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Gradients of the total energy with respect to nuclear coordinates within the

linear combination of Gaussian-type orbitals (LCGTO) approach to local-density-

functional theory are discussed. We explicitly include the effects of the fitting

procedures for both the direct-Coulomb and the exchange-correlation energies in

the evaluation of the energy gradient expression.
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I. INTRODUCTION

Accurate local density functional (LDF) gradients require corrections for the fact

that the orbital basis set is finite - 8 and that the local one-electron potential is

treated using a finite basis set 5- . The linear combination of Gaussian-type orbitals

(LCGTO) local density functional (LDF) approach to molecules9 , polymers'", and

slabs" is well established. For these lower-dimensional systems that are not periodic

in three dimensions, Fourier-transform methods cannot be used to readily compute

gradients of the total energy (for a fixed number of plane waves), unless one uses

supercell calculations (which are singular in the separate fragment limit for a fixed

number of plane waves). If an LDF such as Xa lends itself to an analytical LCGTO

treatment-i.e. three-dimensional numerical integrations or fits can be avoided-

then accurate gradients could be computed given a converged self-consistent-field

(SCF) LDF LCGTO total energy5 . In order to be able to use any LDF, a number

of workers have recently implemented methods for computing the gradients of the

molecular total energy that take into account the fact that the orbital basis set is

finite and that the electronic Coulomb potential, the largest part of the one-electron

potential, is treated using a finite expansion 6- . For a different purpose Averill and

Painter12 have considered fitting the density using the LCGTO LDF total energy

and computed exact gradients including the effects of the density fit, assuming

an exact three-dimensional numerical integration of the exchange-correlation (xc)

forces. Wre consider herein the effects of approximating the xc energy density using a

necessarily inexact fit to an LCGTO sum and the use of three-dimensional numeric,'1

integration techniques in the fitting scheme on the evaluation of a gradient with

respect to nuclear coordinates of the LCGTO-LDF total energy expression.

II. PRELIMINARIES
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The nonrelativistic total energy and one-electron molecular orbitals, in the electric

field caused by nuclei of charges Zk at positions R,, are determined by variational

minimization of the LDF total-energy expression,

E1 ZkZk' i d'r n. (r)V'Oj(r)
k>k' IRk - RkII

EZk p-- + -  + (p(r)UZ)(p(r))),(1)
k Ir - Rk I / 2

where both (f(i)) and (f) are compact notation for f d3rf(r), and where [filf2 is

compact notation for f d3ri f d3r 2f 1(rj)f 2(r 2)/r 12. In this expression the qi are the

one-electron molecular orbitals and p(r),

p(r) = ni 0*(r) O,(r), (2)

is the charge density when the ith molecular orbital is occupied by ni electrons.

(This work will not consider the case where there is net spin polarization of the

electrons, the generalization to such a case is straightforward.) The one-electron

molecular orbitals are expressed in LCGTO fashion,

,r= Z cjiXj(r), (3)

and satisfy the LDF one-electron secular equation,

xu' -'V2 - Z Ir + V.(r) + Vc(p(r)) xjc= c i (xj, Ixj)A e,(4)(xi k Ir- k

Relating the total energy and the one-electron equations are the electrostatic po-

tential due to all electrons,

V,,(r) = r, p(r') (5)
Ir-r'I
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and the local one-electron xc potential,
d[p(r)U.,(p(r))] +(rdUC(p(r))

xckF) dp(r) = U1o(p(r)) + pr p (6)

This expression can be inverted to give Lhe density derivative of the xc energy

operator,

dU., _.1C - U., (7)
dp p

Initially, we follow the suggestion of Sambe and Felton13 and approximate the

charge density in Ves, the xc energy operator, U,,, and the xc potential, V,,, using

LCGTO expansions,

p(r) 5 (r)= Z fmFm(r)
m

u,,,(r) U.,,(r) = 1: umam(r)
m

V,¢(r) V,,(r) = E vmGm(r), (8)

centered primarily on the nuclei, but in which bond-centered s-type functions can be

used to eliminate some high-angular-momentum nuclear-centered functions. Using

these fits, the total energy expression' ,

E E kZkZk' 1-- n
k>IRk - RkI 2 i
E Zk p(r) ) + y fm[plF] + E um (pGm),

k (n rr-Rk_E fmf, [Fm IF.]

mn 2 (9)

is stationary with respect to variations of the molecular orbital coefficients cij and

the charge density fitting coefficients, fin, if and only if the xc fit is exact. This

4



requires the fitting basis set, Gm(r), be complete. In that case the gradient of the

total energy with respect to the Cartesian nuclear coordinates is relatively easy to

evaluate6 -8,

aE = ZkZk,(Xk - Xk,) 3 p(r)(x - Xk)
e9Xk -- ' IR& - Rk, 3  - ZkJ d r JRk - r13

+(_ 1d ( - V2aaXI - (r K X r ) Z.-nIj 2 t . - - F xx It- iR.I/

+Zfm[X~ak'F]+ZvK X LG)), ii x,~' ± .
aF,, aF (10)+Z57fm[Pl~ax m - 5 fmfn [Fn I aX--iJ

m LX mn k

where c.c. means take the complex conjugate of the previous expression within the

corresponding set of parentheses. In this expression Pij, is the matrix element for

orbitals i and j of the one-electron density matrix,

Pij = E ,- c cpcjp, (11)
p ij

and Qij is the one-electron eigenvalue weighted density matrix element

Qij = Zepnp c *. (12)

p ij

The first two terms of Eq. 10 represent the standard terms for the Hellmann-

Feynman force, the next two terms represent corrections to Hellmann-Feynman

arising from the dependence of the orbital basis on nuclear coordinates', and the

last two terms represent corrections arising from fitting the charge density (Eq. 8).

Expressions for third derivatives of the total energy have been obtained assuming

that the xc fitting basis is complete and that the fits are exact'.

The subject of this work is the correction term that arises from approximating U,,

and V,. This term has been evaluated' for the special case of Xa, where both U,

5



and Vc are porportional to p1/3, which can be treated using analytical integ:ation.

For all LDF's this correction term diminishes with increasing number of points and

number of fitting functions used to treat U,, and V,,. 6 , 14

IT .INCOMPLETE EXCHANGE-CORRELATION FITTING BASES

In the case of an incomplete xc fitting basis set, Eq. 10 needs to be corrected by

adding a term to the right-hand side of the equation,

_E_ O[ur.(pGm)] v,, , (xxj G.
aXk kx

- Z (Vm ! aX(X Gm) + C.C (13)

The first term is the exact differentiation of the xc energy of Eq. 10, the second term

comes from using the one-electron equations, Eq. 4, to eliminate all terms involving

derivatives of the density matrix elements from Eq. 10, and the final term is the

only apparent xc term present in Eq. 10.

Because Eq. 13 is a density functional expression, the terms involving vm can be

more compactly expressed,

E ., = [um (pGm )] . M a/Op G (14)

and the whole expression expanded,

aE auU < 0GM
= -(G)+'um POX.

where the approximate quantities defined in Eq. 8 have been substituted for the
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appropriate expansion. The least-squares-fit (LSF) equations for the xc energy

fitting coefficients, urn, must be differentiated to evaluate this expression.

IV. NUMERICAL INTEGRATION

In what follows we will assume that we have at our disposal a numerical integration

scheme involving a set of points, ri and an z.- ociated set of volume elements ATi,

{f(r)} = Ar f(ri), (16)

with the property that we can increase the number of points to make the numerical

integral {f(r)} arbitrarily close in value to the analytic integral (f(r)). We further

assume that numerical integration is used only to fit U,, and V, via a weighted

LSF scheme,

v,, {W,,GG,} {W,,VrG ,}, (17)

Zum{w.Gm.G} = {WuvaGo}, (18)

where the weight functions W, and W, are arbitrary positive (or negative) semidef-

inite functions of position. Eq. 18 can be inverted to give the fitting coefficients,

UM = 1:{ WuGG}m. {WuU.xG}, (19)
n

where the symmetric matrix GG is the tensor product of the vector G with itself.

We now assume that we have some method for choosing the points and volume

elements of Eq. 16 so that we can systematically improve the accuracy of this

numerical integration, albeit at an ever increasing computational price. Therefore,

we shall ignore how the weights and points of this numerical integration vary as any

Cartesian nuclear coordinate changes.

7



Differentiating Eq. 18 gives the derivatives of the xc energy fitting coefficients,

aum (W ,GGX-' W. U-7G. E up ZU Wu P Gn}

-'Wu (U-c -Uc) Gn u _ )Ox. l ) (20)

The derivatives of the xc energy fitting coefficients in Eq. 15 appear multiplied by

the overlap integral of the density and the xc basis functions suggesting a new set

of variables,

tm = {uIVGG}I (pGn), (21)
n

and

T(r) = tmG..(r). (22)
m

Using these variables, the summation,

___ 1u (pm 18,a-cW Gm
&Xk (p~m = IUD umtuTX J

(Wu(U -+ tm 'W U - U) Uc)Tjo 'm . ca. (23)

can be used to eliminate the derivatives of the xc energy density fitting coefficients

from Eq. 15,

U(W. - Urjc)T} + Z:tm.{ WU(U~c_ r) G

D / a \ O~k

( ~ ~e -- O =O
+ (U., - Vc)- ) {WuT U-c , (24)
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where Eq. 7 has been used to evaluate the deriative of Uc.

Eqs. 21 and 22 can be rewritten,

{WuTG} = (pG). (25)

In other words, for each weight function the corresponding T exactly transfoims

a numerical integral into an analytic integral on the set of functions exactly fit by

the basis G. For other functions, the transformation is into the analytic integral of

the fitted qiantity,

{WUTF} = (pF). (26)

In particular, this hold for the xc energy operator,

{WTUC} = (pU..), (27)

and

{WuTVc} = (pV=c), (28)

provided W, is chosen to be Wu. These relationships are independent of the accuracy

of the numerical integration scheme and requires only that the matrix {WUGG} be

invertible. If the basis G is complete, then Eq. 23 vanishes identically independent of

the quality of the numerical integration. Therefore, for large xc basis sets improving

the numerical integration scheme might not improve the accuracy of the gradients

if they are approximately computed using Eq. 10.

V. VARIATIONAL XC FITTING

It appears impossible to avoid resolving the one-electron equations to determine

derivatives of p with respect to the nuclear coordinates that are necessary to eval-

uate Eq. 23 precisely when the fitting basis set is incomplete. An additional SCF

9



processes, analogous to the coupled-perturbed-Hartree-Fock calculation", can be

avoided if the one-electron equations are true variations of Eq. 9. To satisfy this

requirement, a variational xc potential must be defined, perhaps most directly,

by considering the derivative with respect to an arbitrary one-electron occupation

number,

Ku:., + OU., (pG . (29)

The remaining derivatives can 1.e obtained by differentiating Eq. 18 again. This

equation contains half as many terms as Eq. 24 because G is now assumed constant,

--' - dW
- biUzc0bi + jd<T(U.C - UXC) dp O f

{ 10*T(Vc -U:Wj+ - , (30)

In this equation the weight function does not contain a subscript, because the xc

potential is not going to be fit. Instead the matrix elements of the xc potential,

W var:Xj) (Xi~uxcXj)

+ {XT ((Uc- - :) d- + (VC - UXC)i W ) x,}. (31)

were obtained directly. In this expression W is taken to be a function of the density

alone.

If the weight function is chosen to be unity, then summing this expression over

all occupied orbitals and using Eqs. 27 and 28 gives precisely (pV,,), as expected.

10



The weight function' 6 ,

= ' (32)

that is the optimal density functional expression for computing the total energy in

the nonvariational LCGTO method 9- " has derivative

dW 2Uc - V(3- (33)
dp U2

The choice of weighting function, W, is less important now because the function is

included in the SCF process.

Having defined a variational xc potential, the derivative of the fitted xc energy is

simplifiedl,

a (Purc) O ~9V r(ar (pa Eu P m-, (4
Ox" KX/~aXk)PP m±u <PXk 2' (34)

where the parentheses and subscript on the derivative of the xc energy coefficient

indicates that p must be held constant during this partial differentiation. The

first term comes from Eq. 29, and the remaining two terms come from changes in

the fitting basis set, which is independent of the density. Using the variational xc

potential, Eq. 31, in the one-electron secular equation, Eq. 4, eliminates all terms

containing a derivative of the density (and density functional aeight function) from

the gradient correction term, Eq. 24. Thus the precise derivative of the total energy

using a variational xc potential is

DE ZkZk,(Xk - Xk,) _ Z dp(r)(x - Xk)

OXk k'-k IRk,- Rk'-I' kJ IRk - r13

1 1 L _ RpI /XV ~ X X 1
k' 2 -9kl ~ r-R

+ Ef[Xi, IF,.] + Kx i kv )]

11



+ Z frPI OF,,,] -7,mtF I OF ..I

(OG) { WTa c. \ + } tW(U.c -UC) OGr 35)

where

{J: ((1 U.CO, _ d +(._U W

dW n-r (36)
+ x-T ((u .C - U XC) - ±p (V"C - UX) W) _X }. (36

The price that is paid for an exact derivative is the coupling of the eigenvalue

problem and numerical fitting/integration.

VI. CONCLUSION

The error terms in existing gradient LCGTO LDF programs have been analyzed.

The derivatives of the fitting coefficients with respect to nuclear coordinate have

been eliminated from Eq. 23, however the derivative of the density cannot be elim-

inated without adding an additional SCF proceedure. A better approach is to use

Vvar in the one-electron equations. This correction replace two quasi-independent

fitting proceedures, Eq. 17 and Eq. 18, with one, the latter. Thus the xc fitting

basis set can be optimized to fit only the xc energy operator. Furthermore, this

correction leads to directly computable gradients, Eq. 35. This derivative is exact

under the assumption that the grid of points necessary to fit the xc energy density

do not move with the nuclei. That is, of course, not true unless the grid leads to

accurate numerical integration. Eq. 26 strongly suggests that this remaining prob-

lem will be minimized. In any event, existing grids 17 make this problem negligible,

at least temporarily.
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