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INTRODUCTION

+ Over the past decade or so, several computer codes have
been developed for calculating the sound field in complex
underwater environments. These algorithms are based on
numerical solutions of the wave equation (or related equa-
tions) and are very complicated. generally requiring long
run times to arrive at a final estimate of the field. Most. if not
all. of these codes are based on some more or less subtle form
of epproximation. After many hours of CPU time, when the
estimate for the field is finally produced. the question inevi-
tably arises: How accurate is the result?

There is no simple answer to this enquiry because, for
most range-dependent ocean channels, no reference solution
exists, This problem has been recognized by the ocean acous-
tics community for some time, and was addressed recently in
two “benchmark™ sessions at consecutive meetings of the
Acoustical Society of America. At the first of these meetings.,
three range-dependent problems were specified, bench-
marks 1. 2. and 3. to be used as test cases for comparing the

various propagation models, one with another. The details of

‘these three problems are given by Jensen and Ferla' in this
issue of the Journal of the Acoustical Society of America.
.The purpose of this paper 1s to present an analytical
~ solution for benchmark problem I, which is the two-dimen-
Yional, “ideal” wedge problem: The acoustic field is required
in a wedge. with pressure-release boundaries, which con-
tains a line source parallel to the apex. This is one of the few
range-dependent problems with an exact analytical solution.
The form of this solution is outlined below, and transmission
loss results evaluated from it are given graphically. Com-
ments are included about the evaluation procedure and the
care that was exercised to eliminate errors.

I. THE ANALYTICAL SOLUTION

Figure 1 shows the geometry of the wedge and the cylin-
drical coordinates used in the analysis. The medium sup-
porting the field is a homogeneous fluid, the line source is
paraliel to the apex. and the boundaries are plane, pressure-
release surfaces.
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Results from an exact analytical solution for the field in a wedge with pressure-release
boundaries (benchmark problem 1) are presented in the form of transmission loss as a
function of horizontal range from the source. These computed curves contain no significant
error, and thus may be used as a primary benchmark for establishing the accuracy of range-

The procedure used to obtain an expression for the field
is to apply two integral transforms to the inhomogeneous
Helmbholtz equation, a finite Fourier sine transform, and a
Hankel transform. On taking the inverse transforms, the ve-
locity potential is found to be the following sum of uncou-
pled normal modes:

\ll:i Z I (ra)sin(v&)sin(v'). (1)
&, =
where 6, is the wedge angle. r and # are the ranges of the
receiver and source from the apex of the wedge, ¢ and ¢/ are
the angular depths of the receiver and source measured
about the apex, and
v=mw/6,. (2)

The mode coefficients in Eq. (1) are
I (rr) = f LJ (pr)J, (prdp, (3)
o p— k-

where A 1s the wavenumber of the source radiation and J, ()
is a Bessel function of the first kind of order v. The integral in
Eq. (3) is Hankel's discontinuous integral. which is equal to
the product of a Bessel function and a Hankel function.”
When this result is substituted into Eq. (1). the final expres-

% sion for the ficld is found to be

FIG. 1 Coordimates ot the source. S and receiver, R the ideal wedge.
The wedgeangles £, and the radrad distance between the source and receiy

ciis R
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where »_ = min(r,r'),r . =max(r,r),i=(—1)"?, and
H V() is the Hankel function of the first kind of order v.

The expression for the velocity potential in Eq. (4) is
exact and valid for all wedge angles (i.e., it is not restricted to
wedge angles that are submultiples of 7). Thus 1t includes
the effect of diffraction by the apex of the wedge, as well as
the image component of the field.

For comparison with other solutions for the field in the
wedge, the expression in Eq. (4) is to be normalized to the
field at 1 m from a line source in an unbounded homoge-
neous medium. Now, the velocity potential of the field gen-
erated by a line source in an infinite medium is

®(R) = (i/4)H (V" (kR), &))]

where R is the radial distance from the source to the field
pointand H " ( ) is the Hankel function of the first kind of
order zero. This result, which depends on just one spatial
coordinate R, is well known.* One method of deriving it is to
apply a Hankel transform to the Helmholtz equation, fol-
lowed by the inverse transformation. Equation (5) repre-
sents cylindrical spreading and shows a logarithmic singu-
larity at the origin, R = 0.

With R set equal to 1 m, the normalized field in the
wedge is

(6)

and the transmission loss in dB is
TL =201log,, (A). (7

This expression was evaluated for a fixed receiver depth as a
function of horizontal range from the source to the apex.

Il. THE COMPUTATIONS

Full details of the parameter values for benchmark
problem 1 are listed in Table I of Ref. 1, and the source/re-
ceiver configuration in the wedge is illustrated in Fig. 1 of
Ref. 1. Note that the sound speed of interest is ¢ = 1500 m/s,
the frequency is 25 Hz, and the wedge angle is
6, = arctan{1/20) = 2.862 405°. The source is at a horizon-
tal range of 4 km from the apex of the wedge, at a depth of
100 m. This is midway down the water column, which is 200
m deep at the source position.

Equation (7) was evaluated with these parameter val-
ues on a VAX 11/750 computer, using double precision
throughout, for 1000 evenly spaced horizontal range points
at a depth of 30 m. A tandard Bessel function package
known as VAXMATH' (also known as SLATEC) and
asymptotics were used to evaluate the Hankel and Bessel
functions. With 100 modes in the summation for the field in
the wedge. the calculation of TL took less than 2 min. of
CPU time.

Computational difficulties can arise with the imaginary
part of the Hankel function [i.c.. the Neumann function
Y, (x) ] when the order v becomes large refative to the argu-
ment x; for a fixed value of x, ¥V, (x) -+ o asv .. We
tested the VAXMATH calculations against tabulated re-
sults published by Abramowitz and Stegun® for a wide range
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of wvalues, including (x,v) = (1,20), (2,30), (5,50),
(10,50), (40,50), (50,50), (50,100), and (100,100), and
found exact agreement. We also tested the Debye asymptotic
expansions for large v (Eqs. 9.3.7 and 9.3.8 in Abramowitz
and Stegun®), using only the first two terms, and found very
good agreement (to three significant figures) with the corre-
sponding tabulated values in Ref. 5. The latter checks were
performed because, when the value of Y, dropped below

10", we switched from VAXMATH to Debye asympto-
tics.

In the benchmark problem, only odd-order modes are
excited, since the source is symmetrically placed in the chan-
nel at middepth. Moreover, since Ar'=400 and
v = (62.9 X mode number), we see that only modes 1, 3, and
5 will propagate through the wedge. However, in the imme-
diate vicinity of the source, many more terms nust be in-
cluded in the mode sum to achieve acceptable accuracy. that
1s, to give the correct nearfield behavior. We considered as
many as 1000 modes for field computations at the source
depth, in an attempt to examine nearfield and normalization
effects, but there was no perceptible difference between
transmission loss (TL) curves. d on a scale of 4
dB/cm, based on sums containing 100 modes and 1000
modes. Moreover, for R > 120m (i.e., two wavelengths at 25
Hz), where R is the range from the source, these plots were
no different from a plot derived from a summation of only
five modes. Thus we feel confident that our results based on
sums of 100 modes contain no significant truncation errors.

lll. RESULTS

Figure 2 shows the transmission loss calculated from
Eq. (7) for benchmark problem 1. TL is shown as a function
of horizontal range measured from the source of increments
of 4 m, at a depth of 30 m. The field shows rapid spatial
fluctuations at ranges up to 3.4 km, which is the cutoff range
(measured from the source) of the first mode. The structure
of these fluctuations changes at a range of 2.2 km, which is
the cutoff range of the third mode. Thus at ranges between
2.2 and 3.4 km, only the first mode contributes to the field,
which shows a more regular structure than at shorter ranges,
where two or more modes interfere.

In the region where only the first mode is present, the
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FIG. 2 Transmission loss as a function of horizontal range from the source,
caleulated from Eq. (7) for a receiver depth of 30 moa frequency of 25 Ho,
and a wedge angle of 2.86 deg.
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slope(deg) = 2.86
freq(Hz) = 25.
source rg{km), dep(m) = 4.0, 100.
rec dep(m) = 30.
Q 999 range points
© 100 modes
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FIG. 3. Expanded view of the transmission loss in Fig. 2, over the range 0-1
km.

peaks and troughs in the field are due to intramode interfer-
ence. This phenomenon is characteristic of range-dependent
channels.”” It arises because a mode consists of two field
components, one traveling up slope and the other down
slope, which interfere to give the observed effect. At ranges
greater than 3.4 km (i.e., close to the apex), there is essen-
tially no energy in the ficld because the water depth at such
ranges is not sufficient to support even the lowest-order
mode. (As it happens, the intercept of the 30-m depth line
with the bottom boundary of the wedge coincides with the
cutoff range of the first mode. Thus the cutoff region is not
depicted in Fig. 2, since at a range greater than 3.4 km, the
receiver is outside the wedge domain.)

Figure 3 shows an expanded view of the field in Fig. 2,
spanning the range out to 1 km and calculated using 1000
range points. This is useful for a detailed comparison with
the results obtained from other models.

IV. CONCLUDING DISCUSSION

The solution for the field in the ideal wedge shown in
Figs. 2 and 3 has been carefully checked and is exact: The
peaks and troughs fall in the correct positions, the relative
heights of the peaks are also correct, as are the absolute levels
of the curve. Thus these transmission loss curves may be
regarded as a primary range-dependent benchmark. They
may be used for comparison with the predictions of range-
dependent numerical codes, to establish the accuracy of the
latter.

Jensen and Ferla' have examined three numerical mod-
els in connection with all three benchmark problems. Two of
these models are based on the parabolic equation.™ and are
thus unsuitable for estimating the field in the ideal wedge
(because backscattering is ignored in the parabolic approxi-
mation). The third model is a complete two-way solution of
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the elliptic wave equation known as “COUPLE".® It is for-
mulated in terms of stepwise-coupled normal modes and is
valid for a range-dependent, fluid medium. COUPLE is
CPU-time intensive, as illustrated by the comparative fig-
ures in Table III of Ref. 1.

On comparing the results of COUPLE shown in Figs.
3(b) and 4 of Ref. 1 with our calculations of the field in the
ideal wedge, we see that there is excellent overall agreement.
The positions of the peaks and nulls are the same, with just a
slight occasional discrepancy between the height of interfer-
ence peaks of less than 1 dB. Moreover, the absolute levels of
the curves are in good agreement, to within a fraction of a
dB. Since the ideal wedge problem is a particularly stringent
test of any numerical propagation code, this agreement with
the exact analytical solution establishes COUPLE as a sec-
ondary range-dependent benchmark. Thus COUPLE may
be used for comparison with computationally efficient nu-
merical codes, such as those based on the parabolic equation,
to assess their accuracy in the context of realistic, range-
dependent ocean channels, where backscattering effects are
negligible.

In conclusion, although the analytical solution of the
ideal wedge problem is not very realistic in terms of the com-
plex ocean environment, it is extremely useful as a primary,
range-dependent benchmark. Since it is exact, it may be used
to establish the accuracy of a computationally demanding
numerical code, such as COUPLE. The latter may then be
used as a secondary benchmark against which other, less
computationally intensive, algorithms can be tried and test-
ed in the context of realistic ocean channels.
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Numericalgolutions are presented to two benchmark problems involving acoustic propagation
in range-depérdent media. The two problems deal with: (1) upslope propagation in a wedge-

shaped channel

ith a penetrable bottom, and (2) propagation in a plane-parallel waveguide

with a range-varymg sound-speed profile. The solutions are based on a pair of wide-angle,
variable-density, pardolic equations, one of which is solved using a finite-difference algorit

while the other is solvedusing a split-step algorithm.
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INTRODUCTION

Two benchmark problems involving acoustic peopaga-
tion in range—dependent media were recently proposgd for
numerical consideration.! Numerical solutions to MRese
problems were subsequently presented at a special session\Qf
the 113th Meeting of the Acoustical Society of America.
Problem I dealt with upslope propagation in a wedge-shaped
channel for: (a) arigid and (b) a penetrable sloping-bottom
boundary. Problem II dealt with propagation in a plane-
parallel waveguide with a range-dependent sourd-speed
profile. This paper presents numerical solutions to problems
I(b) and II using a computer code based on a pair of wide-
angle, variable-density parabolic equations.

The development and use of the parabolic equatybn
(PE) approximation in ocean acoustics is reviewed £lse-
where. "™ Unlike the (elliptic) wave equation, pafabolic
equations contain only first derivatives in the rangefariable,
and so allow efficient numerical solution by nfniterative
marching techniques. This numerical advantagf is achieved
by (a) neglecting backscatter, and (b) limitifg the angular
aperture of the forward-scattered waves. Bg€ause of (a), the
outgoing waves in a range-independent whveguide formally
satisfy a single first-order equation conjdining a square-root
operator. As a result of (b}, different Approximations to this
operator give rise to different parab6lic equations.

The first numerical solutionyto the standard parabolic
equation of ocean acoustics appfared during 1973-1974 and
were obtained using the splipfstep algorithm.® ™ Based on a
presentation by F. D. Tapp€rt.” a split-step version was im-
plemented at DREP by/1975 where it was used to assess
some bottom-limite¢/ propagation data provided by
NUSC.""'"" When agbustic waves interact significantly with
the ocean bottom¢ however, the rapid variations in sound
speed and densly can be accommodated more easily using
finite-differenpée methods.”” "' For this reason, a finile-dii-
ference vegfion was developed at DREP to accommodate
the test ghses examined at a PE workshop held in 1981."°

recent years, wide-angle approximations to the
sgaflire-root operator have been proposed that result in para-
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bolic equations thgl are more accurate than the standard
PE.'*?' At the sajfie time, advances ~  omputer technology
have produced Amaller and faster machines with which to
compute the g€oustic field. By 1984, the merging of PE soft-
ware with dédicated hardware for generating and displaying
numericg/PE solutions had been effected.?”** As a result of
these sgftware and hardware improvements, DREP has pro-
ceeded with the development of a high-speed, stand-alone,
oygaputer and display system based on the PE model for
phking sonar performance predictions at sea.” The numeri-
al sQlutions presented in this paper were obtained using a
pair of\variable-density, wide-angle, parabolic equations
that formNhe basis for this shipboard system.
The reX of the paper is organized in the following way.
In th next segtion, a brief review of the approximations that
underlie the pak of DREP parabolic equation codes is given.
This is followed By a simple error analysis that compares the
inherent accuracy\of the two wide-angle approximations.
Section III contains\he detailed split-step and finite-differ-
ence numerical solutiyns to problems I(b) and II. Finally.
the paper concludes wxh a summary of the numerical re-
sults.

I. BASIC THEORY

Let the region z > 0 (z pYsitive down) of a cylindrical
coordin. system (r6,z) dpntain an inhomogeneous
oceanic waveguide. ai d let p(r.Qexp( — fwr) represent the
azimuthally symmetric, time-harfuonic acoustic field due to
a point source located at r = 0, z =¥,,. For r > 0, the pressure
p(r.z) satisfies the variable-density Ycoustic wave equation

Vip + k(' + 2ina/k,)p - (W/p)Vp = 0. (n
index, ¢(r.z) is the
r.z) €k, is the ab-

ence wavenum-

where n(r,z) = ¢,/c(r.z) is the refracti
sound speed, p(r.z) is the density, and ¢
sorption. Here A, = w/¢, is anarbitrary re
ber.

In regions where p is constant, the fariNd (A,r> 1)
pressure can be determined by solving the “one-wh ™" opera-
tor equation for the outgoing field v*'




