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Preface
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Abstract

The purpose of this study is the development of a model

using the concept of augmenting thermodynamic fields (ATF),

wherein the equations of thermodynamic equilibirum are

allowed to have derivatives of fractional order. This

effort seeks to expand the applicabilty of the augmenting

thermodynamic field model, in which augmenting thermodynamic

fields interact with the mechanical displacement field. The

ATF model was introduced by Lesieutre in a dissertation

submitted to the University of California, Los Angeles.

Current methods of analyzing material damping analysis,

not being physically motivated, cannot predict well the

dependency of damping on frequency. Two newer methods,

capable of predicting this frequency dependence, are

discussed. They include the ATF model of Lesieutre, and the

4-parameter model, which allows fractional derivatives in

the description of viscoelastic materials, introduced by

Bagley and Torvik of the Air Force Institute of Technology.

This research effort applies the fractional derivative

concept of Bagley and Torvik's model to the model of

Lesieutre. Capitalizing on the previously made observation

that the use of fractional derivatives in material models

enables the description of material damping over a much

broader frequency range, coupled material constitutive

ix



relations are developed using the concept of augmenting

thermodynamic fields, with non-integer differentials allowed

in the resulting partial differential equations.

The complex modulus that results from solution of these

partial differential equations is compared to the complex

moduli of thermoelasticity, integer-order viscoelasticity,

and viscoelasticity with fractional derivatives (the

4-parameter model) for the case of a uniaxial rod. In each

case, the fractional-order ATF model reduced to the

respective model, and, therefore, accurately describes the

damping mechanism resulting from each of these models.

The fractional-order ATF model can be used to

accurately describe material damping caused both by

thermoelasticity and by viscoelasticity over a broad

frequency range.

x



FREQUENCY-DEPENDENT MATERIAL DAMPING USING

AUGMENTING THERMODYNAMIC FIELDS (ATF)

WITH FRACTIONAL TIME DERIVATIVES

I. Introduction

Damping in Structures

The free vibration of any system will eventually die

out due to some form of energy dissipation. This energy

dissipation is commonly referred to as damping. Damping in

a structure is a result of energy dissipation mechanisms

which can be divided into three broad categories (Lesieutre,

1989:4): (1) internal or material damping caused by the

deformation of the material; (2) joint impact or friction

damping, caused by the dissimilar deformations at structural

component interfaces; and (3) energy dissipation caused by

the structure's interaction with non-strucutral components

or the surrounding environment.

An illustration of each of these types of damping may

be demonstrated through an example of a car driving down the

highway, with the car being the system under consideration.

Energy is dissipated through the movement and flexure of the

automobile components; this is material damping. Gears, the

engine, and interaction of the assembled components of the

car, all represent joint or friction damping. Energy loss

1



caused by air drag and the interaction of the tires with the

highway are examples of the third type of damping of

structures.

For most systems in use in the atmosphere, the last two

types of energy dissipation mechanisms will dominate. In

space, however, the interaction with the environment

practically disappears, and the requirements for highly

precise instruments and low vibration levels will greatly

reduce the loss mechanism found in joint and friction

damping. Thus, material damping becomes much more

important, and an accurate model of this material damping is

needed.

Material damping generally depends on many factors

including frequency, temperature, geometry of the structure,

stress (or strain) history, and deformations. The

interaction of these factors leads to a complex mathematical

problem. Zener, in his discussion of relaxation and

internal friction (material damping), plots the internal

friction versus the logarithm of time, and calls it the

relaxtion spectrum (Zener, 1948:Frontispiece). Such a

figure, as replicated in figure 1, is believed to be typical

of the frequency dependence of material damping. Zener

calculated the internal friction caused by various material

interactions such as grain boundaries or transverse thermal

currents, and then linearly superimposed the results to

produce the graph of figure 1. Many of the damping models

2
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* in use today are unable to reproduce this frequency

dependence and are therefore inadequate in not being fully

descriptive of the actual material behavior.

Damping Conventions

The world of damping is not a new one, although a new

emphasis has been placed on it due to expanded operations in

environments (space) where damping becomes very important.

It is important, therefore, to review the nomenclature,

notation, and models that have become standard in structural

00

dynamics study.

Damping omenclature. The spring-mass-dashpot system

of figure 2 is the simplest and most commonly used model of
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Figure 2. Spring-mass-dashpot System

systems with damping. It is also known as the viscous

damping model, and results in the equations of motion

Mx + cx + Kx = F(t) (1)

for the single degree-of-freedom system with mass M,

stiffness K, dashpot coefficient c, and force F(t). Several

system parameters come from this equation. They are listed

and briefly described below:

- Undamped Natural Frequency. Defined as

Wnm(K/N)1/2 ,and also known as the natural frequency, this

is the frequency at which the system would vibrate if there

were no damping and no forcing function.

Cc - Critical Damping. Defined as cc-2(KM)1/2 , this

is the dashpot coefficient which would be required for a

non-oscillatory response of the free system (F(t) = 0).

4



- Damping Ratio. This is the ratio of the actual

dashpot coefficent c to the critical damping cc. It can be

shown that the time response of a freely vibrating

spring-mass-dashpot system displays a decay characterized by

e- nt

Damping Measures. Several measures of damping are

currently in use. Some are listed below, together with

their definitions.

Q - Resonant Amplification Factor. The ratio of the

amplitude of the internal force to that of the external

force. The compliance is equal to the reciprocal of this.

At resonance, w = n , and Q is equal to one over twice

the damping ratio.

6D - Logarithmic Decrement. This is equal to the

natural logarithm of the ratio of the amplitudes of two

consecutive displacements x, and X2, one cycle apart, or the

logarithm of the ratio of the amplitudes of two

displacements x, and xN, N-cycles apart divided by the

number of cycles:

6D = (1/N) ln(xl/xN) (2)

This is particularly useful in experimentally finding the

damping of a system. For small damping, 6 is a small

quantity, and = 6/2 .

D - Dissipation. The dissipation is equal to the

amount of energy dissipated in one oscillatory cycle:

2 Mw

D f /adt (3)
0
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If divided by the peak value of strain energy stored within

0 the cycle, Us, this results in the Damping Capacity, V/,

commonly used by materials scientists. The Damping Capacity

is equal to 47rtimes the damping ratio.

q - Loss Factor. The ratio of the energy dissipated

per radian of vibration to the maximum energy stored is

equal to the loss factor. It is also defined as the ratio

of a material's loss modulus to its storage modulus. With

respect to the complex modulus E*, it is the ratio of the

imaginary and real parts:

77 = Im(E*)/Re(E1) (4)

A comparison of these damping measures to the damping

ratio results in the following, for small damping:

$= 1/2Q = 6D/27r = Vi/47r = 77/2 (5)

Damping Mechanism Models

The linear matrix differential equation used most

commonly in structural dynamics models is

[M](x} + [c]{x) + [K](x) = (F). (6)

The mass matrix [M] is positive, definite, and the stiffness

matrix [K] is positive, semi-definite. Both are symmetric,

and are easily fovind from the mechanics of the problem, as

is the force vector (F). The damping matrix [c], although

positive semi-definite and symmetric, cannot be easily

derived, except in trivial cases.

There are several methods of incorporating damping into

structural models. These include, but are not limited to,

6



viscous damping, viscoelastic damping, complex modulus, and

structural damping. Each will be discussed, in scalar form,

briefly below.

Viscous Damping. Viscous damping assumes that damping

forces are proportional to the time rate of change of

strain, and thus, displacement. This results in the

equation of motion given by equation (1). Rewriting this

equation using the constants defined above and setting

F(t)=O gives

x + 24 wX +X Gin 2 X = 0 (7)

It will later be shown that the dissipation of a Kelvin

solid increases monotonically with frequency. Most

materials do not behave in such a manner, except over small

frequency ranges, and this model, therefore, although

mathematically simple, is not very useful.

Viscoelastic Damping. The stress-strain relationship

of a viscoelastic material may be described by the

generalized linear constitutive equation as

M dao N dne
E b.- L an- (8)
m=l dto n=l dtn

In the simplest case, this is equivalent to viscous damping,

i.e.,

o = a0E + ajdE/dt (9)

since b. may be set to unity without loss of generality. In

this case, a. represents the elastic modulus ,E, and a,

represents the Newtonian viscosity coefficient, g,.

7



The description of more complex behavior is

accomplished with the inclusion of more terms, in turn

allowing a more accurate model over a broader frequency

range. This, however, quickly becomes tedious, if not

impossible mathematically.

Complex Modulus. Taking the Fourier Transform

FT[X(t)] = fe-iwtX(t)dt (10)

of equation (9), where temporal derivatives introduce iw,

gives

S(O() = Ee(w) + iPN (W) (11)

Dividing both sides by gives

a/E = E + iPNW (12)

Equation (12) suggests the possibility of a complex

modulus, E* = El + iE2, which may be used in many damping

models. If E = Re( 0 exp(ict)] = Eocos(cit) for real E,

then

o = Re[E*Eoeit]

= Eo[Eicos(wt) - E2sin(wt)] (13)

Recall that the energy dissipated per cycle, for real co, is

given by

D= f oE dt
0 /°

= Jo(Ecos(wt) - E 2sin(jt)l(-w)cosin(wt)dt
0

= E 2 o 27r (14)

8



Note that D is now independent of frequency. The peak

stored energy, U., is given by

U. = 1/2 E1E0 2 (15)

Therefore, the damping capacity is equal to

D/Us = 2TrE2/El (16)

and the damping ratio is

' = D/(47rU.) = 1/2 E2 /Ej. (17)

Structural Damping. Structural damping does not depend

on the time rate of strain, as in viscous damping, but

depends on the amplitude of oscillation over a wide

frequency range. So, for systems under harmonic excitation,

the "c" or damping of equation (1) may be treated as

inversely proportional to the driving frequency (Meirovitch,

1986:71-73;1967:400-403):

Ce q = f/(77w) (18)

Equation (1) may then be rewritten as

Mk + Ct/(7r)]x + Kx = F(t) (19)

which is not really an equation since it mixes time

derivatives and frequencies. The consequence is that this

approach is only applicable in modeling constant-amplitude

forced vibrations at single frequencies. Taking the Fourier

transform of x(t) gives iwX, where X is the Fourier

transform of x(t), thus motivating the rewriting of equation

(19) as the pseudo-equation

lix + K(1 + iy)x = F(t) (20)

where

Y = a/(7rK) (21)
9



which is equivalent to the loss factor. The quantity

K(1 + iy) is sometimes called the complex stiffness or

complex damping model.

Augmenting Thermodynamic Field model with Fractional

Derivatives. This research effort applies concepts of

recent research undertaken by Torvik and Bagley of the Air

Force Institute of Technology, Wright Patterson Air Force

Base, to the research efforts of Lesieutre, formerly of the

University of California, Los Angeles. Bagley and Torvik

have described, in a series of papers (Bagley and Torvik,

1986; 1983; Torvik and Bagley, 1987; 1984), the application

of material models involving the fractional derivative to

problems in vibration. Lesieutre in his doctoral

dissertation (Lesieutre, 1989) introduced the notion of

augmenting thermodynamic fields to describe a new method of

modeling frequency-dependent material damping in structural

damping analysis. This effort will apply fractional

derivatives to the augmenting thermodynamic field model in

an effort to expand the applicability of that model.

The utility of the ATF model with fractional

derivatives will be demonstrated through comparison of the

model with other material damping models including

thermoelasticity, viscoelasticity, and viscoelasticity with

fractional derivatives. It will be seen that the ATF model

with fractional derivatives can be reduced to these models,

and is, therefore, a more powerful model for use in material

damping study.
10



II. Augmenting Thermodynamic Fields

Noting the physical significance of the internal state

variables of materials science, Lesieutre (Lesieutre, 1989)

introduced augmenting thermodynamic fields to interact with

the mechanical displacement field of continuum dynamics. He

then used nonequilibrium, irreversible thermodynamics to

develop coupled constitutive and partial differential

equations. His approach will be reviewed here as a basis

for the work of this effort.

Anelasticity (Nowick and Berry, 1972:1-5). Nowick and

Berry intoduce anelastic behavior formally by first

considering an ideal elastic material, for which the

relation of stress to strain is defined by Hooke's law

a = EE , where E is called the modulus of elasticity. For

this material, three conditions result. They are: (1) the

applied stress produces a unique strain response through an

equilibrium relationship, i.e., there is complete

recoverability, (2) the equilibrium relationship produces an

instantaneous response, and (3) the response is linear. By

lifting the instantaneity condition, the type of behavior

known as anelasticity is produced. With an anelastic

material, a time dependent nonelastic response will occur in

addition to the instantaneous elastic reaction.

All materials that qualify as thermodynamic solids

satisfy the first condition above, since these solids can

continuously assume unique equilibrium states in response to

11



small changes in some external variable such as stress or

temperature. Relaxation is the self-adjustment with time of

a thermodynamic system toward a new equilibrium values as a

result of a change in some external variable (Nowick and

Berry, 1972:4). Anelastic relaxation is the tendency of a

thermodynamic system to evolve towards an equilibrium state

when that state depends on an external mechanical value such

as stress or strain.

Nowick and Berry summarize anelastic relaxation as the

thermodynamic phenomenon which results from the changing of

internal variables which couple stress and strain to new

equilbrium values through such processes as kinetic

diffusion (Nowick and Berry, 1972:5). Material damping is a

direct result of such anelastic relaxation processes in real

materials.

When the nature of the associated thermodynamic

relaxation processes is considered, two classes of material

damping mechanisms can be defined. They are damping as a

result of system non-uniformity and damping as a result of a

local departure from thermodynamic equilibrium (Lesieutre,

1989:23-26).

System Non-Uniformity. Thermoelasticity is a

well-understood example of this type of damping mechanism.

Torvik reviews this mechanism, stating that thermoelastic

damping is a result of the coupling created when a thermal

expansion term appears in the equation of state of a

12
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material, as well as in the energy equation which describes

the process (Torvik, 1989:2).

Consider an axial rod subjected to longitudinal elastic

waves. During a cycle, one-half each wavelength of the rod

undergoes an expansion with an accompanying increase in

strain, and thus, an increase in volume. To satisfy the

energy balance, temperature of this half of the rod must

decrease. In an opposite sense, the temperature of the

other half of the rod is increasing, due to the decrease in

volume (compression) and strain of that half of the rod.

The end result is a flow of heat by conduction along the

longitudinal axi', causing temperature changes with time

along the rod. These changes couple into the strain of the

constituitive equation causing material damping, although,

as was noted in Torvik's paper, this damping is small.

Local Departure from Thermodynamic Equilibrium

(Lesieutre, 1989:24). Also known as microstructural

damping, this damping is a result of the coupling of stress

and strain with characteristics of real materials other than

temperature. Material damping is affected by thermodynamic

relaxations due to point defects, dislocations, or grain

boundaries, which are thermally-activated, and are sensitive

to the composition and microstructure of the material.

These are all internal variables, evolving jointly with

stress and strain, which motivated the introduction of

augmenting thermodynamic fields (ATF) by Lesieutre. These

13



ATFs are to interact with the usual mechanical displacement

field.

Irreversible Thermodynamics. The point defects of

microstructural damping are thermally activated, leading one

to the conclusion that material damping is fundamentally a

thermodynamic phenomenon. Kovalenko states that the

irreversible thermoelastic deformation of a body is a

non-equilibrium process, with the irreversiblity being due

to the temperature gradient (Kovalenko, 1969:7). A process

associated with an increase in the entropy, with all real

processes falling within this category, is said to be

4rreversible. This increase in entropy provides a

quantitative measure of the irreversiblity of the process

(Callen, 1960:63-65).

In irreversible thermody._amics the entropy balance

equation plays a central role (Lesieutre, 1989:25-27). The

rate of local entropy production equals the entropy leaving

the region, plus the rate of entropy produced within the

region (Callen, 1960:284-288). In others words, entropy of

a volume element changes with time due to (1) entropy flow

into the volume element, and (2) entropy created due to the

irreversible processes inside the element. The entropy

created, or the rate of production of entropy, is the sum of

products of each flux with its associated affinity. Fluxes

characterize some irreversible relaxation process, such as

in a heat flux. The affinity can be thought of as the

14



generalized force which drives the irreversible process

toward the equilibrium state.

Axial Rod With One Augmenting Thermodynamic Field (ATF)

(Lesieutre, 1989:29-41). Lesieutre begins by considering

the case of one-dimensional motion, corresponding to

longitudinal vibration of a slender rod . Displacement

along the rod is denoted by u = u(x,t) , mass density,

which is uniform, by p, and the unrelaxed modulus of

elasticity by E. He then introduces a single augmenting

thermodynamic field (ATF), 4 = 4(x,t) . The stress field,

a, is thermodynamically conjugate to the strain, c, as is

the affinity field, A, to the ATF, 4. From irreversible

thermodynamics, the affinity can be interpreted as the

generalized force which drives 4 to equilibrium. The

strength of the coupling of the two dependent fields, u and

4, is described by the material property 6. If there were

no coupling, the stress would be related to strain by

Hooke's law. Analogously, the material property ce relates

changes in A to those in 4.

Helmholtz Free Energy. Spanner states that, to have

spontaneity of a process under isothermal conditions, the

process must involve a decrease in free energy (Spanner,

1964:Ch 7). The Helmholtz free energy is used when no

external volume work occurs as the process takes place.

The free energy of a system is not a part of its total

energy. In truth, it is not simply an energy at all, but
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represents the potentiality of the system doing work under

the condition that the system is supplied with all the

heating or cooling it requires to keep a constant

temperature. When the system actually does work, it is at

the expense of its free energy, with part of that work done

out of its own resources, and part out of the heat energy

supplied to it from its surroundings, resulting in an

increase in system entropy (Spanner, 1964:91). Callen

states that conditions are such in many processes that the

ambient atmosphere acts as a heat reservoir to maintain the

temperature constant (Callen, 1960:107). It is for these

processes that the Helmholtz potential representation is

well suited.

The state of system equilibrium is determined in an

isothermal system by the condition of minimum free energy,

&f. Here, &f represents the available useful work, other

than pressure-volume work, at constant temperature and

volume. If af is negative the system will do work

spontaneously. Processes for which this is the case are

natural processes in the sense that work is done by the

system in an effort to approach equilibrium (Penner,

1968:71).

The Helmholtz free energy density, f, being a

thermodynamic potential appropriate for use when strain is

an independent variable (Lesieutre, 1989:31), can be used to
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derive the constitutive equations:

f = 1/2EE2 - 6E4+ 1/2a4 2  (22)

Material Constitutive Equations. The constitutive

equations are then found from the thermodynamic relations

(Spanner, 1964:162)

O =f/ac A =-f/a (23)

which result in

a = EE - 64 (24)

A = 6c - U4 (25)

In classical irreversible thermodynamics, it is assumed

that the time rate of change of 4 is proportional to A, the

affinity or thermodynamic force. For the quadratic

dependence of equation (22) it is proportional to its

deviation from an equilibrium value, 4, with the

proportionality constant, B, being a material property

different for any distinct dissipative mechanism:

4= - (26)

where the dot (.) denotes temporal derivatives.

The value of 4 is the value of 4 at equilibrium, or

* when the affinity, the "generalized force" which drives 4 to

equilibrium, is zero. Setting equation (25) to zero and

solving for 4 gives

* 4= 6f/,a (27)

which in turn can be substituted into equation (26) to give

= -B(4 - 6Elc) (28)
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Cauchy's first law is invoked in order to insure

conservation of linear momentum. In general

t~k,1 + pQfk - ak) = 0 (29)

where fk and ak are components of the body force and

acceleration, repectively. For the case of axial motion of

a one-dimensional bar, and neglecting body forces, this

reduces to

Oaf/x - pa = Oulax - pu = 0 (30)

where the dot denotes temporal derivatives.

Recall that E(xt) = au(xt)/&x = u' , where the prime

denotes spatial derivatives. Using this, substituting

equation (24) into equation (30), and rearranging terms

gives, together with equation (28), a set of two coupled

partial differential equations in u and 4:

pi - Eu" = -64'

+ B4 = (B6/cx)u' (31)

Lesieutre uses the principles of nonequilibrium

irreversible thermodynamics to determine the conditions

under which a given problem involving these equations is

well-posed (Lesieutre, 1989:32-34). These conditions are

P > 0, E > 0, and c > (62/E) > 0 (32)

conditions easily satisfied in practice.

Fourier Analysis. The set of equations (31) is a set

of linear partial differential equations, and, as such,

Fourier analysis may be used for their solution, especially

since the frequency-dependence of the damping is of primary
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interest. Consider a plane wave traveling in the negative

x-direction with temporal frequency w and spatial frequency

(wave number) k according to ei(kx+wt). The Fourier

transform of spatial derivatives will then introduce ik, and

the transform of time derivatives will introduce iW,

boundary conditions not being considered. Equation (31)

yields

(-pW 2 + k2E)U + ik6Z = 0 (33)

(Bik6/ci)U - (B + iw)Z = 0 (34)

where U and Z are the Fourier transforms of u(x) and 4(x),

respectively.

Damping Ratio. Solving equation (34) for Z, and

substituting into equation (33) gives, after algebraic

manipulation

=W 1 a + i(1/B)
-2 = E [ (35)
k2 1 + i ((/B)

where

= 621E (36)

The term inside the [ ] brackets can be interpreted as

a complex modulus, E'(w), which after further manipulation

becomes

+ (/B)2 + i(Aw/B)]
E'(w) - E + (W/B)2 0 (37)

and the loss factor, 17, is found by

77 - Im[E'(w)]/Re[EI(w)] (38)
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or, from equation (37)

0 - A(wIB)I[1 - A + (wIB)2] (39)

If small damping is assumed, the damping ratio equals

half of the loss factor (equation (5)):

= A(W/B)/(2[1 - A + (W/B)2]} (40)

For small damping the damping ratio is small, and the

numerator of equation (40) must be small in comparison to

its denominator. This being the case, A can be assumed

small, and can be cancelled from the denominator, leaving

the following equation for the damping ratio:

0 = (62/4Ec)(2w/B)/(1+(w/B)2] (41)

Figure 3 is a plot of the loss factor versus frequency

for material property values that correspond roughly to

aluminum (Lesieutre, 1989:48):
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Figure 3. Loss Factor vs. Frequency for Single ATF Model
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E = 7.13 x 1010 N/m
2

B = 8000 1/s
* = 8000 N/m

2

6 = 4.7766 x 106 M/mr2

As can be seen, damping peaks at a frequency of u = B and

tends toward zero at both high and low frequencies.

The power of the ATF model in the description of

material damping can be seen as it is compared to other

material damping models. It will be seen that the ATF model

with no fractional derivatives can describe damping as

modeled by the thermoelastic and classic viscoelastic

damping models.

Comparison to the Thermoelastic Model. The linearized

equations of dynamic coupled thermoelasticity are given in

three dimensions as (Boley and Weiner, 1960:38)

Ori J X61 J~kk + 2PEj -O cT(3X + 2pu)6j i(T -T,) (42)

KT, = cvT + (3A + 2p)UTTnikk (43)

with equilibrium requiring

1i J, i = puli (44)

and compatibility conditions giving

i0= I/2(ui,i + Ui.i) (45)

where

aii = stress
*i = strain
6ii= Kronecker delta

p = mass density
T = change in temperature from the initial,

stress-free state
T, = initial temperature, a constant
ui = displacement
K = thermal coductivity
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c, = specific heat at constant volume (per unit
volume)

X, u = isothermal Lame's constants
UT = coefficient of thermal expansion

Given a one-dimensional displacement with no shear the

following conditions result:
0

ui = u1 (x,t)

U7= U3 = 0

U 2 2 = 0'33 = 0 (46)

Compatibility, equation (45), results in

Eli = au l /ax E?2 = E3 3 = 0 (47)

and equilibrium gives

pia. = 80U1l/x = Oalax (48)

Following application of the conditions of equation

(46) to equation (42) we have

c1 ,= (X + 2p)E]I -aT(3X + 2/)(T - To) (49)

Equilibrium, equation (44), requires the derivative of

equation (49) with respect to x. This, together with the

result of applying equation (46) to equation (43), results

in the linearized equations of dynamic coupled

thermoelasticy for plane strain, as given by Boley and

Weiner (Boley and Weiner, 1960:45-73):

KT" - cvt - (3X + 2p)UTToi' = 0

(X + 2p)u" -pu - (3X + 2M)atT' = 0 (50)

Note that boundary condition effects are not included in

this analysis.

For the case of the uniaxial rod considered in this

thesis a set of conditions different than those of equations
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(46) and (47) result:

,7, = 01 3 = 0

ul ' 0, U? = 0, ul = 0

El = u 1 /ox

E22= 33 = -VEII (51)

where v is Poisson's ratio. Equation (42) then gives

a,, = (EII+E 2+6 3 3) + 2p 1 1 - CT(T-To)(3X+21) (52)

Applying the last of the conditions of equation (51) results

in the equation of stress in the x-direction:

Cru = XcEi1 (1 - 2) + 29lcij - CxT(T - T)(3X + 2) (53)

Likewise, equation (43) results in

KT" = cT + (3k + 2p)CtTT,(I - 2v)(i' (54)

Again, equilibrium is required, which results in the

following from equation (53):

(A + 24 - 2)u" - CT(3X + 2W)T' - pu = 0 (55)

Recalling the definition of the isothermal Lame's

constants, which involve the isothermal modulus, ET,

A= (vET)/[(1 + v)(1 - 2v)

p = ET/[2(1 + v)] (56)

and substitution of equation (56) into equations (53) and

(55) results in the equations of dynamic coupled

thermoelasticity for the plane stress case of the uniaxial

rod:

KT" - cvt - ETCITTo' = 0

ETU" - pii - ETCT' = 0 (57)
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Taking the Fourier transform of equation (57), with

spatial derivatives introducing ik and temporal derivatives

introducing iw , results in the following equations:

K(ik)2 T - c,(iw)T - ETrCTTo(ik)(iW)U = 0 (58)

ET(ik)?U - p(iw)2U - ETUtT(ik)T = 0 (59)

where U is the Fourier transform of u(x,t) and T is the

Fourier transform of T(x,t). Solving equation (59) for T,

and substituting the result into equation (58) gives, after

some algebraic manipulation,

p(2 = ET 1 + WTo 2 (Kk2 (60)
k2 1i + (iWc)/(Kk2)I

This is in the form of the familiar complex modulus, with

the right hand side of equation (60) being that modulus,

E*(w) = ET (61)

1 + iW(C/(Kk2)]

which in turn can be compared to the complex modulus of the

ATF model, equation (35), rewritten here for convenience:

(1 - A ) + i
E(w) = E - (62)

i+i(w/B) J

Setting the right hand side of equation (61) equal to

equation (62) results in the comparison equations which

reveal values which the ATF model parameters must assume in

order to model thermoelastic damping.

Comparison of the denominators of the two moduli

results in the following equation:

B = (Kk2)/c, (63)
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The real parts of the moduli's numerators results in the

relationship

E(1 -,d) = ET (64)

This equation shows that the modulus, E, of the ATF model,

when used to describe thermoelasticity, is related by an

expression in A to the isothermal modulus, ET.

Comparison of the imaginary parts of the numerators of

the complex moduli resulting from the thermoelastic and ATF

models gives the following relation:

E/B = (ETCv + CfT 2ToET 2 )/(Kk 2 ) (65)

Substituting the expression for E found from equation

(64), and the expression for B from equation (63) results in

(ETCv)/[(l - A )Kk2] = (ETCV + tT2TOET 2 )/(Kk 2 ) (66)

Solving this for A results in the value of A in terms of the

thermoelastic parameters:

A = (ETfT2To)/(ETaT 2To + Cv) (67)

Solving equation (64) for E with the value of A from

equation (67) gives

E = ET/(1 - A) = [(ETOT) 2To + ETCV]/Cv (68)

The ATF model, then, reproduces the thermoelastic

model, given that the parameters of the ATF model are as

follows:

1/B = cv/(Kk2)

A = (ETOT 2To)/(ETIT2To + Cv)

E = ET[ + (ETToUT2 )/Cv] (69)
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It can be shown (Torvik, 1990; Appendix B) that the E

of equation (69) is precisely the Young's modulus for an

adiabatic deformation. Thus, E = EA , and from equation

(64)

A = 1 - ET/EA (70)

Invoking the definition of A, A = 62/(Eey) , gives

62 = U(EA - ET) (71)

Therefore, the free energy defined by equation (22) is

seen to require that the coupling parameter, 6, of equation

(22) be 6 = [c(EA - ET)]1I2 . Likewise, the parameters o

and E of equation (22) are the coefficient of thermal

expansion and adiabatic modulus, repectively.

Comparison to the Viscoelastic Model. Recall that the

generalized linear constitutive equation for a viscoelastic

material is given by equation (8), repeated here for

clarity:

M N
L bado/dto = E andnE/dtn (72)
m=0 n=0

This can be written in the simplest case of viscous damping

as

a(t) = aoE(t) + aidE/dt (73)

in which b0 is set to unity without loss of generality. In

this case, a, is the elastic modulus En. Using this in

equation (72) results in

M N
F, bmdma/dt- + 7(t) = EE(t) + L andnE/dtn (74)
m=l n=1
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Taking the Fourier transform of equation (74), where

temporal derivatives introduce (iw), with o(w) and Z(w)

being the Fourier transforms of O(t) and E(t), respectively,

and dividing both sides of the result by ?(W) results in an

equation for the complex modulus:
N

E (J) E. + Z aL(iW)nn=l

E'(c) = -- = M (75)
E(W) 1 + Z b.(iw)m

m=l

The complex modulus for the Kelvin solid includes only one

term from the summation of the numerator, and the complex

modulus becomes

E'(w) = Eo + i(aiw) (76)

This model of viscoelasticity increases linearly with

frequency. In turn, the model of a Maxwell fluid includes

only one term from the summation in the denominator of

equation (75), with the complex modulus given by

E*(W) = Eo/(1 + i(blw)) (77)

which, after multiplication of the complex modulus of the

denominator, gives

E'(w) = Eo(1 - ibiw)/(1 + b 2w2) (78)

Taking one term from the summations of each of the numerator

and denominator of equation (75) results in

E, + iwal
E'(w) = (79)

1 + iwb1

Comparison of equation (79) to equation (35), the

equation of the complex modulus for the single-ATF model,

results in the following equations:
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I/B =b

E(I - A) = E,

E/B =a (80)

This comparison is easily made, and the ATF model

reduces to the viscoelastic model with 3 parameters -- E,

a,, and bi, if the constants are equated as follows:

B = 1/bi (81)

E =a/b, (82)

A = 1 - (Eobi)/a, (83)

Inspection of equation (79) shows that the low

frequency modulus must correspond to the isothermal elastic

(rubbery) modulus. E, is identified as such. Conversely,

as the frequency goes to infinity, the real part of the

modulus becomes at/bj. Thus, this ratio is the adiabatic

(glassy) modulus. Accordingly, the E used in the definition

of the free energy must be the adiabatic modulus and the

parameter A is

A = 1 - ET/EA (84)

Recall from equation (36) that A = 62/(Ect) , so the

coupling parameter, 6, must be

6 = [ e(EA - ET)] 1 / (85)
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III. Fractional Derivatives in the Description

of Material Damping

Capitalizing on the previously made observation that

the use of fractional derivatives in material models enables

the description of material damping over a much broader

frequency range, this research effort proposes to improve

upon the accuracy of Lesieuture's model over a broader

frequency range through the use of fractional derivatives.

Coupled material constitutive relations will be developed

using the concept of augmenting thermodynamic fields, with

non-integer differentials allowed in the resulting partial

differential equations.

Viscoelasticity Using the 4-Parameter Model. Bagley and

Torvik have found the use of stress-strain laws,

constitutive relationships, or equations of state which

employ fractional or generalized derivatives to be valid as

a material damping model (Torvik and Bagley, 1987).

Relationships using a generalized derivative have been shown

to have a sound theoretical basis, and are effective

descriptors of the dynamic behavior of real materials. A

brief review of Torvik and Bagley's work will be presented

here.

Fractional Calculus. Ross presents a basic history of

the fractional calculus, in which derivatives and integrals

of fractional order are defined, and states that it is
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nearly as old as the calculus of integer orders (Ross,

1977). The extended Riemann-Liouville definition of the

generalized derivative is given as (Oldham and Spannier,

1974)

dqx(t) 1 d 0X(t-T)
Dq(x(t)] = - = - - J d7' (86)

d'rq F(l-q) dt o 7-q

for 0 < q < 1 F is the gamma function, defined by

F(-q)= J e- xx- qdx (87)
0

At first glance, this would appear to be a formidable

equation, yet when one considers the Fourier (or Laplace)

domain, the generalized derivative manifests itself as a

fractional power of w (or s) (Caputo, 1976). The Fourier

transform is defined as

FTCx(t)] =fx(t)e-iwtdt (88)

If x(t) = 0 for t < 0 , then the Fourier transform can

be written as

FTCX(t)3 = fx(t)e-iwtdt (89)

Taking the Fourier transform of the generalized derivative

of equation (86) gives

FT[Dq[x(t)]] = (iw)qFT[x(t)] (90)

The restriction placed on q is that it be a nonnegative

real number less than one. For engineering applications, it

is assumed that an irrational number can always be
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approximated by a rational number, allowing for the

restriction of q to being a rational number. Thus only

fractional derivatives of rational order will be considered.

Fractional Derivatives in Viscoelastic Theory. The

generalized differential operator form of the stress-strain

constituitve equation is given by Christensen (Christensen,

1982:14) as

1M duo(t) N dnE(t)
, b. + a(t) = EE(t) + L an (91)

m=1 dt n=l dtn

The Fourier transform of equation (91) yields

M - N
E b,(iw)ma()+U(w) = EE(w)+ E a (iw)n(w) (92)
m=1 n=1

Through manipulation of this equation, a complex modulus is

formed:
N

&(W) E + Z ar,(iW) nn=1

E' = - M (93)
E + (

Now, if fractional derivatives are allowed in the

general form of the relationship for linear viscoelasticity,

the result is (Bagley and Torvik, 1979)

M N
EbsDq[a(t)]+a(t) = EoE(t)+ L EnDq[(t)] (94)
m=1 n=1

where q is a number between zero and one.

This is the form appropriate for a one-dimensional

description of axial deformation. Many materials can be

accurately modeled by replacing each sum in equation (94) by
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a single term involving a fractional derivative

o(t) + bDqfa(t)] = EoE(t) + EDq[E(t)] (95)

where b, q, E,, and El are the real parameters of this four

parameter model (Bagley and Torvik, 1986). The Fourier

transform of this model yields a complex modulus of the form

E, + EI(iW)q
E'(w) = (96)

1 + b(iw)r

with E, and E1/b being the rubbery and glassy moduli,

repectively.

Thermodynamic constraints require the following

conditions of the parameters of equation (96):

E, > 0 Ei > 0
b > 0 E 1/b > 0 (97)

These constraints insure a themodynamically well-behaved

fractional calculus model of viscoelastic behavior (Bagley

and Torvik, 1986).

Damping Ratio. In order to solve for the damping

ratio, equation (96) must be further simplified using

equations for complex numbers found in Appendix A. Using

these simplifications, equation (96) may be rewritten as

Eo + E1 (W)q[cos(qr/2) + i sin(q7r/2)]
E'(w) = (98)

1 + b(w)q(cos(q r/2) + i sin(q7r/2)]

Letting x = q7r/2 and multiplying equation (98) by the

complex conjugate of the denominator results in the

following for the complex modulus:

E'(w) = N/D (99)

where
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N = Eo + (Eb + E1 )wqcos(x) + EjbW2q

0 + i [(E1 - Eb)wqsin(x)] (100)

and

D = 1 + 2bwicos(x) + b2W2q (101)

0 Recall from equation (4) that the loss factor, 17,

equals the imaginary part of the complex modulus divided by

its real part:

(E1 - Eob)jqsin(x)
77= (102)

E, + (Eob + EI)wqcos(x) + Elbco2q

with the damping ratio being one-half the loss factor.

A plot of the loss factor versus the frequency of

equation (102) is included as figure 4. Note the strong

frequency dependence of the damping ratio. Also,
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Figure 4. Loss Factor vs Frequency of 4-Parameter
Fractional Derivative Model
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examination of equation (97) shows that the thermodynamic

constraints insure that the loss factor is positive for all

frequencies (Bagley and Torvik, 1986). Values used for the

plot of figure 4 are

SEo = 5.04 X 106 N/m2
E, = 2.27 X 105 (N s)/m 2

b = 2.80 X 10-4 s
q = 0.64

These values correspond to Nitrile Rubber 1479 resulting

from a "least-squares" fit to data previously obtained

(Bagley and Torvik, 1986:137).

Single-ATF Model With Frational Derivatives. Torvik and

Bagley (Torvik and Bagley, 1987:125) noted that most

materials used in damping application are polymers showing a

strong frequency dependence. The general viscoelastic

relationships required to describe and adequately model this

dependence usually require a large number of terms. They

have noted that the frequency dependence of real materials

is more closely approximated by models with fewer terms, but

whose material constitutive time derivatives are of a

fractional order. With four and five parameter models, they

have accurately modeled material damping behavior over broad

ranges of frequency, some even approaching eight decades.

, Although Lesieutre declares this approach as

"cumbersome," that is not the case and the ease of its use

in application to the ATF model will be shown here.
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Constitutive Equations. The equation for the Helmholtz

* free energy is as was used before, and can be found

as equation (22). The fractional derivative will be applied

to the equilibrium equation of irreversible thermodynamics

* as follows from equation (26):

aq=/tq - -B(4 - ) = -B4 + B6/ca (103)

Here, we assume the rate process governing the restoration

* of the equilibrium state is a process of fractional order in

time. This equation together with the balance of momentum

relationship, equation (30), gives two coupled partial

* differential equations:

pu - Eu" +6' = 0

aq'/4tq + B4 - B6u'/a = 0 (104)

• In the Fourier domain these equations become functions

of w. Taking the Fourier transform of equation (104) with

time derivatives introducing iw and spatial derivatives

introducing ik gives

P(iW)2 U -E(ik)2 U + 6(ik) Z = 0 (105)

(iW)q Z + B Z - B6(ik)/cl U = 0 (106)

Solving equation (106) for Z results in

Z - iBk6/(cB + C(ij )q] U (107)

Substituting equation (107) into equation (105) and

canceling the U gives an equation that can be algebraically

manipulated to give the complex modulus:

-pw2 + Ek2 - Bk262/(cB + c(iw)q] = 0 (108)
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Recall (Appendix A) that (i)q can be written as

(iW)q =Cq [cos(q7r/2) + i sin(q7r/2)] (109)

Substituting x = q r/2 into equation (109) and the result

into equation (108) results in

-pw2 + Ek2 - Bk262/(f[B+wqcos(x)-iWqsin(x)]) = 0 (110)

Algebraic manipulation of equation (110) results in a

familiar form:

pW2
k = E 1 - (111)
k2 1 + (Wq/B)[cos(x) + i sin(x)J

where
a= 6 2/(Ec) (112)

The right hand side of equation (111) is recognized as the

complex modulus, which can be rewritten as

1 -A+ ((q/B)[cos(x) + i sin(x))
E'(w ) = E (113)

1 + (wg/B)(cos(x) + i sin(x)]

Mlultiplying the numerator and denominator of the complex

modulus of equation (113) by the complex conjugate of its

denominator, 1 + (wg/B)cos(x) - i(wq/B)sin(x) , results in

the following after some algebraic manipulation:
1 [ + (Wq/B)cos(x) - i (Wq/B)sin(x)

E'(W) = E 1 -A (114)

1 + 2(w/B)cos(x) + w2q/B2 Jj
Damping Ratio. The loss factor can be found again from

equation (4):

A(wq/B)sin(x)
7= --- (115)l+2(ijq/B)cos(X)+(Wq/B)I-A[l+(Wq/B)cos(x)]

Two assumptions are again made to arrive at the damping

ratio. They are: (1) small damping, which in turns implies
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that the damping ratio is half the loss factor, and (2)

a << , which will cancel all terms involving a from the

denominator. This results in an equation for the damping

ratio in terms of the frequency:

(62/2Ect) (wq/B) sin(q7r/2)
= (116)
1 + 2(wq/B) cos(qr/2) + (wq/B)z

By setting q of equation (115) equal to 1 the damping

ratio reduces to that of Lesjeutre's single-ATF model, since

cos(q7r/2) goes to zero and sin(q7r/2) goes to one. The

fractional derivative single-ATF model can then be

considered a more general case of Lesieutre's model.

Figure 5 is a plot of the damping ratio versus

frequency for three values of q in the fractional derivative

• ,q= 0.8.01
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Figure 5. Single ATF Model with Fractional Derivatives
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single-ATF model. Values for the other parameters were as

follows:

B = 1.0
= 0.1

As the value of q decreases the curve flattens out, as well

as opening up.

Complex Modulus Formulation. An alternate method of

arriving at the loss factor, and thus, the damping ratio,

might be termed the "complex modulus" formulation. Starting

with equations (24) and (103) results in, after the Fourier

transform:

a(w) = EE() - 6Z(L) (117)

(iw)qZ(W) = -BZ(w) + (B6/a)E(w) (118)

where &(W) is the Fourier transform of a(x,t), Z(W) is the

Fourier transform of E(x,t), and Z(w) is the Fourier

transform of (x,t). Solve equation (118) for Z(w):

Z(w) = (B 6/cB + a(iW)q]E (w) (119)

Substituting the result into equation (117) and dividing by

i(w) results in an equation for the complex modulus:

- E - B62/[cB + cg(ico)q] (120)

Recalling iq - cos(q7r/2) + i sin(q7r/2) and letting

x = qr/2 , equation (120) becomes

-- =E I -A 1 (121)
I ( )l+(W/B)COS(x)+i(Wq/B)sjn(xj (

where A is defined as before in equation (112). This is

* the complex modulus. After multiplying the numerator and
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denominator of the innermost term by the denominator's

complex conjugate, equation (121) takes on the familiar form

of equation (114):
[l+(( q/B)cos(x)-i(Wq/B)sin(x)

* E'(w) = El (1 - )2] (122)
E*(w) E 1 + 2(wq/B)cos(x) + (wq/B)2 (12

Derivation of the damping ratio from this point follows the

previous derivation.

Comparison of the ATF model with Fractional Derivatives to

the 4-Parameter Model. Recall from equation (98) that the

expression for the complex modulus of the four parameter

model of viscoelasticity is

E, + E.Ar(cos(y) + i sin(y)]
E()= (123)1 + bWr[cos(y) + i sin(y)]

where y = r7r/2 from the derivation of equation (98).

Equation (123) can now be compared to equation (113),

the equation of the complex modulus for the single-ATF model

with fractional derivatives. The following equations of

comparison result:

1 + (w(/B)[cos(x) + i sin(x)]

= 1 + (bwr)(cos(y) + i sin(y)] (124)

E(1 -.4) = Eo (125)

E(wq/B)[cos(x) + i sin(x)]

- (EWr)[cos(y) + i sin(y)] (126)

Examination of all equations show that r must equal q

in order for the terms involving w and the trigonometric
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functions to equate. Therefore, the first equivalency

equation is

r = q (127)

which in turn implies x = y

Substituting equation (127) into equation (124) and

solving for B shows that the second condition for model

equivalency is

B = 1/b (128)

Using equation (128) in equation (126) gives the

relationship:

E/B = E, (129)

The final relationship of comparison is that of

equation (125), repeated here for clarity:

E(1 - A) = Eo (130)

Equations (127) through (130) are the equations that

show equivalency between the 4-Parameter model and the ATF

model with fractional derivatives. It should be noted that

no assumptions were made as to small A. Recall that the

glassy modulus equals

Eq = E1/b = (E/B)/(1/B) = E (131)

Comparing this to the equation for the rubbery modulus,

equation (131) shows that the ratio of the glassy modulus to

the rubbery modulus is

Eg/Eo = E/[E(l - A)] (132)

In many materials the glassy modulus is three orders of

40



magnitude larger than the rubbery modulus. This being the

case, A must equal 0.999 or greater.

As can be seen, a is not small as compared to one in

this case. Bagley and Torvik have used the 4-Parameter

model to produce curves with accurate results over a very

broad frequency range for many materials, principally

polymers. The assumptions that A << 1, then, is

inapproriate for use with 4-parameter viscoelastic modeling.

For comparison purposes, the plot of the loss factor

versus frequency for the single-ATF model without the small

a assumption is shown as figure 6. The values used for the

plot are as follows:

B 1
a= 0.9995

10o

0

U

0 ---0

0

•01- ' ' ' ' 1 '"I ' ' ii I ' ' ' ... II~

.11 10 8
Frequency

Figure 6. Single-ATF Model Without Small A Assumption
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No cancellation of A from the denominator of the loss factor

was made in producing figure 6. Figure 7, for comparison

purposes, is a plot of the loss factor using the same values

of B and 4, but with denominator terms involving a canceled.

00

0 .
0

0 \,q 0.2

to10
,1 1 10 ieO

Frequency

* Figure 7. Single-ATF Model With Small a Assumption

4
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IV. Two-ATF Model

Lesieutre's development of the model for the

one-dimensional vibration of an isotropic rod was selected

for ease of illustration of the ATF modeling method. He

states that in practice additional augmenting thermodynamic

fields can be used as needed to better approximate

experimental data over the frequency range of interest

(Lesieutre, 1989:19). In order to illustrate the ease or

difficulty of adding additonal ATFs, the following

developments of two-ATF models were performed.

Two-ATF Model with Integer-order Derivatives. For the

development of the two-ATF model with integer-order

derivatives a second augmenting thermodynamic field is added

to the free energy equation. The formulation of the damping

ratio followed that of Lesieutre's single-ATF model, with

the addition of equations involving the second ATF.

Constitutive Equations. Once again, the Helmholtz free

energy is employed to arrive at the constituitive equations.

We hypothesize

f = 1/2EE2 + 1/2af} 1 2 + I/202 22

- 61 C 4 - 62E4, - aC43 4 (133)

Here, E is the strain field, 4 and 42 are the two augmenting

thermodynamic fields, 61 and 6? are the strengths of the

coupling between strain and 4, and 42, respectively, and a3

is the strength of the coupling between the two ATFs, 4 and

4.
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The stress field is again found from the relation

a = f/ E = EE - - 6 2 (134)

and the two affinities A, and A2 can be found using equation

(25), which results in

* A, = -6f/641 = 61 C - 011i + a342 (135)

A2 = -6f/4 2 = 6 E - C(2 + 0 1 (136)

Assuming the irreversible thermodynamic processes are

described by first order rate equations, the time rate of

change of 4i, or 641/ t is assumed to be proportional to the

deviation from an equilibrium value:

* l/t = -Bj(4 - 4j) i=1,2 (137)

with the value of 4i found from the value of 4j at

equilibrium, or when the affinity is zero. Here it is

assumed that there is no coupling between the two ATFs in

the equilibrium relationship of equation (137), which would

be indicated by an equation of the form

41/ t = -Bj(4 1 - 41) - Cl(4, - 42) (138)

for the first ATF, with a similar equation for the second

ATF. Such interaction are not used in the developments of

the two-ATF models.

Setting A, in equation (135) equal to zero and solving

for 41 gives

*4 = 6 1Ela0 + 0342/1 (139)

Similarly, for 42,

42 = 62C/02 + 03 1/02 (140)

Substituting these results into equation (137) gives, for
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the time dependence of the ATFs, two equations:

I e /t = -BI(4 1 - 61C/11 - Of3 /01) (141)

216t = -B2(42 - 62E/C2 - C93 1/0!2 ) (142)

Notice that now 4j and 42 are coupled in 4i and 42, as well

as in strain, C.

Balance of linear momentum requires that, for a

one-dimensional deformation,

Oa/Ox - pa 2u/0t 2 = 0 (143)

The derivative of equation (134) with respect to x gives

a/Ox = EOE/ax - 61684/Ox - 6,042/x (141)

-which, when substituted into equation (143) and recalling

E(x,t) = du(x,t)/ax = u' , results in a partial

differential equation coupled in u, 4i, and 42:

* pU - Eu" + 61 4' + 6242' = 0 (145)

where the dots represent time derivatives and the primes

represent spatial derivatives. This equation together with

equations (141) and (142) are the governing equations for

longitudinal oscillations of an axial rod.

Damping Ratio. In order to solve the constitutive

equations with greater ease, the Fourier transform is

invoked, with time derivatives introducing iw, and spatial

derivatives introducing ik, which results in the following

equations:

p(iW)2U - E(ik)2U + 61 (ik)Z 1 + 62(ik)Z2 = 0

B 161 (ik)U - Ofi(Bi + iw)ZI + BC 3Z2 = 0

B26 2(ik)U + B2cv3Z1 - a2(B2 + iW)Z2 = 0 (146)
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These equations may be expressed in matrix form as

-pW2 + Ek2 i6lk i6 2k U

iB i~k -a,(Bi + iW) BI 3 = (0)

iB 2 62k B 2o3 -CI2 (B2 + iW Z2 (147)

* This is a linear system of equations whose solution is

determined by finding the determinant of the matrix and

setting it equal to zero:

* (-pW.2 + Ek2)[(-a1 )(B1 + iW)(-G 2 )(B 2 + iw) - BjB 2 I3 2]

- ik61[iBik6i(-aC2 )(B 2 + iW) - iBjB2 kaI3 6 2 ]

+ ik6 2 [iBk6i(B 20I3) + iB2kti16 2(B1 + iw)] = 0 (148)

Carrying out the algebra and rearranging equation (148)

gives

(-pw 2 + Ek2)[Y -w2/(BIB 2 ) + iw/B 3]

- k2E[AI + A 2 + A 3 + iW (A 1 /B 2 + A 2 /B1 )] = 0 (149)

where

Y = 1 - 21(CIE2

Al = 612/(EIi)

A2 = 6 2 2/(E 2 )

a 3  = 2 ( 6 1 2 013 ) / (E011 0E 2 )

1/B3 -1/Bi + 1/B 2  (150)

Dividing equation (149) by Y - w2/(BIB 2 ) + iw/B 3

dividing the result by p, and factoring k2/P from this

* results in an equation from which the complex modulus can be

derived:

k2 E[AI + A? + A3 + + A2/Bi)]
-w 2 + - E - + 0 (151)

P Y - wj2/(B1B 2 ) + iwd/B 3
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The bracketed quantity of equation (151) is the complex

modulus E'(w), and the loss factor 77, therefore, can be

found from equation (4). Multiplying the complex modulus by

the complex conjugate, Y - W2/(BIB2) - iw/B3 , of the

denominator of the second term within the brackets of

equation (151) results in the following expression for the

complex modulus:

Nre + i Ni 1= E (152)
y 12/(BIB2)]2 +(A/B3) 2

where

Nre = /- 2/(BiB 2)] (C - (2/(BIB 2 ) + 1I + A 2 + 3]

+ (W/B3 )(Adw/B 2 + 62w/Bi + w/B 3 ) (153)

and

Ni*= [Y - &2/(BlB2 )] (AIW/B2 + 6 2w/Bi]

- (W/B3)(61 + 62 + A3) (154)

The loss factor, found using equation (4), is given by

7 = Im{E'(w))/Re{E'(w))

= Nis/Nre (155)

where Ni, and Nre are given by equations (154) and (153),

respectively.

With the assumptions that damping is siuall, and that

al << 1, a2 << 1, and A3 << 1, the damping ratio then

becomes

( /B 3) ( A + ,2+A3)- [F)- 2 / (B IB 2)] [ wAI /B 2+ A2 /B i ( 56= (156)

2([Y - W2/(BIB2)]2 + (w/B 3 )2)
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In order to check that this reduces to the case when

only one ATF was used, set a = 0 and 62 = 0, which from

equation (150) assures A2 = 3= 0 and Y= 1. Equations

(153) and (154) then become

Nrei = 1 - (2w2)/(BIB 2 ) + w
4 /(BIB2)2

* (WAi)/(B2B3) +Cj2/B32 (157)

Nial = Ale[1/B 2 - W/(BiB 2 2) - 1/B 3] (158)

and the loss factor is an equation in terms of a,, B1 , and

B2 , with no coupling between the second ATF, 2, and the

strain, c, or the first ATF, 4i. The loss factor is then

7= Niui/Nrel

cdA,(Bl+B2)/(BlB2) - [1 - W2/(BlB 2 )][WAI/B2]
(159)

[(-2/(BiB 2 )]2 + (w(Bi+B 2 )/(BiB 2 )]?

As can be seen, equation (159) is not equivalent to twice

equation (41), the loss factor for a single ATF, in that the

material constant B2 is still present. Taking the limit of

equation (159) as B2 goes to infinity results in

wAi/Bi
' = (160)

1 +(j2 /B 1

Examination of equation (160) shows it to be identical

to the value of the loss factor for the case where only one

ATF was employed. The loss factor of the two ATF model,

therefore, reduces to that of the one ATF model exactly.

Characteristics of the Two-ATF Model. Figure 8 is a

plot of the loss factor versus frequency for the two ATF

model with the values of the parameters as follows:
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B, = 1
B 2 = 10

A, 0.1
SA2 =0.05

.I1

L
0

U

L- .01

0-J

.0014 ' ' ' ' ' l ' ' ' ' " ' "

1 10 100
Frequency

Figure 8. Loss Factor vs. Frequency - 2-ATF Model

Here B1 and B2 have the dimensions of frequency, and Ai and

A2 are dimensionless. These values were selected only to

allow for ease in comparison as the parameters of the model

are changed. Again, ee and (2 are assigned values

equivalent to the magnitudes of B1 and B2 , respectively

(Lesieutre, 1989:48, 146).

It will be noted that 43 is a function of 61 and 62, as

well as al, a2 , and C3. From equation (150)

61 = (AIEGl)1/2 (161)

62 = (A 2 Ea 2 )l/2 (162)
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616(93 G3 (,dI' d g)12

&A7~ 1 2

- - el (163)

a3, then, can be found from a relationship of ot and c92:

C = C' (cio1)1/2 (164)

and

A3 = C' (I4J 2)1/2 (165)

where C' is a constant parameter that can be varied as the

other material parameters. For the plot in Figure B C' was

set equal to 0.1, and A, = v X 10-2

Figurp 8 shows the "double hump" characteristic of the

loss factor when two ATFs are employed, with the peak of the

first maximum at a frequency equal to the value of BI and

the second maximum falling on a frequency equal to the value

of B?. Notice that two maxima are discernable, although

they almost merge into a single curve. This discernability

is not clearly the case in some of the later plots.

Figures 9 through 18 are plots of the loss factor

versus frequency with different parameters of the two-ATF

model varied for each plot.

Figure 6 shows the loss factor versus frequency with

B,=0.2. The first maximum has shifted to the left and

corresponds to a frequency of 0.2. The two maxima can be

seen as separate maxima. This is also obvious in figure 10,

in which the value of B? is increased to 90. Again, the
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Figure 9. Two-ATF Model with BI=0.2
(B,=10, AI=0.1, A2=0.05, A 3=5- X 10-2)

0

U.1
0
L. .01

0

.001 ' ' " , ' ' " ' ' . . .
.1 1 10 100

Frequency

Figure 10. Two-ATF Model with B2=90
(Bi=1, AI=0.1, 12=0.05, 63=vr X 10-2)
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second maximum shifts to a value corresponding to 90.

Decreasing the value of B, also tends to decrease the

maximum value of the loss factors for both peaks of the

curve, which also occurs with an increase in B2.

The opposite effect is apparent as B, is increased to

9.0 and B2 is decreased to 2 in figures 11 and 12,

respectively. As the values of B1  and B2 approach each

other, the double hump collapses into one maximum, and the

value of the loss factor tends to increase. In both cases

the value of the maximum is the same, with the curve

appearing to be the same, only shifted along the x-axis.

L0

.01

0

.001 r ' " l ' ' ' '' " , . . .
110 10

Frequency

Figure 11. Two-ATF Model with B =9.0

(B2=10, A=0.1, A 2=0.05, A3=J5 X 10-2)
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J

.001'
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Figure 12. Two-ATF Model with B2=2.0
(B1=1, A 1=0.1, A2=0.05, a3 =Vr X 10-2)

Figures 13 and 14 show the effects of varying LI, with

figure 13 corresponding to an increase of A, to 0.9, and

figure 14 to a decrease to 0.02. An increase of a tends to

collapse the separate maxima into one peak and to increase

the value of the loss factor at that maximum. The value of

the maximum loss factor is almost an order of magnitude

higher. Although barely perceptible, an inflection point,

or local maximum, occurs at the frequency corresponding to

B2. With a decrease in a,, however, a decrease in the

maximum value corresponding to Bi occurs. This decrease is

not an order of magnitude as was the case with the increase.

The value of the maximum at W = B decreases as well, but

remains the dominant peak.
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Figure 13. Two-ATF Model with aj=O.9
*(Bi~1, B7=10, A70.5 ai=f3 X 10-2)
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Figure 14. Two-ATF Model with a,=0.02
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Figures 15 and 16 show similar results as A 2 is

decreased to 0.005, with the peaks merging into one dominant

maximum, and as A2 is increased to 0.5. In figure 15, the

value of the loss factor at this maximum is only slightly

less than that of figure 8, while the value of the loss

L
0

U
.01

0

.001

,1 1 10 100

Frequency

Figure 15. Two-ATF Model with 62=0.005

(Bi=l, B2-10, Al-0.I, d,=-,/5 X 10-2)

factor at the second maximum, barely discernable at a

frequency of 10 more as a deflection point, is considerably

lower. Figure 16 shows the loss factor being greater over

the entire frequency range, with the maximum at a frequency

of 10 being dominant. As the difference between A, and 62

increases, the double maxima merge to one maximum whose peak
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Figure 16. Two-ATF Model with A2=0.5
(Bi=1, B2=10, Ai=0.1, 63=T X 10-2)

is at the frequency corresponding to the value of Bi

associated with the largest value, A.

As the strength of the coupling between the two ATFs is

increased, the value of the loss factor at lower frequencies

is increased. Figure 17 shows the plot of loss factor

versus frequency for A3 = f4i-.5 x 10-2 , resulting from

C'-0.9 . Again, a maximum at the value of frequency

corresponding to B2 is observed, but the lower maximum has

shifted to the right and increased by an order of magnitude.

A decrease in the value of A3 does not, however, show the

same trend, as is evidenced in figure 18. With an order of
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Figure 17. Two-ATF Model with 43=\40.5 x 10-2
* (B,=I, B7=10, d1l=0.1, A2=0.05)
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Figure 18. Two-ATF Model with 163=V'0.5 X 10-3
(B1=1, B2=10, dj=0.1, 42=0.05)
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magnitude decrease in the value of C, of equation (164) only

a very slight decrease in the loss factor is noted.

Figure 19 shows a summary of the effects of varying the

parameters of the two-ATF model. The arrow directions

corresponds to the direction the curve will shift with an

increase of the parameter shown.

B1

0L
C B

Uru

UL-

0 A

Frequency

Figure 19 - Effect of Parameter Variation on Two-ATF Model

Two-ATF Model With Fractional Derivatives. A second

augmenting thermodynamic field is now added to the model,

and derivatives of fractional order are allowed in the time

derivative terms of the thermodynamic equilibrium equations.

The formulation of the problem follows the same path as

previously; however, trigonometric relations are required
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throughout the algebraic reduction in order to simplify the

resulting equations for the complex modulus.

Constitutive Equations. The equation for the Helmholtz

free energy used for the two-ATF model, equation (133), is

used again:

f = 1/2EE2 + 1/2ctj412 + 1/2ct24 22

- 61fE4 - 62E4 2 - a34142 (166)

Equation (134) is the bquation of the stress field:

o = 6f/6E= EE - 6i'4 + 6724 (167)

The affinities are given by equations (135) and (136):

Ai = -5f/64, = 6 1E - o] + d342 (168)

A 2 
= -3f/3 = 6?E - C(2 2 + Of3 1 (169)

Balancing the linear momentum equation gives

*c/6x = pi = Eu" - 61 .I' + 624?' (170)

Recall from equation (137) that

= -Bj(4 1 - 4i) i = 1,2 (171)

Allowing fractional derivatives in the irreversible

thermodynamic equilibrium equations of the time rate of

change of 4, and 4,, equations (141) and (142), results in

the following:

6q 1/6tq = -Bj4, + B61E/a1 + Bi C 34 2/01 (172)

6r42/3tr = -B 24 2 + B262E/C2 + B 2U 34,/2 (173)

Equations (172) and (173) together with equation (170) are

the constitutive equations for a uniaxial rod modeled with

two augmenting thermodynamic fields with general order

derivatives. These equations are three partial differential
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equations, coupled in u, ,° and 42, and can be solved more

easily in the Fourier domain.

Damping Ratio. Taking the Fourier transform of

equations (170), (172), and (173), with iw introduced

through the time derivatives and ik introduced through

derivatives with respect to x, gives three equations which

may be written in matrix form as

-p ~ 2 + Ek 2 ik6i ik62  1 U1
iBik6i -cf, [B,+(i j)q] BI 3 IZ I = (O

iB2k62 B2Ct3  -Ct2 (B2 +(ij) r 2 (174)

The determinant of the above matrix must equal zero in order

to solve the linear system of equations which it represents.

The determinant of equation (174) is then

(-pW2+EkI)((a C2 ) (B 1 +(i()q] (B 2+(iw()r] - BIB 2 f3 2

- (ik6 1 )((-a(2)[iBik6)[B2+(iw)r] - iBIB 2kC(3 62)

+ (ik6 2)(BIB 2kG3 61 - (-ce1)(iB 2k6 2](B 1+(iW )])=O (175)

After multiplication of terms inside the ( ) brackets,

equation (175) can be written as

(-pL2+Ek2) ((I IC2 ) [BIB+B (iJ) q+B2 (iw) r+(iw) q + r]

- BIB2C( 3 2) - (k26 1 )[BiB 2CI26j+Bj(ic)rI 2 6i

+BIB 2Ct3 62] - (k26 2 )(BlB 2a 3 6i+BB 2C'i67

+B 2 (iW) q 1 62 ] = 0 (176)

Before solving this set of equations, the terms

involving (iW)q and (iw)r must be written in a form that
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allows for easier algebraic manipulation. Recall from the

appendix that iq = cos(qr/2) + i sin(q7r/2) , and allow

q + r =s

q7Tr/2 = x

r/2 y

s7T/2 = z (177)

Equation (176) may now be written in the following form:

(-pw2+Ek2 )(c1c12 [BIB 2+Blwrcos(y)+B 2wqcos(x)+Wscos(z)

+ i(B1wrsin(y)+B 2wqsin(x)+ssin(z))]-BIB 2i33)

- k2 [BIBz 3 616 2 +BIB 2 C 2 612+BIwrC26,2cos(y)

+ iB1wrc 26j2sin(y)] - k2[BjB 2 Ct3 6162 +BjB 2CI16 22

+ B2cqa,62?cos(x)-iB 2wqN 1622sin(x)I = 0 (178)

Dividing this equation by the term which multiplies

(-pW 2 + Ek2) results in an equation of the form

-p 2 + Ek2 - k2(N 1 /D1 ) = 0 (179)

where

Ni = 2BiB 2C(36 1 62 + BIB 2C 26 12 + BIB 2 0 1 62 2

+ BiwrC[2612cos(y) + B2(qCj6 22cos(x)

+ i(Bjwrd 2 6j2sin(y) + B2Wqua6 2 2sin(x)] (180)

and

D i = B B2 (CI1 2  - C3 2) + I C 2 [BI rcos(y) + B2(jcos(x)

+ W'COS(Z)] + iCxIa2[Bj(Brsin(y) + B2wqsin(x)

+ w sin(x)] (181)

Factoring EBIB 20102 from the numerator, NI, and

recalling the definitions of 41, A2, and A3 from equation

(150) results in
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N1 i EB IB 2 040 2 (A63 + 6 1 [l + ((wr/B 2)CO3(y)]

+ 6 2 [l + (wjq/Bl)cos(X)] + i[(AiWr/B2)sin(y)

+ (,A2Lwq/B 1)sin(x)]) (182)

Factoring BB 2 G[1C2 from the denominator, D1, and

recalling that Y =1 - eis2/(aId12 ) gives

Di= BiB 2cECIU 2 (Y+ (wjq/Bi )cos(x) + (w~r/B 2)cos(y)

+ (wso/BiB2)cos(Z) + i((wq/Bl)sin(x) + (Wr/B2)sin(y)

+ ((s/BlB 2)sin(z)]) (183)

Dividing equation (179) by p and rearranging, with the

EBiB 2al1 (2 canceling, leaves an equation from which the

complex modulus can be extracted:

-W2 + E(k2/p)[1 - N2/D2] = 0 (184)

where N2 and D2 are defined by equations (182) and (183)

divided by BIB 2CI1 2 , repectively. The equation inside the

3 brackets is the complex modulus divided by E, and the

loss factor can be derived from equation (4). To do this,

however, both N2 and D2 must be multiplied by the complex

conjugate of D2 :

Y2= Y' + (wq/Bl)cos(x) + (wdr/B2)cos(y)

+ (ws/BiB2 )COS(Z) - i [(Lwq/B 1 )sin(x)

+ (W~r/B2)sin(y) + (we/B1B 2)sin(z)] (185)

In order to simplify the resulting equations three

trigonometric relations were required:

sin(x + Y) = sin(x)cos(y) +cos(x)sin(y)

cos(x + y) - cos(x)cos(y) sin(x)sin(y)

A = A sin 2 (x) + A Cos2 (x) (186)
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Following extensive algebraic manipulation and

employing the above trigonometric relations results in the

following expressions for the numerator, N2, and the

denominator, D2, of equation (184):

N, (IE) = 61 (Y + (wr/B?)Z + (wq/Bl)cos(x)

+( y+ 1) (wr/B 2 )C05(Y) + (w'i/BIB 2)cos(z)

+ (Lws/BjB2)cos(X-y) + (&w(r~s)/BjB 22)COS(Z-y)]

+ A2 [(y + (cq/B1)? + (Y + 1)(cGj/Bl)cos(x)

+ (wr/B2)cos(y) + (wa/B 1B2 )COS(Z)

+ (w#/BjB2)cos(X-y) + (W(q.s')/Bl2B 2)cos(Z-X)]

" A3 (C'y+ (Wq/Bl)cos(x) + (wr/B2)COS(y)

" (w8/BjB2)cos(Z)]

+ i ( Ai [-(Ldq/Bi)sin(x) + (Y - l)(wdr/B 2)sin(y)

-(w8/BtB2)sin(z) + (wz/BtB2)sin(y-x)

+ (c(A r+s) /BjB22)sin(y-z)]

+ A2 [(V - 1)(6jq/Bl)sin(x) - (wr/B2)sin(y)

-(Gws/BlB2)sin(z) + (ws/BIB7)sin(x-y)

+ (c( q+u ) Bi 2B2 )sin(x-z)]

- A3 [(wq/Bl)sin(x) + (wr/B 2)sin(y)

+ (we/BjB2)sin(z))) (187)

D2 - Y2 + 2Y((Wq/Bi)cos(x) + (WrIB2)coz(y)

+ (we/BjB2)COS(Z)] + (dq/Bi)2 + (wjr/B 2 )2 + (wm/BlB2)2

+ (2,')/B 1B2) (cos(x-y) + (wq/Bl)cos(z-x)

+ (ir /B 2 )COS (Y-Z) (188)
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The loss factor becomes

)7 7= Im[E* (w)]/ Re(E* (w) ]

= (Im[D2-N2]/D2)/(Re[D2-N2] /D2) (189)

Again, the assumptions of small damping and A, << 1

* A7 << 1 , and a3 << 1 , leading to equation (156) are

made here. Two other relationships help further reduce the

resulting loss factor. Recalling the definitions of x, y,

* and z given in equation (177), gives the following

relationships:

z - y = (q+r)(7r/2) - r7r/2 = q~r/2 = x

*z - x = (q+r) (7r/2) - q7r/2 = r~r/2 = y (190)

Using trigonometric relationships for the sine and cosine

functions results in

* sin(x-z) = - sin(z-x) = - sin(y)

sin(y-z) = - sin(z-y) = - sin(x)

cos(x-z) = cos(z-x) = cos(y)

*cos(y-z) = cos(z-y) = cos(x) (191)

The loss factor then becomes

77 =Nioes/Dioea (192)

* where

Njou. 61 ([((wg/Bl) + (wr**/BIB22)]sin(x)

+ (ws/BjB2)[sin(z) + sin(x-y)]

*+ (1 - Y) (wr/B2)sin(y)) + A?2 ( [(1 - y ) (wq/Bl)sin(x)

+ ((wr/B2) + (WJ(q+s)/Bl2B 2 )] sin(y)

+ (we/BB 2)(sin(z) + sin(y-x)]}

*+ 63 ((wq/Bl)sin(x) + (Cwr/B2)sin(y)

+ (w@/3 1B2)sin(z)J (193)
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and

D*os = Y2 + 2y[(q/B1 )cos(x) + (cr/B2)cos(y)

+ (ws/BiB 2 )cos(z)] + (Wq/B1 )2 + (Wr/B2)2

+ (WI/BiB 2 )2 + (2W2/BiB 2 )[COS(X-y) + (wq/Bl)cos(y)

+ (wr/B 2 )Cos(x)] (194)

With the assumption of small damping, the damping ratio is

equal to half the loss factor.

As an added check on the algebra, the loss factor of

the two-ATF model with fractional derivatives, equation

(192), should reduce to the loss factor of the single-ATF

model with fractional derivatives, twice equation (116), in

the same manner equation (156) reduced to equation (41) when

the two-ATF model without fractional derivatives was

compared to the single-ATF model. Setting C3 = 62 = 0

which in turn drives A2 = A 3 = 0 and Y = 1 , in equation

(192), then multiplying the numerator and denominator by B2 2

results in the following:

17 = Nck/Dck (195)

where

Ncw = Al (B 2 '( q/B1 )sin(x)

+ B 2 (o'/Bi)(sin(z) + sin(x-y) + rsin(x)]} (196)

and

Dck = B 2
2 (1 + 2(tq/B 1 )cos(x) + ( q/B 1 )2]

+ B 2 12wrcos(y) + 2(w,/BI)cos(z) + 2(c9/Bj)cos(x-y)

+ 2(w(q*s)/B 1 2)cos(y)] + 2(w(r+ )/Bl)cos(x)

+ (wr)2 + (w4/Bi) 2  (197)
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Taking the limit of equation (195) as B 2 goes to infinity

results in an indeterminant form. L'Hospital's rule is

invoked twice, and the resulting limit gives

A1 (tq/B1 )sin(x)'= (198)
1 + (2(q/Bl)cos(x) + (wq/B 1 )2

which exactly equals twice equation (114), and the loss

factor, therefore, reduces to that of the single-ATF

fractional derivative model.

Characteristics of the Two-ATF Model With Fractional

Derivatives. Figure 20 is a plot of the loss factor versus

frequency for the two-ATF model with the values of the

parameters as follows:

q = 0.8 B1 = 1 A, = 0.1
* r = 0.4 B 2 = 50 A = 0.05

A3 = 5 X 10-2

L.01

00

LA.

0 .001
-J

0E - I ... I ll I  1 I 1 1 "1 gil I ' 1 1 1 1 I

.1 1 10 100 1000 10000 1E5
Frequency

Figure 20. Loss Factor vs. Frequency for the Two-ATF Model
with Fractional Derivatives
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Figure 20 shows a similar "double hump" characteristic

to that of the two-ATF model without fractional derivatives.

The first maximum falls under the value of frequency

corresponding to the value of B1 . However, unlike the

two-ATF model without fractional derivatives, the second

maximum would appear not to correspond to B2. Comparing

equation (192) to equation (156) shows that the Bi of

equation (156) are raised to the same power as (j. In

equation (192), however, this is not the case. To find the

value of frequency at which the maxima for the loss factor

corresponding the two-ATF model with fractional derivatives

will occur, the values of the Bi must be raised to the power

of inverse of the respective fraction to which the

corresponding ijis raised. For example,

B1 =1, q=0.8

==> ( = (1)(1/ 0 .8 = (1)1.2 = 1 (199)

which is the value of frequency corresponding to the first

maximum. Likewise, for

B2 = 50, r = 0.4

==> w = (50)(1/0.4) = (50)2.5 = 17678 (200'

Again, the value corresponds to the frequency of the second

maximum in figure 20.

Notice also that the slopes of the two portions of the

curve are different, with the slopes of the first maximum

being greater than those of the second maximum.
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Equations (166), (172), and (173) are symmetric with

respect to the two ATFs, as well as the other material

constants. This fact leads to the conclusion that the loss

factor must also be symmetric with respect to the parameters

of the model. Exchanging the values of all parameters with

subscript 1 for those with subscript 2, e.g., B1 = B2 and

B 2 = Bi , as well as exchanging the values of the

fractional powers, q and r, results in a plot of the loss

factor that is exactly the same as figure 20. This, then,

is an added check on the algebra performed to arrive at

equation (192).

Figures 21 through 34 show the loss factor versus

frequency as various parameters of the two-ATF model with

fractional derivatives are varied.

The value of q is reduced to 0.1 in figure 21. The

first maximum is no longer visible, and the value of the

second maximum has increased. When q is increased to 0.95

in figure 22, the value of the peak is increased, while the

maximum of the second peak remains the same. The slope of

the first "hump" or curve is clearly greater as well, as is

evidenced by the narrowing of the peak, and the deepening of

the minimum as the first curve leads into the second curve.

Values of r are varied in figures 23 and 24. First, r

is reduced to 0.1, and the second peak shifts to the right.

The maximum value of the first peak remains unchanged. As r

is increased to 0.85, the second peak shifts towards the
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Figure 21. Fractional Derivative 2-ATF Model with q=0.l
* (r=0.4, B1=l, B2=50, A]=-0-1, A2=0.05, A,=\1-5 X 10-2)
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Figure 22. Fractional Derivative 2-ATF Model with q-0.95

(r=0.4, B1=l, B2=50, al=0.1, A2=0-05, A3\5 X 10-?)
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Figure 23. Fractional Derivative 2-ATF Model with r=O.l
(q=.9 Bj=1, B2=50, al01 a2=0.05, 63 =-/5 X 10-1)

L1

00

U

L

IE,

.1 1 10 100 1000 10000 1E5
Frequency

0 Figure 24. Fractional Derivative 2-ATF Model with r=0.85
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first peak on the left, and the value of the second maximum

increases. Once again, the value of the first maximum

remains constant. It will also be noted that the value of

the slope of the second curve has increased as well.

Figure 25 shows the plot of the loss factor versus

frequency when B1 is decreased to 0.3. The peak now

corresponds to a frequency of 0.22 (w = (0.3)1.25), with the

slopes and maximum the same as originally plotted -- the

first maximum has just shifted to the left. The second peak

0 .1=

U

0 .001
J

IE-4 - I I I 

.1 1 10 100 1000 10000 IE5
Frequency

Figure 25. Fractional Derivative 2-ATF Model with B1=0.3
(q=0.8, r=0.4, B2=50, A1=0.1, A2=0.05, A3=V5 X 10-2)

is now also more clearly discernable. When B1 is increased

to 30 in figure 26 the curve shifts to the right with the

maximum corresponding to a frequency of 70. The second
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Figure 26. Fractional Derivative 2-ATF Model with B1 =30
(q=0.8, r=0.4, B2=50, A=0.1, a?=0.05, A,=V5 X 10-2)

maximum is now almost a part of the first curve, but can

still be seen as an inflection point.

With B2 reduced to 5 in figure 27 the plot of loss

factor versus frequency shows the shift of the second

maximum to the left, with the maximum now an inflection

point on the curve at a frequency of 56. The slope

following the inflection point clearly differs from the

slope preceeding the point, showing the slope dependence on

the fractional powers of the model. Likewise, as the value

of B2 is increased to 1000 in figure 28, the maximum of the

second curve shifts to the right. The maximum should

correspond to a frequency of 3 x 107.
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Figure 27. Fractional Derivative 2-ATF Model with B2=5
N~=0.8, r=0.4, Bl11, A1 O0.1, A2=0.05, A 3=V5 X 10-2)
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* Figure 28. Fractional Derivative 2-ATF Model with E12 =1000

(q-0.8, r=0.4, B,=1, AI-0.1, A2-0.05, A 3 =N" X 10-2)
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The value of A, affects the value of the maximum of the

first peak, as can be seen in figures 29 and 30. Reducing

a, to 0.01, and order of magnitude, reduces the maximum by

almost an order of magnitude in figure 29. Increasing the

value of a, has the opposite effect of increasing the

magnitude of the peak in figure 30. In both cases, however,

the value of the second maximum remains unaffected.

* .1=

L0

U

e .001

.1 1 10 100 1000 10000 IE5
Frequency

Figure 29. Fractional Derivative 2-ATF Model with A1=0.01
(q=0.8, r=0.4, B1=1, B 2=50, a2=0.05, a 3=Vr5 X 10-2)

Figures 31 and 32 show the effects of varying A2. If

a2 is decreased as in figure 31, the value of the second

peak's magnitude decreases accordingly. Increasing A2 to

0.5 in figure 32 increases not only the magnitude of the

second peak quite drastically, but also that of the first

peak, although to a much weaker extent.
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Figure 30. Fractional Derivative 2-ATF Model with 11=0.9
(q=0.8, r=0.4, B1=1, B2=50, A7=0.05, A3=V5- X 10-2)
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Figure 31. Fractional Derivative 2-ATF Model with 12-0.005
(q-0.8, r--0.4, Bj=I, B2-50, A1=0.1, A3=vfS X 10-2)

75

!o i



Lo .01
00

* U

o .001
-J00

1E-4. . I 7.7. " I ' 1"'"1 , I ' " .1 . ..... ,

* 1 10 100 1000 10000 IE5

Frequency

Figure 32. Fractional Derivative 2-ATF Model with A70.5
(q=0.8, r=0.4, B1=1, B7=50, Ai=0.1, A3=V5 X 10-2)

Finally, the value of A is varied in figures 33 and

34. Reducing .5 X 10- 3 by reducing C' an order of

9 magnitude does little to the overall curve except for

reducing the value of the magnitude of the first peak only

slightly. Increasing A3 toVr4O.5 X 10-2 by increasing C" to

0 0.9, however, increases the value of the first peak by an

order of magnitude, and shifts it to the left. The second

peak, in turn, is only affected slightly, with a small

0 increase in the magnitude visible.

The effects of variations in the model paramaters are

summarized in figure 35. Increasing the parameter will

* shift the curve in the direction shown.
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Figure 33. Two-ATF Fractional Derivative Mlodel
with d3=VO--. X 10-3

(q=0.8, r=0.4, B1=1, B2=50, 61=0.1, A2=0.05)
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Figure 34. Two-ATF Fractional Derivative Model
with 1640Y5 X 10-2

(g=0.8, r=0.4, B1=1, B2=50, 61=0.1, A7-0.05)
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V. Summary and Conclusions

In this study, the development of a model of material

damping using augmenting thermodynamic fields (ATF), wherein

the equations of thermodynamic equilibrium for these ATFs

had derivatives of integer order, was reviewed. This model

was originally introduced by Lesieutre, formerly of UCLA.

The model was shown to be able to reproduce the material

damping of classical thermoelastic and viscoelastic theory,

with no assumptions made as to the magnitude of the the

parameter A, given that E is taken to be the adiabatic

modulus of elasticity for the thermoelastic case, or the

glassy modulus for the viscoelastic case.

As an aside, if A is small as Lesieutre assumed, then

the modulus of elasticity in the ATF model formulation, E,

is approximately equal to the isothermal modulus of

elasticity, ET, of the thermoelastic model, or equal to E0,

the Young's modulus of the viscoelastic model.

The model of material damping was also developed

wherein the thermodynamic equilibrium equations of the

augmenting thermodynamic fields were allowed to have

derivatives of fractional order. The ATF model with

fractional derivatives was then compared to Bagley and

Torvik's 4-parameter viscoelastic model, in which fractional

derivatives are allowed as well. Comparison was a one to

one match, given the fractions of each model's derivatives

were equal. This comparison also showed that the A
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parameter of the fractional order ATF model was less than

unity, Moreover, in many materials A approached unity,

i.e., A > 0.999 , since the glassy modulus for many

materials is three orders of magnitude greater than the

rubbery modulus. Owing to the fact that Bagley and Torvik

have used the 4-parameter model to accurately model many

materials over broad frequency ranges, assumptions that

A << 1 , as Lesieutre made in his original model, cannot be

made when using the ATF model to describe viscoelastic

behavior in material damping.

The ATF model and the ATF model with fractional order

derivatives, a more general case of the ATF model, was shown

to lead to expressions for the loss factor and damping ratio

that are strong functions of frequency, for the case of the

uniaxial rod. This was the desired result. More

importantly, the ATF model accurately describes actual

behavior of many materials, because of the correspondence

between it and the models of thermoelasticity and

viscoelasticity.

In all comparisons, the modulus of elasticity, E, of

the ATF model differed from the moduli of the respective

models, ET and E,, by the factor (1 - A). In the case of

viscoelasticity, the modulus E is found to be the glassy

modulus, E,, with the relationship between the rubbery

modulus, E,, and the glassy modulus being that of

Eo = (1 - A)E . A similar relation was shown to exist
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between the isothermal and adiabatic moduli of the

thermoelastic model, i.e., EA, the adiabatic modulus of

elasticity is related to ET, the isothermal modulus of

elasticity by the equation EA = (1 - A)ET.

Recommendations for further study include examination

of the linearity effects of this model. Determination of

whether the sum of results obtained from a fractional order

ATF modeling of viscoelasticity will describe material

damping of materials in which both thermoelasticity and

viscoelasticity are present need be made. It would appear

to be so, since the fractional order ATF model is linear.

This would also include experimental determination of the a 3

coupling parameter between strain and temperature.

It is recommended that the effects of higher order

derivatives in the diffusion laws on the constitutive laws

be determined. This will lead to an understanding of the

exact relationship of the fractional order ATF model to

thermoelasticity and viscoelasticity. The expansion of the

model to three dimensions should present no particular

difficulty.

Possible future research could also include an

examination of energy methods as a means of deriving the ATF

model.

Finally, it is recommended that numerical methods for

the solution of the fractional order ATF model be ananlyzed.

Application of numerical analysis to the fractional order
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ATF model will allow for further ease in the use of the

model in the description of material damping.
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Appendix A:

Complex Numbers (Kreyszig, 1988:721-729)

Define a complex number, z, as

z = x + iy (A.1)

where both x and y are real numbers, and

i2 = -1 (A.2)

is the definition of an "imaginary number."

The complex conjugate, z, of i is defined as

z = x - iy (A.3)

From these definitions, several relationships are

developed:

Re z = x = 1/2(z + z) (A.4)

Im z = y = [1/(2i)](z - i) (A.5)

-- (A.6)

The polar representation of the complex number z is

often practical to use, and easier to manipulate

mathematically. Define

x = r cos(O)

y = r cos(O) (A.7)

By solving these equations simultaneously, it can be shown

that

r = (X2 + y2)

O = arctan(y/x) (A.8)

Substituting equations (A.7) into equation (A.1) gives

z = r(cos(O) + i sin(O)] (A.9)
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It can also be shown mathematically that

zn = rn[cos(nO) + i sin(nO)] (A.10)

One of the most important complex analytical functions

is the exponential function, defined as

* ez = ex[cos(y) + i sin(y)) (A.11)

Substituting z = iy into equation (A.11) gives the

so-called Euler Formula:

Seiy = cos(y) + i sin(y) (A.12)

Comparing the right hand side of equation (A.9) to that

of equation (A.12) gives

* eiO = cos(O) + i sin(O) (A.13)

and together with equation (A.9) gives the polar form of the

exponential function:

• z = r eiO (A.14)

Solving equation (A.14) when z = i gives

i = r(cos(O) + i sin(O)] (A.15)

* For the equality of equation (A.15) to hold the following

must be true:

r = (x2 + y 2 )l 2 = (02 + 12)1/2 = 1

* sin(O) = 1 (A.16)

Therefore,

0 = (nir)/2, n=1,2,3 ... (A.17)

* So, recalling equation (A.13),

i = cos(7r/2) + i sin(7r/2) = ei(n/ 2) (A.18)

for the principal value (-7r< < < r).
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For z = (1f whereO0< f < 1

z = if = (ei(Ir/ 2 ) )f = eif7r/2) (A.19)

From equations (A.10) and (A.18)

if = cos(O) + i sin(O) = cos(f7r/2) + i sin(f~r/2) (A.20)
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Appendix B:

Specific Heat Comparisons (Torvik, 1990)

Let the free energy of a solid undergoing a

one-dimensional thermoelastic deformation be

F = E - TS (B.1)

where

E = stored elastic energy
T = absolute temperature
S = entropy.

By the combined first and second laws of thermodynamics for

this deformation

dE = TdS + odE (B.2)

But

dF = dE - TdS - SdT (B.3)

So

dF = OdE - SdT (B.4)

Thus

* = -S (B.5)

and

F T= a (B.6)

Hence it follows that

&S/t9E)C = -a2F/(aEaT) = -49a/aT)f (B.7)

Recall that, for constant pressure,

cAT = AQ = TAS (B.8)

or

cp = T aS/OT)a (B.9)

and, for constant volume (normal strain),
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cvAT = AQ = TAS (B.1O)

or

cv = T dS/dT)E (B.11)

Now consider an incremental change in strain, at

constant entropy:

da = al/&c ) T dE + &9o/OT) dT (B.12)

So

* -001/r )S = &cT/E) T + aT/dE s aor/dT) (B. 13)

Recall also that

ax/dy), ay/6z). aZ/dX)y = -l (B.14)

Hence

aT/ ,E/s )T cS/dT), = -1 (B.15)

So

* T/ac)s = - S/OE)7 T T/,&S) (B. 16)

Also,

49a/E)T 6c/&T), OT/ao)~ -1 (B. 17)

So

=o/O) aac/49)T OE/OT)a (B. 18)

Substituting equation (B.16) into equation (B.13), then

using equations (B.7), (B.8) and (B.11) we find

eo/dE)s = d/6E)T + [ I /a)T]20T/E)j2 T/c, (B.19)

or

* a/E)s= &/dE)'T + [OU/]O) 2(ac/dT)o]2 T/cv (B.20)

or

EA = ET + ET2a 2T/cv (B.21)

where
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EA is the adiabatic Young's modulus,
ET is the isothermal modulus, and
Otis the linear coefficient of thermal expansion.

Thus,

EA = ET[1 + (ETa2T)/cv] (B.22)

Note that c, here is the energy change, per unit

volume, for a unit temperature change.
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ABSTRACT

This study developed a material damping model using the
concept of augmenting thermodynamic fields (ATF, wherein the
equations of thermodynamic equilibrium are allowed to have
derivatives of fractional order.) This effort seeks to expand
the applicability of the ATF model of Lesieutre, formerly of
UCLA, in which ATFs interact with the mechanical displacement
fields.

Current models of material damping cannot predict well
the dependency of damping on frequency. Two newer models,
capable of predictino this frequency dependence,4 .are discussed.
They include the ATF model, and Bagley and Torvik's, AFIT,
4-parameter model, which allows fractional derivatives in the
description of viscoelastic materials.

This research effort applies fractional-order derivatives
to the ATF model. Coupled material constitutive relations
are developed using the concept of augmenting thermodynamic
fields, with non'integer differentials allowed in the resulting
partial differential equations.

The complex modulus that results from solution of these
partial differential equations is compared to the complex
moduli of thermoelasticity, integer~-order viscoelasticity,
and viscoelasticity with fractional derivatives {the
4-parameter model} for the case of a uniaxial rod. In each
case, the fractional- order ATF model reduced to the respective
model, and therefore.,>accurately describes the damping
mechanism resulting from each of these models. T


