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allows a processor to access only its own cache and some mechanism is required to maintain

data coherence between all the caches. A number of solutions for the coherence problem have

been proposed but all impose some degree of performance penalty on the system.

For a medium size multi-processor, e.g. where the number of processors is less than or
equal to 16, an alternative scheme is to share a single cache among all the processors. A shared
cache organization does not generally require a coherence mechanism and potentially offers
better performance for accessing shared data. However, when multiple processors attempt to
access the cache within the same cache cycle, conflicts occur such that one or more processors
must wait for cache service. Furthermore, due to multiple reference streams, how a shared cache

handles cache misses can have an important effect on system performance.

This thesis discusses the organization of the shared cache system and looks at the effect on
its performance when the number of cache banks is increased and when buffer queues are added.
In particular, by evaluating shared cache access conflicts and cache miss effects, we look at how

these changes affect multi-processor performance.
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CHAPTER 1

INTRODUCTION

Processors with private caches have usually been assumed in the study of multi-processor
systems, particularly when the number of processors is large. A private cache organization
allows a processor to access only its own cache and some mechanism is required to maintain
data coherence between all the caches. A number of solutions for the coherence problem have

been proposed but all impose some degree of performance penalty on the system.

For a medium size multi-processor, e.g. where the number of processors is less than or
equal to 16, an alternative scheme is to share a single cache among all the processors. A shared
cache organization does not generally require a coherence mechanism and potentally offers
better performance for accessing shared data. However, when multiple processors ittempt to
access the cache within the same cache cycle, conflicts occur such that one or more processors
must wait for cache service. Furthermore, due to multiple reference streams, how a shared cache
handles cache misses can have an important effect on system performance. The reduction of
shared cache access conflicts and the minimizing of cache misses and their effects on multi-

processor performance is the subject of this thesis.

1.1. Thesis Qutline

This thesis consists of five chapiers. In this chapter the shared cache multi-processor organ-
ization and approaches to improve its performance are introduced. In Chapter 2 the mult-

processor system is discussed in more detail. Specifically we discuss the various design choices




that can be made to increase its pe. ‘ormance, such as buffer queues, number of cache banks and
interleave schemes. We describe a request combining scheme to reduce the number of memory

requests and a modified write back scheme to handle cache and memory updates.

In Chapter 3, the simulation model based on the ideas introduced in the previous chapters
and the address traces used for experimentation are briefly described. Chapter 4 presents a set of
simulation results from experiments with the multi-processor model. Chapter 5 concludes the

thesis.

In this thesis we make a distinction between multi-processing and parallel processing.
Muld-processing executes multiple processes on a multi-processor, while parallel processing
executes a single process in a parallel form on a multi-processor. This distinction is important as
the simulation address traces represent parallel loops. Thus, in this thesis, we are concerned

exclusively with paralle] processing on a shared cache multi-processor.

1.2. Cache organizations for multi-processors

There are two general ways to organize caches in a multi-processor; private caches and

shared caches. Consider a system with p processors.

In a private cache organization there are p caches. Each processor, P;, where 0<i <p, can
access only cache C;, and each C; is connected to the main memory through an interconnection
network. Typically all C;’s have the same capacity, organization and policies. Each P; has
conflict free access to C;. If P; causes a cache miss, a request is made to the memory through the

network to load C; with the missed data.

A well known problem with private cache organizations is that of maintaining data coher-
ence among the caches. Consider a block of data b, where a block is the unit of data uniquely

identified by a cache tag and is generally the unit of data transferred between the memory and

-




cache as the result of a cache miss. Assume there are valid copies of b in C; as b; and in C; as b;,
where i#j. If processor P; writes to b;, then b; must either be invalidated or updated such that
when P; reads from block b;, bj=b;. How this is achieved is the responsibility of the coherence
mechanism. The multi-cache coherence problem has been the subject of many studies. Gen-
erally all the many proposed solutions impose various penalties on the system, requiring combi-
nations of network bandwidth, cache bandwidth [Tang76,CeFe78,ArBa84,PaPa84] and compiler

support [Lee87,ChVe88].

The existence of multiple copies of blocks among the private caches can lead to program
performance penalties. Consider again the two processors P; and P;, alternately reading and
writing to a shared block b in a parallel loop. If P; initially reads the block, the most up to date
copy must be loaded into C; as b;. When P; writes to the block, a typical coherence mechanism
causes bj, if it exists, to be invalidated. This invalidation insures that when P; references bj, a
cache miss occurs and the up to date copy of the block is loaded into C; from the memory or
from another cache. When P; writes into that block, the copy of the block in C; is invalidated.
The effect of consecutive read-write reference pairs by alternate processors is to "ping pong" the
tleck between the associated caches. Each read reference to the block causes a cache miss, caus-
ing the block to be re-loaded from memory or from another cache, and each write invalidates the
copy in the other cache. Such behavior can severely degrade parallel program performance with

shared read-write data in a private cache system.

One possible approach to avoid potentially "ping ponging” shared read-write blocks
between multiple caches is to make these shared blocks be non-cacheable. However, this

imposes a performance penalty since all accesses to these blocks must reference the memory.




1.3. Shared cache systems

In a multi-processor system with a shared cache, all the processors are connected to the

same cache. The advantages of this system include the following:
(1) Cache memories are expensive, so the sharing of the resource is desirable.
(2) As there is only one cache, there is no multi-cache coherence problem.

(3) The access of shared data and synchronization variables in the execution of parallel pro-
grams is critical for performance. In a private cache organization, these are the types of
accesses most complicated by the coherence requirement, often resulting in these variables
being non-cacheable. These problems do not exist for a shared cache organization. With a
single cache, only a single copy of the shared variable can exist in the cache and it is avail-

able to all processors.

The disadvantage of the shared cache organization is that it must support multiple reference
streams. First, as multiple reference streams must be serviced, the shared cache must support a
higher access bandwidth than a single private cache. Secondly, some mechanism is necessary to
connect the multiple processors to the shared cache and to resolve the priority of references.
Sharing will generally make the cache access latency longer than for a private cache system.
Thirdly, when more than one processor makes a reference to the shared cache in the same cache
cycle, access conflicts may occur such that at least one processor must wait for at least one cache
cycle for cache service. Due to these conflicts the cache access latency varies even for cache hit
references. For a large number of processnis such access conflicts become unacceptable. There-
fore, shared cache organizations have been suitable only for a moderate number of process'brs,
e.g. no more than sixteen. Finally, since multiple streams of references are being issued to the

cache, how the shared cache handles cache misses has much more significance than in a private




cache system. If the shared cache is busy during the handling of cache misses, access conflicts

greatly increase.

Shared cache organizations have not received as much attention as private cache organiza-
tions. The only extensive study known is [Yeh81]. In this study, the model used was a set of
multi-stream pipeline processors connected to a shared cache and a high performance L-M
memory system.! This study presented an analysis of shared cache systems and some simulation

results comparing their performance with private cache organizations.

Shared cache forms an integral part of the memory hierarchy for a set of machines
manufactured by Alliant Computer Systems Corporation. The Alliant FX/8, [Alli85], is a system
with eight Computation Elements (CE) connected through a crossbar to a four module shared
cache, which in turn is connected to memory through a bus shared with Interactive Processors
(IP).2 The Alliant FX/8 forms a processor “cluster” of Cedar [KDLS86], a hierarchical multi-
processor being constructed at CSRD. The base system for this study is similar to the Alliant

FX/8 organization.

1.4. Shared cache organization

In this study we look at some considerations in the design of a shared cache system for
muiti-processors. The general organization is shown in Figure 1.1, where p processors are con-
nected through a cross-bar switch to a shared cache with ¢ banks, which are further connected to
m memory modules through a shared bus. Each processor is a pipeline processor which can issue

overlapped references independently of one another. The design space of interest is that of

‘m:h.!m:m«;uimimofmaym.wﬁhmeMudnmodnluperm {BrDa77].

"!huemtwolypudpmmwgimhcsymﬂndghCB‘unuebmplaeﬂaﬁngpoﬁnmmwhhveaorflciliﬁamdan
bemedm_conantoexegaepromsmplnﬂd.TheIPshnvenovectormx'tmdm;menﬂynsedfornm—nmnaimlmnmt,forhm
the operating system and inpwt-output processing.




medium size multi-processors where p,c,m<16.

Given k processors, where k<p, accessing a particular bank within one cache cycle, access

conflict exists if:
(1) k>1,0r

(2) >0 and the cache bank is busy.
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Figure 1.1: Multi-processor with shared cache




The first condition is due to multiple references to a shared resource. We call this a multi-
access or switch conflict. The second condition is due to the service action of the cache and we
call this a bank-busy conflict. Bank-busy conflicts occur when the cache cannot service further
references due to previous cache misses. For instance, the cache may be handling a pending
memory request or it may be busy being updated updated following a miss. If either conflict
condition is true, then at least one processor must wait for cache service for at least one cache
cycle. A reference that does not gain the cache, due to a bank-busy conflict, is held in some
buffer, until the cache is available. If this buffer is already full then the processor must be stalled
from issuing further references. Subsequent references to the same cache bank, from other pro-
cessors, will compete with this held reference for the cache bank in the next cycle. Therefore an
increase in the number of cache misses increases the probability of multi-access conflicts. In the
following text, unless explicitly noted, conflict refers to both types. Some methods to reduce

these conflicts and their effect on the processors are introduced in the following subsections.

1.4.1. Reducing multi-access conflicts

If the shared cache is organized as a monolithic structure, the probability of multi-access
conflicts is very high. Such conflicts reduce the performance advantages of using multiple pro-
cessors. A well known technique used to support parallel access to memory, is to organize the
memory as a set of independent modules. The memory addresses are then distributed, or inter-
leaved, amongst the modules in some ordered manner. Multiple banks and address interleaving
can also be used to organize a shared cache. In our simulations we look at the effect of varying
the number of cache banks and various interleaving schemes on conflicts. We also show how
reducing the number of multi-access conflicts dees not necessarily contribute to an increase in

system performance for some address traces.




1.4.2. Minimizing the effect of conflicts

Increasing the number of cache banks only provides the potential for parallel access.
Multi-access conflicts still occur if more than one processor attempts to access the same cache
bank in the same cycle. The result of these conflicts can potentially lead to processor pipeline
stalls. Using dclays to improve the schedule performance of a pipeline was suggested by
[PaDa76]. A delay is defined as a pipeline segment that performs no data transformation but
holds a task state for one pipeline cycle. A set of n consecutive delay segments take n cyclcs to

traverse, assuming single cycle delay segments.

A more flexible structure is a queue, which is similar to a set of consecutive delay segments
except that the number of cycles taken for a new request to arrive at the head of the queue is
equal to one plus the number of requests already in the queue when the new request arrived,
assuming that one request is removed every cycle. For instance, a n entry queue with m stored
requests, where m <n, takes at least m+1 cycles to traverse. Figure 1.2 shows a buffer queue with
3-stages, B, B and B, connecting two latches Ly and L. Assume that a stream of requests
arrives as input to Lo on consecutive cycles, where the buffer queue is initially empty. A request

is moved from L into By after one clock period. In the next cycle, if L, can accept a request

data L BdB,B L, data
n out

Figure 1.2: Buffer queue




then the contents in By is moved into L,. Otherwise, the request is moved into B,. In either
case, the next input request is moved from L into Bg. If L; becomes available on the next
cycle, the contents of B is moved to L, By is moved to B, and Lg to B. The queue buffers
the issuing of data by L¢ from the performance of L for up to three requests. However, if L, is

always able to accept data, there is only a one cycle latency for moving data from Bg to L.

The use of queues or buffers to smooth out operand access delays has been implemented in
a number of machines including IBM 360/91 [AnST671, ZS-1 [Smit87] and ICL2900 [Buck78]
and is a basic mechanism in the DEA [Smit84] and SMA [PIDa83] architectures. We examine

the use of queues to minimize the effect of multi-access conflicts at the cache.

In a cache that serves multiple reference streams, cache misses can have a severe perform-
ance effect on subsequent references. Consider the organization in Figure 1.3a where four pipe-
line processors (pg, p1 p2 and p3) share a cache. Each processor pipeline has 3 segments, s1, s2
and s3, with each segment taking one cycle to complete its function. References issued by each
processor pass through that processor’s segments to address the cache. A reference takes one
cycle to complete in the cache if it is a cache hit. For a miss, two additional cycles are necessary
to get the data from the memory. (A two cycle memory access time is selected to keep the exam-
ple simple.) Consider the total time spent processing and serving a reference, including the
instruction passing through the processor pipeline prior to the reference arriving at the cache.
Assume that a reference remains in S3 until the arbitration mechanism grants it exclusive access
to the (single bank) cache. A hit reference will thus take four cycles (plus conflict cycles if any)

to complete, and a miss will take six plus conflict cycles.

Figure 1.3b and 1.4b show timing diagrams for the progress of four references Hy, My,

M, H3 issued by processors pg, P1, p2 and p3 respectively where Hg and H3 will hit in the
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Py sl s2 s3
P sl s2 s3
! T cache .. to memory
P, sl s2 s3
Ps sl s2 s3

a) Four pipeline processors with a shared cache

Hy sl s2 s3 ca

M, sl s2 s3 s3 ca ca ca

My sl s2 s3 s3 s3 s3 s3 ca ca ca

H, s1 s2 s3 s3 s3 s3 s3 s3 s3 s3 ca

b) Reference timing diagram

Figure 1.3: Shared cache without buffer queue

cache while M, and M, will miss. Assume pq has the highest priority and p3 the lowest and the
system is initially idle. In Figure 1.3b, due to the lack of a buffer, the cache can only handle one
cache request, hit or miss, at a time. Reference H has the highest priority and is able to com-
plete in four cycles. The other references are stalled in s3 of their réspcctivc processors while

address the cache. The stall is shown as the additional s3 cycles. Reference M 1 gets the cache
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when Hy completes. As this reference is a miss it must spend one cycle in the cache to find out
that it was a miss and two additional cycles to get its data from the memory. Holding M in the
cache while it is waiting for memory data causes further stalling of references M, and H3 in s3
of processors p, and p3, respectively. When reference M, completes, M, addresses the cache
and as it is also a miss, it causes further stalling of reference H3. Reference H; gains the cache
after reference M,’s data has been fetched from memory. H3 completes after one cycle as it is a
cache hit. As the cache can only handle one request at a time, the cache access latency for a par-
ticular reference, whether it is issued by the same processor or by a different processor, is highly

dependent on the service of the immediately previous cache accesses.

In Figure 1.4a, a 2 entry buffer queue is located after the cache. When reference M; misses
it is moved out of the cache and forward into B of the queue while making a request to the
memory system. This releases the cache, in the next cycle, for M;. As M is also a miss, it is
moved into B, forcing M, to be moved forward into B ;. Queuing these miss requests enables
reference H 3 to address the cache in the next cycle. As H3 is a hit, the reference is completed in
the cache in one cycle. By pipelining the cache misses forward into the buffers, the resource
conflict between references is weakened. This increased independence potentially decreases the
average number of cycles to complete the references. A miss address is held in a buffer until the
memory access has been completed and the requested is block returned to the cache. The block
is written into the cache using the buffered address and, for a read request, the desired data is
sent to the processor. For simplicity we have assumed that updating the cache and sending the

data to the processor does not cause any busy conflicts with incoming requests.

By organizing the buffers in the form of a queue, the latency for completing references is

reduced. In the simulation model we use buffer queues both bcfor.c and after the cache to reduce
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a) Cache with 2-entry buffer queue
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M| s1 s2 s3 s3 ca By | B,

My | sl $2 s3 s3 s3 ca By | Bo | By

Hi | s1 s2 s3 s3 s3 s3 ca

b) Reference timing diagram

Figure 1.4: Shared cache with buffer queue

the effect of crossbar switch conflicts, as well as cache miss effects.

The handling of concurrent cache misses in the system presents some control issues. For
example, a second miss to the same cache block may occur while the first miss is still being

served by the memory. A second memory request must not be issued when this occurs. Further-
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more, when miss references can potentially be served out of order, a mechanism is needed to
resolve access hazards with minimal cost in performance. These control issues are discussed in

Chapter 2.

1.5. Simulation model

To evaluate the effectiveness of increasing queue depths and the number of cache banks on
the performance of the shared cache system, a simulation model, based on the Alliant FX/8, was
written. The model is driven by a set of address traces generated by a detailed simulatién of the
Alliant FX/8. The simulation environment is described in Chapter 3, and the results of these

simulations are presented in Chapter 4.
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CHAPTER 2

IMPROVING THE PERFORMANCE OF A SHARED CACHE

In this Chapter we look at the multi-processor organization shown in Figure 1.1 in more
detail. Specifically we develop the ideas, introduced in the previous Chapter, for the reduction

and minimization of conflicts in the shared cache organization.

The first part of this Chapter presents the organization under study. The following sections
discuss some design choices that can be made to improve performance. We look beyond the
questions of cache mapping and replacement schemes and block sizes. Instead, we concentrate
on the organization of reference buffers, overlapping of references, multiple cache banks and

interleaving of addresses.

2.1. System architecture

The system of interest is shown in Figure 2.1, where a set of pipelined processors is con-
nected to a set of cache banks through a crossbar switch and the cache banks are connected to

the memory modules through a shared bus.

There are a number of ways to connect the processors to the cache banks and the cache
banks to the memory modules. They range from the shared bus to the crossbar switch. In this
study we restrict our attention to the common case of the crossbar switch for the processor to
cache connection and the shared bus for the cache to memory connection. The processor to
cache connection is expected to have a high bandwidth requirement. For a medium size muld-

processor, a crossbar is an appropriate choice. Conversely the cache to memory connection is
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Figure 2.1: Multi-processor with shared cache

expected to have a relatively low bandwidth. Here, a shared bus is an appropriate choice.

When multiple processors need to access a shared cache, a monolithic organization of the

cache is unlikely to satisfy the bandwidth requirements. A better approach is to organize the

cache as a set of independent banks, each able to serve its own stream of references. Hence,

while the cache is logically a single cache, it physically consists of multiple banks. Each bank

has its own tag and data stores so that all banks can be accessed concurrently, and each bank has

its own interface to the shared bus. The location of memory blocks in the cache depends on the

mapping and address interleaving scheme used. As a function of the interleaving scheme chosen,
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individual blocks can be contained within a single cache bank or spread across two or more

banks. These issues are discussed in Section 2.4.

All of the memory modules operate independently from one another and each consists of a
data store and the hardware necessary for address decoding, data access, bus arbitration and driv-

ing the bus for returning data to the cache banks.

In this thesis we are not primarily concerned with how data is returned from the cache
banks to the processors. We assume that data can be sent to the processors while the cache banks
are being updated following a cache miss and that some connection is available to broadcast data

back to muldple processors.

2.2. System performance degradations

Each of the pipeline processors consists of 2 stages or segments: a decode segment, which
decodes the instructions, and an issue segment, which forms the address and issues references to
the cache. As we are primarily concerned with data access we do not consider the other func-
tional units of the processors. Each of the two segments takes one time unit (or pipeline cycle)

to complete its function and can only operate on or hold one reference in any particular cycle.

The processors are connectcd to a crossbar switch which routes cache references to the
requested cache banks. The switch can route a reference to any cache bank in one cycle. Each
cache bank is also considered to consist of two segments. The cache store segment contains the
cache and tag store and appropriate hardware to determine if a reference is a cache hit or miss.
The memory interface segment takes a cache miss and constructs the memory request, arbitrates
for the bus, sends the memory request to the appropriate memory module and receives the

returned memory data. For our discussions we assume that the cache store and memory interface
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segments also take one cycle each to complete their functions and can only operate on or hold

one cache reference in any particular cycle.

Consider two processors, Po and P, each issuing a reference to the same cache bank Cy
in the same cycle. If both hit in the cache then the timing is as shown in Figure 2.2a. Processor
P has the highest priority for the switch and therefore accesses cache bank C first. Processor

P must hold its reference in the issue segment, for an additional cycle, due to the multi-access

Py D| I I S| Co

a) Cache hit references; P and P reference the same cache bank C

Py D] 1 S| Co|MIp} B |Mog|Mog|My|My| B| B

Py D| I S| CyyMW/WMI,| B My|M{|M{|M{M;| B B

b) Cache miss references; P and P reference distinct cache banks C g and C; respectively

D: decode segment MI,: memory interface

I issue segment of cache bank n

S: crossbar switch ' B: shared bus

Cp: cache bank n M,: memory module n
Figure 2.2: Multi-access conflict
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conflict, until the cache bank becomes available to service its request at time 4. If there are p
processors and ¢ cache banks, then the best performance per processor occurs when p<c and in
each cycle the processors all reference distinct cache banks and all references are cache hits. In
this situation all processors can proceed in parallel at full speed, with no conflicts. If k& proces-
sors (where k£ <p) reference the same cache bank in a given cycle and all references are cache
hits, then the lowest priority processor must wait for k—~1 cycles to reference the cache. Hence,
the crossbar switch and the shared cache can be a major source of performance degradation, par-

ticularly if each processor has the capability to issue a reference in every cycle.

Consider again processors Py and P, where each processor issues a reference to a distinct
cache bank in the same cycle. Figure 2.2b shows the timing for two cache misses where we
assume that it takes 1 cycle to issue a request to memory on the shared bus, that the memory
takes 4 cycles to access the data, that it takes 2 cycles to return the data (on the same bus) to the
cache bank, that the interleaving scheme is such that no block is split across multiple cache
banks or multiple memory modules and that there are no buffer queues. The case shown further
assumes that the blocks for these two miss references are contained in distinct memory modules.
As Py and P, reference distinct cache banks, they can access their respective caches con-
currently. However, as both references are cache misses they must both issue requests to
memory. Ml is assumed to have the the highest priority for the shared bus and sends Py’s
request to memory first; P ’s memory request must be held in M/ until the bus becomes avail-
able. Similarly, as shown in Figure 2.2b, the return data for the second request must be held in
memory bank M for one extra cycle until the bus becomes available to it. Hence, the shared

bus is sometimes a source of performance degradation when accessing memory as the result of

cache misses.
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P references cache bank Cg, P and P, reference cache bank C ¢

Figure 2.3: Cache bank busy conflict due to cache miss

As stated in Chapter 1, in a shared cache system the performance of the memory interface
can also degrade the whole system performance by increasing cache bank busy conflicts. Figure
2.3 shows processor P and P as in Figure 2.2b, except that processor P also starts a second
reference at time 1 to the same cache bank, C,, as its previous reference, and it is also a cache
miss. This block requested by the second reference made by P; is assumed to be located in
memory module M,. As P’s first reference was stalled in the memory interface segment for
one cycle, P’s second miss must stall in the cache store segment for one cycle. A third proces-
sor, P,, now starts a reference at time 2 to the sémc cache bank (C;) as P’s two references but
this is a cache hit reference. As the second reference of P; was stalled in C, for one cycle, there

is a bank busy conflict and the P, reference must stall in its issue segment as the cache is una-

vailable until time 6.
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In the above examples we have looked at performance degradation in the shared cache sys-
tem due to multi-access and bank busy conflicts. Each of these conflicts can degrade the per-
formance of the system by causing references to stall in any or all of the segments of the proces-
sor pipeline, the cache bank, or its memory interface, and the memory module. Stalls in the
switch and the bus are not permitted and it is assumed that the control logic has access to
sufficient global status information to prevent such stalls and instead forces the stall to occur at
the earlier segment when necessary. In the following sections we discuss the use of buffer

queues to reduce the effect of these sources of performance degradation.

2.3. Buffering references to the cache

In the previous discussion it was shown that multiple references to the same cache bank can
degrade performance by stalling processors keeping them from issuing references at their max-
imum rate. This degradation can be quite severe relative to the no miss, no conflict peak per-

formance.

To minimize the effect of multi-access conflicts on processor performance a set of buffer
queues can be located between the processors and the switch or between the switch and the
cache banks. Figure 2.4 shows the two organizations of the buffer queues. To distinguish
between these two sets of queues, the former will be referred to as processor queues and the
latter as cache queues. Figure 2.4a shows the location of the processor queues. Each processor
queue is associated with a particular processor, which places its references into the queue and
stalls from issuing further references when this queue becomes full. The reference at the head of
each processor queue, in a particular cycle, is the reference to be routed through the switch to its
requested cache bank. A reference cannot be taken from the bbdy of the queue even if its

requested cache bank is available when the reference at the head of the queue is blocked. Hence,
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Figure 2.4: Buffer queue organizations

an issued reference can be blocked in the body of the queue by other references issued earlier by
the same processor or at the head of the queue by references at the heads of other queues with a

higher priority that are destined for the same cache bank.

Figure 2.4b shows an alternative scheme which associates the queues with the cache banks.
In this organization each cache bank has a cache queue to hold incoming cache requests. The
reference at the head of the cache queue is selected to address the cache bank, when it becomes
available. The switch can route references through to a particular cache bank unti_l its cache
queue becomes full. Cache queues intuitively seem preferable to processor queues since the
references are separately queuved for each requested cache bank and thus the blocking problem
with processor queues is avoided, i.e. with cache queues a reference within the queue can only

be blocked by earlier references to the same cache bank.
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In the previous examples of access conflicts (Figure 2.2 and Figure 2.3) we have assumed
that each instruction processed in the processor pipeline makes a memory reference. The proces-
sor can also process instructions that do not make a memory reference such as an arithmetic
instruction. Since the focus of this thesis is memory accessing, a non-memory instruction is
shown as occupying only the D and I segments during its processing. For simplicity the comple-
tion of non-memory instructions beyond the D and I segments is assumed to have no effect on
the processor pipeline under study and therefore the execution unit pipeline segments are not
shown in the examples. In the next example we use a non-memory instruction to demonstrate
the benefits of a processor queue. Figure 2.5 shows how a processor queue can reduce processor
stalls when a multi-access conflict occurs. In Figure 2.5a the processors P and P ; make refer-
ences to the same cache bank and all references are hits. Processor P processes one memory
referencing instruction and P, processes 3 memory references and 1 non-memory instruction.
At time 0 both processors start their first instructions. As P has the highest priority it accesses
the cache first. Processor P; must stall its reference in its I segment for one cycle until the
switch path to Cy becomes available. Processor P issues its 2nd memory reference at time 1
and this is stalled in the D segment for a cycle due to the one cycle stall of the 1st memory refer-
ence in I. Processor P, now attempts to ?ssue a non-memory instruction and a 3rd memory
reference. However, due to the multi-access conflict at time 2 between Py and P, the non-
memory instruction and the 3rd reference cannot enter the processor pipeline until time 3 and 4,

respectively and the 3rd reference cannot access the cache until time 7.

Figure 2.5b shows the effect of a single entry processor queue. With the addition of a pro-
cessor queue, Py’s 1st memory reference is loaded into the processor queue when the multi-
access conflict occurs. This allows the 2nd reference, the non-mémory instruction and the 3rd

reference to enter the processor pipeline in consecutive cycles. The 3rd reference then accesses
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Figure 2.5: Effect of processor queues
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the cache at time 6 one clock earlier than when no processor queue is present.

Figure 2.6 shows how cache queues located between the switch and the cache bank ‘can

reduce processor stalls during a cache bank busy conflict. In Figqrc 2.6a processor Py makes a

cache miss reference to cache bank Cy, and the first reference from P, makes a cache hit refer-
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Figure 2.6: Effect of cache queues

ence to the same cache bank. If there are are no processor queues before the switch and the
cache can only handle a single miss reference at a time then P, ’s first reference is blocked from
Co by a cache bank busy conflict until time 12 when the conflicting cache bank is completely
updated. Note that during the time units 10 and 11, when the cache bank is being updated, the
cache bank is unavailable to service any requests. If P, issues a second reference to another
cache bank (C) then this reference is blocked from C, by the first reference until time 13. The

bank busy conflict at C stalls P from issuing any further references until the first reference has
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passed through the switch. Figure 2.6b shows how an organization with cache queues allows the
first reference of P to be moved from the issue stage of P, into the cache queue of C allowing
P ’s second reference to access C, immediately after the blocking reference has been moved

into the cache queue.

In the previous examples we have discussed organizations with either a processor queue or
a cache queue. An organization with both processor and cache queues is expected to be advanta-
geous in some cases. The simulations we described in Chapter 3 use both processor and cache

queues.

2.4. Cache bank organization

A cache bank consists of two segments: the cache store segment and the memory interface
segment. The cache store itself consists of two sections, the data section and the tag section.
Data loaded from the memory is held in the data section and information to identify its
corresponding address is held in the tag section. The cache mapping scheme determines how the
memory address is mapped into the cache address space, which parts of the address are held in
the tag store, and how cache hits are determined. Various mapping schemes have been investi-
gated as the subject of a number of studies [Smit82]. Since we are interested in the effect of
queue buffering on processor performance, the selection of the cache mapping scheme is not of
prime importance. We select the direct mapping scheme in which each memory address can
only be mapped into one particular cache location. The direct mapping scheme is the simplest of
the cache mapping schemes and generally provides the lowest hit ratios for a particular size of

cache and hence the best stress test for the buffering system.

The memory interface segment of the cache is used by a reference only when it misses in

the cache store. The segment constructs the memory request, arbitrates for the shared bus, sends
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the memory request to the memory module and receives the data that is returned from the
memory. Previous cache studies have tended to ignore the role of this part of the cache. As pre-
viously discussed, for an organization such as the shared cache, how a reference miss is handled
has a significant direct effect on the performance of the cache as a whole. In the following sec-

tion we discuss overlapping and queuing of cache misses.

2.4.1. Buffering cache misses

By organizing a cache bank’s store and memory interface functions as two segments in a
pipeline, two cache misses can be held in the cache bank before it becomes busy to further
requests. However, in a shared cache, as the cache banks are shared by all the processors, as few
as 3 miss references from different processors to the same cache bank will lead to a cache bank
busy conflict even if each processor were limited to one pending reference. Stalling references
in the cache bank is caused by insufficient buffering to hold cache misses while the memory
requests are pending. Hence, as with reference buffering, we use a buffer queue, referred to as a
miss queue, between the memory interface segment and the shared bus to hold miss requests
while they are waiting for bus and memory service. The role of the miss queue is to decouple the
performance of the shared bus from the cache banks and subsequently reduce the probability of

cache bank busy conflicts.

The miss queues can be organized as a common queue used by all cache banks or as
separate queues for each bank, as shown in Figure 2.7. However, a single miss queue for all
banks is inappropriate as it creates conflicts in loading the queue when misses occur simultane-
ously in several cache banks. Hence, in all subsequent discussions and in the simulations, we

assume there is one miss queue per cache bank.
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Figure 2.7: Organization of Miss queues

Figure 2.8 shows the effect of a 2-entry miss queue for the same scenario as shown in Fig-
ure 2.3. Note that with a cache miss queue the function performed in the MI, segment is carried
out concurrently with the initial loading of the miss request into the cache miss queue. With
available buffering in the miss queue the first and second cache miss references of P; are not
stalled either in the cache store or the memory interface segment. This subsequently frees the
cache store segment for the reference from P, which completes its cache hit access in the
minimum time. The miss queues have two effects on the system. First, they increase the
number of misses held in a cache bank and consequently increase the possible number of
memory requests simultaneously pending service by the memory modules. Second, they reduce
the probability of cache bank conflicts by allowing cache misses to move out of the cache store

segment, making it available to other references.
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Figure 2.8: Effect of 2-entry miss queue

The operation of the miss queues differ from that of the processor and cache queues. Both
the processor and cache queues are simple first-in-first-out buffering structures. The miss queues
differ in two respects. First, the miss queues must continue to hold a cache miss reference after
its memory request has been sent to memory. Retaining this request information is necessary in
order to identify the return data from memory, to write the data to the proper cache bank loca-
tion, and to perform address matching. Only after the data has been written into the cache bank
can the original miss reference be removed from the queue. Secondly, some mechanism is
necessary to resolve read-write hazards. How address matching and read-write hazard resolution

is achieved is discussed in the next 3 sub-sections.

Queues could also be located at the input ports of the memory modules. Such memory
qQueues allow a busy memory module to continue to accept requests until its queue becomes full.
Two performance benefits result from using memory queues. First, by using idle bus cycles to

send miss requests to busy memory modules, contention on the shared bus is reduced. Second,
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by allowing miss requests to busy modules to be issued across the bus, later queued miss
requests to free modules can be issued and served earlier. The evaluation of memory queues is,

however, beyond the scope of this thesis.

Since miss blocks returning from the memory are given the highest priority for accessing
the bus and for updating the cache, memory output queues and queues for blocks to be loaded

into the cache are not necessary.

2.4.2. Organization of the miss queues

In the following discussion we restrict ourselves to read miss references. In Section 2.3.3
we discuss how writes are handled in this system. Furthermore, throughout Section 2.3 we
assume that a cache block is contained within a single cache bank. The complications that arise

when a block is spread across two or more cache banks are discussed in section 2.4.

Buffering miss references allows multiple memory requests to be overlapped, i.e. requests
can be made to the memory prior to the completion of previous requests. While this overlap can
potentially achieve a higher throughput, complications arise which can reduce its effectiveness.
Consider read references to words i and j, where both words fall within the same cache block.
Suppose the word i reference misses in the.cache and generates a fetch to the memory for the
block. If some processor issues & read to word j while the word i request is still pending, then
word j is also a miss. Since we have a pipeline and buffering, this second miss, unless detected
and blocked, will be moved to the buffers and subsequently issue another memory read for the

same block. This situation will occur frequently in our system because:

(1) processor references are to words while memory requests are for blocks, which contain

several consecutive words,
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(2) vector references with a stride less than the block size are not uncommon, and

(3) multple streams of scalar and vector references are issued concurrently among the proces-

SOTS.

When multiple misses are simultaneously pending for the same block, it is undesirable to
issue multiple memory requests for three reasons. First, these additional memory requests use
up bus and memory bandwidth. Second, these memory references are redundant since the addi-
tional misses can all be satisfied by the first pending request, effectively reducing their memory
access latencies. Third, some mechanism is necessary to maintain coherence of the requested

blocks.

To prevent multiple fetches of the same block, any addresses that miss in the cache must be
compared with any pending read miss addresses alrcady in the miss queues before they are
loaded into the miss queues. An address match means that the new read miss address can be
satisfied when the pending block is returned. Hardware is required not only to perform this
matching, but also to record the match status so that returning blocks will satisfy the pending

requests of all the processors waiting on this block.

Satisfying the matched requests can be handled in one of two ways. In the first method, Fig-
ure 2.9, all matched addresses are placed into a separate "matched" queue. Only those miss
addresses that actually generate a memory request to main memory are held in the miss queue.
When a pending block is returned and written to the cache, all references held in the matched
queue, address the cache again. Addresses that hit now return data to the processor and are
removed from the matched queue. Those that miss again, are re-circulated back to the matched
queue. This scheme is attractive as it is relatively inexpensive and simple to control. However,

feeding back the matched addresses presents several performance issues. First, the matched
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Figure 2.9: Separate matched reference queue

addresses must be serially fed-back to access the cache and all matched addresses must access
the cache whenever a new block of data is written into the cache. Furthermore, to address the
cache these matched addresses must use some of the cache access bandwidth, which can poten-
tially lead to service conflicts with incoming requests. To lower the cache access contention
effect of the feedback of the matched addresses, they could be assigned a lower priority than
new requests from the switch. This priority, however, would delay the returning of missed data
to due those requesting processors whose addresses are held in the matched queue and these pro-

cessors might be stalled, resulting in another source of performance degradation.

An alternative scheme maintains all state information concerning the matched status of the
miss references within the miss queues themselves. When a pending block returns from
memory, all addresses that matched that particular block are removed from the queue, and the

corresponding processors are sent their data which is extracted directly from the block returned
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from memory. This scheme does not use any additional cache access bandwidth for serving
matched requests, but the hardware required to maintain the match status is quite complicated
and expensive. However, since it is expected to have better performance than the first scheme,

this second scheme is used in our system.

To manage the matching of requests we use a mechanism based on [Toma76]. Figure 2.10
shows the general organization used in each cache bank. The miss queue consists of an associa-
tive store to hold the pending miss addresses, any corresponding data and a tag number. A
separate associative store is used to hold a corresponding control mask. The control can be con-
sidered as a field in an entry of the miss queue, however it is accessed using a different associa-
tve address from the other fields in the miss queue. Hence, it is held in a separate associative
store. The connection from the cache bank to the processors is assumed to have a broadcast

capability. The control mask is used to control the broadcasting of data back to the processors.

Each memory request is assigned a tag number. This tag number is necessary to identify
each pending request uniquely in all of the miss queues in the system. If an incoming miss refer-
ence matches a pending reference’s address i.e. they refer to words in the same cache block, it is
assigned the pending reference’s tag number. Hence, a set of requests to the same block will all
have the same tag as the oldest pending request to the block in the queue. The effect of this tag-
ging scheme is that all pending requests to the same block are combined into one memory
request. The incoming miss reference’s control information, in particular the processor identifier
and word index is combined with previously matched reads to form a control mask. Hence, each
memory read request to be issued has a corresponding control mask, which records which pro-
cessors are waiting for the block to be returned from memory, and which word of the memory

each of these processors requested. Miss references which have combined with an issued refer-
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ence do not have an associated control mask since they do not issue a request to memory.

A new tag is generated and assigned if there is no match. When a pending block returns, it

carries the tag associated with the original request. This tag is associatively compared with all
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queue entry tags. Miss queue entries with a matching tag are cleared as their requests have been
satisfied. The control mask associated with a memory request, is accessed with the tag number of
the memory request. The control mask is then used to route the memory data to the appropriate

processors and to write the data into the cache.

2.4.3. Write policy

Writes to a cache require two actions. First, the address is checked against the tag store to
determine hit or miss; and second, if the reference is a hit, the cache is updated. In our system,
we assume that a write reference uses a delayed write update algorithm [FuKHS87] so that a
cache data access conflict with an immediately following read is avoided. If a read does not
reference the same location as the pending write the read can proceed ahead of the write update.
However, if the read references the same location as a pending write, the pending write data can
satisfy the read request. Only one pending write per cache bank is buffered since the write can
always update the cache when the next write arrives in the cache. Thus, cache updates do not
disrupt the pipelining of references.

A write reference that misses may or may not cause an update to main memory depending
on the memory update algorithm used. There are a number of algorithms for updating cache and
memory [HwBr84]. In this study we use a modified write-back algorithm. A write-back algo-
rithm updates the cache but not the memory on a write hit. Hence, copies of a block in the cache
and the memory are allowed to be inconsistent after a write. When a write miss occurs, four
actons have to be taken. The memory block currently occupying the cache location to be’ re-
allocated is checked to see if it has been updated since it was initially loaded into the cache from
memory. If it is dirty, the block must be removed from the cache for write-back before the cache

location can be re-allocated to another memory block. In our model, the write-back occurs
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immediately, but in other write-back implementations it may be buffered to be completed later.
A memory request is made to load the cache with the memory block requested by the original
write cache miss. The new memory block is then loaded into the cache and the block is updated
with the write data. Thus, in a standard write-back algorithm the write miss address must be held
in the cache segment until the block has been loaded from memory. This can potentially result in
cache busy conflicts. The advantage of the write-back scheme is that it reduces the memory
bandwidth requirements as no writes between replacements need access the memory. With mul-
tiple memory requesters that share a cache, as in our system, a write-back scheme is an appropri-

ate algorithm.

We make one modification to the above standard write-back scheme for handling write
misses. After the dirty block has been read from the cache for the write-back, the cache moves
the write miss address into the miss queue which eventually issues a modified write request to
the memory. This modified write causes the memory to read and update the requested block
before returning the modified block back to the cache. Thus, the modified write is similar to a
read miss except when the block is returned from the memory it is stored in the cache, but no
data is returned to the processors. By allowing the memory to do the block update, the original
cache miss address and its associated data does not need to be held in the cache segment and
they can be moved into the miss queue. There is an extra cost in sending the write data to the
memory and having the memory perform read-modify writes. However, this modification
simplifies the handling of read-write hazards and reference combining and does not stali the

cache pipeline, as discussed below.

The write-back operation itself requires two steps. First, the dirty block is read from the

cache into the memory interface and second the bus is requested'to send the block back to the
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memory. For simplicity, we assume that the memory interface has sufficient buffering to hold
the address and data and that the write-back operation has a higher priority than any requests
waiting in the miss queue. Furthermore, during the cycles that the cache block is being loaded

into the memory interface the cache is unavailable to incoming references.

2.4.4. Read-write hazards and request combining

When pipelining is employed to improve throughput in a way that allows requests to be
served out of order, care must be taken to resolve read-write hazards [Kogg81, RaLi77]. There
are three types of hazards: read after write (RAW), write after read (WAR) and write after write

(WAW). The goal is to resolve these hazards at a minimum cost to performance.

WAW hazards are easily handled given the first-in first-out queuing nature of the miss
queues. Consecutive writes to the same block can be combined by merging their write data to
give the most up to date write data. Unlike combining reads with reads or reads with an original
write miss, a new write cache miss cannot be combined with a pending read or a write miss to

the same block.

In a RAW hazard, the read reference following the write must get the updated data. In the
standard write-back algorithm, which does not update the memory on a write miss, the read after
the write cannot follow the write into the miss queue. The read must stall in the cache segment,
so that it can read the cache after the cache update has occurred. However, yvith the modified
write-back algorithm used here, the write miss returns an already modified block to the cache.
Thus, the read can be placed into the miss queue where it will be matched with the pending write

miss. When the modified block is returned, this read miss is satisfied by the updated information

in the returned block.! By allowing a write miss to return updated data to the cache, the proposed
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modified write-back algorithm is better suited for overlapped miss handling.

The correct resolution of a WAR hazard is that the read must get the data before the update
by the write. Therefore, in this instance the two references should not be combined even when
they refer to the same block since the write following the read generates a new value for the
some memory location in the block, possibly the same location. This restriction on combining
results in two memory requests being sent for the same block. The memory data fetched by the
read miss is overwritten in the cache by the memory data for the write miss. An alternative
would be to issue only one request to the memory. This would require that the write miss either
feeds-back to the cache after the data has been returned or is held in the cache store segment
until the data has been returned, so that the cache can be updated by the write i.e. turn a write
miss into a write hit. Holding the write miss in the cache store segment would increase the
chances of a cache bank busy conflict, thereby reducing the arguments for a miss queue. Feeding
back the write miss after the read miss has updated the cache is a possible alternative but would
require more complex control. Hence, for simplicity we issue two memory requests in our simu-

lation model.

Table 2.1 summarizes which miss references can be combined in the miss queue. All refer-
ences are assumed to be for the same block. The first column, miss type, is the type of cache
miss entering the miss queue. The next two columns show the type and status of requests in the
queue. The last column indicates whether the two references can be combined. An issued
request has already been sent to memory and a unissued request is waiting to be sent to memory
or has been combined. A new read can be combined with any read request, issued or unissued.

Since a write miss returns modified data in our modified write-back algorithm, a new read can

'I!mlybepouibleinsaneumwumfy' a read miss earlier ie. di from write miss dai . . .
complex 1o be considered here. rectly write miss data held in the miss queue, but this is too
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also match with issued and unissued writes. Note that with a traditional write-back scheme the
read miss would be stalled in the cache queue or earlier until the write miss memory block was
loaded and modified in the cache. A new write miss cannot match with reads or issued write
requests. A write miss can only match with an unissued write miss if the writes are consecutive
references. For example, consider an ordered set of 5 miss references, {read, write, write, read,
write }, where the leftmost read is the first issued reference, the following write is the next issued
reference etc. and all references are to the same block. Assume that the first two references are
in the miss queue where the read is issued to the memory and the write is unissued. These two
references do not get matched in our scheme. A write cache miss enters the queue and this gets
combined with the unissued write miss. The next reference to enter the queue is a read miss and
this can be combined with the two combined write misses. Finally a write miss enters, but this
does not get combined so that the integrity of the previous combined read is preserved. Hence

for this set of 5 references, only 3 requests get sent to memory.

miss most recently queued _
type miss to the same block || combine?
type issued?

READ YorN

Y

READ | wRITE | YorN Y
WRITE | READ | YorN N
|  WRITE N Y
WRITE Y N

Table 2.1: Combining miss requests
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In the above description we have assumed that references are only matched with requests
issued by the same cache bank. This matching task is further complicated when memory
addresses within the same block are interleaved amongst the cache banks. Interleaving is dis-

cussed in the following sub-sections.

2.5. Multiple cache banks

When multiple processors attempt to access a common memory resource there is a poten-
tial for conflicts. If the memory system is organized as a monolithic structure, conflicts among
accesses may have a severe effect on a processor’s performance. For example, consider p pro-
cessors connected to a shared cache through a px 1 cross-bar switch. Assume all references are
hits and that it takes one cycle each to traverse the switch and cache. If all processors make a

reference in the same cycle, then the average time a reference waits for the cache is:

IPZ-'.I'
-~Yi
Pigy

Such a high degree of conflict removes any advantage of using a shared cache organization.

A well known technique used to improve the performance of a common memory system is
to organize it as a set of independently accessible modules. The addresses are then distributed
amongst the modules in some ordered manner. This distribution of addresses, i.e. address inter-
leaving, can also be applied to a shared cache design if it is organized as multiple banks. While it
is one logical cache, it physically consists of multiple banks, each able to support an independent
reference stream. Each bank is essentially a separate cache in itself, with its own data and tag
store and memory interface. A word reference is routed to the correct cache bank by the cross-

bar switch. The potential for concurrent access to several cache banks reduces the degree of
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conflicts in the switch and hence the probability of processor pipeline stalls.

2.5.1. Address Interleaving

There are two basic methods for distributing or interleaving the addresses among the
memory modules: word level and module level. Consider a memory with a size of N (=2") words

distributed among M memory module and an address of n bits, i.e. a,_; ...a¢.

In word level interleaving, a word with an address & is located in memory module k modulo
M. The lower m (=logy M) bits are used to select the memory module while the upper n—m bits
are used to select the word within the memory module. For P <M, there are no memory access
conflicts if each processor addresses a distinct memory module. Processors that simultaneously
address the same module are in conflict. At most one request of a conflicting set can be
accepted. For P >M, at least one processor must be in conflict with some other processor when

at least M +1 processors issue a request within a memory cycle.

In module level interleaving, the upper m address bits are used to select the module. Each
module consists of 2(*~™) consecutive words. As above, no conflicts occur when there are P <M

requests in a particular cycle and each request addresses a distinct module.

The interleaving technique can also be applied to multiple cache banks. For cache inter-
leaving we consider three schemes: word, block and split level interleaving. There are a number
of other schemes to map addresses to memory modules, for example address skewing or ran-
domizing. However, these generally require more complexity which can lengthen the cache
access cycle. These schemes are not considered here. The word, block and split level interleav-
ing schemes are depicted in Figure 2.11, for N=16, M =4, address bits are aya,aaqy and tt;ere
are 4 words per block. The first scheme, Figure 2.11a, is the word level interleaving scheme

described above, where the m low order address bits, a1ag, are used to select the cache bank. In
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Figure 2.11: Cache and memory interleaving schemes

this scheme each word of the block resides in a separate cache bank for a block size less than or
equal to M. The second scheme, Figure 2.11b, takes into account that the unit of mapping in the
cache is the block. Each block is located entirely within one cache bank with successive blocks
being located in successive cache banks. The address bits, a3a,, are used to select the cache

bank. These are generally found by skipping over the low order bits used to select the word
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within the block and using the next lowest order m oits to select the bank. The third scheme,
Figure 2.11c, is a compromise between the two previous schemes. Here a block is word level
interleaved over K banks, where K is a power of 2 and K <M. For example if K=2, the words of
a block are always split over two banks. Block interleaving is K=1. Word interleaving is K=M
if block size 2M. In Figure 2.11¢, K=2, but an irregular interleaving is used where the odd and
even words of the blocks are equally represented in each bank. The cache bank is selected by
a,(a;€ag), while the word within the cache bank is selected by a3a. This form of interleaving

is used by the 4 module shared cache of the Alliant FX/8.

2.5.2. The effect of interleaving on the cache banks

Interleaving addresses among the cache banks has three effects of concern here. It dictates
first, which address patterns will cause conflicts in the switch, second, which.banks are written

when data is returned from memory and third, the complexity of the miss queue combining.

The distribution of the words among thc; cache banks has an effect on cache access latency.
For particular access patterns, conflict free access is possible. For example, consider the loop in
Figure 2.12a which sums the elements of arrays B and C into array A. Assume that there are
four cache banks with a block size b=4 words and that each cache bank is one word wide. Let
each array be block aligned, starting in cache bank 0 and each single element of an array be of a
single word size. Furthermore, assume that 4 processors are available for executing the loop in

parallel and that the number of loop iterations, N, is a multiple of the block size b.

If the cache is word interleaved then conflict free access is possible if the iterations of the
loop are horizontally spread across the four processors, the cache accesses are all hits and the
processors remain in lock step. The index of the array elements accessed by the four processors

are as shown in the table of Figure 2.12a. For example, in iteration 0 processor 0 reads B[0] and
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for(i=0; i < N; i++)
Ali] = B{il + Cli);

Pprocessors
0 1 2 3
0 0 1 2 3
1 4 5 6 7
iterations 2 8 9 10 11
3 12 13 14 15
H ] 1 ] ] ]
] 1 ) [} [}
N/b | N4 N-3 N-2 N-1

a) horizontal spreading

for(k=0; K < N/b; k++)

for(i=k*b; i < (k+1)*b; i++)

Ali} = B[i] + Cli];

Processors
0 1 2 3
0 0 4 8 12
1 1 5 13
iterations 2 2 6 10 14
3 3 7 11 15
] ] ] ] ]
] ] ] ) ]
N/b | N-3b N-2b N-b N-1
b) blocking

Figure 2.12: Conflict free access to a shared cache
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C[0] and writes to A[0] while processor 1 reads B[1] and C[1] and writes to A[1].

If the cache banks are block interleaved, then horizontal spreading of the loop iterations
will result in conflicts in cache access that may degrade system performance. For example in
iteration 0, the four processors will all attempt to access cache bank 0. A possible schedule that
will result in conflict free access requires each processor to access different blocks in different
banks in each cache cycle. One possible approach is to re-write the loop as shown in Figure
2.12b, where the loop is broken into two nested loops and the outer loop is scheduled on dif-
ferent processors while the inner loop causes each processor to access only the words of a partic-
ular block. For example in the first 4 iterations for a block size b of 4 words, processor 0
accesses words 0, 1, 2 and 3 of each array, processor 1 accesses 4, 5, 6, 7, etc. The index of the
array elements accessed by each processor is shown in Figure 2.12b, where the iteration number
refers to the inner loop iterations. Processors never conflict with each other regardless of

whether there are cache misses or processors fail to maintain lock-step execution.

When a miss reference returns from the memory, how the cache is interleaved determines
which banks must be written with the data. Assuming only demand cache references, any
returned data should have the highest priority of access to the cache.? References attempting to
address the cache bank, must be stalled while the returned data is written into the cache bank. In
word interleaving, where all words of a block are in distinct banks,> each bank is busy for the
time taken to write the appropriate word. In block interleaving only one bank will be busy, but it

will be busy for the time taken to write all the words of the block.

In section 2.3.2, matching miss addresses with pending memory requests was considered to

be important for achieving coherence and a high performance cache design. The interleaving

2 Data returned for a prefetch miss reference should have a lower priority access to the cache than demand references.
* This is true if the number of words in the block is less than or equal 10 the number of cache banks, and each bank is one word wide.

|
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scheme used in the cache banks affects the complexity of this task. When block interleaving is
used, all words in a block reside in the same cache bank and miss addresses need only be
matched against the outstanding requests in the miss queue of the same cache bank. Matching is

relatively simple as is the information needed to track the combining status.

When a block is split across the cache banks, as in word or split level interleaving, a miss
request for a particular block may have been initiated from any of the banks that can hold any
words of the block. An incoming miss reference must also be matched against all of the miss
queues in all of the cache banks that could have originated a request for that block. To manage
the matching of the references correctly, the status of the queues can be maintained in one or
more global status buffers which can be accessed by incoming miss references as well as by
returned tags. A global status buffer is needed for each set of cache banks that a cache block
may be split across and its size is a function of the number of cache banks, the interleaving

scheme, and the block size. For b words in a block and ¢ cache banks (where b and ¢ are powers

of 2), word interleaving requires % global status buffers when b <c. Although only one is
required when b 2c, it is the same size as the sum of the % buffer sizes for the b<c case. For

split interleaving (assuming that the block is always split over 2 cache banks), % global status

buffers are required for ¢22. If a global status buffer can only be accessed by one request at a
time, then miss references issued simultaneously to different banks in the same set must be prior-
itized for the mz;tch look-up. An alternative organization is to have each bank maintain its own
separate global status for each block that completely or partially resides in that bank. In this way
multiple references could proceed in parallel. However, this scheme requires some complex

mechanism for the cache banks in a set to communicate with one another so as to maintain status
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coherence. In practice, the complexity of handling inter-bank matching may not allow deep
buffering to be employed, but small buffers may be sufficient, assuming that the hit ratios are
sufficiently high and miss bursts are sufficiently seldom. For our simulation purposes we have
chosen to use the logically simpler global status approach in order to get an initial estimate of

performance.

Since all references to the same block, regardless of which bank originated the references,

must be matched with the appropriate global status buffer, interleaving does not affect the hazard

resolution scheme.

2.6. Memory Interleaving

Interleaving of addresses in the memory system follows the schemes selected for the cache
banks. We consider a memory module to consist of a data store and all the hardware necessary
for address decoding, data access, bus arbitration, and driving the bus for data return. Assume
that each module is one word wide and can only service one request at a time.* During the ser-
vice time, the requested memory module is busy. How the addresses are distributed among the
memory modules determines the latency for accessing a block, and the time that particular

memory modules remain busy for each cache miss request.

Consider m memory modules in the system and b words in a block, where b<m. Addition-
ally assume that it takes just one cycle to broadcast a memory request to all the memory
modules, that a memory module takes / cycles to access a word, and that a word can be transmit-

ted over a word-wide bus in w cycles.

) ‘ngmlgnberofmquesuweepedbylmanoqmodlueanbehmcudbyloaﬁn;buﬁ'mwil.hinthemodule,howevenhisisnot
considered in this study.
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For word level interleaving of the memory modules, the memory request for a block is
received by all the memory modules in the same cycle. Each memory module that holds one or
more words of the requested block proceeds to access its data. After / cycles, the words are
sequentially transmitted to the cache banks through the bus at the rate of w cycles per word. The
bus is busy for 1 cycle during the transmission of the request, and it is idle for / cycles and then
busy again for bw cycles, during the sending of b words of data. Since b<m, all words of the
block are accessed in parallel from different modules, and & modules are busy for / cycles. For
two simultaneous requests to the same set of memory modules, one request must wait for at least

1+l +bw cycles to get to the memory.

In block level interleaving all words of a block are located in the same memory module. All
b words of the block are accessed sequentially before any of them are transmitted onto the bus.
The bus is busy for 1 cycle, then one memory module is busy for bl cycles, and finally the bus is
busy again for bw cycles. An alternative scheme that would have a lower latency for block
access would overlap the access of some of the words with the transmitting of accessed words of
the block. However, this scheme would require each memory module to be pipelined, increasing
its complexity. Furthermore, we are interested in allowing other requesters access to the bus. A
memory request results in only one memory module being busy, but it is busy for bl cycles.
However, during this memory module busy time, the bus and other modules are accessible by
other requesters. For two requests to the same set of modules, one request must wait for at least

1+b (I+w) cycles to get to the memory.

The tradeoff between the two schemes is in memory access latency during concurrent
access. With word level interleaving more memory modules are busy, but the access latency of

an isolated request is shorter. With block interleaving the latency is longer, but only one module
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is busy on an access, thereby allowing greater concurrency in serving miss requests. The split

level scheme is a compromise between word and block interleaving.

Figure 2.13 shows reservation tables for the word, block and split interleaving schemes for
4 memory requests with m=4, b=4, [=2 and w=1. The tables show the cycle status of the four
memory modules and the shared bus. Note that in all the schemes the return of accessed data

from the memory has the highest priority for use of the bus.

2.7. Bus protocol

Bus protocols can be separated into two types: locked and interleaved. This classification
refers to the state of the bus for transactions. A transaction is defined as a request and the satis-
taction of that request. For instance, a read transaction starts with a read request and ends with
receiving the data. In a locked bus, once the processor has gained the bus and sent the request,
the bus is locked to other requests until the completion of the transaction. A locked bus has the
lowest complexity and hardware costs, but due to locking, it tends to give the lowest perform-
ance. Such a system is unsuitable when there are r itple requesters and multiple memory

modules.

An interleaved bus protocol supports multiple active transactions. A request uses the bus
only to complete a specific activity. Thus there can be several. simultaneously pending memory
requests. For instance, in a read transaction the bus is used once to transfer the read command
and again later to transfer the data. With an interleaved bus, the time between the two activities
is available for activities of oti.er transactions, as in Figure 2.13(b) and (c). An interleaved bus
has no benefit in Figure 2.13(a) since all memory modules are busy while the bus is free. Since
sending the request and its response are separated and may be interleaved with other requests

and responses on a interleaved bus, it is necessary to provide a method to complete each
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Figure 2.13: Bus and memory access for word, block and split interleaving schemes

(m=4,b=4,[=2,w=1)

transaction correctly. A simple scheme is to tag all requests and responses with an identifier

which is then used to route the data correctly to the original requesters. An interleaved bus is

used in the system under study. We use the cache bank number and the queue position of the ori-

ginal request as the identifier to route the return data. This identifier is also known to all requests

that are combined with the original miss request.
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CHAPTER 3

SIMULATION ENVIRONMENT

To evaluate the effectiveness of the design choices discussed in Chapter 2, a simulation

model has been developed. In this Chapter we briefly describe the model and its operation.

3.1. Simulation model

The simulation model described in this Chapter has been implemented using the CSIM
environment [Schw86] and is shown in Figure 3.1. The model simulates a set of p pipelined pro-
cessors connected to a shared cache of ¢ banks through a pxc cross-bar switch. The cache banks
are all connected through a shared bus to the memory modules. Each processor is modeled as a
two segment pipeline. A pipeline segment takes one pipeline cycle to complete its operation and
all timings are in units of pipeline cycles. Each processor can execute an instruction stream
independently of the others and has support for vector instructions.! A vector is defined as an
ordered set of related memory locations whose consecutive addresses are separated by a constant
known as the stride. A processor makes vector references as a set of consecutive scalar refer-
ences issued, unless there are conflicts, in consecutive pipeline cycles. We assume that each pro-
cessor can take full advantage of pipelining and can overlap these references subject only to
available resources. A processor queue is located between each processor and .he switch, a cache
queue is located between the switch and each cache bank and a miss queue is located between

each cache bank and the shared bus. Note that the memory interface is implicit in the miss

'The simulation results presented in Chapter 4 are limited to the performance of the system for parallel execution of vectorized code only.
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queues. That is, the memory interface functions, such as constructing the memory request and
arbitrating for the bus, occur at the same time that the miss queue is being loaded. Furthermore
the global status buffers, used to perform miss queue matching in word and split level interleav-

ing, are also assumed to operate while the miss queue is being loaded.

We assume that each reference issued to the cache is for a 64-bit word. A cache bank is 8

bytes (one double-word) wide and the block size is an integer number of double words i.e. a

processor cache miss
queues queues queues
decode issue | L | ] gt?:;e . My
S S
H
. cache
decode issue I I WV sl L sore > A M,
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T
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Figure 3.1: Multi-processor with shared cache and buffering




52

block size of 4 is 32-bytes. Each memory module is also one double word wide.

There are fourteen parameters that can be varied in the simulation model. These parameters
are: number of processors, three queue depths (processor, cache and miss queue), cache size,
number of cache banks, cache block size, number of memory modules, number of cycles for a
pipeline segment, for memory access, for sending a memory request on the bus, and for return-
ing a block of memory data on the bus, and cache and memory interleave schemes. To simplify
the choice of simulation parameters we define a base system as shown in Table 3.1. The value
segment time is the minimum number of time units taken to pass through a pipeline segment, the
switch, a cache segment, a processor or a miss queue if there are no stalls or conflicts. The
values send request, memory cycle and return data are the number of time units taken to send a
memory request on the bus, access a double word from a memory module, and return a block

from memory on the bus, respectively.

In the simulation experiments one or more simulation parameters are changed at a time,

with respect to the base system, to see their effect on performance.

3.1.1. Address traces

The simulation model is driven by address trace files. The traces were generated by a
detailed simulation of program execution on an Alliant FX/8 multi-processor. The output from
the simulator is a sequence of memory references. For each reference the simulator generates
the memory byte address, the number of bytes to be accessed, the estimated number of cycles
since the last reference, and the type of reference i.e. scalar read, vector write etc. The estimated
number of cycles between references is used to determine the time that references enter.the
simulation model. To produce the traces, routines were compiled with the Alliant FX/Fortran

parallelizing and vectorizing compiler and executed on the simulator. Primarily we are
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interested in the system’s behavior for vector references in fully parallel loops, since these make
the most severe demands on the memory. Therefore the routines selected have a very high
degree of concurrency and vectorization. The traces were processed and compressed by a filter-

ing program to extract only vector memory references. This was done because:

(1) Instruction fetches will have a minimal effect on the cache for two reasons. Firstly the
loops we are simulating are necessarily small compared to the data size. Second, typical
systems have a separate instruction cache with a hit ratio that approximates 100%. Assum-

ing no instruction references to the cache in the model is thus reasonable.

(2) Scalar accesses for the selected routines were generally clustered together and scheduled on
one processor with the other processors being idle. These references are thus not subject to
the contentions associated with the shared cache organization and their inclusion in the

simulations would bias the results.

The routines used in generating the results presented in Chapter 4 are listed in Table 3.2.
For each routine the dominant stride and length of vector accesses are noted except for UXF
where no stride or vector sizes dominated. All programs were compiled to execute on eight pro-
cessors with full parallelization and vectorization: enabled. The routines LFK8, LFK14, LFK15

and LFK18 are routines taken from the Lawrence Livermore set of Fortran Kernels [Mcma86).

procs | ref/cache/miss cache block | memory | segment | memory send return interleave
queue d@s size/banks size modules time cycle request data cache/memo
8 1/12 64Kbytes/4 4 4 1 4 1 2 word/word

Table 3.1: Base system parameters
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Routine | #references source and function stride & vectors
| LFKS8 226306 Livermore Fortran Kemnel loop 8 stride: § & 1; vector: 32
LFK14 122560 Livermore Fortran Kernel loop 14 stride: 8 & 1; vector: 8,4
LFK15 78048 Livermore Fortran Kernel loop 15 stride: 1; vector = 32
LFK18 212736 Livermore Fortran Kernel loop 18 stride: 4; vector = 16
BTRIX 259403 ARC3D, computationel fluid dynamics stride: 1,5,8; vectors: 8,16,32
NEWRZ 153335 SIMPL2, computation in hydrodynamics | stride: 1; vector: 30,31,32
RRK 217119 kernel of experimental physics stride: 1; vector = 32
UXF 59650 VORTEX, PDE solver various strides and short vectors

Table 3.2: Benchmark routines

The other routines were taken from various application programs gathered at the Center for
Supercomputing Research and Development. No attempts were made to optimize the routines

for the organizations simulated.

3.1.2, Operation

The model simulates eight parallel processors issuing references to a shared cache. A refer-
ence is read from the trace file and passed to a processor at the time associated with the refer-
ence, if the processor is available i.e. the processor is not stalled in its D segment. Since the
trace file only contains memory references, the time, ¢ between references can be modeled by

inserting ¢—1 as non-memory instructions as discussed in Section 2.2

Each processor can place a reference into its processor queue whenever the queue is not
full. If a processor attempts to ‘ssue a reference when its processor queue is full, it must stall
until a queue entry becomes available. The processor queues feed into the switch which routes
request to the requested cache bank. Selection through the switch is on a first-come-first-served

basis with the processor number being used for arbitration when necessary. If more than one
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processor has a head of queue reference destined for the same cache bank in th: same switch
cycle and that cache bank is available, the reference issued by the highest priority processor is
selected to be routed through to the cache bank while the other references must remain in their

processor queues until the cache bank becomes available.

A reference takes 1 pipeline cycle to pass through the switch and to address the cache in the
next pipeline cycle. Note, if a cache queue exists, winning the bank does not necessarily mean
the cache data store is accessible immediately. It only means that at least one queue entry is free.

However, entering the cache queue does free the switch for further references.

If a reference hits in the requested cache bank, the cache bank becomes available in the
next cycle to any reference waiting at the head of a processor or cache queue. If a reference is a
cache miss and a miss queue entry is free, the reference is moved into the miss queue where it
may be matched with pending memory requests. If word or split interleaving is selected for the
cache banks, then a global status buffer scheme is used for memory request matching. A block
interleave scheme only requires matching within the relevant cache bank. To simplify the model
we assume that, regardless of the interleave scheme, matching is not in the critical path and that
it can be accomplished, in some fashion, before the memory request attains the shared bus.
References that match in the queue do not generate requests to memory as the requests can be

satisfied by some already issued memory request. However, such combined requests do use a

queue entry.

Moving cache misses into the miss queue makes the cache available to the next reference
as in the case of a cache hit. If no entries in the miss queue are available then the reference must

remain in the cache bank blocking any subsequent requests to that bank until the miss queue is

no longer full.
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A request is issued by a cache bank to the memory modules only if it was a cache miss and
it did not match a previously pending request in the miss queues. In issuing a memory request, a
cache bank must compete with other cache banks for the shared bus. A cache bank that obtains
the bus but finds the req -=sted memory bank busy must release the bus for the next highest prior-
ity cache bank. A request to a memory module takes one time unit on the bus. A memory
request is held in the miss queue until the requested data has returned. Writing requested miss
data into the cache has the highest priority for cache access and may result in cache access
conflicts that may delay new requests incoming from the switch. For simplicity we have
assumed that updating the cache takes place in the same cycle that the data is sent on the bus.

Thus updating a cache bank takes two consecutive pipeline cycles.

A write-back request :n the memory occurs if a dirty cache block is to be re-allocated. If it
takes n cycles to send the block from the memory to the cache, we assume it takes n cycles to
"unload” the cache block into the memory interface and then n cycles to send the block back to
the memory. During these n cycles the cache is unavailable for access, but the write miss address
is moved into the miss queues. The ‘write-back operation is assumed to have the highest priority
for the bus within the cache bank. The cache becomes immediately available for access after n

cycles. In the base system we use a value of n=2.

Figure 3.2 shows the timing for 6 references. A H reference is one that will hit in the cache
and a M reference will miss. The subscript is the processor issuing the reference, the superscript
is the number of the reference being issued by that processor and (m,n) denotes that block m in
cache bank n is being accessed, e.g. H} (b,y) is the second reference made by processor 3 and
block b of cache bank y is being accessed. The first five references (M8 a,y), H? (b,y),

Mg (a,y), Hg (b,y), H} (b,y)) are all to the same cache bank, whereas H 1(a,2) is to a different
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Figure 3.2: Timing diagram for reference processing

bank. Reference Mg (a,y) is a cache miss and a memory request is issued to the memory system.
The next reference H‘l) (b,y) is a cache hit. As the reference is of a lower priority than M8 (a,y), it
must wait in the processor queue of processor 1 for an additional cycle before it passes through
the switch. However it is not delayed from addressing the cache by the previous miss. The fol-
lowing reference, M3 (a,y), is also a cache miss but it is to the same block as the pending request
to memory. This reference is passed to the miss queue where it combines with the previous r{ﬁss
reference. It is therefore satisfied at time 12 when the first miss reference is completed, and is

removed from the miss queue at this time. The next two referencés, Hg (b,y) and H} (b,y), are
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both issued by processor 3 and are both hits. As there is only a single position in each processor
queue, the second of these references cannot be moved into the processor queue and stalls the
issue stage of the pipeline until the queue is available at time 6. The last reference, H Ha.z), is
issued at time 2 and is the second reference from processor 1. The reference is to a different
cache bank from the previous references and thus avoids conflicts and completes in the
minimum number of cycles. Note that, had H } (a,z) been issued at time 1, then it would have
stalled in the issue stage for one cycle as processor 1’s previous reference, HY(b,y), is held in

the processor queue until time 4.

3.2. Simulation performance indices

In this section we discuss the performance indices used to present the simulation results in

the next Chapter.

3.2.1. Completion time

One measure we use is the overall reference completion time. As we are essentially
interested in the performance of the system in accessing data from the cache and the memory,
the completion time in this study refers to the time at which a particular processor receives its
last requested data item from the cache or the memory. Furthermore, since we are simulating
parallel programs on a parallel processor, the system completion time is defined as the time at

which all processors have completed all their references.

3.2.2. Cache hit ratio as a performance index

The cache hit ratio has been used as the primary performance index in a number of previ-
ous architecture studies involving cache memories. The hit ratio is the n - “ber of references that

hit in the cache divided by the total number of references issued to the cache. The hit ratio is
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strictly a measure of the fraction of all data references that is found in the cache without access-
ing the memory. Using only the hit ratio as the index for the cache-related performance of a sys-
tem may be quite misleading. Mechanisms may exist, as part of the cache or processor design,
that can reduce the performance degradation due to cache misses. For example, a low hit ratio in
cache may be acceptable if a very fast load path from memory is available, or if a prefetch
mechanism can access the cache early, before the data is actually needed, so that the latency of a
miss can be partially or fully hidden. Such mechanisms are not accounted for in the cache hit
ratio.

In our model the cache hit ratio is an inadequate performance index for the following rea-

sons:

(1) Performance degradation is due not just to the cache hit ratio but also to the cross-bar

switch and cache conflicts.

(2) The role of the processor and cache queues is to decouple, at least partially, the perform-

ance of the switch and the cache from the processor.

(3) Miss references are pipelined to the memory to increase throughput, miss buffering allows
multiple misses to be handled concurrently in the cache, and new requests can be served

while misses are queued.
(4) The latency for accessing the cache is indeterminate due to cache and cross-bar conflicts.

(5) The latency for accessing a block from memory is indeterminate due to contention on the

st.ared data bus and at the memory module.

(6) With queue matching and combining, a cache miss may not even generate a memory
request. A cache access results in one of three possible actions. A cache hit does not use

the miss pipeline and has the shortest average access latency. A cache miss that generates a
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memory request has the longest average latency. A cache miss reterence that combines
with a pending memory request can have an average access latency nearly as short as a
cache hit or nearly as long as the miss request that generated the memory request with

which it combined.

The hit ratio is an adequate indicator of performance if the processor is tightly coupled to
the performance of the cache and the cache, in turn, is tightly coupled to the performance of the
memory, that is, if the processor does not issue overlapped references, the cache does not pipe-
line miss references, and the latency for a cache hit and a cache miss are predictable. These
characteristics are incompatible with computer architectures that use pipelining and parallelism
to achieve high performance. In the next section we discuss the use of stall and wait cycles as a

performance index.

3.2.3. Stalls and waits as a performance index

Ultimately, the performance measure for the system is the rate at which data requests can
be satisfied. A performance index for the system under study must take into account the effect of
increasing the queue depths and the number of cache banks. While the completion time pro-
vides an overall indication of system performance it does not show, in detail, how increases in
the queue depths and number of cache banks affect data accesses. In the shared cache multi-
processor, references are subject to conflicts at the switch and at the shared bus which will result
in additional or penalty cycles to the minimum data access latencies. Hence, a possible measure
of the effectiveness of a particular system configuration is the number of penalty cycles it

itnposes on references.
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In our system, a reference can be prevented from advancing in the processors and the cache
banks as the result of stalls and waits, as shown in Figure 3.3. A reference is in a stall cycle if it
is blocked from being moved to the next pipeline segment due to the lack of a needed resource.
During the stall, the prior segments in that pipeline are also stalled. There are two stall types in
the system; processor stall and miss stall. A processor stall occurs when the processor queue is
full and the processor attempts to issue another reference into the processor queue. The stall ends
when a processor queue position becomes available. A miss stall occurs when there is a cache

miss and the miss queue is full. The cache bank is busy during the miss stall. The miss stall ends

processor cache miss
queue queue queue
decode issue . | L cache - module

N

store \ \ memory
]
\ .

decode issue | \__ \ || cache | \ E%dule
\ \\ store \ ;sry

proc stall switch wait miss stall mem wait

({7

PIPELINED PROCESSORS SWITCH CACHE BANKS SHARED MEMORY
BUS MODULES

Figure 3.3: Stalls and waits in processors and cache banks
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when one or more pending miss references are satisfied and at least one miss queue position

becomes available.

A wait cycle is defined as a cycle during which a reference is held in a processor or miss
queue. The prior segments are not necessarily stalled during a wait cycle. There are two wait
types in the system; switch wait and memory wait. A reference waits for the switch in the pro-
cessor queue if the cache queue is full as a result of a busy cache bank or there is a switch
conflict due to a higher priority reference to the bank being requested. A memory wait occurs
when miss requests wait in the miss queue to be satisfied by the memory as defined in detail

below.

For performance purposes we focus on the cycles that a reference spends in the system
above the minimum number. For instance, proc stall, switch wait, and miss stall are the number
of cycles, above 1, that a reference spends in the issue, processor queue and cache segment,
respectively. For references going out to memory, the minimum time that a reference spends in
the miss queue is the time to send a request to memory, cycle the memory, and return the data.
This minimum time occurs if the request wins the bus immediately and the requested memory
module is not busy. In this case the reference has 0 mém wait cycles. Hence, memory wait
cycles are the cycles *that a memory request spends in the miss queue waiting for the bus and for
the memory module to become available. It does not include the time spent transmitting the

request on the bus, accessing the data in the memory, and transmitting the return data on the bus.

If a reference hits in the cache, its average number of penalty cycles is:

fpen 1 =lpstairswait

where 1,44 and tq,,; are the average cycles spent stalled in the issue segment for a processor
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queue position to become available and waiting in the processor queue for the switch, respec-
tively. If all the hit references have no switch conflicts then ., 1=0.

References that miss in the cache and get sent to memory incur the following average

number of penalty cycles: ,

tpen 2=Ipen | HimstaliHmwait

where l,qq and f,,q; are the average number of cycles that the reference stalls in the cache
segment for a position in the miss queue to become available and waits in the miss queue for
more than the minimum possible time for memory data, respectively. If the miss queues had
infinite depth and the memory system was always able to service a memory requests then the
processor model would continue issuing requests at its maximum (program limited) rate, and

bpen 2=0.

Due to the matching mechanism not all miss references get sent out to the memory.

Matched references have the following average number of penalty cycles:

tpen3=tpen1 Hmstali +1 5

where t-g is the average number of cycles that a matched request waits in the miss queue to be
satisfied by an earlier memory request with which it has combined. Let R, and R, be two miss
references that match and combined in the miss queue, with R, being the first of the two miss
requests to enter the miss queue. If R, does not match with any previous miss requests then
their respective waits are th,q;, and g, If R enters the miss queue in the same cycle that R,
receives the last returning memory data then t§=0. If there were no bus or memory module

conflicts then t},,4:;=0 for R,. If R, enters the miss queue in the next cycle after R, enters the
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miss queue then t% =t} wair. In general t§= the number of ¢l cycles during which R, resides
in the miss queue.

The number of average penalty cycles per reference is:
t::::ztpzn 1 +(1-h)* [ tmsrall"'q*t—ﬁ—"'( I_q)*[mwau[

where h is the cache hit ratio and g the match ratio in the miss queues, and 7 is an average value

of the corresponding ¢ term per request of the appropriate type, i.e. t,., is averaged over all the

requests, oy over all miss requests, t5 over all matched miss requests and f,,,,; over all

unmatched miss requests.

In the next Chapter we present the simulation results using the above performance indices.
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CHAPTER 4

SIMULATION RESULTS

In this Chapter we discuss the results of some experiments performed with the simulation

model and the address traces.

To evaluate the effect of individual parameters, the initial set of experiments changes one
simulation parameter of the system at a time, relative to the base system. The parameters
changed are the processor and cache queue depths, number of cache banks, miss queue depth
and interleave scheme. From these results we look at the effect of collective changes to the base

system. Finally we look at the cache hit ratio and stalls and waits as indices of performance.

4.1. Presentation of the results

The majority of the results are presented in the form shown in Tables 4.1-4.4. These tables
are organized by simulation parameter. The first column indicates the parameter being investi-

gated and its values. All other system parameters unless specified are defined by the base system.

The next column shows the system completion time for each simulation normalized to the
completion time for the base system. The completion time is the time at which the last reference
is returned to its requesting processor. This time is normalized so that the completion time for

the benchmark program under investigation is 1.00 for the base system. This normalized time is

1
norm. comp sim

also referred to as the overall system performance and is the speedup.
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The hit ratio is the measured hit ratio of the cache as a whole and is measured over all
issued cache references.

The next four columns show the stall and waif cycles, as discussed in Chapter 3, for each
configuration. As discussed in section 3.2, proc stall, measured by m, and switch wait, meas-
ured by t:w—a; , are measured by the average number of cycles that references stall in the processor
queue and wait for the switch, respectively. Miss stall is the average number of cycles that refer-
ences stall the cache bank waiting for a free miss queue position and is calculated as
(l—h)*t_,,:;;, where A is the hit ratio and t_,,,:,; is the average number of stall cycles for a miss
request. Mem wait is the average number of wait cycles that « memory request waits for the bus
and memory to be become available and is calculated as (1-h)* (q*t—;;-+(l—q)*t,,,75 ) where g is
the miss queue match ratio and t5 and E_,,,; are the average number of cycles that references
wait for the memory, for matched and unmatched references, respectively. The last column

shows the average number of penalty cycles, f,,,, that a reference incurs in the system. The cal-

culation for #,., is the sum of the four stalls and waits as presented in section 3.2.

4.2. Processor and cache queues

As previously stated, the role of the processor queues is to reduce processor pipeline stalls
due to conflicts and cache miss effects. To examine their effectiveness, we vary the queue depth
over a range of 1 to 32 entries. In these experiments we only consider varying the depth of the
queues between the processor and switch. All other system parameters are fixed at the base sys-
tem values as shown in Table 3.1 i.e. 1 cache queue position per processor, 4 cache banks, 2
miss queue positions per cache bank and 4 memory modules. The results of the simulations are

shown in Table 4.1.
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For all the routines, the effect on completion time is 11% or less, over the full range of

_ queue depths. Routines with a high hit ratio (greater than 90%) show a consistent monotonic
behavior, as oppose to ones with low hit ratios (i.e. RRK and LFK8). In these high hit rato
cases, cp tim decreases for each increase of the processor queue depth. The vast majority (90%
or more) of the references are being satisfied at the cache and the processor queues are able to
decouple the processor pipeline from some of the switch conflicts and cache miss effects. For hit
ratios greater than 90%, proc stall sharply decreases when the queue depth is increased from 1 to

32. For LFK14 (799.4% hit ratio) proc stall declines to about 10% of its original value. As the

NEWRZ LEFK18
proc. norm. hit ] t ) miss | mem | mom- hit f I3 - muss | omem |
| queue | cpum | ratio pstall swait sall | wait pen || cptim | mtio pstall swau stai] wajt pen
I* 1.00 939 0.89 0.78 0.14 | 0.01 1.33 1.00 9.0 0.42 0.39 004 | 000 | 0.86

2 0.99 939 0.83 0.79 0.13 | 0.02 1.82 0.98 99.0 0.36 0.42 004 | 001 0.83

4 097 94.1 0.79 0.83 0.13 | 0.01 1.79 0.95 9.0 024 0.45 004 | 000 | 074

8 094 94.2 0.69 0.92 0.13 | 0.01 1.78 0.93 99.0 0.14 0.57 004 | 000 | 0796

16 0.92 94.83 0.6] 1.14 0.14 | 002 1.94 0.93 99.1 0.13 0.60 004 | 000 | 078

32 0.90 94.5 0.5} 1.10 0.12 | 0.02 1.78 0.92 9.1 0.10 0.58 004 | 000 | 073
RR LFK15

1 1.00 | 61.6 10.07 9.41 1.67 | 029 | 21.66 1.00 90.3 0.95 0.79 022 | 002 | 201
2 0.99 62.6 10.15 9.53 1.61 | 030 | 21.80 1.00 90.2 0.98 0.85 022 { 002 | 2.11

4 1.00 62.9 10.32 9.67 161 | 025 | 22.07 0.98 90.4 0.90 0.89 022 | 002 | 207

8 099 63.0 10.79 9.72 1.60 | 0.26 | 22.58 0.95 90.2 0.70 0.87 021 | 0.02 1.84

16 1.00 62.9 10.90 9.83 1.67 | 026 | 22.88 0.93 90.3 0.58 0.96 021 | 002 1.81

32 1.00 62.8 10.89 9.88 1.60 | 0.26 | 22.8S 0.89 90.1 0.40 1.09 0.19 | 0.02 1.74
BTRIX LFK14

1 1.00 97.0 1.20 0.88 0.17 | 0.04 232 1.00 9.4 0.57 0.68 003 { 000 1.28
2 098 97.0 1.16 0.89 0.17 | 0.04 229 || 098 9.4 0.34 0.69 0.03 | 0.00 1.06
4 096 | 97.0 1.07 093 .18 | 0.03 224§ 096 9.4 0.17 0.77 003 | 000 | 097
8 0.94 971.0 0.99 1.01 017 | 0.03 223 0.96 9.4 0.10 0.86 003 | 000 | 099
16 0.92 96.9 0.96 1.10 0.18 { 0.04 230 || 095 9.4 0.07 1.14 003 | 000 1.24
32 091 96.9 0.89 1.13 0.18 | 0.04 227 || 0.95 9.4 0.06 137 0.03 | 000 1.46

UXF LFK3
1e 1.00 99.1 0.15 0.14 0.04¢ | 0.00 0.34 1.00 81.7 262 241 048 | 007 5.67
2 1.00 99.2 0.09 0.15 004 | 0.00 0294 098 81.4 2.54 238 046 | 007 | 553
4 100 | 99.1 0.06 Q.16 004 | 0.00 0.27 1.02 80.3 279 273 052 | 006 | 6.20
8 1.00 | 99.1 0.08 0.17 005 | 0.00 028 || 0.96 82.9 2.58 2.66 047 | 0.06 | 5.85
16 1.00 99.2 0.03 0.18 0.05 | 0.00 0.27 0.93 81.3 237 2.86 045 | 005 | 582

32 0.99 9.1 0.00 0.24 0.05 { 0.00 0.30 0.92 81.0 2.38 3.14 048 | 0.0 6.15
* base system

Table 4.1: Increasing processor queue depths
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number of misses increase, the queue depths become less effective. For LFK15 (90.3%-90.1%
hit ratio) proc stall remains relatively constant until greater than 4 entries are used. For LFK8
and RRK, which have very low hit ratios, the queue depth has only a slight effect on proc stall.
In these routines, the high number of cache misses are causing enough conflicts in the switch 1o
keep the queues full regardless of the queuc depth. The result is that the system becomes much
more influenced by the cache pipeline performance and the system behaves less consistently as a
function of the processor queue depth.

One effect of queuing references at the switch is an increase in the inter-arrival rate of
references at the switch. This increase increases the probability of switch conflicts which

explains the increase in switch wait as the queue depth increases. Interestingly,

tpen 1 =tpstaliHswair dO€S nOt continue to decrease as the queuc depth increases. For instance, for
NEWRZ, f:m—x- decreases until a queue depth of 8 is reached. At a queue depth of 16, tp:T
increases, but it drops back again at a queue depth of 32. While the increased processor queue
depth allows the processor to increase its reference issuing rate, the switch and cache is unable to

accommodate this potential increase in bandwidth fully. Note that ¢,.,, forms the major com-

ponent of the total 7,., penalty cycles, which exhibits the same sort of non-monotonicity as 5, .
However, the norm. cp tim consistently exhibits monotonic behavior, except for RRK and LFK38

as noted. In this experiment #,4, is a better indicator of performance than 7., i.e. it is better

correlated with norm. cp tim.

As expected, the queue depth does not generally have a significant effect on the cache pipe-
line as indicated by the relatively constant miss stall and mem wait over all or parts of the queue

depth range.




69

4.2.1. Cache queues

In the discussion of system organization, we mentioned that queues could be located
between the switch and the cache. To evaluate the effect of these queues, we increase the depth
of the cache queues from 1 to 32 relative to the base system. The results are shown in Table 4.2.
It should be noted that processor queues are associated with processors, and cache queues with
cache banks. Recall that a base system has 8 processors and 4 cache banks. An experiment with
2 entry cache queues, has a maximum total buffering capacity of (4*2=) 8 requests, while exper-
iments with 2 entry processor queues can buffer (8*2=) 16 requests. Hence, a system with depth

n processor queues has the same maximum buffering as a system with depth 2n cache queue.

The results generally indicate that increasing the cache queue depth has more effect on the
overall completion time than increasing the processor queue depth particularly for RRK and
LFK8 where the hit ratio is low. As discussed in Chapter 2, queues between the switch and
cache reduce some blocking. This reduction is evident by noticing the generally reduced switch
wait. Although increasing processor queue depth increased switch wait significantly, increasing
the cache queue depth decreases switch wait and results in increased switch throughput. How-
ever, greater cache queue depth, increases the reference inter-arrival rate to the cache bank and
generally increases miss stall. RRK and LFK8 show non-monotonic behavior in miss stall.

LFK14 remains consistent and others show some minor non-monotonicities.

The increase in cache queue depth results in dramatic increases in performance for LFKS8
and RRK, where the hit ratio is very low. The reason is that the performance of these two rou-
tines are most influenced by the cache misses. The cache queues decouple the switch from this
effect much better than the processor queues. As the cache queue is located between the switch

and the cache, the result, unlike the processor queue depth increase, is a decrease in switch wait.
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NEWRZ LLFK18
cache { ncm. hat t t_— miss | mem i norm. hit ¢ ¢ - muss | mem ) =
| queve | cpum_| ratio | ‘pstall | *swait | qai | wair | P || cprim | rauo pstall | “swait | ga) | wan | ‘pen
t* 100 | 939 0739 0.78 014 | 0.01 .85 100 | 9.0 0.42 0.39 0.04 ) 000 | une
2 0.99 936 0.87 0.78 0.20 0.02 1.90 0.99 9.0 0.36 Q.36 0.05 0.01 0.78
4 0.98 93.7 0.82 0.74 02 0.02 1.83 0.98 99.0 .34 0.35 0.05 0.00 0.75
8 097 | 932 0.76 0.68 0.28 | 0.02 177 || 098 | 989 0.33 0.34 006 | 000 | 074
16 0.93 933 0.63 0.57 0.28 0.02 1.54 0.98 99.0 0.32 033 0.06 o.M 073
32 093 | 935 0.61 0.55 0.30 | 0.02 1.52 1| 098 | 989 0.31 0.33 006 | 001 | 071
RRK LFK1S5
1* 1.00 | 616 10.07 9.41 1.07 | 029 | 2166 {| 1.00 | 903 0.95 0.79 022 | 002 | 201
2 1.02 53.8 10.34 9.43 234 0.28 22.65 1.00 89.9 0.95 0.80 0.31 o.m 2.12
4 0.99 53.7 991 9.01 2.68 0.26 | 22.13 0.97 90.2 0.84 0.70 0.35 0.02 196
3 0.93 552 9.19 8.39 2.90 0.28 21.05 0.95 90.1 0.73 0.62 0.38 0.03 1.80
16 0.81 60.6 1.63 7.28 283 0.30 18.30 0.93 §9.7 Q.61 0.54 0.42 0.03 1.66
3 070 | 63.2 6.29 6.16 259 | 029 | 1558 | 090 | 89.9 0.45 0.39 043 | 03 134
BTRIX LFK14
1* 1.00 | 97.0 1.20 0.88 0.17 | 0.04 232 | 1.00 | 99.4 0.57 0.68 003 | 000 | 128
2 0.90 97.1 0.92 0.82 0.17 0.04 1.98 0.98 99.4 0.3¢ 0.52 .03 0.00 0.94
4 0.91 97.3 0.90 0.81 0.18 0.04 1.95 0.98 99.4 0.40 0.55 0.03 0.00 098
8 0.90 97.4 0.87 0.80 0.19 0.04 1.92 0.98 99.5 0.36 0.47 0.03 0.00 0.86
16 0.90 97.6 0.86 0.80 0.20 0.04 1.93 0.98 9.5 0.39 0.53 0.03 0.(0) 095
32 090 | 977 0.86 0.81 0.2 | 004 195 || 098 | 99.5 0.36 0.50 0.0 | 000 | 089
UXF LFK8
1* 1.00 99.1 0.15 0.14 0.04 0.00 0.34 1.00 81.7 262 241 0.48 0.07 ST(:T
2 1.00 992 0.11 0.14 0.04 0.00 0.30 0.98 81.6 249 226 0.59 0.07 5.49
4 1.00 99.1 0.10 0.12 0.05 0.01 0.28 0.96 81.5 243 220 0.70 0.06 5.49
8 1.00 992 0.10 0.13 0.05 0.01 0.30 0.93 81.7 223 203 0.78 0.07 522
16 1.00 99.1 0.09 0.13 0.07 0.01 0.30 0.83 837 .72 1.59 0.75 0.07 423
n 1.00 99.1 0.05 0.08 0.06 0.01 0.20 0.7 85.7 1.25 1.15 0.66 0.07 32

¢ base systam

Table 4.2: Increasing cache queue depths

For these two routines, queue depths greater than 8, provide the most significant improvements.

4.3. Cache banks

The previous experiments showed that as the processor queue depth increased, proc stall
tended to decrease but switch wait increased. The result is that the overall system performance
does not substantially increase. The switch wait increase is due to the increased arrival rate of
the references at the switch, resulting in more conflicts. The number of cache banks can be

increased to reduce the probability of conflicts in accessing the cache. This increase in the

number of cache banks increases the degree of parallelism in routing references to cache banks.
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In these experiments we vary the number of cache banks in the base system from 1 to 16.
While the number of banks is changed, we maintain the physical capacity of the cache at our
chosen size of 64Kbytes. For example, in a 2 bank system, each bank has a capacity of
32Kbytes and for a 16 bank system, there are 4 Kbytes per bank. The results are presented in

Table 4.3.

The number of cache banks generally has more effect as well as a more uncertain effect on
the system performance than the processor and cache queue depths. The cp tim shows the best
improvements over the 1 to 4 bank range, with diminishing results for 8 and 16 banks. The fact

that one cache bank, shared by 8 processors results in substantially worse performance than four

NEWRZ LFK18
cache | norm. hit [ ! K miss | mem — || o™ hit ! P miss | mem Fay
| bank | cptim | mig_ | “pstall swall | g | wait pen || cpiim | matio pstall swait | qa1 | wait pen
1 226 | 973 6.04 636 | 005 | 001 [ 1246 || Z37 [ 996 | 623 6.61 001 | 0.00 | 12.87
2 133 95.6 224 224 | 011 | Q.01 4.61 1.28 99.3 1.67 1.89 002 | 0.00 3.59
4 1.00 939 0.89 0.78 0.14 0.01 1.85 1.00 99.0 0.42 0.39 0.04 0.00 0.86
8 091 928 0.52 0.38 0.26 0.03 1.24 0.96 98.9 0.23 0.17 0.08 0.01 0.50
16 0.89 N.5 0.45 0.31 0.47 0.04 1.35 0.94 98.8 0.16 0.09 0.14 0.01 0.43
RRK LFK15
! 1.38 753 15.93 15.04 0.88 022 | 32.19 1.79 96.3 5.04 5.20 0.10 0.01 10.36
2 1.21 65.3 13.49 12.20 1.49 | 026 | 27.62 L2 93.1 2.06 1.98 020 | 0.01 427
4 1.00 61.6 10.07 9.41 1.67 024 | 21.66 1.00 90.3 0.95 0.79 0.22 0. 2.01
8 1.01 42.4 10.16 8.61 3.81 0.35 23.39 0.92 89.1 0.54 0.39 0.32 0.03 1.36
16 .11} 293 11.36 8.22 9.38 0.67 30.72 0.90 88.7 0.47 0.32 0.53 0.06 1.50
’ BTRIX LFK14
1 1.62 973 3.44 3.47 0.08 | 0.02 7.01 1.87 99.8 6.23 6.75 0.01 | 000 | 1299
2 1.18 97.1 1.89 172 | 013 | 0.02 3.77 1.10 99.6 1.63 2.18 0.02 | 0.00 3.83
qe 1.00 97.0 1.20 088 | 0.17 | 0.04 2.32 1.00 99.4 0.57 0.68 0.03 | 0.00 1.28
8 0.83 91.3 0.69 050 | 0.28 | 0.06 1.57 0.97 99.5 0.18 0.17 003 | 0.00 0.39
16 0.87 97.6 0.90 0.59 049 | 0.11 216 || 096 | 99.5 0.13 0.09 0.06 | 0.00 0.29
UXF LFK8
1 1.02 99.5 0.76 096 | 0.02 | 0.00 1.74 196 | 91.5 829 8.40 021 | 0.04 | 1697
2 1.00 99.3 0.28 036 | 0.03 | 0.00 0.68 1.37 85.2 4.85 464 044 | 0.06 | 10.05
4 1.00 99.1 0.15 0.14 0.04 0.00 0.34 1.00 81.7 2.62 241 0.48 0.07 5.67
8 1.00 | 989 0.08 0.07 0.06 | 0.01 023 0.90 116 2.06 1.61 086 | 0.09 4.79
16 1.00 99.0 0.07 0.04 0.09 0.01 0.23 0.90 75.4 2.04 1.29 1.90 | 0.16 5.3

* base system

Table 4.3: Varying the number of cache banks
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banks should be no surprise according to the early discussions since the bandwidth of one bank
is totally inadequate to support eight processors at their natural request rate. Performance gains

from increasing the cache banks from 4 to 16 are < 13% for these eight routines, and for RRK

actually degrades by 11%.

As the number of banks is increased, there is a very dramatic decrease in the switch wait.
The decrease in switch waif in turn reduces the probability of a reference stall due to a full pro-
cessor queue. Hence, there is an associated decrease in proc stall. However, increasing the
number of banks also produces a negative effect, namely a lower hit ratio which increases miss
traffic, thereby limiting performance gains and for RRK actually degrading the performance as
the number of banks are increased to 8 or 16. These results suggest that the number of banks

should not be arbitrarily increasec due to two related factors; the decrease in the hit ratio and the

increase in the bus traffic.

As previously explained, each cache bank has enough hardware to support an independent
reference stream. As the number of banks is increased, so is the maximum buffering for miss
references. In the base system, each bank has a miss queue depth of 2. A system with 8 banks
has a maximum buffering of (8*2) = 16 miss queue entries. This increase in miss buffering also

contributes to the lowering of the hit ratio. This phenomenon is discussed in the next section on

miss queues.

Another contribution to the decreasing hit ratio is the increase in parallelism and
corresponding decrease in proc stall ard switch wair. Consider a system with 4 processors, P,
Py, P, and P3, and a single cache bank with processor and miss queue depths of one, and no-
cache queues. Assume that each reference is to a word and that there are 4 words to a block. A

particular processer, P;, references a vector of an arbitrary length, with a base address of i and a
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stride of 4 (i.e. P; references word i,i+4,i+8, ...). Assume that the processors start in lock step
and that the cache is initially empty. Figure 4.1a shows the system after two misses. A reference
to word 0 is pending in the miss queue, waiting for memory data. Reference 1 is stalled in the
cache segment because it is also a miss. It cannot be pipelined forward due to reference 0, which
fills the miss queue. Reference 2 is waiting in the P, processor queue due to the bank-busy
conflict. References 3, 4 artd 5 are likewise in the respective processor processor queues. Refer-
ences to words 6, 7, 8 and 9 will stall the corresponding processors from issuing further refer-
ences. When block O returns, reference 1, althougk it is a cache miss, will be satsfied by the
block. In the following two cycles, references 2 and 3 get the cache and will hit since they also
refer to block 0. Each group of four consecutive references that follow will have the same pat-

tern of 2 misses and 2 hits.

Now consider using 4 cache banks in an effort to reduce conflicts. Figure 4.1b shows the
situation when a read miss is pending in each bank. With 4 cache banks, there is a maximum
miss buffering of 4. References to words 0,1,2 and 3 are to different banks and can be routed,
through the switch, to the cache banks in parallel. Unlike the single bank scheme there is no
conflict and hence no proc stall or switch wait for these 4 references. As they are to the same
block, they are all counted as cache misses even though they will be combined. In the following
cycles the processors remain in lock step and the words of each block are referenced in parallel
and will also all miss. The result is that, in the single bank scheme, 50% of the references will be
hits, while with 4 banks, a 0% hit ratio results. Furthermore, this decrease in the hit ratio can be

attributed to the decrease in stalls and conflicts.

Increasing the number of banks results in an increase in the number of requesters on the

bus. We therefore see a dramatic increase in mem wait for these experiments. Since proc stall
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Figure 4.1: Decreasing hit ratio with an increase in the number of cache banks




75

and switch wait decrease, the time between misses must also decrease. The effect on the system
from increased bus requesters is compounded by the decrease in the hit ratio. The result is an
increase in miss stall despite the increase in maximum buffering achieved by increasing the

number of cache banks.

The effect on the system of increasing the number of cache banks is most dramatic in the
low hit ratio routines. Decreases in the hit ratio are relatively small for cases with ratios origi-
nally greater than 99%, but become very significant for routines with lower hit ratios. The cache
hit ratio for a set of references is due to two events: first, the number‘of times that cache data is
re-used after initial loading and secondly, the probability of using data prefetched in a block
accessed from memory. The sequence in Figure 4.1 shows a reduction in the effectiveness of
block access by increasing parallelism. A set of vector references that has a low hit ratio is
likely to have a low data re-use. If a data set has low data re-use, the cache misses in the initial
accesses to this data set has more of an effect on the overall cache hit ratio than for a data set
with high data re-use. Conversely a data set with low data re-use will benefit the most from
block fetching that successfully prefetches its data set before further misses to that data set
occurs. When the number of cache banks is increased, the number of references that can be over-
lapped and queued, while they are pending to memory, also increases, and this reduces the effec-
uveness of block prefetching. Routines with an already low hit ratio are more significantly

affected by this increase in the number of overlapped cache misses, as shown in Figure 4.1.

The performance of RRK demonstrates the failure to increase performance by increasing
the number of banks. This routine has a very low hit ratio, even for a single bank. There are per-
formance increases for 2 and 4 banks but there is also a dramatic and continuing drop in the hit

ratio. When the number of banks is increased to 8, the hit ratio is so low that the performance of




76

the cache pipeline dominates. The increase in parallelism, compounded by the increase in the
number of misses, increases #:iss s:all and mem wait. As the miss queues become saturated, the
bank-busy conflicts increase, resulting in proc suall increase. As the number of banks is further

increased, the performance starts to fall off more significantly.

4.4. Miss reference buffering

The previous experiments indicated that the performance of the cache pipeline degrades as
the number of banks is increased. To improve the pcrfofmance of the cache pipeline, we look at
the effect of increasing the depth of the miss queue from 1 to 32 entries. We assume that each of
the four cache banks has a separate queue and that miss reference combining occurs across all

banks. The results are shown in Table 4.4.

The results indicate that the best performance increase occurs over the depth range of 1 to 4
entries. As expected, the effect is more substantial for routines with a lower hit ratio, LFK8 and
RRK. All the routines show substantial decrease in miss stall. Unlike the processor queue,
which had to buffer references from switch conflicts, the range of miss queue depths is sufficient
to counteract the shared bus contentions. However, it should be noted that the issue rate into the
processor queue is significantly higher than the cache issue rate into the miss queues. In the pro-
cessor pipeline, vector references are being made, while the cache only issues miss references to
the miss queue. Furthermore, due to request combining, the number of requests that use the bus
is less than the total number of misses. The decreases in miss stall cause decreases in switch wait
and proc stall. Again routines with a low hit ratio are affected more significantly in norm. cp rim
because the cache pipeline plays a more dominant role in their performance. The incma§ in
miss queue depth increases mem wait due to increased arrival rates at the miss queues and hence

increased conflicts at the bus. This increase, however, is much less than the increase due
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NEWRZ LFK18
miss | norm. hit + |7 | miss | mem | 77/ || nom. hit — | miss | mem | [,0pn
queue | cptim | ratio tp-“a” Fswait stall | wait tpe" tim | ratio tP-“a” Lswait stall | wait p
1 1.09 95.6 1.26 1.10 0.29 0.01 2.66 1.01 99.3 0.48 0.44 0.06 0.00 0.99
2* 1.00 93.9 0.89 0.78 0.14 | 001 1.85 1.00 99.0 0.42 0.39 0.04 0.01 0.86
L) 0.94 92.7 0.65 0.44 0.09 0.02 125 0.9 98.8 0.39 0.37 0.03 0.01 0.81
3 0.94 92.2 0.65 0.57 0.10 0.03 1.42 0.99 98.7 0.37 0.35 0.02 0.01 0.76
16 0.92 922 0.56 0.55 0.08 0.03 128 0.98 98.6 0.36 0.34 0.02 | 001 0.75
2 0.90 91.0 0.51 0.47 0.06 | 0.03 1.15 0.98 98.4 0.34 0.33 0.02 0.01 0.71
RRK LFK1S5
1 131 ns 14.03 12.93 2.63 0.13 29.81 1.12 9.1 1.57 1.30 0.48 0.01 3.37
2+ 1.00 61.6 10.07 9.41 1.67 029 | 21.66 1.00 903 0.95 0.79 0.22 0.02 2.01
4 1.02 41.1 10.33 9.48 211 0.31 22.66 0.94 89.7 0.70 0.41 0.13 0.03 1.33
8 1.04 286 10.55 9.57 207 036 | 23.13 0.92 89.2 0.57 0.59 0.08 0.03 1.34
16 1.03 257 10.47 9.44 1.69 036 | 22.57 0.91 89.1 0.53 0.47 0.07 0.04 1.19
32 1.02 24.2 10.44 9.47 1.49 0.36 | 22.41 0.90 89.4 0.50 0.44 0.06 | 0.03 1.10
BTRIX LFK14
1 1.05 97.0 1.42 1.04 025 | 0.02 275 1.00 99.6 0.60 0.69 0.04 | 0.00 1.33
2* 1.00 97.0 1.20 0.88 0.17 | 0.04 232 1.00 99.4 0.57 0.68 0.03 | 000 1.28
4 1.00 97.1 1.20 0.89 0.15 0.04 231 1.00 99.4 0.58 0.70 0.02 0.00 1.31
8 1.00 97.3 1.21 0.93 0.12 0.05 2.34 1.00 9.4 0.59 0.72 0.02 0.00 1.34
16 1.00 97.3 1.19 0.93 0.10 | 0.05 230 1.00 9.4 0.54 0.64 0.02 | 000 1.21
32 0.98 97.3 1.10 0.84 0.08 | 0.05 2.11 1.00 99.3 0.55 0.68 0.02 | 0.00 1.26
UXF LFK8
1 1.00 99.3 0.14 0.14 0.06 | 0.00 035 1.23 86.5 3.87 353 095 | 0.03 8.41
pAd 1.00 99.1 0.15 0.14 0.04 0.00 034 1.00 81.7 2.62 241 0.48 0.07 5.67
4 1.00 99.0 0.12 0.11 0.04 | 0.01 0.28 0.93 74.8 225 2.03 042 | 0.08 494
8 1.00 98.9 0.12 0.13 0.02 0.01 0.29 0.83 759 1.70 1.48 031 0.09 3.77
16 1.00 98./ 0.11 0.13 0.02 | 0.01 0.29 0.76 7.6 1.31 1.13 0.21 0.10 293
32 1.00 98.7 0.09 0.12 0.01 0.01 0.24 0.64 82.8 0.68 0.59 0.07 0.10 1.58
* base system

Table 4.4: Increasing miss queue depths

increasing the number of cache banks. Furthermore, increasing the miss queue depth decreases

miss stall whereas miss stall increases when the number of cache banks increases.

The purpose of pipelining miss references to memory is to reduce the effect of cache misses

on other references. By increasing the depth of the miss queue, we are essentially increasing the

degree of overlap for handling miss references. As with increasing the number of cache banks,

the results indicate that increasing the miss queue size also generally decreases the cache hit

ratio. Consider again the single cache bank system of Figure 4.1 which has a single entry miss

queue. If we now increase the miss queue depth to 2, as in Figure 4.2, reference 1 can be pipe-

lined to the miss buffer. This enables reference 2 to get the cache where it will miss and stall
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Figure 4.2: Increasing miss queues

until a queue entry is available. Reference 3 waits in the processor queue of P 3 due to the bank-
busy conflict. When block O returns, only reference 3 will hit in the cache. The result is a
decrease in the hit ratio from 0.50 to 0.25 because of the increase in overlap in processing cache
misses. However, unlike increasing the number of cache banks, there is no increase in
throughput in this example. Note that increasing the number of cache banks also increases the
maximum buffering available, so that its effect of decreasing the hit ratio can also be partially

attributed to increased buffering.

All routines show monotonic performance improvements for increases in the miss queue
depth, except for RRK which has a very low hit ratio. RRK shows a significant performance

improvement for increasing the queue depth from 1 to 2 entrieé, but with deeper queues the
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dramatic increase in the number of misses exceeds the benefits initially provided by the queue as
is evident by the increases in proc stall and switch wait. This result for RRK indicates that
further decreases of an already low hit ratio will prevent the increased miss queue depths from

achieving increases in performance.

4.5. Interleaving

Word interleaving allocates words with consecutive addresses in consecutive cache banks
and memory modules. How words are allocated affects the degree of conflicts and pipeline stalls.
In this set of experiments we vary the interleaving scheme of the cache banks and memory

modules with respect to the base system. The results are shown in Table 4.5.

We have chosen two routines with relatively low hit rates and two with high hit rates for
this study. In three of the routines (NEWRZ, LFK8 and LFK18), the base system (W/W) per-

forms much better than block and split interleaving. In LFK 14, it performs worst. Both

NEWRZ LFK18 |

inter- | norm. hit L t_"' miss | mem — || nom- hit ;—" t— miss | mem t——j
leave | cptim | ratio | "pstall | *swait | qan | wair | ‘pen tim_| nto | "pstall | *swait | . | wair | ‘pen
Wiw* 1.00 93.9 0.89 0.78 0.14 | 0.01 1.85 1.00 99.0 0.42 0.39 0.04 | 0.00 0.86
S/W 1.10 95.5 1.15 0.98 0.19 | 0.02 2.36 1.06 9.2 0.70 0.66 0.05 | 0.01 1.42
SIS 1.21 97.4 1.59 135 0.15 | 0.01 31 1.06 992 071 0.68 0.05 | 0.00 1.44
B/W 115 | 954 131 1.10 024 | 0.01 | 269 112 | 995 0.96 0.90 004 | 000 | 190
BB 140 | 974 232 2.04 0.23 | 0.01 | 4.60 1.13 | 995 1.02 0.00 005 | 000 | 1.07

LFK3 LFK14

WiWe 1.00 81.7 2.62 241 048 | 0.07 5.67 1.00 99.4 0.57 0.68 003 | 000 1.28
Sw 1.08 | 86.1 3.19 2.70 068 | 001 | 659 098 | 99.7 0.32 0.41 002 | 000 | 0.75
S/s 1.07 | 914 . 2.69 0.49 | 0.05 | 636 098 | 99.8 033 0.42 002 | 000 | 077
B/W 1.12 | 864 345 2.90 075 | 005 | 7.22 098 | 99.7 0.38 0.51 0.02 | 000 { 092
BB 1.35 90.9 4.69 4.02 0.80 | 0.03 9.57 0.98 99.8 0.33 0.42 002 | 0.00 0.78

* base systan;W=wond.B=block.S=splix;tlbn=ucheinlerleavin¢,b=manolyvmhaving

Table 4.5: Interleaving schemes
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NEWRZ and LFKS8 have vector accesses with strides of one and perform worst when blocks are
located within one or two banks. The performance degradation of other interleave schemes rela-
tive to the base system is less for LFK18 than NEWRZ and LFKS, but this is due to the high hit
ratio of LFK18, which reduces the number of mylti-access conflicts when using block or split
interleaving. LFK14 is the only routine that performs better for an interleave scheme other than
word level. This routine uses a stride of 8 with short vector lengths, which is better suited for the
block and split schemes. This can be seen from the decreases in proc stall and swirch wait com-
pared to the base system as opposed to increases for the other routines. The overall results indi-
cate that word level interleaving at the cache and memory provides the best general purpose
configuration. However, interleaving performance is very much dependent on the access pattern
of a benchmark. Although we have shown only a few benchmarks here, the apparent perform-
ance for word interleaving is consistent with the results from other memory studies, and with

common design practice.

The use of block level interleaving in the main memory with heavy miss traffic generally
reduces mem wair. Recall that the various interleave schemes trade concurrency off against
memory latency. Word level interleaving results in multiple banks being busy during a memory
access, but all banks are being accessed in parallel. With block level interleaving only a single
memory module is busy per request. The latency for block interleaving is greater than for word
level interleaving but other modules are available to serve other misses, hence the decrease in
mem wait for block interleaving when the miss traffic is sufficiently high. However, the overall
completion time shows better performance for word level interleaving because the longer
memory access latency for the block causes increases in miss stall and this is more signiﬁéant
than the decrease in mem wait. The results for these routines indicate that reducing memory

latency through word interleaving is generally more effective than providing potential
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parallelism through block interleaving.

For all routines there is a higher hit ratio for block and split interleaving than for word
interleaving at the cache, but there is a decrease in performance. Furthermore, all the routines
(except LFK14) show increases in proc stall relative to the base system. This increase again
confirms the phenomenon that reducing proc stall, and thereby increasing the throughput of the
cache and hence system performance, will typically result in a lowering of the hit ratio. The
various examples of this phenomenon constitute the best argument for why the penalty cycles,

and proc stall in particular, are better indicators of performance than hit ratios.

4.6. Collective changes

The previous experiments provided an assessment of the effect of varying parameter values
of individual components in the system with respect to the base organization. In this section
results are presented for experiments in which queues, cache banks and memory modules are

changed in concert.

Each configuration is identified by 5 parameters, (pq,cq,cb,mq,mm), where pq is the proces-
sor queue depth, cq the cache queue depth, cb the number of cache banks, mqg the miss queue

depth, and mm the number of memory modules. The base system is therefore (1,1,4,2,4).

In this section, the results from previous experiments where only a single component of the
system sysiem was changed relative to the base system, are often used in comparisons with the
results from the collective change experiments. To refer to these "single component change"
configurations we use the following notation. The base system is Bg. Increasing the number of
cache banks of the base system from 4 to 8, as was done in the cache bank experiments, I'CS;lltS
in a Bgcp or (1,1,8,2,4) configuration. Similarly increasing the cache miss queue depth, of the

base system, from 1 to 4 results in a B4,,,q or (1,1,4,4,4) configuration. The results are shown in
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Table 4.6b.

4.6.1. Queues and cache banks, configuration (1,8,4,4,4) and (1,16,4,4,4)

Though implementation details have not been discussed, it is clear that the cost of increas-
ing the number of cache banks is much higher than that of increasing tac queue depths, particu-
larly the processor and cache queues. When a similar performance is obtained by two systems

that differ in the number of cache banks and processor and cache queue depths, the system with

NEWRZ LFK18
system norm. it B miss | mem - nom. hit . miss | mem s
config®® cptim | rato tpsrall Lswait sall | wait tpen cptim | ro tpsrall Lswait sall | wan [pen
(1,1,4,2.4)* 1.00 93.9 0.89 0.78 0.14 0.02 1.86 1.00 99.0 042 0.39 0.04 0.00 0.86
(1,8.4,4,4) 0.96 924 0.57 0.68 0.18 0.04 155 0.98 98.8 0.33 0.34 0.0 0.01 0.74
(1,164,449 0.96 924 0.54 0.50 0.20 0.03 1.35 0.97 98.3 0.30 0.3 0.05 0.01 0.71
(1,1,8.44) 0.95 925 0.50 0.37 023 0.04 123 0.96 98.3 0.3 0.17 0.07 0.01 0.49
(1,1,8.4.8) 0.90 925 0.32 023 0.14 0.06 0.88 0.94 93.7 0.13 0.13 0.05 0.0 0.40
(1.1.8.2.16) 0.92 92.8 0.41 0.3t 0.21 0.04 1.08 0.94 98.3 0.18 0.14 0.05 0.01 0.40
(1,16,16,16,16) 0.85 89.6 0.11 0.08 0.32 | 0.16 1.20 0.91 98.6 0.05 0.00 0.06 0.02 0.18
LFK$ LFK14
(1,1.4.2,9)* 1.00 81.7 262 241 048 0.13 5.30 1.00 94 057 0.68 0.03 0.00 1.28
(1,8,4,4,8) 0.82 79.3 1.63 1.48 055 | 0.15 4.01 0.98 94 0.39 0.52 002 | 000 0.94
(1,164,4,4) 0.79 .1 1.50 1.39 063 | 012 336 0.98 94 0.40 0.54 0.02 | 000 0.97
(1.1.8.4.9) 0.90 764 206 1.63 0.80 0.15 4.96 0.96 9.4 0.15 0.14 0.03 0.00 0.33
(1,1.84,8) 0.74 mn2 1.20 0.97 047 0.21 39 0.96 9.5 0.14 0.13 0.02 0.01 0.31
(1.1,82,16) 0.81 76.9 1.58 1.25 0.66 02t 4.13 0.96 995 0.15 0.14 0.02 0.00 033
(1,16,16,16,16) 0.54 83.8 0.08 0.00 0.07 0.5t 1.39 0.95 99.3 0.05 0.05 0.03 0.01 0.18
* base system
Table 4.6a: Collective changes
NEWRZ LFK18
systern norm. hit t t . miss mam t_ norm. hat t t R miss mem t_
se | cpum | no | pstall | “swait | quy | waig | ‘pen | cptim | ratio | pstall | ‘swait | g | waic | pen
(1.84,24) 0.97 93.2 0.76 0.68 0.28 0.02 1.77 0.98 989 0.33 0.4 0.06 0.00 0.74
(1,164,2,4) 0.93 93 0.63 0.57 028 | 0.02 1.54 0.98 99.0 032 0.33 0.06 0.01 0.73
(1.1,8,2.4) 0.91 923 052 0.38 026 | 0.03 1.24 0.96 98.9 0.23 0.17 0.08 0.01 0.50
(1.1,16,2,4) 0.89 92.5 0.45 031 0.47 0.04 135 0.94 93.8 0.16 0.09 0.14 0.01 043
(1,1.444) 0.94 92.7 O.iSFK . 0.44 0.09 0.02 1.28 0.99 98.8 0.29 0.37 0.03 0.01 0.81
LFK14

(184,29 093 81.7 223 2.03 0.78 0.07 522 0.98 95 0.36 0.47 0.03 0.00 0.86
(1,164.2,4) 0.83 83.7 1.72 159 0.78 0.07 423 0.98 9.5 0.39 0.53 0.03 0.00 095
(1.1.82,9) 0.90 ne 2.06 1.61 0386 | 0.09 479 097 NS 0.18 0.17 0.03 0.00 0.39
(1,1,16,2,4) 0.90 754 2.04 129 190 | 0.16 5713 0.96 95 0.13 0.09 0.06 | 0.00 0.29
(1,14,44) 0.93 74.8 225 2.03 0.42 0.08 4.94 1.00 9.4 0.58 0.70 0.02 0.00 1.31

* (pq,cq,cb,mq,mm)
Table 4.6b: Previous results re¢ferred to in section 4.6




83

fewer cache banks would generally be preferred. The previous experiments suggest that increas-
ing the cache queue depth reduces the proc stall and switch wait, but increases the miss stall.
Increasing the miss queue depth reduces the switch wait and the miss stall. Using a system with
4 cache banks, we consider what processor and cache queue depths would result in an overall
performance (cp time) comparable to a base system with 8 cache banks i.e. Bgy. In the first
configuration the cache queue depth is increased to 8 and the miss queue depth to 4 with respect
to the base system, i.e. (1,8,4,4,4). In the second experiment the cache queue depth is further

increased from 8 to 16, for a (1,16,4,4,4) configuration.

As with previous results, increasing the cache queue reduces proc stall and switch wait of
(1,8,4,4,4) relative to By. All routines show overall performance increases (decreases in ¢p
rime) with respect to B, but the overall system performance is similar to a base system with 8
cache queues i.e. Bg,, except for LFK8 where the performance of (1,8,4,4,4) is much better
than Bg.,. LFK8 has a significantly lower hit ratio than the other routines. The two additional
miss queue positions in (1,8,4,4,4) with respect to-Bg., helps to reduce the miss srall of LFK8
from 0.78 for B g, to 0.55 for (1,8,4,4,4). However a reduction in miss szall does not necessarily
indicate improved performance, for instance By shows the lowest values for miss stall of the
three configurations (B, B3, and (1,8,4,4,4)), but this is because the short cache queue in B
results in more bank busy and switch conflicts (higher values for proc stall and switch wair)
which reduces rate of references accessing the cache and consequently the rate of misses enter-

ing the miss queues.

In comparing the overall system performance of (1,8,4,4,4) with a base system with miss
queues of depth 4, i.e. B 4y, the overall performance of NEWRZ is slightly worse for (1,8,4,4,9)

than for B4m,, but LFK18 and LFK14 are slightly better with (.1,8,4,4,4). While deep cache
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queues help the processor pipeline, the effect of increasing the miss reference arrival rate is to
create additional stalls at the miss queue. For instance in NEWRZ, B 4,,, has a miss stall of 0.09

cycles per reference while configuration (1,8,4,4,4) has a miss stall of 0.18 cycles per reference.

LFK8 again shows a much higher overall performance with (1,8,4,4,4) than with B 4.
With (1,8,4,4,4), LFK8 has a higher value of miss szall than for the configurations B and 84,4,

but has a lower value for proc stall and switch wait.

Increasing the cache queue depth of configuration (1,8,4,4,4) to 16 i.e. (1,16,4,4,4), result in
some reductions in proc stall and switch wait, but only LFK8 and LFK18 show even a minimal

improvement in cp time.

4.6.2. Configurations (1,1,8,4,4), (1,1,8,4,8), and (1,1,8,2,16)

In the next configuration the number of cache banks is increased to 8. The cache bank
experiments showed that increasing the number of cache banks increased the rate of references
passing through the cache segment including cache misses. To handle this increase in the arrival
rate of the misses, the miss queue depth is increased to 4. As the effect of the cache queues on
the processor pipeline is small compared with the cache bank increase, we keep its depth at the

minimum. This configuration is (1,1,8,4,4).

As expected the system performs better (lower cp time) than the previous "multiple change”
and B configurations except for LFK8. LFK8 has a low hit ratio and the increase in the number
of cache banks and cache queues depth lowers the hit ratio, increasing the number of misses han-
dled in the cache. For all routines the (1,1,8,4,4) configuration increases the miss stall over the
previous configurations but only LFKS8, which suffers a large miss szai! increase, shovs;s a

decrease in overall performance as a result.

| SN G0 S G0 BB BB GNP S 0 WP G N D SN SN O% =G G o
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When (1,1,8,4,4) is compared to a base system with 8 cache banks, i.e. Bg., (where the
difference between the two configurations is only in the depth of the miss queues), three of the
routines (LFKS, LFK14 and LFK18) show comparable cp time to Bg., but for NEWRZ,
(1,1,8,4,4) shows a higher cp rime when compared with Bg.,. Both LFK8 and NEWRZ have
relatively low hit ratios, but the shorter miss queue of B g, results in a much better overall per-
formance for By, over (1,1,8,4,4). Comparing the performance of LFK8 with (1,1,8,4,4),
(1,16,4,4,8) and (1,8,4,2,4) shows that increasing the number of cache banks to 8§ has both
increased the number of misses and increased their arrival rate. Since the memory system is

unable to service the requests at a suitable rate, it now becomes the limiting factor.

Given a fixed memory module access latency, the only option available for improving the
memory system’s performance is to increase the number of memory modules. In the next
configuration the number of memory modules is increased from 4 to 8 i.e. (1,1,8,4,8,). Table
4.6a shows that this provides a good performance improvement compared to B for all routines,
and has equal or better performance than (1,1,8,4,4) and much better for LFK8. The increased
number of memory modules compensate for the increased number of cache banks and reduces
the miss stall cycles to a level comparable with Bg. Furthermore, the increased performance of
the miss handling by the cache generally reduces proc stall and switch wait slightly (when com-
pared with Bg.,) such that the overall performance is close to that of B |, for NEWRZ, LFK18
and LFK1S5, and significantly exceeds it for LFK8. The performance of LFK8 with (1,1.8,4,8)
exceeds the performance with (1,1,8,4.4) since increasing unly the number of cache barks
increases the number of misses to the miss queues resulting in a miss stall penalty of 0.8. When
the memory modules are increased as well, more memory modules are available for sewiéi;lg
misses and miss stall for LFX8 is reduced to 0.47. This result supports the notion that the previ-

ous (1,1,8,4,4) configuration was limited by memory service for LFKS.
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Surprisingly there is an increase in the mem wait for NEWRZ and LFK3 for both (1,1,8,4,4)
and (1,1,8,4,8), relative to Bg. These two routines also showed the largest decreases in the hit
ratio when the number of cache banks were increased from 4 to 8 (B to Bgcp). Intuidvely, the
hit ratio may have been expected to increase again when more memory modules were added, but
the increases, if any, are modest and do not approach the hit ratio of By. However, recall that
mem wait is the time taken to gain access to and use the bus. Mem wait includes any cycles
necessary to get the bus only to find the requested module busy. Returning data has the highest
priority for the bus. The increase in the number of higher priority bus requesters, i.e. memory
modules, increases mem wait for the processors. But this increase only degrades the overall per-

formance by a small fraction.

These results indicate that increasing the number of memory modules reduces the memory
as a performance bottleneck. In the next configuration the number of memory modules is
increased to 16 while decreasing the number of miss queue entries to 2, i.e. (1,1,8,2,16). Just
decreasing the miss queue depth would normally lead to an increase in miss stall. However, by
increasing the number of memory modules we hope to minimize such an effect. F_urthermore,
reducing the miss queue depth should improve the hit ratio. Therefore, the tradeoff is cache

throughput versus memory throughput.

The results, contrary to the hopes stated above, show that the overall system performance
for (1,1,8,4,8) and (1,1,8,2,16) is about the same for the two routines with the high hit ratios
(LFK18 and LFK14), but worse for the high miss ratio routines (NEWRZ and especially for
LFKS). In the high hit ratio routines there is only a small amount of miss traffic, hence the
changes in the miss queue depth and memory modules have little effect on the performance. For

NEWRZ and LFKS, even though the increase in the number of memory modules provide for
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potential parallelism among memory accesses, the shorter miss queue prevents the system from
exploiting it effectively. The short miss queue has become the limiting factor in their perform-
ance. The respective miss stall has increased from 0.14 for (1,1,8,4,8) to 0.21 for (1,1,8,4,16) for

NEWRZ and from 0.47 to 0.66 for LFKS8.

4.6.3. Configuration (1,16,16,16,16)

In this last configuration, the system size is dramatically increased. As with most of the
previous results, the behavior of the system depends on the hit ratio of the routines. For the rou-
tines with a high hit ratio the overall performance of (1,16,16,16,16) is slightly better than for
(1,1,8,4,8). The combination of more cache hanks and very deep cache queues virtually elim-
inates proc stall and switch wait and the processor pipeline performance approaches its max-
imum.! The overall performance improvement is mainly due to the processor pipeline. Further
system performance improvements resulting from enhancing miss servers are unlikely to be
significant as the number of misses is very low. Though mem wair increases, it does not contri-
bute a significant amount to the number of penalty cycles. Hence, any attempts to reduce this

factor would not yield any real performance improvements over the (1,16,16,16,16)

configuration.

In the low hit ratio routines, LFK8 and NEWRZ, significant system performance improve-
ments are seen with (1,16,16,16,16). The processor pipeline also shows dramatically less proc
stall and switch wait. Compared io the configurations (1,1,8,4,8) and (1,1,8,2,16) the absolute
decrease in stall and wait cycles in the processor pipeline is greater than for the high hit r_gtio

routines, which has not been the general trend with previous configurations. The performance of

! The maximum performance for the processor pipeline is when proc stall = switch wait = 0.
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the cache pipeline also shows some contrary trends from earlier configurations. In NEWRZ, the
cache pipeline performance is worse than the previous two configurations, so the overall per-
formance improvement is due to the processor pipeline. However although mem wait in LFK8
increased, miss stall was reduced dramatically and the result is a performance improvement sub-

stantially greater than any previous configuration.

4.7. Performance indices

In the experiments that varied the processor and cache queue depths, the results generally
indicate small increases of performance with increasing queue depths beyond those of the base
system. The cache miss ratic, however, remains relatively constant across changes in the queue
depths. For example, the resuits for LFK8 with cache queue depths of 1 (the base system) and 16
both have a hit ratio of 81.7%, but the completion time and 7,., decrease by approximately 7%
and 8.5%, respectively. As the role of the queues is simply to buffer references before the cache,
a relatively constant cache hit ratio over variations in the queue depths is to be expected. The
highest percentage difference in the cache hit ratio is approximately 5%. The difference can
probably be attributed to some re-ordering of the references that can occur due to the buffering.
The index #,,., does provide a general indication of performance, but it is not a linear relation
and does not always even change in the same direction, as noted in the experiments with increas-
ing processor queues. This may be due to inaccuracies in the model for Tpen and the simulation
model. For instance, f,., does not account for the time between issuing references and the simu-
lation model does no detailed modeling of how cache and memory data is returned to the proces-
sors. However, since the performance of the memory system, miss queues and the cache ult-
mately affect the issuing of references by the processor pipeline, proc stall seems to provide a

generally reliable indication of performance for this type of system.
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The experiments with increasing the number of cache banks and miss queue depth show
how a simple cache hit ratio (that does not account for queue matched misses) can provide a
very misleading indication of system performance. In both simulation cases the routines gen-
erally show a consistent decrease in the hit ratio, but the completion time and ?,,, indicate a per-
formance increase. As discussed in sections 4.4 and 4.5, this miss rado effect is due to the
increase in concurrency or overlap in handling closely issued references to the same bloclk With
the increase in overlap, references to the same block can be moved past the cache before the first
miss to the block can fetch the data, whereas without overlap, multiple references to the same
block are often stalled before addressing the cache until the memory data is returned and there-
fore becoming hits. If the highest cache hit ratio can be obtained by stalling a pipeline, this sug-

gests that the cache hit ratio is an incorrect performance index for this type of system.

The conditions that result in a low hit ratio in the system, i.e. closely issued references to
the same block and frequent cache loading, is characteristic of vectorizable program loops. For
these programs a cache that handles miss references concurrently will result in poorer perform-
ance unless a mechanism such as the matching miss queue is used to combine misses to the same
block. In our system, it is this mechanism that allows the performance to increase while the ‘
cache hit ratio decreases. Figure 4.7 shows the percentage of miss references that matched a
pending request in the miss queue. The column max deprh is the total number of buffer positions
in the system for reference misses. Results show that as the buffering increases the percentage of
the references combined also increase. However, we have only seen significant increasés in per-
formance for some of the routines as the number of cache banks and the cache miss queue depth
is increased from the minimal level up to levels found in the base system. This suggests -that
while combining is important it is only one component needed for high performance since

increasing the buffering can also create bottlenecks elsewhere in the system.
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cache banks | max.depth | NEWRZ | LFK18 [ LFKS
1 2 30.74 24.61 28.51

2 4 50.04 41.24 48.25

4* 8 64.94 54.80 62.77

8 16 68.93 59.71 69.49

16 32 72.34 63.05 71.42
miss queue | max.depth | NEWRZ | LFK18 | LFKS8
1 4 32.46 24.52 29.05

2% 8 64.94 54.80 62.77

4 16 74.26 62.28 72.55

8 32 74.11 72.34 75.86

16 64 78.54 77.21 79.03

32 128 82.80 81.00 83.10

* base system

Table 4.7: Percentage of miss references that are combined in the miss queue
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CHAPTER §

CONCLUSIONS

This thesis has reported some results from simulation experiments for a moderate-size mul-
tiprocessor with a shared cache. The disadvantage of a shared cache organization is the potential
for access conflicts. Approaches to reducing and minimizing the effect of these conflicts,
through the use of buffer queues, pipelining, increasing the number of cache banks and interleav-
ing, were discussed. A request matching and combining scheme was used to reduce the number
of requests issued to the memory and a modified write back algorithm was used to reduce cache
pipeline disruptions. Simulation experiments were conducted to examine the effect of the tech-

niques discussed on a set of vectorizable benchmark routines.

The general performance trend, as the result of changing simulation parameters, namely
processor, cache and miss queue depths, and number of cache banks, is shown in Table 5.1.
Increasing the simulation parameters in all cases generally improved performance but the
improvement was most significant for increasing the number of cache banks and miss the queue
depth. A "-" in the table indicates a relatively constant value over the range of values used for

the simulation parameter.
The following are the highlights of the results.

(1) Varying the depth of the processor and cache queues has a limited effect on the overall sys-
tem performance, compared with increasing the number of cache banks and the miss quéue
depth. The processor and cache queue depths had more influence on routines with higher

hit ratios (greater than 99%). Lower hit ratio routines tended to have constantly full queues
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I parameter r hit ratio proc stall | switch wait | miss stall ﬁxzmcm wait
Proc queues - decrease increase - -

cache queues - decrease decrease increase -
cache banks | decrease | decrease decrease increase increase
miss queues | decrease | decrease decrease decrease increase

Table 5.1: Summary of effects of increasing design parameter values

@)

which would need much deeper queues than the largest depths used in these experiments to
see an effect on system performance. The depth of the cache queue had slightly more effect
than the processor queue depth. Even if the queues were made extremely deep, perform-
ance benefits could weli be limited due to an inability of the processor to continue issuing
requests when there are a large number of pending request already issued. This processor

limitation was not modeled in our experiments.

Increasing the number of cache banks or the miss queue depth reduced the number of pro-
cessor queue stalls and switch conflicts. With more banks, the degree of parallel access
increases and the probability of multi-access conflicts decreases. With deeper miss queues,
miss references can be removed from the cache segment, making it available for new
requests and thereby reducing the effect of cache misses on the processor pipeline. There
are, however, two negative effects that suggest that the number of banks and queues should
not be increased arbitrarily. First, as the number of cache banks and the miss queue depth
are increased, the cache hit ratio is decreased. This effect is more significant for routines
with an already low hit ratio (less than 90%), where it can result in performance degrading

stalls in the pipelines. Secondly, increasing the throughput of the cache segment increases
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the rate of arrivals into the miss queue and moves the performance bottleneck into the
cache pipeline. The problem is exacerbated by the increased number of misses due to the
lower hit ratio, which increases the contribution of the cache pipeline to the average

number of penalty cycles per reference.

To improve the performance of the system and to ensure coherence, request combining is
used in the miss queues. Combining miss requests is very important for highly overlapped
miss handling, particularly for vector accesses, a multi-bank shared cache, and deep miss
queues. A reference can result in one of three actions, a hit in the cache, a cache miss that
leads to a memory request, or a cache miss that does not generate a memory request due to
its being combined with a previous miss request. The percentage of miss requests that are
combined with a previous miss increases dramatically as the number of cache banks and

the miss queue depth are increased.

Word interleaving for both the cache banks vand the memory modules yields higher per-
formance than split or block interleaving for most benchmarks. However, it should be noted
that the code used here was not re-optimized for particular variations in system
configuration. It is possible that a re-distribution of the loop iterations among the proces-

sors could make block interleaving far more effective.

Although the hit ratio decreases with increases in the number of cache banks and the read
miss queue depth, the overall performance shows improvement. In a system that allows for
high overlap of cache accesses and servicing of cache misses, the cache miss ratio is not a
good indicator of overall system performance. The average number of cycles that a refer-
ence stalls and waits, Z,,,, can provide an indication of the performance trend. Furthermore

since any stalls and waits ultimately affect the processor and average processor perform-
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ance is very closely related to system performance, proc stall is perhaps the best indication
of system performance. The value of proc stall computed in our work, however, models
only stalls due to blocked requests. It does not model processor stalls due to waiting for the
information in the returned data from a previous request which may be needed in order to
construct further requests. Consequently, #,., used in conjunction with proc stall gives a

more complete indicator of performance.
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