Effects of Mild-to-Moderate Ambient Cold and Chemical Protective Clothing (MOPP-IV) on Cognitive Performance of Male and Female Soldiers: An Addendum to Technical Reports T11-85 and T7-88

Bernard J. Fine

U S ARMY RESEARCH INSTITUTE OF ENVIRONMENTAL MEDICINE
Natick, Massachusetts

July 1990
The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The views, opinions and/or findings in this report are those of the authors, and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other official documentation.

Human subjects participated in these studies after giving their free and informed voluntary consent. Investigators adhered to AR 70-25 and USAMRDC Regulation 70-25 on Use of Volunteers in Research.

Approved for public release; distribution is unlimited.

DISPOSITION INSTRUCTIONS

Destroy this report when no longer needed.

Do not return to the originator.
Previous reports from this Institute describe two studies in which ambient heat (32.8°C, 61% rh) was found to affect the mental performance of male and female soldiers wearing chemical protective clothing (MOPP-IV). In the first study (T11-85), impairment of the performance of males was found after 4-5 hours. In the second study (T7-88), female soldiers, under identical conditions, showed impairment within three hours and fewer were able to sustain performance for the entire seven-hour exposure.

A "MOPP-Control" condition was included in both studies to assess performance in MOPP-IV without heat stress. The ambient temperature for this condition (12.8°C) was determined by calculating its thermal comfort equivalence with another control condition in which only the Battle Dress Uniform (BDU) was worn (21.1°C). The matching of the two conditions for thermal comfort enables differences between them to be attributable to aspects of the MOPP system other than its insulation.
Large decrements in performance, not easily accounted for by any aspects of the MOPP system, were found for both males and females when in the MOPP-Control condition. To further understand these decrements, data from both studies have been reviewed. It was discovered that a metabolic rate for active (150 watts) rather than inactive (100 watts) personnel was used in determining the appropriate temperature for the MOPP-Control condition. Revised calculations, which assume metabolic rates of 100 watts for men and 85 watts for women, estimate ambient temperatures of 16.3°C and 19.2°C for males and females respectively, as the appropriate MOPP-Control subjective comfort matches for the 3DU-Control condition.

The new information suggests that, in both studies, personnel were exposed to a mild to moderate cold stress while in the MOPP-Control condition. This may account for a significant portion of the decrements in performance noted. The results suggest potentially serious operational problems for mental performance in MOPP-IV in mild to moderately cold environments as well as in the heat.
Effects of Mild-to-Moderate Ambient Cold and Chemical Protective Clothing (MOPP-IV) on Cognitive Performance of Male and Female Soldiers:

An Addendum to Technical Reports T11-85 and T7-88

BERNARD J. FINE

<table>
<thead>
<tr>
<th>Accession For</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NTIS</td>
<td>CRA&I</td>
</tr>
<tr>
<td>DTIC</td>
<td>TAB</td>
</tr>
<tr>
<td>Unannounced</td>
<td></td>
</tr>
<tr>
<td>Justification</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>By</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Availability Copies</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dist & Special</td>
<td></td>
</tr>
</tbody>
</table>

A-1
EXECUTIVE SUMMARY

Previous reports from this Institute (T11-85 and T7-88) describe two studies in which mental performance of males and females was found to be poorer in heat (32.8°C;61%rh) in MOPP-IV than in an optimal climate (21.1°C;35%rh) in Battle Dress Uniform ("BDU-Control"). In both studies, an additional experimental condition ("MOPP-Control") measured the impact of MOPP-IV on performance exclusive of any heat load it imposed on the wearer. This was accomplished by determining a temperature for this condition (calculated as 12.8°C) which was the thermal comfort equivalent of the optimal BDU-Control condition (21.1°C). Given thermal comfort equality, performance differences between the two conditions presumably were attributable only to non-thermal aspects of the protective clothing.

Large decrements in performance occurred in the MOPP-Control condition in both studies. These were thought to be due to stress imposed by the "novelty-of-the-situation." However, the threefold increase in errors on some tasks greatly exceeds what is expected of experienced personnel in a novel situation. Our continued concern with this matter has led to a complete review of both studies in search of additional explanation.

As a result of the review, we report here the discovery of an error which appears to explain the results discussed above and which also suggests the possibility of operational problems with troops in MOPP-IV in climates not heretofore considered to affect mental performance.

The error was in using a metabolic rate for active rather than inactive personnel in the formula for calculating thermal comfort equivalence between MOPP- and BDU-Controls. This resulted in an inappropriately low ambient temperature for the MOPP-Control condition. In addition, the somewhat lower metabolic rates characteristic of women were not taken into consideration in the female study. Amended calculations indicate that instead of 12.8°C, ambient temperatures of 16.3°C and 19.2°C, for males and females, respectively, are the appropriate MOPP-Control equivalents of the BDU-Control condition. In both studies, then, personnel in the MOPP-Control condition were exposed to a mild-to-moderate cold stress and their performance probably was related to that fact.
Scientific explanations of how cold affects mental performance are lacking. Our experience with the tasks suggests that the decrements are not due to direct physical effects of cold, e.g., cold hands limiting manipulation of tools. Research is planned to explore the problem further. Meanwhile, commanders should be alerted to the possible impact of hot and cold environments on mental performance of troops in MOPP-IV. Particular care should be taken to insure that communications to or from personnel in MOPP-IV are verified for accuracy and completeness. This is particularly important when personnel are in situations requiring intense, sustained concentration wherein we have noted mental lapses and substantial increases in errors of omission.
INTRODUCTION

In this report, new information is presented which modifies interpretations of some of the research results previously published in two technical reports (T11-85 and T7-88) from this Institute. Both reports dealt with the topic of mental performance in hot environments in chemical protective clothing.

A synopsis of the two reports is presented, followed by an addendum describing the new information and recommendations for its implementation.

SYNOPSIS OF TECHNICAL REPORTS T11-85 AND T7-88

In two studies using identical designs, procedures and tasks, the mental performance of both male (Fine & Kobrick, 1985; T11-85) and female (Fine, 1987; T7-88) soldiers, clad in chemical protective clothing (MOPP-IV), was found to be significantly poorer in a hot environment (32.8°C; 61%rh; "MOPP-Heat-Stress" condition) than in a comfortable environment (21.1°C; 35%rh) while clad in the Battle Dress Uniform (BDU; "BDU-Control" condition).

Males, as a group, began to show impairment after approximately 4-5 hours of exposure to heat, whereas females, as a group, showed impairment within 3-4 hours. Of greater importance, only 7 of 17 females, compared to 18 of 20 males, were able to endure the entire 7-hour heat exposure.

A third condition, referred to as "MOPP-Control," was included in each study to assess possible effects of the protective clothing itself on performance, that is, apart from any heat load it might impose on the wearer. To accomplish this, the appropriate ambient temperature for the MOPP-Control condition for comfort equivalence between it and the BDU-Control condition was calculated using the method of Breckenridge & Goldman (1977). An ambient temperature of 12.8°C was determined to be equivalent in subjective comfort when in MOPP-IV to an ambient temperature of 21.1°C when in BDU. This equivalence of subjective comfort presumably enables one to attribute any
differences in performance found between the two conditions to aspects of the protective clothing other than insulation.

In both the male and female studies, the MOPP-Control condition, when compared with the BDU-Control condition, was found to have significantly larger adverse effects on performance than expected. Substantial impairment occurred for both genders within the first hour at 12.8°C, and was significantly greater for females. The performance of the male group improved substantially over the 7-hour exposure while that of the female group did not.

In the study of males (Fine & Kobrick, 1985), four explanations were considered for the performance decrements in the MOPP-Control condition: (a) discomfort or anxiety associated with being encapsulated in the protective ensemble, (b) limitations in maneuverability, perception and/or dexterity imposed by the suit, gloves or mask, (c) stress associated with being in a novel situation, in MOPP-IV, faced with a gruelling 7-hour exposure, and (d) random occurrence.

Because all participants had undergone a substantial amount of training on the tasks while wearing BDU as well as when in MOPP-IV, it was possible to compare performances in the two conditions, both by observation and with practice scores. Since no evidence of anxiety about encapsulation in MOPP-IV was noticed and we found no instances of the MOPP ensemble interfering with performance, alternatives (a) and (b) were discounted as plausible explanations.

Later, the results from the MOPP-Control condition of the female study (Fine, 1987) were found to corroborate those of the male study. This reduced the likelihood of random occurrence as a feasible explanation for the decrements in performance and "novelty-of-the-situation" remained as the reasonable alternative.

ADDENDUM TO TECHNICAL REPORTS T11-85 AND T7-88

The magnitude of the decrements in performance found in the MOPP-Control condition of both studies has been a source of continuing concern. For the female
group, in particular, the threefold increase in errors that occurred with the Codebook and Codewheel tasks over the entire 7-hour exposure is much greater than one would expect to be due to the novelty-of-the-situation.

In search of additional explanations for the decrements in performance, all aspects of both studies have been reviewed. While all computations of data were found to be correct, an error in the formulation of the appropriate temperature for the MOPP-Control condition has been discovered. The discovery at once helps to explain the performance decrements in that condition and suggests the possibility of operational problems with MOPP-IV in climates not heretofore regarded as particularly stressful for performance of mental tasks.

The error occurred in determining comfort equivalence between the BDU- and MOPP-Control conditions. In both studies, equivalence had been computed using the metabolic rate for physically active men (150 watts). Because the troops in both studies performed primarily sedentary tasks, a metabolic rate for physically inactive persons should have been used. Thus, the two conditions, in fact, were not equivalent in subjective comfort as had been supposed. In addition, in the female study, the somewhat lower metabolic rates characteristic of women should have been taken into account.

Revised calculations (Gonzalez, 1990), which assume metabolic rates of 100 watts for men and 85 watts for women, estimate ambient temperatures of 16.3°C and 19.2°C, for males and females respectively, as the appropriate MOPP-Control subjective comfort matches for the BDU-Control condition (21.1°C), rather than the ambient temperature which was actually used (12.8°C). (It should be noted that these are estimated group average metabolic rates and that the rates of individual participants may have deviated from them.)

In both studies, then, participants, while in the MOPP-Control condition, appear to have been exposed to a mild-to-moderate cold stress. The male group performed in an ambient temperature approximately 3.5°C below its revised subjective comfort level (16.3°C) and the female group at an ambient temperature about 6.4°C below its revised level (19.2°C). This factor appears to be a reasonable explanation of the decrements in performance, particularly since it can account for the comparably poorer performance of the women, their having been exposed to a subjectively colder
environment. Since there was no true MOPP-Control condition, due to the error discussed above, whether cold exposure replaces or only augments novelty-of-the-situation or encapsulation as an explanation for the poor performance remains to be determined.

Specific mechanisms by which the cold stress could have operated to cause decrements in performance are not clear. We have already indicated that the types of errors that occurred were errors of omission, e.g., missing incoming messages, rather than errors of commission, which would have been expected if the cold had interfered with manual dexterity, for example. While it is possible that discomfort associated with feeling cold could have interfered with attentional processes, leading to decreased attention and errors of omission, it is notable that only a few males and no females complained about feeling cold or uncomfortable during the exposure.

There is little additional explanatory help to be had from the very sparse literature on the effects of cold on cognitive performance. To clarify the results, further research using the same performance scenarios in conjunction with non-intrusive physiological measures is needed and is being planned.

RECOMMENDATIONS

Pending the acquisition of further information on the subject, commanders should be aware of possible decrements in mental performance in troops in MOPP-IV who are exposed to either hot or mildly-to-moderately cold environments. Precautions should be taken to insure that communications to or from personnel in MOPP-IV are repeated one or more times or are otherwise emphasized, particularly when personnel are in situations requiring intense concentration, such as monitoring radio messages, video displays, etc. We have noted mental lapses and substantial increases in errors of omission in such circumstances.

It would be extremely helpful if personnel who monitor troops performing mental tasks in MOPP-IV would communicate their observations of such activities, to include instances of successful and/or failed performance, as fully documented as possible, to
the author. Please specify the environmental and other conditions in which the work was performed. All comments and suggestions are valued. Send to:

Commander
US Army Research Institute of Environmental Medicine
ATTN: SGRD-UE-HP/Dr. Fine
Natick, MA 01760-5007
REFERENCES

Gonzalez, R.R. Personal communication. Natick, MA. US Army Research Institute of Environmental Medicine, Military Ergonomics Division, 15 February 90.

DISTRIBUTION LIST

Commander
US Army Medical Research and Development Command
ATTN: SGRD-RMS
Fort Detrick
Frederick, MD 21702-5012

Commander
US Army Medical Research and Development Command
ATTN: SGRD-PLC
Fort Detrick
Frederick, MD 21702-5012

Commander
US Army Medical Research and Development Command
ATTN: SGRD-PLE
Fort Detrick
Frederick, MD 21702-5012

Defense Technical Information Center
ATTN: DTIC-DDA
Alexandria, VA 22314

Under Secretary of Defense for Acquisition
ATTN: OUSDA (R&AT/E&LS)
Room 3 D129
Washington, DC 20301-3080

Office of the Surgeon General
ATTN: DASG-PSP
5109 Leesburg Pike
Falls Church, VA 22041-3258
Commander
US Army Research & Development Technical Support Activity
Fort Monmouth, NJ 07703

Commander
US Army Combat Surveillance & Target Acquisition Laboratory
Fort Monmouth, NJ 07703

Commander
US Army Field Artillery School
Fort Sill, OK 73503

Commander
US Army Materiel Command
5001 Eisonhower Avenue
Alexandria, VA 22333

Commander
US Army Training and Doctrine Command
Fort Monroe, VA 23651

Commander
US Army Natick RD & E Center
ATTN: STRNC-Z
Natick, MA 01760

Commander
US Army Troop Support Command
St. Louis, MO 63102

Commander
U.S. Army Aeromedical Research Laboratory
ATTN: Scientific Information Center
Fort Rucker, AL 36362-5292
Commander
US Army Aviation Systems Command
Federal Center
4300 Goodfellow Blvd.
St. Louis, MO 63120-1798

Commander
US Army Aviation R & D Command
ATTN: Library
4300 Goodfellow Blvd.
St. Louis, MO 63166

Commander
US Army Health Services Command
Fort Sam Houston, TX 78234

Commandant
US Army Academy of Health Sciences
Fort Sam Houston, TX 78234

Commander
US Army Airmobility Laboratory
Fort Eustis, VA 23604

Uniformed Services University of the Health Sciences
4301 Jones Bridge Road
Bethesda, MD 20014

Redstone Scientific Information Center
US Army Missile R & D Command
Redstone Arsenal, AL 35609

Commander
US Army Combat Developments Experimentation Center
ATTN: ATEC-D
Fort Ord, CA 93941-7000
<table>
<thead>
<tr>
<th>Role</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commander</td>
<td>US Army Ordnance Center & School</td>
</tr>
<tr>
<td>Aberdeen Proving Ground, MD 21010</td>
<td></td>
</tr>
<tr>
<td>US Army Environmental Hygiene Agency Library</td>
<td>Aberdeen Proving Ground, MD 21010</td>
</tr>
<tr>
<td>US Army Material Systems Analysis Agency</td>
<td>Aberdeen Proving Ground, MD 21005</td>
</tr>
<tr>
<td>Commander</td>
<td>Naval Air Development Center</td>
</tr>
<tr>
<td>Warminster, PA 18974</td>
<td></td>
</tr>
<tr>
<td>Commander</td>
<td>US Army Dugway Proving Ground</td>
</tr>
<tr>
<td>Dugway, UT 84022</td>
<td></td>
</tr>
<tr>
<td>Director</td>
<td>US Army Human Engineering Laboratory</td>
</tr>
<tr>
<td>Aberdeen Proving Ground, MD 21005</td>
<td></td>
</tr>
<tr>
<td>Command Surgeon</td>
<td>Rapid Deployment Joint Task Force</td>
</tr>
<tr>
<td>MacDill AFB, FL 33608</td>
<td></td>
</tr>
<tr>
<td>Human Factors Engineering Division</td>
<td>Aircraft and Crew Systems Technology Directorate</td>
</tr>
<tr>
<td>Naval Air Development Center</td>
<td></td>
</tr>
<tr>
<td>Warminster, PA 18974</td>
<td></td>
</tr>
<tr>
<td>Director</td>
<td>Biological & Medical Sciences Division</td>
</tr>
<tr>
<td>Office of Naval Research</td>
<td></td>
</tr>
<tr>
<td>300 N. Quincy Street</td>
<td></td>
</tr>
<tr>
<td>Arlington, VA 22217</td>
<td></td>
</tr>
</tbody>
</table>
Commanding Officer
Naval Medical R & D Command
National Naval Medical Center
Bethesda, MD 20814

Commander
Walter Reed Army Institute of Research
ATTN: SGRRO-UWI/Dr. Hegge
Washington, DC 20307-5100

Commander
Naval Medical Research Institute
ATTN: Dr. Bachrach
Bethesda, MD 20814

Commander
US Army Research Institute of Behavioral & Social Science
ATTN: PERI-SZ
5001 Eisenhower Avenue
Alexandria, VA 22333

Commander
Naval Health Research Center
PO Box 85122
ATTN: Dr. Paul Naitoh
San Diego, CA 92138-9174

Commander
USAF School of Aerospace Medicine
ASAFAVNB (Dr. Schifflett)
Brooks AFB, TX 78235
Commandant
US Army Academy of Health Sciences
ATTN: HSHA-IPM
Fort Sam Houston, TX 78234-6100

Commander
Laboratory Command
ATTN: SLC-SM-AA
2800 Powder Mill Rd.
Adelphi, MD 20783-1145

Commander
2d Infantry Division
ATTN: EAIDMD
APO San Francisco 96224-0289

Commander
25th Infantry Division (Light)
ATTN: APVG-MD
Schofield Barracks, Hawaii 96857-6000

Commander
10th Medical Battalion
ATTN: AFZS-SC-MC-A
Ft. Drum, NY 13602-5045

Commander
224th Medical Detachment (LB)
ATTN: AFVG-MG-PCO
Fort Hood, TX 76544-5066

Commander
227th Medical Detachment (LD)
ATTN: AFZH-MGE
Fort Lewis, WA 98433-5516
Commander
71st Medical Detachment
APO NY 09114

Commander
US Army Medical Department Activity (MEDDAC) Fort Irwin
ATTN: HSXK-PMS
Fort Irwin, CA 92310-5065

Commander
5th Preventive Medicine Unit
ATTN: EAMC-PMU
APO San Francisco 96301-0020

Commander
US Army Medical Department Activity
ATTN: HSXN-PMS
Fort Leavenworth, KS 66027-5400

Commander
1st Infantry Division (MECH) and Fort Riley
ATTN: AFZN-MD
Fort Riley, KS 66442-5000

Commander
82nd Airborne Division
ATTN: AFVC-SU
Fort Bragg, NC 28307-5100

Commander
US Army Medical Department Activity
ATTN: HSXP-PM
Fort Leonard Wood, MO 65473-5700