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ABSTRACT

Among the earliest successful applications of multi-layered neural networks are combina-
torial optimization problems, most notably, the travelling salesman problem. Hopfield-type
thermodynamic networks comprised of functionally homogenous visible units have been ap-
plied to a variety of structurally simple NP-hard optimization problems. A fundamental obsta-
cle to the application of neural networks to difficult problems is that these problems must first
be reduced to 0-1 Hamiltonian optimization problems. We show that certain optimization
problems cannot be embedded in networks composed entirely of visible units and present a
method for defining necessary hidden units together with their best features. We derive a
knapsack-packing network of 0(n) units with both standard and conjuntive synapses. En-
couraging simulation results are cited.
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Introduction

Since their resurgence in the early 1980s artificial neural

systems have found applications in computer vision, speecn

generation and recognition, robotics, and numerous oner sreas

Progress toward the application of neural networks to NF-hard

combinatorial optimization problems has been modest and has teen

generally restricted to structurallv simnle oroblems. The

and most well-known aplication was cresented by:..

Tak Hozo: wo reduce d - e trave: 11 n ..... --L

problem (TSP) to a 0-1 quadratic assignment optimization problem

(QAP) with a Hamiltonian objective function. Hofield and Tank

then showed that a thermodynamic neural network with symmetri:

connections and a non-linear sigmoid transfer function could

effectively find good solutions to embedded TSP proolems. The

approach to reducing optimization problems tnat was rcoposedh

Hoofield and Tank has since been applied to numerous :hner

combinatorial optimization problems. J. Ramanujam and

P. Sadayappan present reductions of graph partitioning, graph

K-partitioning, minimum vertex cover, maximum independent set,

maximum clique, set partition, and maximum matching to QAPs

[Ram88] . E.D. Dahl presents reductions of map and graph colorino

problems [Dah88] .

A common characteristic of all these problems is that they

are structurally simple and can easily be reduced to QAPs with

Hamiltonian objective functions. Furthermore, a11 or the

.......AOlilt7 C0408
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esI-ing neural networks consist of functionally homoceneous

processing units whose activation values are directly mapped to

tne solutions of their respective embedded optimization

cr:blems. Since these units oarticipate in the expression 0t

I:obiem sultions for external interpretation, they can ce

viewed as visible units.

The Set Partition Problem

Before we consider a diffi u.-_ z-cre,"

review Hopfield and Tank's reduction technique on a simple

zrolbem. The integer set partition optimization problem is given

by

INSTANCE: Finite set A of elements, for each ae A, a size

ba E Z+ .

OBJECTIVE: Give a subset A'CA such that

Sba- ba

aEA' ac A-A '

is minimized over all subsets of A.

T-he set partition decision problem is known to be NP-cumicpete

[ ar79].

Let V be the variable space of the set partition problem.

V is the set of all subsets of A so that IVI=2 AI. Let S be the
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scace defined b- the volume of an n-dimensiona_ un._ .. rue

for some, as of yet unspecified n. Each point in V or

configuration of problem variables is associated with a

configuration of the states of n neuron-like units, that is, a

cint in S. This association is defined by a pair of mappings

M:V--S, and M-!:S-V. We could define n=21A'1 and mac each

subset of A to a unique vector in the set of n orthcaonal,

uni-length, binary vectors. However, this resu-:s 'n a neura.

network whose size sicales e:onenti................_

oroblem.

A better approach is to define n= IAI and to map each

subset of A to a unique combination of n binary values. Let us

name the elements of A by { a,, a2 , ... , an } . We define P4, for

the subset of S consisting of the corners of the n-dimensional

nvoercube, by

M(A) = ( s2, s2, . , n

where 1 L if: aiE A'
0 if aiE A- A'

A'C;A, 1 :5 i !5 n.

In order to extract a useful problem solution from a network

configuration, we must also define M -1 . This is typically done

via application of a threshold, X
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M- 1 ( Sl, s2, . . ) = { ai sI >_ X

0 < X , < i< n.

hi-s completes our selection of a representation, that is, the

cef:inition of n and the mapping of problem variable

:cnfigurations to, and from the set of global network

a.iurations.

The next step in the derivation process is the selection of

an appropriate energy function E :S-9Z. Hopfield and Tank showed

-hat in order to embed the problem in a network of neuron-like

crcessing units, the energy function must be expressible as a

Hamiltonian. Hamiltonian energy functions have the form -

2 S ~ Sj Wjj S 69
1 j

where n is the number of processing units in the network, si is

th'-e activation level of the ith unit, wij is the connection

strength between the ith and jth units, and 9i is the activation

-hreshold of the ith unit. All connections are symmetric, i.e.,

-~j= Wji for all i, j. The fundamental obstacles to embedding

arbitrary optimization problems in neural networks are the

Jiscovery of a representation and a Hamiltonian energy function

so that minimal-energy network configurations are mapped to
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octimal configurations of problem variables. For -he set

partition problem, we choose the energy function -

n

it can easily be seen that E sibi is the sum of sizes f-

n

elements in A' and Y(!-si)bi is the sm of sizes ee
i=1

A-A' Without some insight into the forms o: valid e-ner.'

functions, we must manipulate E algebraicallv before we can 'e

certain that it can be expressed as a 0-i Hamiltonian.

E = B• si bi - (i-si)b;
i~i i=i

= B •2 s - b1

= B• 4 Si sjbi bj -4 si bi + Xbj
i=1 j=l i=i (j=l j=i

Since bj is constant with respect to si we can arcc
j--i

it from E without affecting the minima. The constant

coefficients (4) can be included in B and are dropped as well.

We are left with
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n ~ ~ bb n n nE B si Sj bi bj - 3 si bi Ybj
i=1 j=1 i=1 j=1

-i Sj (-23.b b2 ) + Bb b
"=I j=1 i=! =

-his exoression is in the standard form of a 0-1 Hamiltonian

wij = -23 bibj

=nd
n

ei = -3 bi I bj.
j=1

':h-e derivative of E allows us to deduce the function of unit i -

812
- -I SjWij +-

asi j=1

2Bbi -sj .j=1 -j=1

:n order to minimize E, the value of si should increase whenever

<0. This corresponds to the condition

n n

j-1 j =1



Each unit behaves as a feature detector, de1ectina the cnd:,

in which the sum of the sizes of elements in A' is less than

half of the total sum of sizes. By detecting this feature, unit

i increases its level of activation and gradualiv noves its

associated element ai from A-A' into A'. The result isa

decrease the discrepancy between the sums of sizes of elements

in the two sets.

The I c.........ocal function of unit (1 i <) i4 a Hac: - --

network is ci en bV

repeat
n

AE <- - sj wi j + 6i

si <-- tsi + (1-T) + (-AE /T)

until (externally terminated);

Where T 0 < T5 1) controls the response time of the uni . As

T 1O, the trajectory of the network configuration becomes

increasingly smooth. Units can be updated either synchronousl.,

as prescribed by Hopfield and Tank, or asynchronously. After

relaxation, the approximate solution to the embedded set

partition problem is extracted from the configuration of

activation values by application of M -1 .

it should be noted that V is often a discrete space while

S is continuous. The set of minima of a continuous
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1-1 Hamiltonian must be a subset of the set of corners of the

n-dimensional unit hypercube. There are few restrictions on M

'xcet those imposed by the definitions of its domain and range.

:here is no prior knowledge about :he minima of f, then we

Tos: take care to ensure that all points in V are mapped by M :

:orners of the hypercube. Otherwise, we can not be certain than

:he minima of f map to minima of E.

Len us summarize the basic eciques :han ar blcyed t:

find solutions :o optimization problems using neura- ne:wcrks

l A network representation is selected. n, the

dimensionality of the network state space

(alternatively, the number of units in the network

architecture) is defined. A transformation, M:V-4S,

from V, the space of problem variable configurations,

to S= [0,1 n , the volume of an n-dimensional unit

hypercube, is defined.

2 An inverse transformation, M-:S-V, is defined. Each

network configuration in the volume of the

n-dimensional hypercube is mapped by M -1 to a

configuration of the variables of the problem space.



3 An energy function, E :S--9i, is defined on S so tha:

M-(Smin) is a minimum of the problem objective, f,

whenever smin, is a minimum of E, smiES. :n

utilize processing units with neuron-like heha;/ts,

must take the form of a 0-1 Hamiltonian.

4 The network is relaxed using one of a variety c:

update rules. Prior to relaxation, all netwcrk

parametefs (e.. --he set car-

operational parameters (e.g. T) are Sp -- f. -.

5 After relaxation, M - 1 is applied to the final netwcrk

configuration yielding a minimum of f, the cbective

function of the original optimization problem.

Steps 1-3 are, without question, the most "==-i -It

a degree of cleverness to carry out. The tecInS' i sur.ari:ec

4n figure 1.
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Problem instance I.

M
(Existance is not
guaranteed)

Binary representation &

Continuous Hamiltonian energy

partial-derivative function F

of E

Network specification
including connection

Initialization & weights and visible, analog,
relaxation "neuron-like" units.

Network solution to M (I).

M

Approximate solution of
problem I.

Figure 1

Existing Thermodynamic Neural Network

Derivation Procedure
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some R S e, we -aVe f :rm " " a! . . .

minimization problems to the minimization of continuous

Hamiltonians. In subsequent discussions we will,

, --e r hese formal :once

urselves with strict adherence __- forma'

The Knapsack Problem

L e!: u ns ier the inTeoer knausak -k "Kv

7NS'1ANCF: F 'i n.e set C = ,, . .1 ,n1 f eements, e-

7E Q a cost wqE Z + and a profit paE Z' and a pos:tive

integer knapsack capacity, K.

,BJ-.CT1VE: Give a subset Q'cQ sucn ..at

Wq K and pq is maximized ov-rr a- sn-ses_ s

As with the set partition decision problem, the interer knar -

decision problem is known to be NP-complete [Gar79'. The

standard approach for embedding this problem in a neural

calls for the mapping of problem variable configurations, I.e.

subsets of Q, to configurations of a set of n 0-1 variables

representing the activation values, si, 1 .. i 5n, of neur.n.."e

processing units. The simplest representation is

11



S i =

0 otherwise

... _a n=[Q . We oropose a global enerv _ func:ion, K = .-

";: er A s a term reflecting the benefi, of maximizinc g
E

and BE is a term reflecting the penalty for violating

.c K.

What features should be detected by unit i ( i n ?ince

s, =i whenever element i is placed in the knapsack, s; should

at-ain this value whenever the benefit (with respect to minimizina

S) of placing element i in the knapsack outweighs the penalty. n
AEA AE AE AE=

-er words Asi> 0 whenever + < 0. If s +  can be

-_-.;3uted as the sum of weighted activation values of s (j= I)

...... the function of unit i will be to detect -e condition

C1M A E A + AEB <C1 - + < 0 .

When Asi= 1, AEA should be proportional to -pi because the

inclusion of element i in the knapsack increases the profit of

--e packing by effecting a decrease in E. The energy penalty

AE7, depends on the states of the other units in the network.
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e t

C2 K < SjW

f C2 is true then AE3 should be po ,: p o 1a wn. -f C2zi

"strongly" false then there should be no enerav ena't, tna
AE

is, AEB= 0 - is thus a non-inear fun.c.:o.n of . .

n
wectt ac tva__ons s- w- :n orcer -: e:c'-s h

non-linear relationship, some unit, h, must be defined to detec:

condition C2. Recall that the role of unit i is to detect

condition Cl. We conclude that at least two different kinds or

feature detectors are necessary. The knapsack problem can not ce

embedded in a network of functionally homogeneous visible unis

Hidden units are necessary.

In the remainder of this caper, we propose a s-seat: -

approach to defining necessary hidden units together witn the-

best features. Our approach is applicable to many packing

problems including bin packing and multiprocessor scheduling.

Plausible Energy Functions

We have presented an informal argument that hidden units

are required by a neural network in order to pack a knapsack. We

reinforce this argument by examining two invalid candidate

energy functions.
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Let

n n
E = -A- si.Pi +  i. w .l

-'iS function is clearly inappropriate. Consider the orce lm

instance Q= {!}, wi =K- £, and p I = E where 0 < E<< I. For an']

f:-:ed values of A, B, and K, E can be selected so that -he

S-nLe element, -, will not be claced in :he knacsack even

- nas positive profit and t'ne packing tces -- w

;When the algebraic manipulations prescribed by Hopfield and Tank

are applied to El, the result is a network in which unit

(K!<i_<n) detects the condition -

Bwi - Ap; < 0.

:n -his particular network there are no connections. Each unit

independently becomes active whenever the weighted profit or :ts

element exceeds the cost regardless of the current contents of

-e knapsack.

For our second example, let

n1 n 2
E = -A- SiPi + B - K J . E2

14



This function would at first glance seem suffi:ient.

penalizes knapsack overflow and does not reward packings tha:
n

mninmize si wi. It fails in that the energy penalty, AEZ,

associated with an unused knapsack capacity z is the same as :he

penalty for an overflow of size x. : is theoretically ..... -1=

to achieve a configuration, that is, a binary assignment :f a-

for all 1 i n where j# i, in which K- sq wS = M and W - 2..

for x> 0 The penalty, AEQ, resultin gr:m -h -e .....

element i in the knapsack is the same as the cenal: r- .....

from the exclusion element i. However, since p > C we have
AEQ
A< 0. In this configuration, the network will always inlulde

element i even though the knapsack capacity is exceeded. .'ryina

A and B can not alleviate this invalid bias since the crct-e.

Ies in the symmetry of the cuadratic term 0-

A Functional Knapsack-Packing Network

We have examined both linear and quadratic forms for -

overflow penalty, EB, and have shown both to be inadequate

given the proposed mapping of the problem variable space t the

space of activation values. In order to proceed, we ackncwledAe

that an energy function of the activation values of

homogeneous units can not have the form of a Hamiltonian and we

construct a network, G1, of non-neural, binary-state processin

units with a non-Hamiltonian energy function.

15



;e define

E =EA + ES

EA =-A S Pi
qE Q'

n= E 3P

EB  n a:: X " -

and A, B> 0. These terms are intultively obvious. EA Is

minimized by maximizing pq, the ro f t -f the ack In .
qe '

...imized when knapsack overflow is minimized. An': feasibe

knapsack packing, Q', for which W 5 K will not incur any
q e Q'

energy penalty. A simple derivation (see Appendix A) yields

16



AE AE. AE
As,1  As 1  As2

AE i

Asi A

A52

else

LL
5-ds w- - w. > . j

-rc -mle discrete differen i of the fusd b

an network Gi can ce determined..... Raher: -- acc.n a

:hreshold rule of the form -

i f -- >0then

else

we empboy stochastic smoothing of the t';oe_ used bv Zhe un==o :s -

aBoitznann macnine [Hin84] -

17



1

if U(o,1 ) < AE then

else

;-ze UK, ) is a Co i.:,2uOUS 2:-.r',=' 'er A-a- a

SEaplyn 3otzan Mahie nodiprb scussi ons "l-n-L

-cn-enience, we will use AE to mean A in dscussions where

:here is no ambiguity.

18



The function of un-_ i in nework G1 i ai'en -

AS - -:p

if > K then

AS '-- AE _ w

else if a; - > K then

AE 4- AE ( w: - qi-K ;

if U(O, 1) < (-AE T then

else

Unit Function

Binary-State Network Gi, ;nit i S_ n)

Our next step is to transform G1 into a mean-f:eli .mce:

.like those of Hopfield and Tank. Let G2 be a network of anai:c

processing units that is isomorphic to G1, our network of

discrete units. Each unit i of G2 models the expected value :f

the activation value of the corresponding unit in G1. Thus in

network G2, unit i will be updated according to

19



1
(-AE /T )

l~-e

ee i:mDie e func icn f uni- i in ework G2 is en -

AE - -Ai.

if qi > K then

AE <- AE + Bwi

else if ai + wi > K then

AE +- AE - B( w - K

S (-AE T)

Unit Funct ion

Analog Network G2, unit i (15 in)

Depending on the specific network implementation, G2 may

-r may not have the capacity to avoid local minima of its energy

function. We postpone a discussion of local minima avoidance to

Iater section. Network G2 utilizes asymmetric connections. All

::nnections leaving unit i have weights wi and every unit has

-nnections to, and from every other unit. Given a digital

20



..... oc... r or an array processor, we ..... ......

knapsack by simulating network G2 with one processor al;ca - =

to each unit. It is also possible to design special analcg
n

I rcurv to evaIuate AE as a functi n wnh :f 3

activation value, sj, is modeled by a continuous vol~aoe

, Unfortunately, such a circuit would be decided>y

rn-neural. Since crooiaraable neura r ne,twor. e

be to derive networks of units that model neuron-like behavi-,

4 e., continuous analog integration and threshoo i -n.

21



The function of unit i in G2 can be rewr:tzen as :f""-w -

n
qi -  S j wj;

AE 4- -Api

if (qi > K) then

AE <- AE - 3wi;

if (a; K ) and (3,; - w _ > K) then

AE - E+ 3( wi q4 - K

1

(-AE/T)si +

Unit Function

Modified Analog Network G2, unit i (15 1_ < n)

Let us rewrite this function again by replacing imcii

binary threshold functions with explicit functions. Let

if x> 0

BTHRESH(x) [ therwise

22



.. e func-.ion D f ui-_ i- I' n G2 (I<i_ n) ca-n be r w : -r _

n
4 - W 4

-• I

cl i 4- BTHRESH( qi - K );

c24 - BTHRESH( K - qi

c3i 4- BTHRESH( qi K - w; ,

-23- *-- BTHRES ( - 3c -~

AE +- -Api ci_ .3w 2 . c23, "w. - -

(-AE /T )si i +-

Unit Function

Modified Analog Network G2, unit i ( _ i _ n)

Explicit representation of B.narv-Threshcld uinctions

where D>0 is a constant network parameter (similar -to Zr 3F)

and 0 <E<< 1 is utilized to detect the condition "q=K" This

function deserves a brief explanation. Since cl' = 1 whenever

qi- K> 0 and cli = 0 whenever qi - K<- 0, by adding ci: .3w; to AE we

preserve the function of the statement

if (qi > K) then

AE 4- AE + Bwi

23



Since c23i = 1 if, and only Jf c2i =  and c3i = I, it is clear :na:

:23 =1 whenever (,q, < K) and (q-, wi > K) and c23i =0 otherwise.

c : -at of B- by c23 pr r t summa tn

AE suffices to increment AE by 3 (w_- + K) whenever (a;_K ana

iw >K) . This change preserves the function of the statement

if (q !5 K) and (qi wi > K) then

AS - AE 3( :". - . - K ) ;

:he energv function associated with network G2, does nct

nave a continuous derivative. As qiTK, unit i strives to

increase its level of activation since this produces a decrease
AEA

_n F as dictated by the gradient = -Ac;. At tne moment - >K,
As.

XEB
t-e behavicr of unit i sudden!, changes cecause the gradi.en

.cmes cos4t4ve. This sudden chance in behavior can resu-i

less efficient packing. For example, consider the nroblem

instance

K = 10,

Q = 1 1, 2, 3 }, n = 3

w = (3, 3, 11

p = ( 1, 1, 10

.ince the profit of element 3 is relatively large, unit 3 will

:omlnate the activity of the network at moderate temperatures.

s he network is cooled and s3-- l the condition -7 > K will at

24



C Cint in the cooling schedule and th-,e svszem mav no-- nave

c e n: time to s e tte i4n to a cocn fIa,- ra 7r '

z-nc ncf more :rrad,_a_ ccol> n... ...

th'e leahof the annealina schedule is te

_mce n s at ono for coarseness of' the ener-y aos cape.

_z - r ,-;n : a-e cus to c es -- e

is In our interest to smooth- th'e enerov, I and--Sc~me

oer--fned bv E3 so that, in tne case of cur examce, t'-e vt---

'fected by. the "oversize-ness" of element- 3 ear'

relaxation, and the -dimrensional 'ectov c to-e syst:em:

~ccn_-urato:_on is smocn. :n o-roer to Smocto toe enero.'

-f E3 weutllze e sametecnre htveoooe G2 fc

-:ransrormation. We reolace the -: (2 oo o

CTHRESH(x) = (/T)

:heeffct of thi s replacement i s i! lsraed e

result is an efficient, smoothed-eneray, analcco net-work -,,ro e

25



C ..RESH(x)

-4-

0
x

OTHRESH(x)

0o

x

Figure 2

Binary and Graded Threshold Functions

26



:meG3. :n --'e lcw-temnera:'2re :-

G2 and G3 coincide since

=TH 'HH ES Cx if <

Wh~en the condition (x=O0) must be det-ected, we -add

- -- cc Iacion of CT::--,RESH < <O<«I

27



_-he function of uni: i 1:< 4< n) in network G3 isgven bz

nqi -- Es 4 W- ;

2= JJ

(A- )
(-T

1 -e

(K -q. + F)
c2i <--T

T

1

c23i <-- D~-c-3

2

1 + e

AE -Ap 1 - c2 1 >23w - c23~ > -( wj g-; K

1

~' 1 + e

sAE /IT

Unit Function

Smoothed-Energy Analog Network G3, unit i ( <_ i _ n)
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We are nw. a ositn a

observation. Since the values cli, c2 i , c3i , and c22i are

computed continuously, if we prevent these value sh=angin:

tcc racidly, t2n o;, :2i, :3=, a _

in parallel. We simpl replace :he ent:ire unit an nef:r-:

5 simpler units as shown in figure 3. We :er to these -c-

c!-, c2-, c3-, c23-, and s-unats. The functs or thsea -s,

described in alger thmic for:, aS Snowe. n 'arure

_ ..m c as G4.

The astute reader will notice that we ,.av.

neuron-like behavior to each unit. We can now interzre-

functions of all units as feature detectors as shown in fizure

5. The only anomaly of network G4 as 4n _he ......

s-unit which must compute a weighted .rcduct- _ o t' 4n-c-ng

at=,vaton signals from other s-units and atsr2.: .-

soecial case is renresented by a ha ...-- ...

conjunctive synapse. The activation value cf he'-e

moderate the transmission of the activataon values ca

external s-units to the s-unit in its cluster. :t is well kn.wn

that the function of conjunctive synapses can be atoro.aate,

in the low-temperature limit, by conjunctive units. Each

conjunctive svnaose is simolv replaced by a secarate -

detects the conjunction of the c23-unit and the s-unit as shown

in figure 6. We note that

29



S. S.

Ww

-3W -W. w -3W
-W -

W. -

WB D D

Figure 3
Analog Knapsack-Packing Network G4

with conjunctive synapses
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F w~

+. e e yas

Figrequ4e

Parallel Decomposition of Non-Neural Knapsack Unit (G3)

into 4 Hidden and 1 Visible Unit (G4)
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"lidden 'Units.

cl Detects when the knapsack

overflows given that element I

is not in the knapsack.

c2 Detects the absence of overflow

in the knapsack given that

element i is not in the knapsack.

c3 Detects when the knapsack

overflows given that element I

is in the knapsack.

c23 Detects the conjunction of the

conditions detected by c2 and

c3 , that is, when element i

produces an overflowing

knapsack.

Visible Units:

S Detects the condition whereby

the benefit of including element

i in the knapsack exceeds the

cost.

Figure 5

Knapsack Units as Feature Detectors
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Conjunctive synapses of the form

can be replaced, in the low-temperature limit,
by conjunctive units of the form

S_

where D is a constant used to control the
"decisiveness" of the coniunction. D > 0.

Figure 6
Reduction of Synaptic Order
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3 c23i -7i = BC23- X sjwj

' 2

:.m a4 --. c23; --I; ,

T.e To

34



After comple:ing this reduction of synaptic rier, we rew=.:e

the function of the s-unit by

S

- - e

The functiosn of u~nit -3; (I r ,j , i#-) isa
a~ ~ 2 3 Ds - 3 2/T "

!+ e

This order reduction increases the total number of units in he

network from 0(n) to 0(n 2 ) but results in a complete netwcrk,

G5, of neuron-like processing units connected with simole

synapses. An example of network G5 for a 3-element knapsack

problem (i.e. IQI=3) is shown in figure 7.

Summary of the Derivation Method

As we did for the case of the set partition network, Let us

summarize the steps that were used to arrive at the

knapsack-packing network.
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A ne:wcr recresentation 4s selected. n, the

dimensionality of the network state space

(alternativelv, the number of units in the network

er:hL-ecture) s dein ea. A :ransforma::con, .',:V--S' ,

-rom V, -'-e space of prcblem variabi-

o S' = !0,I }, the corners of the n-dimensiona -

hypercube, is defined.

An inverse transformation, M- :S--V, is definei. Ea4

network configuration in :ne volume Cf one

n-dimensional hypercube is mapped by M-1 1o a

configuration of the variables of the oroblem space.

3 A discrete energy function, E:S'-.01, is defined on

S' so that M - i (Smin) is a minimum of the prcoblem

objective, f, whenever stin, is a minimum of E,

SminES. E need not take the form of a

0-1 Hamiltonian.
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zP 3

S-,S

Figure 7

3-Element Analog Knapsack-Packing Network
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AS
4 Tejiscreve partial differenniza_, As's... e

giving the gradient of E at the corners of the

hypercube.

A network of non-neural, b .nar -s-a-e .... --. ..

is constructed (e.c. GI. Stochastic smocohing IS

used to avoid local minima.

The mean-field transformation is applied "- the

tsinarv-swane model of sn:z 7 ,Jeldin= a nei..zrk -f

non-neural, analog processing ....s. This

transformation provides an iner -la-icn-cf .

interior of the hypercube, S.

implicit binar'-.. eno.. ~-~
implicit binrytheshold functions are identified ana

rewritten explicitlv via the BTHRESH function.

Auxiliary binary variables (e.g. AV3 are ass:ned :

represent boolean combinations (and, or, etc.) Df

simple conditions.

8 The BTHRESH function is replaced with the sicmoid

CTHRESH function. This smooths the energy landscaoe.

9 The entire non-neural analog unit is replaced with a

collection of hidden units together with a single

visible unit. A hidden unit is introduced for each

condition, that is, each application of CTHRESH.
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10 The network i~z relax*ed us-ng one a-f varetrv::'::mn:

uodaze rules.

:u~n ocn 3 -f e ,-na ptI

onzneed no:, take the ::rm -- a a :.- -

even be contui.uousiv diferentiaole on - -er--

nvz--ercube. Consequently, we will niot hnave neurcn-L ke ~

te'navior, :J.e., summatio n an d :n r e s-.ozI - Io-. Me,,: cn- Iz envr

mu-:s:: oe r e-in t r dou c e by St-eops 6- 9. 'Mor~ e: I curr L

_eCC n- 4' 0Z _ - 4~" n :za r, .t '- r e szz-- -

aow s uis t- c '~ eent a1v r e e -:-e s e-

The oconstruct :ve meth~od, --'a-- is,

_nton, rep' acernent-s, iolf the

must be taken when reducina non-trIvial -JI'Scret

croolems to neural-network alorit:nms. The methc is

n roccure 8.
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Problem instance I.

M

Binary representation

Discrete arbitrary discrete energy
differential function E
of E

Network specification

including connection

Mean-field weights and binary-state,
transformation "non-neuron-like" units.

Simple, inefficient network of

Energy smoothing analog, "non-neuron-like" units.

by replacement of Functionally correct in the
embedded binary- high-gain limit.
threshold functions

rIF Efficient network of analog,
"non-neuron-like" units.

Parallel
decomposition

Network of visible
& hidden, analog,

Initialization & "neuron-like" units.
relaxation

Network solution to M(1).

_-

Approximate solution of
problem I.

Figure 8

Proposed Thermodynamic Neural Network

Derivation Procedure
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Global Timing Considerations

A number of issues must be considered when meenc

-eu~ra networks . We miust szec::vf ntwork _anc d

caramet ers ano an annealing Schecule. :n..........

-ne response curves of the components comprIsing !:-e ccnc_-_3

and units must be speciffied. :n our implementatins, IS

-4,screte so that we mnust spec::vtn--'esce :f

n s Sect-zn we acoress :ne -as:c :ee: L: - ---

-:, nc

it is well known that Hopfield and Tank's model ~ -

deterministic trajectories through configurat-4on spcacecrn

net:work relaxation. As such, they are sub~ect t' nr-=e-I

lccal minima of E. Hopfield and Tank modeled -the ncn-lin-a

resnonse of neuron-like units with no--'ea amil5-r.

increas ing the gain, X~ (note: A.- ), ur -n a r eLa

energy minima were located. in a noise-:free V auar7 I nara

tne cain is inconse-cuential and the 'finalcn:~-~t

network depends solely on the initial :on::c4uration and its

associated basin of attraction. During simrulation, numer_ cal

noise may introduce counter-gradient transitions and could

account for Hoo-field and Tank's slightly improved results.

UJnfortunately, numerical noise is not easilyi characterized.

Boltzmann machines can exit local minima because te

possess a well-defined generation mech anism to- introduce
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:-n.:er-aradient transitions or "upil' I j in

Unfortunately, the variance in the binary activation states of

Sol-zmann units is relatively large and results in unacce,:aboV

relaxation time requirements. In addition -the

.... eterministic state transitions of Boltcman -  s

mechanism for generating counter-gradient transitions is

cresent - asvnchronism. Randomly probing units for udace 's

.... aent to simulatina random oronacacion delavs a" ^n-

... 7ecticns. :n the Bcltzmann machine, -he mean cr-za:icn

delay is n update periods where n is the number or e-= .........

unis (unclamped units in the terminology of Ackley, Hinton, -and

Sejnowski [Hin84]).

In our implementation, we combine both t'- contcnuous

-:a-e-space of Hopfield networks together with . ne asvncnr-n-s-

:f 7he Boltzrmann machine. This is accomcished b- using

eer.ministic unit update rules (those of netwcrks G2 and G3.

and by randomly scheduling each unit for update based on a

discrete uniform (l,n) distribution. At update, each unit's next

state is computed and immediately adopted. This combination

• elds rapid relaxation with a well-defined, controllable source

of counter-gradient transitions. Random propagation delays

-nduce gaussian internal noise into the activation value of eacn

u.init. The variance of the noise is a function of the

coistribution of propagation delays as well as the entropy of the

system.
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There are several nersnginteract ions between

noise and the annealino ocrocess. We have stated t'-at int-ernal

noise is oa- ecendent on the svstemenrc.A -

-etwocrk Stabillzes a : a minlma, :n'e nto

tncucrh -- dimernsional space decreases and ac-:_vat_-:n: evo2 f

unt are modified by success ively smaller amnt-s . Is are'

---e effect of orooaoation delays becomes less pr= =cd-

e:*amole, let -:s assume 'nat -ne s-ana', s,:~.

-s de-ayed alono ccnnect_-n S Zj

then si will not have changed since its previous -:a!,e w'asz

received by unit j so that unit jireeesthe -currn-

of si. In this case, the signal delay has no effect. As

propagation delays effectively disappear, the variance c

internal noise decreases. Let us briefl,; ex-amine te:nm:

a simcoe ann.ealed system [Ki4r83 . As T~I ewer-an~

certurbations are acce-cted and tne o:rcoress 7-f th-'l-es

towar-d a minima degenerates. Although it is tert

possible for the system to make a large counter-arac_---

transition at low temperature, the probability of such

tr-ansition decreases exponentially. We can improve the

productivity of the annealing algori4thm by decreasing -h

average "height", AE, of proposed counter-aradient trans_-:.cns

as the system entropy decreases. This is precisely the effect

that is achieved by propagation delay-induced internal noise

since its variance decreases as the network conficaurato

approaches a local minimum.
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The sigmoid transfer function -

!
g -xiT

-as stable points at 0, and 1. g has a meta-stable point at .E.
AE AE

,,.nen . >0.5 and As, <0.5, the state, si, of uni- w-' have

a -e-ndencv to move toward I and C respectively. -3 LS.1 - _-s

... (and 1n-: _"s "indecisive" or .ee-er-"a") --

_nternal noise on s4 is more .ronounced. 7n a meta-stabze state,

even a small amount of noise may "tip the scale" and start h_

the network on a trajectory to a different final conf4guration.

As the network stabilizes and its configuration reaches a corner

of the hypercube, not only does the variance of internal noise

eckine, but the probability that a noise sur-e Will s -n

:ne transition of unit i from si< C.5 to si> 0.5 (or -h

ronverse) decreases since the difference between s; and ".5

increases as the network settles.

Simulation

A number of simulations were performed on networks G3 and G4.

7n all simulations an asynchronous, sequential update rule like

that of the Boltzmann machine was used. Prior to relaxation the

activation values of all units were initialized to

uniform (0.4,0.6) random numbers. Simple fixed-length annealing
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s "e .. :r I:.C:e- e fere

1).

Nu.ber of Ten'.eratu-re "u"be of
Uoda:e Cvces_____ _e_ __es

20. 0002

2 15. 1322 42 

3 11 .45C36

3.663.8

4~~~2. 16] 83

"4 2.4392} ..

24 ..6258 _

Table 1

20 Step Exponential Annealing Schedule

A each temperature, a fIxe,d n- res
e::ec.: e. For eac "t ucdare cy - 'e. - _ = .

Eachn -ime a un t was probed, its state was --- a

s orescribed local fur.cticn. The constant E,

-z3- units, was arbitrar:iv; set to C.02 a. d-he ah- e-. "

M-f, X , was set to 0.5.

The network parameter D is used to control the

"decisiveness" of the conjunctive c23- units. Sinre

3D 3(Do2 i + Dc3i - 2)(c.2i - C 3i -

e e
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:an be interoreted as te rai t e -:e- h
Z_2- units to the temperature of the other units :n order for

:n *- - units to run at rouahl/ the same erparature as a-'

-'er :its, we efns - t e =as a..:

: - - , - is set to the average -os-- - =

:cnnecticn weights and biases exclucdin bo: the connecions

... ... int o the c23- units and the biases of -he :25- unit-s

-. e remalninq net:wor'oaraeoers

in _ _re cseffi: cents of energy -er., -h -_ e re e -

n na around states. By increasing -re-ate to 3 we

e='hasize profitable packings but increase the lie.. co o_

exceedina the knapsack capacity. By increasing 3 relative to A,

we emohasize valid packings (i.e. packings for which < K

ann oive less importance to the rofit, r T, of tne

ca.<in:. in our simulations A was fixed at 6. an.

-:am-es of B were tested.

Problem instances were randomly generated as a fun ction -f

K. Scecifically, n~U(K-5,K+5), wi-U(i,K), and n;~U( ,K) for

_ i n. Several values of K (10, 20, 35, and 80) were tested.

7or each combination of network parameters, and for each problem

instance, 10 simulations were performed. After a network was

constructed for each problem instance, the network was relaxec

'sing the 20 or 20 step annealing schedule. The resulting

acroximate solutions were compared with those produced by the
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S
-  

-' " - .. . - " - z = - '- -- -
- 

- > '

value; density- raios The performance ratios, re

own in table 2. On the average, --e knacsack-cackinc ne-wor

Val ,_ ,., ....

P'ackings I PEY-

4 0 .9

9 95 -. 3- -

10 0.59

12 100 .'-1

14 100 .03

20 100 1 _ _22

Table 2

Effect of Varying Network Parameter B

Network G4, K= 20, 20 step annealing schedule, A = 6 .0

',ut Of curiosity/, 20 S4
u omulatlons of network G2 were

executed with -200 elements. This would corres.cn-o- -_ a G4

network of 1000 units. No effort was made to tune the ne-wcr.

parameters, A and B, to improve the results of this oar - - ul'

simulation (A=6 and B=14 were used). Nevertheless, a

performance ratio of 0.9721 was achieved. This result sucoests

that degradation due to increased frustration from scaling may

not be as serious a problem as we expected
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Conclusion

We have seen that certain optimization problems can nct te

erce.dded An neural n.etworks :s ""e ' "raconc

rcf=iem variables :o n-dimensional spaces f activat--I= ;aues.

For these problems, it is necessary to define nidden units

cetect different types of features. Although we have not

iszcounted the possibilitv of discoverina hidden "un

hezt:at .... Skv sneer e, -: sv-"-e- --:-e s

warranted. The method that we have presented is suitable .rr

objective functions that are not expressible as 0-1

Hamiltonians, or those that are not continuously differentiable

over the interior of the unit hypercube.

A range of computational networks that with -

_ Complex non-neural, binary-state units (GI),

2 Complex non-neural, continuous-state units (G2,G3),

3 Simple, neuron-like, continuous-state units with

conjunctive synapses (G4), and

4 Simple, neuron-like, continuous-state units with

first-order synapses (G5)

have been presented for the integer knapsack packing problem.

Preliminary simulation results are promising, especially in

light of the ease with which we were able to find viable network

parameters. Simulation results indicate that these networks
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a cce a - to sco L re ason a bi we L -'e=;re- a-a-

research we have found the method to be acolicable to

bin-packing, multiprocessor schedulina, and job-Seqquncin

robLems a S we! I. W e hoc-re tc simlt net:workS ir- te

prcbes in th-e near "uture.
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Appendix A

AE
e derive < i< n. We are givenWe driveAs•

whe re
n

EA =-A s Pi

73

AE 4EA AEB
S +

Asi Asi Asi

n

EA] -A sjoj

j=1

n

E E =EA I - EA] si=O

-Ap

A-I



L Kj "'.1 -W >7

WI-en corcin ing E] si o and E3] i I -fur cond i:- ons :,,S:'-

considered-

A-2



c ~e w.- < < 7 i ,

Conditicn2

S~-~'A 5~--,>'

Condition 3

j yj > K AS j+w

j=1. j=
j*1 j*~

Since wi O for 1 :5i 5n, condition 3 -vac,-cuslv ff--se.

A- 3



E s wj> K-- (EBIs 1 =- i- E- i 0 z w. 4

A-4



ombLni2s /->, 2) , (n= 4; ehv

AEB

AsA

3wif -w-> K

I X s i S*

L J

A- 5



:he summa:ion f fcrmulas (i) and ( ives e -

result, i.e., a complete formula ,Dr

AEZ AEA AE5

A3 . As As

AEA S-Api
As 1

nn

0if X s. '=- _ <_

3wi if s' > K

AE3

As4

SK i - K - Sj Wj ) if SW.- _ K

and>L awd - wi' > j:

-his completes our derivation.

A-6
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