
ERIM-197200-18-T

ARVD-87-085

Phase I Report

ADVANCED RESEARCH IN
SRECOGNITION OF

< HANDWRITTEN ADDRESS ZIP CODES

Charles J. Jacobus
Andrew M. Gillies
Brian T. Mitchell
Steven T. Smith

September 1986 through May 1987

Submitted to:

U.S. Postal Service
Office of Advanced Technology D TIC
Technology Resource Department ELECTE
Washington, DC 20260-8121 OCT E

Attn: Timothy Barnum
0 T

RP.o. Box 8618
~E R IM Ann Arbor, MI 48107- 8618

DM1-::-JTION STAKTE I '- _

A-,: T-' '-i f" I I II I

Advanced Research in
Recognition of

Handwritten Address ZIP Codes

I CHARLES J. JACOBUS
ANDREW M. GILLIES

BRIAN 'T. MITCHELL

- STEVEN T. SMITH

Environmental Research Institute of Michigan
Image Processing Systems Division

P.O. Box 8618
Ann Arbor, Michigan 48107-8618

I
I

Accession For

NT IS G&Ii7or
DTIC TAB 0
Unannounced 0]
Justiffication

By
Distribution/

Availability Codes
IAvail snd/er

Contents Dist I Speoial

1Introduction _ I

1.1 Executive Summary. 1

1.2 Motivation 1

1.3 Project Goals 2

1.3.1 Literature Survey 2

1.3.2 Image Data Base 3

1.3.3 Prototype Recognition System 3

1.4 Projec' Outcomes 3

1.5 Future Directions 4

2 Phase I Overview 5

2.1 Literature Review 5

2.2 Address Data Base 6

2.2.1 Digitization 6

2.2.2 Truthing 7

2.3 ZIP Code Testbed 7

2.3.1 Testbed Hardware 8

2.3.2 Testbed Software 10

2.4 Prototype ZIP Code System. 24

2.4.1 Binary Image Generation 26

2.4.2 Last Line Extraction 27

2.4.3 Character Segmentation 27

2.4.4 Feature Generation 27

2.4.5 Feature Segmentation 30

2.4.6 Model Matching 30

2.4.7 ZIP Code Assembly 38

i

I1
I

2.5 Discussion of Results 38 i

3 Phase II Overview 41

3.1 Technical Approach 41 1
3.1.1 Binary Image Generation 43

3.1.2 Last Line Extraction 44

3.1.3 Character Segmentation 44

3.1.4 Feature Generation 45

3.1.5 Feature Segmentation 45

3.1.6 Model Matching 45 3
3.1.7 ZIP Code Assembly. 46

3.2 Management Plan 46 3
4 Conclusions 47

5 References 49

Appendix A Digit Models 51 1
Appendix B Feature Extraction 59 3
Appendix C OCR Address Tape Processing 77

Appendix D Processing Stages 105

I
I
I
I

iv

I
I

1 Introduction

1.1 Executive Summary

T HIS report describes the Phase I activities in Advanced Research in
Recognition of Handwritten Address ZIP Codes conducted for the

United States Postal Service at the Environmental Research In-
stitute of Michigan.under contract 104230-86-H-004:. These activities in-
clude an in-depth review of the optical character recognition literature, the
development of a handwritten address digitized image data base, the devel-
opment of a hardware and software testbed for investigating the recognition
of handwritten addresses, and the design of a prototype end-to-end ZIP Code

recognition system. Beyond the scope originally intended for Phase I. ERIM
has implemented that end-to-end system and has determined that it achieves
ninety percent digit identification on limited test data. Featured within the
overall activities is the concept that development of image algorithms is an
incremental process. This concept is strongly reflected in the testbed archi-
tecture that has resulted from this work. This approach is unique in that
it enables continued system refinement in a way that is both understand-
able and meaningful. A plan for such refinement of the prototype system is
proposed for Phase II of this project.

1.2 Motivation

Presently. handwritten mail that is successfully read by Phase II OCR ma-
chines represents less than one half of one percent of all letter mail sorted in
the United States. Approximately 15% of all U.S. letter mail is handwrit-
ten, of which only 4% was correctly identified by a Phase II OCR machine
in a recent test [1]. It is desirable to extend the ability of optical charac-
ter readers to include recognition of unconstrained handwritten characters

so that this 15% can be sorted automatically. To minimize constraints on
postal service users, techniques which impose restrictions upon handwritten
addresses, such as preprinted guide boxes, will not be used. The present mail
sorting system will therefore be enhanced by an automated system capable
of recognizing a large percentage of unconstrained handwritten ZIP Codes.

1

1.3 Prcject Goals

The primary goal of this OCR project is to develop new techniques for the
automatic location and recognition of unconstrained handwritten ZIP Codes
in address blocks. A secondary goal is to develop techniques for increasing
the ZIP Code recognition reliability with city and state information from
the address block. To accomplish these goals, our research has been broken
into two phases. In the first phase, the major goal has been to develop a
prototype end-to-end system and a methodology for character recognition
that facilitates incremental improvements. Tasks required to complete this
system have been software development and hardware acquisition for a hand-
written address recognition testbed and development of an image data base.
The second phase will improve recognition rates achieved in the first phase
through an iterative process of testing and refining the prototype algorithms
developed during Phase I. The OCR methodology developed in the first
phase will provide the framework for algorithmic improvements.

The work for Phase I was broken into the following tasks and completed
as summarized here. 3
1.3.1 Literature Survey 3
Become familiar with performance requirements for postal OCRs and with
previous handwritten address recognition system efforts through a literature
survey and USPS library research.

An extensive literature search has been performed, and a survey article de-
scribing and categorizing previous techniques has been written [2]. This
survey also relates ERIM's methods with past techniques. A trip was made
to the USPS library in Washington, and to the Detroit post office. We would
like to thank Leonard Tomlinson, Industrial Engineering Coordinator at De- I
troit's post office, who took the time to show us the sorting process for letters
and flats. We observed both hand letter sorting and automatic OCR letter
sorting processes. We were able to see first hand the types of handwritten
addresses that are rejected or successfully read by current OCR machinery.

2 I
I

1.3.2 Image Data Base

Develop a handwritten address image data base for use in OCR system de-
velopment.

Over 800 handwritten address images have been added to our data base.
Sources of this data base include the EKTRON images originally supplied
to us, but consist mostly of images digitized at the State University of New
York SUNY. We expect to expand this OCR data base to over 2500 images
during Phase II.

1.3.3 Prototype Recognition -System

Develop prototype algorithms for image processing and character classifica-
tion that are used in a prototype end-to-end system, and develop a method-
ology for improving these algorithms easily. The algorithms must automat-
ically locate the five- or nine-digit ZIP Code block, and then recognize the
characters within that block. They must also be extendable to use informa-
tion outside the ZIP Code block, such as City/State information to reduce
the possible number of ZIP Code candidates.

Prototype algorithms to locate the ZIP Code block and recognize its char-
acters have been written and used to build a prototype OCR system. This
system has been tested using the handwritten address data base. The USPS
City/State/ZIP information data base has been read and will be used to rule
out nonexistent ZIP Codes, and may also be used to enhance ZIP Code de-
termination. These algorithms and the prototype recognition system will be
described later.

1.4 Project Outcomes

Phase I activities have produced four major outcomes: the OCR literature
review, the handwritten address digitized data base, the hardware and soft-
ware testbed for investigating the recognition of handwritten addresses, and
the prototype ZIP Code recognition system. The OCR literature review has
provided insight into past character recognition techniques, which has played
a major role in formulating an approach to this problem. The handwritten

3

address digitized data base. now over 800 images. has facilitated the con-
struction and initial testing of the end-to-end ZIP Code recognition system.
The hardware and software testbed features an ERIM Cytocomputer and
a Symbolics LISP Machine running several layers of software designed to
minimize vision algorithm development efforts. The prototype ZIP Code
recognition system consists of several phases: binary image generation, last
line extraction, character segmentation. feature generation, feature segmen-
tation, model matching, and ZIP Code assembly.

1.5 Future Directions

In Phase II. the testbed developed in Phase I will be used to refine the
prototype ZIP Code recognition system. Performance data from tests on
the image data base will be analyzed and used to focus subsequent research
directions on approaches that indicate the greatest increase in system perfor-
mance. Topics that will require further attention include extracting slanted
address lines, segmenting touching digits, windowing digits with overlapping
bounding boxes. refi:,ing and expanding digit models, adding last line data
base information into ZIP Code assembly, and adding context information
into ZIP Code hypotheses formulation.

Several improvements to the methods developed in Phase I can be made.
Algorithms that perform well with textured backgrounds and analysis of bro-
ken digit characters are desired for improvements in binary image generation.
Last line extraction performance can be enhanced through techniques that
handle slanted address lines. Expansion of the current feature set, which
consists solely on concavity features, will enhance character models. Finally
many improvements to ZIP Code assembly are planned. These include look-
ing for more than standard five-digit ZIP Code sequences, analysis of last
lines for missing ZIP Code information, and using additional contextual ad-
dress block information.

4

2 Phase I Overview

2.1 Literature Review

O PTICAL character recognition is a relatively old field about which much
has been written. To help us achieve an understanding of some of the

fundamental issues associated with this field, a literature survey extending
back to the earliest reported work in character recognition was performed
early in Phase I, entitled Methodologies of Optical Character Recognition.
Also, research at the USPS library was conducted. Abstracts dealing with
optical and machine character recognition were collected by ERIM's Informa-
tion Center through the Dialog information services, specifically through the
Inspec and Compendex data bases. Papers included in the search were cho-
sen based upon both a perceived contribution to the theoretical and practical
aspects of OCR: and a perceived uniqueness. Additional important litera-
ture was gathered through the references of papers and articles that had
already been collected. Judging from the computer data bases and refer-
ences within papers, the final compilation of our literature search represents
a near-complete set of significant OCR literature.

Upon compl c-en of this search we wrote a literature review that describes
and categorizes previous OCR methodologies and allows us to compare and
contrast ERIM's new methods with past OCR research. This literature re-
view segments OCR methodologies into three major steps: preprocessing
terhniques. feature extraction, and classification methods. Preprocessing
techniques are distributed into the following: data representational Cuivcr-

sion, thresholding, segmentation, normalization. skeletonization, and filter-
ing. Feature extraction methods are grouped into template matching and
transform methods, and topological and geometrical feature methods. Clas-
sification methods are assembled into statistical pattern recognition, syntac-
tical pattern recognition, multilevel classification, contextual analysis, and
n-gram error detection and correction. A section on ERIM methodologies is
included that covers how our methods relate to previous work in light of the
categories described in the review. Finally, an extensive annotated bibliog-
raphy describing OCR literature referenced in the review has been prepared.

This literature review is published separately as an ERIM document, and

5

i
i
I

accompanies this report. All literature collected for this review is available
at ERIM through Information Services.

2.2 Address Data Base 3
We have compiled aid are using a large image data base of address block
information-at present we have over 800 images. The Computer Science
.Department of SUNY at Buffalo has been the major source of this data
base. SUNY has digitized images from a large number of sources including
Electrocom. Alcatel CGA-HBS. ERIM. the downtown Buffalo post office. the I
USPS main office, and themselves. ERIM supplied SUNY with approximately
700 envelopes to be digitized. These were collected from ERIM personnel at
both our Ann Arbor and Washington offices, but the great majority were
Obtained from Community High School in Ann Arbor. Students were given

envelopes and random listings of American publishers' and post-secondary 3
Institutions" addresses. They were requested to choose an address from their
list and write it on an envelope as if they were actually sending the envelope
through the mail. This effort was coordinated through Steve Eisenberg of I
Community High.

SUNY has designed a sampling procedure to obtain 2500 images of hand-
written addresses. Two thousand of the samples are to be divided into ten I
group of 200: the ten groups represent each of the ten ZIP Code zones de-
noted by the first numeral of the ZIP Code. Each of the 200 addresses of 3
each group are to be distributed evenly over every state contained in the
zone. The remaining 500 addresses are to be divided into 25 groups con-
taining 20 samples apiece. Each group represents a major U.S. city. and of I
the 20 in each group, approximately half will be written in cursive and the
remainder will be handprinted. The images will be chosen to provide variety
in address composition. Addresses with both ZIP, ZIP+4, no ZIP. explicit
and abbreviated city and state names will all be represented.

2.2.1 Digitization

We have written a general command file for converting SUNY's images to the I
format that we require in the Digital Command Language (DCL) of DEC VMS

6 0 i
I

on the ERIM VAX. At first we tried using the DCL command file READCOMPI iven to us by SUNY and written by P. G. Mulgaonkar at SRI International.
but image files produced by this operation could not be read at ERIM's
computer site since a majority of our image processing software requires files
with fixed-length records. To address this problem, we wrote a 'C' program
-fixed.c) to convert image files to fixed-length record format. We also

wrote our own command file that reads compressed image data from SUNY's
tape. converts the file to a format required by the compress. c program.
decompresses the file (compress.c), and then alters it using our fixed.c
program. All source code for these programs and instructions for their use
at ERIM are in Appendix C. We have completely automated the process of
handling new images given to us in SUNY's image standard-all images are
decornpressed by running an overnight batch job.

"2.2.2 Truthing

Tools for truthing the images have been developed during this project phase.
These tools allow the program developer to label segmented characters with
the correct information. This process creates a truth file for each individually
segmented image. Additional tools have been developed to log the results
of the recognition process. These tools take the results of the matcher and
write them out to a log file to record the matching results. Other tools have
been developed to relate the results of the matching process with the truth
flies. These tools allow the model development to work in a focused manner.
For example. using these tools the model developer can build an image of
all matching problems associated with the digit three so that he can focus
on resolving these problems. Combined, all these tools create a powerful
environment for building, testing, and debugging the digit models.

2.3 ZIP Code Testbed

A testbed for studying and evaluating various approaches to ZIP Code recog-
nition was developed under Phase I of the Advanced Research in Recognition
of Handwritten Address ZIP Code Project. This testbed consists of both
hardware and software components. These components represent state-of-

I7

t1e-art technology in image processing/understanding and facilitate the use
of a rapid prototyping methodology on this problem. Under this methodol-
oly. an end-to-end prototype system is first developed and then incrementally

refined until satisfactory performance criteria are met. This methodology is
well-known to work best on complex. difficult problems in which the solution
must be interactively derived from knowledge acquired through experimen-
tation and analysis. Because the ZIP-Code-recognition problem has these
characteristics, this methodology is exceptionally well-suited for this prob-
lemi. The testbed implements this methodology by providing an environ-
ment in which ideas can be implemented and tested rapidly. It enables the
researcher to focus his attention on the true recognition issues. rather than

the ,tetailed implementation issues. We believe this is the only way that a

prot)lcm -his complex can be solved in an efficient manner.

2.3.1 Testbed Hardwaren

The pri:.ary hardware components of the ZIP Code testbed are an ERIM
Cvto-HS5 image processing machine and a Symbolics 3650 LIsP machine.

An IP/TCP Ethernet link provides the communication between the two ma-
chines. The Cyto-HSS provides raw processing power for pixel-based neigh-

borhood operations. It is able to perform high resolution 8-bit-per-pixel
morphological vision operations at roughly 10 million neighborhood opera-
tions per second [31. The Symbolics 3650 provides an environment for both 3
numeric and symbolic computation.

2.3.1.1 Cyto-HSS Cytocomputer E
The current fourth generation Cyto High-Speed System (Cyto-HSS) devel-
oped at ERIM incorporates cascaded neighborhood processing stages together
with other significant processing, control, and storage units. Each neigh-

borhood processing stage performs 10 million complete 3x3 neighborhood

morphological operations per second in parallei on 8-bit image pixels. By
installing 10 stages into the pipeline of stages. 100 million 3x3 neighbor-
hood morphological operations per second are performed. The high-speed
intelligent image memories can simultaneously supply and accept S-bit im-

8

age pixels at the rate of 10 million pixels per second. This is an effective
pixel rate of 20 million S-bit pixels per second per board. The Cyto-HSS
processing is controlled from the ERIM-developed image processing language
C4PL (Cytocomputer Portable Parallel Picture Processing Language). This
software system is the result of several generations of evolution in ERIM pro-
prietary interactive image analysis languages. C4PL is fully integrated with
ERIM's Cyto-HSS Image Processing Systems.

2.3.1.2 Symbolics 3650

The Symbolics 3650 is a powerfuf computing environment. It features a
hardware tagged memory architecture for run-time data-type-checking and
generic operations. a stack-oriented architecture with large stack buffers. a
powerful front-end microprocessor, hardware-assisted garbage collection for
memory efficiency with low software overhead, and a sophisticated and sup-
portive software engineering environment. The current configuration for this
machine provides 8 MB of main memory, one 368 MB Winchester disk drive,
two RS232C serial I/O ports, a built in Ethernet interface, and 15 expansion
slots for additional options. The software environment features such exten-
sions as Flavors object-oriented programming, networking, window manage-
ment. graphics, multitasking, editors, and debuggers.

2.3.1.3 Networking and Communications

An initial communication capability between the Cytocomputer and the
Symbolics was developed in the first phase of this project. An overview
of this capability is shown in Figure 1. This implementation makes use
of the existing C4PL environment and its ability to program the Cytocom-
puter. To do this, the VAX is introduced as an intermediate node between
the Symbolics and the Cytocomputer, with all three machines connected via
an ethernet. The VAX is used as a C4PL host. In this configuration, the
Symbolics communicates with C4PL and as a consequence, C4PL interacts
with the Cytocomputer. For example, if an OCR algorithm running on the
Symbolics determines that more image analysis data is needed from the Cy-
tocomputer to help make a good decision, it can send, via the ethernet, a

9

I
I
I

C4PL request to a C4PL process on the VAX. C4PL reads the request off of
the ethernet and issues corresponding requests to the Cytocomputer.

2.3.2 Testbed Software

A major component of the testbed is software that was developed under this
phase of the contracted effort. This software builds upon the native languages

of the Cyto-HSS and the Symbolics LIsP machine to provide an environment
in which recognition algorithms can be developed in an efficient way. The
testbed software is based on a library philosophy that enables ideas to be 3
developed from exdsting algorithm modules. It thus minimizes the amount
of new code that must be developed when new ideas are implemented. The
testbed software is also based on an open architecture philosophy that per- I
mits continued extensions of the libraries of algorithm modules as the re-
search develops. These extensions can be made at the image processing,
segmentation, feature attribute, feature relation, and matching levels. Un-
der this philosophy, as new fundamental approaches to ZIP Code recognition
are identified, they can be incorporated into the testbed environment. This
facilitates rapid prototyping by providing a powerful and flexible develop-
ment environment in which research can be focused on recognition issues.

An overview of the software system developed under this project is shown
in Figure 2. Processing within this system consists of three main phases:
transforming the raw ZIP-Code image into state-labeled feature maps. com-
posing the resulting feature maps into a composite symbolic feature map.
and identifying ZIP Codes by matching feature-based digit models to the
composite map, The interaction between these three phases is driven by I
a hierarchical matching strategy that is designed to minimize the amount
of unnecessary processing while maintaining algorithm performance. The
matching strategy itself is directed by feature-based digit models. These I
models facilitate rapid development of experimental vision systems.

In the first processing phase, the raw ZIP-Code image is transformed into
state-labeled feature maps. These transformations are performed by low-
level, image-processing algorithms operating on the Cytocomputer. These
algorithms are directed at locating ZIP-Code features in the image. A typical I
feature might be a digit window, a concavity, an end point, or a junction

10I |I

I

I
I
I
I

C -
0

C 0U
0

C

2 -

2
0

'ft ~C
0. 2 0* C

(ft

0
CU
C* Q9LiI~

* 2
2
0U

*
0 0 C

- - a -

* 6 z
06I

0U, 2
U -

a.0
4I

1w __
__

___________________ U ___________________

U,
0I

1 11

U

I
I
i

point. The Cytocomputer is ideally suited to perform such operations.

In the second processing phase. the state-labeled feature maps are trans-
formed into a composite feature map. This is accomplished by segmenting
the individual state-labeled images and taking various measurements on the
resulting regions. Since the feature maps are represented as state-labeled
images. the process of segmentation is straightforward. Furthermore. the
segrnentation is performed only on an as needed basis. Thus, if simple ini-
tial tests determine that an important digit feature does not exist in certain
portions of the image. then there is no need to segment additional feature
maps in those areas. Likewise, if a feature does not possess a necessary digit
attribute, e.g. size or shape. then a digit "hatch is not possible and there is
no need to compute additional feature attributes. Thus, the entire composite
feature map is dynamically developed as needed by the matching process,
and since only information that is required for the solution is calculated, the
overall computational complexity of the resulting vision system is reduced.

In the third and final processing phase, digits are identified by matching
prototypical feature-based digit models with portions of the composite sym-
bolic feature map. The models are represented as ordered matching clauses
that describe how features must exist in the image in order to be classified.
These clauses identify the features that are required, the attributes that I
these features must have, and the relationships that must exist between the
features. These clauses also dictate how attention will be focused in search-
ing, for the digits within the image and how those digits will be ultimately
identified. The clauses represent an efficient, hierarchical matching strategy
that eliminates nonmatches as quickly as possible by using simple tests. For
example, if a test determines that a key digit feature does not exist in the
image, then there is no reason to continue the matching process. In keeping
with this idea, the overall testing strategy is hierarchically organized from
least to most complex with the most complex tests being performed on only
the most promising matches. 3

I
12 I

I

usU

CLU
Z0

0-6-

1-U.

0

-I ~ccU. cc0

Iii

Sa

0 00

0.0

&c

cc < 13

I

2.3.2.1 State-Labeled Feature Map Development

The testbed uses the Cytocomputer to process the input ZIP-Code image and
produce the state labeled feature maps. A state-labeled feature map is an
image in which pixels in a given state indicate the presence of a particular
kind of feature in the original image. The Cytocomputer produces state-
labeled feature maps by transforming the original image with a series of
operators. The Cytocomputer has operators for filtering, thresholding, and
skeletonizing images, as well as operators for finding and labeling regions in
the image.

The Cytocomputer processing starts with grayscale filtering operations.

One important class of Cytocomputer filters are those based on the open-
ing and closing operations of mathematical morphology. These filters are
tuned to specific spatial scales, and correct filtering depends on the spatial
scale of the ZIP Codes located in the imagery. Small scale filters are used to
smooth the image, removing variabions which are too small to be of interest.
Large scale filters are used to estimate slowly varying backgrounds, which
may then be subtracted from the image to form a thresholdable image. The
Cytocomputer can also perform matched filtering which will tend to empha-
size digits which have shape characteristics which match the filter's shape
characteristics.

The filtered image may be used as input for edge detection or may be
thresholded to produce binary images. In the case of edge detection, the
detected edge segments are sent directly to the composite feature map. The
connected regions in binary images may also be passed directly to the com-
posite feature map, or they may be subjected to further Cytocomputer pro-
cessing.

In many cases skeletonization (also called thinning) may be used to reduce
binary images to lines of single pixel thickness. The Cytocomputer can also
mark endpoints and junctions in skeletonized images. A skeletonized and
marked image provides a very useful summary of the overall structure of the
shapes in the binary images.

Another kind of processing for binary images involves the use of operators
from mathematical morphology. With these operators regions passing size
and shape criteria may be kept while other regions are removed from the

14

image. Region borders may also be smoothed. By noting exactly what kind
of processing produced a given region, the composite feature map may know
quite a lot about the regions it has without having to explicitly measure their
properties.

The library of Cytocomputer operations provides the building blocks to
perform a large number of image processing functions. The choice of which
operators use, and how to combine them depends on the problem. The goal
of this level of processing is to summarize the important information in the
image in the form of state-labeled feature maps. The regions in these maps
become the features on the composite feature map.

I2.3.2.2 Composite Map Development

The second processing phase within the system is focused on the development
of the composite symbolic feature map. This phase is critical to the overall
system, since it provides the bridge between the pixel-based processing ofIlow-level vision and the symbolic-based processing of high-level vision. The
segmenter, which extracts features for the composite map from the state-
labeled feature maps, must provide a rich set of techniques for identifying a
wide range of features. The data structures that define the composite map
must be flexible to allow long-term system enhancements. They must also
be efficient to enable rapid information retrieval over a wide range of queries.

The representation of the composite map determines much of the overall
system flexibility and performance. An overview of the map representationIis presented in Figure 3. As illustrated in this figure, the map is an object
with two primary components: a feature list and a relation hash table. Both
facilitate access to information in the composite map. This access, however,
is somewhat varied. The feature list is an indexed list of features identified
within the image. This list provides quick and ready access to features
located anywhere in the image. Typically, this form of map access is used
to locate features within some region of interest in the image. The relation
hash table is a simple hash table object. This table contains previouslyIcalculated relationships between features of the composite map. Typically
it is accessed anytime a relationship is requested to see if that relationshipIhas already been determined. Together the feature list and the relation hash

15I

I
I
I

table facilitate efficient access to composite map information.

The primary component of the feature list is a feature. Within the
testbed, a feature is represented as a simple object with a region and an
attached property list. The region locates the feature boundaries within the I
original image. The property list holds the feature type and state produced
by the segmnenter. The type identifies the state-labeled image which pro-
duced the feature. The state identifies its intensity level within the image.
Run-length encoding is used as the representation scheme by the testbed
segmenter. A library of methods use this representation to calculate feature
attributes. A scheme is used which intercepts the message defined by these
methods. If the message has not been received before, it is allowed to con-
tinue, and the resulting attribute value is added to the feature propezty isE. I
If a message has been received before, it is aborted, and the desired result
is simply recalled from the property list. In this way. feature attributes are
computed once when needed, and redundant calculations are eliminated.

Features are extracted from the state-labeled maps and placed into the
composite map by the segmenter. Since this segmenter operates exclusively
on state-labeled images, it is much simpler than corresponding gray-level
segmenters. The segmenter simply identifies features as regions in the state-
labeled image. For each identified region, the routine then creates a new I
feature object, attaches its region description, and adds it to the composite
map.

The primary component of the relation hash table is a description of a
relationship between two features and a relationship value. The description
is stored as a Lisp form, and used as an index into the hash table. The
relationship value represents the result of the relationship calculation. If the
relationship has been calculated once, the hash table is used to retrieve the
resultant value, and thus avoid unnecessary recomputation.

II
I

I

Composite Symbolic Feature Map

Feature List Relation Hash Table

II
(angle f, f2 450)
(touch f3 f-)

(fl f2 f3 ' f.) (next-to f 8 fs)

(feature f3
region: R17property-list:

(type line length 28
width 3 ...))

Figure 3. Composite Feature Map Representation

2.3.2.3 Model Development and Matching

The third processing phase within the system is focused on matching digit
models to composite map facts. The models describe how selected features
must exist in the image to be classified as a particular digit. The models are
either primitive or complex. The primitive models correspond to features in
the state-labeled feature map. The complex models consist of models, model
attributes, and model relations. The attributes specialize the models and
determine their size, shape, orientation, etc. The relations define the spatial

17

I

qualities, e.g. above. next-to, or between, that exist between the models.
This recursive model definition enables the development of complex models
from simpler models. It also facilitates the development of model packages
that can be developed and placed into libraries.

The models are developed in a model-matching language developed at i
ERIM. This language is comprised of clauses that can be organized into four
different classes: bindings-operator, free-set-operator. side-effect-operator.
and control-operator. The bindings-operator clauses either generate or prune
the candidate matching bindings. The free-set-operator clauses manipulate
the frpe-set from which the candidate bindings are selected. The side-effect-
operator clauses generate a desired side-effect. The control-operator clauses
determine the flow of control for clause evaluation. Together these clauses
create a powerful model-matching language which is well integrated into the m
Symbolics LisP machine environment.

The model-matching language can be defined in BNF form as seen in
Figure 4. This formal definition specifies the syntax that is used in writing
models. The clauses shown in this definition are organized into the four
classes outlined above in Figure 5. This organization is used below to describe
the semantics associated with each clause. I
Binding-Operator Clauses

The bindings-operator clauses define the way in which bindings are handled i
bv the model-matching language. These clauses can be further broken down
into two groups: those that generate bindings and those that prune bindings.
Included within the clauses that generate bindings are the require, allow, and
bind clauses. Included within the clauses that prune bindings are the test,
ordered, pairwise. and and-nothing-else clauses.

Require I
The require clause is used to bind a matched submodel to a variable. It
generates all possible bindings for each entry on the current binding list. Fori
each new binding, features are matched and removed from the free-set. If

18 I

(model) -(defmodel ((arg-list)) ((clause-list)))

(arg-list) :color (color) I(empty)
(color). :black I:yellow I:red I:green

(clause-last) -primitive I (clause) (clause-list) (empty)
(cl ause) -(require-clause) I(allow-clause) I(eval-ciause)

I (bind-clause) I(free-set-clause) I(ignore-clause)
J(test-clause) I(ordered-clause) I(pairwise-clause)
I (if-clause) I (forbid-clause) I (and-nothi ng-else-cla use)

(require-clause) -(require (var) (model-or-list))
(allow-cla use) -(allow (vat) (mod el-or- list))
(eval-clause) -(eval (any- Lisp-form))
(bind-clause) -(bind (var) (any-Lisp-form))
(free-set-clause) -(free-set (any- Lisp-form))
(ignore-clause) -(ignore (Lisp-single-arg-predicate))
(test-clause) -(test (any-Lisp-form))
(ordered-clause) -(ordered (Lisp-two- arg- predicate) (model-list))
(pairwise-clause) -(pairwise (Lisp-two-a rg- predicate) (mnodel-list))
(if-clause) -(if (any-Lisp-form) (clause))
(forbid-clause) -(forbid (any-Lisp-form))
(and-nothing-else) -(and-nothing-else)

(var) -(any-Lisp-symbol)

(model-list) -(model) (model-list) I (empty)
(model-ar-list) -(model) (or) (model-or-list) I (empty)
(or) -or I(empty)

Figure 4: BNF Definition of Matching Language

I

II
no match is possible for a particular binding, that binding is removed from
the current binding list. Thus. this clause has both generating and pruning
characteristics. It is classified as a generating clause, however, since it has
overwhelming generating potential. In fact, it is recommended that this I
clause be used only when the binding list and free-set list have been pruned
as much as possible to minimize the computational complexity associated
with its usage.

Allow I
The allow clause is identical to the require clause, except that It does not
prune any current bindings which fail to produce a match. Furthermore. this
clause carries forward all current bindings as they were before this clause was
evaluated. Because of these two characteristics, this clause is exclusively a
aenerating clause, and its generating potential exceeds that of the require
clause. It thus should be used, as the require clause, only when the binding
list and free-set list have been pruned as much as possible.

Bind I
The bind clause is use to bind the results of a LISP form to a symbol. In
essence. this operation defines a local variable for use in the matching process.
Since. the LISP form can refer to variables that are bound to unique values for
each binding in the current binding list, this operation adds a new binding to 3
each binding on the current binding list. This operation is extremely useful
when calculating local results that will be used over and over again.

Test

The test clause is used to make sure that bindings meet certain requirements.
For each binding in the current binding list, this operation substitutes the
values associated with the local variables into the LIsP form. The resulting
LISP form is then evaluated. If the evaluation is false, then the binding is
removed from the current bindiii list. Otherwise, the binding passes the test,

20

I

and remains on the list. This operation provides the mechanism for assuring
that model-attribute and model-relationship requirements are satisfied.

Ordered

The ordered clause is an extended version of the test clause, in that it per-
forms several tests. For each binding in the current binding list. this oper-
ation first creates local bindings for the symbols on the model list. If any
of the symbols remain unbound, they are removed. Then the values of the
remaining first and second symbols are applied to the two-argument predi-
cate. If the result is false, the binding is removed from the current binding
list. Otherwise. the values of the second and third remaining symbols are
applied to the predicate. Again, if the result is false, the binding is removed.
This process is then continued until it exhausts the ordered symbul values.
Potentially, the length of the remaining symbol list minus one application of
the predicate can result from this operation. If the results of all these appli-
cations is true. then the binding remains a match candidate of the current
binding list.

Pairwise

The pairwise clause is an extension of the ordered clause, in that it performs
additional tests. For each binding in the current binding list, this operation
first creates local bindings for the symbols on the model list. If any of the
symbols remain unbound, they are removed. Then the values of the remain-
ing first and second symbols are applied to the two-argument predicate. If
the result is false. the binding is removed from the current binding list. Oth-
erwise, the values of the first and third remaining symbols are applied to the
predicate. Again, if the result is false. the binding is removed. This process
is then continued until it exhausts the pairwise symbol values. The number
of pairwise combinations that exist in the remaining symbol list corresponds
to the number of potential applications of the predicate can result from this
operation. If the results of all these applications is true, then the binding
remains a match candidate of the current binding list.

21

I

I

I
And-Nothing- Else

The and-nothing-else clause is used to test the free-set to make sure that 1
everything is accounted. For each binding in the current binding list, this

operation checks to see if the free-set list is empty. If it is not, then the i
binding is removed from the current binding list. If it is. then the binding
remains a match candidate on the current binding list.

Free-Set-Operator Clauses

The free-set-operator clauses provide a mechanism for accessing the free-set.
Three clauses fall into this class: and-nothing-else. free-set. and ignore. The

and-nothing-else clause was described above as a binding-operator clause. It I
can also be thought of as a free-set operator because it bases its action on
the state of the free-set. However. its overwhelming characteristic is to affect
the current binding list, and because of this it is best thought of as a binding
operator. The other two clauses are strictly free-set operators. since they
have no effect on the binding list. 3
Free-Set 3
The free-set clause is used to update the free-set associated with each binding
of the current binding list. For each binding, this operation substitutes the
values associated with the local variables into the LIsP form. The free-set
associated with the binding is also substituted for the symbol: free-set. The

resulting LIsP form is then evaluated, and the resultant value becomes the I
new free-set associated with the binding. This operation can either add or
subtract entries in the free-set. It is useful when significant changes in the

free-set are required during the matching operation.

Ignore I
The ignore clause is used to prune the free-set associated with each binding
of the current binding list. This operation applies each element of the free-set

associated with a particular binding to a specified single-argument predicate

22 ,I

U
I
I

function. If the result is false, the element is removed from the free-set. If
is true, it remains on the free-set. This clause is especially useful in pruning
down large free-sets after some initial evaluation. This. in turn. results in
significant computational savings.

S ide- Effect- Operator Clauses

The side-effect -operator clauso6 provides a mechanism for evaluating proce-
dures that generate side effects. e.g. outputting graphical displays. Only one

clause falls into this class, the eval clause. This single clause, however, is very
powerful, since it enables the matcher to communicate with its environment.

Eval

I The eval clause is used to generate side effects. For each binding, this op-
eration substitutes the values associated with the local variables into the
LISP form. The resulting LISP form is then evaluated. It has no affect on
either the current binding, list or the corresponding free-sets. This clause is
especially useful in communicating with the LISP environment.

Control- Operator Clauses

The control-operator clauses provide a mechanism for directing the flow of
control through the matching process. Two clauses fall into this class, forbidI and if. These clauses allow the matcher to recognize when no match is
possible and when certain operations should be performed.

Forbid

I The forbid clause is used to abort the current match process. This operation
applies each element of the free-set associated with a particular binding to a
specified single-argument predicate function. If the result of any application

is true, the matching operation is aborted immediately. This operation is
especially useful for doing a scan of the free-set to see if something exists

23

I sgiiatcmuainlsvns

I Sd-fetOeao lue

I
I
I

that would make a match impossible. When such an occurrence exists, there i
is simply no reason to expend any further effort in trying to coerce a match.
it cannot be done.

if

The if clause is used to determine whether certain clauses should be used
in the matching process. For each binding, this operation substitutes the
values associated with the local variables into the LIsP form. The resulting
LISP form is then evaluated. If the resulting value is true, then the condi-
tional clause is evoked on the current binding. This conditional clause then 3
determines the final state of the binding. If the resulting value is false, the
binding is unaffected. This clause is especially useful making sure that all
the preconditions for the conditional clause are satisfied.

The digit models are developed in the model-matching language just
described. The process begins by carefully analyzing the feature qualities 3
associated with digits or digit components. This analysis results in an un-
derstanding of how features can be used to describe a particular numeric
character. This description includes existence of particular features. measur-
able attributes for the resulting features and spatial relationships between
those features. This description builds upon components of the state-labeled
feature maps and the composite symbolic feature map created from the first I
two processing phases. The ordering of the model clauses also determine the
efficiency of the resulting matching process. 3
2.4 Prototype ZIP Code System n

A prototype ZIP Code recognition system was developed under Phase I of
the Advanced Research in Recognition of Handwritten Address ZIP Codes.
This system provides a first-cut implementation of an end-to-end system for
recognizing ZIP Codes. It was developed on the testbed described above.
This prototype system serves several purposes. It provides a tool for evolv- I
ing specifications for a robust ZIP Code recognition system. It provides a
framework for exploring the interaction between each of the system phases. 3

24

I

I

Side-
Clause Binding Free-set effect Control

Operator Operator Operator Operator

allow x

and-nothing-else X X

bind X _

eval X

forbid X X

tree-set x

* if x
it

x

ignore X

ordered x

pairwise x

require x

test x
I

Figure 5. VISTA-MATCHER Clause Types

25

I
I
I

It also provides a mechanism for extending system performance through in-
cremental testing, evaluating, and refining. This system thus becomes an
integral part in the overall rapid prototyping and iterative refinement re-
search methodology.

The prototype system goes through several processing phases. In the first
phase. the initial, grey-level image is transformed into a binary image. Next.
the last address line is extracted from the the binary image. The resultant
last line image is then segmented into characters and/or symbols. Features
are then generated for these characters. The resultant state-labeled feature
map is then segmented to produce a composite symbolic feature map. Digit
models are then matched to portions of tthis map. The resultant identified
digits are then assembled into a five-digit ZIP Code. Each of these processing
steps is described in detail below, 3

2.4.1 Binary Image Generation I

The first processing phase in the prototype system transforms the initial, i
raw. grey-level image into a two-valued, binary image. A simple threshold-
ing approach was implemented on the ERIM Cytocomputer to accomplish 3
this task. Under this approach, limited testing of sample input images was
performed to determine an appropriate threshold or cutoff value to use in
separating the background of the address block from the stroke. This value I
was then used to implement the Cyto thresholding algorithm. Within this
algorithm, morphological operations were used to sort pixels in the initial.
input image into those belonging to the stroke and those belonging to the
background. Those values that were below the selected threshold value were
classified as belonging to the background by determining whether the pixel 3
value was above or below the selected threshold. The input to this Cyto
algorithm is an image from the SUNY Buffalo address block data set. The
output is an image in which the character strokes of the address block has I
one value and the background has another value.

26 I
I
I

I
I
I

2.4.2 Last Line Extraction

Next, the prototype recognition system locates the last line in the binary
image. As a first attempt at this portion of the overall recognition process.
a histogramming approach was implemented on the ERIM Cytocomputer.
Figure 6 shows a pictorial representation of the resulting algorithm. As seen
in the figure. this approach begins by migrating the stroke pixels in the binary
image in a leftward direction to create a histogram. The height of each entry
in this histogram indicates the number of pixels located on each horizontal
raster line of the binary image. Once the histogram is computed, it is sliced
by removing a fixed number of pixels from each line. Any small gaps in the
resulting sliced histogram are then removed to produc6 line locations within
the image. The last such line is finally windowed and placed into a last line
image.t
2.4.3 Character Segmentation

U Individual characters within the binary last line image are then identified.
A histogramming approach similar to the one used in last line extraction
was implemented on the ERIM Cytocomputer. Figure 7 shows a pictorial
representation of the resulting algorithm. As seen in this figure, the approach
begins by migrating the stroke pixels in the last line image in a downward
direction to create the histogram. In this histogram, the height of each entry
indicates the number of pixels in location on each vertical raster line of the
last line image. As before, small gaps are removed from this histogram to

produce estimated character locations within the last line. These estimates
are then used to produce a last line image in which the individual characters

* are isolated and windowed.

2.4.4 Feature Generation

The segmented last line image is next processed to produce a state-labeled
image. A concavity approach was implemented on the ERIM Cytocomputer
for demorstration in the prototype system. Figure 8 shows a pictorial repre-
sentation of the resulting features. As seen in this figure, six unique features

27I
I

m

/I /AA

nrArbr, A 40

AnA oMI 4I0

Figure 6. Last Line Detection

28

!

U

I IArmArbor, MI 4'3/02
I

A - -49107

I
I

3Figure 7. Character Segmentation

* 29

1
1

I
are developed in this process: north-cavities, south cavities, east-cavities.
west-cavities, center-cavities, and holes. The north-cavities are defined as3
contiguous sets of pixels in the image that would not hit a stroke if moved
vertically in a northward (upward) direction but would hit a stroke if moved
in a vertically southward (downward), horizontally eastward (right), and I
horizontally westward (left) direction. The south-cavities, east-cavities. and
west-cavities are similarly defined. The holes are defined as contiguous sets
of pixels in the image that are completely encircled by stroke pixels. The
center-cavities are defined as contiguous sets of pixels in the image that are
not holes but from which any of the four movements would hit a stroke.
These features are represented in the state-labeled image that results from
this processing phase as tagged pixels in which each grey-level value corre-
sponds to a particular feature. Figure 9 shows a pictorial representation of
the features that would result for various representations of digit six. I
2.4.5 Feature Segmentation

The features are then extracted from the state-labeled image and placed into I
a composite symbolic map. A segmenter was implemented on the Symbolics
LIsP machine in ZetaLIsP to perform this task. An overview of the function-

alitv of the segmenter is graphically represented in Figure 10. In this figure,
a state-labeled image for a typical six is segmented into its various feature
components: strokes and cavities. The segmentation process is straightfor-3
ward. First. the state-labeled feature image is scanned from top to bottom
and left to right to locate simply connected components of contiguous pixels
with the same state or grey value. Next, the same state, simply connected 8
components which touch are assembled into more complex components. Fi-
nally, the same-state, connected components are identified and placed into
the composite map as objects with specified run-length regions.

2.4.6 Model Matching

The digits are next identified in the composite map by matching models to
the extracted features. Two major efforts were performed to implement this
capability in the prototype system: a model matcher was implemented and

30

north

cete cavity hole
ceniter

I cavity

13

I
U
I

E E

C H

I
I

E E

C!

H

I

CI
E EI

C H

Figure 9. Typical Sixes

I
32

I

o~uj

0

EI

C3

a,

a,.-0

- .-

4a,
"U

CC

U7 S

00

Cu m
-c

C3

I
I
I

initial digit models were developed.

The model matcher was developed on the Symbolics LisP machine in
ZetaLisp. It implements the testbed model matching language described
above. As depicted in Figure 11 the match operates like a large sieve to
filter out match candidates. An overview of the matching process for a
typical six characterization is illustrated in Figure 12. In this figure matching
is represented in a graphical form. Within the graph the undirected edges
(no arrows) represent logical components. Thus, a six is made up of a top,
a bottom, and in some instances an extra part. The solid directed edges
(arrows) in the graph represent actual matching of the logical component to i
a feature in the composite map. Thus, the six bottom must match either
a center cavity or a hole. Also seen in the figure are relations and tests
that constrain the match. These components of the matching process test
individual feature attributes and spatial relationships between features that
must exist in a successful match. The figure also illustrates the hierarchical
nature of the matcher which enables building complex models from simpler
models. Thus, in the case of the six. a top submodel can be developed and
used to build the six model.

The initial digit models were developed in the model matching language.
Figure 13 shows an example of a fully developed six model. All the models
developed in this phase were based on the cavity features described above.
These features were used to build concavity no,,,delr o crpex cf touch-
ing cavities. The concavity and cavity models were then collectively used
to develop digit models for each of the ten digits. Additional digit models
were developed for the digits that had more that one characteristic repre-
sentation. For example, several different models were developed for the digit
two, including the loop-two model, the non-loop-two model, and the lazy-
two model. Each represents a different morphology of the two concept, and
as such is explicitly modeled. Throughout the development of the models.
sample images were used to identify new digit models and to test matching
performance.

34

I

tflrter est

F: at ures

Fre e-set

0 I'

Te St X

RecqulreY

A A A'Test~~

MAATCHi

fjgure ii MATCHlt4 PIOCF-SS

: EL

0 4) 0
~ - I

CCL

0~ CutoC

0 CO1
.0m C.)

0~~ 00 0 . C
cc '00/ *

wir.

0 1 0CL cu
-. ,N0

h. C~

6W0000

CuU:C~.036

mi
i

I
(defmodel six

(:coior :orange)
(ignore small-ones)
(require window digit-feature)
(require character stroke)
(allow character2 stroke)
(forbid character2)
(require top se-concavity)
(require bottom center-cavity or hole)
(test (any-south-o-f bottom top)
(allow extra center-cavity)
(bind top-s-part (sub-part top ':,s-part))
(if (and extra top-s-part)

(test (south-neighbor-of extra top-s-part)))
(ordered any-north-of extra bottom)
(pairwise horizontal-overlap top extra bottom)
(and-nothing-else))

I
(defmodel se-concavity

0
(allow s-part east-cavity)

* (allow c-part center-cavity)
(allow e-part south-cavity)
(test (or s-part e-part))
(ordered south-neighbor-of s-part c-part)
(ordered east-neighbor-of e-part c-part))

I

Figure 13. Typical Digit Model

I
37I

I
I

2.4.7 ZIP Code Assembly

Finally, the results of the matching process is used to determine the ZIP Code. I
Again, a simple approach was implemented. This approach is summarized in
Figure 14. As seen in this figure, the digit matcher is run on all hypothesized
digit regions. The results of this matching are then merged to assemble the
ZIP Code. If five-digit regions possess the spatial qualities of a legal ZIP
Code and if each of the five regions match a single digit model, then the five I
digits, are assembled into a ZIP Code. If all five digits were not identified
by the matcher, then the results of the matcher are reported. No further
attempt is currently made, however, to .assemble the ZIP Code from the
partial matching data plus additional contextual information. I
2.5 Discussion of Results

The Phase I activities in Advanced Research in Recognition of Handwrit-
ten Address ZIP Codes have been very fruitful. As discussed above, it has
produced four major outcomes: the OCR literature review, the handwritten
address digitized image data base, the hardware and software testbed for in-
vestigating the recognition of handwritten addresses, and the prototype ZIP
Code recognition system. These four components create a solid foundation
upon which our future research in this area can be conducted in an efficient
and effective manner.

The OCR literature review has produced significant insight into past ap-
proaches to character recognition. This insight has already played a major

role in formulating the overall approach to this problem. Several different
approaches have been made to selected portions of the problem in, the past.
.Many of these approaches were seemingly successful, but none were con-
ducted in the context of an end-to-end system. Because of this, Phase I
researchers decided to develop a testbed concept that would allow rapid de-
velopment and continued refinement of a prototype ZIP Code recognition sys-
tem. This concept thus allows continued integration of different approaches
to various aspects of the recognition problem, including techniques which
may be developed by other USPS contractors. I

The handwritten address digitized image data base contains over SOO

38 -

I
I.

Brian T. Mitchell
ERIM

u P.O. Box 8618
Ann Arbor, Michigan4p1 07

L Digit

aMatch

Zip Code

I

Assembly

l Zip Code

I

I Figure 14. Zip Code Assembly

i l 39

i

diverse address images and continues to grow. SUNY at Buffalo has provided
a great majority of the digitized images. Their address sources include the I
USPS main office, local post offices, and and USPS OCR contractors. This
data base has facilitated the construction and initial testing of the end-to-end
ZIP Code reading system. Numeral models have been generated and refined
using the ZIP Codes contained in this data base. Using the methodology
developed for this project, the models can be quickly and easily evolved as I
the data base becomes larger. This supports a form of digit learning where
the acquired knowledge is complete and precisely describable and rigorous.

A hardware and software testbed was designed and implemented. It con-
sists of both hardware and software compohents. Featured within the testbed
are an ERIM Cytocomputer and a Symbolics LISP machine. These special- i
ized computers provide the computational pixel and symbolic throughput
required to effectively develop and test recognition algorithms. Residing in
these computers are several layers of software designed to minimize the effort I
required in developing vision algorithms. Together the hardware and soft-
ware components of the testbed create a powerful development environment
for exploring solutions to ZIP Code recognition.

An end-to-end prototype ZIP Code recognition system was developed.
This prototype consists of several processing phases: binary image genera- U
tion. last line extraction, character segmentation. feature generation. feature
segmentation, model matching, and ZIP Code assembly. An initial solution
to each processing phase was developed within this prototype system. Some
of these solutions are recognized as simplistic. However. their implemen-
tation enables focused refinement of a complete recognition system. The i
software as of Phase I completion is included in Appendices A and B.

These four Phase I outcomes establish a solid foundation of Phase II re-
search. The OCR literature review provides significant insight into steering i
the research effort in directions that promise the most success. The image
data base provides the mechanism for testing and evaluating potential prob- -
lem solutions. The address understanding testbed enables future work to be
focused on problem solutions with minimal effort expended on implementa-
tion issues. The end-to-end prototype system establishes a baseline system I
in which each phase of the overall ZIP Code recognition process can be evalu-
ated and further developed. Together these Phase I outcomes form the basis

40 I
i

for accelerated Phase II research.

3 Phase II Overview

I N Phase II of the Advanced Research in Recognition of Handwritten Ad-
dress ZIP Codes the performance capabilities of the prototype Phase I

system will be extended. An overview of the methodology that will be used
during this phase is seen in Figure 15. As seen in the figure, this methodology
is iterative in nature. The OCR literature review, the handwritten address
image data base. and the testbed *ill all play an integral part in this pro-
cess. The literature review will serve to generate and evaluate new research
ideas. Selected ideas will then be rapidly developed and integrated into the
prototype system using the powerful tools within testbed environment. The
performance of the extended system will then be evaluated on images from
the handwritten image data base. The results of this evaluation will then be
used to focus the next iteration of refinement.

3.1 Technical Approach

The testbed described above is used in Phase II to refine the prototype ZIP
Code recognition system. In Phase I the hardware and software address
recognition testbed was constructed. In Phase II this testbed will be used to
explore intricacies and develop solutions. An iterative refinement method-
ology will be used in this process. Under this methodology, a set of test
images will be processed through the current version of the prototype ZIP
Code recognition system. This processing will produce performance data
which can then be analyzed and used to focus subsequent research direc-
tions. By using this methodology, the Phase II research can be focused on
areas that show most promise in upgrading the overall system performance.
Thus, the research can be directed in such a way as to produce optimal
results.

Several research directions are already known to be prime candidates
for exploration in this phase of the research. Included in the list of topics
that are known to require further attention are generating binary images,

41

Prootye IagePhase I

I :tD
Phase 11

Analysis

Phase Ill

Figure 15. R &D Methodology3

421

I
I

extracting slanted address lines, segmenting touching digits, windowing dig-
its with overlapping bounding boxes, refining and expanding digit models,
adding last line data base information into ZIP Code assembly, and adding
context information into ZIP Code hypotheses formulation. Approaches are
currently being developed to address these problems. Additional issues are
also expected to arise throughout this research phase. Once identified, these
issues will be analyzed and prioritized based the expected return on expended
effort.

It is anticipated that each processing phase of the prototype system will
be significantly enhanced during Phase II. Much of the anticipated work is
outlined in the short subsections that follow. Although this work is described
in some detail, it does not include all of the anticipated Phase II activities.
since new activities are expected to arise as continued software development
provides insight into advanced recognition system requirements. This is the
nature of research and development of this kind.

3.1.1 Binary Image Generation

During Phase II this processing phase will be enhanced by developing new
techniques to handle images with textured envelopes and broken characters.

The current prototype solution performs adequately on most images. It
does not, however, perform well on images with textured backgrounds. Sev-
eral techniques exist in the computer vision literature for identifying textured
surfaces. These techniques will be explored and evaluated for performance
on this problem. Several experiments will be conducted, and the best re-
sulting technique will be integrated into the final system. One candidate
technique that appears very promising is to identify and remove very short
disconnected line segments from the image. An initial view of the test images
suggests that this simple technique may eliminate much of this problem.

The current prototype solution also creates a significant number of broken
characters. Some of these characters are broken because they are written
with two disconnected strokes. The five with a flying top in a prime example.
These problems must be modeled and identified by the matcher. Other
characters, however, are broken because of the difference in intensity within
the stroke. Initial review of these test data shows that looped two's are

43

I
I
I

prime examples of this phenomenon. This is apparently caused by the fact
that one must decelerate the writing instrument co go around the loop, thus a
creating a different intensity. This change in intensity is magnified when part
of the stroke is eliminated during thresholding. This will be a problem for
any simpleminded approach to creating the binary image. Further analysis
of this problem is required during Phase II.

3.1.2 Last Line Extraction

During Phase II this processing phase will be enhanced by developing new
techniques to handle slanted address lines. The current prototype histogram- I
ming technique fails on address blocks with slanted lines. Several possible
solutions to this problem are technically feasible. One technique that offers I
much promise is model matching. Under this approach a ZIP block model
will be developed to locate regions on the address block that seem to possess
ZIP Code spatial qualities. This approach will be implemented and tested I
early on in Phase II. I
3.1.3 Character Segmentation

During Phase II this processing phase will be enhanced by developing new
techniques for isolating touching and intersecting ZIP Code characters. The I
current prototype solution performs well on segmenting characters that have
no bounding box overlap. It also works well on segmenting touching char-
acters that are simply connected by a single stroke. Unfortunately, there
are numerous other cases in which this approach does not work well. Ap-
proaches to segmenting touching characters have been presented in the liter-
ature. These approaches appear to have some promise, although they are far
from offering a comprehensive solution. Experiments on these approaches
will be conducted, and application specific enhancements will be explored.
From this work, one technique will be selected for integration into the final
system. 5

44 I
I

3.1.4 Feature Generation

During Phase II feature generation will be enhanced. The current prototype
solution incorporates only cavity features even though skeleton and endpoint

features are computed by the Cytocomputer. Although concavity features
appear to be very powerful. they are limited in what they can represent. At
present. it appears that character recognition rates between 70 and 90 per-
cent are possible with these features. Higher recognition rates, however, will
require incorporation of the additional features which provide specific infor-
mation about the character stroke. Because of the flexibility built into the
testbed. this implementation will bre fairly straightforward, thus facilitating
online development through experimentation.

3.1.5 Feature Segmentation

There are no current plans to modify the prototype feature segmentation
algorithm. However, it is possible that modifications may be necessary if
data structures other than currently supported run-length regions become
computationally desirable.

3.1.6 Model Matchivig

There will be significant modifications to the digit models during this project

phase. The current prototype models perform as expected, and produce
character recognition rates between 70 and 90 percent. They are however.
extremely limited in some areas. Additional features will be developed to

resolve these limitations. These features will then be incorporated into the
digit models. Throughout Phase II, this aspect of the the overall system
is expected to focus the overall research directions. During this process,
the test images will play an important role in surfacing research issues and
measuring performance.

45

I
I

3.1.7 ZIP Code Asbembly

There will be several enhancements to ZIP Code assembly during Phase II of
this project. The current prototype solution is simplistic in nature. It only
looks for five-digit character sequences. It does not check the last line data
base to see if a proposed ZIP Code exists. It does not use the last line data
base to resolve missing information. It does not use additional contextual

address block information to augment the digit matching process. These 1
limitations will be addressed during this phase of the project. Solutions to
the first two areas are fairly straightforward. and will be implemented in the
obvious manner. The last area, however, will require significant thought and
effort to identify techniques for reliably locating and- identifying contextual
sources of information. The methodoiogy that will be employed here will
be to study the content of the address block to identify areas of possible
expioitation. Promising areas will then be analyzed from an image processing

perspective to determine the reliability of required feature extraction. Those
areas that look most promising will then be implemented and evaluated for

performance on actual data. I

3.2 Management Plan

It is expected that Phase II will be a continue the work of Phase I. The
current research team will remain intact and will continue to work full time

on this project.

IU
I
I

46 3
I
U

I
I
I

4 Conclutions1'

TWO major topics in Advanced Research in Recognition of Handwritten

Address ZIP Codes have been discussed in this report. The first dis-
cusses the work performed under Phase I of this effort in which four subjects
were explored. These subjects are a review of the optical character recogni-
tion literature, the development of the address block image data base. the
development of a testbed for developing computer vision solutions to address
block understanding, and the development of a prototype ZIP Code recogni-3 tion system. The second major topic describes the planned Phase II activities
under this project. Under this topic a technical approach and management
plan was outlined that proposed continued iterative refinement of the pro-Utotype system as the major Phase II activity. The research team feels that
til-,e is still much work that needs to be done on this problem. They also
feel that the approach that has been developed will prove to be significant
and will result in a positive research outcome.

I
I
I

I
I

* 47

I
I
i
I
I
I
U
U
I
I
U
I
I
I
I
I
I

48

I
I

I
I
U
F 5 References

1 1 USPS Request for Proposal, RFI-BL-004 BOA Task 8.

2 Smith. S.T., Schrader, M.E., Mitchell. B.T., Gillies. A.M.. and Jacobus.
C.J.. -"%Methodologies of Optical Character Recognition. ERIM Technical
Report ARVD 87-0S5.

3 Wallich. P., "Minis and Mainfranes," IEEE Spectrum. January, 1985.

I
I
I
I
I
I

I
i
I

I!4
I

I

i

I
I
U
I
U
I
I
I
I-
II

U
I
U
I
I

Appendix AI
Diait Models3 0

IN

I

51

I
I
I

I

52I

04

6 0

.' - -3

a 0 v 0 4 a 0---a v

-: -C - - -

4m 4- -. A .

46. 6. 6

a 2 2. 4.

i0 -o A-- - - - --- ---- 0 ~ 4 .0 O

331

.9 6. D.3"

".73

w - - 2 _ I - 8 ! -

42. C6 31 3 -

=Z C6- -, =.C 96 a - 4a-

a.4 461 am.
-~~ 0. 3a

a 3 1 5 . .1 , .. 6. .. a* --

-- 4La

t- t V-'-w 31Wq 3111 t5g~ t 1
6.u

Q.0 .1 7

a1..334 a. oi 4.5.UQU U AL 'ab='z 3- - 4UI -.3 3 LLL ~

-~~~ -~ - IZx-

~ ~~ S4 C 31h~g C5 4~ . S3

4' ~'. '

-S48

43. o~h. '

-6 ' cJ3

4,2 -). -o2 9.

A. 43 I u 4 5 - I I -z 8-
c 43 3 - 3 - -

.4 4 Joa-i

t. -44 g- 3 .6

f: I a- C4 c c .
6- . L.A~ 4 I&& 4- &30 &U - .i 143- .-

403 w. w. 6. 4 -

.0Z >
4 0 0t v

4343~ 55

2. a6. !t Z

0..

44

-l 0.2

6. 171 -

612 - c

W) UI94

40 a0 *.4; 4
o- ir0=1 fa8 2

56 ~

da.4

3.- 04

66.

w 6. 3 6

I 11" IQ* A31 4 e-*1 ,4 ;

IJT. F=s

~ '(0. t~ 57

I
I
U
I

I
I
I

I

58I

I
I
I
I
I
I
1 Appendix B

I Feature Extraction

I
I
I
I
I
I
I
I
I 59

I
I

I
I
U
I
I
I
I
I
U
U
U
I
I
U
I
U
I

60 i
U

_HSCOOOSDUAI:[OCR.AMG.SYS]XCAVELINE.DEF;5 6-APR-1987 10:05 Page I

;-*- xcaveline in - process from raw image to caves of last line
; in - input filename or number
procedure(in)
; global variable cave receives final result
gdeclare cave
; get the image and process to binary image
xgetbin in
; get the last line in a fixed image size
xgetfixedline
; seperate the characters on the last line
xseparate
; detect features in the separated characters
xprocseps
; get the result from global variable cave
copy cave
endprocedure

61

I
I

_HSCOOOSDUAI: [OCR.AMG.SYS]XGETBIN.DEF;6 7-APR-1987 11:02 Page .

;** xgetbin im slice - get and slice an image -> bin (global)
Lm - input filename or number
slice - threshold

procedure (im,slice)
gray
setdef 15->slice ; default threshold - 15
gdeclare bin ; global variable to get binary image result
declare code variable to hold stage programs
declare temp ; temporary image storage

; get the raw image from disk I
unsave im
; save it in temp
copy ->temp
gdeclare raw
copy ->raw
; estimate background level by closing raw by a cylendar of radius 20
loadcode 'closecyl20.noc' -> code
apply code
e.mpty -> code
; subtract raw image from the background imagediffimages active temp -> active; threshold giving fg (strokes) state 5, and backgroung state 0
gdeclare dif-fimg
copy -> diffimg
slice 0 slice 0 5
color
; get rid of long horizontal things
spanv 0 5 2 110 40 ->,code Ispanv 5 2 5 110 40 ->,code
cover 5 0 ->,code
cover 2 5 ->,code
apply code
; save binary image in global variable bin
copy ->bin
endprocedure i

I
I
I
I
I

_HSCOOOSDUAI:[OCR.AMG.SYS]XGETFIXEDLINE.DEF;l 1-APR-1987 13:29 Page 1

;-* xgetfixedline - get last line of address block in fixed image size
; assumes binary image with fg-5 bg-O
procedure (wheight,wwidth)
setdef 50->wheight ; default image height - 50
setdef 400->wwidth ; default image width - 400
declare Itop, ibot, lheight,extra,temp, left
gdeclare line, elw, eheight, ewidth, top, bot
; save image in temp
copy ->temp
; migrate pixels left to form accumulated width histogram
migleft
gdeclare lhist
copy -> lhist
; call lastline to find top and bottom of last line
xlastline 30->itop, ibot
; compute fixed size window placement sa as not to go off image
!height: -lbot-Itop
extra: - (wheight-lheight)/2
if (extra>O)

itop : -ltop-extra
endif
if (ltop>imglen-wheight)
Itop :-imglen-wheight

endif
eheight:-wheight ; global variable eheight - window height (will be used
ewidth: -wwidth
top: -itop
bot: -Itopeheight
left: -imgwid-wwidth
; define the extended line windowwindow height wwidth top left -> elw
; get the binary image back

copy tempm; COPY the last line window to global variable line

copy elw->line
; make the line image currently active
copy line
endprocedure

II

* 63

_HSCOO0$DUAl: [OCR.AMG.SYS]XLASTLINE.DEF;l 1-APR-1987 13:34 Page I

;*- xiastline slop - find last line given "histogram" image
; slop - the amount to go from the left edge before cutting lines apar-_
procedure(slop)-> top, bot
; span in from left edge of "histogram" turning to state 2
spanv 0 5 2 10 slop
gdeclare lcut
copy ->lcut
; remove the leftmost part
cover 2 0
; span back toward right making fixed height boxes in state 2
spanv 5 0 2 100 slop~l
gdeclare lbox
cdpy - > lbox

remove the rightmost parts of the histogram
cover 5 0
; merge lines which are very close together
spanv 2 0 2 2002 3
spanv 0 2 0 2002 3
gdeclare Lmerge
copy ->lmerge
; eliminate leftover short lines
spanv 0 2 0 2002 3
spanv 2 ;D 2 2002 3
gdeclare lprune
copy-> Iprune
; make a very narrow window to speed up pixel scanning
declare lw
window imglen 1 1 1 -> lw
activate lw

; intro to loop to find top and bottom of each line in image
declare oldtop pix
iscan 2 2 1 1 -> top pix ; this finds the top of the first line

; loop finding top and bottom of aech successive line
repeat
oldtop: -top
iscan 0 0 top pix -> bot pix
iscan 2 2 bot pix -> top pix
until (top-O)

; now we have top and bot values
top :-oldtop
; reactivate the binary image
activate scratch
endprocedure

64

_HSCOO0SDUAI: [OCR.AMG.SYS]XSEPERATE.DEF;I 27-MAY-1987 10:53 Page 2

;** - xseperate slop - seperate a line of text into single chars
; slop - height at which to cut histogram to seperate characters
procedure(slop)
setdef 4->slop ; default slop value - 4
gdeclare eheight, seps
declare temp, code, trim,wind
trim: -10

; save the current image
copy -> temp
; tigrate pixels down to from accumulated height "histogram"_" migdown

gdeclare dhist
copy ->dhist
; span up from bottom amount slop turning to atate 2
spanv 0 5 2 2000 slop
gdeclare dcut
copy ->dcut
; remove bottom part of histogram
cover 2 0
; extend the remaining histogram to be full window in height
spanv 5 0 5 2002 eheight
gdeclare dbox
copy ->dbox
; mark windows narrow enough to merge in state 4Ispanv 0 5 4 110 4
spanv 5 4 5 110 4
gdeclare dnarrow
copy ->dnarrow
; find narrow gaps with narrow windows on either side - state 2
spanv 4 0 3 10 5
spanv 4 3 2 100 5I return wider gaps to state 0
cover 3 0
; turn narrow windows back to state 5
cover 4 5
; now turn all windows to state 2 (narrow gaps are already in state 2)
cover 5 2
gdeclare dmerge
copy ->dmerge
; make a non-zero background state to do skeletonizing
cover 0 1
; skeletonize background thus extending windows without merging themIskelrec8 1 2 3 off off
; retrun weindows to full height (lost in skeletonization)
spanv 1 2 1 2002 5I; return background to state 0
cover 1 0
gdeclare dthick
zopy ->dthick
; add the original binary last line to windows image
addimages temp
gdeclare dchars
copy ->dchars
; now we have characters in windows but they extend beyond windows someti
; remove strokes which fall outside windows
cover 5 0
gdeclare wspill

65

I
i

HSC000$DUAI: [OCR.AMG.SYS]XSEPERATE.DEF;1 27-MAY-1987 10:53 Page 2

copy ->wspill
; remove small strokes which touch borders of windows
spanr 0 7 1 trim
cdeclare wmoke
copy ->wpoke
spanr 7 1 7 (2-trim)
cover 1 2
gdeclare wtrim
copy ->wtrim
; trim all strokes to be al least 1 pixel away from the window's edge
spanr 0 7 2 1
cover 2 8
;remove windows which have no strokes in them
spanr 7 8 1 100
cover 8 0
cover 1 8
; copy the result to global variable seps
copy ->seps
endprocedure

I
I
I
i
i
I
I
I
I
i

66 3

_HSCOOO$DUAI:[OCR.AMG.SYS]XPROCSEPS.DEF;l 1-APR-1987 14:00 Page !

;-- - xprocseps - process seps image for ocr
; assume stroke-7 window-8 border-0
procedure(tl, np)
setdef 2-> tl ; default trim-length 2
setdef 2 -> np ; default number of passes 2
gdtclare skel cave
; eliminate very small (single 2112) fg things
spanv 8 7 5 2112 1
spanr 7 5 7 30
cover 5 8
gdeclare wclean
copy ->wclean
; eliminate small bumps on fg objects
tranbx 7 7 8 7
; skeletonize the fg
skelrec4 7 3 1
skelrec8 7 3 10
cover 3 8
gdeclare wskel
copy ->wskel
; trim skeletons using the simplify function (assumes fg-2)
cover 7 2

markboth 2 3 4
gdeclare wmark
copy ->wmark
cover 3 2
cover 4 2
simplify tl np
; mark endpoints-3 and junctions-4
markboth 2 3 4
copy ->skel
; return fg to 7
cover 2 7
cover 3 7
cover 4 7
; thicken and 4-way skeletonize (this

tranbx 7 8 7 2100 1 off
tranbx 7 8 7 2010 1 off
skelrec4 7 8 2
gdeclare thickskel
copy ->thickskel
; detect concavities using the caves function
xcaves

; leave result in global variable cave
copy ->cave
endprocedure

67

l

_HSCOOOSDUA.: [OCR.AMG.WORKIMARKBOTH.DEF;5 20-JAN-1987 14:54 Page 1

;**- markboth fg ends juncs - mark endpoints and junctions in different sl
procedure(fg,ends, juncs)
declare cache

tranbx fg fg ends 6 1 on 4 or
tranbx fg fg ends 3 1 on # or
tranbx fg fg ends 7 1 on # or
tranbx fg fg ends 1 1 on 4 or
tranbx fg fg ends 2 1 on o

copy ->cache
cover ends fg
markpoints fg juncs
pixelselect whereever (cache-ends ends

endprocedure

I
I
I
I
i
i
I
I
I
i

68I

_HSCOOOSDUA.: [OCR.AMG.WORK]SIMPLIFY.DEF;7 I-APR-1987 14:03 Page 1

;*- simplify - simplify 8-way connected skeletons

procedure(trim_length, npasses)
setdef 3 ->trim length
setdef 4 npasses ~ ~ ~

fg--2I bg: "8
endoint: -3
jpoint:-4I temp:-5

spanr endpoint fg temp trim-length -> ,scode
spanr fg temp fg (triLm length+2) -> ,scode
spanr temp endpoint temp 2 ->,scodeIcover temp bg ->,scode
spanr jpoint endpoint bg 2 ->,sc:ode
cover endpoint fg ->,scode
cover jpoint fg ->,scodeUskelrecS fg bg 3 -,cd

Earkboth fg endpoint jpoint
apply scode

endfor
endp rocedure

I6

_HSCOOO$DUAI: [OCR.AMG.SYS]XCAVES.DEF;l 1-APR-1987 14:06 Page 1

;-" - xcaves - set up colors and call cavities to mark n s e w... cavItie
assume stroke-7 window-8 border-0
return stroke-240 window-0 border-10
n-i e-2 s-3 w-4 c-7 hole-6(orange)procedure

declare code
cover 0 64 ->,code
cover 8 0 ->,code
cover 7 128 ->,code
apply code
cavities
empty ->code
cover 128 240
cover 5 7
cover 64 10gdeclare wcave
copy ->wcave
spanv 0 7 orange 2112 30 ->,code
spanv 1 7 orange 2112 30 ->,code
spanv 2 7 orange 2112 30 ->,code
spanv 3 7 orange 2112 30 ->,code
spanv 4 7 orange 2112 30 ->,code
exch 7 orange ->,code
apply code
endprocedure

70

mHSC000$DUAI: [OCR.AMG.SYS]CAVITIES.DEF;5 11-MAY-1987 17:58 Page 1

;-- - cavities - mark concavities in numerals
; assume stroke-128 window-0 border-64
; n-i e-2 s-3 w-4 c-5 (to view cover 5 130, cover 128 200)
procedure
gdeclare cavecode, cavecodeswitch
declare size
size: -100
setdef FALSE -> cavecodeswitch

if (cavecodeswitch <> TRUE) ; if cavecode does not already exist, make
cavecodeswitch :- TRUE
spanv 128 0 1 2000 size ->,cavecode ; span up in lowest bit plane
bitdisab 0
spanv 128 0 2 10 size ->,cavecode ; span right in next plane
bitdisab 0,1
spanv 128 0 4 2 size ->,cavecode ; span down in next plane
bitdisab 0,1,2
spanv 128 0 8 100 size ->,cavecode ; span left in final bitplanebit .mask 255

; using covers reduce the 16 state cavities to just 1,2,3,4,and 7
for ne,s,w and center cavities

cover 1 0 ->,cavecode
cover 2 0 ->,cavecode
cover 3 0 ->,cavecode
cover 4 0 ->,cavecode
cover 5 0 ->,cavecode
cover 6 0 ->,cavecode
cover 8 0 ->,cavecode
cover 9 0 ->,cavecode
cover 10 0 ->,cavecode
cover 12 0 ->,cavecode
cover 11 1 ->,cavecode
cover 7 2 ->,cavecode
cover 14 3 ->,cavecode
cover 13 4 ->,cavecode
cover 15 5 ->,cavecode

endif

apply cavecode 1 ; apply cavecode to mark cavities

endprocedure

I 71

HSC000SDUAI:[OCR.AMG.TOOLS]HMIGRATE.DEF;3 27-MAY-1987 11:09 Page . i
;'* hmigrate fore,passes,in - horizontal migration

note: fore cannot be 0 (zero)
procedure (forepasses,inimage) -> outimage I
setdef ACTIVE -> inimage
setret ACTIVE -> outimage
declare nlines, npixels I
show size inimage -> nlines,npixels
setdef 5 -> fore
seidef npixels -> passes

cover -(fore) 0 inimage -> outimage
cover fore 2 inimage -> outimage

declare code
cover 0 1 ->,code
spanv 0 1 2 10 1 ->,code
cover 1 0 ->,code
bitor 1 0 ->,code
bitmask 1
ma~x3d 000 200 000 1 ->,codebitmask 255
bitor 1 2 ->,code
bit.nask 4
max3d 000 002 000 1 ->,code
bitmask 255
cover 0 0 ->,code
cover 1 0 ->,codeI
cover 2 0 ->,code
cover 4 8 ->,code
cover 4 8 ->,code
cover 6 8 ->,code
cover 7 8 ->,code
cover 7 8 ->,codecover 8 2 ->,code
apply code, passes, inimage -> outimage

cover 2 fore inimage -> outimage i

endprocedure

I
I
I
I

72I

m
I

mHSCOOO$DUAI:[OCR.AMG.TOOLS]VMIGRATE.DEF;4 27-MAY-1987 11:09 Page
; * vmigrate fore,passes,in - vertical migration
; note: fore cannot be 0 (zero)3 procedure (fore,passes,inimage) -> outimage

setdef ACTIVE -> inimage
setret ACTIVE -> outimage
declare nlines,npixels
show size inimage -> nlines,npixels
setdef 5 -> foresetdef nlines -> passes

cover -(fore) 0 inimage -> outimage
cover fore 2 inimage -> outimage

m declare code
cover 0 1 ->,code
spanv 0 1 2 2000 1 ->,code
cover 1 0 ->,code
bitor 1 0 ->,code
bit.nask 1
max3d 000 000 020 1 ->,code
bit.mask 255
bitor 1 2 ->,code
bitmask 4
max3d 020 000 000 1 ->,code
bitmask 255
cover 0 0 ->,code
cover 1 0 ->,code
cover 2 0 ->,code
cover 3 8 ->,code
cover 4 8 ->,code
cover 5 8 ->,code
cover 6 0 ->,code
cover 7 8 ->,code
cover 8 2 ->,code
apply code, passes, inimage -> outimage

cover 2 fore inimage -> outimagem endprocedure

I
I
I
I

I 73

-HSCOOO$DUAl:[OCR.AMG.TCOOLS)MIGDOWN.DEF;l 18-MAR-1987 13:30 Page 1

;* migdown fore,passes,in - vertical migration using vcode
;note: fore cannot be 0 (zero)

procedure (fore, passes, inimage ->outimage

setdef ACTIVE ->inimage

setret ACTIVE -)outimage

declare nlines, npixels
show -size inimage -> nlines,npixelsI
setdef nlines -> passes
setdef 5->fore

cover -(f ore) 0 inimage -> outimge
cover fore 2 ininage -> outimage

gdeclare vcodeI
apply vcode, passes, inimage -> outimage

cover 2 fore inimage -> outi-maq-

endprocedure

74I

-HSCOOO$DJAl: [OCR.AMG.TOOLS]MIGLEFT.D)EF;l 18-MAR-1987 13:30 Page1

;*migleft fore,passes,in - horizontal migration using hcode
;note: fore cannot be 0 (zero)

procedure (fore,passes,inimage) >Outinage

setdef ACTIVE ->inimage

setret ACTIVE ->outimage

declare nlines, npixels
show -size inimage -> nlines,npixels
setdef npixels -> passesI setdef 5->f ore

cover (f ore) 0 inimage -> outizuage
cover fore 2 inimage -> outimage

gdeclare hcode
apply hcode, passes, iniMage -> outimage

I cover 2 fore inimage -> outimage

endprocedure

I7

I
I
II
I
I
II

I
II

r
I
I
I
I
U
I
I

76 II

I
I

i

I
I
I

i Appendix C

| OCR Address Tape Processing

I

I
1
I

I
I

I

II

I
I
I
I
I
I
I
I
I
U
U
I
I
I
I
I
I
I

73 I

I
I
I

REPORT

U

I
OCRI SLTNY Address Tape Processing-

Francis Quek
7 April, 1987

II
I
I

I 79

I
I
I
I

i

I

i
i

I

i
i
I
I
I

I
80 i

OCR SUNY Address Tape Processing Revort

F. Quek
April 7, 1987

This report describes the set of program.mes and DCL command files which
have been implemented to extract the OCR address label images from SUNY. Also

included is information on how to make use of these programmes and command

files.

The Data

The data we receive from SL'NY is in a compressed (run-length encoded) for-

nat. Each image is preceded in the tape by a header file which describes the image.

This header file is in ASCII and is formatted as follows

image name

Number of Rows:

Number of Columns:

where

*image name is a valid V.lS file name

I### are integers specifying the number of rows and columns.

Data Extraction Procedure

The input tape has to be MOUNTed using the foreign option and specifying

Ithe blockstze to be 16384. Data on the tape can then be read using the standard

VM%[S COPY command. The mounting command is as follows:

$ MOUMTforeign/bl=16384 MTAz

After reading the two files (header and image), the image must be first put into3a fixed record format. This can be done using the VMS CONVERT facility. The

necessary incantation is:

$ CONVERT/padfdl=FL\XED.FDL Sourcefile Targetfile

FIXED.FDL is a VMS FDL declaration file the listing of which can be found

3in the appendix of this report.

I
* 81

mI

m
The COMPRESS.EXE programme supplied by SUNY can now be run. This

programme expects an input file name with a '.Z' extension. The output of the t
prraxne is a file of the same name with no extension. The programme can be

run as follows: 3
S COMPRESS -d filename

This will decompress the file filename.Z yielding a decompressed image -ie

named filename..

The resulting image must be put in a fixed record format to be accessibie I
from C4PL. The programme to do this is FIXQ.EXE. Besides putting the image

into fixed record format, FLXQ also downsamples the image by a factor of 4 if 3
the original image is larger than 512KByte in size (the limit of C4PL) and trims

-he image to make the dimensions even (the current implementation of C4PL has
a bug which precludes operation with odd column size images). To execute this

programme, type 3
$ FIXQ Sourcefle Targetfile rows columns

where rows and columni are integers specifying the number of rows and coiumns 3
in the original image. This information is available in the header file described

earlier. m
Another version of FIXQ exists to facilitate the extraction of the images in

unattended mode. FIXQQ.EXE takes as input the source image file and the

header file. It reads the name of the target file, the number of rows and the number

of columns form the header fie. FIXQQ can be activated as follows:

$ FIXQQ imagefile headerfile

RDCOMP.ZOM is a VMS DCL file which permits the processing of the 3
mnages in batch mode. It will read a tape image by image and process them.
.eaving the final image in the default directory. Several lines in RDCOMP.CONI

aa.s to be altered for each run (to specify the physical tape drive on which the tape

is mounted, the target directory of the images etc.). Instructions on the necessary

changes are contained in the in code documentation of RDCOMP.COM

Required Files and Programmes 3
The required files and programmes are listed below for ease of reference.

I
82 3

R.DCOMP.COM - The VMS DCL file which permits the processing of an

entire tape in batch mode.

COMPRESS - The image compression/decompression proggamme provdded

by S U.N'Y.
FLXQ - The programme which puts the image in a format readable by C4PL.

downsampling and trimming the image as necessary.

FLXQQ - Similar to FIXQ except that it permits operation in unattended

mode.

FIXED.FDL - The VMS File Description Language file to be used with -he

VMS CONVERT command.

The source code of the above are appended to this report.

I

I
I

I
I 8

-41 4 141. 41 * - 41 41

-41 -
~ : ~

4 4
41 41

~- . 41:j~j

41 * - --
- 41~41 41 .~

* - 41~41
-~ * 414 -~ r -

41
- .. - Z~ 3 3 3~

~ ~'- : --
~ 41~ 41 --

Z .41 -- 41 --

41'
U - *41Z
4

* 4 I
4 ~. ~ 41 j

4141
41:J 41 41

- 41 0 ~ I
- ~l- e0 -

- ~ .~ *.~

- ---- -~ A
- ~ - ~ -. . -o

~e41 i ai I -~ ~ :4;; I ~~j%>; * -
~ , as
; q s~a.
-- 4.. .1-~ I: ~ -- a ~ -= -

4 . 0-

~ ~ ~: ~
0

-- I
* - -- 5

- -- - ~4141VS. VS. VS. V 41S. VS. VS. VS. VS. VS. VS. 4141 ~ VS. VS. VS. 41414141 VS. VS. VS. ~' .~. VS. VS. VS. -VS. 941 VS. S.~ VS. VS. 41 VS. VS. VS. VS. VS. 41' ~ VS. ~dS. VS. VS. VS.

_____ I
-41.

-" ~ ~ 4 1 i41 4-- -41 .~ 31. 5041 .1 -

* 41- ~ ~ - -- - - -4
* 41.:.41~i 41 41 41 41 ~41.41 ;,.. - - - -

-- 41~ ~-*41 -~ - - 41 41 - -.- m
- ~ -

* = 4140 ~ ~41 45 5414.15 -- .. - -
* ,--~ ~-~ :~41 - 4141~41 - ~ '~ U

- - 41.41~ --
* 41 4~0 ~ -~ - - 41.~ -41 - *0
* - - - 4iT~~E2 .:: 4 41 L -

-a, * 41~J - 414141-.~~~J ~ 4 441. 54 - :41
* * 41 41.~ 41 ~ I ~ 41 41 - -. : .414

- - I 44J
- 41 41 4141 ~ - - 41rn~

* -~ 4- ~41-C- ~ ~ 41 2
= 4141 041. 414141 41. V 41a4

-- -- 41 ~fl
~ * 41.0 0 .-- 0 ~41.-41~ .1
- - 41 -~
= 41

641- 41 3
N '~ --- 41 41

41 - I.
.1- 4O~4~41 41~4;.41 -* ~2 .41 ~ 4105. - ~ 414~~* 41. 41. ~ 41~e -41.: -~ ~. - ~ --

~41 414141 - - ' ~
- -- -. 5- 41 ~ *1 41~~- -. :

-41 ~, -. !. ~41.- 4 -z -i ~N I 21~ -
~g-. -U -~ I -- ~ 41-. C - -- -~--5 - ~ - ~ ~"5 41 - - 5... 5 - 41545 £~.S.:4~! 41.14141411141 - 13 4... 41~1 - ~-- -U-~ .~ ~

~ : I
* = 41- 41 41

5
.~;M441-41 - - ~ 0 -~

** - A41-
VS-.41~1 . 41 Z~.418U1...1 ~-. ~ ~--

41 0 ~ 41'05 41 4164111 .~.. --
-- 41 41 K 41 - ~ 41 41 4141 -u U .*.32- 41E ~ I 41 414141.:.: ~41041 I b' - ~.

a ~ z ~.ui F--4.141---4 - 1 ~VS~*4 U 41. ~ ~---

3

4.

- ~ 4141 4141 ~ ~ 4141 ~ 41~41~ ~ 4141 - 4141 ~ 4141 ~. ~ 41~ 4141- 4141 ~ 4141 VS. 41~ ~ ~ ~ - - - VS. VS. ..~ VS. ~ VS. VS. VS. 5~ VS. S..

84 U

AN.

11 'N

- '71

P4 -a

A -s taA
:A

00 In .1,

-6 M

4 zn

II
- 0

-- dl 4' =-. -a

85 -

V I

-. AU - 3

-~~V 0 5 - -

e - - -- c M- -Z-

3a .50 . q0 . -- = v 05 -

- A~ I5 v- i .!! I Ia
1) 6. :.) *-. 7! - o = o

A 6. u V a .~- A-

0 m

W* P~ IZ ..U~ A - ,... ~ O --

0055 O'5

- 41-

- ~~ '40 - Z -
77 f5

.~ 3a ~ - -50- --. 5.53
.5go d.-= in .5 0 .- , .

V. -. 1 c a5 -- -;

-~ .5 Wi. OW t. 0

-6. COD -- a ~ 055 C c

amO. 1~3. .- 0 U '- . *21*. .0 5 053 % 0 5 0

.3.5 3. ' -~ ~.2. ~ SW.0%U

A5 cc5 ccU C.5- AU as -J 0 0 - 0- 00 -

3 . 05s 0.0 7..~ %U~ 5.-. .5 3 ~ N A~.. 3 N 86

II

is -. 4

-- 0 . G F T4

r .4 .4

.2

0 we 0:

4 Na

C 44 4,1

Ma a
o 67 IMP

A A 32

.

4 01 -

911

Z - 61-11 1
-- 9 90

00. 00 644 IZ - c 9

. ..~ .*~ .; .:4.:. .:.:.

- - ** ~ - ~ 88

'.10
TO V

H 'A .17 17

06 -3 IV a

- 33

0 31
0.0 -. i - 0 &

- .1.

3101
ty 3 -4

.3 *- I ~ U N I 1 "a ~ -

.489

I
N

a

:2

:2 1
22-322

N

-~ 1J~

22 :2~~.2'- :2~pi2 N 3
22 3 222'2222:222422.
:2 322 322-22

- C 22 ~
22 ~22'~22 -

0 N
- - I

.~22 '2.4--
- 4

2' .- 22.~'2
- 22 33~ '3'2 q '2

~-3- .~23 :2
2' 22 -. " -

:2 4 3 22.
222 2)22 22 a~.
a -- a 22

N NNN 12-)- 22- -

N

~m ~ '5a 22.N 6 22!
- - N --

0. N
E~..' 12 ~.' -~~- N

-. o ~ -c 22m-~

-i I I 0 ~ ~

- -~ -~ 22 3'~'~22 ~ ~-~-- - ~2'4~:2~ -~
~ -- - -

~ 2)12221222 12 2212 ;;-.-- - :2~22- '~~~Z~Ce - -- C~L~.- * :222,-::.~
22 N 5~ "N a~ - N~ - 2I---W - -- - N .1~ 22-~.t
o - - ~s:~ -z

-- 22 - -- -

- - - 22 N
- - 12 ~ -333 * *** *..c *..C... - 12 22 -

- - - -- 22... % - - - a a

* ~

22.

N 3 3
N C -~
* 22 ~' 22

- - -0a 12- N 22 21 12 -
- C -' '22 - 22 ~4

C -- - U '22 -

-- 0. -~
-- I.-~

- ':2
22~: - I12 22 A -a - - -- 0 -'~ A -a Z~ N 22 22

- A N- 4 .22. * -
* ~ ;- i J~ '2'- - - .22 .C

2222 2212 12. 12 C - - - '21.
~., '.,~-'.. - N N N AN 3

- 2112 :2-'~ CJUA -~ N 22
2 - ~. N .- 2 .G~ ~

21 22
-- 22.f 0~ - ~ ~

- ~- - * .1 dd~. 122 .2 N . 22 0 aN .. ~.. 42 22
- :21122 S~' -- - -

- - 0 Q1. ~ - .. a A - -
- 220 22 - 22 24 ''. ~421i--0~.. 0 -

4) 0'-- I .'~ -- 22. 0 -. - -
2' I.)2 CO E1 0 - .I22O21O.A~~2 - 6 0-422 IA 22 2'ONh.- 2222~IO~ - --- 12g. ~ N - 0. I'3~:2 a - *;dY~~'*..2~ 22

- - I ~
- - - 22 -- I fl~12- ... ~ .~ ~ .w 22 - ~ 2~-. C.21U Q... 41 2' 0~--. 11 12

- '0

-~ ~ ~;24~4 - -~ ~ - -J
I.. -

N - - a
22 - - -

- 22 - 22

- a a a - a a a a a a -
90

- -C

0 -
00

11 1 10 ;a 7

. 0- . .

- 3 -6,

10 .. *0

-. C - -0 x

- ~ A 71

-, -0 0

* - * 3
I *I ~-

-1 ; -~ .

- A 5- , - 91

21

-o

22 21.0.21.5
~2121

A 21
22 -

'~2 0. 21 21-. -

I - - - -.- - -
- A 0 -

11 42

- 227~
.0. 5

0...- 21
.5 . - 21 22.0. -

N 22
- z - 21,~.- - .21
22 - - 0 - - - z ~ -.

a - 22 - ... 3 - -

22 - -~ - - t

- 21 - 21

- - 2 o ~-ii z a
- - -0. 0.

- - -,~ ~ -3 0.-
- - - 21 .~ >

'~ a1 21 -~ 1~ -~

-- -~ i.-. .; - z
21 - - -'
- 0-

.. 5~ earn - .:~ .7~
~

21 ~ 00 -~ :~...
- 21 a ~ - ~ -21 -. ~ - -

- 21 I

~ ~U -~ 31 * ~22 .~0) - - 21
- -- - ~

- 21..~N

-~ -~ ~ - A:~~-- N

.~ 21 ~

- N --
21 - -21 - - - -

- I *.... . ,
- a a - - -~ -, U

I
21
I
21.

21 N A 21
N -

- ~ A
- 0. 21
- 21 - .~

21 21 - N .0 -

A - .41

21 - q -j ~ I
21 21. N 2121

a -~ .5: - - 21

21

I -~ 21

21 -- J - -
-~ - 1 21..

~ 21 - 21 - - -
- N - I -

~ -0- -, - 0. '.. -
-21-- ~ 11 - -

-- - .0. 21 - -. 21
-. 21 - -~ A.- 21

'13 p ~ 21. 0 22 02
- 21 - 21 21 .. - N - -

- - .0. - 0..

- - - 21~ - - A - C 21 * 0.
- - - .. 5 ~

22 - - - . 1 21 21
-s -. 41 - - -- N

- 21.~
21 - 21

'elI .1 21
- ~ 0..~ 0.

2

~-. *2-.-~~* -N- .0-

* N
o N *

'0 -

0 I21 41... 410.

I

*
4 .~- .4U -. .

-4 .

* '- N
3.4.~).. * .

-4 3
- -. 4 A
3 -- -*

. - 2 -- - 3
0 -~ 3 a .. .33 -~ -' -

- . *. z - . '4N - - 3 N 4~~40 - --
* - 0 3... 4 -

3 -- .4 3 - , 0
* i. - -; -
* - 3. 4 A -- 0 4

* A~ - - ~ -~
3 - ~ A -

.3 0 .31 - C -c
* ~ 0 2 ~ .4.~ ~

A * 4 - .1 l~ - -~
.0 * - OE-41 - 3 ml ~

-- ~ - - -

- 4 -- ~-. - 0~* ,~ -c -
~ .- ~* A'- ~-

* - ~' I Ii
~ : U

* ,~ 4 *.~. 4'..'
* - - - - 434 4 .4.3 030

3 C'- -~ 0-~ . - I 0~U I 43.4 0~

0 .3J~

.4 - - 3 - -

3 ~.0 - CJ3~ ~2 JC'.*~ - -- * *4
* ? ... 40~ 3 ' ~ >. -- 2 ;2 N.

* '~N~A0~ 3-.-. -. 33m * -~- 5 ;~ ~
A C -- -

=.................C 3 - 0 -

I
NI

I N
3. C

AU .3 23.34.

A 0 .0
-4

-N
5.

.4
~ NO-. 23 -
0~ * 0 3 .3

03 3
-- - - 3

3 -
A -

- A A
'I 3. 3~ ~ h.

N....- -~ - - - .- -
1~ -~ 3- .~ V.

C I 4 3 --

-. A Sc~ I - ~' .3

~ :F~* - .4 '- - .4 1313

2~ -~ ~ 2 -- 4 - 3 III

* ~ ~ .-~ g; ~
_ -~ - ~ ~*

A: -- ~ ~ -~

3 S ~ - a 0. I - , '0-c*~ 4~4 ~b.I ~ 4 *~' ~. ~* *~ ~N

* ~ ~ * ~*N~ - N~ ~ -m N~ I ~. N 3 A3)
- - 33 3.. 2.3 - 'A

0 C- -- 4 - - -
U.- .1

--

93- - -

o --

A -p

,. tn -a

I It c1. 0-A.

0,; a 1. 2, i
X0 I

'aOv0-
Ole 0 f.sg *(3.

= .0 ~ '-~)OR

I A ~~ ~94

N
N *

4 - A
- 9. 4

4 - N - I

4 A -.
~ 8 -

A
- N
- 0

* .4 4

4 ~ I -

* .4 - 4
~ N 4 N

a'.~ ~* -~ -- N -

* .~ - - -
- *~9 8; C.C~ - 4 -0.4 --- N U - 4 - --

- 4 - - - - -

A - 3N 81 .4 -

- ~i .8 .-
- 40 ~ 4 -4

4 -.
- - 40 - -~ 8c

4 4 40 -- N NN
~C -. - -~ 9.4 4 - *

A

- 0 8 ~ - h. .,
.4..- ~ 9 - I '.1-44 *- 0 4 3

- - 4 0 914 CC A = 9
* SN -- NN 84

~ 4 4a 4 0~ - 0
a4q~

., 3 ~.C
CA - C*I - ~ - ~9 4 -. - - -

0 4 ,444a OW - A a94
Z 1.4 *Ua.9.a. .4 - ~4 - -

1 4aa -. 4 * -4 4
- - A - ** -~ - - Na 3~~* - 8

- 4 I~ a-. -~ -
~4 - aa 4 4 --

C 09 44--- 0 - A a - - a
-. a~ 4 ~ I-- - a 4 3I aa i' a~. '~coo -- - -- -,A.~ - -~ - - - ~N --

-- - 4 0 8'~ - -. --
- A 9 Ai...4.-. -04 9 c 4 . 04

- .- 7; ~ .~.aZ.

~- ...~.5 ~: 04~~* 5- - - -
~-- 9- - - -- ~ -

- J- - -No 4 4 - - - 44~ a

- - ~ 0 N- ;~~: - - -~ A
- --

'-~ 4 8 U

* - C

4

~8

9.

*0 i'~':':':~ ~. 5 4

- Cfl~- N N

U -U 4a

- 4

5* ~ ..-
- -4 --

4 I .11:1 . ~CA
~ III -
'J~UUUU

UU 444444 . Al ~ 9
- ~ *~..C.
.81 444444 090 I ~ -
C I I C I I - -- - a

I IC r p -

9.5' ~*.4*.M.M 5' a -
'CA 'A JC ~JUUUUU 444 a

5' .4 ~ 644 4 9 4W

~ iii ~ 1~4

~.C a~ .4.4.4 4 - -4 -
4 U~ a UUU 5 *- 4.

-~......444 - a C
-- U - a a 4

-~ -N
9 -M C~~.S1444 .4 .4 0'

5' 9~ -~-~ '9 U 9 0 4 -~
-* U ~ oc~~a~ -- :4.: :4

N

~ 2'; ~ -

C ~ a~'~ 4-- -- -
-" - a ~ C - 41 -c

- ~ ~ --
U b. U --4- - 4-- -

: U 4.....

-- N- -

- ~s' - .- ~ L ~j L ~L

95

U

N.

- 3

-" - - ,

-_ -..: .

A.h.

f. .

4 6.-W

96

ci

'a

'a

I-
a

- £
.- - -

- z ~
~ -

- ci I
uI - ~

8 ~

~ ~. I.. ~.
~ .5 .5

4.; ~.; .; .;
- -- -- - - -

K; Q fl£ a
'4

~, -

-- ~I- i~
-- p~ p - -

97

- do1

oe I
M .0 93 4

!V 14 04 'A- Z"
oj -

.4

-) tn a U

- ;.~- Nz
-~~3 13 'a0 * ~.a

- 4 -2-

S is

N - .t.

*. N

23 SS

x a IL3 a ~ ~ 2 I
WI

-22

c as

7 -Ell

~ ~ s -4, 8;~w~ *.~-.

I~~~1 i44 N. i- ~

-~~' ~ ~h.3~ 4~*~* -4.4 N N98

InI

3. Nc .2 -c141

.4 4

7 1 NO 61

6. 6.

0N 0

ed 0 - 0 -4 Is~ 0I-d

L. b1-0 t -01

I %- "i' 41 j -

. 4121*

-- -:Cl~.- 0i 1-.41 0Z-.99

I
I
I
I
I
I
I
I
I
I

o I
- aa

z -I

". -

,' , -

A .lOU

3 2
oZ-n- ago;

-~~' do 5

--. 0 1*0 a .33 5

-- a a r- .

=7 -7Z f~ -- 7

Y.O -6* -

Le'

,~VI caU~ r.rW. 6.

.5 .022N a I

w3 -' 16. * -

-- ~~~ -j 0 = J,* 0 -5 O ~
u5 5.-b5. a v~- A Q 0

a 8- 9- FCs dC A qg - -4k O

a f Eeq5

333 41 8 - - * - . S I.-. -. - ~ J3.101.-

Q -1

N .0 -4 --

4 - C N -3-

II I1

4NN V'- L. 0

U.. ~ ~ 3 24 i V Z.

~VV fl

*0 -

u24 *- NO 0*

V-fl - (4-V

-1
1 4 a -a "3 0 4 ~ 3

d - Q . -a- N
E2 ~-

22 0 V - 1. Na -. a -0~ 0V'~46-

*0 - ~ ~ l~~4 -- -~102

I
1
I
I
I
I
I
I
I
I
I NU -

N

I
- I~ z

, SI - a -

- 2
j~.

* ~. ~. --00 - 0I 2 - -- S --
- aa 0

* -- p -
~ '-~ ~ 2

- * S -

N - I N I

o ~I -~.J 0 ~~i ~

-* -5- ~ -- '-*-

-~ ~ h.U ~2
-) ~-

p.. M - - '-a - - -

I a - S

I - 103

U
I

I

I
I
I
U

I
I;
U

- I
= -

; I

i :.104 1

1
I
I
I
I
I
I AppendixD

Processing Stages

I
I
I
I
I
I
I
I
I 105

I
I

U
I
I
I
U
I
1
I
I
U
I
U
U
U
I

I
106 *i

II

Processing Description

The f.rst image shows the original grey-level image displayed in grey tones.
To threshold this image, a threshold level is determined by filtering out the
high-frequency address information with a morphological operation to give
an approximation to the background, and subtracting this background from
the original image. The resultant image possesses only foreground (address)
information (the second image). The third image shows this threshoided
image. To determine address lines, a line density image is created-all pixels
in the thresholded image are shifted to the right, and the resultant peaks
are separated to give line locations, as shown in the fourth image. TheSred bar at the right is used to separate peaks from eachother. Five lines
are detected in this image: the name, title, and business lines (not show),3 the 1300 Boeing Drite W line, and the Itaica, 171inou 60143 line. The
=:"h image shows the last address line. As a simplistic first guess. the ZIP
Code is assumed to be on the last line. To quickly and easily separate3characters, a the character density image is created-all pixels in the last
Line are shifted down, and the resultant peaks are separated to give character
locations using a method similar to the line separating algorithm. The sixth
and seventh images, continuations of the fifth, show further steps in the
character segmentation algorithm. The result of the separation algorithm.
along with concavity features of the lastline. are shown on the very bottom ofUthe seventh image. The eighth image shows an enlargement of the separated
ZIP Code block with colored concavity features.

107

I
U

U
I
U
I
U
I >NT
I A

I 0

I -

U >3

*
I*

r~J
'V II

b
'-VI.

'I-.'

I -.

:;(~.

I
I

I
I

U64
I 1

U
I

I

I
I
I

I
I
I

UA

1I1
;k

Ik

IJ

U

70I 7 A

-.'Ut
vI

-7
IT

44

3,7"

b0IAfr
Ilm

L7
qI;

lef

I-I

I. -4
I4

IW

,I

.I 4
Ii XI

Ij
loIV
Io

I
I
I
I.
I
I
I
U
I

4,

I

I .~.p ~ - . --

I
I -~ ~ -V.

I
I
I
I

I

