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The Pefinition of Necessary Hidden Units
in Neural{Networks for Combinatorial Optimization
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ABSTRACT
Among the earliest successful applications of multi-layered neural networks are combina-
torial optimization problems, most notably, the travelling salesman problem. Hopfield-type
thermodynamic networks comprised of functionally homogenous visible units have been ap-
plied to a variety of structurally simple NP-hard optimization problems. A fundamental obsta-
cle to the application of neural networks to difficult problems is that these problems must first
be reduced to 0-1 Hamiltonian optimization problems. We show that certain optimizaton
problems cannot be embedded in networks composed entirely of visible units and present a
method for defining necessary hidden units together with their best features. We derive a
knapsack-packing network of O(n) units with both standard and conjuntive synapses. En-
couraging simulation results are cited. , , .
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Introduction

Since their resurgence in the early 1980s artificial neural

systems have found applications in computer vision, speech

otone

generation and recognitfion, robotics, and numerou

O]
A
W
ts
[{)
{1
{1

Progress toward the app.ication of neural netwcrks o NF-hard

combinatorial optimization problems has been modest and nhas ceen

generally restricted to structurally simple problems. The £irscs

3

and most well-known applicatio

1 Was rresented oV LIl T ZnT

»

e .
Tanxk [Hopd3:
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problem (TSP) to a 0-1 quadratic assignment optimization prcolem
(QAP) with a Hamiltonian objective function. Hopfield and Tank
then showed that a thermodynamic neural network with symmetric

connections and a non-linear sigmoid transfer functicn could

effectively find good solutions to embedded TSP proplems. The
approach to reducing optimization problems <hat was crcpesed oo
Hopfield and Tank has since been applied t¢ numercus cther

combinatorial optimization problems. J. Ramarnuzam and

P. Sadayappan present reductions of graph §artiticning, graph
K-partitioning, minimum vertex cover, maximum independent se<,
maximum clique, set partition, and maximum matching to QAPs

{Ram88]. E.D. Dahl presents reductions of map and graph coloring

prcbhblems (Dah88].

A common characteristic of all these problems is that thevy O

e

are structurally simple and can easily be reduced to QAPs w

A

Hamiltonian objective functions. Furthermore, all of the
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r2s5.171ng neural retworks consist of functionally homcgeneous
orocessing units whose activation values are directly mapped to
“he solutions of their respective embedded optimization

croplems. Since these units participate in the expression cof

oroplem solutions for external interpretation, thev can pe

viewed as visible units.

The Set Partition Problem

th

Eilmy e A i ya~ A T A e
P PR ST P = LD PO G -2t (et

Ore we consider a di

t
D
th
'y

review Hopfield and Tank’s reduction technigue on a simple

o)

g
ty

oblem. The integer set partition optimization problem is given

oY
v

INSTANCE: Finite set A of elements, for each a€ 4, a siz

bye Z*.

CBJECTIVE: Give a subset A’ C A such that

2 ba- 2 ba

aeA’ acA-A'’

is minimized over all subsets of A.

The set partition decision problem is known to be NFP-cuup.ete

"5ar79].

Let V be the variable space of the set partition problem.

V is the set of all subsets of A so that |V|=2/4l  Let S be the




space defined b the volume ¢of an n-dimensicrnal unit nyLercuile

for some, as of yet unspecified n. Each point in V or

configuration of problem variables is associated with a

)
[

ornfiguration of “he states of n neuron-like units, That 1s, =

cint in 8. This association is defined by a pair oI mappings

io]

M:V—>S, and M~1:85V. We could define n=2'4l and map each

subset of A to a unique vector in the set of n orthcgonal,

w
b
o3
$0

=300

b4
§)

it-length, binary vectors. However, this resu

es awponentia ce e a
S &

e DR EN N o s W om —aa

th
T
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LeTWCIXK Whese size

O]
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A better approach is to define n=|A| and to map each
subset of A to a unique combination of n binary values. Let us
name the elements of A by {ai, az, ..., anpl. We defirne M, Zcr
the subset of § consisting of the corners of the n-dimensional

hvoercube, by

M(A) = ( Sl’ 52, e et Sn )

where
1 if a;e &'

0 1f aje A-A"

A'CA, 1<£1isn,.

In order to extract a useful problem solut.cn from a network
~onfiguration, we must also define M~l. This is typically dcre

via application of a threshold, ¥ :




M~1( s;, S2, ..., Sp ) = { a; | s;2% }

0<y<1l, 1<i<n.

nis completes our selection of a representation, that

]
ot
13

)
ba-

1)
th

inition of n and the mapping of problem variable

$2.

(W]
)
)
[B])

igurations to, and from the set of global network

ccnZigurations.

(&1

The next step in the derivation process is the selection o
an appropriate energy function E :S—R. Hopfield and Tank showed
zhat in order to embed the problem in a network of neuron-like
crocessing units, the energy function must be expressible as a

5~-1 Hamiltonian. Hamiltonian energy functions have the form -

n

n n
E=-% DY sisjwij v ) sib;
i=1ji=1

1=1

wrhere n is the number of processing units in the network, s; is
\ =he activation level of the ith unit, wij is the connection
strength between the ith and jth units, and 6; is the activation
-hreshold of the ith unit. All connections are symmetric, i.e.,
wij=wj; for all i, j. The fundamental obstacles to embedding
arbitrary optimization problems in neural networks are the
diiscovery of a representation and a Hamiltonian energy function

¢ that minimal-energy network configurations are mapped to




6]
D
ot

optimal coniiguraticns of proplem variables. For zhe
partition problem, we choose the energy function -
n n 2
E =B }2 sib;i - 25(1—5,>cl
i= i=1
n
It can easily be seen that 2: Sib;j is the sum of sizes cf <ne
i=1
n
elements 1n A’ and (l-s;)b; 1s tThe s3um 2I sizes I elsments in
1 =1
- Y
2-47 Without some insight into the Zorms 2% wvallid =nerg.
functions, we must manipulate £ algebraically before we can te
Hamil:tonian

certain that it can ke expressed as a 0-1

n n 2
E =B-| Y sibi- ) (i-si)b;
i=1 1=1

i=1 1=1

n n n n L °
=B-14) Y sisjbibj - 42 sibi| > bi |+ | D b

i=1 j=1 i=1 j=1 j=1

n 2
Since }E b5 is constant with respect to s; we can drzo
j=1

it from E without affecting the minima. The constant
can be included in B and are dropped as well

coefficients (4)

We are left with




n n
g =B-)
i=1 j=1 i=1 J=1
. n n n
= -3 SiS3(=2Bbibs) + . si|-Bb:), bj
i=1 j=1 i=1 3=1

This expression i1s in the standard form of a 0-1 Hamiltonian

-f" - 2r=a

-2B0;ibj

m
w3
Q.

(82}
[
I

n
-Bb; ), bj.
=1

The derivative of E allows us to deduce the function of unit I -

oE L
— = —Z Sjwij * 91

n .
Py
28b;| X sjbj - 52, bj
=1 j=1

In order to minimize £, the value of s; should increase whenever
JE

5s < 0. This corresponds to the condition

n 1 n
z sjbj < Ez bj .
j=1 j=1




ach unit behaves as a feature detector, detecting the conditlicn

(]

in which the sum of the sizes of elements in A’ is less than

half of the total sum of sizes. By detecting this feature, unict

I increases its level of activation and gradually moves L

of

[0}

associated element a; from A-A’ into A’. The result 1s a

decrease the discrepancy between the sums cf sizes oI elements
in the two sets.
The iocal function of unitc 2 (1€:i€n) In a Hecpileli-Tuco=
N2TWOrk< 13 given oy
repeat
n
AE Q_—E SJ WJ_J + 9_1 ’
j=1

S; & T-5; + (1-7T)- 1+e

until (externally terminated);

Uy

dhere T (0<1t<£1l) controls the response time of the uniz. A
110, the trajectory of the network configuration becomes
increasingly smooth. Units can be updated either synchronously,
as prescribed by Hopfield and Tank, or asynchronously. After
relaxation, the approximate solution to the embedded set
partition problem is extracted from the configuration of

activation values by application of M-l

It should be noted that V is often a discrete space while

S is continuous. The set of minima of a continuocus




o-1 Hamiltonian must be a subset of the set of corners cf the
n-dimensional unit hypercube. There are few restrictions on M
except those imposed by the definitions of its domain and range.
I “here 15 no prior xnowledge about the minima of f, <hen we

ST taxe care to ensure that all points in V are mapped by M =z
cocrners of the hypercube. Otherwise, we can not be certain <ha:

~ne minima of f map to minima of E.

LeT us summarize the basic technigues that are emplcved <1
Zind 30lutlons o Ooptimization CroDlems uUSing neural neTtworis

1 A network representation is selected. n, the
dimensionality of the network state space
(alternatively, the number of units in the network
architecture) is defined. A transformation, M:V—-S,
from V, the space of problem variable configuraticns,
to 8=[(0,1]7, the volume 0f an n-dimensional uni:

hypercube, 1s defined.

2 An inverse transformation, M~1:8-5V, is defined. Each
network configuration in the volume of the
n-dimensional hypercube is mapped by M-l to a

configuration of the variables of the problem space.




3 An energy function, £ :85R, is defined on S so trnat

M~l(spmin) is a minimum of the problem objective, £,

whenever Spins 1s a minimum of E, spin€8. In crder =2
utilize processing units with neuron-like rLenavwcrz, =
must take the form of a 0-1 Hamiltoniarn.

4 The network is relaxed using one of a variety oI uni:
update rules. Prior to relaxation, 31l netwcrk
Darameters (e.g. 2B o =he 327 LarTltiIn oTrIizZlszm o =Enz
cperational parameters (e.g. 1) ars sceciiliad.

5 After relaxation, M~! is applied to the final nezwcrk

configuration yielding a minimum of £, <he cblective

function of the original optimization prop.em.

Steps 1-3 are, without question, the mos: and regulre
a degree of cleverness to carry out. The technigue 13 summarizsa:

in figure 1.




M

(Existance is not
guaranteed)

Continuous
partial-derivative

of |

Initialization &
relaxation

:
:

Problem instance |.

Binary representation &
Hamiltonian energy
function E

Network specification
including connection

weights and visibie, analog,
"neuron-like" units.

Network solution to M ().

Approximate solution of
problen: 1.

Figure 1

Existing Thermodynamic Neural Network

Derivation Procedure

10




L0 some Selisoe, we oLave

minimization problems to the minimization of continuous

J-1 Hamiltonians. In subseguent discussions we will, <n

ar e B o -

Strasicn, refer o these formal SONCepTs DUuT O WLL L nonouiriern
turselves with strict adherence ©o formalizy
The Knapsack Problem
et 13 ctonslider the integer knavsack Troolsesm TLlven o6
INSTANCE: Finite set Q= {.,2,...,n} 2% »lements, Iorx

7€ Q0 a cost wg€ 2% and a profit pge€

integer kxnapsack capacity, K.

X
\Q
N
2N
u
o}
[OR
a
{Q
-
wn
-3
o]
2
b
'J
]
]
2
]
X
3
]
t
)
§
o]
n
4%
ot
1))
)

A3 with the set partition decision problem, the I1nteder <0a:

-
'

decision problem is known to be NFP-complete [Gar

,

standard approach for embedding this problem in a neural ne

$a-

caills for the mapping of problem variable configurations, I.

subsets of Q, to configurations of a set of n 0-1 variables

rapresenting the activation values, s;, 1< I<n, oI neuron-

processing units. The simplest representation 1is

bty

(i
I3y




s
+
by
b
m

K

0 otherwise

th
O]

.~

wher2 n=|Q|. We propose a giobal energy Zuncticn,

3 =
P}

Ta
1
(11

8%}

'
Q)

where Zp 1s a term reflecting the benefi. of maximizing

N8
m
L

£5 is a term reflecting the penalty Ior violating

90)
'3
[0%

2 “ o S .:< .
What features should be detected by unit i (1£i<n)? Since

= . whenever element 1 is placed in the knapsack, s; should

attain this value whenever the benefit (with respect to minimizing

Z) of placing element I in the knapsack outweighs the penalzy. In

i ds As:>0 wh AE, zw5< 0 L. AE: AEz )
s<nher wor ; w — + D IfETT— s = n
ords As; enever As: As. I s As. can be
ccmpuzed as the sum of weighted activation wvalues o0f s+ (=),
—n2n the function cof unit I will be to detect =he condizion

Cl

AEy AEp
( As; * As; <0 )’

When As; =1, AEa should be proportional to -p; because the

~ne packing by effecting a decrease in E. The energy penal:ty,

AfZp, depends on the states of the other units in the network.

12




l 1
(47
t

n
c2 = | kK < 2 S5 w5
e

I£ C2 is true then AEpg should be prioporzicrnal =0 w:. -2 C2:i:z
“strongly” false then there should be no energy venalty, =—hnzz
, ~ AEg | . . - _
is, AEg=0. As. 5 thus a non-linear functicn of the sum oZ

n
welgnted activations E: SswW5 . In 2raer o 2MTIres3 Tnlis

-z

non-linear relationship, some unit, h, must be defined =g detecs

condition C2. Recall that the role of unit I is to detect

condition Cl. We conclude that at least two different xinds <

3

feature detectors are necessary. The knapsack proplem can no:
embedded in a network of functionally homogeneous wvisible un:i

Hidden units are necessarv.

In the remainder of this paper, we propose a sysTemat:ic
aporoach to defining necessary hidden units toge:zh
best features. Our approach is applicable t£o manv vacking

problems including bin packing and multiprocessor schedulinc.

Plausible Energy Functions

We have presented an informal argqument that hidden units
are required by a neural network in order to pack a knapsack.
reinforce this argument by examining twe invalid candidate

energy functions.

13
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n
E=-A ) sipi + B
i=1

Tnhis function 1s clearly i1nappropriate. Consider the prcblen
instance Q={1}, w1 =K-§&, and p1=¢€ where 0<g<< 1. For arny
fixed values of A, B, and K, € can be selected so that =zhe

14}

nzle element, 1, will not be placed in =
—ncugh it has positive profic and the packing dces nct overilcw.
ihen the algebraic manipulations prescribed by Hopfield and Tank

are applied to El, the result is a network in which unizt !

(€ 1<n) detects the condition -

Bw; - Ap: < 0.

T -

In zhis particular network there are no connections. E

incdegendently becomes active whenever the weighted profic of its

alement exceeds the cost regardless of the current contents of

~he knapsack.

For our second example, let

n n 2
E = -A }E sipi t* B }E s;wi - K .
i=1 1=

14




bty

Elmi -

b
o

n

eem z

[

w

This Zunction would at first glance

penalizes knapsack overflow and does not reward prackings that

n
minimize }i siwji. It fails in that the energy cenal-y, Afg,

associated with an unused Knapsack capacity x 13 The zams 23 Tons
cenalty for an overflow of size x. It 1s theorezically ccossozl=z
o achieve a configuration, that is, & binary assignment I =-

th

n
or all 1< i< n where j# I, in which X- Z S+« w4 =2 203 W =X
=

3
}
H
)
1
)
[ H}

x>Q. The peralzy, AEfp, r=sulting Ircm the Lnzluiziino oz

element I in the knapsack i1s the same as t“he genalty resuliing

from the exclusion element I. However, since p:>0 we nave

AE.: } . , . . L
3;“ <0. In this configuration, the network will always include
element I even though the knapsack capacity is exceeded. Varv ooz

A and B can not alleviate this invalid bias since <he trzilenm

s

Zies in the symmetry of £h

A Al - o
Lalratlc term ~g.

()]
Q

A Functional Knapsack-Packing Network

We have examined both linear and gquadratic forms Zor <he
overflow penalty, Eg, and have shown both to be inadegua=e
given the proposed mapping of the problem variable space <2 =he
space of activation values. In order to proceed, we ackncwl.adgs2
—hat an energy function of the activation vaiues of functicnall-w
homogeneous units can not have the form of a Hamiltonian ard we

roCessin

construct a network, Gl, of non-neural, binary-state

e
¥e}

units with & non-Hamiltonian energy function.

15




we define
E = Ea + Ep
W
Ea = -A Py
g€ Q'
n
= -A z SiPi v
i=1
- Z N = ’-'.’, v
o3 = maix - E
. g€ 27
n
= max }E s;wj - X, ¢ ,
i=
and 4, B20. These terms are intuitively obvicus. Ez is
minimized by maximizing :E Pqr the profit ci the racxking. Iz
g€ Q'
minimlzed when knapsack overflow is minimized. Any feasible

for which ) wg

qe Q'

xnapsack packing, Q',

energy penalty. A simple derivation (see Appendix 2)

16
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L
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.

n
if Z Ssws £ X

T - 34 ;i e -4 s -
IIXZ2m Tnhe 2L13Crete allierentidl ot kX

in networx Gl can be determined. Rather <han aderTing 2 z7Troc:

—~nhreshold rule of the form -

if —;j> 0 then
5; < O

else

s5; 1

oy stochastic smoothing of the type used D

2,
D
D
3
de
N

mann machine [Hin84)] -

sy
w
O
-

tr
t3
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if UO,1) < (‘_AE_) then
l+e -

SOACWD

b
%
p]

378

P>

o3

zman
e

Machines to TSP gr
will use AEF to mean _— in di

W

~nere 1s no ambiguilty.

18




if uwo,n < o, ¥ then
s; & 0
else
5. & 1
Jnit Function
Binary-State Network Gl, unisz z (1 €<

Qur next step 1s to transform Gl into a mean-Iisld mod

cf analoxc

like those of Hopfield and Tank. Let G2 be a netwocrx

processing units that is isomorphic to Gl, our networkx of

th

discrete units. Each unit I of G2 models the expected valiue 0

Thus in

~he activation value of the corresponding unit in Gl.

network G2, unit I will be updated according to

19




B}

(43

v
-

-AE/T
Si & ‘ ( )
= l+e
2 complete Iuncticn I ounit Ioin netwerk G2 1=z ziven no-
n
R
AZ & -Ap; ;
if g; > K then

AE & AE + Bwi

else if g; + w; > K then

AE «— AE + B( w; + g; - K )

3

(-AE/T)

Unit Function

Analog Network G2, unit I

(z

IN

(=N

Depending on the specific network implementatiorn,

may not have the capacity to avoid local minima of

G2 mavy

~ hale A4
enexrgy

nctlon. We postpone a discussion of local minima avoidance to
later section. Network G2 utilizes asymmetric connecticns. AlLl
nnections leawving unit I have weights w; and every unit has
nnections to, and frcm every other unit. Given a digital

~

20




nulti-processsr or an array DroCessor, Wwe cculd ezsily Cacad o s

knapsack by simulating network G2 with one processor all

o each unit. It is also possible to design special ana:

-~

n
unction of 25 Z<ws 10 WL =z

- — Y .. N pond -~ -
irzcuitry o evaluate AF as a

th

activation wvalue, S4s 1s modeled by a continuous vo

‘0,+1]. Unfortunately, such a circuit would be decided

De o derive networks of units that medel neurcn-_lxe penzv!

1.e2., continucus analog integration and thresh

21




The function oL unit I in G2 can be rewritten as IollCws

PUR )

if (g; > K) then
AE « AE + Bwi ;

if (z; £ X) and (z: - w: > X) then

AE &« AE + B( w; - gi - K )

’

1
(-=AE/T)
i€ 4. ’
Unit Function
Modified Analog Network G2, unitc I (1<i<n)

Let us rewrite this function again by replacin

Q
pa
3
o)

}
t

- -

cinary threshold functions with explicit functions. Let

1 if x>0
BTHRESH (x) =

0 otherwise

22




|

~e function oI unit I in G2 (1< I1<n) czn De rEWrliTIel 3:Z
n
q: — Z Sj w5,
fa
cl; ¢ BTHRESH( g; - X ):
c2; ¢ BTHRESH( K - g; + € );
€3; ¢ BTHRESH( g; = K + w: )
~23.; €« STHRESH( 2225 - Doii - =
AE & =Ap; + ¢l; *Bw; « Cc23; "2(w; = 31 = X
1
(=AE/T)
Unit Function
Modified Analog Network G2, units I (1< :2<n)
Explicitc representation of Binarv-Thresncld Funcclions

wnere D>0 1s & constant network parameter (similar 2o & 2r 2)
and 0<€e<<1l is utilized to detect the condition “g;=X". This

function deserves a brief explanation. Since c¢l;=1 whenever

gi -K>0 and c¢l;=0 whenever g;-K<0, by adding cl; -Bw; <o AE
oreserve the function of the statement
if (g; > K) then

AE & AE + Bwi ;

23




c23;=1 1if, and only if c2;=1 and ¢c3;=1, it 1s clear tn

1 whenever (g3;<K) and (g:+w;>X) and c23;=0 otherwlise.

plicat on 0f P(w;*=g;-X) oy <23; gricr Tc summaticon with
suffices to increment AE Dy B(w;i+ g; - K) whenever (g:<$ X and
- wi;>K). This change preserves the function of the statement

The energy function associated with network G2, dces no:

~nave a continuous derivative. As qiTK, unit i strives to

increase its level of activation since this produces a decreas

. . AEa :
as dictated by the gradient As. - "Ap:i. At the moment g

v o

pehavior of unit i suddenl, changes because the gradient |

ccmes positive. This sudden change in behavior can result I

efficient packing. For ezxample, consider the problem

>
Il
'—l
o
-

Since the profit of element 3 is relatively large, unit 3 will

isminate the activity of the network at moderate temperatures.

~he network is cooled and s3—1 the condition g;>K will at

24
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Graded Threshold Functions
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G2 and G3 coincide since

When the condition (x=0)

- k Tl N = /o mr
=5 zhe application of CTH

G3. In the low-tamperature

dezect

ea,

(D<e<< 1y,
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lon O unic I (1L£1£n) iIn networx G3 is

n
g & Z S W5 i
j=1
B
1
i = K)
Clw.(_ -(q%l
- . 4
L - e
K=-g:+e€)
c2i & A = ;
T
1 + e
1
L+ wy - K
c3; &« gt vy ) ;
T
1 + e
1
o 3D
C23; &= (Dc2i+Dc3;~ o)
- T
1 + e

Si €& H

Unit Function

Smoothed-Energy Analog Network G3,

unit 1

(1<£1<n)
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observation. Since the values cl;, ¢2i, <3;, and c22; are

computed continuously, 1f we prevent these wvalues Irom CLENTILC

~co rapidly, then 21, 2Z2;, =-3:, and c°23; z2an L= ~ormrutes

in parallel. We simply replace the entire unlzT Wl1Zh 2 newwir«< I
5 simpler units as shown in Zigure 3. We refer =c these unizTs 3=
cl-, ¢c2-, c3-, ¢c23-, and s-units. The functions 2f these unlzsz,

described in algorithmic form, 1s zhown 1o Zizurse 4, We ralzz ==

23
102

{u
W
@
o

neTWOr<

s

b

v

1Ce Tnhat we nave Lntrcaucea

rt

The astute reader will no
neuron-like behavior to each unit. We can ncow inTergret e

functions of all units as feature detectors as shown in Ifigurs

L

The only anomaly of network G4 is in the Zuncoion ¢ zhe

s-unit which must compute a weighted crecduct 2f the inccocming

R N i ~ . . Pl e o P o S Rl P
acwivation signals from other s-unizs angd 173 -JZ-uniT. Thls
special case 1s represented by & highsr-crgder Interaccicon or

conjunctive synapse. The activation value oI the oJli-unit muss
moderate the transmission of the activation wvalues c¢of all

exzernal s-units to the s-unit in 1its cluster. Iz i3 well Xncwn

n

“hat the function of conjunctive synapses can be aprroxinmated,

in the low-temperature limit, by conjunctive units. Zach

conjunctive synapse is simply replaced by a separate uniz <haz
detects the conjunction of the c¢Z3-unit and the s-unit as shown

-~

in figure 6. We note that
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Figure 3

Analog Knapsack-Packing Network G4

with conjunctive synapses
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Figure

L o+r 3w + g - K)c3d o

requires ’/S'

conjunctive
synapse

4

Parallel Decomposition of Non-Neural Knapsack Unit

into 4 Hidden and 1 Visible Unit (G4)

31
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Hidden Units :

cl

ce

c3

c23

Visible Units :

Detects when the knapsack
overflows given that element i

is not in the knapsack.

Detects the absence of overflow
in the knapsack given that

element i is not in the knapsack.

Detects when the knapsack
overflows given that element |

is in the knapsack.

Detects the conjunction of the
conditions detected by c2 . and
c3 ., that is, when element |
produces an overflowing

knapsack.

Detects the condition whereby
the benefit of including element
i in the knapsack exceeds the

cost.

Figure S

Knapsack Units as Feature Detectors
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Conjunctive synapses of the form :

©

can be replaced, in the low-temperature limit,
by conjunctive units of the form :

where D is a constant used to control the
"decisiveness" of the conjunction. D > 0.

Figure 6

Reduction of Synaptic Order
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AZTer ccmpleting —his reducticn ©

th
o
ts
o
z
[
b

Az = -3z - 340z - 2w - Fizlio- 2z
S e e——
° 3z/7
L- e
ek N - <~ - - . - - ¥ - -
Tne Zuncticn 2f unit a;4 (1S1, fsn, Iz 1is

-

This order reduction increases the zotal number 2I U
> . - .

network from O(n) to O(n<) but results In a comg.eTe neTWIIrX,

G5, of neuron-like processing units connected with simgle

synapses. An example of network G5 for a 3-element xnapsack

croblem (i.e., |QI=3) is shown in figure 7.
Summary of the Derivation Method

As we did for the case of the set partition network, 127 Us
summarize the steps that were used to arrive at the

xnapsack-packing network.
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A netwcrk representatlicn i1s selected. n, the
dimensionality of the network state space

(alzernatively, the number of units in the network

= v v = - P 3 < 5 < ey o N . D 4
zrnlTectuore) i1s defined. A cransformation, M:V—-S
= - - 3 P - P ~— s ey e o~
Zrom V, The space of proplem wvarilable conilguraticn

o 8§’ =1(0,1}", the corners of the n-dimensional un:

hypercube, 1s defined.

An Inverse transformation, M~i:8-9V, i3 defined. =Zaz

n-dimensional hypercube is mapped by M-t o a

’

O
D

configuration of the variables of the problem srvace.

A discrete energy function, £:8'>R, is defined on
S’ so that M~l(spin) is a minimum of the problenm
objective, £, whenever Spin, 1s a minimunm of =,
Snin€S. £ need not take the form ci a

0-1 Hamiltonian.
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Figure 7

3-Element Analog Knapsack-Packing Network
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The discrete partial dilfferential, (T, 13 3erived
giving the gradient ¢f £ at the corners of zhe
nypercube.

A network oI non-neural, DInN3ary-3TaTS CroCe33ilnT IniTE
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The mean-£field <-ransicrmz=<ion 13 z2zrlisd =2 zhe
clnary-3Tate mcdel I 3T=T T oULelliny 2 oneTwova oI
non-neural, ana.og Drocessing inlts. Thls
NE
= y .~ o~ o = - P P N £ —— - -
transformation provides an Lncercclaticn of noTne

uxiliary binary variables (e.g. Z23) are assiznad =:

1

represent boolean combinations (and, or, =zZc.) 22

simple conditions.

The BTHRESH function is replaced with the sigmoid

CTHRESH function. This smooths the energy landscace.

The entire non-neural analog unit 1is replaced with a

1]

collection of hidden units together with a singl
visible unit. A hidden unit is introduced for each

condition, that 1is, each application of CTHRESH.
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P Problem instance |.

M
‘ Binary representation
Discrete arbitrary discrete energy
differential .
function £
of K
‘ Network specification
including connection
Mean-field weights and binary-state,
transformation "non-neurcon-like" units.

‘ Simple, inefficient network of
. analog, "non-neuron-like" units.

Energy smoothing . i

embedded binary- high-gain limit.

threshold functions

‘ Efficient network of anaiog,

"non-neuron-like" wunits.

Parallel
decomposition

‘ Network of visible
& hidden, analog,

Initialization & ‘neuron-like" units.
relaxation

®  Network solution to M ()).

‘ Approximate solution of
problem |I.

Figure 8
Proposed Thermodynamic Neural Network

Derivation Procedure




Global Timing Considerations

Q.

A number of issues must be consi

°;

th

-
"

e

’1.
r
s

etworks. We must

sve

O

h]

1y

[

caed

s1)

n

u

>

meters and an annealing

N+ a

tne response curves of the compone

-
-i

vy
[

1

a r

d units must be speciiied.

bt

ot

hat we must speci

v)

.
o

Q)

ot
)
"
(]
n

AaCCr=233 To2 .23T I TIoe:z=

WEe

is well known that Hopfield and

deterministic trajectories through config

network relaxation. As such, they are subject -0 entr

As such, they are subjec:

ccal minima of E. Hopfield and Tank modeled =

b

r
D

s f neuron-like units with non-_

0O

nse

L)
|97

inc A (note: A~Z

H

£as

)y

ol
T

o)
ng the gain,

energy minima were located. In a

~he gain i1s inconsequential and the
network depends solely on the initial ¢
attraction.

associated basin of During simulation,

noise may introduce counter-gradient transiticns and could

account for Hopofield and Tank’s slightly improved resul-s
Jnfortunately, numerical noise i1s not easily characterized.
Boltzmann machines can exit local minima because :zhevy

oossess a well-defined generation mechanism
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Cniortunately, the variance in the binary activatiorn

2clTzmann units 1is reiatively large and results in unaccegtab.y

nzn-deterministic state transitions of Boltzmann unizs, ancther

mechanism for generating counter-gradient transitions is

cresent - asynchronism. Randomly probing units for updaze is
2zuivalent ¢o simulating randem propacgation delays alzng
cznnecticons. In the Bcltzmann machine, The mean Trigzyaticn
i2lay 1s n update periods where n is the number of free-running
units (unclamped units in the terminology of Ackley, Hiatcon, anid
Se‘nowski [(Hin84]).

In our implementation, we combine both the= continuous

—ate-space of Hopfield networks together with the asynchronism

£
U
¢
%}
b
'3
o2

2Z zhe Boltzmann machire. This is accomplished
de-erministic unit update rules (those of netwcrks G2 and G3:
znd by randomly scheduling each unit for update rased on a
discrete uniform (l,n) distribution. At update, each unit’s nex:
state 1s computed and immediately adopted. This combination
vields rapid relaxation with a well-defined, controllable source
sf counter-gradient transitions. Random propagation delays
induce gaussian internal noise into the activation value of each
unit. The variance of the noise is a function of the

distribution of propagation delays as well as the entropy of the

s/stem.
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There are several interesting interacticns betwee

noise and the annealing process. We have stated that internal

nolse 1s partially derendent on the system entripy. AS

~hough n-dimensional space decreases and actlivation lavel

~hen s; will not have changed since its previous value

received by unit j so that unit j 1s receives the curr

o]

agaticn delays effectively disaprear, the variance

or
Tro

e

3
T
8]
(b
1
'y
{
§2

internal nolse decreases. Let us briefly euxa

[oR

,
ale

[$]
(D

2 simple ann sSYst

perturbaticons are accepted and the procgress cI th2 Tl

0

11}

el

ossible for the system to make a large counter-gradile
transition at low temperature, the probability of such
“ransition decreases exponentially. We can improve <the

oroductivity of the annealing algorithm by decreasing

f s;. In this case, the signal delay has no effect. Aas

R " - S ey v = 3 -~ o~
m [(Xir23]. As T!1J, fewer randcm

ot}

[

{n

ot

)
Y

)

average “height”, AE, of proposed counter-gradient =ransit.cns

as the system entropy decreases. This is precisely the effect

(=]

that 1s achieved by propagation delay-induced interna

ct

since its variance decreases as the network configura

apprcaches a local minimum.
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The sigmoid transfer function -

~as stable points at 0, and 1. g has a meta-stable poinz at T.Z

AZ . AE . . e .
Ahen (T >0.5 and 3s. <0.5, the state, s;, 0f unic I will nave

a T=2ndency t©2 move tcoward 1 and O respectively. IIZ s 13z zlcz= '
22 2.5 (and uniT I 1s “indecisive” cr “teeterinz”) =he eilact i

=2ven a small amount of noise may “tip the scale” and stars =zhe
“ne network on a trajectory to a different final configuratiocn.
As the network stabilizes and its configuration reaches a corner
sf the hypercube, not only does the variance ¢f internal noise

Jecline, but the probability that a noise surge will rasul

~he transition of unit 1 from s$;<0.5 to 35;>0.5 (cr =he

(@)

since the difference between s; and

N

[$1]
6]

e

n

zonverse) decre

increases as the network settles.
Simulation

A numpber of simulations were performed on networks G3 and G4.
In all simulations an asynchronous, saquential update rule like
that of the Boltzmann machine was used. Prior to relaxation the

activation values of all units were initialized to

aniform (0.4,0.6) random numbers. Simple fixed-length annealing
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- zan be ilnTerrreted 2s Toie fac

3- units to the temperature of the other unizts In zrder for

- units to run at roughly the same tTemrerature 3s a.l

[P e - o . Pl i~ o - £ -~ R PN N
e LnLT3, wWe ZeIlned o as a If[ancCcTlCon I o & ana Z2,

- v LR ~ amr & - P = o~ T ae -
SC22_ZCAaLL7, L L8 3elT TOo TIe averace AaApsc_oLiTe vzo.e T oall

cnnecticn welghts and birases excluding both Zhe connectizns
o] - - - P
lrectad 1nto the ¢Z3- units and the biases cf =—he .5~ unizts
The remalning networ< rarzmetsars, & znd P, zre ralszToi =
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and give less 1mportance <o tihe profis, sy Cf zZne
Fe o'
o~ - \ 1 3 o v - . as ~ ~ 3 M- : -
2ZAInNg. In our simulations A was Iixed at 2.7 and diffsren:

a_ues 2f B were tested.

?roblem instances were randomly generated as a functicn cof

Scecifically, n~U(K-5,K+5), w;~U(1,K

[}
S}
o)
o'
¢
(@
bos
'x
[0
9]
ry

< :i<n. Several values of XK (10, 20, 35, and 80) were zested.
or each combination of network parameters, and for each groblem
nstance, 10 simulations were performed. After a network was
cnstructed for each problem instance, the network was relaxed
s3ing the 10 or 20 step annealing schedule. The resulting

pproximate solutions were compared with those produced by the

»
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Table 2
Effect of Varying Network Parameter B

Network G4, K=20, 20 step annealing schedule, A=6.0

Cut of curiosizy, 20 simulazions oI netwcrx G2 war2
executed with ~200 elements. This would corresveond zc a G4
network of 1000 units. No effort was made tO tune the nezTwork
parameters, A and B, to improve the results of this particular

simulation (A=6 and B=14 were used). Nevertheless, a

v
o

performance ratioc of 0.9721 was achieved. This resul:t sugges:
that degradation due to increased frustration from scaling mav

not be as serious a problem as we expected
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Conclusion

2rpadded i1n neural neTwWwerks TnaET uTlllze silmple marcings I
croplem variables o n-dimensional spaces ©f actlivaticn values.
Tor these problems, it is necessary to define hidden units zha:t

detect different types of features. Although we have not

scounted the possipility
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neer claverness, 2 TTre2 3v3Ten
warranted. The method that we have presented 1s sultable ZIcr
objective functions that are not expressible as 0-1
Hamiltonians, or those that are not continuously differentiable

cver the interior of the unit hypercube.

A range of computational networks that with -

b Complex non-neural, binary-state units (Gl),
2 Complex non-neural, continuous-state units (G2,G3),
3 Simple, neuron-like, continuous-state units wi<th

conjunctive synapses (G4), and
4 Simple, neuron-like, continuocus-state units with

first-order synapses (GS)

have been presented for the integer knapsack packing problem.
Preliminary simulation results are promising, especially in
light of the ease with which we were able to find viable network
parameters. Simulation results indicate that these networks
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agrear Lo scale reasonably well. In tThe ccurse I
research we have found the method to be applicable
bin-packing, multiprocessor scheduling, and I1ob-se

i 2 g I A a7 , ~ % e oy -y~
TITD.enns 28 we.Ldl Ne nCore Lo S1mu.zate NeltwWor
1 N 3 =
oroo.ems in Tae near Luture.
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Appendix A
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