strains x¢, x,, 5 given by equations 2.4 and keeping terms to

second order, results in,

11




ke ~ 8 +w'v”
K, =~ v"sinf —w"cosd

ke ~ v"cosf +w"’siné (2.29)

The three curvature strains are now expressed, to second order, in terms of global
deflections v, w and Euler rotation angle §. Often, it is more convenient to express
the twisting behavior of the blade in terms of a total twist angle ¢ which is defined

as,
¢=/0 neds=9+/0wvda (2.30)

In this case, the curvature strain x¢ and the Euler angle § are replaced in equa-

tions 2.29 by,
Re = d)l
§ = ¢~/ w'v"ds (2.31)
0
Since the correction to the Euler angle is a small nonlinear term, it is often neglected
and the relation 6 ~ ¢ is used.

The second order approximations to the Euler angles as given by equations 2.27
are also used for the general transformation matrix [T']. Placing these trigonometric
relations into the basic transformation matrix [T), equation 2.1 gives to second order,
[(1-v?/2-w?/2 o w' ]

—(v'cosf + w'sinf) cosf(1l —v?/2) sinf (1 - w?/2)
[T) ~ (2.32)

(vVsinf —w'cos ) —sinf(1—v?/2) cos8(1 —w?/2)

!
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The third step in the reduction process is to relate the moment resultants to the
curvature strains, and then to the coordinates v, w, §. Using the generalized linear
stress-strain relations given in equation 2.11 and introducing the strain-displacement

relations of equations 2.29, one may write,
Mi = Eure =~ GJ(0'+uw'v")

M,

i

Essk, ~ EI,(v"sinf — w"cos¥) (2.33)

My = Egr; ~ EI;(v"cos8 + w"sinb)

The above are for a blade pricipal axis system located alone the elastic axis, where
there is no coupling between the ¢, 7, and { axes. For non-principal axes, there
may be additional couplings between 7 and { and for non-elastic axis, such as in
composite blades, there may be additional couplings between the { and 7 and ¢ and
¢ curvatul;es. For use in the equilibrium equations 2.24, it is also required to express
the moments in global z, y, z directions in addition to the local £, n, { directions

given by equations 2.33. From equations 2.19, one has

AM, = TH}V[] + T211M2 + T31M3
MV = TlZ“[l + Tzz;‘[g + T321M3 (2-34)
M, = Tl:}l‘[l + T23A’!2 + T33M3

This gives, to second order,

M, = GJ§v —(EI sin?6 + EI, cos* 6) w"
—(EI, - EI,) cos 8sin 8 v"

M, = GJ6w +(EI cos?8 + EI, sin? §) v" (2.35)
+(EI, — EI,) cosfsin § w"

M. is not given above, since in the present formulation, the local moment M, is used

rather then the global moment M,.
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Finally, to complete the reduction process, one places the moments equations 2.35,
2.33 and curvature strains equation 2.29 into the equilibrium equations 2.24, 2.25 to

obtain,

(GJ6'v' — (EI, sin* 6 + EI, cos’ ) w"” — (EI; — EI,) cos 8sin §v")"

+Hw' F) + (1-v?/2—w?/2)p,r - F, (V" + w'w") +mi; =0

(GJ §'w' + (EI, cos’ 8 + EI, sin’ )v" + (EI, — EI,) cos §sin § w"]"

(W Y+ (1=-v%2-w?/2)pyr + F,(V'v" +w'w")+mip =0  (2.36)

(GJ (6 +w'v")) = (EI, — EI,) [(w" — v") cos §sin § + v"w" cos 26)

+m1’[‘ =0

The force loadings F;, F,, F, in the above are found from integrating the global force
equations 2.16. For free vibrations, the inertial loe _.ngs s, gy, p: and m, are given
by equations 2.9 and 2.10.

Although the above equation< have been reduced formally to second order, some
further simplicaticns are still made to reduce them to a simpler form. First, as
mentioned in Ref. 4, by integrating the third equation, then multiplying it by v/, then
subtracting it from the first equation, one can eliminate the GJ §' v’ term, introducing
only new third order terms from the third equation. Hence, to second order, the
GJ ' v’ term can be neglected. Similarly for the GJ ¢’ w’ term in the second equation.
Next, the v and w terms can be neglected compared to unity for moderate deflection
slopes. This would also eliminate the F, and F, terms since they were multiplied by
9Ls and Ty, is now set equal to unity as seen in equation 2.32. Along the same lines,

Ads

all derivatives

in these equations can be replaced by
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since from the kinematic relations, equations 2.6,

8 08 0z d 8
a5 = gga:(l—waﬂ-vaﬂ)g:a (2.37)

Also, it is convenient to introduce the total twist variable ¢ as defined by equation 2.30
rather than deal with the Euler angle §. With these simplifications, the previous

eqautions can be rewritten as,

w: (LI sin?d + EI, cos’ §)w” + (EI, — EI,) cos§sin §v"]"

__(wi Fx), = DT + 7n,:ﬂ.

v: ((El; cos’8+ EI, sin’§)v" + (EI, — EI,) cos §sin § w")"

~(v' Fe) = p,r — m;T (2.38)

o: —{(GJ¢Y +(EI - EL)[(w" - v") cosf<in § + v"'w" cos 26}

=mrT

where one has,

F. ~ +/| pirde (2.39)

e ~ u +v?24w?2=0

Equations 2.38 are effectively the nonlinear moderate deflection equations presented
by Hodges and Dowell, Ref. 4, Boyd, Ref. 5, and others. They have been shown
to arise from a straightforward reduction of the general nonlinear, large deflection
equations given by Minguet and Dugundji, Ref. 1, and presented here in section 2.1.
Often, the relation § ~ ¢ is used in place of the more accurate relation given by
equations 2.39. The € = 0 relation of equations 2.39 represents an effective no stretch
condition and is used to determine the axial deflection u since v and w deflections
have been determined. For vibration problems the inertia loadings are given by

equations 2.9 and 2.10 with —I,6 replaced by —I,¢.
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One last item of reductions of these equations comes about by eliminating the
trigonometric functions in them. For a flat blade without built-in twist, §, = 0, the

trigonometric functions can be expanded to second order as,

sinf ~ 6

cosf =~ 1-—6%/2 (2.40)
Placing these into the previous equations 2.38 gives the more useful form,

w: [(El,w"+(EI, - EIL)(v"8 +vw" 6%)]"

_(w/ FI), = pzT + mLT

v: [EI.v"+(EI, - EL)(w" 8 —v"6%)"

-—(U,F,)’ = PyT - m:T (241)

d’ . —(GJ ¢/)/ + (EI( _ EI,,) lem _ v/l?)e + vII wll}

=mT

This form shows more clearly the type of nonlinear couplings involved between the
w, v, and ¢ motions. These nonlinear couplings depend on the difference in bending
stiffness, (EI, — EI,), and would give rise to linear couplings by the presence of an
initial static deflection in w and v. Similar equations can be obtained for blades with

an initial twist 6;, by replacing equations 2.40 with,

sin(fy + ) ~ sin6, -6 cos ¥, —@UZ/‘)sin 6,

cos(6 + ) ~ cosb, — 8 siné. —(\02/2)cos 6, (2.42)

Aithough the moderate deflection equations 2.41 lend themselves well to Galerkin
solution, one should be careful to use a sufficient number of modes to capture the
nonliner effects when static deflections are present. They can always be checked
against the general solution of the twelve nonlinear differential equations preseated

by Minguet and Dugundji, Ref. 1.
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Before leaving this section, it might be interesting to note that the moderate
deflection equations can also be derived from an energy formulation by minimizing

the total potential energy II of the functional,

o= 1/LEI( " cos 8 - v" sin B) d

= 5 /. o (W cos n z
1 L
+5 / EI. (w" sinf + v" cos6)? dz

0

1 f[’ / IW/AY]
+3 ) GI(E+w'v") dz (2.43)
2 Jo

1 L
+= / F.(w? +v?)dz
2 Jo
L !
——/; (pyrv+perw —myrw +m,rv' + mird)dz
A simple application of variational methods will lead to the moderate deflection equa-

tions given by equations 2.38 and 2.41.

2.3 Modeling of Large Amplitude Motion

In Ref. 1, the basic equations given in section 2.1 were linearized around a given
static position to yleld a small, perturbed free vibration. An appropriate eigenvalue
problem was then solved to find the various mode shapes and their associated natural
frequencies. This eigenanalysis is not useful for large amplitude motion because once
structural nonlinearities are present in both static and dynamic sense, the natural
frequency of a particular mode becomes a function of amplitude of that mode. Fur-
thermore, it is also expected that certain amount of couplings exist between the static
and dynamic components in the various variables. Thus two basic characteristics that
distinguish the nonlinear, large amplitude vibration from the linear, small vibration
can be summarized as follows.

(1) The natural frequency of a particular mode changes as its amplitude increases.
(2) The static mean position of the beam can also change as a functiva of amplitude.
Two popular methods for the solution of general nonlinear dynamic problems are

direct numerical time integration of the basic equations, and the harmonic balance
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method. The former method will give the exact solution which shows the effects
of all possible harmonics, while the latter method will yield a solution with only
few harmonics. The direct time integration requires a set of governing equations
that contain only time ¢ as independent variable. By performing appropriate modal
analysis, one has to reduce the equations of motion into a modal form, expressing
them as functions of generalized coordinates. Usually, a large amount of computing
time is used until the solutions reach their final steady states.

In the present analysis, the harmonic balance method is used because we do not
want to begin with a set of approximate modal equations which are based on an
ordering scheme, but rather use the large deflection equations of section 2.1. These
twelve differential equations contain all the twelve variables, i. e. three Euler angles,
three force resultants and three moment resultants, in addition to the usual three
displacements z, y, z as their independent variables. In such a situation, it is more
insightful to assume the time dependency of the solution in the the form sinwt, and
use numerical integration in space rather than in time. In doing so one loses, of
course, the effects of higher harmonics, but the key arguement is that in most of
the nonlinear analysis, amplitudes associated with the first harmonic take the largest
quotient,and therefore are most critical in determining its response or stability.

Thus for the purpose of present analysis, all quantities are assumed to be of the
following form

X(w,t) = Xo(w) + X,(w)sinwt

where Xg, X, represent the static part and the associated amplitude (not a small
quantity) around that static part, respectively. The fact that X, is not a small
quantity is reflected in the frequency dependency of both X, and X,. Hence, unlike
small vibration problem, there exists one-to-one correspondence between amplitude
and frequency.

The analytic modeling consists of substituting the above expression for each

variable into the twelve governing equations. As a result of multiplications involving
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sin wt, this will produce many higher order terms containing higher harmonics such
as sin 2wt, sin 3wt. For details of how these multiplications are performed and what
the resulting coefficients are, see the Appendices. A harmonic balance method is
then employed to retain only two kinds of terms; the ones that are constants and
the ones that are coeffcients of sinwt. All the higher harmonic terms are left out.
Some of the remaining terms will contain higher order of magnitude terms, for ex-
ample, sin*wt produces the constant 3/8 even after neglecting its higher harmonic
components cos 2wt and cos4wt. It is clear that keeping all these higher order of
magnitude terms will make the equations extremely long and unwieldy. Hence, an
ordering scheme that keeps magnitudes of up to third order is employed to maintain
a consistent level of nonlinearities in all of the equations. See the Appendices. It is

emphasized that this ordering scheme does not mean

2

cost9~1—%—+H.O.T.

but rather

cosd ~ cosfy—sinf, Al — %cos 8, (A9)?

1
+5sinfl (A6) + H.O. T.

where § = 8, + A8, and the §; and Af = 4,sin wt represent the static and dvnamic
components of 8. So the complete nonlinearity in the large rotations is still kept in a
static sense, but as a strategy, terms only up to third order are kept in the dynamic
counterparts.

One point is noted here; applying the harmonic balance followed by the approxi-
mating schemes will not render the final twenty four equations completely compatible
with each other. More specifically, these coupled equations would not satisfy equilib-

rium, geometric compatibilities, and stress-strain relations perfectly as their original
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twelve versions would. Therefore, one should expect deterioration in the degree of
compatibility as amplitudes increase. Normally this would mean loss of accuracy in
the solutions, or in the worst case, even the loss of convergence. However, as shown

later in this report, this does not impose serious computational limits in most of

practical range of amplitudes.
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Chapter 3

Method of Solution

Having obtained all the necessary formulations for the large amplitude, nonlinear free

vibration model, one can express the equations of section 2.1 in vector form

and

where

dXo

—E' = go(Xo,X,,w) (31)

(12x1) (12x1)

dX,
ds

(12x1) (12x1)

= ga(XOaXuW) (32)

Xo = [Fxo Fyo Fyo Mo M2 M3s 20 Yo 20 6o Bo Yo ]T
Xn = [Fh FZ; Fih Mh M2n Ma.tnyaz.eaﬁﬂf’.]r

The two vector function arrays go and g, contain many product terms involving

multiplications of iwo, or three harmonic quantities. They, of course, originate from

the twelve basic equations that are presented in section 2.1. Multiplications of

harmonics and calculations of the coefficients of the resulting new harmonics can be

easily implemented according to the formulae in the Appendices.

To solve this system, all of the twenty four equations (now twelve for the static

part, twelve for the dynamic part) are first integrated from the tip to the root of the

21




blade once. In the previous TELAC report Ref. 1, Minguet used a finite-difference
iteration method for the solution of static deformation, sweeping from the tip to
the root and vice versa a few times until all the residues become very small. When
applying this scheme to the solution of mode shapes and their frequencies, one has
to be cautious because this finite-difference iteration will usually converge to the first
mode only. To obtain higher modes, one must consider other integration techniques
which do not sweep back and forth along the span but are more appropriate for
boundary value type problems. Among such, Runge-Kutta integration is frequently
used and very effective. Currently fourth order Runge-Kutta algorithm is used.

In the early step of numerical integration, one has to guess boundary values of
displacements and rotations at the tip as well as the frequency that will make, for
a given mode shape, all the displacements and rotations at the root as close to the
prescribed values as possible. For instance, a linear solution by Minguet can provide
such a good guess for tip values X,. The functional relationships between these two

sets of boundary values at the root and at the tip can be written as
X, = f(X,w) (3.3)

(12x 1) (12x1)

where
X = [LzozoyoyazOzaGDGsBOanowa]T
at the tip, and
X, = [0000008,08,04,0]”

at the root.

Here 6y,3,,%0 are prescribed values at the root (they are zero for flat cantilever
blades). Since the initial guess for the twelve components of X; can not be perfect,
there will be nonzero residues R by the time the integration reaches the root. A

Newton-Raphson type algorithm can then be used to produce a better set of boundary
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values based on the current values. This will produce a series of the following set of

boundary values.
XMt = X - J(XP )R (3.4)
where
R" = f(X]},w") - X,
and
J: (12 x 12) Jacébian matrix

Here the superscript n refers to the n th iterative values, and X, refers to the desired
values at the root. The n th boundary values X7 at the tip will eventually march to
the true solution, provided it exists. Currently two algorithms called F. D. G. (finite
difference Gauss’ method) and F. D. L. M. (finite difference Levenberg-Marquardt
method) (Ref. 7), respectively are used. The former is simply a numerical version
of Newton-Raphson method, and in the latter case, an efficient relaxation scheme is
added.

[t is noted that whatever algorithm is used, it must take iterations on the frequency
as well as the boundary values, since it is not known in advance at which frequency
a mode will happen for a given amplitude level. Therefore, one of the six boundary
amplitudes at the tip z,,y,, z,,9,,0,,¥,, is replaced by the frequency w, and the
replaced displacement is fixed throughout iterations. Which one has to be fixed
depends on which mode is being sought. For instance, if bending modes are of concern
it will be z,; if it is torsional modes then 4, is fixed. The iteration will march until
the boundary conditions at the root are met, i. e. , the residues R™ are zeros or at
least less than some preset ¢ where € < 1.

As a final notion, the above solution procedure, when applied to linear problems,
is similar to the so called transfer matrix technique used to obtain helicopter blade

vibration modes by Isakson and Eisley in Ref. 8.
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Chapter 4

Results and Discussion

The prescribed algorithms have been used to investigate the first and second bending
modes, first fore-and-aft modes, and first torsion modes of cantilevered blades with
the lay-ups [0/90]3,, [45/0], of graphite/epoxy for various tip deflections. These modes
were chosen because t* -+ have the lowest natural frequencies and hence should be
easily converged. " .ermore, they pose much importance from a aeroelastic point
of view. The c.afigurations of the blades investigated are those used by Minguet in
Ref. 1 (560 mm long, 30 mm wide). Beam material properties of these lay-ups are
listed on Table 1. To see how these coefficients are calculated, refer to section 2.6 of
Ref. 1.

The static deflections were varied by imposing and adjusting usiform gravity level
throughout the blade. As stated earlier, one of the six boundary amplitudes at
the tip was replaced by w, and the replaced amplitude was fixed throughout the
iterations. The z,,y,, and 8, were fixed for bending, fore-and-aft, and torsional modes,
respectively. Also, 8o, 0,%0, at the root were all set equal to zero since the blade
is a flat cantilever beam. A total of 16 node points were used along the blades.
Note that the same number of nodes was also used in Ref. 1. All of the cases were
guided by the Linear results by Minguet. That is, the linear mode shapes and their
natural frequencies provide reasonable trial values which, after a few iterations, would
lead to nontrivial solutions. All the runs were made on a DEC Microvax computer

with typical number of iterations from 5 to 10 for convergence. Each iteration took
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approximately between 15 to 30 seconds of CPU time, longer times being required
for cases with strong structural couplings. Very often, it was necessary to use under-
relaxation to lead iterations smoothly to the final solution without causing divergence
or any sudden jump into another nonlinear solution (In fact, both F. D. G. and F.
D. L. M. algorithms assume use of certain under-relaxations). Each analysis was
continued until the amplitude could not be further increased. At this point, the
Jacobian matrix became almost singular and the solution did not converge.

Before illustrating the results in detail it is worthwhile to mention that in linear
problems where perturbations are very small, the present analysis would be slightly
superior to Ref. 1. The present analysis is based on a continuous model while Ref. 1
is based on a lumped, finite difference model.

The first example is that of the [0/90];, specimen. Figure 3 through figure 26
show mode shapes at two amplitude levels under three different static tip deflections.
It is seen that for most of the amplitude range, the nonlinear modes remain almost
the same as linear modes in their shapes even though their {requencies change. Next,
figure 27 through 29 show change of natural frequencies as functions of amplitudes
24,Ys, and 0, at the tip. Also Figure 30 and 31 represent the variations of the cen-
tershifts zo at the tip of various modes as functions of the tip amplitudes. From the
figures the following two observations can be made.

(1) Increasing amplitude level has slight stiffening effects in 1B, 2B (or any bending
modes, presumably) whereas it has significant softening effects in 1F, 1T modes,
particularly for moderate range of static tip deflections. As a result, the natural
frequencies of bending modes rise slightly with amplitude level while those of 1F and
1T modes always drop.

(2) The above frequency changes are accompanied by centershift changes. Increasing
amplitude levels has slight effects on the centershifts of bending modes except for
the 2B mode, whereas it has significant centershift increase for the 1F mode and a

centershift decrease for the 1T mode, particularly for moderate static tip deflections.
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The behavior of these centershift changes seem relavant to the linear findings in Ref.
1 (see figure 33).

Figure 32 presents the effects of second harmonics on the natural frequencies of
1F modes. It was found that including terms involving the second harmonic cos 2wt
in two-dimensional sense was enough to capture the missing second harmonics in 1F

modes. In other words, only Fi,F3,M;, and 3,z,z were expressed in the form
X(w,t) = Xo(w) + X,(w) sinwt + Xj(w) cos 2wt

with all other variables containing only the first harmonics as before. This was done
based on the intuition that second harmonics will mostly appear in z,, z, and their
motion should be initially 90 degrees out of phase with the rest of amplitudes. Then
a new set of formulae that performs multiplications of harmonics was implemented
in the computer program. These are different from the previous ones in the appendix
in that they now have to deal with cos 2wt as well. The resulting Jacobian is then
(15 x 15) instead of (18 x 18) which would result if cos 2wt were introduced in ail
of the variables. As can be seen from the plots, 1F modes exhibit significant second
harmonic contents in z, motion for moderate range of static tip deflections (roughly,
from 20 mm to 80 mm.) as amplitude is increased. On the other hand, at either zero
or very large tip deflection the second harmonics are almost unrecognizable. In fact,
z, has no first harmonic content in 1F modes. An effort was also made to seek for
any second harmonics in 1T, 1B and 2B bending modes, but they have been found
very weak and are not presented here.

Next example is that of [45/0], which, unlike the previous case, exhibit bending-
torsion coupling. Due to the structural coupling, computer time was increased and
the convergence became more sensitive. This resulted in earlier breakdown of nonsin-
gularity of Jacobian matrix which in turn caused shorter range of solutions available
as functions of amplitudes. Figure 34 through 57 show mode shape changes at two
amplitude levels under three different tip deflections. Once again, the mode shapes

do not change significantly from the linear modes. Figure 58 through 62 show the

26




frequency and centershift changes as the amplitudes of various modes increase. The
two former observations (1) and (2) can also be made in these figures; a similar anal-
ogy about the relationship between frequency and centershift changes can be also
made. The effects of second harmonics on the natural frequencies of 1F modes is
shown in figure 63. Unlike the previous case of {0/90];,, the presence of second har-
monics is relatively weak. In particular, due to the existing bending-torsion coupling,
the static tip deflection will not lie on the z axis, and the 1F motion is not symmetric
about the z axis even though the root angles here are again zeros.

Finally, it is interesting to consider what makes the Jacobian matrix singular at a
certain point along the way of increasing amplitude. Except for the cases of 1B, there
seem to be certain limits on the largest amplitudes that can be solved by the current
algorithms. These limits were even more severe if second harmonics were included.
In section 2.3, it was suggested that one should expect deterioration in the degree
of compatibility as amplitudes increase. This could be one possibility. Apart from
that, other factors may attribute to the singularity of solution; the round-off errors
associated with the large size of Jacobian matrix, and the interaction of several modes

as amplitudes increase, with possible resulting chaotic vibration.
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Chapter 5

Conclusion

Throughout the research period, it has been demonstrated that the nonlinear analysis
derived from work by Minguet in Ref. 1, and iteration methods based on harmonic
balance and numerical integration of the basic equations seems efficient for large
amplitude vibration problems of composite rotor blades. These include the nonlinear
free vibration problem which is presented here, and nonlinear limit cycle problems
with dynamic stall in hover and possibly in forward flight, which will be investigated
as parts of future work.

For the free vibration part, it has been shown that both large static deflection and
large amplitude can affect significantly the fore-and-aft modes and torsion modes, but
not much the bending modes. More specific conclusions are as follows.

(1) Increasing amplitude level has slight stiffening effects in bending modes whereas
it has significant softening effects in 1F, 1T modes, particularly for moderate range
of static tip deflections. As a result, the natural frequencies of bending modes rise
slightly while those of 1F and 1T modes always drop.

(2) Increasing amplitude level of a particular mode also results in centershift changes
that are small for the bending modes but significant for the 1F and 1T modes,
particularly for moderate static tip deflections. The 1F centershift seems to increase
cunsiderably with amplitude level. The behavior of these centershift changes seem to
stem from the linear findings in Ref. 1.

(3) The flat {90/0]3, or any isotropic blade with zero root angle has significant second
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harmcnic coutents in the 1F mode for moderate static tip deflections. These appear
mostly in the bending amplitude z,. If the root angle is not zero, or there is bending-
torsion coupling however, the second harmonics are not as strong.

The conclusions made during the research period should give insight into more
general nonlinear, large amplitude analysis such as proposed by Dugundji (Ref. 9) for
future investigation.

Regarding the future work which is specified in Ref. 9, nonlinear limit cycle anal-
ysis of composite blades in the presence of dynamic stall is currently being pursued.
The structural nonlinearities are well represented by the current model, and for the
aerodynamic nonlinearity, the ONERA model developed by Tran and Petot in Ref.
10 is used. The analysis begins with a simple two-dimensional motion with bending
modes only (called “bending stall”), and later will go into three-dimensional motion
with additional torsion and fore-and-aft modes as well as centrifugal forces, Coriolis

acceleration, and coning angles also present.
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Appendix A

Calculation of Coeflicients of
Harmonic Quantities

In section 2.3 it was suggested that for large amplitude motion, every variable be

expressed as
X(w,t) = Xo(w) + X,(w)sinwt

where X, X, represent the static and dynamic components of a particular variables.
As a result, all the quantities in the original twelve governing equations will take the
above form immediately. Recall, however, that many of the terms in the equations
involve trigonometric functions and their arguments are the three Euler angles v,3,6.
Then it is clear that one can not apply harmonic balance method with the Euler
angles expressed as above and themselves inside the trigonometric functions. So, it is
useful to rely on series expansion versions of these trigonometric functions. In order to
get the series expressions, let z represent any of the three Euler angles, and let X(z)

be any trigonometric function, i. e. cosz, sinz, tan z, or 1/ cos z. Then substituting
T =29+ z,sinwt

into the function X and expanding in a Taylor series about g yields
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d
X(z) = X(zo)-f-d—f(zo)z,sinut
3

d?X 2 ..2 d IY 3 . 3
+1/2! E;z—(zo)z, sinwt + 1/3! —dz—a(zo)z:,sm wt (A.1)
= X0+X,sinwt

+X,,sin’wt + X,3sin’wt + H. O. T.

where

Xo = X(zo0) (A.2)
X, = i—f(zo)z, (A.3)
X, = 1/2! f:f(zo)zf (A.4)
X3 = 1/3!%(:0)23 (A.5)

Here according to our ordering scheme only terms up to third order are kept in
the expansion (see section 2.3). Then, when applying harmonic balance methods,
the sin’wt and sin’wt can be expanded into constant and sinwt type terms after
multiplication with other harmonic quantities, as shown in Appendices B and C.

In the current analysis four different trigonometric functions are encountered..
They are cosz, sinz, tanz, and 1/cos z. According to above expansion rules then

each trigonometric function can be expressed, up to third order, as

cosz = cosZg— (sinzg)z, sinwt — 1/2(cos z9) 22 sin® wt

+1/6 (sin zo) 22 sin’ wt (A.6)
sinz = sinzo + (coszg) 2z, sinwt — 1/2(sin zo) :cf sin® wt

—1/6(cos zo) 22 sin® wt (A.7)
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tanz = tanzg+ (1/cos’zy)z, sinwt + (tan zq/ cos® z) 27 sin® wt

+1/3((2tan’ 2o + 1/ cos® z;) / cos® o) 3 sin’ wt (A.8)

1/cosz = 1/coszo+ (tanzo/ coszo)z, sinwt +1/2(1/cos’zy + tan® 4/ cos z,)

.z sin®wt + 1/6 (5tan zo/ cos® zo + tan® zo/ cos zo) 2> sin’wt  (A.9)
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Appendix B

Multiplication of Two Harmonic
Quantities

In the previous section it was seen that any harmonic quantity can be expressed, up

to third order, as
X = Xy + X, sinwt + X,;sin’wt + X,3sin’wt (B.1)

where X,,X,,X,2,X,3 are determined by the formula A.2. X(z) could be either a
harmonic variable itself (e.g. F,M z,... etc. ) or a trigonometric function. If it is a
harmonic variable X,;,X,; are identically zero. Now let’s consider a product of two

quantities, X and Y which are expressed as above. [t can be shown that

XY = (Xo+ X,sinwt + X,3sin’wt + X,3sin’ wt)
(Yo + Y,sinwt + Y, sin’ wt + Y5 sin® wt)

= (XY)o+ (XY),sinwt + (XY),2sin’wt + (XY)3sin®wt  (B.2)

where

(XYY = XoYo

(XY), = XY, + X, %

(XY),2 = XoVo+ X, Y5+ X, Y5

(XY)s = XoYu+ X.Y + XY, + X.aYo

35




When applying harmonic balance method only the static and the first harmonic terms

are retained. For this purpose note that

sinwt = 1/2—1/2 cos2wt (B.3)

sinwt = 3/4 sinwt — 1/4 sin 3wt (B.4)
So after neglecting higher harmonics one gets

XY = [(XY)o+1/2(XY)na] + [(XY), + 3/4(XY).3] sin wt (B.5)
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Appendix C

Multiplication of Three Harmonic
Quantities

Some of the governing equations contain products of three harmonic quantities.
Multiplication of three harmonics X,Y,Z can then be performed as a series of two

multiplications involving two harmonic quantities as follows.

XYz = (XY)Z
= [(XY)o + (XY),sinwt + (XY ),sin’ wt + (XY),3sin> wt]
. (Zo+Z,sinwt+Z,zsin2wt+Z,3sin3wt) (C.1)

= (XY2)o+(XYZ),sinwt + (XY Z),sin*wt + (XY Z),;sin’ wt

where

(XYZ) = (XY)oZ,

(XYZ2), = (XY)2,+(XY), 2,

(XY2)2 = (XY)oZi2 + (XY )2, + (XY )220

(XY2Z)s = (XY)oZu3 + (XY ), 202 + (XY )02Z5 + (XY )32
and

(XY)o = XoYo
(XY), = XY, + XY,
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(XY)2 = XoYu+ X.Y. + XY,
(XY)s = XoYu+ X,V + XpoYs + X3Yo

as before. Once again, neglecting higher harmonics one gets

XYZ =[(XYZ)o+1/2(XY2Z),) + [(XYZ), +3/4(XYZ),3]sinwt (C.2)
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L Table 1: Beam Material Properties (AS4/3501-6)

1

' 0/90}5, Laminate =149 x 10 m

m=00683 kg/m [, =513 x 107 kg. m

E,=368x108N E;=026x105N Ey3=29%x10° N
E, =0.183 N.m? FEs5 =0.707 N. m? Feg =276 N. m?

[45/0], Laminate t=149x 107 m
m =0.0238 kg/m [, =1.66 x 1076 kg. m
E =132x108N E;=027Tx10°N Ey3=10x 105N
F,y =0.0195 N. m? FEss =0.0143 N. m? Ess = 99.1 N. m?
E»,=10x10°N  E, =0.00632 N. m?

]

|
|
|
|
|

Note: in more conventional terms,

Eu ~FA E22 jd GA,, En jnd GA(
E44 ~GJ Ess >~ EI,, Ess >~ EI(

E\; ~ Extension-shear coupling

E,y ~ Extension-twist coupling

Eys ~ Bending-twist coupling
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Local axes

Global axes

Figure 1: Definition of global and local axes
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Z!

Figure 2: Definition of local internal forces and moments

41




1/90\3e Blace
Tip Deflecson = 0 mm

&
'8
o
- 574 M2
23 =« 10 mm Sup
24 Zs
£
5
<
(=]
Xs Y8 c'Ss
4
|
=3
[o)s} 875 1750 2625 350 0 aQars 2% 0 8125 700 0
S{mm|

Figure 3: First Bending Mode;/0/90!5,,0 mm tip deflection,Zs=10 mm
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Figure 4: First Bending Mode; 0/90'4,,0 mm tip deflection,Zs=200 mm
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Figuvre 5: Second Bending Mode;{0/90]3,,0 mm tip deflection,Zs=10 mm
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Figure 6: Second Bending Mode;[0/90]3,,0 mm tip deflection,Zs=100 mm
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Figure 7: First Fore-and-Aft Mode:[0/901,,,0 mm tip deflection,Ys= : mm
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Figure 8: First Fore-and-Aft Mode;;0/90'5,,0 mm tip deflection,Ys=38 mm
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Figure 9: First Torsion Mode;[0/90]5,,0 mm tip deflection, §,= 5 degree
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Figure 10: First Torsion Mode;{0/90}3,,0 mm tip deflection, §,= 20 degree

45




{0/30{3s Bince
T Defacaon = 59 mm

&
18
o S78 Hz
23 = 10 mm @up
o
= s
T
?“J
) \\- Y3 c'Be
Xs
|
e
20 875 175Q 2628 %00 4375% 5&50 6128 7000
Simmy

{0/9013s Biacse
T Oeflecton « 59 mm

Figure 11: First Bending Mode;{0/90!4,,59 mm tip deflection,Zs=10 mm
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Figure 12: First Bending Mode;{0/90]3,,59 mm tip deflection,Zs=200 mm
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Figure 13: Second Bending Mode;{0/90]3,,59 mm tip deflection,Zs=10 mm
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Figure 14: Second Bending Mode;[0/90]3,,59 mm tip deflection,Zs= 80 mm
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Figure 15: First Fore-and-Aft Mode;{0/9015,,59 mm tip deflection,Ys=10 mm
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Figure 16: First Fore-and-Aft Mode;/0/90],,,59 mm tip deflection,Ys=80 mm
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Figure 17: First Torsion Mode;/0/90]5,,59 mm tip deflection, 8,= 5 degree
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Figure 18: First Torsion Mode;{0/90]5,,59 mm tip deflection, 8,= 20 degree
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Figure 19: First Bending Mode;[0/90]3,,210 mm tip deflection,Zs=10 mm
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Figure 20: First Bending Mode; 0/90'3,,210 mm tip deflection,Zs=200 mm
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Figure 21: Second Bending Mode;[0/90]3,,210 mm tip deflection,Zs=10 mm
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Figure 22: Second Bending viode;{0/90]3,,210 mm tip deflection,Zs= 48 mm
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Figure 23: First Fore-and-Aft Mode;[0/90]3,,210 mm tip deflectica,Ys=10 mm
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Figure 24: First Fore-and-Aft Mode;[0/90]3,,210 mm tip deflection,Ys=80 mm
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Figurer25: First Torsion Mode;{0/90];,,210 mm tip deflection, §,= 5 degree
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Figure 26: First Torsion Mode;[0/90)3,,210 mm tip deflection, §,= 40 degree
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Figure 27: Frequency vs. Amplitude; 0/90l3,,0 mm tip deflection
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Figure 28: Frequency vs. Amplitude: 0/90!5,,59 mm tip deflection
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Figure 30: Centershift vs. Amplitude: 0/90(4,,59 mm tip deflection
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Figure 32: Frequency vs. Amplitude w,0 and w/ 2nd harmonics; [0,/90s,,24 mm
and 210 mm tip deflection




[0/90]3s Beam

150 1

'C0

Frequency [Hz]

i—H——t —— —- —e
0 v LR BN  ED SN AR SELI SN SN SN SI oI SUL SN St o oy s o oo o
0 5 10 1§ 20 25 30 35 40
wiLl (%]

Figure 33: Natural Frequencies of [0/90)3, Beam as a Function of Tip Deflection (from

Ref. 1)
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Figure 34: First Bending Mode;{45/0],,0 mm tip deflection,Zs=10 mm
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Figure 35: First Bending Mode;{45/0],,0 mm tip deflection,Zs=200 mm
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Figure 36: Second Bending Mode;{45/0},,0 mm tip deflection,Zs=10 mm
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Figure 37: Second Bending Mode; 45/0',,0 mm tip deflection,Z6=129 mm
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Figure.38: First Fore-and-Aft Mode;/45/0],,0 mm tip deflection,Ys=1 mm
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Figure 39: First Fore-and-Aft Mode;[45/0],,0 mm tip deflection,Ys=3.5 mm
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Figu.re 40: First Torsion Mode;{45/0],,0 mm tip deflection, §,= 5 degree
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Figure 41: First Torsion Mode;/45/0!,,0 mm tip deflection, §,= 12 degree
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Figure 42: First Bending Mode;[45/0},,70 mm tip deflection,Zs=10 mm
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Figure 43: First Bending Mode;{45/0],,70 mm tip deflection,Zs=200 mm
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Figure 44: Second Bending Mode;{45/0],,70 mm tip deflection,Zs=10 mm
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Figure 45: Second Bending Mode; 45/0],,70 mm tip deflection,Zs= 70 mm
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Figure 46: First Fore-and-Aft Mode;(45/0],,70 mm tip deflection,Ys=10 mm

145/0|s Biade
Tio Defiecuon = 70 mm
3
> V\F
N
568Hz Ys = 30 mm @no
’ // "
-
3¢ -
5 /’//
/
Xs
o —— 2
c'Os
9_4
3 — -— —
20 a7s 1750 %625 150 0 Q75 5250 6125 ™00
S{mm

Figure 47: First Fore-and-Aft Mode;[45/0],,70 mm tip deflection,Ys=80 mm
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Figure 48: First Torsion Mode;[45/0,,70 mm tip deflection, §,= 5 degree
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Figure 49: First Torsion Mode;[45/0],,70 mm tip deflection, §,= iJ degree
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Figure 50: First Bending Mode;/45/01,,203 mm tip deflection,Zs=10 mm
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Figure 51: First Bending Mode;{45/0],,203 mm tip deflection,Zs=200 mm
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Figure 53: Second Bending Mode; 45/0!,,203 mm tip deflection,Zs:- 45 mm
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Figure 54: First Fore-and-Aft Mode;45/0],,203 mm tip deflection,Ys=10 mm
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Figure 55: First Fore-and-Aft Mode;[45/0},,203 mm tip deflection,Ys=80 mm
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Figure 56: First Torsion Mode;[45/0],,203 mm tip deflection, §,= 1 degree
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Figure 57: First Torsion Mode; 45/0],,203 mm tip deflection, ,= 5 degree
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Figure 59: Frequency vs. Amplitude: 45,0/,,70 mm tip deflection
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Figure 60: Frequency vs. Amplitude; 45,0!,,203 mm tip deflection
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Figure 61: Centershift vs. Amplitude: 45.0/,,70 mm tip deflection
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Figure 63: Frequency vs. Amplitude w o and w, 2nd harmonics; 45 0,,70 mm
and 203 mm tip deflection
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Figure 64: Natural Frequencies of 45/0], Beam as a Function of Tip Deflection (from
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