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ABSTRACT

“This paper investigates the spectrum of the jteration operator of some finite element pre-
conditioned Fourier collocation schemes. The first part of the paper analyses one-dimensional
elliptic and hyperbolic model problems ard the advection-diffusion equation. Analytical ex-
pressions of the eigenvalues are obtained with use of symbolic computation. The second
part of the paper considers the set of one-dimensional differential equations resulting from
Fourier analysis (in the tranverse direction) of the 2-D Stokes problem. All results agree with
previous conclusions on the numerical efficiency of finite element preconditioning schemes.

1This research was supported by the National Aeronautics and Space Administration under NASA Con-
tract No. NAS1-18605 while the author was in residence at the Institute for Computer Applications in
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1. INTRODUCTION

In the recent past, Chebyshev collocation schemes have been applied extensively to the
numerical integration of the Navier-Stokes equations [1, 3, 4]. For scalar elliptic problems, it
is well known that the condition number of the matrix system of discrete algebraic equations
increases rapidly with N, the number of degrees of freedom of the problem at hand. Therefore,
the preconditioning technique seems to be the only adequate tool in order to overcome
this numerical burden. The present authors [5, 6] demonstrated that finite elements (FE)
constitute powerful preconditioners for general second-order elliptic equations. In [3], several
fluid flow elements in velocity-pressure formulation were investigated. From the analysis of
the eigenspectrum of the iteration operator, it was shown that the Q2-Q1 element is the
best choice for the steady Stokes problem. As all the previous analyses on finite element
preconditioning were carried out numerically, the present note aims at analytical resuits
through use of symbolic manipulation languages (cfr. [10]).

For the sake of simplicity, we will restrict ourselves to the study of a finite element
preconditioned Fourier collocation scheme. In this case, the mesh size is uniform and the
algebra is considerably reduced. In Section 2, a one-dimensional model is considered. The
colincation process is preconditioned by Lagrangian linear, quadratic, cubic and Hermite
cubic elements, respectively. The Richardson iteration method is set up with these FE
preconditioners as approximate operators and algebraic solvers. Using the spatial structure
of the eigenvectors of the Fourier solutions, one may perform a full analysis of the eigenvalues
of the iteration operator. This theoretical investigation corroborates the previous numerical
analyses [6]. In Section 3, a one-dimensional hyperbolic model is investigated using linear and
quadratic FE preconditioning. The upwinding technique is also examined. A further model
consists in an advection-diffusion equation. In Section 4, the Stokes problem is reduced to
a 1-D incompressible flow model amenable to Fourier discretization. The Q2-Q1 and Q1-P0
elements are candidates as preconditioners. A similar Fourier analysis is done. The results
corroborate numerical experiments carried out in the framework of Chebyshev collocation

(3].
2. ELLIPTIC MODEL
Let us first consider the simple elliptic problem:
—Uze = f, 0<z<2n, (2.1)

with periedic boundary conditions. The subscript indicates partial derivative. The Fourier
approximation of the dependent variable u is

Nja-1
uy = Y, upe't, 0<j<N, (2.2)
p:—N/?

where 4, are the discrete Fourier coefficients and z; the collocation points defined by

2n3
N

T; =

j €[0,N[. (2.3)




The linear system corresponding to (2.1) may be found in [1] and will be denoted by L..
The eigenfunctions of (2.1) are

&ip)=¢€%,  0<j<N, (24)
with the corresponding eigenvalues
N N
Ap)=p*  pel-5,5 -1 (2.5)

The collocation problem will be preconditioned by finite elements. Introducing the approxi-
mate FE operator L, the preconditioned Richardson iteration is written as:

a**t = @f — o L(La* - f), (2.6)

where k is an iteration index, aj a relaxation factor and &, f the vectors corresponding to the
unknowns and source terms at the collocation points. The convergence of (2.6) is governed
by the spectral radius p(A) of the iteration operator defined by A = I — aL~'L.. The
optimal value of the relaxation factor is:

2

min T A'ma:z:

Qopt = Y ) (27)
where Amin and Apg, are the minimum and maximum eigenvalues of z‘ch. An approximate
estimate of the number of iterations n needed to reduce the error norm by a factor { is given
by

n = ~ log (/ Ru(A), (25)

where R (A) = —log p(A) is the asymptotic rate of convergence of the iteration matrix.
The spectral radius p(A) which is involved in the error reduction process with the use of a,p
(Eq. (2.7)) is given by \ \
maz — “‘min
p(A) Y T (2.9)

In order to investigate this quantity for various preconditioners, we have to define the
finite element problem more precisely.

Lagrangian linear elements, Hermite cubic elements (i.e., @1, P3 in Ciarlet’s notations [2])
as well as higher-order Lagrangian interpolants have their vertices at the Fourier collocation
grid (2.3). However, for Lagrangian quadratics (Q2), mid-points are added at

27, 1 .
j-f-a} = J—V'(] + '2')1 JE [Oy‘v[: (210)

T
while for Lagrangian cubics (Q3), we have additional grid nodes located at

41, Tp1, T EO,N] (2.11)

with obvious definitions. For the Lagrangian case, the FE unknowns are the nodal values,
while for the Hermite case, the unknowns are u; and u}, the prime denoting the first-order
derivative of u. In [5], the iteration operator is written as:

A=1- S;*Mul,Le, (2.12)
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where S}, is the stiffness matrix, M}, the mass matrix, I;, an interpolation matrix evaluating
the Fourier interpolant of the collocation operator at the FE nodes. The mesh size of the
FE grid is defined by

h=2w/N.

For @1 elements, I, reduces to the unii matrix; for higher-order interpolants however, the
stsucture of this matrix is more complicated. In order to avoid writing the details of I,
we will systematically assume the use of static condensation. Consequently, the iteration
operator may be written:

A=1-57MiL,, (2.13)

where S5, and M), refer to stiffness and mass matrices after static condensation.

2.1. Linear Lagrangian Elements

For an interior node, the expressions for the stiffness and mass matrices are well-known:
i
Swuj = 2(=uj-1 + 2u; — vin), (2.14)

3
M,f; = E(f.‘i—l +4f; + fir1) (2.15)

Fourier analysis of (2.14), (2.15) with the eigenfunction (2.4) leads to the expression of the
eigensnectrum of S; ' My L,, denoted by o(p),

(ph/2)? (2 + cosph) N N

Typically, the second factor in the right-hand side of (2.16) comes from the contribution
of the mass matrix. In the case of finite difference (FD) preconditioning, this factor is
one. For p = 0, o(p) = 1, while for p = —N/2,0(p) = w?/12. This last value should be
compared to the FD equivelent which is o(p) = #2?/4 [7]. The eigenvalue spectrum of the
FE preconditioning is reduced because of the beneficial presence of the mass matrix. Fig. 1
shows the behavior of o(p) with respect to p for b = 2x/100. The function has a minimum
value equal to 0.693. Therefore, the optimum value for o is

opt ~ 1.18, (2.17)

and over-relaxation is possible for FE preconditioning unlike the FD preconditioning where
under-relaxation is required to converge. In practice, the Q1 preconditioning with a spectral
radius of 0.18 converges twice as fast as the FD preconditioner whose spectral radius is of
the order of 0.42.



2.2. Quadratic Lagrangian Elements
The equations related to nodes j and j + } may be cast in the following matrix form:
Uiy fi-1
515(_18 A A ) i ZThE("l s _0§) f”}f . (2.18)
0 0 -8 16 -8/ luj 0 1 8 1 fixy

Ujt+1 3+1

(1L

The use of static condensation eliminates the contribution of u,_; and u,, 1 and Eq. (2.15)
reduces to only one relationship for node j on the collocation gri

F(ior 25— wy) = Sy + i+ Fiyy) (2.19)

Let us notice that for Sy on the left hand-side of (2.19), we recover the stiffness matrix S,
associated to Q1 elements whereas in the right-hand side, M} corresponds to a different
quadrature rule. Carrying out the Fourier analysis of (2.19), one obtains

(ph/2)* 1 N N
= —_—— < p < —
a(p) sin’ph/23(1 + 2 cos(ph/2)), 5 < p < 5

Y (2.20)
For the particular vaiues p = 0 and p = —N/2,0(p) is equal to 1 and w?/12,respectively. As
o(p) is a monotically decreasing function with respect to p (Fig. 1), the optimum value of a
is

Qopt = 2/(1 + 7?/12) = 1.0974, (2.21)
and the corresponding spectral radius p(A) is equal to 0.0974.

2.3. Cubic Lagrangian Elements

For the sake of compactness, we give the local stiffness and mass matrices over the uniform
mesh:
37/20 -—-189/80 27/40  -13/80
2| -189/80  27/5  —297/80  27/40

Sh=1% 27/J40 —297/80  27/5  —189/80 (2.22)
—13/80  27/40 —189/80  37/20
16/105 33/260 —3/70 19/840

M, = | 33/280  27/35  —27/280 —3/70 (2.23)

2| -3/J70 —27/280 27/35  33/280
19/840  -3/70  33/280 16/10%

Assembling the matrices of (2.22), (2.23) over two adjacent elements and eliminating the

four unknowns attached to the interior nodes w;y1/3, uj12/3, we are left with the relation:

1 h , fi_ 3 13 3 ;
x(»u,-_l +2u; —ujp) = 1—(-‘%1 + Zf"§ +3fi 1+ —6‘fj +3f,-+§ + Zf,'+§ + ngl) (2.24)
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Here again, as in the previous case, we recover in the left-hand side of (2.24) the stiffness
matrix of QI elements. Fourier analysis of (2.24) leads to the eigenvalue spectrum o{p) .

(ph/2)* 1,4 ph ph N N
= ' 10 = S <pg=—1. (2
a(p) sin?(ph/2) 10(J3 3 +3cos Y — +5cos 3 += ), 7 <SPS 1. (2.25)

The particular values of o(p) corresponding to p = 0 and p = ~N/2 are o(p) = 1 and
497%/480 ~ 1.007522. The optimal value.of the relaxation factor is given by 2/(1 +
4972/480) ~ 0.9963 and the corresponding spectral radius p(A) is equal to 0.00375.

Looking back at the results in the previous subsections, one observes that the spectral
radius p(A) diminishes with increasing polynomial degrees. This does not mean however
that one should use higher order elements in the preconditioning because they involve more
computational work as the bandwidth of the algebraic system increases.

2.4. Cubic Hermite Elements

At node 7, the discrete equations are

6 1
5h(“’1 1= 2uj + i) — m(u;’—l - u.,i+1) = 420 (f’— J'+1)

(2.26)
+T7_(10f_1 1+ fJ+ fJ+1))
1 h . 32
Tﬁ(UJ 1~ u1+1) 30( - qu + u'j+1) = 420 (fJ 1 fj+1)
(2.27)
, 8
140(f—- §f],+f_;+1)‘
Fourier analyzing (2.26), one gets the spectrum:
(ph/2)? 13

2649 —ph h),

7(p) = 6sin’(ph/2) — (ph/2) sin(ph/2) cos(ph/2)7( +9cosph + 67 sin ph)
|ph| € [0, ]. (2.28)

For p = 0 and —N/2, o(p) = 1 an 177?/168 ~ 0.9987, respectively. Fig. 1 displays the
behavior of o(p), which is first slightly decreasing with respect to p achieving its minimum
value 0.97722 and then increasing to 1. The optimal value of a is 1.01152 and the cor-
responding spectral radius 0.0115, an intermediate value in between those of Q2 and Q3
preconditioning.

3. HYPERBOLIC PROBLEMS

We now turn our attention to the first-order differential equation

uz = f, (3.1)




in the periodic case. The eigenfunctions of (3.1} are again (2.4) with the eigenvalues

N N

A(p) = ip, pE[—g;-z——ll-

3.1. Linear Lagrangian Elements

Using the standard Galerkin approach, a centered scheme is produced and yields the
discrete equation

Ujp1 — Uje h
"’—H*E—Ll = glfi-i +4fi + fin). (3.2)
By Fourier analysis, we obtain:
_ ph 24 cosph
U(p) - Sinph 3 ] 'ph, € [0) 7(']. (3'3)

Forp = 0, o(p) = 1, while 0(—N/2) is obviously unbounded as in the FD case. The presence
of the mass matrix does not help to circumvent the difficulty.

One may proceed, however, using an upwinding technique. This has been a key step
to treat hyperbolic problems. In finite elements, the method uses separate test and trial
function spaces, i.e., the Petrov-Galerkin method. There are several ways to implement
upwinding. Let us introduce the weight functions w'(r), (¢ = 1,2) defined on the reference
interval [—1, +1] by Heinrich and Zienkiewicz [8):

w'(r) = @'(r) + (=1)eF(r), -1<r<1, (3.4)

where (1) are the linear Lagrangian trial functions, F(r) an auxiliary quadratic element
vanishing at both end points 3
F(r)= Z(l —r?), (3.5)

and € the upwinding parameter to be given independently. Using ¢* and w' as trial and test
functions respectively, one gets

1+e € 1-¢ 2+3€
oh 57 Yi-1+ h“: + "'2‘}T'uj+1 =——fia+z fJ f1+1 (3-6)

This equation reduces to (3.2) when € = 0 (no upwinding). With a value of € as yet undefined,
the Fourier analysis of (3.6) leads to complex eigenvalues given by:

1 1
6 (1 — cosph) + isinph

o(p) = (3eph sin ph + 2iph(2 + cos ph)), lpkl € [0,7). (3.7)
For p = 0,0(p) = 1 while for p = ~N/2,0(p) = i/2 independently of the value of e.
Upwinding forces the spectrum of §; My L. almost entirely inside the unit circle, as shown
on Fig. 2 where the eigenvalues (3.7) have been plotted for ¢ = 1. The spectral radius
of the matrix A in this case is equal tc \/5/ 2 and under-relaxation is required in order to
ensure convergence of the preconditioning iterations. The eigenvalues (3.7) being complex,
the evaluations of oy and the spectral radius p(A) are no longer given by (2.7) and (2.9).
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3.2. Quadratic Lagrangian Elements

Another way to solve (3.1) consists in using a FE preconditioner based on quadratic
Lagrangian elements. Applying the Galerkin approach and assembling the contributions of
two adjacent elements at node j, one obtains a set of three equations related t~ nodes j and
j £ } similar io (2.18), which are cast in matrix form:

2 ) Uj—1 fi-1
-2 0 %2 0 0 u;_1 2 16 2 0 O fioy
3 3 1= h -
oz 2 1oy = |-1 2 8 2 -1 51 38
0 o -390 32 Ujsl 0 0 2 16 2 fivs
Ujt1 fis

If static condensation is carried out through Gaussian elimination, the contribution of the
exterior nodes u;_1, u;4+; disappears and one is left with a staggered scheme:

h
(U1 —uj1) = Ea(“fj—l +12f; 1 +18f5+ 12551 — fi1), (3.9)
for Fourier analysis. Its spectrum is given by:

2,‘,5 9+12cos%" — cosph

sin 22-’5 20 !

a(p) = lph| € [0, 7]. (3.10)
It is monotonically decreasing and bounded by ¢(0) = 1 and ¢(—N/2) = 7/4 as shown on
Fig. 3. One should notice that the first term in the right-hand side of (3.10) is identica:
to the spectrum obtained in the FD case where the functicn is computed on the main grid
while the derivative is evaluated by first-order differences on a staggered grid. The second
term whose maximum value is equal to 1 is induced by the presence of the mass matrix and
reduces to unity in the FD case. The optimal value of a is equal to

Copt = 2/(1 + 7/4) = 1.1202,

and the corresponding spectral radius p(A) is equal to 0.1202. This staggered scheme gener-
ated by Q2 elements is the key of success for FE preconditioning of Navier-Stokes problems.
This excellent behavior explains the reason why in Demaret-Deville [5], the relaxation pa-
rameter was almost independent of the Reynolds number.

3.3. Advection-Diffusion Model

The last scalar model analyzed in this paper is the one-dimensional advection-diffusion
problem. The differential equation writes

— KUz + cuz = f(z), (3.11)

where « is the diffusion coefficient and ¢ the constant advection velocity. Particular interest
bears on advection dominated problems which impose severe conditions on the element mesh
size (cfr. Thomasset [9]). With the eigenvectors (2.4), the eigenvalues of (3.11) are

1 N N
A(P):PZ*‘ 1 pPE [—?,7—

T, 1]’




where 7 is the cell Reynolds number defined by v = ch/x.
Using the linear FE basis and upwinding introduced in the previous section, one gets the
discrete equations

14
2

€ 1—¢ h?
~( 4y uia + (24 ey — (L v Jusna = (2 + 3€) fa + 85 + (2~ 3€) fy41).
(3.12)
where € is the upwinding parameter of Eq. (3.4). With no upwinding (i.e., € = 0), stability
requirements restrict v to values < 2. The Fourier analysis of (3.12) is straightforward. The

eigenvalues of (3.12) are complex and given by:

(%) izi;1):(2 + cosph) + e'y%‘ sin ph + ih%"(Z + cosph) — e-(%‘-)i sin ph| Iph| € [0,7]
g = c .
P 2(2 + ey) sin® 2 + iy sin ph PRSI

' (3.13)

In absence of upwinding, Eq. (3.13) reduces to an analytical expression whose real and
imaginary parts may be written in compact form:

4phsin® B + v?sin ph 2 + cos ph
16 sin* E.L,b + y?sinph 3 ’

Re(o(p)) = ph

4 sin? %—" — phsinph 2 + cos ph
16 sin* %ﬁ + y?sin ph 3

Im(o(p)) = 1ph (3.14)
The factor (2 + cosph)/3 in the right-hand side of (3.14) is another example of the contri-
bution of the mass matrix in FE preconditioning. Like in Eq (2.16), this factor reduces
to unity in the expression of the eigenvalues corresponding to FD preconditioning. One
can draw similar conclusions to the diffusion problem, except for the complex nature of the
eigenvalues. Introducing ph = 0 and ph = 7 into the eigenvalues of the FD case gives the
bounds of the spectrum:

4
1 < Re(6FP) < WI 0 < Im(a¥P) < % (3.15)

In the FE case, the upper bounds are reduced by a factor 3 because of the presence of the
mass matrix. Figure 4 displays the result (v.14) [or both FD and FE preconditionings and
for two different values of v (i.e., 0.2 and 2). Evcn in the limit case v = 2, the spectrum of
A for FE preconditioning lies inside the unit circle. Reducing the value of the cell Reynolds
number brings the eigenvalues closer to the real axis.

Figure 5 exhibits (3.13) with v = 2, with and without vpwinding. In the upwinding
case, € was chosen equal to 1. The eigenspectrum is rotated counterclockwise and slightly
stretched inducing a somewhat larger spectral radius.

4. STOKES EQUATIONS
Let us write the Stokes equations in stress formulation:
divg + pf = 0, (4.1)

8




divy = 0. (4.2)

The symbol g denotes the stress tensor, p is the density, [ the body force term and v is
the velocity field. Eq. (4.1) is the momentum equation and Eq. (4.2) enforces the continuity
constraint. The 2-D Stokes problem may be reduced to a 1-D problem if the solution of
(4.1), (4.2) is sought as a Fourier mode:

v = y(2)e™,p = p(z)e™. (4.3)

Introducing (4.3) in (4.1), (4.2), we get:

0

—(ik +-31)-¢k 2uk®v 4 pf, =0 (4.5)

pBZU 5z D—cukv T+ pJy = U, :
6~u-+-zkv_0 0<z< 27 (4.6)
Oz

The velocity and pressure fields are assumed to be 27-periodic. This 1-D problem is dis-
cretized in the z direction using Fourier series of type (2 2) for each variable. The discrete
collocation equations are precor.ditioned by finite elements such as the Q2 — @1 and Q1 - PO
elements. The FE equations come from Galerkin projection. Introducing v and ¢; the trial
functions for the FE approximations of the velocity and pressure fields, respectively, such
that

N
v(z) =d vy, plx) =) pe, (4.7)
=1

the discrete FE equations are obtained by use of the divergence theorem as tool for the
integration by parts with the notation f, = f, f, =

Y 2udy + pk?Bylw —tkud Chyv =Y Dupr =Y Bufi, 0<;<M, (4.8)
1 { ! 1

kY Chur + 3 2uk®By + pAplui +2kY Eupr =Y Bug, 0<ji<M, (49)
{ { 1 {
-3 Djw —~ikY Eju =0, O0<;<N. (4.10)
l !

In (4.8-4.10), the various matrices are defined by the relationships:
oy, 0 0
Ay —/ 1/)1 11)1 z, By= /%dadﬂ?, Ci= /’J’J‘J%d%

Jl = /ad}:’dw Eﬂ = /gpjwldz. (411)




4.1. Q2-Q1 Elements

For this element, M = 2N. Carrying through the algebra involved by the quadratures
(4.11) and assembling by direct stiffness the contributions of the two elements connected to
node j, we obtain:

2
g%(uj-x — 8uj-1/2 + 14u; — 8ujy1/a + ujia)
k*h ik
+#—3—0—(——u]'_1 + 2’UJ'_,1/2 -+ 8‘U.J' -+ 2UJ‘+1/3 - uj+1) - -—éﬁ(vj_l — 4‘()]'__1/2 -+ 4'UJ'+1/2 — ‘UJ'+1)
1 h
—5(Pi1 - Pis1) = @(—fj—l +2fjc12 + 8f; + 2f54172 — fiv)s
o "k (4.12)
4 )
5—%(—-41{, + 8uJ'+1/2 — 4u,—+1) + %—(2uj + 16u,-+1/g + 2u_,-+1) - -3—u(—‘0j + ’UJ'+1)
(4.13)
2 h i
—g(Pj —Pjs1) = %(2f,~ + 16 fi41/2 + 2f541)s
1k k*h
'6—#(%1—1 +4ujo1ja — 450172 + uj) — F—lg—(”vj—l + 2vj-172 + 8v; + 204172 — Vj41)
2u 1kh
+?(v,-1 — 8v; 1,2 + 14v; — 8vjq1/0 + vj41) — 3P
h
= 55(*%-1 + 2g;-172 + 895 + 294172 — gi+1)y
. ok (4.14)
2ikp 8 7
3 (45 ~ ujp) + 5%(*”1 + 2054172 = Vi) - 5 (vj + 8vjy1/2 + v541)
" X (4.15)
1
— (Pt P )= i+ 8fmat fi+1)s
1 2k
g(—uj_x —4u,_ 172 + dujpr/2 + Ujp1) + —3-(1),'_1/2 +v; + 'U]‘+1/3) = 0. (4.16)

Eqgs. (4.12), (4.13) and (4.16) correspond to momentum and incompressibility relations,
while (4.13) and (4.15) are the momentum equations associated to mid-node z;j41/;. Similar
expressions hold for mid-node z,_1/3 with appropriate shifts for the indices.

Now, static condensation represents a formidable task and is greatly helped by the sym-
bolic manipulation program. Elimination of w;+1/2,v;4+1/2 leads to a matrix system of order

3.
The full Fourier olution gives the collocation matrix L.:

—2ul® — k% —pkl —1l
L.= —ukl —pl? —2uk? —ik |, (4.17)
—l —ik 0
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where [ is the wavenumber in the z direction.

The analytical computation of 5',: IM, L, is performed as far as the symbolic program
can handle tractable expressions. Then numerical evaluation of the eigenspectrum is done.
Because of the divergence-free constraint, a zero eigenvalue is systematically obtained. In
Figures 6 and 7, the eigenspectrum of §;' MyL, are plotted for two cases k = 1 and k =
10, respectively. In these two figures, the lower curve shows the same behavior as the
eigenspectrum of the elliptic problem solved by Q2 elements. For I = —N/2, o(l) is equal to
73/12. For the other curve, 6(0) = 1 and o(~N/2) is close to 2.07. Therefore, the optimal
a value is given by

Qope = 2/(2.07 + 72/12) ~ 0.69,

a value close to 2/3 obtained by Demaret-Deville (3] for a 2-D Chebyshev collocation dis-
cretization of the Stokes problem preconditioned by Q2-Q1 elements.

4.2. Q1-PO Element

The quadratures (4.11) provide less complicated discrete equations in this case:

ghﬁ(—u_v-l +2u; — ) - #};kz(u;‘-x +4du; + ujpn) + ﬂ;ﬁ(vm ~ vj-1)
(4.18)
~P; T Pye1 = %(f;’—x +4f;+ fivi)h
ﬁ;ﬁ(%—l = Upe1) — #,?:h(vj—l +4v; +vj4) + %(_UJ—I + 2u; — Y1)
ik . (4.19)
=5 (P 1 Pye1) = £(g5-1 + 495 + gin1),
—Uy_1 F Ujpy + ﬁcz—}i(v,-_l + 2v; + v;41) = 0. (4.20)

Obviously, this element generates second-order differences for partial derivatives. When the
mass matrix is involved, the standard weighted mean between three adjacent nodes appears
in the expressions. No static condensation is needed in this case. Fourier analyzing Egs.
(4.18)-(4.20), the stiffness and mass matrices are now:

8¢ sin?(&) + 222¥(2 4 cos Al) pksin bl 2isin(X)
Sh = pksin hl 4#sin?(&) 4+ 3—“—:’—"—(2 +coshl) ikhcos(%) |,
2isin Al ikh(1 4 cos hl) 0
.k h
M), = dza.g(-3-(2 + cos hl), 5(2 + cos hl), 0). (4.21)

In Figures 8 and 9, the eigenspectrum of S;'M,L. are displayed for k = 1 and 10, respec-
tively. In these two figures, the top curve is that of the elliptic model preconditioned by Q1
element. The bottom curve starts from 1 for | = 0, decreases till a minimum value close to
0.49 and then increases to reach o(—N/2) = 0.5. The optimum value is

opt = 2/(1 + 0.5) = 4/3.
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5. CONCLUSIONS

In this paper, we have Fourier analyzed the eigenspectrum of the iteration operator for
finite element preconditivuing of Fourier collocation applied to one-dimensional problems.
For elliptic models, this theoretical analysis confirms previous numerical findings, especially
the beneficial presence of the mass matrix which reduces the bounds of the eigenspectrum.
For first-order problems, linear elements without and with upwinding are considered. With
quadratic elements, a staggered scheme is produced. Its eigenspectrum is bounded and ranges
between 1 and 7/4. Finally, a Stokes problem is reduced to a one-dimensional approach.
Two types of elements are examined. The Q2-Q1 element leads to an optimum value of
the relaxation parameter close to the value obtained by numerical analysis of preconditioned
Chebyshev collocation. For Q1-P0 element, the method can be over-relaxed.
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