AD-A227 196

USAAVSCOM TR 89-0-13Amm FILE COPY

US ARMY .
AVIATION
SYSTEMS COMMAND

ADVANCED TECHNOLOGY LANDING GEAR
Volume | - Design

J.K. Sen

McDonnell Douglas Helicopter Company D T l C
5000 East McDowell Road

Mesa, AZ 85205 ELECTE

SEP28 1930

/7 B
(=

August 1990

Final Report for Period September 1985 - December 1989

Approved for public release; distribution is uniimited.

Prepared for

AVIATION APPLIED TECHNOLOGY DIRECTORATE
US ARMY AVIATION SYSTEMS COMMAND
FORT EUSTIS, VA 23604-5577




AVIATION APPLIED TECHNOLOGY DIRECTORATE POSITION STATEMENT

The objective of the Advanced Technology Landing Gear (ATLG) Program

was to design, fabricate, and test a crashworthy retractable main landing
gear system suitable for an 8500-pound utility helicopter. Among the
technical issues addressed and resolved as a result of the ATLG develop-
ment effort were landing gear system integration and structural compati-
bility in a limited space airframe, MIL-STD-1290 crashworthiness for

a compact landing gear configuration, hydraulic/electrical support
systems redundancy, and extention/retraction reliability and fail-safety.
Landing gear testing was accomplished using conventional platform drop
tests, as well as "iron bird" drop tests. Test results were compared
with KRASH analytical predictions to evaluate landing gear performance
and characterize system dynamic behavior. The results of the ATLG
demonstration effort will be used to guide the development of future
Army belicopter landing gear systems.

Mr. Ned Chase of the Aeronautical Technology Division served as Project
Engineer for this effort.

Trade names cited in this report do not constitute an official endorsement or approval of
the use of such commercial hardware or software.

DISPOSITION INSTRUCTIONS

Destroy this report by any method which precludes reconstruction of the document. Do not rsturn it to the
originator.




Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704.0188

) den tor this collection of information is estimated to average ' hour Oef response, including the ume for reviewing INstructions, searching existing data sources,
;:um«k :goﬂmﬂq E“ r‘ q the data ded, and completing and reviewing Khe"colledlof‘ of information. Send comments regarding this burden estimate or any other aspect of this
collection ot informetion, including tions for reducing this burden. 10 Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 jefferscn
Davrs Highway, Suite 1204, Arlington, VA 22202-4302. and to the Otfice of Management and Budget, Paperwork Aeduction Project (0704-0188), washington. DC 20503

1. AGENCY USE ONLY (Leave blank) |2. REPOR? DATE 3. REPORT TYPE AND DATES COVERED
August 1990 Final September 1985 - December 1989
4. TITLE AND SUBTITLE S. FUNDING NUMBERS
Advanced Technology Landing Gear (C) DAAJ02-85-C-0049

Volume I - Design

6. AUTHOR(S)
J.K. Sen

RGANIZATION NAME(S) AND ADDRESS(ES 8. PERFORMING ORGANIZATION
7. PERFORMING ORG [¢) (s) (ES) REPORT NG OBt

McDonnell Douglas Helicopter Company
5000 East McDowell Road MDHC 89-17
Mesa, AZ 85205

. ITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
3. SPONSORING/MONITORING ) AGENCY REPORT NUMBER

Aviation Applied Technology Directorate
U.S. Army Aviation Systems Command USAAVSCOM TR 89-D-13A
Fort Eustis, VA 23604-5577

11. SUPPLEMENTARY NOTES

Volume I of a two-volume report

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

‘P This report describes the development of a retractable, crashworthy, main landing gear system for an
LHX-size utility helicopter. The landing gear is of a tricycle configuration and is designed to absorb
60 percent of the energy from a 42 fps level impact condition. The landing gear extends automatically
in less than two seconds in an emergency. In the event that the hydraulic and electrical systems fail,
the gear is extended with the hydraulic accumulator that primarily supports the helicopter APU. Five
sets of landing gears were fabricated in the program. The tests included single-gear platform drop
tests with level and simulated roll and pitch conditions, and combined pitch (+15°) and roll (10°)
conditions with an iron-bird fixture simulating a helicopter. The tests were conducted for five impact
velocities from 10 to 42 fps. The crashworthiness analyses were conducted using program KRASH., The
correlation between test and crashworthiness analysis results was very good and demonstrated how
analy-es can be used to predict the response of landing gears without utilizing expensive tests. The
cost of 5000 shipsets over a 13-year production cycle has been projected from the cost of landing gears
fabricated in this program. ,

‘ J
v

14. SUBJECT TERMS 15. NUMBER OF PAGES
Landing gear, Helicopter, Crashworthiness, Drop tests, Enerqy absorption. 171

16. PRICE CODE

»

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECUFI?V CLASSIFICATION [20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED

NSN 7540-01-280-5500 Standard Form 298 (Rey 2-89)

Praqcriped by ANSI Sta 239-'8
298-102




FOREWORD

This Design report is Volume I of the final report of the Advanced Technology
Landing Gear Program; the final report covers the work performed under Contract

DAAJ02-85-C-0049 from 20 September 1985 to 31 May 1989.

This contract with

McDonnell Douglas Helicopter Company was conducted for the Aviation Applied
Technology Directorate, U.S. Army Aviation Research and Technology Activity

(AVSCOM), Fort Eustis, Virginia.
Chase.

The program was under the direction of Mr. Ned

This volume describes the design and analysis in the development of the advanced

technology landing gear.

Volume II, "Test," includes the results of all the

tests conducted in the program and the correlation with analytical prediction

of crash-impact behavior.

The program was accomplished by the Structures Department of McDonnell Douglas
Helicopter Company, Mesa, Arizona, with Dr. J.K. Sen as Program Manager and

Project Engineer.

Menasco was Mr. R.J. Hernandez.

Subcontracting to McDonnell Douglas Helicopter Company was
Menasco California Division, Burbank,

California. The Program Manager at

The key personnel associated with the program and their areas of responsibility

were:

McDonnell Douglas Helicopter Company

J.K. Sen

. Bohorquez
. Jones

. Bolukbasi
March
Richmond
. Murgia

. Williams

MmO Xr

Menasco California Division

D. Martin
H. Kawada
C. Wilson

Project Engineer

Design

Structures

Crashworthiness

Weights

Requirements & Systems Analysis
Maintainability

Reliability

Project Engineer and Design
Stress Analysis
Test

The contract was performed under the general direction of Mr. F.J. Widmann,

Manager, Research Projects.
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This program was undertaken to develop a retractable, crashworthy landing gear
system for an LHX-size utility helicopter with extensive energy absorption
trade-off study and crashworthiness analysis to verify the design concepts. The
design and crashworthiness analysis have been verified by single-gear platform
drop tests, and by tests for combined roll and pitch impact attitude with an
iron-bird test fixture simulating a helicopter. This program has demonstrated
the differences in the behavior of landing gears in platform and iron-bird drop
tests, and the close correlation that can be achieved between crashworthiness
analysis and impact tests for helicopters.

iv
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1.0 _INTRODUCTION

1.1 PROGRAM OBJECTIVES

The objectives of the program were to assess the technical potential of a crash-
worthy, retractable landing gear for an LHX-size utility helicopter with regard
to structural and operational capability, system integration, and
crashworthiness characteristics. The assessment was validated through:

1.

The design of a landing gear for an 8,500-pound utility helicopter
with an alternate gross weight of 10,625 pounds.

The manufacture of five main landing gears.

The correlation of the crashworthiness behavior in test with results
from analysis using program KRASH.

The prediction of the crashworthiness behavior of the utility
helicopter for the entire envelope of crash-impact attitudes and
velocities using program KRASH.

Tests to verify the extension-retraction mechanism, and to validate
the landing gear design to emergency extension.

Single-gear platform drop tests and iron-bird drop tests to evaluate
the response of the landing gears to crash impacts.

An analysis estimating the projected cost of 5000 shipsets over a
13-year production cycle.

Particular emphasis was placed on reliability and maintainability, and to a
redundancy in the extension-retraction system such that the gear can be extended
in the event of failures of the hydraulic and electrical systems.

1.2 PROGRAM PLAN

The program was designed to be accomplished in two phases:

Phase I - Landing Gear Design

Task 1 - Preliminary Design Analysis

Task 2 - Detail Design

Task 3 - Design Support Testing

Task 4 - Detail Design and Manufacturing Update
Task 5 - Government In-Process Review

Phase II - Landing Gear Fabrication/Structural Tests

Task 1 - Tooling Fabrication

Task 2 - Main Landing Gear Fabrication
Task 3 - Full-Scale Drop Testing

Task 4 - Government/Industry Briefing




The landing gear design was initiated to coordinate with the then requirements
for an LHX-size utility helicopter. As such, the landing gear is based on the
design of an LHX-size utility helicopter as existed in February 1986. The
analysis for compatibility with the LHX SCAT helicopter is also based on the
SCAT configuration from the same time period.

The Advanced Technology Landing Gear (ATLG) was designed to specific require-
ments for handling and ground operations, transportability, and environment. In
addition, the ATLG is crashworthy, retractable, and capable of automatic
extension in an emergency. The design was developed through structural and
crashworthiness analyses, which were verified through impact drop tests,
firstly, of only the landing gear and then of the landing gear mounted on an
iron-bird fixture simulating a helicopter.

Apart from the structural requirements, the detail design was influenced largely
by the requirements for retraction and for crashworthiness. Retraction of the
landing gear into the allocated stow-volume was achieved by the design of a
pivot crank to interface between the landing gear components and the fuselage.
With the pivot crank, a very compact, reliable, and highly maintainable design
was achieved. The systems approach to crashworthiness, utilizing the landing
gear, fuselage and seat as the three elements in the energy-absorbing chain to
provide a survival environment of noninjurious accelerative loads for the
occupants, was used to optimize the percentage of impact energy to be absorbed
by the landing gear.




2.0 PRELIMINARY DESIGN

2.1 GENERAL

The structural configuration of the ATLG was analyzed following the definition
of the baseline utility helicopter. Several landing gear concepts were studied
and evaluated from which three concepts were selected for more detailed
investigation. Following this investigation, one concept was selected as the
final configuration. Detailed investigation of the selected configuration
consisted of structural and KRASH analyses, dynamics analyses, weight
estimation, and reliability and maintainability analyses.

2.2 BASELINE HELICOPTER

The baseline utility helicopter for the ATLG was designed for a crew of two and
six troops. The design gross weight is 8,500 pounds with an alternate gross
weight of 10,625 pounds. The helicopter was powered by a four-bladed rotor
driven by two engines. The tail rotor was replaced by the "NOTAR" concept. The
principal physical characteristics of this baseline helicopter are shown in
Figure 1. The inside configuration and arrangement of the baseline helicopter
are shown in Figures 2 and 3.

The helicopter is a nosewheel configuration and is 515 inches long with the
widest section of the fuselage 100 inches and with the rotor 125 inches above
the static ground position. This helicopter can be transported in C-141, C-17
and C-5 aircrafts. The helicopter dimensions for the design of the landing
gear, as shown in Figure 1, are:

° ground height, extended = 29.0 inches, maximum

° ground height, static = 16.0 inches

° ground height, kneeled = 3.0 inches

) wheel tread width = 110.0 inches

° wheelbase = 192.0 inches

The nosewheel configuration was selected for the utility helicopter because of
the following three reasons:

1. To provide a troop floor level with the ground for easy access and
egress by the occupants.

2. [f the main landing gears are positioned forward of the cabin, the
gears when retracted will occupy volume in the cabin area. This
would reduce the available volume for troops and cargo.

3. In order to protect the troops in a crash condition, a strong aft
bulkhead is required to prevent the cabin area from compressing
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more than 15 percent and to support the heavy-mass items above the cabin
during a crash condition, as required by MIL-STD-1290. Since the main
landing gears were designed to react crash loads, it is therefore logical
to interface the main landing gear with the fuselage at the strong aft
bulkhead rather than provide a separate support in a forward area with
consequent weight penalty.

The Tocation of the center of gravity in relation to the landing gear is also
shown in Figure 1.

The crashworthiness features of the fuselage include a lower fuselage with two
major and two supplemental keel beams permitting a crushable depth of 7.5
inches. The total depth of the underbelly structure is 10 inches. The cabin
bulkheads at Stations 155 and 233 extend full-depth from below the floor to the
upper roof beams which support the high-mass items. The bulkheads, therefore,
influence the crashworthiness of the fuselage through the crushing of the under-
belly section and the reduction in the cabin volume. The energy-absorbing frame
of the fuselage is shown in Figure 4. Additional crashworthiness features
inciude load-1imiting seats for the crew and troops, crashworthy fuel system,
retention of high-mass items, and energy-absorbing supports for the retraction
actuator. These energy-absorbing supports are attachment fixtures which yield
at loads greater than 8g to allow localized crushing of the bulkhead to which
the retraction actuator is attached. The available strokes of the components of
the energy-absorbing chain, for a systems approach to crashworthiness analysis,
remain unchanged and are given below:

° Landing gear vertical stroke = 29 inches maximum
° Subfloor crushing depth = 7.5 inches maximum
) Crew seat stroke = 12 inches maximum

The weight and mass properties of the major items of the baseline helicopter are
given in Table 1.

2.3 TRADE-OFF STUDY OF LANDING GEAR DESIGN CONCEPTS

In the preliminary design investigation, several concepts of tailwheel and
nosewheel configurations were investigated. The design of a helicopter landing
gear must address two problems:

1. In landing maneuvers, it must absorb the energy of descent in order
to reduce the vertical velocity to zero and avoid rebound, and

2. For taxiing on the ground, it must provide a spring chassis.

The evaluation of a landing gear was therefore made in conjunction with the
design of the helicopter it services. This method of evaluation not only
ensures the fit, form and functional requirements of the landing gear but,
through the systems approach to crashworthiness, optimizes the total design.




A.T. LANDING GEAR SPACE

BULKHEAD

ENERGY-ABSORBING
BEAM ASSEMBLY (TYP)

rqy-absorbing fuselage.

of the ene

Fiqure 4. Confiquration
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This task was developed in three phases:

1.

2.

3.

Survey of existing landing gears that fit the requirements; basic
evaluation of concepts for compliance with crashworthiness and survey
of literature on crashworthy landing gears.

Formulation of several concepts compatible with the baseline
helicopter.

Evaluation of concepts, using a matrix system and selection of the
preferred landing gear concept.

2.3.1 Survey and Evaluation of Existing Landing Gears

Five configurations of main landing gears were reviewed. Where a landing gear
of a specific configuration for a helicopter exists, the specific gear was used
in the evaluation matrix. For the nonexisting configurations, a generic unit of
that particular configuration was "created" for evaluation. The landing gear
concepts surveyed are listed below:

1.

3.

Trailing Arm Type:

a. MDHC Apache
b. Sikorsky

Cc. Agusta 129

d. Gulfstream.

Only the first two gears were evaluated because sufficient
information was not available for the other two gears.

Leading Arm Type:

One concept of the leading arm type landing gear from McDonnell
Douglas Helicopter Company was reviewed.

Direct Type:

Very few examples of direct type landing gears exist in helicopter
applications, but several examples exist for fixed-wing aircraft.
The following gears were reviewed:

a. Learjet 24 and 25

b. Westland EH.101

C. Aero Commander 685, 690

10




d. Rockwell International Sabreliner
e. Westland Navy Lynx.

For evaluation, the general features of these main landing gear
systems were used to "create" a generic unit.

Lever Type:

No example of this type of main landing gear was found in use in
helicopters, but the following examples were reviewed:

a. Vought A-7 and A-8 Crusader (nose)

b. Dassault-Breguet Falcon 10 (nose)

From these examplies a generic concept was used for evaluation.
Quadricycle:

This landing gear, found in the CH-47 type helicopters, was

eliminated from evaluation because of the weight, volume and controls
required for application in this program.

The specific advantages and disadvantages of the five landing gear configur-
ations, including Apache-type and Sikorsky-type trailing arm configurations, are
discussed below. Schematic views of generic types of these gear configurations
are included for illustration only.

The Apache-Type Trailing Arm Offers: (Figure 1)

Simple and direct load paths with low loads factor
Nonredundant landing gear support

Energy absorption through large displacements

Energy absorption not sensitive to side loads

kough field and obstructed runway capability

Simpler kneeling capability

Minimum entanglement with brush, landing mats, obstructions
Good pitch and roll alignments at ground impact

Good towing capability on soil with CBR 2.5

Good running landings and takeoffs

Good crash energy attenuation at 42 feet per second

11




Improved safety during autorotution landings
Simplicity in components
BUT

Requires relatively more space for retraction than other designs.

The Sikorsky-Type Trailing Arm Offers: (Figure 5)

A11 the benefits and disadvantages of the Apache type
Perhaps lower weight/cost

Simplicity in the trailing arm design/construction
BUT

On the small LHX utility, location problems related to doors and
openings may arise

Requires more space for retraction.

The Leading Arm Offers: (Figure 6)

The Direct

Improves ingress/egress of troops

BUT

Poses difficulty in designing for running takeoffs and landings
Requires stiffer gear; longer arm

Will not share most of the qualities of the trailing arm systems
Interferes with a gun system.

System Offers: (Figure 7)

High

Requires small stowage volume

Perhaps very low weight

BUT

Is difficult to obtain good control of the mechanical instability
Length to load factor is a problem

load factors.

12




Figure 5.

/ LONG STRUT

TRAILING
ARM

Schematic view of Sikorsky-type trailing arm
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The Lever System Offers: (Figure 8)

° Very compact volume
o Good mechanical advantage to minimize size shocks
° Easy towing
BUT
L Weight increases very rapidly with increase in ground clearance
° Simplicity in design is related to side loading
° High load factor.

The Quadricycle System Offers:

° Low ground loads
L Small stowage volume per unit
® Easy ground handling
L Redundant system
BUT
. Costs more due to the multiple gear
) May be heavier

The evaluation matrix is shown in Table 2. The basic landing gear
configurations are compared and rated. Five landing gear configurations,
including two types of trailing-arm gears, identified earlier as those from
Apache and Sikorsky, are compared. Since the Apache landing gear does not
retract, the retraction parameters are not compared in this evaluation. The
Apache-type trailing arm configuration is rated the best while the Sikorsky-type
trailing arm concept is rated second-best.

The Apache-type trailing arm concept is the prime candidate for the present
program. A schematic view of the concept together with the advantages of this
design are shown in Figure 9. This concept satisfies normal and crash load
requirements and presents a minimum of design interface problems. The crash-
worthy landing gear for this program has therefore been designed around a simple
articulated trailing arm concept.

16




Retractable lever arm landing gear confiquration

showing extended and retracted modes.

Fiqure 8.
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SHOCK ABSORBER/ACTUATOR WITH
SPHERICAL BRGS AT EACH END

CROSS TUBE

TRAILING ARM
AND AXLE

TRAILING ARM

PIVOT AXIS
WHEEL
TRAILING ARM CONCEPT DESIGN FEATURES

e SIMPLE AND DIR<CT LOAD PATHS o NEARLY CONSTANT GROUND
o SUPPORTED BY £ XISTING FUSELAGE LOAD FACTOR

STRUCTURE » ROUGH FIELD AND OBSTRUCTED
o NON-REDUNDANT LANDING RUNWAY CAPABILITY

GEAR SUPPORT o ENERGY ABSORPTION IS UNAFFECTED

¢ ENERGY ABSORF TION THROUGH 8Y SIDE LOADS

LARGE DISPLAC! MENTS

Figure 9. Structural and design features of the Apache-type
trailing arm concept.
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2.3.2 Landing Gear Design Configurations

An efficient landing gear design is one that reacts favorably to ground handling
loads, normal landing conditions, and crash-impact loads, and also provides for
simple and direct load paths into the supporting fuselage structure. The
simplest and lightest landing gear configuration would be similar to that of the
AH-64A Apache helicopter. The landing gear articulates about a single pivot
point which results in only one degree of freedom.

The rearward rake of the trailing arm is favorable for ground maneuvering on
rough fields or obstructed runways. Additional benefits from this configuration
are the short direct load paths from the gear attachment points to the main
fuselage, a nearly constant ground load factor, and insensitivity to side loads.
In addition, the landing gear design limits the crash deceleration by absorbing
energy through large deflections. This design concept has already been proven
on the AH-64A Apache helicopter.

The trailing arms are supported by the crosstube, which runs laterally across
the airframe between pivot fittings at each end. The trailing arms pivot to
constrain wheel travel to a buttliine plane, restrained only by the oleo. This
arrangement has the advantage of reacting all lateral and drag loads on the
wheel at the crosstube while loading the oleo only in the axial direction.

Among all the landing gear concepts reviewed, five concepts are discussed. All
five concepts use the simply articulated trailing arm configuration of the
Apache landing gear and comply with the program requirements.

The individual components and systems were designed in accordance with the
military specifications noted in Table 3. These specifications cover the design
considerations given to handling requirements, ground operation, landing gear
detailed component design, and crashworthiness requirements. The specific
crashworthiness requirements used to establish the design loads are summarized
in Table 4.

2.3.2.1 Geometry and Positioning Parameters. The geometry and positioning
parameters of the landing gear are based on the following requirements
(Reference 1):

) Ground handling, for a given ground height:

- 0.8qg braking load, determines the minimum longitudinal distance
between the main gear and the helicopter cg

- 0.5g turning load, determines the minimum lateral distance
between the main gear and the helicopter cg.

) Structural:
- Landing gear hard points should be close, along the longitudinal

axis, to the helicopter cg in order to minimize the lengths of
the load paths and the magnitude of the loads.

20
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- Hard points should be located near structural members capable of
reacting the landing loads.

° Aerodynamic:

- Landing gear stance width should be minimized to reduce drag
area.

] Energy absorption:

- Ground clearance should be maximized to reduce fuselage loading
in crash conditions.

The first three requirements are optimized when the ground clearance is
minimized. This is in direct opposition to the energy absorption requirement.
An attempt to optimize all of the conditions led to the concept of the dual-
position landing gear. The helicopter would initially contact the ground with
the gear in the fully extended "crash" position. Under normal loads, the
helicopter would automatically settle to a "low" (static) ground handling
position.

This dual-position concen. allows the longitudinal and lateral positioning of
the landing gear to .- .etermined for a low ground handling height and yet
provide a high gr-u-: clearance for the energy absorption and fuselage loading
requirements. Tne concept of a simply articulated gear was motivated by the
requirement fo. kneeling the helicopter for the convenience of transporting it
and for inc: eased energy absorption capability with the gear retracted.

2.3.2.2 Landing Gear Concepts. The five main landing gears discussed below are
the last five design iterations studied. A1l five concepts are based on an
Apache-type trailing arm configuration. The preferred landing gear concept is
developed from these five designs.

Concept 1. This concept uses a secondary retraction-extension actuator. On
reviewing this concept, it was found to be a very slow (time-wise) system that
requires sequential control to operate properly. The large loads generated by
this concept require heavy airframe fittings. The most commendable feature of
this concept is that it is a unitized system: all working parts are attached to
a common bracket to form a closed loop load path that transfers all reaction
loads to the frame through an attachment fitting. The gear kinematics is good
with the possibility of commonality of a large number of components between
right and Teft units. This concept is schematically shown in Figure 10.

Concept 2. This concept was designed to reduce the number of components used in
Concept 1 and to decrease the extension response time of the system. In this
concept, the secondary retraction-extension actuator was eliminated and all the
energy-absorbing, extension-retraction and kneeling features were integrated
into a two-stage shock absorber. This concept is schematically shown in Figure
11.

In this design, the trailing arm is free to move with the displacement of the
shock absorber. The shock absorber was located at an angle in relation to the
center line of the aircraft to maintain the arm fully extended at its maximum
track width position and to displace it to its maximum retracted position
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(2-9:4)

Fiqure 11.

Layout and kinematics for landing gear concept 2.
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without the need of a second actuator. In reviewing this concept, several areas
of concern were identified. Using the shock strut to fix the location of the
trailing arm and relying on the reactive forces of the aircraft weight to keep
the arm positioned were conditions that did not offer a positive system.
Although the system offered simpier operation, fewer number of components, good
kinematics and limited side-load control with the slanted shock absorber, this
concept requires locking one of the axes of the trailing arm to avoid
instability under all roll and pitch conditions in order to avoid using the
shock absorber as the locator for the arm.

Concept 3. This concept, schematically shown in Figure 12, is an improvement
over Concept 2 because it provides a locked pivoting axis (horizontal plane
axis) and eliminates the need for the use of the shock absorber as a locator for
the trailing arm. Furthermore, this concept uses a crosstube as the main
attachment fitting for the trailing arm assembly, thus reducing and simplifying
the load path of the system and improving frame design.

The pivoting axis is locked by an internal plunger housed in the hollow trailing
arm; this plunger, acting in shear, is spring-loaded. The plunger keeps the
trailing arm and its pivot assembly as one unit, from the fully extended
position through the kneeling position. When that position is reached, a cam
pushes the plunger out of its locking position, allowing the trailing arm to
pivot inward on its horizontal plane as well as to continue travelling to its
final position. The retraction, extension and kneeling is done with one shock
actuator similar to that used for Concept 2. During extension, the arm will
move to its final position following the extension path of the shock actuator
until the trailing arm joint is locked in place.

In reviewing this design concept, the extension time was found to be excessively
long for an emergency situation because the actuator required greater hydraulic
volume (flow) than that assigned for this system. In addition, the
manufacturing cost of the trailing arm would be high and the reliability of the
locking plunger under different loading and environmental conditions was in
question. Otherwise, this concept offered a viable solution for retraction,
extension, kneeling and crash attenuation with one shock actuator per gear,
commonality of components, excellent interface with the airframe, and good side-
load control.

Concept 4. This design concept is characterized by having two separate units
for the two stages of the shock absorber. The two units are: the first-stage
oleo and the second-stage oleo, which also acts as an extension-retraction
actuator. The extension-retraction actuator has an up-and-down internal locking
feature, a system which has been proven on working units previously designed and
fabricated by Menasco. The first-stage oleo has been designed as a piggyback
configuration in order to reduce the overall length of the unit. The basic
configuration of the landing gear is shown in Figure 13.

The trailing arm, the shock absorber and the interconnecting bracket form a unit
that, by action of the retraction actuator, can be extended or retracted and
locked in position within a very short period of time, which complies with the
requirements of emergency operations. In the fully extended position, the
trailing arm can be moved up and down without changing the track width, and from
this position the system can also be kneeled by the action of the shock
absorber.
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First Stage Oleo

Second Stage Oleo
(Retraction Actuator)

Fiqure 13. Basic configuration of landing gear concept 4.
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In reviewing this concept, it was agreed that the extension time of this
concept was very short due to the mechanical amplification of the motion of the
system configuration and the low hydraulic flow needs of the actuator. Several
areas of concern were found in relation to the fuselage interface, however.

Typically, the concerns were the size of the attachment fittings due to the
high torsional loads.

The advantages of this concept are the commonality of the components of the
left- and right-hand gears, and the method of kneeling. The trailing arms, the
shock absorber and the extension-retraction actuator are designed to be common
to both sides of the gear. The design of the shock strut also has the advantage
of having two alternate ways of kneeling. The first method is to release air
pressure in the second stage accumulator to drop the gear to the kneeled
position; the accumulator is reserviced to extend the gear. The second method
is to have the strut oil controlled by system pressure to kneel and extend the
gear as needed.

Concept 5. This concept, shown in Figure 14, has a different approach from that
of Concept 4 and was designed to solve some of the potential problems of
attachment of the landing gear. This design retains the feature of Concept 4
where the trailing arms, the shock absorber and the interconnecting bracket can
be moved up and down as a unit with a secondary actuator within a short period
of time. In addition, this design requires a tension shock absorber compared
with the standard compression shock absorbers used for the other concepts. The
main characteristic of this concept is a rocking trailing arm where the shock
absorber is attached beyond the pivoting axis.

In reviewing this design, it was found that this type of trailing arm was
heavier than those for the other designs to avoid elastic deformations and also
required more complex attachment fittings than the crosstube proposed for the
other concepts. This concept, however, was more tolerant to component location

than the other systems out will require considerably more development of its
tension shock absorber.

2.3.2.3 Evaluation of Final Landing Gear Concepts. Four of the five final
iterations of the landing gear concepts were evaluated, and the results are
shown in Table 5. Concept 5, the "walking beam" concept with a tension strut,
was not evaluated in Table 5 because of its expected higher weight and lower
reliability and maintainability (R&M) due to the complex design. This concept

also did not permit ready comparison with the other design concepts shown in the
table.

Landing gear Concepts 3, 4 and 5 were chosen for the further iterations during
the preliminary design study.

2.4 PRELIMINARY STRUCTURAL ANALYSIS

The design approach for the landing gear consisted of first defining a matrix of
loading and design conditions for the structural requirements of the gear and
its supporting structure.
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Fiqure 14. Schematic view of landing gear concept 5.




TABLE 5.

EVALUATION OF FINAL ITERATIONS OF TRAILING ARM
LANDING GEAR CONCEPTS

Trailing Arm
Apache Type

Concept
Trade-0ff T
Parameters 1 2 3 4
Ingress/Egress Points 1 - 2 -3 .4 .5

Volume for Retraction
Structura) Requirements
Side Loads
Transportability
Ground Control
Ground Resonance
Cost

Weight

Intrusion Into Cabin
Energy Absorption
Orag

Flare Angle
Materials/Composite
Crashworthiness
Producibility
Commonality/SCAT
Matntainability
Reliability

Safety

Towing

Fail-Safe

Extension Time/
Emergency

Paor ~—> Bast

Maximum Points - 115

Concept 1 - 2 Actuators, Separate Function
Concept 2 - 1 Actuator

Concept 3 -1 Actuator, Crosstybe, Locked
Joint

Concept 4 - Separate Strut and Actuator,
Crosstube

Concept § - Separate Strut and Actuator,
Tension Strut

NOTE: Concept § was not evaluated because
of its expected higher weight,

Nmmmo&rvwmwmhmmwwtﬂmmpwww
wmbbbbmwmwmkmmwuwwmaaom
bmmmbamwmwmhmmmwmmmaaam
mmmmmambmwmammwwmmmobam

Total Points

91

o d
o
(Yo
[« ]

100
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The loading conditions defined the sink speeds for normal landings, the maximum
sink speeds for a hard landing, and a maximum survivable crash-impact velocity.
The energy absorption requirements for these conditions, together with the
available stroke and efficiency of the oleo, determined the load factors to
which the gear was designed.

2.4.1 Lloads Analysis

A preliminary structural analysis was conducted to determine tihe inertias for
extremes of the cg and the landing loads of the helicopter for a basic
structural design gross weight (BSDGW) of 8,500 pounds and an alternate gross
weight (AGW) of 10,625 pounds. The inertias calculated are given in Table 6.
The ground loads were calculated for a level 3-point limit (10 feet/second)
landing and a 42 feet/second crash landing for a static ground height of 16
inches. These loads are given in Table 7. A condition that sized the landing
gear structure in the past is the crash vertical load combined with obstruction
loads.

The three final design configurations, Concepts 3, 4 and 5, were analyzed for a
vertical crash condition with side obstructions. The 8g crash condition with
side load obstruction was chosen because it has been used to size a large number
of landing gears in the past. The vertical load of 23,020 pounds was combined
with a 9,060-pound side load applied at a flat tire radius of 5.8 inches acting
inboard or outboard, whichever yielded the highest loads and/or moments for the
components or attachments being analyzed. The lengths and loads for the three
design concepts by landing gear components are compared in Table 8. Instead of
calculating actual bending moments in the trailing arm, the comparison is with
the average bending moment developed for a l-pound normal load applied at the
axle.

The load reactions for the three landing gear concepts were calculated at the
landing gear attachments. These reactions represent the loading on the backup
airframe structure. Also calculated were the loads on the trailing arm, shock
absorber and the extension-retraction actuator. The loads for the three design
concepts are shown in Figure 15. The upper reaction point for Concept 5 has
been slightly modified for direct comparison with the other two concepts.

2.4.2 Crashworthiness Analysis

McDonnel1 Douglas Helicopter Company (MDHC) has successfully developed and
refined helicopter crashworthiness analysis by using a systems approach in
conjunction with the Army's "Aircraft Crash Survival Design Guide", Reference 3.
This approach has been analytically substantiated with program KRASH

(Reference 4), a crash dynamics computer program, on several MDHC programs
including that of the AH-64 helicopters and for the preliminary design
investigation in Reference 2. MDHC's systems approach has been experimentally
correlated by crash drop tests of the AH-64A's energy absorbing landing gear and
crew seats.
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A survivable impact implies that, for a particular crash condition, the crew
will not be incapacitated by injurious accelerative loads. A crashworthy
helicopter design protects the crew by considering the many criteria affecting
the crew environment. Two paramount design considerations are:

) Providing a protective structural shell around the occupants that
will not collapse or allow heavy mass items to penetrate into the
occupied space.

° Minimizing the effect of the crash impulse on the crew.

To design efficiently and effectively to meet these requirements, a systems
approach to crashworthiness was adopted.

For severe, yet survivable impacts the system of energy absorption consists of
three elements: the landing gear, the crushable floor structure, and the load-
attenuating crew seat. This has been illustrated in Figure 16. To develop a
well-balanced and consistent design approach, any one particuiar element is not
considered to be more important than any of the other two in providing crash
protection. Instead, a systems approach is adopted in which each element is
considered an integral link in the chain of energy absorption, where each 1ink

is as important as the rest and the whole system provides the desired protection
for the crew.

INNER
PROTECTIVE

SHELL SEQUENCE OF LINKS IN

ENERGY-ABSORBING CHAIN

(3) sTROKING sEATS
-~ ATTENUATE PEAK
QUTER

ACCELERATIONS
] ‘i’ )
CRUSHABLE
ZONE ‘ )

©

(:) AIRCRAFT STRUCTURE
— UNIFORM CRUSH ZONE

1
f% ~ PROTECTIVE SHELL

LANDING GEAR
- ABSORBS MAJOR
PERCENTAGE OF
KINET!C ENERGY

T i

Fiqure 16. Principle of systems approach to crashworthiness.
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At the onset of this preliminary design effort, several crashworthy main landing
gears were considered to roughly size their configuration parameters. These
parameters were the landing gear ground load factor, landing gear stroke and the
geometry of the trailing arm/oleo. Initial sizing of the gear geometries was
based on the conservation of energy relationship (Volume III of Reference 3) and
on the earlier preliminary investigation (Reference 2) The landing gears
selected for analysis were represented by the following parameters:

° Landing gear load factor: 7.0 to 9.0g
° Landing gear stroke = 29 inches

° Fuselage crushing depth = 7.5 inches

° Crew seat load factor = 13.5¢g

° Crew seat stroke = 12 inches

° Occupant DRI < 21.4.

The energy absorbed by this configuration of landing gears for a 42 fps level
impact was at least 50 percent of the helicopter's original crash impact energy.
Although 12 inches of crew seat stroke is allowed, previous analysis (Reference
2) has shown a marked increase in crew seat stroke for rolled crash conditions.
As a result, a maximum of 8.5 inches of seat stroke was allowed for the
preliminary 42 fps vertical crash impact, leaving a margin of 3.5 inches for
rolled impact conditions.

To focus on these design parameters, a simple five-mass KRASH model was
generated (Figure 17) and subjected to the idealized crush pulses, representing
the chain of energy absorption shown in Figure 18. Preliminary KRASH analyses
were conducted for a vertical velocity of impact at 42 fps, with 0.67g rotor
life and 82 percent efficient main Tanding gear. The configuration selected
focused on an 8g landing gear with a 159 fuselage.

Several concepts were explored to optimize the cabin design for energy absorp-
tion. The lower fuselage, with the subfloor sections of the bulkheads, was
designed to undergo uniform controlled crushing to a maximum depth of

7.5 inches. The upper bulkhead in turn was permitted to deform a maximum of

15 percent of its height, while the roof beams displace a maximum of 3 inches to
attenuate the energies of the high mass items. The estimated total weight of
all the energy-absorbing elements of the fuselage as a percentage of the energy
from a 42 fps impact is shown in Figure 19. The extent of fuselage
reinforcement required for different percentages of energy absorbed was also
identified. A 26 fps impact with the landing gear up was identified as the
minimum energy to be absorbed by the fuselage. A 30 fps impact with the gear up
represented 51 percent of the energy from a 42 fps impact. For such an impact,
local reinforcement of the fuselage structure was inadequate in absorbing the
impact energy. Any impact requiring the fuselage to absorb over 45 percent of
the energy from a 42 fps impact would require reinforcement of the overall
fuselage structure.

38




Jin1dS
[§-1¢]

“{opodl HSYyy 3uednid0 pue stdwls /] 9anblg

ONIHdS
Hv35
ONIONYT

ONIHJS
3IDVIISNS

HOO 4

=

H3IgWINW
ONINOYLS Lv3S

Nvd Lv3S

|

0sS¥01

l4a

43IMOT

SHIO0LLNE ANV
NOIHSND 1v3S

OSHOL
t'3ddN

ANIdS

ﬁwmg INV4NI20

ONIHdS

Hv3o
ONIHdS
ONIGNV1 IDVTIISNS
vz 1)
39v13sn4
_ Nvd
(sz'2) @ NI
/
(52 °.2)
(92 '€)
0SHO1
H3IMO
$1138 1v3S
_ 1z ')
(.62 °.2) OS¥O1 ® vz
Y3ddn 190

(LV3IS LHOIH 'LvY3S 143

39




PEAK FLOOR
I RESPONSE
Z
o
q %
« l FUSELAGE g LEVEL CREWSEAT
E' r 1' ACCELERATION
|8 gs ]
3 ‘
LANDING GEAR g LEVEL :
9. P—gFrrrzsms==—==—-—%== :
:
]
"

TIME

Fiqure 18. Idealized landing gear, fuselage and crew seat crash pulses.

2.5 PRELIMINARY WEIGHT ESTIMATES

Initially, the advanced landing gear study reviewed the weights of existing
landing gear systems to establish the general trend of these systems independent
of a sensitivity analysis of the effect of various crash conditions. The study
established basic drivers for weights at different conditions by reviewing
existing systems in general and the MDHC system in particular. This information
was then evaluated in relation to the energy absorption levels of the different
landing gear systems in order to estimate the weight of a crashworthy,
retractable landing gear. The information was used to calculate the ratio of
the landing gear weight to the helicopter gross weight as a general indicator of
the weight trend. Based on these estimates, two weights of the three final
landing gear concepts were estimated. A breakdown of the weight is shown in
Table 9.

2.6 MAINTAINABILITY ANALYSIS

The maintainability parameters, consisting of initial design guidelines,
optimization guidelines and design goals, for the ATLG program were determined.
These guidelines were adhered to during the design stage. The initial design
guidelines are given below.

° A1l Line Replaceable Units (LRUs) with the same function shall be
interchangeable with right- and left-hand units being identical.
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TABLE 9.

PRELIMINARY WEIGHTS OF THE THREE FINAL LANDING GEAR CONFIGURATIONS

Concept 3 Concept 4 Concept 5
(Figure 12) (Figure 13) (Figure 14)
[tem pounds pounds pounds
Trailing Arm 95 66 160
Oleo and Shock Absorber 90 102 90
Landing Gear Fittings 5 10 10
Ro11ing Assembly 68 68 68
Fuselage Attachment Fittings 96 60 87
Controls 22 22 22
Total 376 328 437

° The major components shall be repairable either at Aviation Unit
Maintenance (AVUM) or depot level maintenance. (AVUM level is field
level.)

) The landing gear bay shall be designed such that the landing gear
components are not contaminated by environmental conditions.

° Special skill shall not be required in assembling the gear. 3imple
“remove and replace" procedures shall be used along with any required
alignment procedures.

) The landing gear shall be removable as a single component. The
landing gear shall be of a modular (LRU) design; that is, it shall
follow the two-level maintenance concept such that all LRUs can be
removed and replaced at AVUM without realignment.

° Any adjustments and alignments to the landing gear shall be performed
at AVUM.

. Special tools shall not be required at AVUM level of maintenance.
This requirement includes removal and replacement of any LRUs and
modules, and adjustments and alignments to any component.

® Procurer Ground Support Equipment (PGSE) shall include the capability

of towing and jacking the aircraft. The landing gear shall have the
capability of jacking one wheel at a time without jacking the whole
afrcraft. For landing gear swing, the aircraft will have to be
jacked using the aircraft jacks.
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The landing gear shall be designed for ease of accessibility to each
LRU and module such that the allocated maintainability requirements
are satisfied.

The landing gear shall be designed such that each LRU and module is
easily replaceable in the field to eliminate downtime to the aircraft
and meet the allocation requirement.

The landing gear shall be designed such that a minimum amount of
scheduled maintenance is required. Ease of inspection is required
where scheduled maintenance is necessary, e.g., gauges shall be
employed where maintenance actions such as checking lubrication
levels and pressure levels are required. Mechanical wear-out
indicators and chip detectors shall be employed where degradation or
wear-out occurs.

Optimization guidelines were based on improving maintenance through ease of
troubleshooting and system simplicity. The following design criteria were
established:

There shall be no purging requirements to the actuator upon removal
and replacement.

Sufficient data marks and reference points are required when
adjustment is needed to a component after replacement.

Hydraulic fittings attached to actuators and/or other components
shall be designed such that cross-connecting cannot occur. This
includes cross-connection between primary systems and backup systems
on the same component.

A tire pressure gauge shall be provided to monitor pressure.
Interacting surfaces, e.g., bearings, gears and joints, shall be
designed such that no specific Tubricant replenishment actions are
required. They shall be designed for the life of the aircraft.

When lubrication is necessary, lubrication points shall be provided.
There shall be no disassembling of bearings when lubrication is
needed.

The brakes shall have mechanical wear-out indicators indicating when
the brakes need replacement.

Access shall be provided to any LRUs or components for alignment as
required.

No wire locking shall be permitted on any LRU. Where locking is
needed, self-locking securing devices must be employed.
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° The landing gear bay shall be designed for ease of accessing the
landing gear for maintenance actions including LRU cleaning, repair,
removal and installation.

o No scheduled adjustments to LRUs or modules shall be required and
unscheduled adjustments shall be minimized by design.

° If sequencing switches are used to retract the landing gear, they
shall be solid-state and bit tested. This testing procedure shall be
part of the landing gear diagnostic system.

° A1l connectors, wherever they can be contaminated by environmental
conditions shall be of sealed type.

° The braking system shall utilize disk brakes and hydraulic power from
the hydraulic power generation system.

The maintainability design goals fo: the total landing gear system in terms of
Mean Time Between Unscheduled Maintenance (MTBUM), Mean Time To Repair (MTTR),
and Maintenance Man-Hour per Flight Hour (MMH/FH) were:

MTBUM = 41.02 hr (= 33.94 Hr for AH-64A after 2205 flight hrs)
MTTR = 1,53 hr (= 1.354 Hr for AH-64A after 2205 flight hrs)
MMH/FH = 0.0846 (= 0.0765 for AH-64A after 2205 flight hrs)

The maintainability analysis of landing gear Concepts 3, 4 and 5 evaluated their
respective advantages and disadvantages from the maintainability point of view,
and determined the rationale for calculating the maintainability parameters.

The MTBUM was calculated by taking the MTBF for this design and factoring it by
the LHX-utility induced failure rate as compared to the inherent failure rate
predicted in the BTA. The Maintenance Man-Hour (MMH) and MTTR were based on the
LHX-utility-BTA predictions. Following the results of the evaluation, the three
concepts were rated in order of their best maintainability features.

1. Landing Gear Concept 3: (Figure 12)

Landing gear Concept 3 had two main components which included a
trailing arm and a two-stage shock absorber. Both these components
were attached to the airframe by a fixture having two rotating points
of contact. The two-stage shock absorber was a single component
which included a shock absorber and an extension-retraction actuator.

Maintainability Advantages. The advantage of this landing gear
design was easier access because there were only two major
components/LkUs. Easier access results in a decrease in repair time
of the main landing gear.
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Maintainability Disadvantages. The disadvantage of this landing gear
design was handling because of its greater weight. This increased
repair time with an increase in handling equipment. Since the two-
stage shock absorber included both a shock absorber and an extension-
retraction actuator as an LRU, complete unit replacement will be
required when a failure occurs either in the actuator or the shock
absorber. Because of the two-stage shock absorber, the frequency of
repair to the landing gear increased, and consequently increased both
field and depot level repair.

After evaluating this design the induced maintenance was increased,
thereby decreasing the MTBUM by 3.33 percent. In this design the MMH
and MTTR increased by 2.50 percent. The result of the changes in
MTBUM and MMH resulted in an increase in the MMH/FH by 6.00 percent.

Landing Gear Concept 4: (Figure 13)

This main landing gear design included three major components: a
shock strut, an extension-retraction actuator and a trailing arm.
The shock strut, designed with an attached pressurized component,
permitted hard landings. The design also provided for an emergency
system to aid the extension-retraction actuator in case of failure.
These components were attached to the airframe through a fixture
having four rotating points of contact.

Maintainability Advantages. The landing gear was of a modular (LRU)
design which could be replaced as a complete unit. The major
components of the landing gear were sub-LRUs to the landing gear and
could be removed independently. The advantage of a modular-design
landing gear was that it could be replaced as a complete LRU when
damaged or it could be repaired by one person replacing faulty sub-
LRUs. Also, a modular landing gear had the advantage of making
components more accessible. This resulted in a decrease in repair
time with the possibility of reducing ground support equipment. This
design also allowed for interchangeability, including right- and
left-handed components. The result, therefore, decreased the repair
time as well as parts count.

Maintainability Disadvantages. A possible disadvantage was an
increase in the repair interval due to the modular/sub-LRU design
concept.

After evaluating this design, the MTTR and MMH were decreased by 7.67
percent and 8.75 percent, respectively. The result of the MTBUM BTA
prediction and the decreased MMH resulted in the MMH/FH to be
decreased by 8.75 percent.

Landing Gear Concept 5: (Figure 14)

This main landing gear included a tensicn shock absorber which was
separate from the retraction actuator. The main components included
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a trailing arm, retraction actuator and tension shock absorber.
These components were attached to the airframe through a fixture
having three rotating points of contact.

Maintainability Advantages. The landing gear was designed such that
each component of the landing gear was a separate LRU and could be
replaced independently from the other LRUs. As separate LRUs, each
component was easily handled by one person. This decreased the
repair time of the main landing gear.

Maintainability Disadvantages. The design entailed removing the
attachment fixture LRU to gain access to the shock absorber LRU.
Therefore, the repair time increased due to the increased time to
replace the shock absorber. The additional provision to access the
shock absorber posed a higher risk of induced maintenance, which
could increase the repair intervals.

After evaluating this design the induced maintenance was increased,
thereby decreasing the MTBUM by 10 percent. In this design the MMH
and MTTR increased by 3.33 percent. The change in MTBUM and MMH
resulted in an increase in the MMH/FH by 15 percent.

In comparing the three landing gear concepts, Concept 4 was considered the best
design from the maintainability point of view. The maintainability parameters
of the three gears are given in Table 10 in the order of their ranks.

2.7 RELIABILITY ANALYSIS

The reliability analysis was based on the failure rates predicted for advanced
design concepts currently attainable. The analyses did not include the
influence of position indicators and switches, which are normally included in
the instrument subsystem. Historically, these components have high failure
rates, which in turn contribute to the total failure rate.

The reliability analyses were conducted in terms of the mission reliability
block diagrams and corresponding reliability curves. Landing Gear Concept 4 was
analyzed for four possible configurations evaluating redundancies in retracting
actuators and "gas bottles", the air chamber mounted on the shock strut.

2.8 PREFERRED LANDING GEAR CONCEPT

Following the evaluation of the three final concepts of the landing gear,
Concept 4 was chosen for this program. This concept of the crashworthy,
retractable landing gear offered the best configuration. This concept complied
with all the design requirements and the flexibility for the trade-off study of
the multiple design parameters.
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This is a trailing arm concept with a universal-mounted, two-stage, air-oil
strut designed to absorb up to 65 percent of the kinetic energy from a vertical
level impact at 42 fps. For retraction and extension, this concept used a
dedicated actuator that included an internal locking system for the extended and
the retracted positions. The configuration of the landing gear is shown in
Figure 20. The kneeling feature was achieved by bleeding air from the strut
upper stage accumulator or by bleeding and controlling the oil pressure of the
strut.

For normal landing, kneeling and crash the trailing arm pivots about a crank.
The trailing arm strokes in a vertical plane that will not permit the landing
gear to intrude into the fuel cell, troop cabin or other critical areas. During
crash the trailing arm will not interfere with the cabin door or exits, thus
allowing fast evacuation of troops and crew. With the landing gear retracted,
energy will not be attentuated by the landing gear since it is stowed above the
crushing zone of the fuselage.
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3.0 DETAIL DESIGN OF LANDING GEAR

3.1 GENERAL

The design driver was to design the lightest possible main Tanding gear without
compromising the crashworthy performance requirements. At the completion of the
preliminary design, the preferred landing gear concept was selected. Based on
the preliminary crashworthiness analyses described in Section 2.4.2 and the
results of the investigation described in Reference 2, the landing gear was
designed to absorb 55 to 60 percent of the kinetic energy from a 42 fps level
impact condition. Subsequent detail analysis, described in Section 6.0,
validated this choice for a weight-effective design.

A schematic view of the landing gear assembly is shown in Figure 21. The landing
gear assembly in the drop test fixture is shown in Figure 22 and the major
components individually in Figure 23. The following components, and the
respective system design rationale, will be discussed in this section.

1. Extension-Retraction Kinematics
2. Retraction Actuator

3. Retraction Linkage

4. Crank Assembly

5. Shock Strut Assembly

6. Trailing Arm and Axle

7. Joint Interfaces

8. Wheel and Tire Selection

9. ATLG Control System

The fuselage bulkhead supports a three-clevis pivot crank, to which are attached
the upper ends of the trailing arm and shock strut, and the lower end of the
retraction actuator. The upper end of the retraction actuator is attached to an
upper clevis on the bulkhead. A closed-loop load path for the landing loads, in
conjunction with the bulkhead, is provided by this arrangement.

3.2 ATLG-AIRFRAME INTERFACE

The ATLG main gear is part of a tricycle nose gear arrangement which is attached
to the bulkhead structure by means of a pivot crank oriented within the volume
requirements for LHX compatibility. The detail main landing gear design was
developed from the initial crosstube attachment through the airframe to the
bulkhead/crank assembly.

The crosstube arrangement was the preferred concept established in preliminary
design because of the structural advantages of allowing the shock strut response
to be unaltered by lateral loads. These lateral wheel loads were reacted at the
crosstube pivot and attachment fittings. Spherical bearings are normally
mounted at the connecting points of the shock strut, which then allows the
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RETRACTION ACTUATOR, P/N 1252400

RETRACTOR LINKAGE, P/N 1252300

TYPICAL CLEVIS FOR
MOUNTING LANDING GEAR
TO FUSELAGE BULKHEAD

PIVOT CRANK, P/N R016-0055

FUSELAGE
BULKHEAD

SHOCK STRUT, P/N 1252100

TRAILING ARM
P/N 1252001

AXLE, P/IN 1252002

Fiqure 21. Schematic view of advanced technology landing gear assembly

transmission of axial loads only, minimizes the oleo weight, and optimizes its
performance.

The attachment fittings for the advanced technology landing gear, however,
exceeded the established weight targets due to severe interface loads from the
crashworthiness requirements. The interface design was then changed from a
crosstube to a pivot crank. The major reasons are as follows:

a. An estimated 50 pounds would have to be added to the airframe
structure to reinforce the region of the attachment fittings and to
the size of the fittings themselves if a crosstube was selected.

b. The location of the crosstube in the LHX utility helicopter
interfered with the fuel cell, which in turn reduced the fuel
capacity by approximately 10 percent.

c. Excessive weight of the crosstube due to the excessive fuselage width
outweighed the structural advantages of this arrangement.

The improved method of attaching the landing gear to the airframe is through a
pivot crank. The bulkhead is capable of withstanding a 20g vertical impact
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ASSEMBLY,
PN 1282100-104

\mmmmo

AXLE ASSEMBLY,
PN 1252011101

Fiqure 22. Photoqraph of the advanced technology landing gear assembly.

load; therefore, the attachment to the bulkhead does not require additional
localized reinforcement. The crank also provides a closed-loop load path, and
refinement of the fuselage design will integrate the clevises of the crank into
the bulkhead.

The major advantages of the crank attachment to the airframe are:

a. The overall reduction in parts count of the main landing gear
assembly.

b. The crank, serving as the load path for the reaction forces created
by the trailing arm assembly and the retraction-extension actuator-
linkage assembly, produces a closed loop for these forces before
transferring the load to the bulkhead.
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c. The primary concern of increased weight is reduced by minimizing
parts count and utilizing the existing stiffened bulkhead.

3.3 EXTENSION-RETRACTION KINEMATICS

The ATLG design incorporates a very compact configuration which meets the
compatibility requirements for volume claim, kneeling features, and track width
of the utility helicopter. In addition to these features, the requirements for
emergency operation fully extend the gear in 2.5 seconds.

The kinematics of the landing gear use two orthogonal axes sequentially for
retraction and extension. The horizontal axis pivots the trailing arm 60
degrees and the skew axis retracts the landing gear assembly 30 degrees inboard.
The basic geometries of the gear in the fully extended, static, fully
compressed, and fully retracted positions are shown in Figure 24. For extension
and retraction the pivot crank rotates about the skew axis, shown as the A-B
axis in the figure. The rotating crank then, in turn, rotates the trailing arm
and shock strut as a unit. This unit always rotates starting from the fully
extended or fully retracted positions. The major advantage is that the strut
remains fully extended and fully serviced throughout the extension-retraction
cycle.

The retraction actuator and its linkage are attached to the fuselage bulkhead
and the pivot crank at locations E and F, respectively. The trailing arm is
attached from location C-D of the crank to point J and allows for rotation about
the C-D axis as well as about the crank skew axis. The shock strut is shown to
be Tocated between points G and H where G is on the crank. During landing,
crash, and kneeling the gear assembly remains locked, keeping the crank from
rotating and allowing the trailing arm to pivot about the horizontal axis C-D.
This permits the wheel assembly and trailing arm to displace in a vertical plane
only.

3.4 RETRACTION ACTUATOR

The retraction actuator, P/N 1252400, of the landing gear is a dedicated
retraction system with a parallel retraction linkage to react all locads. The
actuator is a standard fluid drive system which operates in either retracting or
extending the rod assembly which locks and unlocks the linkage. The actuator
has a cylinder made of 7075-T73 aluminum alloy capable of withstanding the
ultimate system pressure of 6750 psi. The piston and connecting rod assembly is
made of a 4340 steel. The rod is designed to withstand a maximum critical
buckling load of 12,060 pounds.

The advantages of an independent retraction actuator allow fcr the trailing arm,
shock strut and the interface connections to form a rapidly deployable energy
absorption system. The actuator is designed to be compatible with the control
system and sized for a normal extension and an emergency extension in less than
2.5 seconds.

The reaction loads occur under a normal system operating pressure of 4000 psi
with a capacity flow rate of 28 GPM. The actuator piston is only 1.15 inches in
diameter because the actuation loads are very small compared to those of the
shock strut. The low loads have resulted in a weight-saving design and have
minimal flow requirements, which results in rapid stroking capabilities. The
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actuator for the landing gear is shown in Figure 25 indicating standard assembly
arts. The maximum extension of the actuator is 13.19 inches, which locks the
linkage assembly for maximum extension. The minimum retracted length is 8.822
inches which, also in conjunction with the retraction linkage, locks the landing
gear in the fully retracted position.

3.5 RETRACTION LINKAGE SYSTEM

For the ATLG, the dedicated retraction actuator is used with a main 1ink which
is a two-bar construction with an external double locking linkage. The
advantage of this design is that when the gear is fully extended and the dual-
action actuator extends the external double locking links, the linkage becomes a
near-rigid element. This locking of the linkage transfers the reaction loads of
the main gear assembly to the fuselage bulkhead, producing the closed-loop load
path.

The retraction actuator-linkage assembly is shown in Figure 26 in the fully
extended position. In this position the retraction actuater, the linkage
assembly, and the overcenter iock assembiy are in parallel. The upper and lower
links of the linkage assembly are designed to pivot about A-A during retraction
and extension. The retraction actuator, mounted on the upper link, can rotate
about B-B. The two jury arms of the overcenter lock pivot about C-C during
retraction and extension. The upper and lower 1inks are locked in the extended
and retracted positions because the two links together form an unstable
assembly. The preloaded spring keeps the jury arms locked. In the extended
position, Switch No. 1 is activated and indicates, in the cockpit, that the gear
is extended.

When retraction begins, the first displacement of the actuator piston rod
rotates the torque tube to overcome the force of the preloaded spring and
unlocks the linkage. As retraction continues, (1) the two links pivot about A-A
and begin to fold, (2) the retraction actuator rotates about B-B, and (3) the
jury arms, pivoting about C-C, at first, begin to fold and then to extend again.
In the final retracted position, the jury arms of the overcenter lock assembly
are fully extended and locked back in positior. Switch No. 1 is now deactivated
and Switch No. ? is activated to indicate, in the cockpit, that the gear is
fully retracted. The fully retracted position is outlined in Figure 26.

When the actuator begins to extend, the first displacement of the piston rod
unlocks the linkage. Further extension of the piston reverses the operations
which occur during retraction. Extension stops when the lock is again in
position.

The retraction 1inkage, P/N 1252300, is desijned of 7075-T73 aluminum alloy with
standard bushings at the connections capable of withstanding a maximum column
load of 84,660 pounds. Electronic indicators can be attached to the linkage to
indicate whether the gear is up or down. The overcenter lock is actuated in
case of a major failure.

3.6 PIVOT CRANK
In order to meet the volume claim requirement, as well as the requirement of an

emergency extension time of 2.5 seconds, the kinematics of the main landing gear
required a very compact design where the rotation and translation geometries
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during gear retraction were optimized. The trailing arm and independent shock
strut were selected to optimize the crashworthiness requirements. The key to
achieving the desired kinematics is the pivot crank, P/N R016-0055. The pivot
crank is of complicated geometry and developed through several iterations. The
last two design iterations of the crank are shown in Figure 27. The design
improvement in the R016-0055 crank over the old R016-0034 crank was to reduce
the machining labor cost by 7.5 percent. The critical dimensions in the two
cranks remain the same.

The pivot crank performs the function of the primary attachment point for the
retraction actuator, the trailing arm assembly, and the shock strut. The crank
itself pivots on the fuselage bulkhead. The crank, therefore, controls, in one
rapid motion, the extension and retraction of the landing gear assembly. It
also reacts the kneeling and landing loads.

The crank, being weight-critical, was desigred of 7175-T736 high strength
aluminum alloy despite the fact that the specific strengths are lower than
either steel or titanium alloys. The 7175-T736 aluminum alloy is very
competitive structurally for large forgings due to the dead metal associated
with the complexity of the crank geometry. The aluminum crank and its location
in the landing gear assembly are shown in Figure 28.

3.7 SHOCK STRUT

The design of the shock strut, P/N 1252100, is critical to the overall per-
formance of the energy absorption capability of the main landing gear. The
design incorporates a two-stage oleo-pneumatic shock strut which is attached to
the trailing arm at one end and to the pivot crank at the other. The total
energy absorbed by the main gear assembly and tires is predicted to be 45,380
ft-1bs at 42 fps level landing. The shock strut efficiency is 80 percent and
the tire efficiency is 45 percent for a BSDGW of 8500 pounds.

The preliminary design established the vertical position, compression ratio, air
volume during compression, load factors, maximum pressures inside the two
stages, and the orifice size. Orifice sizing was adjusted such that th- dynamic
load response was relatively constant.

The ATLG shock strut design, shown in Figure 29, utilizes a common oil base and
allows flow through the first stage orifice during normal landing conditions up
to vertical speeds of 10 fps. The stroking action of the first stage causes the
oil base to be pressurized and metered through the orifice to obtain a damping
response. The air is pressurized by the piston stroking to produce a pneumatic
spring action to dissipate energy with good rebound control.

During crash and hard landing conditions the velocity of the first stage strut
increases rapidly, causing fluid pressure to rise in the oil chamber above the
first stage orifice. As the o0il flows through the orifice, the air in the first
stage air chamber is compressed on the other side of the floating piston. he
first stage bottoms after exceeding the maximum compression of the air at

2,292 psi and then transfers the load into the second stage. The second stage
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RETRACTION ACTUATOR
AND LINKAGE

PIVOT CRANK

FUSELAGE
BULKHEAD

SHOCK STRUT PICKUP
RETRACT LINKAGE PICKUP

PIVOT FOR FUSELAGE
BULKHEAD SUPPORT

TRAILING ARM PICKUP

Fiqure 28. Schematic view of the pivot crank showing position in the

landing gear assembly.
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FIRST STAGE AIR CHAMBER

SECOND STAGE ORIFICE

)4

FIRST STAGE ORIFICE

Figure 29.

FUSE ORIFICE

KNEELING STOP

COMMON OIL BASE

SECOND STAGE AIR CHAMBER

ATLG shock strut assembly.

piston displaces, causing the oil to
initiates the stroking of the second
air in the second stage air chamber.
to a threshold pressure of 7,350 psi

flow through the second stage orifice which
stage floating piston and compresses the
The pressure in the second stage will rise
at which time the fused orifice, designed

for loads below 8g, will shear.

In summary, landings up to 10 fps will allow flow through the first stage
orifice. For vertical velocities greater than 10 fps and up to 20 fps,
designated as hard landing conditions, oil flow is through both first and second
stage orifices. For crash conditions, the fused orifice is designed to shear
such that sudden peak loads are not induced in the remaining energy absorption
system.

The inner and outer cylinders of the ATLG shock strut utilize 7174-T74 aluminum
alloy, which minimizes the weight of the main landing gear. The internal piston
and the floating pistons are designed with 4340 alloy steel.

3.7.1 Method of Kneeling

The concept that was selected to meet the kneeling requirements of the landing
gear was by releasing air pressure from a second stage control volume to stroke
down to an internal kneeling stop. A pneumatic control system is part of the
kneeling system and controls the flow or release of nitrogen to or from the
shock strut second stage. Nitrogen supply, at 2,500 psi, is available aboard
the aircraft as part of the weapon systems and can be shared by the landing gear
system.

Consequently, the kneeling concept consists of controlling the volume and
pressure of the nitrogen gas in the second stage of the shock strut. By
bleeding the nitrogen, the second stage bottoms on the positive kneeling stop to
a position such that the aircraft has a 3-inch ground clearance. In this
position, the first stage of the strut is still operational and provides
cushioning from vibrations or shock during transportation. The nitrogen gas can
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be replenished at any moment by command from the cockpit, and different kneeling
heights can be achieved.

The kneeling stop is a thin-wall spacer made of 7075-T73 aluminum alloy. Under
crash-impact conditions the second-stage floating piston may bottom against the
stop, resulting in very high strut loads. The kneeling stop is designed to
yield at a ground load of 22,400 pounds in order to increase the piston stroke
and reduce the strut load.

3.8 TRAILING ARM AND AXLE

From the preliminary design studies the trailing arm concept for the landing
gear was selected because of its advantages in structural loading and energy
absorption. The commonality between right- and left-hand gears was addressed by
adding a redundant pair of lugs at 180 degrees from the existing pair of lugs
for attaching the shock strut. However, this redundant pair of lugs was removed
during tests when the lugs interfered with the ground in 10-degree rolled drop
tests of the iron-bird fixture.

The geometry of the arm, P/N 1252001, and its relationship with the wheel, pivot
crank, and shock strut is such that for a given ground load the strut load
remains nearly constant as the trailing arm rotates about the axis on the pivot
crank. Additionally, this design arrangement allows shorter strut strokes to be
used due to the magnification effect of its lever arm. This results in a more
compact oleo-pneumatic shock strut which reduces weight substantially and allows
for very simple and compact retraction kinematics. Additional advantages of the
trailing arm design are:

° The energy absorption of the landing gear is relatively insensitive
to side loadings.

° The rearward rake of the main landing gear is safer than other
designs in a forward velocity rough terrain or obstructed runway
landing because of the landing gear's natural tendency to defiect up
and back, over the obstruction.

® Short, direct paths for the crash loads utilize the same structure
that is needed for flight and landing loads.

° Energy absorption is provided through large displacements of the
shock struts. This reduces the accelerations imposed on the
occupants.

. With proper strut geometry, nearly constant ground load factors are
achieved throughout the landing gear stroke; this optimizes energy
absorption while minimizing landing gear loads.

The trailing arm design lends itself to potential weight savings when using
advanced material systems over conventional materials. The weight savings
potential of these materials was evaluated by considering the restrictions to
volume, joint and attachment locations, impact and fatigue considerations, and
the expense of tooling and fabrication. Without the extensive cost of component
development with advanced materials, these materials offer poor potential for
low-cost fabrication in large quantities.
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A study was performed comparing high strength aluminum alloy and 300M steel for
the optimum conventional material. The trailing arm was finally designed with
7175-T74 aluminum alloy and the axle assembly from a standard 4340 steel. These
materials were selected at the completion of the study due to lower cost and
availability against the 7 to 8 pounds of weight savings if 300M steel was
selected.

The detailed design of the trailing arm also incorporates a nonintegral axle,
P/N 1252002. This feature improves maintainability by allowing replacement of a
worn or broken axle without replacing the complete trailing arm. The basic
geometry and attachment locations of the trailing arm and axle are shown in
Figure 30. The modification of the trailing arm by removing the redundant lugs
is shown in Figure 31. The design features for braking, turning, pivoting,
taxiing, towing and jacking conditions are incorporated into the trailing arm in
accordance with MIL-A-8862. The strut attachment lugs and the corresponding
redundant Tugs are shown in Figure 23.

3.9 JOINT INTERFACES

The joint interfaces incorporate standard design features with the availability
of standard pins, bearing, bushings, and nuts and bolts. The interfaces allow
for standard relief angles and clearances established for all designs. Data on
joint interfaces and their locations are summarized in Table 11. Detail designs
of the individual joint assemblies are shown in Figures 32 through 35.

3.10 WHEEL AND TIRE SELECTION

The landing gear requires operation on landing surfaces with CBR (California
Bearing Ratio) of 2.5. The detailed design required an evaluation of the wheel
and tire size which would meet the main landing gear design criteria. The wheel
selected was a B.F. Goodrich Nose Wheel No. 3-1185 which is currently in use on
the F-4 aircraft. The general specifications are given below.

) Wheel Size - 18 x 5.5 inches

° Tire Size - 6.50 - 8, 8-ply

. Wheel, Max Static Rating - 5900 pounds

° Wheel Radial Load - Limit 43,930 pounds
Yield 50,520 pounds

° Wheel Pressure - Normal 115 psi
Burst 1225 psi

° Wheel Weight - 11.45 pounds

3.11 CONTROL SYSTEM

The control system for the main landing gear uses an artificial intelligence
computer system for automatic emergency extension and a fail-safe redundancy.
The landing gear control system block diagram is shown on Figure 36. There are
four basic groups: Cockpit, Computer System, Control System, and Landing Gear
Assembly. The first three are control groups and are discussed below. The
details of the landing gear assembly have already been described.
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TABLE 11.

LOCATIONS AND SPECIFICATIONS OF JOINT INTERFACES

Bearing No.
Pin (Karon Brgs/
Joint { Pin OD Pin ID | Length Kamatics) Bolt Nut
A 1.2490 0.755 2.960 _ _ _
12480 0.745 2955 KRJ20-UDSB-018 AN6-36 MS21045C6
B 1.2490 0.755 3.460 _ _ _
12480 0.745 3. 455 KRJ20-UDSB-018 AN6-43 MS21045C6
C 0.9990 0.505 3.280 _ - _
0.9980 0.495 3.270 KRJ16-UDSB-024 AN4-40 MS21045C4
Grade 7 or 8
D 2.750 2.005 8.160 MDHC P/N TBD 500-20UNF-3B =
2.748 | 1.995 | 8.150 | MOHC P/N TBD | Alloy Steel |To21043C8
10.63 in. long
Grade 7 or 8
E 1.750 1.080 9.465 | KRJ28-UDSB-042 500-20UNF-3B | ws21045C8
1.748 1.070 9.455 | KRJ28-UDSB-048 Alloy Steel
10.63 in. long
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3.11.1 Cockpit Group

Within the Cockpit Group there are five components, the functions of which are
explained below.

Status Display Lights. Visual groups of lights that indicate where the
gear is at any given moment. If the gear faiis to actuate, a red "fail"
blinking 1ight will be on until the problem is resolved.

Computer CRT and Inputs Panel. Displays menus and 1nputs of programs for
automatic response, real time, type of mission and other parameters to
control the gear. It displays component's status.

Kneeling Switch. After "Kneeling" menu is keyed into the computer, it
allows the aircraft to kneel from a static position to any height down to
3 inches ground clearance.

Computer Override Switch. The switch extends or retracts the gear,
bypassing the computer programming in case of an emergency, e.g., when ice
is formed, or when testing.

Emergency Manual Valve. Tnis hydraulic valve operates the gear in case of
an emergency caused by electrical and hydraulic failures; this valve opens
the main control valve to the gear.

3.11.2 Computer System Group

Within the Computer System Group, there are three components. The functions of
these components are described below.

Automatic Testing Module. This dedicated computer module periodically
verifies the working status of the hydraulic valves, the pneumatic control
system, the pressure of the nitrogen in the oleo and the electrical
systems, and compares the answer to some basic parameter. In case of
disagreement, a failure is reported to the main computer for further
action.

Artificial Intelligence Computer. It is one of the main "Smart" computers
aboard the aircraft that makes basic operational gecisions based on inputs
from sensors or other computers or the crew, such as deciding to extend
the gear in case of an emergency by giving priority to the landing gear
support equipment over any other subsystem sharing the same support
system. A block diagram of the inputs affecting the decision-making
process is given in Figure 37.

Automatic Extension Module. This dedicated computer module that monitors
several preprogrammed parameters and reports them to the main computer for
emergency decisions.

3.11.3 Control System Group

The Control System Group includes the two components described below.
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Hydraulic Control System. This control system is part of the hydraulic
system for the landing gear and includes a main control vaive electrically
operated hy solenoids, an isolation valve, a shuttle valve, an
accumulator, and associated hardware. The hydraulic pressure for the
system is provided by a pump in the aircraft. The system works on 4000
psi and has enough flow to satisfy the emergency extension time of 2.5
seconds.

The control valve has independent electrical inputs for extension or
retraction. The isolation valve prevents hydraulic fluid losses in case
of damages to the components or the lines. In case of failure, the
accumulator replaces the pump. The shuttle valve allows the use of the
manual emergency valve at the cockpit to extend the gear at the same time
that it isolates the main control valve. The block diagram of the control
system, the location of which is shown in Figure 37, is given in

Figure 38. The hydraulic control system includes the landing gear
actuators that are double-acting hydraulic cylinders with cushioned ends.

Pneumatic Control System. This system is part of the kneeling system and
controls the flow or release of nitrogen to or from the second stage of
the shock strut. There is a nitrogen supply system aboard the aircraft
that operates at 2500 psi and is part of another system requirement. This
nitrogen supply will be shared by the landing gear system.

The landing gear system includes the following feedback or sensor system:
° Limit switches and sensors at the retraction-extension linkage.
° Sensors at the shock strut for kneeling limits.

° Automatic testing sensors at the strut and the linkage actuator.

3.11.4 Fail-Safe Assessment

The control and power system for the landing gear were designed with
redundancies and to be fail-safe under various conditions. In case of main
hydraulic power loss, the hydraulic accumulator that primarily supports the APU
becomes the emergency power unit for the gear. The transfer from standard power
supply to the auxiliary power supply is automatic. In case both hydraulic
supplies fail, a manual hydraulic valve moves the main control valve to a full
return position so that the gear extends by its own weight. In case of
electrical failure, the gear can be extended by a secondary electrical supply or
by the manual hydraulic valve. The flow diagram for fail-safe operation is
shown in Figure 39. An assessment of the designed-in options is given in

Table 12.
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TABLE 12.

FAIL-SAFE ASSESSMENT OF LANDING GEAR

Hazard Design
Inadvertent Weight-on Wheels Switch Interlock
Retraction

Will not Extend
Using Normal
System

Pilot Fails to
Extend Landing
Gear

Hydraulic Power
Failure

Electrical Power
Failure

Backup Systems
Failure

Landing Gear Control must be in Extend position
when Weight-On-Wheels senses airborne. If in
Retract, it must be cycled before it will Retract.

Warning

Emergency hydraulic power is actuated and
operation is with accumulator

Emergency electric power is actuated and emergency
manual hydraulic valve may also be used

Emergency manual valve actuation; gravity will
extend gear
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4.0 COMPATIBILITY WITH SCAT HELICOPTER

4.1 BASELINE HELICOPTERS

The compatibility study with the SCAT-version of the helicopter is based on the
designs of the utility and SCAT helicopters of February 1986, when the utility
design was frozen for the ATLG program. The utility helicopter is designed with
a nosewheel. The SCAT is a tailwheel configuration because the requirements of
the utility helicopter are different from those for the SCAT, and because, more
importantly, the tailwheel design eliminates interference of the weapon system
with the landing gear. The SCAT helicopter is shown in Figure 40.

The two helicopters share common subsystems, such as the rotor and NOTAR
systems; hydraulic, pneumatic and electrical systems; engines; transmission;
crew seats; flight controls; ECS; fuel system and NBC suits. The landing gears
~f the utility and SCAT helicopters are compatible and interchangeable at the
component and subassembly level, as explained below.

4,2 |LANDING GEAR ARRANGEMENT

The components which are common to the utility and SCAT main landing gears are:

1. Wheel assembly 6. Joint pins

2. Retraction-extension lock 7. Controls

3. Trailing arm assembly 8. Hydraulic system

4, Strut assembly 9. Installation hardware
5. Bearings and bushings 10. Door actuators

A11 components of the strut assembly are common. The differences lie in the
metering orifices and the ground resonance valve.

In addition to the main landing gear, commonality also exists in components of
the nosewheel of the utility helicopter and the tailwheel of the SCAT
helicopter. The common components are:

1. Wheel assembly 5. Installation hardware
2. Retraction-extension lock 6. Hydraulic valves

3. Castering Tock 7. Door actuators

4. Bearings and bushings

The main landing gear of the utility helicopter is a unitized design concept
where the entire landing gear is attached to the biilkhead at two clevices. This
unit gear can be "moved" to different locations without disturbing the stroke,
the energy-absorbing characteristics, or the kinematics. Oepending on the
specific SCAT design, the entire gear unit can be utilized in a SCAT helicopter
with changes in the orifices, gas pressure and tuning for resonance.
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The parameters of the utility landing gear which can be adjusted or modified for
full compatibility with the SCAT landing gear are given below.

Main Landing Gear System Modification/Change

Skew Axis, Kinematics The crank and the attachment to the
fuselage bulkhead will be different
depending on the SCAT configuration.

Shock Strut Internal orifices and the ground
resonance valve will have to be
modified; the gas pressure for the
first and second stages may require
modification. (The orifices and the
pressure changes will depend on the
energy to be absorbed by the strut.)

Tail Landing Gear System Modification/Change
Trailing Arm and Axle New components
Shock Strut New component
Fuselage Attachment New design

4.3 SCAT WEIGHT

The gross weight of the SCAT helicopter is 8,500 pounds, the same as the
optimized weight of the crashworthy utility helicopter. The weights of the
utility and SCAT helicopters are compared in Table 13.

4.4 SCAT ENERGY ABSORPTION CAPABILITY

The SCAT helicopter is operated by a single pilot. In contrast to the utility
helicopter, which has a crew of two and six troops, the SCAT helicopter has a
narrower fuselage. Thus, the capability of the SCAT fuselage to absorb energy
is reduced if its fuselage is scaled from that of the utility helicopter. If
the SCAT landing gears are exactly interchangeable with that of the utility
helicopter, the SCAT landing gear will still absorb 60 percent of the energy
from a 42 fps level impact and the fuselage will be incapable of absorbing the
remaining 40 percent.

Tn order for the SCAT fuselage to absorb the 40 percent of the energy from a 42
fps level impact, the fuselage must be redesigned. In redesigning the fuselage,
two options are available: (1) use the same number of energy-absorbing elements
as in the utility helicopter but space them closer in the SCAT fuselage, and (2)
use different energy-absorbing elements but retain the same spacing as in the
fuselage of the utility helicopter. Both options are practical; however, the
first option is more likely to raise g-loads transmitted through the fuselage.
The final configuration can only be determined from a detail design of the SCAT
fuselage.
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TABLE 13. GROUP WEIGHT STATEMENTS OF THE UTILITY AND
SCAT HELICOPTERS

Optimized Utility Optimized SCAT _]
Item (1b) (1b)
Main Rotor Group 668 668
Tail Group 190 190
Body Group 922 826
Alighting Gear Group 417 422
Nacelle 120 120
Air Induction 27 27
Propulsion 1443 1443
Flight Controls 422 422
Auxiliary Power Plant 60 bJ
Instruments 91 91
Hydraulics and Pneumatics 215 215
Electrical 229 229
Avionics 270 270
Armament 457 457
Furnishing and Fquipment 372 130
Air Conditioning 180 180
Anti-Ice 16 16
Loading and Handling 5 5
Weight Empty 6104 5771
Crew 235 235
Unusable Fuel 18 18
ngine 011 25 25
Fuel 776 776
Payload (6 Troops or Weapon 1342 1675
System)
Gross Weight 8500 8500
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5.0 LOAD AND STRUCTURAL ANALYSIS

5.1 GROUND LOAD CONDITIONS

The maximum landing loads of the baseline crashworthy helicopter for a basic
structural design gross weight (BSDGW) of 8,500 pounds and for an alternate
design gross weight (ADGW) of 10,625 pounds were established during preliminary
design. The calculated inertias are shown in Table 6. The design of the
landing gear was sized by a combination of vertical loads during crash-impact
and obstruction loads. Preliminary landing loads were first established for a
level three-point 1imit landing at 10 feet per second of the ADGW crashworthy
helicopter and a crash landing at 42 feet per second of the BSDGW crashworthy
helicopter. Concurrently, a simple five-mass KRASH model, described in Sec-
tion 2.4.2, was established to size the system for crashworthiness. After
optimizing the system (load factors and strokes for the landing gear, fuselage
and crew seat) for crashworthiness, the ground loads were calculated for 25 land-
ing conditions including crash impact. The ground loads for all conditions are
given in Table 14 and the variations of the ground loads with stroke for the two
severest impact conditions are shown in Figure 41.

5.2 ULTIMATE LOAD CONDITIONS

The ultimate loads for the design of the shock strut were based on a ground load
curve that would produce an 80 percent efficient landing gear for the level
landing condition of 42 feet per second. Gear efficiency is the area under the
Joad-stroke curve divided by the product of the maximum load and the total
stroke. Initially the total energy of the crash was assumed to be distributed
in a ratio of 45:55 between the fuselage and the landing gear. The level crash
landing load was distributed 31.2 percent to the nose gear and 34.4 percent to
each of the main gears. The maximum load in the shock strut was assumed to
develop at 5 inches of vertical stroke. This assumption is based on the
qualification tests on the Apache landing gear reported in Reference 5. The
shock strut was designed with a load-1imiting device to ensure that the ground
loading would remain under 22,400 pounds in the level landing condition. The
shock strut 1imit load in this case was 47,540 pounds. The estimated load-
stroke curve for the shock strut is shown in Figure 42.

The remaining ultimate load conditions were set by the 1imit value sustained by
the shock strut. The ground loading for the pitch-down and roll cases were then
based on the shock strut load of 47,540 pounds. The vertical load and the drag
loads were applied at the wheel center. The side load was applied at a flat
tire radius of 5.8 inches.

5.3 INTERNAL LOADS DISTRIBUTION

The internal loads distributions for the various components were calculated for
the 21 loading conditions given in Table 14. These conditions are identified as
"limit," "reserve energy," "no yield," and "ultimate." The criteria for
analysis are modified by the factor of safety (F.S.) for these four conditions
as follows: (a) limit loads, F.S. = 1.0, no failure with F.S. = 1.5; (b)
reserve energy, no failure with F.S. = 1.0; (c) no yield, F.S. = 1.0; and (d)
ultimate, no failure with F.S. = 1.0.
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TABLE 14.

MAIN LANDING GEAR DESIGN GROUND LOADS

Ground Load per Main
Sink Gross Load Wheel (kips)
Type Speed Weight | Factor
No. | Condition | Impact (fps) (1bs) (g's) v D S
1 3-Point Limit 10.00 8,500 2.05 6.70 - -
Level Reserve
Energy 12.25 8,500 3.08 10.05 - -
2 3-Point Limit 10.00 8,500 2.05 5.78 1.45 -
Reserve
Energy 12.25 8,500 3.08 8.67 2.17 -
3 2-Point Limit 10.00 8,500 2.05 7.30 1.83 -
Level Reserve
w/Drag Energy 12.25 8,500 3.08 10.95 2.75 -
4 2-Point Limit 10.00 8,500 2.05 7.30 | *3.35 -
Level Reserve
w/Drag Energy 12.25 8,500 3.08 10.95 | +5.48 -
5 1-Wheel Limit 10.00 8,500 2.05 7.43 - -
6 Tail-Down |Limit 10.00 8,500 2.05 8.51 - -
15° Pitch
7 Tail-Down |[Limit 10.00 8,500 2.05 10.47 - -
15° Pitch
10° Rol1
8a | Hard Level [No Yield | 20.00 10,625 4.65 17.00 4.25 -~
8b | Hard Level {No Yield | 20.00 10,625 4.65 17.00 | -4.25 -
8c | Hard Level [No Yield | 20.00 10,625 4.65 17.00 - 4.25
8d | Hard Level |No Yield | 20.00 10,625 4.65 17.00 - -4.25
9 Hard No Yield|{ 20.00 10,625 - 22.90 - -
15° Pitch
10 Hard No Yield | 20.00 10,625 - 23.30 - -
15° Pitch
10° Ro1l1l
11 3-Point Limit - 10,625 1.00 2.07 -
Braked
Roll
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TABLE 14 - Continued

Ground Load per Main
Sink Gross Load Wheel (kips)
Type Speed Weight | Factor

No. | Condition Impact (fps) (1bs) (g's) Vv D S

12 2-Point Limit - 10,625 1.00 5.31 4.25 -
Braked
Ro11

13 Reversed Limit - 10,625 1.00 5.31 -4.25 -
Braking

14 Static Limit - 8,500 1.00 3.27 - -

15 29 Taxi Limit - 8,500 2.00 6.54 - -

16 ([Pivoting Limit - 8,500 1.00 3.27 - -

17 |lLateral Limit 10.00 8,500 2.05 3.35 - -2.68
Drift Left

18 |Lateral Limit 10.00 8,500 2.05 3.35 - 2.01
Drift
Right

19a |Level Ultimate | 42.00 8,500 7.66 22.40 - 5.03
Crash

19b |Level Ultimate | 42.00 8,500 7.66 22.40 - -5.03
Crash

20 |Crash Ultimate | 42.00 8,500 - 30.20 - -
15° Pitch

21 |Crash Ultimate | 42.00 8,500 - 30.67 - -
15° Pitch
10° Ro

NOTES

(1) Loading applies from 5 inches of vertical stroke to kneeling position for
conditions 8 through 10.

(2) Loading appiies from 5 inches of vertical stroke to fully crashed
position for conditions 19 through 21.

(3) Unless otherwise noted, loading applies from fully extended to 13-inch
vertical axle travel.

(4) See Figure 39 for the Variations of Ground Loads with stroke for

Conditions 20 and 21.
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The stress analyses of the components of the landing gear are divided into two
sections: (a) the major components and (b) the support components. For all
components analyzed, the margins of safety at critical sections for the
particular loading condition have been determined.

5.3.1 Stress Analysis of Major Components

The major components of the landing gear are the trailing arm and axle, the
shock strut, and the retraction actuator with the linkage assembly. The margins
of safety for these components are summarized in this section.

The axle is made of 4330V steel alloy, heat treated to 200/240 ksi. The axle
has five critical diametrical sections as shown in Figure 43. The minimum
margin of safety for an axle section is +0.04 and occurs just outboard of the
brake flange lugs. The load condition that makes this section critical is
condition 8c of Table 14: hard level landing at 20 feet per second from an
aircraft gross weight of 10,625 pounds with no yielding. The minimum margin of
safety for the axle assembly is +0.01 and occurs at the through cross bolt holes
3.19 inches from the axle's inner end. The margins of safety for the axle, the
jacking pad and the washer key are summarized in Table 15.

The trailing arm is made of 7175-T74 aluminum alloy and has been analyzed for
six critical sections, in addition to its lugs and other attachment hardware.
The critical sections of the trailing arm are shown in Figure 44. The minimum
margin of safety of +0.03 occurs at a section 8.75 inches below the upper
attachment point. This minimum is for loading condition 20 of Table 14, i.e.,
for crash impact at 42 feet per second with +15 degrees pitch for an aircraft
gross weight of 8,500 pounds. The margins of safety for the trailing arm and
attachment hardware are summarized in Table 16.

The main components of the shock strut are the piston, made of 4340 steel alloy
and heat treated to 180/200 ksi; the inner cylinder, made of 7175-T74 aluminum
alloy; and the outer cylinder, also made of 7175-T74 aluminum alloy. The
critical sections of the shock strut are shown in Figure 45. The margins of
safety for the shock strut components are higher than those for the axle and
trailing arm. Only the gland nut for the second stage has a margin of <afety of
+0.04. A summary of the margins of safety are given in Table 17.

The retraction of the landing gear is designed such that the load ‘< reacted by
an outside linkage system parallel to the retraction actuator. T.e cylinder of
the actuator is made of 7075-T73 aluminum alloy and the rod is 'rade of 4340
steel alloy heat treated to 180/200 ksi. A1l major components of the linkage
assembly - upper and lower links, clevis, bracket, and upper and lower lock
arms - are made of 7075-T73 aluminum alloy. The exceptior is the torque tube of
the 1inkage assembly which is made of 4340 steel heat tr:ated to 180/200 ksi.
The critical sections of the retraction actuator are <iown in Figure 46, and of
the upper and lower Tinks in Figure 47. The minimum margin of safety for these
components is +0.08 and occurs at the thread relie‘ for the gland nut in the
retraction actuator cylinder. The load conditio:, however, is for burst test
pressure. The margin of safety for the upper and lower links is higher than
+0.26 The margins of safety for the retraction actuator, the linkage assembly
and attachment hardware are summarized in Table 18.
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MS. =+ 11

COND. 2 PT.
BRAKE ROLL Q OF
@ R2  WHEEL INNER BEARING
3 l 1 CONE L305649
@ > | @ g CUP L305610
] 11 OUTER BEARING
= it
UPL
D ! g-, MS s G
COND. .
S e o A ‘ O\Q WITH OUTWARD
COND.(8) 31036 M.S. =+ (7 .um'-‘\ NS ‘:"?7L°A°
HARD LEVEL COND.®) |—2807\— -
HARD LEVEL \ COND. (19
LANDING LANDING | J CRASH,
1net OUTWARD
\ SIDE LOAD
I \__s
tv
Load Stress Margin
Section/Location Case Condition of Safety
1-1 8¢ FTY’ FBY’ FSY +0.07
2-2 8c FTY’ FBY’ FSY +0.04
3-3 8c Frys Fay, FSY +0.07
4-4 19a FTY’ FSUN +0.04
5-5 19a FTU’ FBU +7.0
Through Bolt Holes 8c Frys Fgys Fgy +0.01
Socket Pin 8¢ Frys Fay +0.04
Max Bending
Figure 43. Critical sections of the axle.
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LUG

M.S.=+.09
COND(19CRASH WITH
OUTWARD SIDE LOAD
GROUND STROXE 5.0 IN.

CYL ARM
M.S.=+.06
COND@:)CRASH
WITH OUTWARD
SIDE LOAD

CYL ARM

M.S.=+.06

CONDROICRASH AXLE HOUSING

15° PITCH M.S.=+.03

GROUND STROKE 5.0 IN. CONDROCRASH
15° PITCH,

GROUND STROKE 5.0 IN.

GROUND STROKE 5.0 IN. CYL ARM SHOCK STRUT LUGS
M.S.=+.08 M.S.=+.07
COND@O)CRASH COND (9)CRASH
15° PITCH, WITH INWARD
GROUND STROKE 5.0 IN.  SIDE LOAD,
CRASH POSITION
Load Stress Margin
Section/Location Case Condition of Safety
1-1 20 FTU' Fau, Fsu, FSTU +0.05
2-2 20 FTU’ FBU’ Fsu, FSTU +0.03
3-3 20 FTU’ Fau, Fsu, FSTU +0.04
4-4 19a FTU’ FBU’ Fsu, FSTU +0.23
5-5 19a FTU’ FBU' FSU +0.86
6-6 19a FTU’ FBU’ Fsu, FST +0.71
Shock Strut 19b Transverse Grain +0.04
Attach Lugs Direction - Fypy
Axle Housing 20 Axial and Transverse +0.07
Loading
Inner Lug at Upper 19a Axial and Transverse +0.07
Attachment Loading
Figure 44. Critical sections of the trailing arm.
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OUTER CYLINDER INNER CYLINDER PISTON KNEELING STOP
1
1 Oﬁ
i —— ~ o
1
Load Stress Margin
Section/Location Case Condition of Safety
Piston 3-3 10 Fyr (No Yield) +0.63
Inner Cyl 4-4 10 Fyr (No Yield) +0.08
Inner Cyl 2-2 10 Fyt (No Yield) +0.10
Outer Cyl 1-1 10 Fyr (No Yield) +0.07
Outer Cyl 2-2 10 Fyr (No Yield) +0.08
Pin Outer Cyl 10 Fgy +0.13
Pin Shock Strut 10 Fgy +0.16
Gland Nut - 2nd 10 Fgys Fry +0.04

Fiqure 45. Critical sections of the shock strut.
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CYLINDER WALL THREADS
M.S.=.1§ M.S.=+.65
COND.: BURST TEST COND.: BURST TEST LOAD

PRESSURE
| 0 ®
B SF
i i !

. —— 75
|
e P '
a=6.41IN. e b=6.65 IN.
LUG // LG
M.S.= +.62 - M.S.= +HIGH
COND.: PROOF TEST LOAD PISTON ROD COND.: PROOF TEST LOAD
CYLINDER M.S.=+.35
s ol seoch
COLUMN & BENDING) - :
COND.: MAX. SYSTEM PRESSURE LOAD
PRESSYRE LOAD
Load Stress Margin
Section/Location Case Condition of Safety
Cylinder 1-1 Burst Test Fut +0.15
Pressure
Cylinder 1-1 Max System Buckling, Fgy +0.35
Pressure
Piston Rod 202 Burst Test Fe +0.35
Pressure
Gland Threads Burst Test Frus Fau +0.08
Pressure
Gland Nut 10 Fay, FTY +0.04
Pressure
Burst Test Pressure 10,000 psi
Max System Pressure 6,750 psi

Figure 46. Critical sections of the retraction actuator.
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LG
M.S.=+.35
LG RET. ACT. LOAD
M.S.= +HIGH +6,000 LB OF
RET. ACTUATOR JURY BRACE LOAD
LOAD
L,=7.50 IN. L,=9.50 IN.
[ (rreR) :é\_w Cowery —— .
X ‘J , ¢ 625 IN.
72> Vi e
N/ =-- Yy_
1.825IN. | § 251N
| 2.25IN.
UPPERJURY Mg as.11 M.S.=.12 ;%'\VKEE JURY
BRAKE (COLUMN & BENDING) (COLUMN & BENDING)
ATTACHMENT  COND. 19 LEVELCRASH  COND. 19 LEVEL CRASH ATTACHMENT
WITH INWARD SIDE WITH INWARD SIDE
LOAD CRASH POSITION LOAD CRASH POSITION
Load Stress Margin
Section/Location Case Condition of Safety
Upper Brace 1-1 19b Buckling, Fgy +0.14
Jury Brace Pins 10 Fey +0.10
Sleeve and Clevis Proof Test Fgy +0.01
Pressure
End Lugs Retract. Lug Shear +0.16
Actuator Load - Bearing
Bracket Pin Lock Arm Load Fsus Fau +0.03
Linkage Pin 10 Fay +0.04
Linkage Pin 10 Feys Fsy +0.05
Lower Brace 2-2 19b Buckling, Fgy +0.12

Fiqure 47,

Critical sections of the upper and lower links

of the linkage assembly.
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5.3.2 Stress Analysis of Support Components

The major support components of the landing gear are the pivot crank and the
four attachment pins for the crank. The analyses of support components were
based on internal loads calculated from the ground loads. The internal loads
were calculated for ten landing conditions comprising of the "no yield" and
"ultimate" conditions given in Table 14. The internal loads analyses were
conducted with a finite element model. A separate model analyzed each position
of the gear as it stroked. Deformation effects were not taken into account in
the analysis. A schematic view of the finite element model is shown in Figure
48.

Typical internal loads for three positions of vertical strokes of the landing
gear are given in Tables 19, 20, and 21. Tables 19 and 20 are for 5 inches and
24.25 inches (kneeled position) of vertical stroke. The internal loads for the
fully crashed position are given in Table 21, where the internal loads for
conditions 8a to 10, representing the "no yield" state, are meaningless.

The pivot crank is made of 7175-T736 aluminum alloy. It consists of three lugs
for attachment of the trailing arm, shock strut and the retraction actuator, and
the skew axis lug to mount the crank to the fuselage bulkhead. The critical
loading conditions for all four lugs are shown in Figure 49. The minimum margin
of safety of +0.04 is on the barrel of the trailing arm support due to combined
tension and shear for load condition 196 of Table 14.

The four pins for the four lugs of the crank are made of 300M alloy steel. The
critical load conditions for the four pins are not the same. The four pins on
the crank are identified in Table 11. Pin locations A and B are the upper and
lower attachment points, respectively, of the retraction actuator. A margin of
safety of 0.00 has been calculated for the shock strut attachment pin. The
critical loading conditions and the respective margins of safety for the four
pins are given in Figure 50. The margin of safety of Pin A is greater than
+0.12 of Pin B in bending because its length is shorter with all other
dimensions unchanged.
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Figure 48. Schematic view of the finite element model
for analysis of the support components.
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TABLE 19. SUMMARY OF INTERNAL LOADS AT 5-INCH VERTICAL
STROKE OF THE LANDING GEAR

GROUND LOAUS IN THE HELICOPTER LOADS IN THE SHOCK STRUT
COORDINATE SYSTEM AND RETRACT ACTUATOR
Shock Retract
Strut Actuator
Condition s 0 v Load Case Load Load
8a 0 4250 17000 8a -43890 -58960
8b 0 -4250 17000 8b -28258 -25802
8c 4250 0 17000 8¢ -36074 -36261
8d -4250 0 17000 84 -36074 -48501
9 0. -5927 22120 9 -36038 -32023
10 -4038 -5927 22120 10 -36038 -37838
iga 5100 0 22400 192 -47533 -48499
b -5100 0 22400 196 -47533 -63187
20 0 -7816 29171 20 -47527 -42213
21 -5325 -7816 29171 21 -47527 -49901
Untt S 0.0000 1.4400
Unit D -1.8390 -1.9010
Unit v -2.1220 ~2.4930

LOADS OR THE CRAMK AT THE TRUMIOW PIVOT

Qutboard Lug Inboard Lug
See Element 9 of FEM See Element 10 of FEM

Pin Pin

Load Case Fx Fy Fy Shear Fx Fy Fz Shear
8a 7433 25992 8628 27387 0 2665 -27352 27481
8b 4746 -5296 24642 25204 0 16766 -30652 34938
8c 10360 -7579 35955 36745 0 27642 -48323 55670
8d 1860 28274  -2686 28402 0 -8211 -9681 12695
9 6104 -8353 32811 33857 0 22474 -40038 45914
10 2066 8679 14454 16860 0 5442 -21681 22354
192 13151 -7817 45103 45786 0 3413 -61399 70337
19b 2951 35147 -1266 35169 0 -8710 -15030 17371
20 8050 -11014 43269 44649 0 29638 -52801 60550
21 2725 11447 19062 22234 0 nn -28593 29480

Unit S 1.0000 -4.2]180 4.5468 6.2014 0.0000 4.2188 -4.5460 6.2014
Unit D 0.J114 3.6810 -1.8840 4.1351 0.0000 -1.6590 0.3883 1.7038
Unit v 0.3594 0.6087 0.9785 1.1524 0.0000 0.5715 ~1.7060 1.7992

LOADS ON THE CRANX AT THE SKEW RETRACT PIVOT
LOADS ARE IN THE ORIENTATION OF THE PIVOT

Fx* - Along the Pivot Axis Outboard
Fy' - Aft
Fz' - Normal to the Pivot Axis Upward

Outboard Lug Inboard Lug
See Element 1l of FEM See Element 12 of FEM

Pin Pin

Load Case  Fx' Fy* Fr' Shear Fx' Fy' F2' Shear
8a 0 16260 ~32568 36401 8500 -55199 65527 85678
8b 0 30523 45972 SS183 8500 -41463 52114 66596
8¢ 0 40715 -65442 77073 12180 -62059 82170 102971
8d 0 6069 -13099 14436 4820 -24604 35471 49554
9 0 40382 -60443 72692 11060 -53308 67181 85762
10 0 23924 -35578 42874 7563  -40266 44997 60383
19a 0 51610 -83150 97865 15616  -BO1S6 105523 132515
19b 0 10035  -20338 22679 6784  -47210 49485 68392
20 Q 53255 -79711 95864 14586 -70302 88598 113102
21 0 31550 * -46919 56541 9975  -53103 59342 79633

Unft S 0.0000 4.0760 -6.1580 7.3848 0.8659 -3.2300 5.4940 6.373)
Unit D 0.0000 -1.6780 1.5770 2.3027 0.0000 -1.6160 1.5780 2.2587
Unit v 0.0000 1.3760 -2.3100 2.6888 0.5000 -2.8430 3.4600 4.4782
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TABLE 20. SUMMARY OF INTERNAL LOADS AT THE KNEELING
POSITION OF THE LANDING GEAR

GROUND LOADS IN THE HELICOPTER
COORDINATE SYSTEM LOADS IN THE SHUCK STRUT

AND RETRACT ACTUATUR

Shock Retract
Strut  Actuator

Condition S 0 v Load Case tLoad Load
8a 0 4250 17000 8a -45301 -64779
8b 0 -4250 17000 8b -42555  -46504
8c 4250 0 17000 8c -43928  -47609
8d -4250 0 17000 8d -43928 -63674
9 0 -5927 22120 9 -55242  -59655
10 -4038 -5927 22120 10 -55242  -67286
19a 5100 0 22400 19a -57882 -63676
19 -5100 0 22400 19b -57882 -82954
20 0 -6464 24127 20 -60256 -65070
21 -4404 -6464 24127 21 -60256 -73394

Unit § 0.0000 1.8900
Unit D -0.3231 -2.1500
Unit ¥ -2.5840 -3.2730

LOADS ON THE CRAMK AT THE TRUNION PIVOT

Outboard Lug Inboard Lug
See Element 9 of FEM See Element 10 of FEM
Pin Pin
Load Case Fx Fy Fz Shear Fx Fy F2 Shear
8a 9590 37455 20010 42465 0 7296 -20893 22130
8b 9008 9193 22048 23887 0 24610  -21845 32907
8c 13549 -212 27765 27766 0 39489  -28105 48470
8d 5049 46861 14293 48992 0 -7584 -14633 16481
9. 11694 10641 28783 30687 0 32830 -28469 43455
10 1656 33003 22383 39877 0 10469 -22069 24426
192 17353 2489 35792 35879 0 49264 -36240 61158
196 7153 58977 19625 62156 0 -7224  -20073 21334
20 12755 11609 31395 33472 0 35808  -31052 47397
2l 8351 35999 20414 4349 0 11419 -24072 26643

Unit § 1.0000 -5.5380 1.5850 5.7604 0.0000 5.5380 -1.5850 5.7604
Unft 0  0.0684 3.3250 -0.2397 3.3336 0.0000 -2.037¢ 0.1121 2.0401
Unit v 0.5470 1.3720 1.2370 1.8473 0.0000 0.9384 -1.2570 1.5686

LOADS ON THE CRANK AT THE SKEW RETRACT PIVOT
LOADS ARE IN THE ORIENTATION OF THE PIVOT

Fx' - Along the Pivot Axis Outboard
Fy' - Aft
Fz' - Kormal to the Pivot Axis Upward

Outboard Lug Inboard Lug
See Element 11 of FEM See Element 12 of FEM
Pin Pin
Load Case  Fx' Fy' F2' Shear Fx' Fy' Fz' Shear
8a 0 19465 -30204 35913 8500 -61832 - 67871 91813
8b 0 49139 -37592 56321 8500 -65056 60479 98826
8c 0 53444 48255 72005 12181  -81464 74163 110166
8d 0 7960 -19542 21101 4820 -45424 54188 70708
9 0 55619 -49258 74295 11060 -84749 78347 115452
10 0 34012  -35618 49249 7563  -67679 68858 96550
192 0 67745 -61893 91761 15617 -105221 96545 142802
19 0 13164  -27438 30432 6783 -61973 72575 95435
20 0 60664 -53727 81035 12064  -92494 85458 125929
21 0 37098 -38850 53718 8250 -73821 75108 105313
Unit § 0000 5.3510 -3.3780 6.3280 0.8660 -4.2400 2.3500 4.8477

0.
Untt 0 0.0000 -2.6440 0.8691 2.7832 0.0000 0.3794 0.8697 0.9489
0.0000 1.8060 -1.9940 2.6903 0.5000 -3.7320 3.7750 5.308)
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TABLE 21. SUMMARY OF INTERNAL LOADS AT THE FULLY CRASHED
POSITION OF THE LANDING GEAR

NOTE: Conditions 8a Through 10, No-Yield Condition, do not apply here.

GROUND LOADS IN THE HELICOPTER LUADS IN THE SHOCK STRUT
COORDINATE SYSTEM AND RETRACT ACTUATOR

Shock Retract
Strut  Actuator

Load Case Load Load
Condition S 0 v

8a -45651  -63385
8a 0 4250 17000 8b -45809 -48782
8b 0 -4250 17000 8c -45730  -47987
8c 4250 0 17000 8d -45730  -64179
8d -4250 0 17000 9 -59612  -62790
9 0 -5927 22120 10 -59612  -70483
10 -4038 -5927 22120 192 -60256 -64182
19a 5100 0 22400 19b -60256 -83613
19b -5100 0 22400 20 -60257 -63470
20 0 -5991 22359 21 -60257  -71244
21 -4081 -5991 22359 Unit S 0.0000 1.9050

Unit 0 0.0185 -1.7180
Unit v -2.6900 -3.2990

LOADS ON THE CRANK AT THE TRUNION PIVOT

Outboard Lug Inboard Lug
See Element 9 of FEM See Element 10 of FEM
Pin Pin
Load Case Fx Fy F2 Shear Fx Fy Fz Shear
8a 10269 38760 23919 45546 0 8360 -18884 20651
8b 10233 12036 23817 26685 0 26728 -18822 32691
8c 14501 1683 27497 27548 0 41259 . -22482 46986
8d 6001 49113 20239 53120 0 -6171  -15224 16427
9 13314 14412 30985 34173 0 35636 -24488 43238
10 9276 36944 27537 46078 0 13104  -21041 24788
19s 18607 5008 35804 36152 0 51575  -29196 59265
196 8407 61924 27095 67592 0 -5341  -20487 21112
20 13458 14569 31320 34542 0 36021  -24753 43706
21 9377 37341 27835 46574 0 13249 -21269 25058

Unit S 1.0000 -5.5800 0.8538 5.6449 0.0000 5.5800 -0.8538 5.6449
Unit D 0.0042 3.1440 0.0i21 3.1440 0.0000 -2.1610 -0.0072 2.1610
Unit v 0.6030 1.4940 1.4040 2.0502 0.0000 1.0320 -1.1090 1.5149

LOADS ON THE CRANK AT THE SKEW RETRACT PIVOT
LOADS ARE IN THE ORIENTATION OF THE PIVOT

Fx* - Along the Pivot Axis Outboard
Fy' - Aft
Fz' - Normal to the Pivot Axtis Upward

Outboard Lug Inboard Lug
See Element 11 of FEM See Element 12 of FEM
Pin Pin
Load Case Fx' fy' Fz' Shear Fx' Fy' Fz' Shear
8a 0 18687 -30776 36006 8500 -60231 67315 90328
8b 0 43193  -36680 56666 8500 -67643 61409 91359
8c 0 53860 -45003 70187 12181  -82097 71217 108682
8d 0 8020 -22453 23842 4820 -45777 57507 73502
9 0 §7345 -48002 74784 11060  -88360 79627 118945
10 0 35569  -37289 51533 7563  -71106 73113 101988
19s Q 68272 -57972 89565 15617 -106039 93033 141065
19b 0 13264 -30911 3337 6783  -62454 76580 98818
20 0 57965 48521 75593 11180  -B89316 80488 120232
21 0 35957  -37694 52093 7645  -71878 73905 103094

Unit § 0.0000 5.3930 -2.6530 6.0102 0.8660 -4.2730 1.6130 4.5673
Unit 0 0.0000 -2.8830 0.6945 2.9655 0.0000 0.8719 0.6949 1.1149
Unit v . 0.0000 1.8200 -1.9840 2.6923 0.5000 -3.7610 13.7860 5.3366
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SHOCK STRUT
ATTACHMENT LUK

RETRACT
~~ ACTUATOR
@ ATTACHMENT LUG

SKEW AXIS—
o
TRAILING ARM
~——————ATTACHMENT LUG
Load Stress Margin
Lug/Section Case Condition of Safety
Shock Strut, 1-1 20 Fru +0.19
Shock Strut, 1-1 10 Fry +1.04
Retract Actuator, 2-2 19b Fru +0.67
Retract Actuator, 2-2 19b Fsu +0.60
Trailing Arm Support, 3-3 19b Frus Fsu +0.04
(Plastic)
Upper Lugs Support, 4-4 19b Fru +0.35
(Plastic)
Trailing Arm Lugs, 5-5 19b Fru +0.08

Fiqure 49.

Critical sections of the crank.

104




R016 - 0025 THROUGH - 0028 PINS, 300M STEEL

RO16 - 0025 SKEW AXIS PIN R016 - 0028 RETRACT ACTUATOR PIN
CASE 19A CASE 10
BENDING MS=0.66 BENDING MS=0.12

/7.8 NN 0 47
R C okl ko L ]

s
AR ool ddd

.............

T
- - = - - —

------------

| WP TN
’ £ ANNNNNNNNNNONNNRNN ¢ V/ x

Z 0 7
- /////, N—Y 27—

RO16 - 0026 TRAILING ARM PIN R0O16 - 0027 UPPER STRUT PIN
BENDING MS=0.05 CASE 19A
BENDING MS =0.00

S74. . NN 77% &

/’,’I’,’I’,/pf’/’//"’ '

by —————— e
P S

)

Margin
Locations of

From Stress
Table 11 Pin P/N Load Case Condition Safety
D R016-0025 19a Fsu +1.76
R016-0025 19a Fau +0.66
£ RO16-0026 8d Fsu +1.76
R016-0026 19a Fgu +0.66
C RU16-0027 19a Fsp FBu +0.00
RO16-0027 19a +0.04
B R016-0028 10 Fau +0.12

Fiqure 50. Critical sections of attachment pins.
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6.0 ENERGY ABSORPTION TRADE-OFF ANALYSIS

6.1 GENERAL

The energy absorption trade-off analysis was conducted during preliminary design
analysis to determine a weight-efficient landing gear. The calculation of
energy was made by both classical formula and by a simple five-mass KRASH model.
The results of the analysis were used in sizing the elements of the energy-
absorbing structures of the helicopter: the landing gear, the fuselage, and the
stroking crew seat.

6.2 PRELIMINARY ENERGY TRADE-OFF ANALYSIS

The results of the preliminary energy trade-off analysis are shown in Figure 51.
The first left-side table shows the energy values as a function of the crash-
impact velocity assuming that at 42 fps the energy to be dissipated is 100
percent. By proportion, the percentage of energy to be dissipated can then be
tabulated for each sink speed. For normal operations up to 12.25 fps, only 8.5
percent of the energy is to be dissipated. For 20 fps, the condition for hard
landing without fuselage ground contact, only 22.7 percent of the energy is to
be dissipated. At 30 fps, the condition for the fuselage to impact with the
gears retracted, the energy to be dissipated is 51.0 percent.

In evaluating the crash energy versus sink speed, shown in the second left-hand
figure in Figure 51, we find that different energy absorption levels are
assigned to each system:

1. If the landing gear absorbs 35 percent of the energy, it will do
better than that required for 20 fps. The fuselage will absorb
65 percent, which is better than that required for a 30 fps impact.

2. If the gear absorbs 50 percent and the fuselage 50 percent, the
20 fps and 30 fps conditions for landing gear and frame are still
satisfied.

3. If the gear absorbs 65 percent of the energy, equivalent to 33.8 fps
sink speed, and the frame absorbs 35 percent or equivalent of 25 fps,
then the fuselage will not fulfill the specification requirement and
the landing gear will be overdesigned.

4, For a 42 fps condition, if the fuselage is designed for the 30 fps
impact (51 percent) and if the landing gear is designed for 20 fps
impact (22.7 percent), both combined will not satisfy the needs of
the 42 fps impact.

By studying the needs of the fuselage, it was found that the minimum level of
energy to be absorbed will be 38 percent which is based on the requirement of
the fuselage frequency for an effective High Harmonics Control System. There-
fore, the gear must be designed for 62 percent of the energy of a 42 fps
vertical impact.

A simple linear representation of system weight is shown in the second right-

hand graph in Figure 51. In evaluating the relative weight of the landing gear
on the fuselage (systems) in relation to the energy level absorbed in Figure 51,
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the fuselage weighs 290 pounds at 38 percent energy absorption and 426 pounds at
71 percent energy absorption. The landing gear weighs 150 pounds at 8.5 percent
energy absorption (12.25 fps, noncrashworthy) and 403 pounds at 65 percent
energy absorption (does not include the controls weight). At the intersection
of the plots, or at about 51 percent of the energy, each system will weigh about
325 pounds.

On the extreme right-side graph in Figure 51, the variation in energy absorption
is shown. In increasing the fuselage capability from 26 to 30 fps, the energy
absorption capability of the fuselage increases from 38 to 51 percent while
correspondingly decreasing the capability of the landing gear. In this plot it
is assumed that the energy absorbed by the tires and 1ift remains constant.

6.3 ENERGY TRADE-OFF ANALYSIS USING 'KRASH'

The trade-off study for three ratios of the energies absorbed by the landing
gear and the fuselage from a 42 fps level impact are presented here. The trade-
off study is for the landing gear absorbing 37, 50 and 60 percent of the energy
under level impact. The remaining energy for each case was absorbed by the
fuselage. The weight sensitivity of the landing gear and airframe is evaluated
with respect to the current helicopter, which absorbs energy from a 42 fps
impact at t10-degree roll and -5/+15-degree pitch. The weight for the three
cases under level impact will be a reduction from that of the current
helicopter, which is designed to impact under roll and pitch conditions. The
reduction will be in (a) the shock strut, (b) the trailing arm, (c) the fuselage
and (d) the support structure. In this simplified study, it was assumed that
the weight of the support structure will be the same for the three impact
conditions, and the kinematics and configuration of the landing gear remain
unaffected.

6.3.1 Shock Strut

The difference in the incremental weight for the three impact conditions was
calculated on the required length of the shock strut. The length of the strut
depends on the stroke of the strut. The stroke was calculated from the energy
absorbed in each of the three cases for the same axial strut force. The energy
absorbed is determined from the load-stroke curve obtained from program KRASH.
In addition to the calculated stroke, an additional 1 inch of stroke was added
for design safety. On the basis of the design of the shock strut, it was
determined that the length of the inner cylinder and the piston can be reduced
to accommodate reduction in the strut stroke. The weight reduction in the strut
from the current helicopter is given in Table 22.

6.3.2 Trailing Arm

The weight reduction in the trailing arm depends on the reduction in its length,
which in turn is proportional to the reduced strut stroke. From the kinematics
of the landing gear, the reductions in traili:g arm length and weight were
calculated. The reduced weights are given in Table 23.

6.3.3 Fuselage

The crushable fuselage was shown in Figure 4. The lower fuselage consists of
two major keel beams along Stations +16.1 and two supplemental keel beams along
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TABLE 22.

REDUCTION IN WEIGHT OF THE SHOCK STRUT

Energy Ratio L.G. Strut Required Stroke Reduced Weight Saved
vs. Fuselage (in.) (in.) (1b)
60 vs. 40 11.39 1.02 1.14
50 vs. 50 9.70 2.71 3.04
37 vs. 63 6.54 5.87 6.57
NOTES:

1. 'Stroke Reduced' is based on 12.41 inches stroke of current strut.
2. 'Weight Saved' is with respect to the strut designed for 10° roll and
-5°/+15° pitch impact.

TABLE 23. REDUCTION IN WEIGHT OF THE TRAILING ARM

Energy Ratio L.G. Strut Stroke Stroke Reduced Weight Saved
vs. Fuselage Reduced (in.) (in.) (1b)
60 vs. 40 1.02 1.00 0.43
50 vs. 50 2.71 2.71 1.13
37 vs. 63 5.87 5.78 2.49

NOTES:

The 'Weight Saved' is with respect to the trailing arm designed for 10°
roll and -5°/+15° pitch impact.

Stations +32.2. In addition, there are five bulkheads. Two bulkheads, at
Stations 152.8 and 228.9, extend from the upper roof beam to full depth below
the floor. The keel beams and bulkheads are reinforced with stiffeners to
absorb the crash-impact energy. The number of stiffeners required depends on
the energy to be absorbed by the fuselage. The estimated weight of the lower
fuselage is given below:

Weight of stiffeners = 3.48 1b
Weight of keel beam and bulkhead webbing = 40.00 1b
Weight of ribs and longerons = 17.35 1b
Weight of skin = 19.60 1b

The total weight of the crushable lower fuselage is 80.4 pounds. Since the
floor is 10 inches deep, the weight per inch depth is 8.04 pounds.

The lower fuselage was divided into three sections: forward section from

Station 41.1 to Station 91.7, mid-section from Station 113.3 to Station 228.9,
and aft section from Station 266.7 to Station 298.9. The division was made in
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order to achieve a more realistic estimate of the reduction in weight because
all sections of the fuselage do not deform uniformly. The maximum deformation
for each section was taken to calculate the maximum allowable fuselage depth,
from which the weight savings were estimated. The maximum allowable fuselage
depth was calculated as the depth crushed from program KRASH plus 2.5 inches,
the minimum depth of the fuselage required to route hydraulic and electrical
lines, control rods, etc. The weights of the three fuselage sections are
apportioned as 25, 60 and 15 percent of the total crushable weight. The
reduction in fuselage weight is given in Table 24.

TABLE 24. REDUCTION IN WEIGHT OF THE CRUSHABLE FUSELAGE

Energy Fuselage Depth Saved Fuselage Weight Saved
Ratio Weight
L.G. vs. Fwd Mid Aft Fwd Mid Aft Saved
Fuselage (in.) (in.) | (in.) (1b) (1b) (1b) (1b)
60 vs. 40 3.54 3.83 5.91 7.18 18.48 7.13 32.78
50 vs. 50 3.43 3.50 3.84 6.89 16.88 4.63 28.40
37 vs. 63 3.24 1.70 1.17 6.51 8.16 1.41 16.08
NOTES:
The 'Weight Saved' is with respect to the fuselage designed for 10° roll
and -5°/+15° pitch impact.

6.3.4 Total Weight Saved

The total weight saved for each of the three crashworthy systems for level
impact is the sum of twice the weight for each of the shock struts shown in
Table 22, twice the weight for each of the trailing arms shown in Table 23, and
the weight of the crushable fuselage shown in Table 24. These are summarized in
Table 25 and illustrated in Figure 52.

6.3.5 Discussion

From the energy trade-off analysis, the helicopter weight is a minimum when the
landing gear absorbs 53 percent of the total energy for level impact. The
weight of this landing gear, designed to absorb 60 percent of the impact energy,
increases a marginal 0.82 pound. Since the weight saved decreases as the
energy-absorbing capability of the landing gear is increased above 53 percent,
for this configuration the landing gear should be limited to absorb no more than
60 percent of the impact energy.

For this configuration, crashworthiness can be incorporated into a low-weight
design of a helicopter by designing a landing gear which absorbs a greater
percentage of the impact energy than the fuselage. The fuselage absorbs kinetic
energy by deforming over a limited area, the Tocation of which depends on the
impacting attitude. Since the location of the "limited area" is never known and
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TABLE 25.

TOTAL WEIGHT SAVED FOR THE

THREE CRASHWORTHY SYSTEMS

Energy
Ratio Shock Strut Trailing Arm Fuselage Total
L.G. vs. Weight Weight Weight Weight
Fuselage (1b) (1b) (1b (1b)
60 vs. 40 2.28 0.86 32.78 35.92
50 vs. 50 6.08 2.26 28.40 36.74
37 vs. 63 13.14 4.92 16.08 34.14
NOTES:
The total 'Weight Saved' is for level impact with respect to the weight of
the helicopter designed for 10° roll and -5°/+15° pitch impact.

since it can be anywhere over the wider area of the fuselage underbelly, the
entire underbelly is reinforced. In contrast, the landing gear is subjected to
point loading. The location of the 'reinforcement' in the landing gear is,
therefore, exactly known.

However, the optimum percentages of the energies absorbed by the landing gear
and the fuselage for a low-weight design depend on the configuration and on the
design requirements. Some of the configuration factors that affect this issue
are: (1) the path in the fuselage taken by the landing gear loads, (2) the type
of landing gear system, and (3) the separation between the gears. Design
requirements which may affect the "optimum percentages" are those of the impact
condition, such as the nature of the impacting surface and the impact attitude.
Furthermore, if the landing gear is already being designed to a requirement of
absorbing a minimum amount of energy (e.g., from a 20 fps level impact) to
protect the hardware, how much more capability would be an optimum condition?
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7.0 CRASHWORTHINESS ANALYSIS

7.1 GENERAL

The preliminary design analysis for crashworthiness was conducted with a simple
five-mass model, shown in Figure 17. The analysis was conducted to determine
che load factors desired to meet the desigr reguiraments and to conduct trade-
off analysis to identify the optimum ratio of the energies to be absorbed by the
landing gear and fuselage. This ratio was based on a level crash condition at
an impact velocity of 42 fps.

Following the preliminary analysis, two KRASH models were developed. The first
model was that of the detailed helicopter. The second model was a six-mass
model of the iron-bird test fixture. The detailed helicopter KRASH model was
used to predict the crash-impact behavior of the helicopter. The six-mass KRASH
model was used to correlate the crash-impact response of the iron-bird test
results with the results from the detailed helicopter model. The six-mass KRASH
model was necessary because the iron-bird test fixture did not simulate the
moments of inertia of the helicopter exactly.

In this section, the two KRASH models will be described and the results from the
detailed model discussed. In addition, the six-mass model will be correlated
with the detailed model for the same moments of inertias. Because of the
correlation between the six-mass and detailed models, it would be reasonable to
assume that the detail model accurately predicts the results of crash-impact
behavior of a helicopter.

7.2 PROGRAM KRASH

The crashworthiness analysis of the ATLG was conducted using Program KRASH ('85
version). Program KRASH utilizes nonlinear spring and beam elements and lumped
masses arranged in a three-dimensional framework to simulate the major fuselage
structural elements. The nonlinear characteristics needed to describe the
structural elements are derived from component testing and other analyses.
Program KRASH formulation solves coupled Euler equations of motion for inter-
connected lumped masses. The equations of motion are explicitly integrated to
obtain the velocities, displacements, and rotations of lumped masses under the
influence of external forces such as gravity, aerodynamic and impact forces, as
well as internal structural loads.

A summary of major features of Program KRASH is as follows:
° Aircraft major mass items and occupants are modeled as lumped masses.

° Nonlinear external spring elements are used to model crushable
subfloor structure, landing gear, soil, and friction forces.

° Nonlinear beam elements are used to model the airframe structure.

Stiffness reduction factors are used to represent the nonlinear
properties.
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° Initial conditions of linear and angular velocities about three axes
and impact into horizontal ground and/or inclined siope can be
specified.

L Large structural displacements and rotations can be simulated.

[ Mathematical model can contain up to 80 lumped masses, 50 massless
node points, and 180 nonlinear degrees of freedom.

Major output parameters available from Program KRASH are as follows:

® Mass point response time histories (displacement, velocity, and
acceleration).

° Distribution of kinetic and potential energy by mass item, strain and
damping energy by beam element, and crushing and sliding friction
energy associated with each external spring.

° Internal loads and deformations for structural elements.

[ Occupant survival indicators including probability of injury
indicated by Dynamic Response Index (DRI).

° Overall vehicle center-of-gravity translation velocity.

7.3 DETAIL KRASH MODEL

A schematic view of the 8500 1b utility helicopter is shown in Figure 1. A
detailed KRASH model of the helicopter (Figure 53) was first developed to
evaluate the effect of the ATLG design on the overall helicopter crash dynamics
as well as energy absorption trade-off studies.

The detailed KRASH model consists of 53 lumped masses, 14 massless nodes,

39 crushable spring elements and 105 beam elements. The model has nine
nonlinear degrees of freedom. These nonlinear beam elements are limited to
landing gear shock struts and crashworthy seats. The landing gear shock strut
load-stroke characteristics were obtained from single gear dynamic tests shown
schematically in Figure 42. The crushable Tower fuselage was also modeled by
nonlinear springs.

The total weight, moments of inertia, and center of gravity location of the
detailed model are the same as those of the helicopter's. The weight and mass
properties of major mass items and their Tocations are given in Table 1. The
properties of the remaining structural elements of the helicopter were initially
scaled from the KRASH model of the AH-64 helicopter. The spring rates for the
tires in the main and nose gears were obtained from manufacturers' data.

The key crashworthiness parameters of the detailed model, including load factors
and maximum available strokes, were as follows:

. Landing gear stroke available = 29 inches (or 33 inches with 4 inch
tire deformation).
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° Fuselage load factor = 32q

° Fuse]agé crushable stroke available = 7.5 inches

[ Crew ;b@t load factor = 14.5g (50th percentile occupant)
) Crew §eut stroke available = 12 inches

f
The load factor of the landing gear varies with impact velocity since the shock
strut load is velocity sensitive. However, the landing gear load factor is 8g
for level impact at 42 fps.

The fuselage springs were designed to absorb the impact energy after the initial
kinetic energy is absorbed by the landing gear. Since the fuselage absorbs

40 percent of the ‘energy from a 42 fps level impact, the fuselage spring was
initially designed,to absorb this equivalent energy: 1,125,962 in.-1b.

However, the crash'conditions include roll and pitch impact conditions which
require higher edergy absorption capability locally. For example, under level
impact conditions the crushing of the fuselage is mainly between Stations 91.7
and 228.9, and ranges between 2.3 and 3.9 inches. Under 10 degrees roll and
+15 degrees pitch .impact conditions, the maximum crushing of 6.10 inches of the
fuselage occurs at* Station 298.9, after which the fuselage rotates and impacts
the forward fuselaje at Station 41.1, where the fuselage is crushed 3.21 inches.
Under this roll and pitch condition, the mid-section of the fuselage is barely
crushed. To account for the local crushing of the fuselage, the fuselage
springs must be designed accordingly to optimize weight. The present fuselage
springs are designed to absorb a total of 550.0 in.-kips in the forward and aft
sections of the fuselage and 982.0 in.-kips in the mid-section of the fuselage.

The detail structural properties of the main landing gear components were
initially sized by apportioning the correct percentage of the impact energy to
be absorbed. The main landing gear model included the trailing arm and the
retraction actuator. The attachment to the bulkhead was modeled as a rigid
member with no energy-absorbing capability. The nose landing gear, which is not
part of this program, was designed to the same energy absorption characteristics
as the individual main gears.

The detail KRASH model was conducted for gross weights of 8,500 and 10,625
pounds at 10 to ég'fps impact velocities, O to 10 degrees roll and -5/+15
degrees pitch impact attitudes. The crash-impact analyses envelope is shown in
Figure 54. The ratio of crash-impact energies absorbed by the landing gear and
the fuselage was 60:40 for 42 fps level impact condition. The analysis time
required by this model was 16 to 22 CPU hours on a MicroVAX-II computer using an
integration time step of 0.00001 sec. The integration time step was governed by
<he natural frequencies of the beam elements. In general, the time step was
chosen such thatdthe product of the maximum beam frequency and the time step was
less than 0.01.

[}

7.4 SIX-MASS KRA3H, MODEL

Dynamic tests wer nducted using the iron-bird test fixture with two main
landing gears an¥™a nose gear that simulate the utility helicopter. The iron-
bird fixture was designed to be dropped repeatedly at impact speeds up to 42 fps
without any structural failures. The weight and center of gravity of the iron-

116




PITCH ANGLE

DEGREES
SYMMETRICAL ABOUT
/— 0 ROLL LINE -
15 T —- 9
10,17, 20, 30, 82 FPS: ALL 15 POINTS AT DESIGN GROSS WEIGHT
20 FPS - FOUR POINTS AT CORNERS ON ENVELOPE AT MAXIMUM
ALTERNATE GROSS WEIGHT,
10 @ ® L
5@ ® ®
0 —i RAOLL ANGLE -
® DEGREES
5 10
-5 @ o —

Fiqure 54. Crash-impact envelope for KRASH analyses.

bird closely matched those of the helicopter. The moments of inertia of the
iron-bird, however, are different due to the physical constraints of the test
drop tower. In order to correlate with the drop test results, a simple six-mass
RASH model of the iron-bird fixture was developed. This model allowed lumping
of all weights and moments of inertia to the center of gravity of the iron-bird
fixture. A1l other model parameters, including landing gears and fuselage
crushing spring rates, were identical to the detailed KRASH model. The springs
in this model, however, were attached to massless node points that were rigidly
connected to the mass concentrated at the center of gravity location. This
modeling technique allowed the moments of inertia of the iron-bird fixture to be
accurately modeled, and resulted in considerable savings in program execution
time: 1 CPU hour compared to 16 to 22 CPU hours for the detail model. The six-
mass KRASH model is shown in Figure 55.

The six-mass KRASH model was the link between the iron-bird test fixture and the
helicopter. Since the iron-bird fixture and the helicopter differed in mass and
inertias, the six-mass KRASH model was used to correlate both the results from
the iron-bird drop tests and the KRASH results from the detail model. To
correlate the iron-bird test results, the six-mass KRASH model simulated the
mass and inertias of the iron-bird fixture. Similarly, to correlate the detail
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model, the six-mass KRASH model simulated the mass and inertias of the
helicopter. The six-mass model was correlated with the detail model of the
helicopter by lumping the masses and inertias to those of the helicopter. The
correlation with the detail model for the 42 fps level impact condition is very
good, as seen in Table 26. The ratio of the crash-impact energies absorbed by
the landing gear and the fuselage was 58:42, which closely correlated with the
distribution in the detail KRASH model.

TABLE 26. CORRELATION OF FUSELAGE AND SHOCK STRUT BEHAVIOR
OF DETAIL AND SIX-MASS KRASH MODELS

Impact Max. Fuselage Crush Oleo Stroke in.
Vereasay Ro11 Pitch | Fwd. | Mid | Aft _
fps degree degree in. in. in. Left Right
Detail KRASH Model
42 0 0 3.9 3.8 2.3 10.3 10.3
Six-Mass KRASH Model
42 0 0 4.0 3.8 2.3 9.4 9.4

7.5 KRASH RESULTS

The KRASH analyses for all impact conditions shown in Figure 54 were conducted
in addition to five analyses to evaluate the results with reduced strut loads.
The reduced strut load analyses were conducted to simulate the response of the
actual shock strut more accurately because KRASH models the shock strut as a
nonlinear beam. The results presented below are from 104 KRASH analy.es.

A11 the impact conditions studied were survivable, as evidenced by the
occupants' DRI data and by comparing the accelerations of the occupant seatpan,
lower torso and upper torso with the acceptable human tolerance limits given by
the Eiband human tolerance curves in Reference 6. A1l the inputs tested were
considered successful using (1) the occupant response as the indicator of a
survivable impact, and (2) the close correlation with the test data, discussed
in Volume II of this report, as a second indicator.

7.5.1 Fuselage Deformation

Contact of the fuselage with the ground occurred only at impact velocities of

30 and 42 fps. Fuselage contact did not occur for impact velocities of 20 fps
and less at the basic structural design gross weight of 8,500 pounds. The
fuselage deformations at the alternate gross weight of 10,625 pounds and impact
velocity of 20 fps are negligible. The deformations occur in the forward or aft
sections depending on whether the impact attitude was a nose-down or nose-up
condition.
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The deformation of the fuselage at 30 fps was localized mainly in the forward
fuselage between Scations 41.1 and 91.7 for all fifteen conditions investigated.
Deformation of the mid-section of the fuselage, between Stations just aft of
91.7 and 228.9, occurred only for pitch conditions of -5 degrees and 0 degree.
The results of the deformations at 30 fps, 10-degree roll and all five pitch
conditions are shown in Figure 56.

For impacts at 42 fps, the fuselage deformations generally occurred throughout.
The results of the deformations at 42 fps, 10 degree roll and all five pitch
conditions are shown in Figure 57. In the nose-down (-5° pitch) condition,
there was no deformation of the aft fuselage, and the energics were absorbed by
the forward and mid-sections of the fuselage. In the +15° nose-up condition,
most of the fuselage deformations occurred in the forward and aft sections.

This indicates the "slap-down" behavior of the helicopter as it pivots about the
landing gear following crushing of the aft fuselage.

7.5.2 Shock Strut

The shock strut strokes increased with increased impact velocity. The stroke of
the down-side strut was always greater than that of the up-side strut. The
difference between the struts on the two sides can be seen by comparing Figures
58 and 59. The strut strokes for all impact velocities and pitch attitudes for
10-degree roll condition are shown in Figure 58 for the down-side gear and in
Figure 59 for the up-side gear.

At a given impact velocity, the strut stroke increases more rapidly at the lower
pitch impact angles (-5° to +5°) than at the higher pitch impact angles (+5°
to +15°). This typical behavior for all roll angles is shown in Figure 60.

7.5.3 Occupant DRI

The occupant DRI generally increases with speed. This is true for the occupant
on the down-side and the up-side. The differences between the DRIs for 17

and 20 fps impacts are negligible, however. The DRIs for 5° roll and for all
impact speeds and attitudes are shown in Figure 61 for the down-side oczupant,
and in Figure 62 for the up-side occupant. The figures also indicate that the
DRIs at Tower pitch angles (-5°, 0°, +5°) are greater than at +10° and +15°, for
which two conditions the DRIs are almost identical. The effect of different
roll angles on the DRI is shown in Figure 63. The DRI is dramatically affected
by the roll angle. At 5° roll, the DRI remains almost constant between +10° and
+15° pitch. But at 10° roll, there is a dramatic increase in the DRI from +10°
to +15° pitch.

7.5.4 Seat Stroke

The seat stroke increases with the impact velocity with the highest stroke being
at -5° pitch angle. However, the increase in the stroke from 30 to 42 fps is
dramatic. In several cases, and especially for -5° pitch and +10° roll, the
seat stroke is greater on the up-side than on the down-side. This indicates
that the pulse is distinctly greater (time, peak, rate) on the up-side than on
the down--ide. This is another demonstration of the "slap-down" behavior

occurring in an impact condition. These effects are seen in Figures 64, 65, and
66.
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8.0 MATERIAL ANALYSIS

8.1 MATERIAL TRADE-OFF ANALYSIS

Advanced material systems were investigated for use in the landing gear
components. The potential advantages of substituting advanced materials for
conventional materials are:

° Lighter weight

® Reduced volume and drag area

° Lower acquisition and life-cycle costs
° Applicability of design details

The landing gear components which would have been potential candidates for
design with advanced material systems are:

° Trailing Arm

) Shock Strut

. Retraction Actuator and Linkage System
° Pivot Crank

° Attachment Bracket

The advanced material components designs were studied as interchangeable units
with components designed of the baseline material. Volume and size of the
components were important criteria because of restrictions on increasing the
drag area and the limitation of the available internal space.

The candidate components were selected for redesign with advanced material
systems because design requirements indicated potential advantages. The choices
of the various material systems for applicability to a given component were
first weighted and ranked with respect to size, weight and cost. Following this
evaluation, the requirements of detail design were given particuiar emphasis.
Some of the areas which required definition were joints, bearing surfaces and
attachment lugs which apply significant out-of-plane loads on the components. A
preliminary evaluation of the anticipated advanced materials and processes is
given in Table 27.

Metal matrix composites (MMC) are used where their high specific mechanical
properties, low coefficient of thermal expansion, and stability of the
mechanical properties at high temperatures can be best utilized. The aluminum
matrix composites generally provide higher longitudinal strengths, whereas
titanium matrix composites provide higher transverse strengths and higher
longitudinal stiffnesses, and are suitable for higher temperature applications.
As with all fiber-reinforced materials, MMC can be tailored for a given
application by varying the fiber, matrix, and fiber volume. An additional
advantage of MMC is that conventional metal design considerations are generally
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applicable. The biggest drawback of these materials at this time is the poor
potential for low-cost fabrication in large quantities. The cost of metal
matrix materials, as shown in Table 27, is 1150 to 3650 percent higher than
carbon-epoxy composite material. In terms of conventional steel and aluminum
alloys, MMC are even less cost efficient. The poor machinability of these
materials further increases the cost of design and tooling in comparison to
conventional and organic composite materials.

In Jesigning with organic composite materials, conventional design methods have
to be reevaluated to achieve the potential of weight savings that these
materials offer. Careful consideration must be given to joining technigues,
methods of load transfer from and into composite structures, and impact damage
from stones and debris to vulnerable areas of the landing gear. The advantages
of organic composites are the very high specific strength and stiffness of the
lamina, the ability to optimize the design by tailoring the constituent
materials and by selectively using hybrids for specific requirements, and the
ease of repairability. The biggest disadvantage of organic composite materials
in their application to landing gears is their very low shear strength, which
reflects on their response to torsional loads. The trailing arm of the landing
gear is best suited for a composite design. However, the torsional load on the
arm under crash-impact conditions is very high, the result of which is to
increase the polar moment of inertia in order to remain within the given stress
allowable. This requirement automatically increases the volume of the
component. The design of the landing gear in Reference 7 addresses successfully
a composite trailing arm for the same design criteria as those for the AH-64A
helicopter landing gear. By comparing the volumes of the trailing arms of the
existing landing gear of the AH-64A helicopter and of the design in Reference 7,
a one-to-one comparison is possible. The volum of the 300M alloy steel
trailing arm of the existing AH-64 landing gear is approximately 1161 cubic
inches and that of the carbon-epoxy trailing arm is approximately 7890 cuhic
inches. The volume increase is of the order of 580 percent. Thus, a composite
trailing arm design, though lighter and less expensive, is impractical at this
stage when designed for retractable landing gears with limited stowing volume
available.

8.2 MATERIALS FOR LANDING GEAR COMPONENTS

Based on the material trade-off analysis during preliminary design, it was
apparent that only the retraction actuator itself lends to advanced composite
materials. The remaining components must be designed with conventional
materials. The design of the retraction actuator, however, was changed to
include a linkage system and a combination of steel and aluminum alloys,
resulting in the most efficient design.

The selection of conventional materials for the landing gear components was
based on specific strength, ease of fabrication, quality of available material,
cost and availability. A summary of the mechanical properties of conventional
materials, normalized with respect to the properties of 300M alloy steel, is
given in Table 28. The materials used in the landing gear components and the
rationale for their selection are given in Table 29.
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9.0 WEIGHT ANALYSIS

9.1 GENERAL

The weight sensitivity aralysis for the ATLG and the crashworthy helicopter
includes calculations of incremental weights from the landing gear, fuselage and
crew seats to satisfy the design requirements for the maximum crash-impact
condition at a vertical speed of 42 fps, 10 degrees roll and 15 degrees pitch.
The ATLG system was sized to absorb 60 percent of the energy from a 42 fps level
impact. The crash-impact behavior is based on loads from KRASH and static
structural analyses to size the components. The weight sensitivity analysis
includes the calculated weights of the crashworthy and standard (noncrashworthy)
landing gears and helicopters.

9.2 LANDING GEAR WEIGHTS

The components of the landing gear which are affected by changes in the load are
the trailing arm, shock strut, retraction actuator and fuselage fittings. The
incremental weights are calculated by sizing the components for the applied
load. Typically, the shock strut is an axially loaded member which varies in
weight as a function of impact velocity, gross weight, pitch/roll angles, and
critical load. The wall thicknesses of the pistons and cylinders, and the
stroke required, become the weight driver which affects many internal components
of the shock strut assembly including end caps, seals, and bearings. The weight
of the fittings is proportional to that of the shock strut load.

The actual weight of the ATLG system is summarized in Table 30. The weight of a
typical standard landing gear is also given in the table. The weight of the
ATLG system is 373 pounds in comparison to the standard landing gear weight of
243.9 pounds. The ATLG crashworthy retractable gear is 53 percent heavier.

The weight of the standard (noncrashworthy) landing gear was determined from
energy absorption requirements for a vertical impact speed of 12.5 fps, O degree
roll and O degree pitch. The shock strut is designed for 3.5g and absorbs ail
the energy. The weight of the standard landing gear is lower because of lower
loads on the trailing arm and axle, shock strut, retraction actuator, attachment
fittings and assembly hardware. The mass fractions of current main landing
gears and of the ATLG are compared in Figure 67. A summary of the weight
history is given in Figure 68. The group weight statements for a crashworthy
helicopter with the ATLG system and for a noncrashworthy standard helicopter are
given in Table 31.
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TABLE 30. COMPARISON OF THE WEIGHTS OF THE ATLG AND THE
STANDARD NONCRASHWORTHY LANDING GEAR
Standard
Noncrashworthy
ATLG Weight Landing Gear Weight
Item (1b) (1b)
Running Gear* 62.0 54
Trailing Arm and Axle* 79.3 53
Shock Strut and Retraction Actuator* 109.3 64
Fuselage Attachment Fittings/Crank* 66.2 32
Pins, Bolts, Nuts, misc.** 35.3 20
Controls** 20.9 20.9
Total Main Landing Gear 373.0 243.9
*Actual weight
**Estimated weight
] 4 | LB 1 Ll
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67. Mass fractions of main landing gear systems.
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TABLE 31. GROUP WEIGHT STATEMENT OF ATLG UTILITY AND
NONCRASHWORTHY HELICOPTERS

ATLG Noncrashworthy
Crashworthy Standard
Weight Weight

[tem (1b) (1b)

Main Rotor Group 668 668
Tail Group 190 190
Body Group 922 876
Alighting Gear Group 417 287
Nacelle 120 120
Air Induction 27 27
Propulsion 1443 1379
Flight Controls 422 422
Auxiliary Power Plant 60 60
Instruments 91 91
Hydraulics and Pneumatics 215 215
Electrical 229 229
Avionics 270 270
Armament 457 457
Furnishing and Equipment 372 214
Air Conditioning 180 180
Anti-Ice 16 16
Loading and Handling 5 5
Weight Empty 6104 5706

Crew 235 235
Unusable Fuel 18 18
Engine 0il 25 25
Fuel 776 776
Payload (6 Troops) 1342 1342
Gross VWeight 8500 8102
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10.0 MAINTAINABILITY AND RELIABILITY ANALYSES

10.1 ALLOCATED MAINTAINABILITY REQUIREMENTS

The maintainability gquidelines and preliminary analysis were presented in
Section 2.6. Following the completion of fabrication and test of the ATLG, the
preliminary maintainability analysis was further verified. The allocated
requirements for maintainability were based on the analysis of the LHX require-
ments. The requirements for the full landing gear system (main and nose gears)
are given below:

MTBF = 180 Hrs
MTBMA = 108.11 Hrs
MTTR = 0.5475 Hrs
MMH/FH = 0.04700

10.2 MAINTAINABILITY EVALUATION

The ATLG system is a modular (LRU) design such that all components except the
trailing arm and pivot crank are interchangeable. The entire landing gear, or
any major component of the landing gear, can be removed by releasing only two
pins or bolts. The system thus permits ease of accessibility and two-level
maintenance with easily replaceable modules in the field. Downtime is
considerably reduced with this concept and without the requirement for alignment
with special tools.

The design of the landing gear system was optimized to further improve
maintainability. The materials and fabrication processes selected for the
landing gear components were designed to reduce stress corrosion and fatigue
failures, and improve fracture toughness. The design was evaluated for full
extension and retraction without interference when components are worn to their
maximum possible 1imits. Provisions were made to prevent cross-connection of
hydraulic fittings and to provide lubrication points where needed.

The reliability and maintainability (RAM) evaluation for the ATLG results in an
MTBF = 417.29 hours, MTBMA = 170.32 hours, MTTR = 0.6281 hour, MMH = 0.7233 hour
and MMH/FH = 0.00350. This result is shown on Table 32.

In comparing with the allocated requirements for the full landing gear system,
the RAM analysis provides favorable results for the ATLG. The MTBF of 417.29
hours is high and will possibly reduce following the introduction of the
failure-prone switches and other components of the full landing gear system.

Similarly, an MTBMA of 170.32 hours has considerable latitude before the
allocated requirement of 108.11 hours is reached. The MMH/FH of 0.00350 is low
enough for growth to the allocated requirement of 0.04700.
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TABLE 32. ATLG RAM ANALYSIS

ATLG MTBF MTBMA MTTR MMH MMH/FH
Shock Strut (2) 8,710.80 3,288.50 1.0000 1.4000 0.00043
Trailing Arm (2) 138,888.89 58,987.50 0.5000 0.7400 0.00001
Wheel (2) 12,019.23 5,104.69 0.4000 0.4000 0.00008
Tire (2) 1,030.08 437.49 0. 1000 0.4000 0.00091
Disk Brake (2) 4,184.10 1,875.75 0.5000 0.5000 0.00027
Actuator (2) 3,125.00 1,179.75 1.2000 1.6000 0.00136
Crank (2) 3,551.14 1,340.63 0.6000 0.6000 0.00045
Bracket (2) 4,599.82 1,953.59 0.6000 0.7000 0.00036
Act. Linkage (2) 6,157.64 2,324.63 0.8000 0.9000 0.00039

SUBTOTAL 417.29 170.32 0.6281 0.7233 0.00350

10.3 RELIABILITY ANALYSIS

Reliability considerations were incorporated early in the program in order to
substantiate that the reliability requirements were reflected properly in the
landing gear design. During the detailed design phase, the reliabiiities of the
system and the components were established by using the FARADA (Weapons Failure
Rate Data Program) and RADC (Reliability Central) data base. A reliability
block model of the design is shown in Figure 69. Based upon the current design,
the MTBF is 417.29 hours.

The potential failure modes were listed in the FMECA (Failure Mode, Effects and
Criticality Analysis) for the shock strut and the retraction linkage. These are
given in Tables 33 and 34. The potential failures were utilized as a checklist
during the detail design phase.
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11.0 MANUFACTURING COSTS

11.1 GENERAL

The elements of cost address a crashworthy, retractable landing gear for an LHX-
size utility helicopter. The components include the trailing arm, shock strut,
retraction actuator with linkage assembly, the pivot crank and the running gear.
The objective was to estimate the Cumulative Average Cost (CAC) of producing
5000 landing gear shipsets in a 13-year production cycle. The resultant
estimated costs are presented in a Flyway Cost format as specified in
"Instructions for Reformatting the BCE/ICE," DCA-P-92(R). The cost elements
addressed are given in a Work Breakdown Structure (WBS) format. The WBS
elements, used in the estimates and in the flyaway cost tables, are given below.

1. Recurring Production

a. Engineering

b. Tooling

c. Manufacturing

d. Quality Control

e. Integration and Test
f. G&A

g. Profit

2. Engineering Changes

a. Nonrecurring Production, [nitial Production
Facilities (IPF) and Tooling
b. System/Project Management
3. Exclusions

a. Government Furnished Equipment
b. System Test and Evaluation

11.2 SYSTEM DESCRIPTION

The system addressed in this analysis is a crashworthy, retractable landing
gear. The main landing gear shipset without the controls, as shown in Table 30,
weighs 352 pounds. It has been designed with high strength aluminum and steel
alloys. The major components of the landing gear system are the trailing arm
and axle; the piston, and inner and outer cylinders of the shock strut; the
retraction actuator and linkage assembly; the pivot crank; and the running gear.
The ATLG system for the cost analysis is defined in accordance with the
Manufacturing Methods Report and the December 1988 Weight Control Status Report
of the program.
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11.3 GROUND RULES AND ASSUMPTIONS

1.
2.

Fiscal
Year

Quantity
(S/8)

Total:

4.

Costs are reported in economic base year 1988 dollars.
Escalation Indices:

AFR Regulation 173-13 (1988 Revision), USAF weighted inflation
indicies on 0SD raw inflation and outlay rates and the USAF raw
inflation indicies. (See Appendices A to C.)

Development and production quantities and rates:

a. Five main landing gears including two pivot cranks were used as
prototype quantities to calibrate the parametric model for the
development to production transition.

b.  Ten thousand main landing gears constituting 5000 shipsets are to
be manufactured during the investment phase. The production rate
buildup was allocated based on a previously proposed LHX produc-
tion rate for a 13-year production cycle. The production rate
buildup 1s as follows:

Production Rate Buildup

90 91 93 93 94 95 96 97 98 99 00 Ol 02

76 184 343 440 440 440 440 440 440 440 440 440 437 i

5000
Schedule:

Start First-Item Completion
Development Nov 86 Nov 87 Jan 89
Production Mar 89 Mar 90 Mar 01

Production costs were based upon a parametrically derived 90.1 percent
learning curve.

Burden rates were supplied by MDHC Pricing and Estimating Department
via the 1988 Rates Package - Number 4, TWS/RS 2320-088. General and
Administrative (G&A) rate was applied at 12.99 percent. Profit at
15 percent was assumed to be reasonable for relative purposes.
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7. Baseline System:

Nomenclature Quantity Weight (1bs
Trailing Arm 2 66.0
Shock Strut/Actuator 109.3
- Strut 2 97.2
- 01 12.1
Axle 2 13.3
Main Running Gear 2 62.0
- Wheels 24.0
- Tires 24.5
~ Brakes 12.0
- Aijr 1.5
Steps/Fairings 3.0
- Steps 1.6
Fairings 1.4
Pins, Bolts, Nuts, Etc. 32.3
Pivot Crank 2 66.2
TOTAL WEIGHT 352.1

8. Exclusions/Inclusions:

a. The cost of two pivot cranks at approximately $26K each was added
to the development cost. This was necessary for implementing the
PRICE Model calibration process. A required cost of five
complete gears was necessary to transition from the development
phase into production.

b. Systems test and evaluation was assumed to occur at the next
higher assembly, i.e.,at the aircraft level.

11.4 COST SUMMARIES

The cost summaries shown in Tables 35 and 36 are the results of the sensitivity
analysis. In performing this analysis, costs were calculated based on varied
manufacturing processes. The least likely case, shown in Table 35, yielded a
total program cost of $275 million at an average unit cost of $35-thousand per
shipset. The most 1ikely case, shown in Table 36, yielded a total program cost
of $303 million at an average unit cost of $61-thousand a shipset.

These costs represent the nominal values for each case. They are presented in
economic base year 1988 dollars. The cost elements addressed represent flyaway
cost.
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11.5 SPECIFIC METHODOLOGIES

The object of this section is to establish an audit trail for the analysis.
This is accomplisihed through the documentation of the methods, reference data
sources, normalization processes, data modification procedures, Cost Estimating
Relationships (CER) and cost factors.

11.5.1 PRICE System Model

A parametic approach employing the General Electric PRICE system models was used
in deriving the flyaway cost of the ATLG. PRICE (Parametric Review of Informa-
tion for Costing and Evaluation) is a computerized model that parametrically
derives cost estimates of electronic and mechanical hardware assemblies and
systems. With PRICE the current product based on actual data can be finger-
printed and the organizational habits captured by means of a calibration
process. Thus, the actual program performance can be emulated.

The approach taken was to calibrate the model to the actual costs of the ATLG
development phase. The process was Synonymous to a least squares linear
regression fit. After calibration, the model was used to transition from the
development phase to the production phase. The elements of costs addressed by
PRICE include design, drafting. project management, documentation, manufac-
turing, and special tools and tast equipment. Excluded are costs associated
with field testing, site activation/construction and software development. The
process documentation is described below.

11.5.2 Model Calibration

The model was calibrated using the program Cost/Schedule Status Report for the
October 1988 reporting period. The budgeted Cost-At-Completion was used, less
Cost of Money (COM), General and Administrative (G&A), and Management Reserves
(MR) to calibrate the PRICE model.

TOTAL (88 $) $2575.1
Less: COM $ 30.7

G&A $ 268.6

MR $ 34.7

CALIBRATION SUBTOTAL $2241.1

Since the development program included only 5 prototypes and 2 pivot cranks, an
additional cost for three pivot cranks was added to the Phase Il at $26K per
crank.

CALIBRATION SUBTOTAL $2241.1
PIVOT CRANKS (3) @ $26k ea. $_78.0
$2319.1
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The calibration process is called the ECIRP mode of operation. A copy of the
output is given in Appendix D. The results are as follows:

Manufacturing Complexities

From 6.279
Center 6.376
To 6.474

The model was executed using manufacturing complexities 6.376 and 6.474 to
establish sensitivity limits. Input files are given in Appendix E and the
output files in Appendces F and G.

The model was calculated based on a unit learning curve of 90.1 percent for both
manufacturing complexities.

11.5.3 Inteqration and Test (I&T)

Integration and test costs incorporate those efforts associated with perfecting
electrical and structural interfaces, and the verification of specification
compliance. It also encompasses costs for system-oriented tasks such as
acceptance test procedures, top assembly drawings, field installation drawings,
the design of shipping containers, and the performance of final acceptance test.

The integration and test costs for the ATLG have been allocated by year based on
a 65%/35% frequency distribution. The choice of a 65/35 ratio was made assuming
the majority of funds would be required in the early stages of the production
process. The PRICE A distribution analysis program, for projecting and
evaluating time-dependent resource requirements, was used in distributing the
I&T funds by year. The details are given in Appendix H.

11.5.4 Engineering Change Proposals (ECP)

The Delphi analysis approach was used in determining allocations for the ECP
effort. The consensus was that very few, if any, changes would occur in a
manufacturing program at this level. The assumptions made in this analysis are
given below.

1. No changes would occur after the manufacture of approximately 2000
shipsets.

2. Change requirements demand would decrease gradually.

3. ECP allocations are based on a percentage of the recurring production
cost less G&A and profit.

4, The assumed allocations ara:
Lots 1 & 2 at 5 percent of recurring production cost

Lots 3 & 4 at 3 percent of recurring production cost
Lots 5 & 6 at 2 percent of recurring production cost.
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11.6 MANUFACTURING SENSITIVITY ANALYSIS

In conducting the manufacturing sensitivity analysis, uncertainty was addressed
by evaluating the cost based on varied manufacturing complexities. The
manufacturing complexities (MCPLXS) were parametrically derived. The results of
the calibration process yielded manufacturing complexities ranging from

MCPLXS = 6.279 to MCPLXS = 6.474.
The model was executed using an MCPLXS of 6.376 as the least likely case and an
MCPLXS of 6.474 as the most likely case. The nominal value of the "most Tikely"
case is presented as the ATLG Program Cost.

Unit Cost (000)

Low Nominal High
Least Likely
MCPLXS = 6.376 49 55 62
Most Likely
MCPLXS = 6.474 55 61 68
Total Cost (Millions) . ,
Low Nominal High
Least Likely
MCPLXS = 6.376 246 274 308
Most Likely
MCPLXS = 6.474 272 303 339

11.7 COMPARATIVE ANALYSIS WITH HISTORICAL DATA

A comparative analysis with the landing gear of the AH-64A Apache helicopter was
performed to further validate and verify the parametric analysis. Since
Menasco, the manufacturer of the ATLG landing gear, is also the manufacturer of
the main landing gear of the Apache and since cost data are readily available,
the Apache main landing gear was chosen as the candidate for comparison.

11.7.1 Considerations for Comparison

1. Weight of AH-64 main landing gear is 456 lbs/shipset.
2. The AH-64A main landing gear is nonretractable.
3. Apache gear was designed to survive a 42 fps level drop.

The Apache cost data used was the negotiated purchase order cost for Lots 1-4.

The costs were escalated to 1988 dollars and a lTeast squares linear regression

exercise performed tc determine the associated slope and first unit cost. (See
Appendix I.)

153




Based on the Apache first unit cost of $109,928 dollars and a learning siope of
94%, the costs of the Apache main landing gear were estimated for a quantity of
5000 shipsets over a 13 year production cycle. The cumulative learning curve
was applied against the ATLG production rate delivery schedule.

11.7.2 Fiscal Year Cost Comparison

The Apache landing gear was compared against the nominal value of the "least
likely" and "most 1ikely" cases of the ATLG landing gear. The cost of the
Apache gear is expected to exceed the least 1ikely case by 1994 and the most
1ikely case by the year 2000. The graph illustrating the cost comparison by
yearly expenditures of the fiscal year is shown in Figure 70.

11.7.3 Delta Lot Cost Comparison

The 'Delta Cost Comparison' is the differences between the ATLG landing gear and
the Apache landing gear for each of the "least likely" and "most 1ikely" cases.
This comparison is presented as bar graphs in Figure 71. The bar graphs, which
extend below zero, the "$0" level, show the yearly expenditure for the Apache
gear exceeding that of the ATLG gear. This first happens for the least likely
case in 1993, and for the most likely case in the year 2000.

11.7.4 Cumulative Average Unit Cost Comparison

The 'Cumulative Average Unit Cost' of the ATLG landing gear and the Apache
landing gear were also compared against estimated midpoints. Two conditions of
the "least 1ikely" and "most likely" costs of the ATLG landing gear were
examined against the nominal cost of the apache landing gear. In the first
case, the nominal costs of these two "likely" cases were compared against the
nominal cost of the Apache gear and, in the second case, the extreme costs of
the same two "likely" cases were similarly compared.

The comparison of the cumulative average unit cost of the nominal values, using
the nominal costs for the least 1ikely and most likely cases of the ATLG gear,
is presented in Figure 72. Both costs of the ATLG gear drop quickly below the
nominal cost of the Apache gear: after 431 and 1263 ATLG shipsets for the
nominal values of the least and most likely costs, respectively.

The comparisons of the cumulative average unit cost of the extreme values, using
the low range of the least likely cost and the high range of the most likely
cost of the ATLG gear, is presented in Figure 73. The low range of the least
likely cost of the ATLG gear and the high range of the most likely cost of the
ATLG gear will be less than the nominal cost of the Apache gear when 168 and
3023 ATLG shipsets, respectively, are delivered.

11.8 COST SUMMARY

The estimated production cost of 5000 shipsets of the advanced technology
landing gear has been established as a cumulative average unit cost of $61,000
based on a total flyaway cost of $303 million. In analyzing, with respect to
historical data from the AH-64A Apache helicopter, the cost of the ATLG landing
gear is comparable to that of the Apache landing gear even though the ATLG gear
is designed to be retractable and has crashworthiness capability in excess of
that of the Apache gear.
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NOMENCLATURE

FBU = Bending ultimate stress
FBY = Bending yield stress
FBRU = Bearing ultimate stress

FBRY = Bearing yield stress

Fcu = Compression ultimate stress

Fcy = Compression yield stress

FHT = Hoop tension stress

FSU = Shear ultimate stress

FSy = Shear yield stress

FSTU = Torsional ultimate stress

FSUN = Shear ultimate stress at the neutral axis
FTu = Tension ultimate stress

FTy = Tension yield stress

FTRU = Transverse tensile ultimate stress
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APPENDIX A
0SD_ESCALATION TABLE-1

NOTE: "SPECIAL"  APPROPRIATI REFER 10 PROGRAMS CLASSIFIED AS SECRET.
AFR 173-13 Attachaent S +1988 Revis:on
tlaple AS-2. Continued.
0PR: SAF/ACCE
DATE OF 0SD INFLATION RATES: 25 JANUARY 1988
DATE OF 0SD OUTLAY RATES : 31 MAY 1987
DATE 0F ACC 1SSUE + | FEBRUARY 1988
USAF WEIGHTED INFLATION INDICES
BASED ON 0SD RAW IMFLATION AND OUTLAY RATES
BASE YEAR FY 1968
RESEARCH
DEVELDP-
OPERA- MENT, NILITARY  MILITARY MILITARY AIRCRAFT  AIRCRAFT  MISSILE  MISSILE OTHER OTHER
TIONS & TESTING & CONSTR-  CONSTR-  CONSTR- PROCURE- PROCURE- PROCURE- PROCURE-  PROCURE-  PROCURE-
FISCAL  MAINTEN-  EVALUA-  UCT]ON: UCTION: UCTION: NENT BENT MENT MENT PENT MENT
YEAR ANCE TION AF GUARD RESEAVE  SPECIAL OTHER SPECIAL OTHER SPECIAL DTHER
{3400) 13600} {3300) {38300 (3730) 3010.000  3010.000 13020} (3020) 13080} (3080)
1973 0.381 0.39§ 0.414 0.411 0. 41 0.402 0.395 0.37% 0.390 0.3%0 0.418
1974 0.413 0.427 0.447 0.497 0.447 0.434 0.437 0.410 0.425 0.422 0.47
1975 0.454 0.468 0.485 0.485 0.485 0.464 0.47¢4 0.439 0.461 0.451° 0.517
1976 0.485 0.508 0.519 0.519 0.519 0.498 0.523 0.482 0.511 0.49¢ 0.584
1977 0.3520 0.539 0.558 0.558 0.558 0.538 0.541 0.307 0.535 0.527 9.5%
1978 0.562 0.384 0.606 0.406 0.606 0.587 0.589 0.580 0.573 0.563 0. 644
1979 0.513 0.530 0.716 0.71% 0.716 0.602 0,635 0.607 0.633 0.408 0.707
1980 0.67% 0.70t 0.754 0.112 0,745 0.41% 0.734 0.470 0.722 0.477 0.781
198t 0.753 0.776 0.816 0.816 0.807 0.703 0.799 0.744 0.792 0.750 0.836
1982 0.824 0.829 0.872 0.964 0.863 0.753 0.841 0.792 0.847 0.819 0.868
1983 0,882 0.0868 0.906 0.913 0.890 0.824 0.891 0.847 0.893 0.860 0.900
1984 0.896 0.901 0.932 0.936 0.924 0.889 0.929 0.899 0.935 0.890 0.927
1985 0.925 0.929 0.955 0.956 0.952 0.918 0.958 0.926 0. 940 0.917 0.958
1986 0.931 0,953 0.984 0.983 0.978 0.943 0.990 0.950 0.994 0.942 0.987
1987 0.979 0.985 1.019 1.018 1,013 0.970 1.026 0.980 1.030 0.969 1.023
1988 1.0t6 1.022 1.056 1.053 1.051 1.007 1.063 1.016 1,067 1.005 1,060
1989 1.054 1.059 1.092 1.091 1,087 1.044 1.099 1.054 1.107 1.043 1.095
1990 1.090 1,095 1123 1,125 1.121 1.082 1.131 1,090 1.134 1,080 1.128
1991 1.124 1.128 1.15% 1,155 1,13t 1114 1.160 1.124 1,183 1113 1.138
1992 1,153 1,157 1.183 1.182 1.478 1,147 1.188 1,153 1.190 1.146 1.18¢
1993 1,180 1.164 1.91¢ 1.209 1.205 1.173 1.215 §.180 1. 27 1172 1,213
1994 1.207 1.21) .25 1.2%7 1.233 1.200 1.283 1.207 1.285 1.199 1.24)
1995 1.235 1.239 1.266 1.263 1.264 1.227 t.2n 1.233 1,24 1.227 1.269
1996 1,283 1:267 5 ~ 3,293 1.290 1,256 1.301 1.283 1.303 1.255 1.298
1997 1,292 .29 .30 324 1.320 1.28% 1.33 1.292 1.333 1,284 1.328
1998 1,322 1.326 1.356 1,359 1.350 1IN 1.361 1.322 1.364 1.313 1.35%
1999 1.352 1,357 1,397 1.388 1.381 1,34 1.393 1.352 1.395 1.343 1.390
2000 1.383 1.388 1.419 1.418 1,413 1,373 1.425 {.383 1.427 1.374 1.422
2001 1. 413 1.420 1. 451 1.450 1. 446 1.407 1,457 1.415 1.460 1,408 1. 455
2002 1.448 1.453 1.485 1.484 1.4 1.439 1.491 1.448 1.494 1.438 1.488
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APPENDIX B

0SD_ESCALATION TABLE-2

AFR {73-13 Attachaent § 1988 Revision
Table A5-1. Conted.
0PR: SAF/ACCE
DATE OF DSO INFLATION RATES FOR PERSONNEL  : 1J JANUARY 1988
DATE CF 050 INFLATION RATES FOR NON-PERSOMNEL: 26 JANUARY 1988
DATE OF ACC ISSUE ¢ | FEBRUARY 1788
USAF RAN INFLATION INDICES
BASE YEAR FY 1988
OPERA-
SENERAL TIONS  RESEARCH ALRCRAFT
MILITARY  COMPENSATION SERVICE & MAIN-  DEVELOP- AND
¥ NAGE  TENANCE: MENT, MILITARY  MISSILE DTHER
FISCAL PAY OTHER RETIR. BOARD  NON-PAY,  TESTING CONSTRUC- PROCURE-  PROCURE-
YEAR BASE EIPENSES T0TAL PAY PAY NON-POL EVAL, TION MENT NENT FUEL
(3500) (3500) (3500) {3500) (3400) 13400} (3600) (3300} (150.5) (3080)
1973 0.408 0.397 0.408 0.357 0.388 0.3n 0.38¢4 0.3I17 0.352 0.382 0. 340
1974 0.436 0.444 0.437 0.392 0.423 0. 406 0.414 0.408 0.380 0.412 0.572
1973 0.464 0.487 0.465 0.447 0.457 0.450 0.459 0.450 0.421 0.4%7 0.4658
1976 0.488 0.493 0.489 0.496 0.4935 0.481 0.49) 0.481 0.450 0.458 0.707
1970 0.502 0,506 0.503 0.510 0.517 0.497 0.507 0.497 0.445 0.304 0.736
1977 0.516 0.319 0.317 0.529 0.539 0.514 0.52¢ 0.514 0.480 0.521 0.743
1978 0.5352 0.549 0.3952 0.563 0.381 0,955 0.540 0.549 0.513 0.397 0.820
1979 0.58% 0.992 0.587 0.612 0.616 0.40% 0.607 0.401 0.358 0.40% 0.%47
1980 0.627 0.636 0.4829 0.483 0.63. 0.464 0,408 0.464 0.612 0.684 .M
1981 0.726 0.789 0.735 0.762 0.7135 0,743 0.78 0.743 0,485 0.743 2,02
1982 0.826 0.837 0.827 0.812 0.735 0.811 0.811 0.811 0.750 0.811 1.993
1983 0.839 0.871 0.861 0.939 0.791 0.854 0.8351 0.851 0.818 0.851 1.790
1984 0.884 0.900 0.887 0.889 0.91% 0.883 0.863 0.883 0.883 0.883 1,623
1985 0.920 0.926 0.920 0.920 0.851 0.943 0.913 0.913 0.913 0.913 1.59%
1986 0.956 0.948 0.936 0.956 0.870 0.939 0.939 0.939 0.939 0.939 1. 2U%
1987 0.978 0.969 0.977 0.978 0.917 0.954 0.984 0.964 0,964 0.964 0.890
1988 1,000 1.000 1.000 1,000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1989 1.037 1.032 1.037 1.037 1.021 1.038 1.038 1.038 1.038 1.038 1.039
1990 1.084 1.064 1,082 1.084 1.049 1.075 1.073 1.07% 1.07% 1,075 1.017
1994 1,133 1.094 1.130 1133 1.08) 1111 111} t.1 1111 LAt 1.12¢
1992 1.182 1.120 1.1726 1,182 1114 1.182 1,142 1,142 1.142 1.182 1.186
1993 1.23) 1,142 1,223 1,234 1.148 1.168 1.148 1.168 1.168 1.168 1.248
1994 1.283 1. 164 1.212 1,283 1.18¢4 1.193 1,193 1,193 1,195 1,195 1,315
1993 1.337 1.187 1.324 1,397 1.220 1,223 1.223 1,223 1.223 1,223 1,184
1996 1.393 1.210 1.311 1.393 1,258 1.251 1.251 1,291 1,254 1,281 1.458
1997 1,432 1.234 1.431 1.452 1.29% 1.279 1.2 1.219 1.279 1.279 1.53%
1998 1.513 1.238 1.489 1.513 1.338 1.309 1.309 1.309 1.309 1.309 1.616
1999 1.576 1.283 1. 4¢ 1.376 1.3 1.339 1,339 1.339 1.339 1.339 1.702
2000 1.642 1.308 1.611 1.642 1.419 1.370 1.370 1.370 1.370 t.370 1.792
2001 1.7 1.334 1.676 L1 1. 483 1,401 1.401 1.401 1.401 1.401 1.887
2002 1.783 1.360 1,743 (.783 1.508 1.434 1.434 1.434 1,434 1.434 1.987
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APPENDIX C
0SD_ESCALATION TABLE-3

sTable
npR:
JATE
JATE
BaTE

FISCAL
YEAR

1970

AFR 173-13
45-1. Conted.

SAF/ACCE
IF 0SD INFLATION RATES FOR PERSONNEL @ 13 JANUARY 1988
CF 0SD INFLATION RATES FOR NON-PERSONNEL: 26 JANUARY 1988
JF ALC ISSUE + | FEBRUARY 1988
USAF RAW INFLATION [NDICES

Attacheent &

t1986 “evision

163

BASE YEAR FY 1985
OPERA-
GENERAL  TIONS  RESEARCH AIRCRAFT
MILITERY  COMPENSATION SERVICE & MAIN-  DEVELOP- AND
-------------------------------------------- § WAGE  TENANCE:  NENT.  MILITARY  4ISSILE  OTWER
PAY OTHER RETIR. BOARD  NON-PAY,  TESTING  CONSTRUC- PROCURE-  PROCURE-
BASE  EXPENSES  TOTAL PAY PAY  NON-POL  EVAL.  TION MENT HENT FUEL

(25000 (35000 (3500 (35000 (3400) (34000 (36000 (33000  (150.5)  (3080)
S 0,429 0.M3 0388 0451 0413 0421 0412 038 0419 030
0.478 0476 0.475 0426 0491 0445 0454 0.M5 0416 0451 0.348
0.55  0.504  0.506 0,486 0531 0.493  0.503  0.493 0461  0.500  0.423
0,53 0.833  0.532 0.5 0.575  0.520 .53 0.527 0493 .53 0.455
0.54  0.57  0.547  0.555  0.s00  0.565 0555 0.5  0.509  0.352  0.413
0.%1 0,51 0.5  0.571  0.626  0.5%3  0.57¢  0.52  0.526 0571 0.4W
0.600  0.593  0.600  0.814  0.675  0.607  0.613  0.601  0.52  0.610 0.5
0.635  0.440  0.638  0.865 0715 0.563  0.664  0.658  0.611  0.63  6.409
0.681  0.887  0.483  O.W% 0784 07201 0727 0727 0.670 0727 1.100
0.789  0.852 0799  0.829  0.831  0.813  0.813  0.813 0750  0.813  1.302
0.899  0.904  0.899 0,883  0.877  0.688  0.888  0.888  0.822  0.888  1.282
0.93¢ 0.9 0.935 0934 0918  0.932  0.932  0.932  0.895  0.9%2 1.8l
0.92  0.972 0.9 0.9 0947 0,967  0.97  0.9%7  0.%7 0.9 1045
1,000 1.000  1.000 1000 1,000 1000  1.000  1.000  1.000  1.000  1.000
.00 1026 1,038 1000 1000 1,028  1.028  1.028 1.0  1.0z8  0.781
1,063 LOAT 1,062 (063 1,065 1,05 1,05 1.0  1.0%  1.0% 0.5
1.087 1080  1.087  1.087 .18l L,09S 1095 1.09%  1.095  L.O9S  0.643
1128 LUS L1270 L1288 fa86 L3 L3 LA L3 L% 0.648
L9 L8 L176 LIT9 LB LT LT LT LT LA 093
1232 82 L2280 6232 1.2% 216 L6 L6 216 L2 0
1,285 L20 L28 L85 LM 12% 1.2% L2500 1250 L2%0 0
L339 L2830 L300 L3 LI L e Ly L9 L9 6
L39S L2588 1.383 4.3 LS 138 138 13od 1308 LW 084S
LASE L2822 138 LAt L7 13 L9 L9 L3 LI 08w
LSS L3 1A% LSS 1AM 1369 139 139 L3 L3 0.8
1578 L3 LS LB 1505 Lot n0l LAO1 L01 0L 0.897
O C I 5 . TS YT RN SN 187 SN 19 1. SO 5 TR 4 O PR S AL A S M
LI 1386 LB LTI LSIY Leb Db L.6h 146 Ldss 1,084
1786 LMY LTSE L8 L4 1300 %0 1.%0  nSeo L3 11%2
(.80 LML 1821 1.86) 1699 LS4 LM LM 1S3 LS au
1939 LA 189 L9 LTSI 569 LS9 LS9 LS LS Lam




APPENDIX D
PRICE CALIBRATION RESULTS

"ECIRP"
- - - PRICE HARDWARE MODEL - - -
ECIRP
INPUT FILENAME: DMATLG 18-JAN-89 11:48 GLOBAL FILENAME:
(18825) ESCALATION FILENAME:
ATLG
UNIT WEIGHT  176.00 MODE 7
PROTOTYPE QUANTITY 5.000 UNIT VOLUME 0.98 QUANTITY/NHA O
ACTUAL COST DATA
AV UNIT  0.00 PRODUCTION 0. PROTOTYPES 0.  DEVELOPMENT 23190
PROGRAM COST ($ 1000) DEVELOPMENT PRODUCTION
ENGINEERING
SUBTOTAL (ENG) 1650. -
MANUFACTURING
PRODUCTION - -
PROTOTYPE 618. -
TOOL-TEST EQ 51. .
SUBTOTAL (MFG) 669. -
TOTAL COST 2319. -
DESIGN FACTORS MECHANICAL PRODUCTION DESCRIPTORS
WEIGHT 176.000 ENGINEERING COMPLEXITY  1.200
DENSITY 179.592% PROTOTYPE SUPPORT 1.0
MFG. COMPLEXITY 6.376* PROTO SCHEDULE FACTOR
0.250%
NEW DESIGN 0.600 PLATFORM 1.800
DESIGN REPEAT 0.000 YEAR OF TECHNOLOGY 1986
INTEGRATION LEVEL 0.000 RELIABILITY FACTOR 1.0
MTB (FIELD) 6465
SCHEDULE START FIRST ITEM FINISH
DEVELOPMENT ~ NOV 86 (13) NOV 87 (14) JAN 89 (27)
SUPPLEMENTAL INFORMATION
ECONOMIC BASE 188 TOOLING & PROCESS FACTORS
ESCALATION 0.00 DEVELOPMENT TOOLING 1.00*
DEV COST MULTIPLIER 1.00%
MCPLX RANGES MCPLXS
FROM 6.279
CENTER 6.376
T0 6.474
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APPENDIX E
PRICE INPUT FILES - LEAST LIKELY CASE

LG89 WED, 18 JAN 1989 12:00:56

00001:ATLG

00002: 152 5 176 .98 2
00003: 10 1.2 1.8 19880
00004: 176 6.376 .6

00005: 1186 1187 189 1.4 00
00006: 389 390 391 .89 0 O

00007:L0T 2

00008: 368 291 391 192 9 0
00009:L0T 3

00010: 686 1291 192 1192 9 0
00011:L0T 4

00012: 880 1092 1192 993 9 0
00013:L0T 5

00014: 880 893 993 794 9 0
00015:L0T 6

00016: 880 694 794 595 9 0
00017:L0T 7

00018: 880 495 595 396 9 0
00019:L0T 8

00020: 880 296 396 197 9 0
00021:L0T 9

00022: 880 1296 197 1197 9 0
00023:L0T 10

00024: 880 1097 1197 998 9
00025:L0T 11

00026: 880 898 998 799 9 0
00027:L0T 12

00028: 680 699 799 500 9 0
00029:L0T 13

00030: 874 400 500 3019 0
00031:ATLG INTEG & TEST
00032:10000 5 0 .5 5
00033:0 0 0 1.8 1988
00034:1186 1187 189 389 391
END-OF -DATA
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APPENDIX E
PRICE INPUT FILES - MOST LIKELY CASE

LIST
LG89 WED, 18 JAN 1989 12:00:24

00001:ATLG

00002: 152 5 176 .98 2
00003: 10 1.2 1.8 1988 0
00004: 176 6.474 .6
00005: 1186 1187 189 1.4
00006: 389 390 391 .89 O
00007:LOT 2

00008: 368 291 391 192 9 0
00009:LOT 3

00010: 686 1291 192 1192 9 0
00011:L0T 4

00012: 880 1092 1192 993 9 0
00013:L0T 5

00014: 880 893 993 7949 0
00015:L0T 6

00016: 880 694 794 595 9 0
00017:LOT 7

00018: 880 495 595 396 9 0
00019:L0T 8

00020: 880 296 396 197 9 0
00021:L0T 9

00022: 880 1296 197 1197 9 0
00023:L0T 10

00024: 880 1097 1197 998 9
00025:L0T 11

00026: 880 898 998 799 9 0
00027:L0T 12

00028: 680 699 799 500 9 O
00029:L0T 13

00030: 874 400 500 301 9 0
00031:ATLG INTEG & TEST
00032:10000 5 0 .5 5

00033:0 0 0 1.8 1988
00034:1186 1187 189 389 391
END-OF -DATA

LIST

o o
o
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APPENDIX F
PRICE DETAILS OF OUTPUTS FILES - LEAST LIKELY CASE

- - - PRICE HARDWARE MODEL - - -
ECIRP

INPUT FILENAME: LG89 19-JAN-89 13:02 GLOBAL FILENAME:

167

(188225) ESCALATION FILENAME:
TOTAL COST FOR ALL LOTS
PROGRAM COST ($ 1000) DEVELOPMENT PRODUCTION TOTAL CoST
. ENGINEERING
DRAFTING 323. 39. 363.
DESIGN 1212. 131. 1343,
SYSTEMS 255. - 255,
PROJ MGMT 345. 9572, 9917.
DATA 112. 3317. 3429,
SUBTOTAL (ENG) 247. 13059. 15306.
MANUFACTURING

PRODUCTION - 193109. 193109.
PROTOTYPE 717. - 717.
TOOL-TEST EQ 64. 9223. 9287.
PURCH ITEMS 0. 0. 0.
SUBTOTAL (MFG) 3028. 215391. 218419,
TOTAL COST 3028. 215391. 218419,

COST RANGES DEVELOPMENT PRODUCTION TOTAL COST
FROM 2717. 192943. 195660.
CENTER 3038. 215391. 218419,
TO 3446. 241771, 245217,




APPENDIX F

PRICE DETAILS OF OUTPUTS FILES - MOST LIKELY CASE

INPUT FILENAME:

TOTAL COST FOR ALL LOTS

PROGRAM COST ($ 1000)
ENGINEERING
DRAFTING
DESIGN
SYSTEMS
PROJ MGMT
DATA
SUBTOTAL (ENG)

MANUFACTURING
PRODUCTION
PROTOTYPE
TOOL-TEST EQ
PURCH ITEMS

SUBTOTAL (MFG)

TOTAL COST

COST RANGES
FROM
CENTER
T0

LG89B

19-JAN-89 13:11
(188225)

DEVELOPMENT

343,
1294.
268.
368.
118.
2392.

795.
71.
0.
866.

3259,
DEVELOPMENT
2927.

3259.
3701.
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- - - PRICE HARDWARE MODEL - - -
SYSTEM COST SUMMARY

PRODUCTION

44.
148.

10451.
3620.
14262.

212810.

10810.
0‘
223620,

237882,

PRODUCTION
213223.
237882.
266377.

GLOBAL FILENAME:
ESCALATION FILENAME:

TOTAL COST

387.
1441.
268.
10820.
3738.
16655.

212810.
795,
10881.
0.
224486.

241141,

TOTAL COST
216150.
241141.
270078.




JATA INPUT SECTION: APPENDIX G
BASE YEAR 1988 DOLLARS PRICE SUMMARY OF QUTPUTS FILES
COST/THOUSAND

bbbl L T Ty T Y Ty Y T TV T AT TTTT T ITqTTTITIIIIIIION
MCPLXS=6.375 W/ RATOOL TOTAL

LOT NUMBER IXT  DRAFT  DESIGN S/PM DATA HCWR  TETE@  TOTAL  (W/1%T)
I R R L R R R R LR SRR R R R R R R R H R RN

Lar 14893 9 29 2 189 4932 1974 Te8 21782
LoT 2 ? 3 it 348 191 9443 369 1BSES 1SS
Lor 3 2 2 8 744 256 13559 Sy 17876 17878
Lar ¢ ] 2 '8 821 9 177 391 19828 (9828
Lrs 1 2 8 189 266 14875 598 18518 1851l
LOT 6 2 2 8 82 206 16834 389 17631 17633
Lry 1 2 8 121 249 15403 89 18972 16973
Lar 8 () 2 8 185 208 14899 JB8 16446 Mg
Lar 9 ! 2 8 691 239 14488 387 1487 14008
LoT 19 (] 2 8 679 238 1 387 15633 15633
LOT 1t 2 2 8 669 31 13889 3BE 15384 15386
Loy 12 1 2 8 639 228 13533 583 15815 15Blh
Lar 13 1 2 8 548 224 13199 SBZ 14854 14455
INTEG & TEST | 3 678 33 121 495 14184 La1p4
TOTAL W/14T 14104 35 131 9582 3316 193188 9222 215394 215394
TOTAL W/0 I%T 14184 34 128 8912 3883 18@40s 8727 781298 215394
BASE YEAR 1988 DOLLARS PRICE REFERENCE FILENAME: LEB9B

COST/THOUSAND

R R R R M R O R R R E R RO R RN LR ERERE RO IO ROHE
MCPLXS=6.474 W/ RATOOL TOTAL

LOT NUMBER ILT  DRAFY  DESIGN S/PN DATA HONR  TATEQR  TOTAL  (NMIAD)
P I R L L A B R R R R E R RS OO FRE R R B R RERE S

Lor ¢ 15689 18 3 581 2056 5478 2259 8387 2425
Lar 2 8 U 12 599 29 10473 36 1733 U1
Lot 3 9 3 9 289 80 17199 603 18983 (8903
Lor ¢4 ] 3 9 a3 385 19999 698 21897 UM
Lor 5 1 3 9 B39 289 18598 697 2M435 28435
LoT 6 1 3 9 8e8 219 17658 696 19453 19454
Lor 7 ] 3 ) 785 71 16953 695 18716 18718
Lot 8 ¢ 3 9 187 23 14389 694 18127 18127
Lar g ] 3 9 152 268 15928 693 17837 17837
LoT 12 1 3 9 138 53 15528 693 17218 17218
Lov it ] 3 9 127 51151 692 16853 14853
Lot 12 e 3 9 m 28 14862 691 18530 14538
Lov 13 . M 9 b L 208 1448) 687 16128 14128
INTEG & TEST I M 743 58 1 3¢ 15698 1568
TOTAL W/IGT 15698 8 LYY 1}.7! 3620 212812 10808  237BB7 237887
TOTAL ¥/0 14T 15698 4 164 9789 3362 198701 18234 222197 237847

169




APPENDIX H

PRICE A - ACTIVITY DISTRIBUTION ANALYSIS MODEL

- - - PRICE SYSTEMS SERVICES - - -
ACTIVITY DISTRIBUTION ANALYSIS MODEL

DATE 31-JAN-89 TIME 12:06
(188204)

ACTIVITY 1 ADVANCED TECHNOLOGY LANDING GEA
SCHEDULE MILESTONES START: 1 APR 89
PROFILE SHAPE LEAD: 0.65
START AND END LEVELS SLEVEL: 0.30
REFERENCE COST AMOUNT:  303077.0
REFERENCE ECONOMICS RTABLE: PRESET
REPORT REQUESTED PERIOD: YEARS

ADVANCED TECHNOLOGY LANDING GEAR

UNINFLATED EXPENDITURE PROFILE PEAK/AVERAGE

LEAD = 0.65

STARTING LEVEL = 0.30 ENDING

ADVANCED TECHNOLOGY LANDING GEAR
YEARLY EXPENDITURE SUMMARY

COST IN COST/THOUSAND

FILENAME NOT USED

R

END:

LAG:
ELEVEL:
AS OF:

BY START:
AS OF:

RATE
LAG
LEVEL

30 APR 01
0.35
0.10

1 APR 89
JANUARY
1 APR 89

[ |}

OO -

[ ] L] .
w
n

1 APR 89 UNITS

PERIOD PER CENT EXPENDITURES FOR PERIOD CUMULATIVE EXPENDITURES
ENDING COMPLETE TOTAL % TOTAL %
DEC 89 3.6 10884.6 3.6 10884.6 3.6
DEC 90 12.3 26293.7 8.7 37178.3 12.3
DEC 91 23.3 33306.4 11.0 70484.7 23.3
DEC 92 35.0 35462.3 11.7 105947.0 35.0
DEC 93 46.4 34658.0 11.4 140604.9 46.4
DEC 94 57.1 32338.6 10.7 172943.3 57.1
DEC 95 66.8 29496.9 9.7 202439.9 66.8
DEC 96 75.6 26674.2 8.8 229113.9 75.6
DEC 97 83.5 23959.9 7.9 253073.7 83.5
DEC 98 90.4 20991.6 6.9 274065.1 90.4
DEC 99 96.0 16955.3 5.6 291020.0 96.0
DEC 00 99.5 10584.8 3.5 301604.5 99.5
APR 01 100.0 1470.4 0.5 303074.8 100.0
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