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I. Introduction

The angular motion of a projectile in flight can usually be represented as the sum
of two coning motions. The stability of a general motion can then be determined by
considering the stability of each coning motion separately. For this analysis, an aeroballistic
coning axis system with unit vectors F_, Fy, and F,. is customary. The 4,~ vector is aligned
along the axis of symmetry; the Fy vector is in the plane containing the axis of symmetry
and the velocity vector and points toward the velocity vector. For constant-amplitude
coning motion of amplitude a, and frequency ,, the angular velocity of the coordinate
system is

i = €0 cosa, + jvc sin°) (11)

The aerodynamic moment Ml can be expressed in the coning coordinate system as
(M., M Ma a)_ M represents the spin moment and is usually described quantitatively
by the dimensionless coefficient C1. Ma represents an in-plane moment (a moment causing
a motion in the plane of the cone angle); it is related primarily to the static moment coef-
ficient, CM., and controls the frequency of the coning motion.1 Finally, M, represents a
side moment; it is a combination of the damping-in-pitch and Magnus moment coefficients,
and controls the growth or decay of the coning motion.

If a projectile has a moving payload - solid or liquid - the moment exerted by this
payload can be expressed in coning coordinates as ( Mp, Mp, Mw ). The side moment
component, MV. can cause spectacular instabilities. When these instabilities occur, a
rapid despin is observed; hence a relation between the moving payload's spin moment and
its side moment has long been suspected. This correlation between spin and side moment
is used as a diagnostic for payload-induced instability.

In this report we will review the experimental observations and theories that deal
with this relation for a variety of moving components. We will then derive a -ery simple
relation that applies to all moving payloads in steady-state motion, thus validating the
diagnostic tool.

II. Moving Rigid Payload

In 1955 an 8-inch shell, the T317, showed significant range losses and very large spin
decays.2 This shell had several rings held on a central column but free to move within small
but nonzero clearances. The actual spin histories of several T317's are given in Reference
2 and are repeated as Figure 1. This figure also gives the spin history for three T347's.
The T347 shell has the same external shape, mass, and moments of inertia as the T317
but no movable internal components. In all observed cases, the T317 had a greater spin
loss and flew to a lesser range. The relative decrements between the range of each T317
shell and the average range of the T347's are giien in the figure. We see ---t a spin loss
of almost 70 Hz was observed for a projectile that flew 11 % short of its proper range.
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Several authors 3.4.5 developed steady-state payload motion theories to explain this
misbehavior. Reference 5 considered two types of motion: (1) a circular motion of radius f
of the payload component center of mass about the projectile's axis of symmetry; (2) a
coning motion of angle -f of the spin axis of the payload component about the projectile's
axis of symmetry. Both motions were assumed to be at the projectile's coning frequency,
0,, and lagging the projectile coning motion by a phase angle 0o. Under these assumptions,
the side moment exerted by the internal component was shown to be

Mrs = A , sin$ (2)

where: (1) MVIP 2  f

A - or(2) , -P P ,, )t
P - mass of payload component

1, - axial location of payload component relative to
projectile center of mass

I,, axial moment of inertia of payload component

Itp = transverse moment of inertia of payload component
pp= spin of payload component

More importantly, the roll moment induced by the payload component was shown to
be

M.= - Mp. sinc (3)

III. Liquid Payloads

Liquid payloads have been known to cause very spectacular instabilities. Flight mea-
surements in 1974 of unstable projectiles with spinning liquid payloads showed a most
remarkable result. 6 Very large decreases in projectile spin were observed for unstable pro-
jectiles performing large-amplitude coning motion.

Figures 2-3 are yawsonde records for a liquid-filled shell fired at a transonic muzzle
velocity. The oscillating sun angle, a,, indicates a coning motion in excess of thirty
degrees after eight seconds of flight. At this time, the slope of Euler spin, 4, changes by
a factcr of ten. Thus projectiles fully filled with liquid show the same spin-down behavior
as projectiles with moving rigid payloads. Indeed, this large despin moment occurring for
payload-induced instability was suggested by Miller 7 as a design tool, a technique jusufied
by flight tests.8
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The first theoretical relation between side moment and roll moment for liquid payloads
,,,s given in Reference 9. This reference assumed that the steady-state motion of a liquid
could be approximated by a linearized Navier-Stokes equation and then showed (after
considerable algebra) that Equation (3) was valid for a liquid payload. Later, Rosenblat
et al.1 0 showed that linearization of the Navier-Stokes equation was unnecessary. After
three pages of much simpler algebra, Reference 10 showed that any liquid in a fully filled
payload cavity (provided the liquid satisfies the continuity equation and is in steady-state
motion) has the following relationship between its side moment and its roll moment:

MP, -- - M,, tan c (4)

Note that the linear versions of Equations (3) and (4) are the same but Eq. (4) is the
more accurate nonlinear version.

IV. General Moving Payload Moment Relation

The occurrence of Eq. (4) in so many moving payload theories suggests the possi-
bility that some simple general proof of this relation should exist for all possible moving
payloads in steady-state motion. Indeed, such a proof was developed in Reference 11 by
differentiating the angular momentum of the moving payload.

If V (x, y, z) is the velocity vector of the moving payload element located at (x, y, z),
the angular momentum of the payload is given by

J = X V dxdydz (5)

where: p (x, y, z) is the payload density and

R = (x, y, z) is the position vector of a payload element.

The moment exerted by the moving payload is the negative of the derivative of the
payload's angular momentum:

M~v =-L

= - F(L + i 2ep: + i 3eF. + X (6)

where: (LI, L2 , L3 ) are the components of the payload angular

momentum vector in the coning system.
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For steady-state coning motion, L,= 0 and hence

, [-L 3 sin ,, + L3 cosa, F., + (L1 sinc, - L2 cos a) F,, (7)

so that

MP= - L3 sina,

=-Mp tan a, (8)

Thus the presence of a payload-induced side moment can always be determined by
the roll moment for large coning motion.

4
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