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ABSTRACT

This thesis compares the efficiency of a constraint branch-and-bound method

against the conventional variable branch-and-bound method in solving set partitioning

problems. Because of the difficulties encountered in writing the constraint branch-and-

bound subroutine, it was necessary to solve each subproblem encountered from scratch.

This is in contrast to the variable branching code which, when solving closely related

subproblems, essentially starts from an advanced starting solution. Even using an inef-

ficient implementation, the constraint branch-and-bound Gnethod appears to be signif-

icantly more efficient than the conventional variable branch-and-bound ethod. It

saves, on average, 30.0 % in CPU time over the variable branch-and-bound method

when tested on a set of small test problems. On average, constraint branch and bound

produces 59.3 % fewer nodes in its enumeration trees than does variable branch and

bound, and the trees encountered are shallower and better balanced.
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I. INTRODUCTION

Many scheduling and routing problems arising in the real world can be posed as

large Set Partitioning Problems (SPPs). Most solution techniques for such Integer Lin-

ear Programs (ILPs) are based on solving the Linear Programming (LP) relaxation by

relaxing the integer requirement of the problem and then resolving fractional variables,

if any occur. The technique of branch and bound (sometimes coupled with other tech-

niques) has proven to be the most reliable method of resolving fractional variables.

There are two basic branching methods, variable branching and constraint branch-

ing. Conventional variable branching chooses a fractional variable x, in the solution of

the LP relaxation and forces that variable to 0 or 1 by effectively adding the constraint

rj = 0 or x, = 1. The one-branch (setting x, = 1) tends to increase the minimized objec-

tive value significantly since, typically, x occurs in several constraints along with many

other variables and all those other variables are effectively set to 0. The zero-branch

(setting x, = 0) fixes only one variable and tends to lead to a similar fractional solution.

Typically, the objective value increases only slightly, or not at all. Thus, the variable

branch-and-bound enumeration tree tends to develop unevenly which can lead to slow

convergence.

The constraint-branching method may offer a way of developing more balanced and

smaller branch-and-bound trees. The method selects a pair of constraints (i, k) in the

current solution of the LP relaxation which have at least two fractional variables in

common. Let J(i, k) denote the index set of variables which the rows i and k have in

common. Then, a branching consists of enforcing either x,=.k)xj-- I or -J,,k) xJ = 0.

Unlike variable branching, the zero-branch here sets at least two variables to 0. As-

suming constraints i and k have at least two variables not in common, the one-branch



also effectively sets at least two variables to 0. Thus, it appears that constraint branch-

ing may yield a more balanced, and possibly smaller branch-and-bound tree. Further-

more, it will be seen that explicit constraints. need not be added to the LP to implement

constraint branching in SPPs.

The main purpose of this thesis is to examine the efficiency of constraint-branching

methods and compare them to conventional variable branching in SPPs. Earlier work

on such comparisons is limited and the-test problems are very specialized. In this work,

branch-and-bound algorithms are implemented in FORTRAN and embedded within a

primal-dual simplex solver. A set of artificial test problems is used for comparing the

efficiency of the two methods. A secondary purpose of this thesis is to state an algo-

rithm for constraint branch and bound in a concise and compelling fashion. This is done

because the primary references for the constraint branch-and-bound method are diffuse

and do not individually include precise statements of their algorithms.

A. SET PARTITIONING PROBLEMS

The following definition of a set partitioning problem is taken from Garfinkel and

Nemhauser [ Ref. I ]. Consider a set I-- ( 1, 2, ..., m), and a set P = {P , ..., Ps), where

PJEI, j e J (1, ..., n). A subset JXJ defines a partition of I, if the following two

conditions hold:

and

j,keJ', jAk Pf nPk=o.
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If a cost c, is associated with every j e J, then the total cost of the partition J is F_ c,.
jE ,J

The SPP is to find a partition J which has minimum cost.

The SPP can be written in standard mathematical programming notation as

n

Minimize z= cj
j= 1

n

Subject to Zai-x = 1, i= 1, 2, ..., m
j=l

xje (0, 1) j= 1, 2,...,n

where all the a,, are 0 or 1. Specifically, a, = I if subset P, contains element i, and 0

otherwise.

SPPs typically arise in scheduling and routing problems. For instance, the set I

might consist of a set of deliveries which must be made, Each j e J corresponds to a

tentative delivery route, say a day's worth of deliveries for a truck, such that a,, = 1 if

delivery i is made on route j, and 0 otherwise. A solution is the partition of deliveries

into routes. SPPs (and set covering problems where Pk fl P, = 0 is not necessary) have

been studied widely because of their many applications and because of their intriguing

binary structure. Some of the applications of SPPs which have appeared in the literature

include air crew scheduling by Arabeyre, Fearnley, Steiger, and Teather [ Ref. 2 ], and

Marsten and Shepardson [ Ref. 3 ], truck routing by Clarke and Wright [ Ref. 4 ], poli-

tical districting by Garfinkel and Nemhauser [ Ref. 5 J, vehicle scheduling by Foster and

Ryan [ Ref. 6 1, and bus driver scheduling by Smith [ Ref. 7 J.

Three basic methods have been proposed to solve SPPs: cutting plane, branch and

bound and implicit enumeration. The cutting-plane methods ( e.g., Balas and Padberg,

3



Ref. 81) start by solving the LP relaxation of the SPP, and then add additional con-

straints in an attempt to cut away noninteger solutions. Unfortunately, in practice,

adding a cut typically increases the number of fractional variables which makes suc-

ceeding cuts more difficult to generate and enforce. Furthermore, cutting-plane methods

guarantee an integer solution only in theory.

The implicit enumeration method (e.g., Etcheberry, [ Ref. 9]) may be thought of

as branch and bound in which no LPs need to be solved. In practice, poor bounds on

the optimal solution are available and using these leads to an enormous amount of

enumeration. Consequently, implicit enumeration is only suitable for very small prob-

lems or problems with special structure.

Branch and bound (e.g., Garfinkel and Nemhauser[ Ref. 11, Davis et al.[ Ref. 10 1,

Little, et al.[ Ref. 11 ] ) has proven to be the most reliable method for solving set parti-

tioning and other integer programming problems. Conventional variable branch-and-

bound methods start by solving the LP relaxation of the ILP, and then choose a

fractional variable x, in the current solution, and set that variable to I or 0 by effectively

adding the constraint x = 1 or x, = 0. Branch-and-bound methods guarantee an integer

solution if it exists by including one integer variable at each branch. In addition to

variable branch and bound, in certain kinds of problems, constraint branching is also

possible.

B. CONSTRAINT BRANCHING

Marsten [ Ref. 3 1 developed a constraint-branching technique for SPPs, and Hey

[Ref. 12 ] applied a constraint-branching method to set covering problems. The method

selects a pair of constraints (i, k) in the current relaxed LP solution, which have at least

two fractional variables in common. The branch can be either x J((,)X 1 = 1 or

/J(t,A) x, = 0. Let J'(i, k) be the set of variables which cover either constraint i orj, but

not both. Then, the one-branch, setting 110(,.k) Xj = ' is the same as setting
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r jJ'1.k) j = 0. But, 1EJQ,,k) xj = 0 can be implemented by setting x, = 0 for allj e J'(i, k).

Thus no new explicit constraint need be added. The zero-branch, j ,k) x1 = 0, is

equivalent to x, = 0 for allj e J(i, k), and once again no new, explicit constraint need be

added. Both the zero-branch and one-branch fix at least two variables to 0, if it is as-

sumed that there are at least two variables in sets J(i, k) and J'(i, k). This should lead

to a more balanced tree than in the variable-branching method, and may result in a

smaller branch-and-bound tree. Falkner and Ryan [ Ref. 13 ] successfully applied

constraint-branching techniques to solve a bus driver scheduling problem.

C. THESIS SCOPE

The variable-branching methods and constraint-branching methods and their algo-

rithms are reviewed in general in Chapter 11. The actual implementation of constraint

branching by fixing a set of variables to 0, and a releasing set of variables is also de-

scribed there. Chapter I II gives computational results for both constraint branching and

variable branching on a set of artificial test problems.



II. ALGORITHMS FOR VARIABLE BRANCH AND BOUND AND

CONSTRAINT BRANCH AND BOUND

A. INTRODUCTION

Branch and bound is an optimization technique that uses basic tree enumeration

(Garfinkel and Nemhauser [ Ref. I ]). It involves calculating an upper bound and a

lower bound on the objective function in order to accelerate the fathoming process. A

node g (the LP relaxation plus additional restriction) is said to be fathomed if no more

exploration (further restriction) can be profitable from that node. Node g can be

fathomed in the following three cases. In the first case, fathoming occurs when an in-

teger solution is found at node g. Second, it can occur by bounding on the best known

solution to the problem. In the first and second case, no successor (further restriction)

of node g can yield a solution that improves or' the best known solution. The third case

occurs when a node corresponds to an infeasible problem.

The term branch and bound was first used by Little et al [ Ref. 11 ]. The branch-

and-bound method was developed first as a method based on fixing binary variables to

0 or 1. Later, Marsten [ Ref. 14 ] developed a constraint-branching algorithm for SPPs.

He suggested that the basic choice in a constraint branch should not be based on

whether a specific variable covers a particular row or not. Instead the variables are

grouped as sets, and the basic choice involved is in choosing which set should be re-

sponsible for covering a particular row.

In Section B, the basic algorithm for the variable-branching method is reviewed.

In Section C, the general concept and algorithm for the constraint branching method is

discussed. A more detailed description of an actual implementation of the constraint-

branching method for SPPs follows.
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B. VARIABLE BRANCH-AND-BOUND METHODS

The variable branch-and-bound method for solving ILPs is based on fixing vari-

ables. This thesis limits itself to considering only binary ILPs, because binary variables

are the most common integer variables and because the ultimate aim is to consider SPPs,

which involve only binary variables. When the relaxed LP solution contains one or more

fractional variables in the solution, the variable branch-and-bound method selects a

variable and fixes it to 0 or 1 ( Hey [ Ref. 12 ] summarizes three ways of choosing a de-

sirable variable in set covering problem ). The method then solves a new LP relaxation

with the added restriction, and executes the variable selection procedure until the current

node gets fathomed. The following is an algorithm for minimizing the objective func-

tion value. The algorithm uses a depth-first strategy for exploring the enumeration tree.

A depth-first variable branch-and-bound algorithm

* STEP 1: (Initialization) Let the stack S be empty, F = oo (upper bound).

* STEP 2: Subject to the constraints defined with respect to S, solve the LP relaxa-
tion of the ILP, to obtain objective value z. Go to step 3.

* STEP 3: (Fathoming test) If an integer solution is found at step 2, or z _> F, or the

problem becomes infeasible, go to step 5. Otherwise go to step 4.

* STEP 4: (Branching) Select a fractional variable and fix it to 0 or I using some
selection and branching criteria. Push that variable on S, and mark it as 'not re-
versed'. Go to step 2.

* STEP 5: (Fathoming) If fathoming occurs by finding an integer solution, and if
z < Y, then let F = z, and save the current solution. If S is empty, go to step 8.
Otherwise, go to step 6.

o STEP 6: (Reversing) Consider the variable on the top of S, and check if it has been
reversed. If it is not reversed, mark it as 'reversed', fix the variable to its opposite
bound, and go to step 2. Otherwise go to step 7.

o STEP 7: (Backtracking) Pop the top variable from S and free the variable. If S is
empty, go to step 8, else go to step 6.

* STEP 8: (Termination) If Y = oo, there is no feasible solution, otherwise Y is the
optimal objective value and the last solution saved-is the optimal solution.

7



C. CONSTRAINT BRANCH-AND-BOUND METHODS

In SPPs, let i and k denote constraint indices, and letj represents a variable index.

The notation J(i) denotes the set a,,, = 1}, while J(i, k) denotes the set J(i) fl J(k), and

J'(i, k) denotes { J(i) U J(k) } - J(i, k). For constraint-branching, a one-branch corre-

sponds to setting the sum of a set of variables to 1, say, Cj'J(I. . = 1. A zero-branch sets

the sum of variables to 0, such as EJ(,.k) x, = 0.

When the relaxed LP solution of an SPP contains fractional variables, the basic

choice of the constraint branch-and-bound method is not whether a certain variable

should cover a particular constraint or not. Instead, the variables are grouped into

classes and the basic choice decides whether or not a certain class of variables should

be responsible for covering a particular constraint. The status of individual variables is

determined automatically. The simplest constraint branch can be written

Z X=0 or Z.X>1
A A

Je A Je

A

where J, a subset of J= { ,2,..., n } is an index set such that 0< ,. x1<1 in the

current relaxed solution. In practice, ai = I for all j e J for some i and thus the one-

branch implies that set J will be responsible for covering row i and the zero-branch im-

plies it will not. Furthermore, the constraint F, x, > 1 becomes 7, x- I. The method
A A

then solves a new relaxed but constrained LP again, and executes the constraint-

branching procedure until all vertices are fathomed. The following is an algorithm, using

the depth-first-search strategy, for a general constraint branch-and-bound method. The

algorithm minimizes the objective function.

A depth-first constraint branch-and-bound algorithm

* STEP 1: (Initialization) Let Y = oo, and let the stacks S and T be empty.

8



* STEP 2: Subject to the constraints defined with respect to S and T, solve the LP
relaxation of the ILP to obtain objective value z.

* STEP 3: (Fathoming test) If an integer solution is found at step 2, or z > F, or the
problem becomes infeasible, go to step 5. Otherwise go to step 4.

* STEP 4: (Branching) Using some selection criteria, select a set of variables in
JgJ(i), for some i, whose sum is strictly between 0 and I in the current solution,
and using some branching criteria, enforce the constraint Z,j = 1 or jJ x = 0.
Push fixed variable indices in J on S, and push the pointers for the starting and
endingpoints of that set on T, and mark the two pointers as 'not reversed'. Go to
step 2.

* STEP 5: (Fathoming) If fathoming occurred by finding an integer solution, and if
z < F then let Y = z, and save the current solution. If S is empty, go to step 8, else
go to step 6.

* STEP 6: (Reversing) Consider the two pointers on the top of T, and check if they
marked as 'reversed'. If they are marked as 'reversed', go to step 7. Otherwise re-

A

verse the equality defined by the set J on the top of S, and mark the two pointers
on the top of T as 'reversed'. Go to step 2.

* STEP 7: (Backtracking) Pop the two pointers from the top of T, and pop the vari-
ables from the top of S using the pointers. If S is empty, go to step 8. Otherwise
go to step 6.

* STEP 8: (Termination) If F= oo , there is no feasible solution. Otherwise Y is the
optimal objective value and the last solution saved is the optimal solution.

D. IMPLEMENTATION OF CONSTRAINT BRANCH AND BOUND IN SET

PARTITIONING PROBLEMS

The constraint branch-and-bound method for SPPs was first developed by Marsten

Ref. 14 ]. The constraint matrix A = a, is first placed in staircase form. Then let the

rows be fixed and define B as the set of all those columns which have their first nonzero

coefficient in row i (I < i<i m). The algorithm then assigns each rows k to a block B,,

rather than a particular column. Assigning row k to B, (i < k) implies the restriction

that row i and k must be covered by the same column. Thus row i and k are covered

by the variables which are in both rows i and k, and are not set to 0. Marsten assigns

the rows in increasing order of row index, and performs logical tests to ensure that the

assignment of a row to a block is feasible. The branch is implemented by successively

9



banning variables (setting variables to 0) which are not assigned to a block from the

solution.

Ryan and Falkner [ Ref. 13 ] also develop a constraint branch-and-bound method

for SPPs. On the one-branch, the sum of the variables which cover both i and k are set

to 1 (E,.,) x, = 1 ), which is implemented as x = 0 V j e J'(i, k). On the. zero-branch,

JeJ(,.) x = 0, which is implemented as.x,:r- 0 V j e J(i, k). Ryan and Falkner choose a

pair of constraints (i, k) which has Ej J(,., x, fractional, and then require that sum to be

0 or 1, which makes the current solution infeasible.

In this thesis the Ryan and Falkner method [ Ref. 13 ] is adopted. In the actual

implementation of constraints branch-and-bound step, the following approach is used.

Choice of Node : A depth-first-search strategy is used to select the next node to

explore.

Choice of Branch: The one-branch is always explored first.

Choice of a Pair of Constraints : The first pair of constraints (i, k) which has

0.4 < jJ.(,.k) xj 0.6, and I J(i, k) I > 2 is selected. If no such pair exists, then the pair

of constraints (i, k) which has ZJJ(,A) x, closest to 0.5 is selected.

Data Structures : Two stacks S and T are used, but in a different manner than

described in Section C. Stack S contains the set of variables which are currently fixed

to 0. The first variable in a set such as J(i, k) is marked by a negative sign which allows

easy removal of all variables in a set without a special stack of pointers. Stack T con-

tains the set of constraint pairs (i, k) for each of the sets on S. When branching to the

one-branch, the status of the variables is noted using a special array STATUS. STATUS

() =jfixed/not reversed indicates that the upper and lower bounds on x, are 0 ( x, has been

fixed to 0 ), but the current branch in which j is involved is a one-branch. STATUS

(0) = fixedreversed also indicates that the upper and lower bounds on x, are 0 but the

current branch in which j is involved is a zero-branch. Two other states are also indi-

10



cated by STATUS. STATUS () =free indicates that x may take on any value between

0 and 1. STATUS () = to be freed indicates that x, is fixed to 0 but about to become

fr-ee.

The following is an algorithm of constraint branch and bound used in this thesis for

set partitioning problems. The algorithm minimizes the objective function.

A depth-first constraint branch-and-bound algorithm for set partitioning problems

* STEP 1: (Initialization) Let Y = oo, let the stack S and T be empty and let STA-
TUS (j)=free VjeJ.

o STEP 2: Subject to the constraints defined with respect to S and T, solve the LP
relaxation of the ILP to obtain objective value z.

e STEP 3: (Fathoming test) If integer solution is found at step 2, or z > 7, or the
problem becomes infeasible, go to step 5. Otherwise go to step 4.

* STEP 4: (One-branch) Using the criteria described in Section D, select a pair of
constraints (i, k). Set x, = 0 and STATUS(j) = fixed/not reversed for allj such that
j e J'(i, k) and STATUSQ) =free. Push indicesj e J'(i,k) on S, with a negative sign
on the first index in the set. Push the constraint indices i and k on T.

9 STEP 5: (Fathoming) If fathoming occurs by finding an integer solution, and if
z < Y then let Y = z, and save the current solution. If S is empty, go to step 8, else
go to step 6.

o STEP 6: (Reverse to zero-branch) Consider the variable j on the top of S, and if
STATUS (j) =fixed/reversed, go to step 7. Otherwise set STATUS Y) = to-be-freed
for the variables on S up to and including the first variable which has negative

sign on its index. Pop the variables which have STATUSJ) =to-be-freed. Fix
x1 = 0, i.e., STATUS() = fixed/reversed for all j such that j e J(i) and STATUS
() = free ( This effectively fixes all unfixed variable in J(i,k) to 0). Push the fixed
variable indices on S with a negative sign on the first index in that set. For all
j e J(i) U J(k) such that STATUSU) = to-be-freed, freej by setting STATUS (j) =
free. Go to step 2.

* STEP 7: (Backtracking) Pop the two constraint indices from the top of T, and pop
the indices from the top of S up to and including the first index which has negative
sign. While popping the variable indices j from the stack, free the associate vari-
ables by setting STATUS (I) = free. If S is empty, go to step 8. Otherwise go to
step 6.

* STEP 8: (Termination) If Y = oo, there is no feasible solution. Otherwise Y is the
optimal objective value and the last solution saved is the optimal solution.

11



III. TEST RESULTS AND CONCLUSIONS

The FORTRAN program for the constraint branch-and-bound method was written

in VS FORTRAN 77 and tested at the Naval Postgraduate School on an IBM 3033 AP

computer operating under the CMS operating system.

The efficiency of the constraint branch-and-bound method with respect to the

conventional variable branch-and-bound method is compared in terms of the number

of nodes in the branch-and-bound tree, the maximum depths ( number of node re-

strictions active at any one time ) reached and the solution times. Eight sample prob-

lems are constructed, and used to compare the efficiency of the two techniques. The

sample problems are summarized in Table 1, and the sample problems are listed in Ap-

pendix A. The results of the test runs are given in Table 2, and the enumeration tree

of two sample problems are given in Figures 1 through 4.

A. COMPUTING AND PROGRAMMING ENVIRONMENT

The basic solver used for computational testing is the X-system [ Ref. 15 ] which

is a FORTRAN-based optimization system for linear, integer and nonlinear program-

ming problems. The built-in variable-branching routine was used for all variable-

branching testing. A specialized constraint-branching subroutine replaced the standard

variable-branching subroutine for all constraint-branching tests. All programs are writ-

ten in FORTRAN 77 and compiled with VS FORTRAN 2.3 at OPT(3). Input of the

eight test problems was accomplished using a LINDO-type front end. Problems were

run interactively in the CMS operating system. Because of difficulties encountered in

writing the constraint branch-and-bound subroutine, it was necessary to solve each

subproblem encountered from scratch. This is in contrast to the variable-branching code

which, when solving closely related subproblems essentially starts from an advanced

12



starting solution. This typically leads to quicker solutions than starting from scratch

does. Thus, while reporting solution statistics, time in CPU seconds is included, it

should be noted that a significant improvement in solution speeds with constraint

branching should be possible in the future. A better measure of computational efficiency

for these tests is the number of nodes visited while branching.

B. SAMPLE SET PARTITIONING PROBLEMS

To test the efficiency of the constraint branch-and-bound method, 8 sample prob-

lems are constructed. Statistics on the size and density of these problems are given in

Table 1. The sample problems have a maximum of 65 variables and 20 constraints

which is quite small compared to real-world set partitioning problems. However, given

the fact that standard branch and bound run time tends to explode exponentially as

problem sizes increase, if an improvement is seen with constraint branch and bound on

these small test problems this should mean even greater improvements are possible in

full-scale problems. All of the sample problems were tested to ensure that they have

optimal integer solutions. Sample problem JUL is taken from Falkner's thesis [Ref.

16], and modified slightly to ensure that some branching is necessary to solve the prob-

lem. Sample problem AIR is a crew scheduling problem taken from the LINDO manual

Table 1. SUMMARY STATISTICS FOR SAMPLE PROBLEM

Problem constraints variables density

JUL 8 29 0.349

AIR 13 37 0.204
DON 20 40 0.196
T12 15 35 0.269
D3 20 45 0.214

SPD2X 20 60 0.116

D3X 20 65 0.141
D4 20 45 0.190

13



[ Ref. 17 ], and also modified to require some branching. All other problems are devised

by the author.

C. TEST RUN METHODOLOGY

The sample problems are solved 10 times with each method, and the smallest CPU

time recorded to solve each problem with each method. This is done because there is

some imprecision in timing in an interactive compute environment. The number of

nodes in and depth of the branch-and-bound tree is obtained from output files. Also,

the structure of the enumeration tree can be constructed using these output file. Table

2 gives the solution statistics for the two methodologies.

Table 2. SUMMARY TABLE OF TEST RESULTS

Constraint B&B Variable B&B
Sample time (sec- nodes max time (sec- nodes max

onds) depth onds) depth

JUL 0.41 5 2 0.55 15 4

AIR 0.78 7 3 0.69 17 4

DON 0.85 5 2 1.90 15 6
T12 1.41 11 3 2.60 35 10

D3 1.61 9 3 1.83 13 6

SPD2X 1.22 5 2 2.16 27 5

D3X 1.19 7 3 2.77 23 6
D4 2.89 17 5 3.37 25 10

Average 1.295 8.25 2.875 1.984 21.25 6.375

As it can be seen from the summary table of test runs, in all cases the constraint

branch-and-bound method required significantly fewer nodes than did the variable

branch-and-bound method. Also, the maximum depth reached was always less for

constraint branch and bound. Finally, in all but one case constraint branch and bound
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required less CPU time to solve the problem, despite the fact that all subproblems were

solved from scratch.

Figures 1 and 2 show the enumeration trees for problem T12 for variable branch

and bound and for constraint branch and bound, respectively. Figures 3 and 4 are

analogous for problem SPD2X. These trees are typical of the problems tested. It can

be seen clearly that the enumeration trees for the constraint branch-and-bound method

are more balanced than for the variable branch-and-bound method.

D. RECOMMENDATIONS

The program was tested using only small sample problems, but most of the real-

world set partitioning problems are very large, usually including several hundred con-

straints and several thousand variables. Testing should be extended to real-world

problems to ensure that the dramatic improvements seen here hold in practice. Addi-

tionally, a more efficient implementation of the constraint branch-and-bound method

would bring out its full potential. Finally, different branching and constraint selection

procedures should be tested for effectiveness.

E. CONCLUSIONS

The constraint branch-and-bound method to solve the set partitioning problems

appears to be significantly more efficient than the conventional variable branch-and-

bound method. Even using an inefficient implementation the constraint branch-and

bound-method takes, on average, only 70.0 % of the CPU time of the variable branch-

and-bound method when executed on small test problems. On average, the constraint

branch-and-bound method had 59.3 % fewer nodes in its enumeration trees. Further-
more, the enumeration trees encountered are shallower and better balanced.
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APPENDIX A. SAMPLE PROBLEMS WITH ENUMERATION TREES

A. SAMPLE PROBLEM JUL

MIN 5A +4B +3C +2D +4E +3F +3G +2H +21
+ 3J + 3K + 4L + 2M + 2N + 30 + 4P + 4Q + 3R
+ S +4T +2U +2V +3W +3X +5Y +4Z +3AA +2AB +4AC

S. T.

A+B+C+D+E+F+G+H+I = 1
J+K+L+M+N+0+P = 1
A+B+C+Q+R = 1
J+K+L+M+N+0+P+S+T+U+V+W+X+Y = 1
C+D+E+F+G+K+N+0+S+T+U+V+Z+AA+AB = 1
E+F+H+I+L+N+P+T+V+W+X+Z+AA+AC = 1
B+G+0+Q+U+AB = 1
C+F+I+M+P+R+V+X+Y+AA+AC = 1

END

INT 29
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B. SAMPLE PROBLEM AIR

MIN 2T1 + 2T2 + 2T3 + 3T4 + 3T5 + 2T6 + 2T7 + 3T8 +3T9
" 3T10 + 4T11 + 3T12 + 3T13 + 4T14 + 2T15 + 4T16 + 3T17 + 4T18
" 2T19 + 4T20 + 4T21 + 5T22 + 4T23 + 5T24 + 5T25 + 6T26 + 5T27
" 4T28 + 5T29 + 4T30 + 5T31 + 5T32 + 2T33 + 3T34 + 4T35 + 5T36 +5T37

S. T

Tl+T11+T16+T25+T26+T29+T34 = 1
T2+T12+T13+T19+T27+T30+T35 = 1
T3+T14+Tl5+T29+T30 = 1
T4+T16+T20+T22+T25+T27+T31+T34+T36 = 1
T5+T17+T18+T3 1+T32 = 1
T6+T1 2+T1 7+T33 3
T7+TlS+T19+T21+T23+T26+T28+T30+T32+T33+T35+T37 = 1
T8+T13+T18+T20+T21+T27+T28+T31+T32+T34 = 1
T9+T1 1+T22+T23+T24+T25+T26+T35+T36+T37 = 1
T1Q+T24+T36+T37 = 1
T2+T14+T16+T23+T24+T26+T31+T35 = 1
T4+T13+T20+T25+T28+T30+T32+T36 = 1
T7+T12+T15+Tl9+T21+T27+T33+T35+T37 = 1

END

INT 37
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C. SAMPLE PROBLEM DON

MIN X + X2 +X3 +X4 +X5 +X6 +X7 +X8 +X9 +X10
+ Y1 + Y2 + Y3 + Y4 + Y5 + Y6 + Y7 + YB + Y9 + Y10
+ Ti + T2 + T3 + T4 + T5 + T6 + T7 + T8 + T9 + T10
+ Zl + Z2 + Z3 + Z4 + Z5 +- Z6 + V7 + Z8 + Z9 + Z10

S. T.

X1+X2+X3+X4+X5+X16+X7+X8 = 1
X9+X1O+Y1+Y2+Y3+Y4+Y+Y6-Y9 =1
Y7+Y8+Y9+YIO+T1+T4+T6 = 1
T4+TS+T6+T8+T9+Zl+Z3 = 1
T7+T9+T1O+Z1+Z2+Z3+Z4 = 1
Z1+ZS+Z6+Z7+Z8+Z9+Z1O = 1
X2+X6+X7+Z1+Z4+Z5+Z7+Z9 = 1
X4+X8+Y6+Y7+Y8+YO+T.4T2 = 1
X4+X6+X7+X8+Y2+Y4+Y6* = 1
Yl+Y2+Y4+Y8+T4+T6+T7+T1O = 1
X5+X8+X1O+Yl+Y4+Y8+Y1O = 1
Y7+YIO+T2+T6+T9+Z2+Z3+Z4+Z6 = 1
Y1+Y3+Y44-Y7+Y1Q+TS+T6+T9 = 1
X6+X9+Y2+Y4+Y7+Y1O+Z5+Z1O = 1
T1+T3+T5+T9+T1O+Z3+Z6 = 1
Y9+T2+T5+T7+T8+Z2+Z3+Z4 = 1
Y4+Y7+Y8+T2+T3+T4+T9+T1O+Z2 = 1
T2+T6+T7+T8+T1O+Z1+Z4+Z6+Z8 = 1
X2+X3+X4+X5+Z1+Z6+Z7+Z8 = 1
X8+Y2+Y5+Y71+Y8+Y9+T2+T3 =1

END

INT 40
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D. SAMPLE PROBLEM T12

MIN X1 +X2 +X3 + X4 +X5 +X6 +X7 +X8 +X9 +X10
+ Y1 + Y2 + Y3 + Y4 + Y5 + Y6 + Y7 + Y8 + Y9 + Y10
+ Ti + T2 + T3 + T4 + T5 + T6 + T7 + T8 + T9 + T10
+ Zi + Z2 + Z3 + Z4 + Z5

S. T.

X1+X3+X4+X5+X6+X8 = 1
Y9+Y1O+T3+T4+T6+T10+Z1+Z2+Z3 = 1
Xl+X5+X6-IX9+T4+T6+T9+Zl+Z3+Z4 = 1
X2+X6+X7+X1O+Y4+Y8+Y9+T3+T5 = 1
X1+X3+X4+X6+Y6+Z1+Z4 = 1
X8+X9+X1O+Y1+Y3+Y4+Y8+Y1O+Z5 = 1
Y1+Y4+Y5-IY6+Y7+Y1O-IT+T3+T4+T1O = 1
Y5+Y8+T1+T2+T3+T5+T6+T7+Z2+Z3+Z4 = 1
X6+X7+X9+Y7+Y8+T1+T1O+Z1+Z2+Z4+Z5 = 1
X2+X7+Y1+Y5+Y6+Y9+T6+T9+Z2+Z3 = 1
X1O+Y3+Y4+Y6+Y7+Y8+Z2+Z3+Z4+Z5 = 1
X4+X9+Y4+Y7+Y8+Y9+Y1O+T2+T3+T1O+Z 1 = 1
X6+X7+X9+Y8+T2+T3+T4+T7+Z1+Z3+Z5 = 1
X9+Y1+Y2+Y4+T2+T4+TS+TlO = 1
Y2+Y8+Y1O+T1+T3+T8+Z2+Z3+Z5 = 1

END

INT 35
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E. SAMPLE PROBLEM D3

MIEN X1-I+ X2 + X3 + X4 +3X5 +X6 +X7 + X8 + X9 +X10
"+Y1+ 5Y2 +Y3 +Y4 +7Y5 +Y6 +Y7 +4Y8 +Y9 +Y10
"+T1+ 3T2 + T3 + T4 + T5 +T6 +T7 + T8 + T9 +T10
"+Z1+ Z2 + Z3 +2Z4 + Z5 +Z6 +ZV+ Z8 +4Z9 +Z10
"+Ul+ 5U2 +3U3 + U4 +3U5

S. T.

Xl+X2+X3+X4+X+X6+X7IZ8 = 1
X8+X9+XlO+Yl+Y2+Y3+Y4+Y5+Y6 = 1
Y7+Y8+Y9+Y1O+T1+T2+T3+T4+T5 = 1
T6+T7+T8+T9+T1O+Z 1+Z2+Z3+Z4+Z5+Z6+Z7+Z8 = 1
T6+T7+T8+T9+T1O+U1+U2+U3+U4+U5 = 1
Z2+Z7+Z8+U1+U2+U5+Z9 = 1
X3+X4+X6+T7+Z1+Z4+U1+U4 = 1
Y1+Y3+Y4+Y6+Y8+YlO+T2+T8+T9+Tl0 = 1
X1+X4+X6+X7+X8+T7+Zl+Z4+ZS+Z6+Z1Q = 1
T3+T5+T6+T7+T9+T1O+Zl+Z2+Z3+Z4 = I
T4+T7+T8+T9+T1O+Z 1+Z2+Z3+Z4+Z5 = 1
X4+X7+X9+Xl0+Y1+Y4+Y9+T2+T4+U1+U3 = 1
X2+X7+T6+T9+Z2+Z3+Z4+Z5 = 1
XlO+T34-T4+T5+T6+Z2+Z3+Z4+Z6+Z8 = 1
Y4+Y7-IYO+T2+T9+Z7+Z1O+U1+U3 = 1
Xl+X4+X1O+Y2+Y1O+Z1+Z3+Z5+U1+U5 = 1
Y1+Y3+Y6+Y7+Y9+Z2+Z3+Z4+Z5+Z7+Z8 = 1
X6+X7+T2+T3+T4+T7+T8+T9+TlO+Z 1+Z3+Z9 = 1
T5+T6+T7+T8+T1O+Z1+Z4+Z6 = 1
T14T3+T8+T9+T1O+Z1+Z4+Z8 = 1

END

INT 45
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F. SAMPLE PROBLEM SPD2X

MIN Xl + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9 + X10
+ Y1 + Y2 + Y3 + Y4 + Y5 + Y6 + Y7 + Y8 + Y9 + Y10
+ Ti + T2 + T3 + T4 + T5 + T6 + T7 + T8 + T9 + TI0
+ Zl + Z2 + Z3 + Z4 + Z5 + Z6 + Z7 + Z8 + Z9 + Z1O
+ 90AA + 90AB + 90AC + 90AD + 90AE + 90AF + 90AG
+ 90AH + 90AI + 90AJ + 90AK + 90AL + 90AM + 90AN
+ 90A0 + 90AP + 90AQ + 90AR + 90AS + 90AT

S. T.

Xl + X3 + X4 + X5 + X6 + X8 + AA = 1
T4 + T6 + T10 + Z1 + Z2 + Z3 + Z7 + AB = 1
Y8 + Y9 + Z2 + Z6 + Z10 + Z9 + AC = 1
Y1 + Y2 + Y3 + Zi + Z3 + Z4 + AD = 1
X6 + X10 + Z4 + Z6 + Z7 + Z9 + AE = 1
X4 + X6 + Y6 + Y7 + Y9 + AF = 1
X2 + X8 + X9 + X10 + Y1 + Y3 + AG = 1
X4 + X6 + X7 + X8 + Y1 + Y4 + AH = 1
T9 + T10 + Zl + Z2 + Z3 + Z4 + AI = 1
Y3 + Y4 + Y7 + Y8 + T9 + T10 + AJ = 1
X7 + X9 + X10 + Y1 + Y4 + Y9 + AK = 1
T6 + T9 + Z2 + Z3 + Z4 + Z5 + AL = 1
Y3 + Y4 + Y6 + T5 + T6 + AM = 1
Y4 + Y7 + Y10 + Z7 + Z10 + AN = 1
T1 + T3 + T5 + T9 + T10 + AO = 1
T5 + T7 + T8 + Z2 + Z3 + Z4 + AP = 1
Y7 + Y8 + T2 + T3 + T4 + T9 + T10 + AQ = 1
T6 + T7 + T8 + TIO + Zl + Z4 + Z6 + AR = 1
X2 + X3 + X4 + X5 + Z1 + Z4 + Z8 + AS = 1
Y2 + Y5 + Y7 + Y8 + Y9 + AT = 1

END

INT 60
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G. SAMPLE PROBLEM D3X

MI1N X + X2 +X3 +X4 +X5 +X6 +X7 +X8 +X9 +X10
+ Y1 + Y2 + Y3 + Y4 + Y5 + Y6 + Y7 + YB + Y9 + Y10
+ Tl+ T2 +T3 +T4 +T5 +T6 +T7 +T8 +T9+ T10
+ Zi + Z2 + Z3 + Z4 + Z5 + Z6 + Z7 + Z8 + Z9 + Z10
+ Ul + U2 + U3, + U4 + U5
+ 90AA + 90AB + 90AC + 90AD + 90AE + 90AF +- 90AG + 90AH + 90AI
+ 90AJ + 90AK + 90AL + 90AM + 90AN + 90A0 + 90AP + 9OAQ + 90AR
+ 90AS + 90AT

S. T.

Xl +X2 +X3 +X4 +X5 +X6 +X7 +AA = 1
X8 +X9 +X10O+ Y1+Y2 +Y3 +Y4 +Y5 +AB = 1
Y6 +Y7 +Y8 +Y9 +Y10+ T1+ T2 +T3 +T4 4-AC = 1
X3 + X8 +T5 + T6 + T7 + T8 + T9 + T1O + Z4 +-AD = 1
Z2 +Z4 + Z5+Z6 + V7+ AE = 1
Z5 +Z8 +Z1 + Ul+ U3 +U4 + AF = 1
X4 +X7 +X9 +T5 + Z1+Z6 + Ul+U4 +AG =1
Y1 +Y5 + Y8 +Y9 + T3+ T5 +T6 +T9 4-Mi1
X3 +X8 + X9 +Z2 +Z4 +Z6 + Z10O+AI
Y1O+T2 +T3 +T7 +T9 + Z1+ Z2 +V7+ Z4+AJ =1
T2 +T3 + T7+ T10O+Z2 +Z4 +Z5 4-AK
X3 +X6 +X8 + X10O+Y5 +Y7 + Y9 +T2 +T4 + U1+U4 +AL =1
Y1 +Y3 +Y5 +Y6 +T7 +T9 + Z1+ZD+ V7+AM =1
T1+ T3 +T6 +Z2 +Z3 +Z6 + Z8 +AN =1
Y2 +Y4 +Y7 +Y9 + T4 +ZV7+Z9 + U1+ AO =1
X2 +X4 +X8 + Z2 +3 + Z5 + U+U5 +AP = 1
Y1 +Y3 +Y6 +Y7 +Y9 +Z2 +D3+ Z4 +Z5 ++ Z8AQ = 1
T2 +T3 +T4 +T7 +T8 +T9 +T10+ Z1+ZD3+ Z9 4-AR = 1
T3+T5 + T6 +T9 +T8 + Z1+Z4 +Z5 +U5 +AS = 1
T5 +T6 +T9 +T10+ Z1+ Z4 +ZV+AT = 1

END

INT 65
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H. SAMPLE PROBLEM D4

MIN X + X2 + X3 +X4 +X5 +X6 +X7 +X8 + X9 +X10
+ Y1 + Y2 + Y3 + Y4 + Y5 + Y6 + Y7 + Y8 + Y9 + Y10
+ TI + T2 + T3 + T4 + T5 + T6 + T7 + T8 + T9 + T10
+ Zl + Z2 + Z3 + Z4 + Z5 + Z6 + Z7 + Z8 + Z9 + Z10
+ Ul + U2 + U3 + U4 + U5

S. T.

X1 +X2 +X4+ X5 +X6 +X7 +Z8 =1
X8 +X9 +X10 + Y1+Y2 +Y3 +Y4 +Y5 +Y6 =1
Y7 +Y8 +Y9 +Y10 + T1+T2 +T3 +T4+ T5 =1
T6 +T7 + T8 +T9 + T10O+ Z1+Z2 +Z3 +Z4+ Z5 =1
T6 +T7 +T8 +T9 +T10+ U1+ U2 +U4+ U5 =1
Z2 +ZV+ Z8 + Ul+U2 +U3 +Z5 =1
X4 +X6 +T7 + Z1+Z4 + U1+U4 =1
Yl +Y3 +Y4 +Y8 +Y10+ T2 +T8 +T9 =1
T5 +T6 +T7 +T9 + Zl+Z2 +Z3+ Z4 =1
T4 +T7 +T8 +T9 + Z1+Z2 +Z3 +Z4 +Z5 =1
X7 +X9 +X10Q+ Yl+Y4 +Y9 +T4 + Ul+U3 =1
X2 +X7 +T6 +T9 +Z2 +Z3 +Z4 +Z5 =1
X1O+T3 +T4 +T6 +Z2 +Z3 +Z4 +Z6+ Z8 =1
Y4 +Y7 +Y10O+T2 +T9 +V7+ Z10+ Ul+ U3 =1
X1 +X4 +X10O+Y2 +Y10O+ Z1+Z3 +Z5 + U1U5 =1
Y6 +Y7 +Y9 +Z2 +Z3 +Z4 +Z5 +ZV+ Z8 =1
T3 +T4 +T7 +T8 +T9 + T1O+ Z1+Z3 +Z9 =1
T5 +T6 +T7 +T8 +T10+ Z1+ Z4 +Z6 =1
T1 +T3 +T8 +T9 +T10+ Zl+ Z4+ Z8 =1
Y1 +Y2 +Y5 +Y7 +Y8 +Y9 +T3 +T4+ T8 =1

END

INT 45
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