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ABSTRACT

. The periodogram, the square of the magnitude of the Fourier
Transform, is widely used to estimate the spectral content of
sanpled processes. The performance of the periodogram is
degraded by spectral leakage. This is the consequence of
processing finite-length data records. Classical means of
enhancing periodogram performance are the use of tapered
window functions and averaging of several periodograms. These
methods smooth the spectral estimate, but at a loss of
resolution. A non-stationary Kalman filter was applied to the
periodogram of untapered (i.e., rectangular windowed) time
data in an effort to smooth the noise portions of the

periodogram while 1leaving the main spectral response

unaltered. The Kalman filter was able to enhance the
periodogram. Best results were obtained in the single
spectral peak case. Even in the case of multiple spectral

peaks, the resolution of the unfiltered periodogram was
largely preserved since the filtering algorithm was designed
to selectively smooth the noise-only segments of the spectral

T

estimate. . A
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I. INTRODUCTION

The periodogram, the square of the magnitude of the
Fourier Transform, is widely used to estimate the spectral
content of sampled processes. The periodogram remains popular
in the face of more modern spectral estimation techniques
(i.e., parametric modeling) due to its low cost and ease of
implementation in real time. The performance (ability to
detect signals in noise) of the periodogram is degraded by
window function sidelobe effects. This is the unavoidable
consequence of processing data records of finite length. 1In
addition; the periodogram may have a fairly large variance
(i.e., mean equals the standard deviation under noise-only
conditions). A classical means of enhancing the performance
of the periodogram is the use of tapered window functions,
such as the Hamming window, in order to minimize the effects
of the discontinuity at the boundaries of the finite
observation. Another common method is to average a series of
periodograms in an effort to smooth the spectral estimate
(i.e., reduce the variance of the estimate). Almost
invariably, the consequences of these techniques are a
broadening of the main spectral peaks and a corresponding loss
of spectral resolution. What 1is proposed here 1is an
application of a non-stationary Kalman filter to the sequence

presented by the periodogram of untapered (i.e., rectangular




windowed) time data. The objective is to filter (smooth) the
noise portions of the spectral estimate and leave the main
spectral responses unaltered. The result is that the dominant
spectral peaks will be highlighted against the noise "floor"
out of which they rise. Since the main spectral peaks are
unaltered, the resolution of the original periodogram is
preserved. Using the test cases of single and multiple
sinusoids in Gaussian white noise, the Kalman filter's
performance was evaluated for signal detectability and
resolution at different input signal-to-noise ratios on
multiple noise realizations. The effects of varying the
filter's detection parameter and the data/transform length

were also investigated.




IT. CLASSICAL SPECTRAL ESTIMATION

A. BACKGROUND

Estimation of the power spectral density (PSD) of sampled
deterministic or stochastic processes is usually based on
techniques employing the Fast Fourier Transform (FFT). These
techniques are computationally efficient and produce good
results for many different types of signals. There are,
however, two significant limitations associated with the FFT-
based techniques. First and foremost 1is the problem of
frequency resolution, that is, the ability to distinguish
between the presence of one or several spectral components in
a given sample set of data. Frequency resolution of
stationary signals varies with the specific technique employed
but, 1n general, it 1s proportional to the reciprocal of the
time interval represented by the sample. The second
limitation of the FFT-based methods is caused by the windowing
of the data that occurs during processing. Windowing causes
"leakage" in the spectral domain. Energy in the main lobe of
a spectral response "leaks" into adjacent sidelobes, obscuring
and distorting the spectral responses due to other frequency
components that may be present. In some cases, weak spectral
responses may be completely masked by the sidelobes of
stronger spectral responses and thus go undetected. Careful

selection and use of tapered data windows can reduce sidelobe




leakage, but always at the cost of reduced frequency

resolution [Ref. 1}.

B. CLASSICAL SPECTRAL ESTIMATION TECHNIQUES

The two best-known <classical spectral estimation
techniques are the Blackman-Tukey method and the periodogram.
The Blackman-Tukey approach, introduced in 1958 [Ref. 2],
first estimates the autocorrelation function from the data
and then Fourier transforms the correlation estimates to
obtain a power spectral density estimate. The Blackman-Tukey

spectral estimator is given by:

) N1
Br(f)= 2. x(k)exp(—j2nfk) (2.1)
k=-(H-1)

where

| N=1-k
— x*(n)x(m+ k) k=0,12,..,(N-1)
e (k)= N 2

el —k); k=-(N-1),-(N-2),...-1 , (2.2)

This is a biased estimator of the true autocorrelation

function since:

N

zz[f,,(k)]=——N re(k); ks (N-1)

(2.3)

.

The mean value of the autocorrelation function estimator

shows that a triangular (Bartlett) window is applied to the




true autocorrelation function. It is possible to use an
unbiased autocorrelation function estimator by replacing the
normalization by 1/N in (2.2) with 1/(N-|k|). This, however,
can lead to a negative spectral estimate since the unbiased
autocorrelation estimator does not guarantee a positive semi-
definite sequence. The Blackman-Tukey approach was the most
popular spectral estimation technique until the introduction
of the FFT algorithm [Refs. 3 and 4].

The periodogram spectral estimate is obtained from the
square of the magnitude of the Fourier transform of the data.
The data may be weighted by a window function and/or zero-

padded. The true spectral estimator is given by:

M 2
}Jx(n)exp(—j2n1n4

n=-M

P (f)= lim E

Moo 1 2M+1 (2.4)

If we ignore the expectation operator and use only the
available data, the spectral estimator, denoted as the
periodogram, is given by:

N 2

}E x(n)exp(-j2nfn) (2.5)

| .

Prer(f

The periodogram produces best results when an integer
multiple of periods of constituent frequency components are

present in the observation. Despite the advent of more modern




techniques, the periodogram remains a popular means of
spectral estimation because it can be easily and inexpensively
implemented in real time.

In general, the Blackman-Tukey and the periodogram
spectral estimates are nnt identical. If, however, the biased
autocorrelation estimate (2.2) is wused and as many
autocorrelation lags as data samples (N) are computed, then
the Blackman-Tukey and periodogram estimators yield identical

numerical results.

C. WINDOW FUNCTIONS

Every set of data is finite in duration. Processing a
finite duration observation presents special problems to the
harmonic analysis of the data. Some considerations should be
given to detectability of spectral components in the presence
of nearby strong components and their resolvability. Let the
data to be processed consist of N uniformly-spaced samples of
the observed signal. The FFT, the basis of the periodogram
spectral estimator, assumes sequences to be periodic. In
other words, the sample set under analysis is assumed to be
one complete period of an infinitely long periodic sequence.
The selection of a finite time interval of NT seconds, where
T 1s the time between samples, and of the orthogonal
trigonometric basis over this interval leads to an interesting
peculiarity of the spectral expansion. From the continuum of

possible frequencies, only those which coincide with the basis




functions (the bin centers of the FFT) will project onto a
single basis vector. All other frequencies will exhibit non-
zero projections on the entire basis set. This phenomena is
called spectral leakage and is a consequence of processing
finite duration data records [Ref. 1].

Spectral components with frequencies other than those
corresponding to the FFT bin centers will typically be present
in the observed data. Components with frequencies not at bin
centers are not periodic in the observation window. The
periodic extension of a signal which does not coincide with
the natural periods of its constituent frequency components
exhibits discontinuities at the boundaries of the observation.
These discontinuities are responsible for spectral
contributions (leakage) over the entire range of the FFT
frequency bins.

Since we are constrained to deal only with finite-length
data, we are forced to make certain assumptions about the data
outside of thé'observation interval. The finite data record
may be considered as having been obtained by multiplying an

infinite 1length data sequence with a simple rectangular

function:

I; n=0,12,.,(N-1)
(2.6)
w(n) =
lO; otherwise .




The assumption that the data outside of the observation
window is zero is unrealistic but unavoidable. Thus, data
taken "as is" 1is actually rectangularly windowed. Non-
rectangular window functions are weighting functions applied
to the received data in order to reduce the spectral leakage
associated with finite observation intervals. 7he purpose of
the window is to reduce the magnitude of the discontinuity at
the boundaries of the periodic extension. The goal of
windowing is, therefore, to smoothly taper the data record at
the boundaries.

By the Convolution Theorem, multiplication of the time
series by a window function corresponds in the frequency
domain to the convolution of the transforms of the signal
sequence and the window function. If we are using a
rectangular window and attempting to detect a narrow-band
signal, such as a sinusoid in noise, and the sinusoidal
frequency is not at a bin center, the convolution will spread
or smear some signal power into adjacent frequencies.
Conversely, if the sinusoid is at a bin center, then we will
see only the zero crossings of the window transform, and
experience no leakage. If we are using a non-rectangular
window (i.e., a Hamming window), the convolution operation
will smear the signal power into adjacent frequencies

regardless of the sinusoidal frequency being at a bin center

or not.




Leakage has an obvious negative effect on the detection
and estimation of sinusoidal components. Sidelobes from
adjacent frequency components may add in an unpredictable
fashion to the spectral peak of a weak signal, thus distorting
the power estimate of that signal. In extreme cases, the
sidelobes of strong frequency components may completely mask
the main lobe of nearby weaker signals [Ref. 3].

In general, the convolution of the window transform with
the signal transform means that the main lobe width of the
window transform is the limiting factor (in terms of spectral
response) that allows separation of two closely-spaced
spectral lines. For a rectangular window, the main lobe width
between the 3-dB levels of the resulting digital sinc function
(the FFT of a rectangle function) 1is approximately the
reciprocal of the observation interval NT. Leakage effects
can be reduced by the use of windows with non-uniform
weighting, such as the Blackman and Hamming windows.

Consider, ‘for example, the problem of detecting a
sinusoidal signal embedded in Gaussian white noise. Assuming
that the observation interval does not contain an integer
multiple of periods of the sinusoid, then the frequency of the
sinusoid is not at a bin center of the FFT. Some spectral
leakage will occur. Recall from basic Fourier theory that the
transform of a sinusoid (say a cosine function) is a pair of
delta functions given by:

cos(27t) —— n(8(27f - 21f) + 8(2f + 21)) (2.7)

9




Assuming that the data is obtained by rectangular
windowing of an infinitely long sequence (i.e., multiplication
of the time series by the window function), then the
periodogram will be, by the Convolution Theorem, the square
of the magnitude of the convolution of the delta function pair
with the Discrete Fourier Transform of the rectangle function
(a digital sinc function). The digital sinc function is of

the form:
sin(nfNT)
s‘“(nfr) - ( 2 . 8 )

Recall from Fourier theory that the convolution of some

Dy (f) = Texp(-j2nfT[N - 1])

function, call it F(f), with a delta function, results in the
translation of F(f) to the location of the delta function.
In this case, the sinc function will be shifted to the
location of the delta function dictated by the signal
frequerncy. If the location of the delta function does not
exactly coincide with a bin center of the FFT, leakage will
occur. b

At this point, some discussion of zero-padding is in
order. Zero-padding the data sequence prior to the Fourier
transformation will not improve the resolution of the
periodogram. The purpose of zero-padding is twofold. First,
it will interpolate additional power spectral density values
in the interval [-f,/2, f,/2], where £, is the sampling
frequency [Ref. 3] between those that would have been obtained

in a non-zero-padded transform. Second, since the number of

10




observed data points is not always a power of two, zero-
padding is necessary to make the sequence length a power of
two to allow the use of a FFT. Consider the Discrete Fourier
Transform of an eight-point rectangular window. We know that
this transform will produce a digital sinc function. However,
when we actually compute and plot the transform, we observe
only a central spike at the zero spectral location. (Figur=
1) . Why do we not see any of the side lobe structure that we
know must be present? The side lobes are in fact there. They
are not visible because the FFT of the non-zero-padded time
series interrogates the resultant digital sinc function at its
zero-crossings and hence, the side lobe structure is invisible
to us. In other words, the FFT bin centers are coincident
with the digital sinc's zero-crossings. Now examine what
happens when the eight-point rectangle is zero-padded to
sixteen points and then transformed (Figure 2). The side
lobes are now clearly visible because we are interpolating a
point in between the bin centers of the previous eight-point
(non-zero-padded) transform. This principle can now be
extended to an actual spectral estimation example.

Consider a unit amplitude sinusoid embedded in Gaussian
white noise. 1In this example, the number of data points N is
64 and a rectangular window is used. The sinusoidal frequency
is 10.0 Hz and the sampling frequency, £f., is 64.0 Hz. The

variance of the additive Gaussian white noise is 1/2000. This

11




corresponds to a signal-to-noise ratio (SNR) of 30 dB where

SNR is defined as: .

sinusoidal amplitude) (A)
2 2
SNR = 10log; ~ise = 10log;o| 757 (2.9)
(vaﬁance) (a )

where A = amplitude of the sinusoid.

12




T T T — T T 0
- L I
=
O
Q
E B 0
=
42|
32 -
L £
Er by, 3
o5 =
&3 o
o S
]
» le §
o -+ &
<9
O
O
<
2 L | 2sa]
[ Yob|
PY 1 1 1 L 1 1 i —
oL ™~ O Vel << (20 (@] — <
apnuugeul
Figure 1. Magnitude of FFT of 8-point Rectangular Window

i3




16

14

frequency point

MAG OF FFT OF 8-PT RECT WIN ZERO-PADDED TO 16 PTS

apniugewt

Figure 2. Magnitude of FFT of B8-point Rectangular Window
Zero-padded to 16 Points

14




In this example, the bin centers of the FFT occur at
integer multiples of f,/N, which in this case is 64/64 or 1
Hz. Figure 3 shows that the spectral peak is well defined
since the sinusoidal frequency lies exactly at a bin center
and no zero-padding was performed prior to transformation.
We do not see the side lobe structure of the digital sinc
(transform of the rectangle function). Observe in Figure 4
what occurs when the frequency detected does not coincide with
a bin enter. 1In this case, the frequency is 10.7 Hz, which
is clearly not a bin center. The side lobes of the digital
sinc function are now visible since we are not interrogating
the sinc at points of its zero crossing. In addition,
spectral leakage has smeared the signal power into the
adjacent frequency bins. The end result is a much broader and
less-pronounced main lobe (25 vs. 40 dB).

To illustrate the effects of zero-padding, let us now
consider the situation in which the original 64-point data
record has bkeen zero-padded to 128. Now, regardless of
whether or not the sinusoidal frequency is at a bin center,
the side lobes of the digital sinc will now be visible as a
result of the zero-padding (see Figures 5 and 6). The net
effect will be a less pronounced main lobe due to the side
lobes. 1In the case of f = 10.7 (Figure 6), the main lobe is
flattened due to a combination of the sinc side lobes and

spectral leakage.

15
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Figure 5.
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Figure 6.
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D. WINDOWS WITH NON-UNIFORM WEIGHTING

For comparison, the original 64-point data records for
sinusoidal frequencies 10.0 and 10.7 Hz are weighted with a
Hamming window prior to zero-padding and Fourier
transformation (Figures 7 and 8). The Hamming window
function, popular due to its good performance and ease of
implementation, has a maximum side lobe level of -43 dB versus
-13 dB for a rectangular window. The price paid for this side
lobe suppression is increased main lobe width. The 3-dB main
lobe width becomes 1.30 bins versus 0.89 bins for the
rectangular window. The Hamming window is only one of many
such functions. An exhaustive comparison of window functions
and their use in spectral analysis is given by Harris [Ref.
1]. Many other windows, with even more dramatic reduction of
side love levels, are possible. In all cases, however, the
side effect is always a broadening of the main lobe with its

associated reduction in spectral resolution [Refs. 1 and 3].
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E. STATISTICAL PROPERTIES OF THE PERIODOGRAM

Consider a data record of samples of Gaussian white noise
having zero mean and variance o0,’. The periodogram of this
data will have a distribution which is chi-squared with two
degrees of freedom. The reason for this is that the sampled
Gaussian random process, denoted as x(n), has the
distribution:

x(n) ~ N(0,02)
(2.10)

For simplicity let us assume that the Fourier Transform
of x(n) is normalized by 1/SQRT(N), where N is the size of
the transform. Since the real and imaginary parts of the
Fourier Transform of x(n), denoted as A(f) and B(f)
respectively, are orthogonal linear combinations of x(n), it
follows that A(f) and B(f) are mutually uncorrelated Gaussian
random variables each having the distribution N(C, ¢,’). The
periodogram of x(n), P,(f), is defined as the sum of the
squared real and imaginary parts of the Fourier Transform of

x(n):

r(f)=A’(f)+B(f) (2.11)

The sum of the squares of two independent zero-mean normal
variables is a chi-squared distribution with two degrees of

freedom. The mean and variance of this distribution is given

by:

23




f[pffy)] =202 allp 2.12)

40& p=0,

Var[P, ( fo )] =

N|Z N[Z

8ol; (2.13)

<
I
S

where f, denotes the sampling frequency [Ref. 4].
Proof of equation 2.13 for frequencies p#0, N/2 is given

in the following fashion:

Consider:
P, = A% + B?
where A ~ N[0, 0?2 (2.14)
B-N(Lof
‘lvar[P]:EPZ_.E 2
<] = E|P¢ |~ (E[P.])" (2.15)

We know that:

E[p3]=g[(A2+32)2]

=E[A4+2A282+B4] (2.16)

= 803

and that from (2.12):
E[P,] =207

24




Therefore,
var|r,) = E[P? ]~ (gl )’

=401

F. PERIODOGRAM AVERAGING

The statistical properties of the periodogram may be
improved by averaging a set of periodograms together. Assume
that K independent data records are available, all for the
interval 0 < n < (L ~ 1) and all are realizations of the same
random process. The data is: {x,(n), 0 <n< L - 1; x,(n), 0 <
n <L - 1; . . . ¥%,(n), 0 < n < L - 1}. The averaged

periodogram estimator is given by:

1 Rty
=—f Ll rER(f (2.18)
where jﬂTRm([) is the periodogram of the mth data set:
~ '~l 2
Prer,(f) = Z,Im(")em( ~j2nfn) (2.19)

n-()

The mean value of the averaged periodogram will be the same
as that of the periodogram based upon any of the individual
data sets since periodograms for each set are independent and

identically distributed. The variance of the periodogram will
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be reduced by a factor of K as a result of the averaging

operation. [Ref. 2]

Vm [I3Av(f)] = %V“' [";PER,,, (f )]
(2.20)

In actual practice, we seldom have independent data sets. It
is more common to have one long data record of length N. A
common technique is to segment the data into K non-overlapping
blocks of length L, where N = KL. Since the blocks are
contiguous, they cannot be uncorrelated for any process except
white noise. Therefore, the actual variance reduction is
bounded by a factor less than or equal to K. If the data are
Gaussian white noise samples, the autocorrelat'on function of
the data will decay rapidly and the blocks will be
uncorrelated. Thus, the periodograms of the data segments
will be independent and (2.20) will be accurate. [Ref. 3].
As an illustration, Figure 9 is the periodogram of 64 samples
of Gaussian white noise (zero mean, variance 1/2000). Contrast
this with Figure 10, which is the average of the periodograms
of 5 independent 64-point data records obtained by segmenting
a 320-point record of white noise samples with the same
statistical properties. From (2.11), the predicted variance
of the Figure 9 periodogram is 4(1/2000)° = 2.5 x 10" for p #
0, N/2. From (2.18) we would expect a variance reduction by

a factor of 1/N = 1/5 or 6.9 dB for the average periodogram.
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The actual measured variance reduction between the single and
averaged periodograms is 6.7 dB. A variation of this
averaging scheme was proposed by Welch [Ref. 5] involving the
application of a non-rectangular window function to each data
segment and overlapping the segments (typically in a 4:1
ratio).

In interpreting spectral estimates, it is important to be
able to discriminate between spectral detail due to
statistical fluctuation and actual frequency content. A
standard way of evaluating the goodness of a spectral
estimator is via confidence intervals. A means of deriving
a confidence interval for the averaged periodogram is

described in References 3 and 6.
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G. SPECTRAL SMOOTHING THE DANIELL PERIODOGRAM

Daniell suggested that a means of smoothing the
fluctuations of the periodogram was to average over adjacent
spectral frequencies. [Ref. 7] He proposed a modified
periodogram estimate, f%(f), in which each frequency spectral
estimate was obtained by averaging over p spectral points on
both sides of the frequency f under consideration. The
Daniell Periodogram is given by:

1 r (2.21)

>, Plfa)

n=i—p .

ﬁuUO==2

p+1

A generalization of this concept is to pass the sample
spectrum through a low-pass filter with frequency response
H(f). The Daniell periodogram may then be expressed as the
convolution of the sample spectrum with a low-pass filter H(f)

[Ref. 7].

~

Po(f) = P(f)+ H(f) (2.22)

The larger the p used, the greater the smoothing effect
will be. As with other methods, the price paid for smoothing
is a loss of resolution. Figure 11 shows the effect of
Daniell's operation (p=2) on a spectral estimate in which the
frequency of the test signal, 10.0 Hz, is at a bin center.
Figure 12 shows Daniell's method performed on a spectral
estimate where the frequency of the test signal, 10.7 Hz, is

not at a bin center.
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In summary, the FFT-based spectral estimation technique
(i.e., the periodogram) remains popular due to its
computational efficiency and good performance. Frequency
resolution (in Hz) is proportional to the reciprocal of the
length of the data measured in seconds. The ability to
resolve closely-spaced signal components is degraded by a
combination of side lobe effects and main lobe broadening.
Side lobe suppression is possible through the use of non-
uniformly weighted (non-rectangular) window functions but only
at the cost of main 1lobe broadening. Despite these
limitations and the advent of modern spectral estimation
techniques such as parametric modeling, the periodogram
remains the most popular spectral estimator as a result of its
relative simplicity, robustness, and ease of implementation

in real tine.

31




zy Asuanbayj

33 0¢€ §C 0T 9! 0t ¢ :cm-
- \oc-
5 Oy-
- \l\l\‘\l ~10¢-
AVvd-Z"™d1D NI9 ‘ZN NI NISHOLVINLLSH AANW.:QQ | 0
Aduanbai;
93 0¢ Y4 0t St 01 ¢ 0
; _ T _ . T 001-
L 0¢-

d3AAVd-O¥Z “GALINID NIF ‘3SION NI AIOSANIS

0

gp apnuuiew

gp 2apniudew

p =2

64 points Zero-padded to 128

Daniell Spectral Estimator,

10.0 Hz,

Figure 11.

f =

32



zH Aouanboig

§¢ 0¢ Y 0 ST 01 S 0
T T T T T T ] :c
o]
Or 5
UUSNI
- 10z ¢
©
dvd-Z"41D NI LV LON ‘ZN NI NISMOLVINLLST wqm:Zx\D 0
fouanbar
43 0¢ Y 02 Sl 01 ¢ 0
r — T T T T 09-
! </< AP E
/\(><)&/>( \/\(><></_< W
- - e (42
\\AW\\ o 2
/ -

4aadvd-0daz dalND

NIf LV LON "ISION NI QIOSANIS.

0

=2

Daniell Estimator p
64 points Zero-padded to 128

Figure 12.
10.7 Hz,

f =

33




ITT. KAIMAN FILTERING IN SPECTRAL ESTIMATION

A. BACKGROUND

A continuing problem with FFT-based spectral estimation
schemes is the trade-off between spectral resolution and side
lobe suppression. If a non-rectangular window function, i.e.,
the Hamming or Blackman window, is applied to time series data
for the purpose of minimizing spectral side lobes, the side
effect 1is a loss of resolution caused by the broadened
mainlobe. In general, the better the side lobe suppression,
the broader the main lobe. An extreme example is the minimum
4-sample Blackman-Harris window. The highest side lobe of
this window which is 92 dB down from the main lobe peak. The
cost of this level of side lobe attenuation is that the 3-dB
bandwidth (main lobe) is 1.90 bins versus 0.89 bins for a
rectangular window [Ref. 1]. What is proposed here is a novel
application of the Kalman filter to the periodogram for the
purpose of minimizing spectral sidelobe effects without the
usual attendant loss of resolution.

The Kalman filter program demonstrated here was written
by Dr. Roberto Cristi at the Naval Postgraduate School,
Monterey, California in 1988. It is an implementation of the

filtering algorithm first proposed by Kalman and Bucy [Refs.

8 and 9] and is now widely used in control system theory.




Cristi's program was originally developed to detect piecewise
constant segments of time series data corrupted by noise.

A discrete time state-space system model is given by:

x(k +1) = wx(k) + Byu(k) + A (k) (3.1)

y(k) = Cx(k) +w(k) (3.2)

where x(k) is the state vector, u(k) is the input, v(k) is an
input disturbance, y(k) is the observed data and w(k) is the
measurement noise. The discrete transition, input, input
disturbance and observation matrices are ¢, A,, A,, and C
respectively. The input disturbance and measurement noise are

further specified by:

l{g(k)gT(k-+tn)]= V,o(m)

(3.3)

li[y_:(k)QT(k + m)] = W,6(m)
(3.4)

where V, and W, are covariance matrices.
The Kalman gain equations are given by:
I'(k + llk)=tb£(k|k)«br+ar AL (3.5)
: - -1

K(k+ 1) = P(k+ 1k)CT [Co(k+ 1fk)CT + W, ] (3.6)

Pk 1k +1) = [1- K(k + D)CJC(k + 1K) (3.7)
)
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where P(k+1|k) denotes the covariance matrix at time k+1 given
observations to time k and K is the Kalman gain matrix. The

Kalman filter equations are given by:
Z(k+1jk) = ®x(k)+ Agu(k) (3.8)
R(k+ 1k +1) = £(k + 1)+ K(k+ 1) y(k +1) - CE(k + 1) 5.9
, .
where x(k+1|k) denotes the estimate of x at time k+1 given
observations to time k. Note that the initial condition

P(0]|0) must be specified in order to start the process:
: - aren\T
P(oo) = E|(x(0) - 20)z)-50)| (3.10)

Equation 3.10 specifies the covariance matrix of the
initial error. The covariance matrix is a measure of the
confidence on the initial estimate x(0).

Consider the simple, one-dimensional problem of detecting
a piecewise constant time series segment corrupted by noise,
which was the original purpose of Cristi's program. The

signal and its noisy observation are given by:

x(k +1) = x(k) (3-11)

y(k) = x(k) + w(k) , (3.12)

where w(k) is the corrupting noise.
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Now define:

i(k) = y(k) - Cx(k) (3.13)
where x(k) is the estimate of x, C'is some constant, and i is
the innovation sequence. The sequence i(k) represents new
information not contained in the previous observations y (k-
1), y(k=-2),...y(0). Elements of the sequence i have the
property:

L{i(k)y(k—=m)]=0 foraillm>1 (3.14)

Equation 3.14 states that each element of i is orthogonal
to all past observations.

Using Baye's theorem, we can compute the probability of
the observations (y(k), y(k-1),...y(0)) in the following
fashion:

Pr(y(k). y(k=1)...y(0)) = Lr(y(k)ly(k ~ 1)... y(0)) Pr(y(k —1)...(0))

(3.15)

Utilizing the recursive property of this expressicn, we
can write:

k

Pr(y(k), y(k=1)...y(0)) = [ | (y(t)ly(r— 1)...y(0))Pr(y(0)); k=21 (3.16)
1=0

Using the Orthogonality Principle, it can be shown [Ref.
10]:
P1(y(k)ly(k = 1)...y(0)) ~ N(Ci(k),CP(k)CT + A (3.17)
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where N denotes a normal distribution and W, is the covariance
matrix of the observation noise. At time k, it 1is then
possible to compute the probability Pr(y(k)]|y(k~-1)...y(0)).
If the data under examination consists of piecewise constant
segments, then at each new observation two possibilities
exist:

1) the current observation is a continuation of the last
piecewise constant segment of data observed or

2) the current observation is the first element of a new
segment of data with a constant value.

What 1is now required is a means of computing the
probability that a transition between piecewise constant
sections has occurred. Let us now define a parameter g as
a means of quantifying the likelihood of a transition and a
binary random variable ¥ as follows. If a transition has not
occurred, then ¥ = 0 and the current observation is filtered
using a Kalmap filter updated with the current gain. If a
transition haé occurred, then Y = 1 and the current
observation is filtered using reinitialized Kalman filter.

Now define the probability density functions:

Pr(y(k) = 0) = mexp(p) (3.18a)

Pr(y(k)=1) = mexp(-B) , (3.18b)
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1
where ’"_-mqﬂﬁ)+epr¢n and k denotes the time index.

Assume that each ¥(k) is an independent event.

Pr(x(0), 11).. rN))=§_ Pr(y(K) (3.19)

We desire to maximize the expression:
Pr (Y(k),g(k), Flk- 1)) (3.20)

where y(k) is the vector of observations up to and including
the current time k and j; (k-1) 1is the vector of previous
estinates of the binary random variable ¥ up to time (k-1).
Equation 3.20 is the probability of a transition or non-
transition (depending on ¥ = 0 or ¥= 1), given present and
previous observations y and estimates of ¥. We desire to

maximize Egquation 3.20 with respect to y(k) and 3(k—1) where

)=y(k) y(k=1)..4(0)]

(3.21)
[.v(k ) y(k=1)]

and

(k1) = #(k=1), #(k-2).. 70)] (3-22)
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By Bayes' Theoren,
Pr{y(kfy(K), 7(k - 1)
[ee(rn00, z(k—l))]

| Pr{y(k), 7k~ 1))
_[r{y(k).y (k- 1), 7(k). §(k-1))
Pr(y(k), 7(k 1)) (3.23)
Pr(y(by(k— 1), 7(k), £k - 1))- Pe{y(k = 1), 7(0k), 2k - 1))]
Pr{y(k), 3k~ 1)

Assuming that ¥(k) is independent of y(k-1) and %(k—l),

the second term in the numerator of (3.22) becomes:

. (3.24)
pe{y(k—1), 7(k), 3k~ 1)) = Pr{y(k)) Pe{y(k = 1), 5k~ 1))

Eguation 3.23 is then maximized with respect to y(k) and

N
¥ (k-1) by the expression:

max{lTI(Y(k)iy(k)'f_(k - 1))}

(3.25)
=max{Pr( |yk 1), (k). ¥(k - ))Pr(y(k))} . 3.25
Define the likelihood function:
L((oly(k). 7k~ )
=ln{l’ ‘y(k }
{I r( (k)ly(k 1), v(k), ¥(k - 1))}+ln{l’r(y(k))} . (3.26)




Note that Pr(y(k)ly(k-1), ¥(k), ﬁ(k-l)) can be computed

by the modified version of (3.17):

Pe(y(k|y(k 1), 7(k), 3(k=1)
= Pr(y(k)y(k = 1), y(k—2)...y(k ~1))

3.27
~ N(CR(K),CP(K)CT +W,) (3.27)

where ! is the time interval between the current sample k and
the last detected transition. Equation 3.27 is evaluated for
the two cases of an updated or reinitialized Kalman filter.
The probability Pr(%¥(k)) can be computed via (3.18). Thus it
is possible, given each observation and those proceeding it,
to compute the probability that a transition between constant
valued segments has or has not occurred.

By selection of the parameter B (see Equation 3.18), it
is possible to adjust the likelihood that a transition will
occur. The larger the f selected, the less likely the filter
is to reinitialize. If "too small" a value of B is selected,
the filter will reinitialize too often and little smoothing
of the data will be done. If "too large" a B is used, the
filter will become too insensitive to fluctuations in the data
and will not reinitialize at all. 1In this case, transition
points will not be detected and the original data will be
obliterated (over-smoothed). Thus far, f must be determined
heuristically depending upon the type of data under

observation. In dgeneral, noisier data (more statistical
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fluctuation) will require more smoothing and thus larger
values for 8.

Figures 12 - 16 demcnstrate a test of the Falman filter
program on a square wave of ampiitude +1 corrupted by Gaussian
white noise of variance 0.40. Figure 13 shows the observed
data with the uncorrupted signal. Figures 14 - 16 show the
filtered data for g = 0.20, 4.00, and 50.00. Figure 14, B =
4.00, shows the case where a "good" value of f has been
chosen. Note that the filter correctly detects the actual
transitions in the observed data and reinitializes only at
these points. As a result, accurate recovery of the original
waveform is achieved. In contrast, Figure 15 shows what
occurs when too small a f is selected. The filter becomes too
sensitive to noise fluctuations, mistakenly inierpreting many
of them as transitions. The filter reinitializes too often
(see lower plot of transition points) and less than optimum
smoothing is performed. Figure 16 is the case where too large
a B 1is used, rendering the filter too insensitive to
transitions in the observations. After the initialization,
the filter never detects a transition and thus never
reinitializes. The result is the obliteration (over

smoothing) of the true waveform.
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B. KALMAN FILTERING APPLIED TO THE PERIODOGRAM

Now that the Kalman filter program has been demonstrated

on a simple time series, the question arises: Can this
algorithm be adapted for smoothing spectral data? The
objective is to use the algorithm to smooth the periodogram
spectral estimate with minimal broadening of the main lobe(s)
of the dominant spectral responses. Ideally, an appropriate
value for the parameter B8 is selected such that the ncise
portions of the periodogram are smoothed and transition points
are detectable on either side of the spectral main lobe(s).
The end result is a smoothed periodogram with the narrow main
lokes of the original, unfiltered periodogram preserved. The
noise "floor" out of which the signal peaks rise will be
better defined and, hopefully, the frequency resolution of the
original, unwindowed periodogram will be maintained.

The test signal used is a single sinusoid (unit amplitude)
embedded in Gaussian white noise. The sinusoidal frequency
is 10.7 Hz, which is not at a bin center. The signal is
sampled at 64 Hz. A record of 128 data points is zero-padded
to 256. The variance of the additive noise is varied to
create input (time series) signal-to-noise ratios (SNRs) of
-3, -6, -9, and -12 dB where SNR is as defined in Chapter II.
Appendix C shows 10 different noise realizations at each SNR
for a given value of f. The objectives of the investigation

were three-fold:
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1) To heuristically determine an "optimum" value for the
parameter 8, given the test conditions, at the different input
SNR's.

2) To determine the input SNR of the time series (for 128
data points zero-padded to 256) at which the Kalman algorithm,
given the "optimum" B, can reliably discriminate noise
perturbation from signal peaks.

3) To determine if the Kalman algorithm preserves the
spectral resolution of the unfiltered periodogram.

After many trials, it was determined that values for g8 in
the range 100,000 to 700,000 provided the best compromise
between undersmoothing and oversmoothing the spectral data.
Within this optimum range, 100,000 causes the least smoothing
and 700,000 the most. The the lowest input SNR (time series)
at which reliable signal discrimination was achieved was
-6 dB. At -6 dB, f = 300,000 gave generally good results,
Signals could be detected at SNRs (time series) as low as
-12 dB, depending on the noise realization (see Appendix C).

The consequences of too large or too small a B8 in the
frequency domain are analogous to the time series example
depicted in Figure 14 - 16. Figure 17 illustrates the results
of the Kalman filter at an input SNR (time series) of -6 dB
(128 data points zero-padded to 256), f= 300,000. Note that
the single spectral peak due to the sinusoid has been left
largely unaltered (unbroadened) and that we have successfully

smoothed the noise portion of the periodogram. The filtered

48




periodogram, Figure 17, more closely approximates the ideal
model of a spectral peak protruding up through a noise floor
of constant value. In all cases, the Kalman filter was
applied to periodograms of unwindowed (rectangular window)
data. This resulted in the most narrow of possible main lobes
and provides the highest resolution. For comparison, a
Hamming window was applied to the time series data prior tc
transformation (Figure 17). Some spectral smoothing is
apparent along with the expected main lobe broadening. The
noise floor is far less apparent than in the Kalman filtered
periodogram. Figures 18 through 20 demonstrate the effects
of varying B for a given noise realization, data/transform
length and input SNR. 1In Figure 18, using = 10.0, we obtain
some smoothing, but the e¢nd result is little improvement over
what is obtained with the Hamming window (Figure 18). Note
that even at this low value of B8, we have smoothed the spectra
and preserved the narrowness of the main lobe. Fiqure 19, B
= 2.00 x 10°, illustrates thé effect of a B which is too large
for the given input SNR and noise realization. Note the
tapering effect on the higher frequency side of the main lobe.
This is a symptom of over-filtering (over-smoothing) caused
by too large a valuz of 8. A smaller, closer-to-ideal B would
have caused the filter to reinitialize after the peak and thus
preserve the sharp down-transition of the original
periodogram. In this case, the filter did not reinitialize

and smoothed the higher frequency side of the main 1lobe.

49




Whenever this tapering effect is encountered, better results
(sharper main lobe) can usually be obtained by reducing §B.
Figure 20, B = 5.00 x 10°, demonstrates obliteration of the
original spectra caused by a g which is grossly too large.
Figures B.1 and B.2 in Appendix B show the effect of varying
B over a wide range for a given data record length, transform

length, input SNR, and noise realization.
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(b) Periodogram (Hamming window)

(c) Kalman Filter Output g = 2.00 E6

53




40

L T ¥
o
(=]
—{
1 12
L]
2
2 oy
' =
24 o ® .~
Z. 1 =2
1 o~
zZ ]
&
= |o
E —i
L S -
(e o (] [ (o]
v ol (4] I
L] ] L ]
apniugew -

40
40

1

REC WIN,SNR -6dB.f=10.7.SEED1
f
2L
frequency
(a)
KAL OUT,SNR -6dB.BETA 5.00E6
20
frequency Hz
?C)Cy

r
1

30

. o ” Oo
v
IR

0
10k
0

apniugew gp spmiugeus

Figure 20. Sinusoid (f = 10.7 Hz) Plus Noise, SNR -6 dB
(a) Periodogram (rectangular window)

(b) Periodogram (Hamming window)

(c) Kalman Filter Output g = 5.00 E6
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C. EFFECTS ON SPECTRAL RESOLUTION

In order to evaluate the effects of the Kalman filter on
spectral resolution, a second spectral component was added to
the test data. For the test periodogram, bin width is f,/N =
64/128 = 0.5 Hz. Note that we used N = 128, the data record
size, and not N = 256, the transform length. As stated in
Chapter 1II, zero-padding does not improve frequency
resolution. It merely allows us to interpolate more frequency
points. 1Initially, a second sinusoid (also unit amplitude)
at 13.9 Hz was introduced. The frequency 13.9 Hz, like 10.7
Hz, is not a bin center and is many bin widths separate from
10.7 Hz. With pB= 30,000, the Kalman filter successfully
discriminated the signal peaks from the background noise (see
Figure 21). Next, the second sinusoidal frequency was brought
in to 11.2 Hz, one binwidth separation from the original
signal at 10.7 Hz. This is close to the 0.89 binwidth
resolution limit of the rectangular window. The two peaks are
clearly visible in the unfiliered periodogram (see Figure 22).
After filtering by the Kalman filter, the spectral estimate
is smoothed and the resolution of the original periodogram is
preserved as evidenced by the two still-visible spectral peaks

(see Figure 22).
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Figure 21. Two Sinusoids (f = 10.7, 13.9 Hz)

-6 dB

(a) Periodogram (rectangular window)
(b) Kalman Filter Output g = 300000
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(b) Kalman Filter Output g = 300000
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D. THE NOISE-ONLY AND SIGNAL-ONLY CASES

The effects of the Kalman filter on noise-only and signal-~
only periodograms was tested. Figures 23-25 show the Kalman
filter applied to three different realizations of Gaussian
white noise, zero mean, 0.5 variance. As before, 128 sample
points were zero~padded to 256. Using our "ideal" B of
300,000, no sharp spectral peaks were discriminated. This was
to be expected since no dominant spectral component was
present. Contrast these results with Figure 26, which is the
Kalman filter applied to signal-only data. In Figure 26a, the
characteristic sinc function, translated up to the sinusoidal
frequency 10.7 Hz, is visible. Figure 26b shows the well-
known smoothing and broadening effects of the Hamming window.
In Figure 2Gc, with § = 300000, the Kalman filter smoothed the
side lobe structure of the sinc and preserved the narrow spike

of the main spectral peak.
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Figure 23. Noise-Only, Var 0.5, Realization 1
(a) Periodogram (rectangular window)
(b) Periodogram (Hamming window)
(c) Kalman Filter Output g = 300000
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Figure 24. Noise-Only, Var 0.5, Realization 2
(a) Periodogram (rectangular window)
(b) Periodogram (Hamming window)
(c) Kalman Filter Output g = 300000
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E. THE EFFECT OF DATA RECORD AND TRANSFORM LENGTH

Finally, the number of data points was increased from 128
to 256, 512 and 1024. The objective was to evaluate the
performance of the Kalman filter for a given input signal
strength (in this <case +12 dB) at different 1length
periodograms. In each case, the data record was zero-padded
to twice its original length (i.e., 512 points zero-padded to
1024). Also in each case, the input SNR was decreased in
order to compensate for the increased processing gain caused

by the data record. Processing gain is approximated by:

processing gain [log, (data record length)-1]x3 dB (3.27)

For example, in our baseline case of 128 points, the
expected processing gain is [log, (128)-1}x3 dB = 18 dB. For
an input SNR of -6 dB, the expected output SNR is then 18-6
= 12 dB, which is approximately the strength of the peak in
Figure 17. For the longer data trials, the additive noise
variance (power) was increased in order to maintain output SNR
at approximately 12 dB. Initial results indicate a dependence
of f on data/transform length. As the data/transform length
increases, better results may be obtained by increasing g (see

Appendix D).
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IV. CONCLUSIONS

The Kalman filter can enhance the spectral peaks of a
periodogram of an unwindowed time series. This is most
apparent in the single spectral peak case. In the case of
multiple spectral peaks, the resolution of the unfiltered
periodogram is largely preserved since the Kalman filter will
smooth the spectral estimate without major broadening the
narrow band components. Using a filter parameter in the range
100,000 to 700,000 and a 128-point data record zero-padded to
256 points, reliable signal detection was achieved at SNR's
of -6 dB of the time series. Signal detection is possible
down to -12 dB (of the time series SNR), depending on the
noise realization used.

Topics for further study are the application of the Kalman
filter to multidimensional (time varying) spectra, and
quantification of selection criteria for the filter parameter
B. In addition, the dependence of § o.1 input SNR, output SNR,
record length and/or transform length should be examined.
Another possible follow-on project is the development of an
enhanced Kalman filtering algorithm that adjusts the parameter
B based on the assignment of signal or noise only. This would
mean faster filter response during signal portions and slower

response during noise-only segments.
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APPENDIX A
COMPUTER CODE
The Kalman filtering program was originally written in
FORTRAN 77. The FORTRAN code is given in Appendix A.1. For
this thesis, the filter program was converted to PC-MATLAB
(Version 3.13) and simulations run on an 80386-based IBM
compatible PC. The MATLAB code for the filtering program is

given in Appendix A.2
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cno000000000000000O00000O0

50

&
A
LR
LR

LR
LR ]
*k
* &

R
LR

LR
LE ]
* &k
ok
LR
& &
L]
* ok
L3

SECTION A.1
FORTRAN Computer Code

Nonstationary filtering using
suboptimal kalman filtering (local
average), and gibbs field with
anihiling.

The input file must given on INPUT.DAT

The filtered output flle is stored on OUTPUT.DAT
The detected breackpoints are given in MODEL.DAT
All these *.DAT files are ASCII.

The program now works for 128 data points (see the variable
"npoints" below. This can be changed to any number of points.

The program requires to enter 2 parameters:

"sigma*": the value of the noise standard deviation (nonzero);

"pbeta ": a positive parameter. It is a measure of the probability
the signal having a jump. As is now this parameter is
set by pure trial and error. If you get too many

jumps detected it means that beta is too low.
too few jumps it means that beta is too large.

usually the best value of beta depends on the signal to

noise ratio of the data.

real yin(256), y(256), x(2,256)

real kl,k2

integer pointer(2, 256), t, out

integer mout(256)

open(l, file=‘output.dat’, status=‘o0ld’)
open (2, file= ‘input.dat’, status=’'01d’)
open(3, file= ‘model.dat’, status=‘old’)

> A

get data from file

rewind 1
rewind 2
rewind 3

* &

npoints=128

* &

do 50 t=1,npoints

read (2,222) y(t)

yin(t)=y(t)
write(*, 111) y(t)
continue

format (£8.4)

* ok

enter data and initialize

write(*,555)

format(’ ENTER: sigma,beta (>0)7)
read(*,666) sigma, haota
format(2f10.4)

sv2=sigma*+*2

el1=0.
ez2=
d1=0.
d2=0.

x(1,1)=y (1)

0.

2000

x(2,1)=y(1)
tau=-1

LR

main loop

do 100 t=1, (npoints-1)




k1=1.0/(tau+1.0)

x11=x(1,t) + ki*x(y(t)-x(1,t))
dll=dl-beta
ell=el+(1.0/(2.0%sv2))*(y(t+1)-X11)**2
cll=ell+dll

k2=1.0

x12=x{1,t) + k2*(y(t)-x(1,t))}
dl12=dl+beta
el2=el+(1.0/(2.0*sv2))*(y{t+1)-X12) 442
cl2=el2+d12

k1=0.5

x21=x(2,t) + kl*(y(t;,-%(2,t))
d21=d2-beta
e21=e24(1.0/(2.0%sv2))*({y(t+1)-x21)*42
c2l=e21+d21

k2=1.0

x22=%(2,t) + k2*(y(t)-x(2,t))
d22=-d2tbeta
©22=e24(1.0/(2.048v2))*(y(t11)-x22)**2
c22=e22+d22

write(*,444) t,d11,el1,d12,el12,d21,e21
format(13,3(£10.2,f10.2,2%))

*+4+ update states in dynamic prog.
if(cll.le.c21) then
x(1,t81)=x11
el=el]l
, dl=di1l
''cl=eltdl
pointer (1,t+1)=1
tau=tautl
else
x(1,t41)=x21
el=e21
d1=d21
cl=el+d]
tau=2
pointer(1,tt+1)=2
endif

if (c22.1t.c12) then
x{(2,t41)=x22
e2=e22
d2-:122
c2=v24+d42
pointer (2, t+413):2
else
¥(2,t+1)=x12
e2-ej2
d2=ad12
c?2 02442
pointer (2,t41): 1
endif




100

333
150

134

360

777
111

continue

backward substitution and smoothing
tau=1.0
if(cl.le.c2) then
out=1
else
out=2
endif

y (npoints)=x(out,npoints)

n2=0

do 150 t=npoints,2,-1
out=pointer (out,t)
xout=x(out,t-1)

if (out.eq.2) then
tau=1.0

else
tau=tautl.o

endif

y(t-1)=y(t)+(1.0/tau)*(xout-y(t))
mout (t-1)=out+*100

write(1,111) xout

n2=n2+out-1

write(*,3233) t, out

format (2(2x,15))

continue

sigma=0.0

do 800 t=1,npoints

write(1,111) y(t)

write(3,334) mout(t)

format.(is)

ye=(y(t)-yin(t))**2

sigma=sigma + (1.0/t)*(ye-siqgma)
continue

sigma=sqrt (sigma)

write(*,777) sigma, n2, npoints

format (' sigma=’, f8.4, ' n2=',15,

format( f8.4)

rewind 1
rewind 2
stop
end

G
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SECTION A.2
PC-MATLAB Computer Code

EC THESIS GO, W. W.

THE10.M KAIMAN FILTER APPLIED TO PERIODOGRAM OF TWO SINUSOIDS
IN GAUSSIAN WHITE NOISE. 128 DATA POINTS ARE ZERO-
PADDED TO 256 AND THEN THE PERIODOGRAM 1S COMPUTED.
ONLY HALF OF THE RESULTING FREQUENCY POINTS (UP TO
ONE-HALF OF THE SAMPLING FREQUENCY) ARE PLOTTED AND USED
AS INPUT TO THE KALMAN FILTER. THE FOLLOWING CASES
ARE PLOTTED:

1) PERIODOGRAM, RECTANGULAR WINDOW ON TIME DATA

2) PERIODOCRAM, HAMMING WINDOW ON TIME DATA

3) OUTPUT OF KALMAN FILTER APPLIED TO PERIODOGRAM
OF RECTANGULARLY WINDOWED DATA (CASE 1).

The program requires 2 parameters to be specified:
“sigma”: the value of the noise standard deviation (nonzero):
"peta ": A positive parameter. 1t is a measure of the probability
of the signal having a jump. Now this parameter is
set by pure trial and error. If you get too many
jumps detected it means that beta is too low. If you get
too few jumps it means that beta is too large.

NOTE 1: THIS PROGRAM UTILIZES MATLAB FUNCTIOHS PER.M AND PERLN.M
(CODE FOLLOWS MAIN PROGRAM) TO COMPUTE THE PERIODOGRAM
IN dB AND LINEAR UNITS RESPECTIVELY.

NHOTE 2: THIS PROGRAM UTILIZES MATLAB FUNCTION FVEC.M (CODE
FOLI.OWS MAIN PROGRAM) TO CREATE A FREQUENCY VECTOR
FOR PLOTTING.

fl= 10.7Hz, NOT A BIN CENTER
f2= 11.2, NOT A BIN CENTER

fs = 64 Hz, SAMFLING FREQUENCY

128 DATA POINTS ZERO-PADDED TO 256
WHITE NOISE VARIAHCE = 4000/2000
INFPUT SNR -6.02dB

clear
clg V !
f1= 10.7 !} $ f is frequency
f2- 11.2 H
fa = 64 : % fs is sampling frequency
nvar=4000/2000; %t noise variance
for n= 0 : 127 ; t compute signal vector

x(n+l) = cos(n4*2*pi*(fl/€fs)) + cos(n*2*pi*(f2/£fs));
end

rand(’'normal’);
tand(’'seed’,3 )
nz=sqrt(nvar).+*rand(1:128); %t nolse vector

XN—x +nz; %t corrupt signal with noise
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w=hamming (128} ; t Hamming window
Xnw=w’.%*xn; %t apply Hamming window

xp= [ xn zeros(1:128) J:
xpw= { xnw zeros(1:128) );

psd =perln(xp): %t periodogram(linear units)
test=per(xp); %t perlodoyrar (dB)

testw=per (xpw) ;
freg=fvec(64,xp); %t frequency vector for plotting

subplot (211),plot(freqg(1:128) ,test(1:128))

title(’THE10:2 SIN IN HOISE,SNR ~6.024B,£1=10.7,£2=11.2")
xlabel {/frequency’)

ylabel (’magnitude’)

subplot (211) ,plot(freg(1:128),testw(1:128))

title(’THE10:2 SIN IN NOISE,HAM WIN,SNR -6.02dB,£f1=10.7,£2=11.2")
xlabel (‘' frequency’)

ylabel (‘magnitude’)

meta preplt2

pause

y= psd(1:128);

KALMAN FILTER

y IS DATA RECORD. FILTER IS APPLIED TO PERIODCUGRAM IN
LINEAR UNITS.

x=zeros(2,128);
pointer=zeros(2,128):

yin = y;
beta =500000.0; $ filter parameter
sigma = sgrt(nvar); % noise standard déviation

sv2=sigma~2;
npoints=length(y):

el=0.0;
e2=0.0;:

d1=0.0;
d2=0.0;

x(1,1)=y(1): |
x(2,1)=y(1);:

tau=1.0;

MAIN LOOP




for t=1:(npoints-1);
k1=1.0/(tau+1.0);
x11=x(1,t)+k1*(y(t)-x(1,t));
dill=dl-beta;
ell=el+(1.0/(2.0%sv2))*((y(t+1)-x11)"2):
cll=ell+dll;

k2=1.0;

x12=x(1,t)+k2*(y(t)-x(1,t)):
dl2=dl+beta:
e12=el+(1.0,/(2.048v2))*((y(t+1)-%x12)"2);
cl2=el2+d12;

k1=0.5;

x21=x(2,t)+k1*(y(t)-x(2,t));

d21=d2-beta:

e21 = @24 (1.0/(2.0%sv2))*((y(t+1)-x21)"2):
c2l=e21+d21;

¥2=1.0;

x22=x(2,t)+k2*(y(t)-x(2,%));
d22=d2+beta:
e22=e2+4(1.0/(2.0%sv2))*((y(t+1)-x22)"2);
c22=e22+d22;

UPDATE STATES IN DYNAMIC PROGRAM.

if clicc2l
x{1,t41)=x11;
el=ell ;
di=di11 ;
cl=eltdl ;
pointer(l,t+1)=1 H
tau = tautl;

else
x(1,t41)=x21 ;
el=e2l;
d1=d21;
cl-eltdl;
tau- 2;
pointer(1,t+1)=2;

end

if c22<clz
x{?,t+1)=x22;
e2=n22;
d2-adz2;
c2=e2+d2;
pointer(2,t+1)=2;

clse 1
v{2,t4+1)-%x12;
e2-e12:
d2-d12;
c2-e24+d2;
pointer(2,t+1)=1;




end

end
END MAIN LOOP
BACKWARDS SMOOTHING AND SUBSTITUTION
tau=1.0;
1€ cl<c2

out=1;
else

out=2;
end
y (npoints)=x(out,npoints);
for t=128:-1:2

out=pointer(out,t):
xout=x(out,t-1);

if out==

tou=1.0;

y(t-1)=xout;
else

tau=tau+l;
end

y(t-1)=y(t)4(l.O/tau)‘(xout—y(t));
y(t-1)=xout;
end

trans(t-1)=out;
end

ynorm=(1/max(y)).*y:
ydb=10*10gl0(ynorm) ;

ysh= { ydb(2:length(ydb)) vydb(1) }:

subplot (212),plot(freq(1:128),ysh)
title('THE>1O0:KAL,SHR -6.02,BETA 500000.0'})

xlabel (/' frequency’)
ylabel (’magnitude dB’)

meta preplt3
pause

plot(trans,’+’),title('transition pts’)

‘
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EC THESIS GO. W.W.

PER. M COMPUTE THE PERIODOGRAM OF DATA VECTOR X

function y=per(x)
1=length(x):
tr=fft(x):

for §i=0:(1-1);
ps(i+l)=(abs(tr(i+1)))~2;
end

psnorm=(1/max(ps)).*ps;
y=10*loglO(psnorm) ;




L

EC THESIS GO. W.W.

PERLN.M COMPUTE THE PERIODOGRAM OF DATA VECTOR X
LINEAR UNITS

function y=perln(x)
1=length(x);
tr=fft(x);

for i=0:(1-1);

ps(i+l)=(abs(tr(i+l)))~2;
end

Y=psi
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EC THESIS GO,W.W.

FVEC.M CREATE THE FREQUENCY VECTOR USED IN PLOTTING
A PERIODOGRAM. fs IS THE SAMPLING FREQUENCY
AND X IS5 THE DATA VECTOR.

function f=fvec(fs,x)

n=length(x):
f=fs*(0:n-1)/n;




APPENDIX B
EFFECTS OF THE KAIMAN FILTER PARAMETER

The effects of changing the parameter B on the performance
of the Kalman filter were investigated. The test data was a
single sinusoid, with frequency of 10.7 Hz, embedded in
Gaussian white noise. The frequency 10.7 Hz was specifically
chosen so as not to be at a bin center of the FFT. A record
of 128 data points was zero-padded to 256. The input SNR of
the time series was -6 dB. The same noise realization was
used for all runs. Figure B.1l shows the unfiltered
(rectangular windowed) and Hamming windowed periodograms.
Figures B.2a through B.2j show the filtered periodograms for
ten different values of B. As discussed in Chapter 3, B in
the range 100,000 to 700,000 produced the best results.
Values for B below this range tend not to smooth the sp=2ctral
estimate enough to significantly enhance the main spectral
peaks. Values of B above this range tend to oversmooth and
obliterate the spectral estimate (depending on the noise

realization).
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APPENDIX C
PERFORMANCE OF THE KALMAN FILTER AT DIFFERENT

. INPUT SNR'S ON MULTIPLE NOISE REALIZATIONS
. The performance of the Kalman filter at different input
SNRs was evaluated. The test case was a single sinusoid,
frequency 10.7 Hz (not a FFT bin center). A record of 128
data points was zero-padded to 256. The Kalman filter was
run on data with time series SNRs of -3, -6, -9, and -12 dB.
Ten different noise realizations were used at each SNR. Plots
are shown in Figures C.1 through C.40. For comparison, the

unfiltered and Hamming windowed pe._iodograms are also shown

for each simulation. At -6 dB (time series SNR), reliable

detection was achieved for all noise realizations tested.
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APPENDIX D
EFFECTS OF DATA/TRANSFORM LENGTH

The effects of varying the data/transform length on the
performance of the Kalman filter were investigated. The
baseline test case was a pair of sinusoids, frequencies 10.7
and 13.9 Hz (not at FFT bin centers) embedded in Gaussian
white noise. Data records of 128, 512, anc 1024 points were
zero-padded to twice their original length. As discussed in
Chapter III, the time series input SNR was decreased with
increasing data/transform length in order to compensate for
the higher processing gains of the longer data records (so as
to maintain the SNR at the input to the Kalman filter at
approximately 12 dB). A B of 300,000 was used since this
value gave good results with the baseline 128 data point test
case. Results are given in Figures D.1 through D.3. For
comparison, the unfiltered periodograms are also shown for
each data/transform length. Results indicate that as data
transform length is increased, g may have to be increased in
order to obtain optimum smoothing of the spectral estimate.
The dependence of B upon transform/data length is a potential

topic for follow-on study.
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