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SUMMARY

An underwater towed sound generator, used in sonar research work, was found to
be unstable when under tow. Wind tunnel tests were therefore carried out on a model
of the vehicle to assess the effectiveness of various modifications designed to improve
its stability.

Fluid dynamic data from these tests has been incorporated into a computer model of
the towed vehicle and cable. This document describes and presents predictions
obtained from the computer model for a range of configurational and operational
variables.
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1. INTRODUCTION

An underwater towed sound generator, used in sonar research work, was found to be
unstable when under tow. A model of the vehicle was therefore tested in a wind
tunnel to establish the fluid dynamic characteristics of the vehicle and to assess
various modifications intended to increase its stability. This work was reported in
reference 1. The data measured in the wind tunnel, when combined with the other
known characteristics of the vehicle and tow cable, is sufficient to enable predictions
to be made of the behaviour of such vehicles when under steady tow.

This report presents a computer model of the underwater towed vehicle and cable
system which was developed to use the wind tunnel measured data. The model
predicts the important parameters of the towed system for a range of conceptual
configurations and operational variables. Results are presented for two
configurations which were shown by the wind tunnel tests to be suitably stable.

2. CONFIGURATIONS SELECTED FOR STUDY

The two configurations for which predictions are presented are shown in figure 1.
They consist of the original vehicle body, nose and strongback fitted with either of
the two tail units shown. (The tail units are referred to as "tail 1" and "tail 3" to
match the nomenclature used in reference 1). The use of a cut-down strongback as
indicated in figure 1 is also considered and is commented on later.

Details of the tow cable configuration are shown in figure 2; this is the existing tow
cable with no modifications. The arrangement of clip-on discs and fairings is
designed to suppress cable strumming (a lateral vibration caused by vortex
shedding), and they cover the entire submerged length of the cable.

3. THE PREDICTION PROGRAM

A listing of the prediction program is given in Appendix 1. The program is written
in FORTRAN 77 and incorporates all input data and options within itself. Thus
successive runs for differing configurations require program statements to be edited
and the program recompiled between each run. This is not a serious handicap since
a single run is sufficient to provide all the relevant data for one vehicle configuration
(see Appendix 2 which gives a sample of the program output).

The assumption is made that for reasons of symmetry the underwater vehicle will, if
stable, tow with negligible sideslip and with the strongback on the top. The program
therefore considers only forces and moments in the vertical plane. The program
first determines the incidence at which the vehicle will tow by calculating all relevant
forces (weight, buoyancy, fluid dynamic forces and tow cable tension) and then
searching for the incidence at which all forces and moments sum to zero. If this is
not achieved within an incidence range of -300 to 300 the program prints "Vehicle is
unstable". Although this is not necessarily true it does imply that stability, if it is
achieved, is at an undesirably high angle of incidence where no measured data is
available and where asymmetric shedding of body vortices could lead to dynamic
stability problems.
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Once the incidence of the towed vehicle is determined the program predicts the
tension and shape of the tow cable by considering it in one metre lengths, each
length taken to be a rigid section freely pin jointed to its immediate neighbours. For
each section of cable the program calculates all relevant forces, performs a force
balance, and thus determines the progression of tension and angle along the entire
cable.

4. GENERATION OF INPUT DATA FOR THE PROGRAM

The input data for the program consist of all the parameters of the tow system which
are pertinent to its behaviour under tow. With the exception of the vehicle fluid
dynamic characteristics these quantities are listed in table 1. Where possible these
quantities have been directly measured. Otherwise they have been calculated from
realistic starting assumptions (eg vehicle mass and buoyancy data are based on
measured results for the existing body and strongback, plus data calculated for the
add-on tail units assumning they are fabricated from aluminium alloy). The drag
coefficients used for the tow cable were estimated from data in reference 2.

The fluid dynamic characteristics of the vehicles were derived from wind tunnel test
data (see reference 1) and are input to the program as constants in fourth order
polynomials fitted to the measured data.

5. PREDICTIONS

All the predictions given here apply only to a system in a steady state. No attempt
has been made to model the inevitable launch and deployment transients, and
therefore the program can give no information on whether these transients will
damp out and allow the system to reach a steady state. However, for the relatively
simple shapes and low attitudes considered here there is no reason to suspect any
significant dynamic instabilities to occur.

5.1 Sideslip angle of vehicle

In the sideslip plane, gravity and buoyancy forces have no effect and
therefore only the fluid dynamic forces need be considered. Since both
vehicles are symmetric and statically stable it follows that if a steady state is
reached (see earlier comment), it will be at a sideslip angle of zero and with
the strongback on the top of the vehicle. In practice, of course, sideslip
angles will fluctuate over a small range, the size of the fluctuation depending
on turbulence in the water, off-axis loads from the tow cable and the size of
the fluid-dynamic stabilising moments. For both vehicles studied here the
fluid dynamic stability in the sideslip plane (see ref 1) is sufficient to ensure
that sideslip angles remain small. The use of a cut-down strongback would
further enhance this stability.
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5.2 Incidence angle of vehicle

The incidence angle of the vehicle under tow will depend on gravity,
buoyancy and tow cable forces, as well as the fluid dynamic forces.
Predictions of this angle for a range of tow speeds and tow attachment points
are given in figure 3. Ideally, the vehicle should tow at a low angle
throughout the speed range, and it suggested that a limit of +200 should be
safely allowable (at angles of 300 and greater asymmetric growth and
shedding of body vortices could introduce some dynamic instability).
Accepting this limitation, figure 3 shows that the vehicle incidence is very
sensitive to tow attachment point and that to achieve acceptable angles
throughout the speed range requires the tow attachment to be within about
0.1m of the optimum point.

An optimum tow attachment point on the strongback (ie a point for which
the incidence stays close to zero throughout the speed range) may be defined
as the point for which the vehicle incidence is within -20 to + 2 when fully
submerged and at rest. Figures 3a and b appear to indicate that this can be
approximated by supporting on the strongback at a point above the CG, but
figure 3c is included to show that this is not necessarily so. Figure 3c shows
results for a vehicle fitted with nearly 50 kg of ballast in the nose, which shifts
the centre of mass to about 0.13m ahead of the centre of buoyancy. The
optimum support point for this configuration is a point nearly 0.m ahead of
the CG.

Reference 1 shows that the use of a cut-down strongback has only a very
small effect on the incidence plane fluid dynamic characteristics. Figure 3
can therefore also be used for corresponding configurations with a cut-down
external strongback, where the removed portion is replaced with an internal
strongback of roughly equivalent mass and displacement.

5.3 Tow Cable Behaviour

Factors influencing the behaviour of the tow cable are the loads exerted by
the towed vehicle plus the gravity, buoyancy and fluid dynamic forces
distributed over the whole length of submerged cable. Predictions of cable
trajectory, tension and total length are plotted against depth in figures 4, 5
and 6 for varying tow speeds. Note that the depth scale reads from the towed
vehicle (depth = 0) up towards the surface. The predictions thus show the
cable characteristics along the full length of submerged cable up to a
maximum depth of 140m, and can be simply truncated at any intermediate
point for shallower towing depths. The predictions are given for a near
optimum towline attachment position (which, for these configurations, is at
the CG of the towed vehicle), and for two other acceptable positions at the
highest tow speed to give an indication of the effect of varying the tow
attachment position.
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As expected, the tow cable conditions are very similar for both vehicles
considered, and, as long as the vehicle remains stable, are not particularly
sensitive to changes in tow attachment position. At low speeds (up to 3 m/s)
the cable tension is dominated by the unbuoyed weight of the vehicle. At
higher speeds, and for deep towing, the maximum cable tension is
increasingly dependent on the drag of the cable itself. It is only at high
speeds (4 to 5 m/s) and shallow depths (up to 50m) that the maximum cable
tension is significantly dependent on the fluid dynamic characteristics of the
vehicle. It is therefore reasonable to expect that for normal (low speed)
towing conditions the predictions would be little changed by the use of a cut-
down strongback on the towed vehicle.

6. CONCLUDING REMARKS

(1) Both of the vehicles studied here can be arranged to tow in a stable manner
throughout the desired range of speeds and depths.

(2) For optimum behaviour of the vehicle under tow (ie attitude remaining close
to zero throughout the speed range) the tow cable should be attached at a
position which causes the vehicle attitude to lie within the range of about -20
to + 20 when the vehicle is at rest and fully submerged. (Note that unless the
centre of mass and the centre of buoyancy of the vehicle are coincident, then
the vehicle attitude in air will not be the same as in water).

(3) If the tow cable cannot be attached at the optimum position then the selected
attachment goint should be acceptable if the vehicle attitude lies within a
range of -20 to + 200 when at rest and submerged.

(4) For moderate changes in the vehicle fluid dynamic characteristics (eg a shape
change to nose, strongback or tail), the tow cable conditions should not
change significantly as long as the tow cable is correctly attached and the
vehicle remains stable under tow.

(5) The disks which are part of the anti-strumming attachments to the tow cable
make the cable a potentially high-drag component of the towed system. This
is not a problem at low speeds (up to 3 m/s) or for shallow depths (up to
50m), but could become very significant at higher speeds and greater depths.
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APPENDIX 1. LISTING OF THE PREDICTION PROGRAM

c Program name is TOW2. FOR
C
c This program predicts the trim incidence and tow cable trajectory
c for an underwater towed low frequency sound generator
c (with 4 cylindrical fins type tail)
c

DIMENSION ctens(14),posx(14),posy(14),length(14)

REAL mass,nor0,nor 1,nor2,nor3,nor4,norfor,mres,length
c

INTEGER dirm,dirml
c

common dens,vel
common/hydfor/norO,nor,nor2,nor3,nor4,ax,ax,ax2,ax3,ax4,
+ xcpO,xcpl,xcp2,xcp3,xcp4,refa,refl
cominon/towfor/weight,bouyfnorfor,axforxcgxbouy,xcp,xtow,ztow
common/cable/tax,tnor,alph,cdcnor,cdcax,crefa,effcwt

c
c set the fluid constants
c dens = fluid density(kg/m**3)

dens = 1025.0
C
c set the vehicle constants
c refl = ref. length =vehicle diam(m)
c refa =ref.area=vehicle cross sectional area (m*2)
c mass=vehicle mass(kg)
c disp=vehicle displacement(m**3)
c bouyf= bouyancy force on vehicle(n)
c xcg =vehicle cg position aft of nose(m)
c xbouy = centre of bouyancy position aft of nose(m)
c ztow = distance from vehicle axis to tow attachment point(m)

refl = 0.450
refa = 3.1416*(refl* -2)/4.0
mass = 330.3
weight = 9.807* mass
disp = 0.1584
bouyf= 9.807*dens*disp
xcg-= 1.239
xbouy = 1.244
ztow=0.305

c
c set the hydrodynamic constants - these are the constants in the
c following equations:
c normal force coeff(+ve upwards)
c cnor=nor0 + norl*inc + nor2*inc**2 + nor3*inc**3 + nor4*inc**4
c axial force coeff(+ve backwards)
c cax= axO + axl*inc + ax2*inc"2 + ax3*inc**3 + ax4*inc**4
c centre of pressure of normal force(calibers aft of nose)
c xcp= xcpO + xcpl*inc + xcp2*inc*02 + xcp3*inc**3 + xcp4*inc**4
c WHERE: inc = incidence (radians)
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norO = 0.030
nor = 12.676
nor2 = 0.334
nor3 = -9.981
nor4 = -2.748
ax0=0.500
ax 1 = -0.078
ax2 = 1.424
ax3 = 0.251
ax4 = -4.592
xcp = 4.232
xcpl = 0.010
xcp2=-1.088
xcp3 = -0. 139
xcp4 =- 1.153

C
c set the cable constants
c cdcax = drag coeff of cable(per metre) for flow along cable
c cdcnor = drag coeff of cable(per metre) for flow normal to cable
c cdrefa = ref area for cable drag = frontal area of bare cable/m~(m* *2)
c cmass = cable mass/m(kg)
c cdisp = cable displacement/ m(m* **3)
c effcwt =effective cable weight/rn after allowing for bouyancy(n)

cdcax = 0.24
cdcnor = 0. 16
crefa=0.016
cmass = 0.763
cdisp =0.000468
effcwt = (cmass-cdisp *dens) *9.807

C
c set initial values of variables
c vel = tow speed(m/s)
c xtow = towline attachment position aft of nose(m)

vel = 5.0
xtow = xcg-0.5

c
c set up output headings

write (6,2000)
2000format('0',35x,'UNDER WATER SOUND GENERATOR TOWING',

1 'CHARACTERISTICS',//)
c
c set an initial guess for incidence angle and incidence step
c alph = incidence angle(rad ians), nose up is + ye
c dalph =incidence step(radians) to be used to refine guessed alph
20 alph = -30.0/57.296

dalph = 10.0/57.296
c
c set misc indicators
c dirm =1I for + ye pitching moment, = 1 for -ye
c dirml = the previous (last) value of dirm

dirm= 1
dirml =1I

c
c calculate the hydrodynamic forces on the vehicle



10 call hydfor(alph,norfor,axfor,xcp)

c calculate towing forces(normal and axial) and resultant moment on
c vehicle

call towfor(alph,tnor,tax,rnres)
c
c adjust incidence appropriately as determined by unbalanced moment

dirmi = dirm
if(mres.gt.0)then

dirm = 1
else

dirm=-1
end if
if(dirm.ne.dirml)dalph =-daiph/ 10.0

c if close to stable trim (dalph.lt.0.1 deg) jump out of incidence
c adjusting loop

if(abs(dalph).lt.0.001)go to 100
aiph = aiph + daiph

c if unstable for alph between -30 deg and +30 deg, jump out of
c loop and write appropriate message

if(abs(alph).gt.0.55)go to 110
go to 10

c

c printout final prediction
c jump to here if unstable
110 wri te (6, 10 10)ve1, (xcg-xtow)
1010 format(' ','or tow speed ',f4.1I,' in/s and tow position ',f6.2,

1' m ahead of cg, vehicle is unstable')
go to 120

c jump to here if stable
100 alphd =alph*57.296

write(6, 1000)vel,(xcg-xtow),alphd
1000 format(' ','or tow speed',f4. 1,' in/s and tow position %6f.2,

i'm ahead of cg, vehicle trim angle is 'Af.1I,' deg')
c now calculate and print out the cable trajectory

call cable(length,ctens,posxposy)
write(6, 1020)length
write(6, 1030)ctens
write(6, 1040)posx
write(6, 1050)posy

1020 format(' '' cable length (in) '14M7.1)
1030 format(' '' cable tension (n) '14f7.0)
1040 formnat(' ',' horizontal position (in)',147.1)
1050 format(' ''vertical position (in) ', 147.1,/)
120 continue
c
c now set new tow speed and/or tow position and repeat calculations.
c if all speeds and tow positions completed, go to STOP

vel =vel-1.0
if(vel. lt.0.0)then

write(6,*)
write(6,')
write(6,*)
vel =5.0
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xtow = xtow + 0. 1
if(xtow.gt.(xcg +0.5 1))go to 200
go to 210

else
go to 20

end if
C
C
200 STOP

END

SUBROUT[INE HYDFOR(alph,norfor,axforxcp)
C
c This subroutine calculated the hydrodynamic forces acting on the
c towed body from curves of coefficients versus incidence
c
c alph =incidence of vehicle (radians), + ve is nose up
c norfor = normal force on vehicle(n), + ye is up
c axfor =axial force on vehicle(n), + ve is backward
c xcp =centre of pressure of normal force(cal), + ye is behind nose
c

real nor0, nor1, nor2,nor3, no r4, norfor, norfcf
C

common dens,vel
common/ hydfor/norO, nor 1, nor2, nor3, nor4,ax0, ax 1, ax2,ax3, ax4,

+ xcp0,xcp 1,xcp2,xcp3,xcp4,refa,refl1
C

dynp = 0.5*dens*(vel **2)
norfcf nor + nor 1 alph +nor2(alph* *2) +nor3 *(alph **3) +nor4 (alph *4)
norfor =norfcf*dynp*refa

axfcf = axO+ axlalph+ ax2(Lph* *2) + ax3*(alph* *3) + ax4*(alph* *4)
axfor =axfcf*dynp*refa
xcpcal = xcpO+ xcpl*alph +xcp2*(alph* *2) + xcp3*(alph* *3) + xcp4*(alph* *4)
xcp = xcpcal *refl1
RETURN
END

SUBROUTINE TOWFOR(alph,tnor,tax,mres)

c
c This subroutine calculates the tow cable forces on the towed body
c and also the resultant pitching moment on the vehicle
c
c aiph = incidence of vehicle(radians), + ye is nose up
c tnor = cable force normal to vehicle axis(n), + ye is up
c tax= cable force parallel to vehicle axis(n), +ve is forward
c mres = pitching moment on vehicle(n.m), + ye is nose up
c

common/towfor/weight,bouyf,norfor,axfor,xcg,xbouy,xcp,xtow,ztow
c

real norfor,mres
c
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tnor = (weight-bouyf) * cos(alph)-norfor
tax = (weight-bouyf)*sin(alph) + axfor
mres = (weight *xcg-bouyf *xbouy) 'cos(alph)-norfor'xcp-tnor xtow-

1 ax'ztow
RETURN
END

SUBROUTINE CABLE (length,cte ns,posx,posy)
C
c This subroutine calculates the tension and shape of the first
c 2000 metres of tow cable from the towed body by considering the
c cable to be made up of 2000 pin-jointed rigid sections, each section
c one metre long
c
c length = length of cable(m), measured from vehicle attachment point
c ctens =cable tension(n), at points defined by 'length'
c posx = horizontal distance(m), from attachment point, + ye is forward
c posy = vertical distance(m), from attachment point, + ye is up
c

dimension ctens( 14),posx( 14),posy( 14),length( 14)
c

common dens,vel
contmo n/cab le /tax, tnor,alph,cdcnor,cdcax,cre fa, effcwt

c
real length

C
c set up initial values at cable attachment point

xold = 0.0
yold =0.0
told = sqrt(tax* '2 + tnor' '2)
angi1 = atan(tnor/tax)
if(tax.l1t.0.0)angl = ang1 + 3. 1416
angold =alph +angi
ystore = 9.6
j =0

c
c now calculate cable characteristics at each metre for 2000 metres

do 10 i= 1,2000
xnew = xold + cos(angold)
ynew = yold + sin(angold)
fnor = cdcnor *crefa* 0.5 *'dens'* (vel *sin(angold)) * 2
fax = cdcax *crefa* 0.5 * dens* (vel *cos(angold)) 2
wrior = effcwt* cos(angold)
wax = effcwt'sin(angold)
tnewax = told + fax + wax
tnewnr + wnor-f nor
tnew = sqrt(tnewax* ' 2 + tnewnr* '2)
angnew = angold + atan(tnewnr/tnewax)

c store variables for output at 10 metre depth increments
if(ynew.ge.ystore) then

j=j+1
if(,.eq. 15) go to 20
Iength(j) =



ctensOj) = tnew
posxoj) = xnew
posyoj) = ynew
ystore = ystore + 10.0

end if
xold =xnew
yold =ynew
told = tnew
angold = angnew

10 continue
20 RETURN

END
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APPENDIX 2. SAMPLE OUTPUT FROM THE PREDICTION
PROGRAM
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TABLE 1. INPUT DATA USED IN THE PREDICTION PROGRAM

tow cable
attached by free
swivelling joint
of negligible mass
and drag Xt

~~z tow [

x cg

x cb centre of mass (cg)

centre of buoyancy (cb)

Vehicles
with tail 1 with tail 3

Xcg 1.277 m 1.244 m
Xcb 1.266 m 1.239 m

mass 340.8 kg 330.3 kg
displacement 0.162 m3  0.158 m3

General

tow speed variable, Om/s to 5 m/s
Xhow variable, 0.5m to -0.5m
Ztow 0.305 m

fluid density 1025 kg/m 3 (sea water)
Tow cable

mass 0.763 kg/m
displacement 0.000468 m3 /m
drag coeffs 0.24 (for axial flow) 1 reference length is

0.16 (for cross flow) I diarn of bare cable (0.016m)
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Note: All dimensions in mm

FIGURE 2: GEOMETRY OF THE TOW CABLE
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FIGURE 3. INCIDENCE OF THE TOWED VEHICLE
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FIGURE 3. (CONT'D): INCIDENCE OF THE TOWED VEHICLE
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FIGURE 4. TOW CABLE SHAPE
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FIGURE 6. TOW CABLE LENGTH
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