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TWO-DIMENSIONAL CONVOLUTIONS, CORRELATIONS, AND
FOURIER TRANSFORMS OF COMBINATIONS OF WIGNER DISTRIBUTION

FUNCTIONS AND COMPLEX AMBIGUITY FUNCTIONS

INTRODUCTION

Over the years, a number of properties of integrals of
products of complex ambiguity functions (CAFs) or products of
Wigner distribution functions (WDFs) have been derived, such as:
the volume constraint of magnitude-squared ambiguity functions

{1; page 308]), the positivity of the convolution of any two WDFs

[2; (106)}], and Moyal’s thecorem involving the volume under the

-e

square of a WDF [3]. Now, it appears that these are very special
cases of a general class of two-dimensional Fourier transforms of
combinations of CAFs and WDFs with delayed or time-reversed
arguments.

We begin by deriving a general one-dimensional transform
relation involving two arbitrary complex waverorms and their
Fourier transforms. An application of this relation to energy
density spectra yields three alternative expressions for the
output correlation of a filtered time function. This general
transform relation is also the basic tool for setting up the two-
dimensional transforms that are the subject of succeeding
sections. The extreme generality of the two-dimensional
relations allows for a large number of special cases; some of
these are pointed out, but undoubtedly there are additional ones

not listed here.
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When we begin our two-dimensional transform investigation, we
do not immediately specialize to WDFs or CAFs. Rather, we first
consider a set of four general functions, each of two variables,
all of which are related to each other by Fourier transforms. We
show that two-dimensional Fourier transforms of products of pairs
of these general functions are all equal to a common value,
although that value cannot be expressed in any simple closed
form. These relations are derived for convolution type
operations as well as for correlation operations.

When we make a specialization of these results to waveforms,
relatively simple closed form results, in terms of products of
WDFs and CAFs, are obtained for these two-dimensional transforms.
And when the arguments of these relations are further specialized
in value (such as zero), some of the currently known relations
involving CAFs and WDFs result.

Extensions of these results to time contracted or expanded
arguments are made in the appendices. Again, specializations to
waveforms yield closed form results, in terms of products of WDFs

and/or CAFs.
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ONE-DIMENSIONAL TRANSFORM RELATIONS

Function g(t) is an arbitrary complex function of real
argument t, which will be thought of as time. 1Its Fourie:

transform will be denoted by complex function G(f), where
G(f) = jdt exp(-i2nft) g(t) . (1)

Integrals without limits are along the real axis and over the
range of nonzero integrand. Argument f is a real cyclic
frequency, not a radian frequency. The inverse Fourier transform

relation to (1) is
git) = Idf exp(+i2nft) G(f) . (2)

The Fourier transform pair in (1) and (2) will be denoted by
g(t) o G(f) . (3)

Similarly, h(t) and H(f) will be a Fourier transform pair.

TRANSFORM CF PRODUCT OF WAVEFORMS

The variables v,a,B,uv,vy are all real in the following. A

generalization of Parseval’s theorem is then possible, namely

jdt' exp(-i2nvt’) g(at+Bt’) h*(ut+vt') - exp(ivatE%%gﬂ) 5

X Idv' exp(iva't(av—ﬁu)] G(y(v'+ 5%7)] H*(B(v'— 5%;)] ' \{5)
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where it is presumed that B # 0 and v # 0. This result may be

derived by substituting for g according to (2), interchanging

integrals, and using (1) for Fourier transform pair h(t) e H(f).

A more symmetric form for relation (4) is available, if desired:

Idt' exp(-i2nvt’) g(B(t'+ 5%?J) h*(y(t'— 5%;]] =

- Idv' exp(+i2nv’'t) G(y(v'+ 5%;)] H*(B[v'— 7%;]) . (5)

SPECIAL CASES

By specializing the parameter values in (4), several

interesting and useful results can be obtained. For example, if
we take y = B8, 4y = -a, then we obtain a combined one-dimensional

Fourier transform and correlation:

Idt’ exp(-i2nvt’) g(Bt’+at) h' (Bt’—at) =

-

= Jdv' exp[iZuv'tZaB] G(Bv'+ 7%) H*(sv'— 5%) . (6)

On the other hand, if we take vy = -8B, v = a in (4), there

foullows a combined one-dimensional Fourier transform and

convolution:

Idt' exp(-i2nvt’) g(at+Bt’) h" (at-Bt') =

= Jdv' exp(iZuv’tZaB) G[f% +8v'] H*(f% -Bv’) . (7)
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Further specialization to the specific numerical values

Y-s-ll —”-u-lﬁ, in(6) Yields

Idt' exp(-i2nvt’) g(tr+kt) h™(t’-kt) =

- jdv' exp(+i2nv't) G(v'+%v) H' (v/-kv) . (8)
Alternatively, the choice -y = B =%, p = a«a = 1 in (7) yields

Jdt' exp(-i2nvt’) g(t+kt’) h™(t-kt’) =

- jdv' exp(+i27v't) G(vtlv’) H* (v=kv’) . (9)

APPLICATION TO ENERGY DENTITY SPECTRA

Case 1. Suppose that we choose
2 2
G(v) = |X(Vv)|™ , H(v) = [Y(V)|™ , (10)

which are the energy density spectra of waveiforms x(t) and y(t),
respectively. Then g(t) = wxx(t) and h(t) = wyy(t), where wxx(t)

is the auto-correlation function of complex waveform x(t):
() ~ [du x(t + uw) x"(u) (11)
Vo ~ jdu x u) x (u) .

The use of (10) and (11; in (8) yields
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I,(t,v) = Idv' exp(+i2nvrt) [X(v+kv) |2 [¥(vr-kv) |2 =

n jdt' exp(-i2nvt’) v (t’+kt) w;y(t'—kt) : (12)

The last term in (12) is identical to wyy(%t—t').

The special case of v = 0 in (12) reduces to

I.(t,0) = Idv' exp(+i2nvt) (X(v') ]2 j¥(v)|? =

1

*
- Jdt Uy (E74HE) vy (t7-hE) (13)

The additional restriction to t = 0 becomes
1,0,0) = favr (x(vr)? lY(v )2 =

*
- Jdt Vex (7 Wy (E7) (14)

Case 2, Here, instead, make the identifications

G(v) = X(v) Y(v) = H(v) . (15)

~hen

g(t) = c, (t) = fau x(u) y(t-u) = h(e) , (16)

which is the convolution of x(t) and y(t). Substitution of (15)

and (16) in (8) gives
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Iz(t,v) = Idv' exp(+i2nv't) X(v'+k%v) Y(v'+kv) x*(v'—kv) Y*(v'—%v)

. 3 ’ * [ .
- fdt' exp(-i2nve’) C, (t'+kht) Cy (t7-kt)
Setting v to zero yields

I,(t,0) = Idv' exp(+i2nv’t) |X(v') |2 |¥(v)|? =

*
- Idt' C oy £/ +4E) Co (7 =kt)
Finally, also setting t equal to zero,

. 2 2 2
7,{0,0) = Idv' (X(v*) 12 1¥(v)|2 = Idt' |Cy(t" )|

Case 3. Now identify
G(v) = X(v) Y (v) = H(v)
Then

gt) = v, (t) = [au x(u + £) ¥y (w) = h(t) ,

which is the cross-correlation of x(t) and y(t). The use of

and (21) in (8) leads to

(17)

(18)

(19)

(20)

(21)

(20)

I,(t,v) = Jdv' exp(+i2mv’t) X(vi+kv) Y (v/+kv) X (v -kv) Y(v'-lkv)

- Idt' exp(-i2nvt’) ¥, (t+ht) w;y(t'—kt)

The result of setting v to zero is

(22)
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I5(t,0) = Idv' exp(+i2nvrt) [X(v') |2 [¥(v)|? =

- Jarr vty v cerone) (23)

When t is also set equal to zero, (23) reduces to
. 2
1,3(0,0) = [avr 1x(v)1? x(vyt? - Jae eyt 12 - (20)

It should be observed that the upper lines of (13), (18), and

(23) are identical to each other; that is,
11(t,c) - Iz(t,O) = I3(t,0) . (25}

Therefore, the lower lines of (13), (18), and (23) furnish three
equal alternative expressions involving autocorrelations,
convolutions, or cross-correlations, respectively.

There are many other possibilities for identifications of G
and H in (8), besides (10), (15), and (20). For example, we

could take
G(v) = |X(v) |2 ¥(v) , H(v) = ¥(v) . (26)

However, it may be shown that this chcice leads identically to
result (13) when v is set to zero; so not all selections yield
new relations. Additional convolution type relations may be

obtained if (9) is used instead of (8).
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GENERAL TWO-DIMENSIONAL TRANSFORM RELATIONS

In this section, we will consider a set of four general
functions, each of two variables, which are related to each other
by Fourier transforms. These four functions are indicated in
figure 1, where a two-headed arrow denotes a Fourier transform
relationship. These functions are, for the moment, arbitrary
complex functions of two variables; they are not necessarily

Wigner distribution functions or complex ambiguity functions.

R(t,T) ¢——> X(v,T)
W(t,f) « +> ®(v,f)

Figure 1. General Two-Dimensional Functions

The paired transform variables, here and for the rest cf the
report, are t » v and vt » f£f. The detailed Fourier transform

interrelationships between the four functions in figure 1 are

X(v, 1) = Idt exp(-i2nvt) R(t,T) , (27)
R(t,T) = jdv exp(+i2nvt) x(v,T) , (28)
W(t,f) = Idt exp(-i2nft) R(t,T) , (29)
R(t,T) = Idf exp(+i2rfT) W(t,£) , (30)
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*(v,£) = Idt exp{-i2nvt) W(t,£) , (31)
Wit,£) = Idv exp(+i2nvt) #(v,£) , (32)
#(v,£) = Idt exp(-i2nfr) X(v,1) , (33)
X(v,t) = Idf exp(+i2nft) #(v,£) . (34)

A double Fourier transform relationship exists between K and ¢,
as well as between W and X.
TWO-DIMENSIONAL CONVCLUTIONS

We repeat (9) here, but with a change of variables t » t and

v » f:

JdT' exp(~-i2nft’) g(t+kt’) h*(t—kf') -

- Idf' exp(+i2RE'T) G(E+kfr) R (£-4E') . (35)

Let x; and Xy be two different functions of the type indicated in

figure 1, and consider (35) with the assignments

glt) = X;(vaeT) v h(T) = Xy(v,T) . (36)
The corresponding Fcurier transform pairs for {(36) are

G(f) = $ (v £) , H(E) = &,(v, ), (37)

upon use of (33). There follows, from (35),

10
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JdT’ exp{-i2nft’) xl(va,1+kr') x;(vb,t—kt') -

- Idf' exp(+i2n£/T) &, (v, E4kE’) 8o(v,  E-KE') . (38)

See appendix A for the most general result of this form.

v I1f we now let Vo = Vv and Y = v-kv' in (38), then an
additional Fourier transform on v’ yields the middle two lines

in (39) below. More generally, in a similar fashion to that used

above, we find that the combined two-dimensional convolution and

Fourier transform can be expressed in four equivalent forms:

I(v,f,t,t) = (39)

JIdt'dt' exp(—-i2nvt’'-i2nft’) Rl(t+kt',t+kt') R;(t—kt',T-kt') =

- [Idv'dt' exp(+i2nv't-i2nfx’) Xl(v+&V’,T+%T') x;(v—kv',T—kT’) =

IIdv'df' exp(+i2NV/ t+i2RE7T) &) (Vlv!  E+iEr) &, (v-hv', £-hE7) =

det'df' exp(-i2RVt +i20E/T) Wy(tht’ E+hfr) Wy(t-kt’, E-kfr)

Alternative forms of (39) are available; for example, the

- last line can be written in the more typical convolution form

Ifdt'df' exp(-i2nvt’+i2n€’T) Wy(t’,£7) Wy(t-t’ £-£') =

= Y exp(-invt+infr) I(kv,%f,kt, k) . (40)

11




TR 8759
TWO-DIMENSIONAL CORRELATIONS
Here, we use (8) with identifications

g(t) - Rl‘t'Ta) ’ h(t) = Rz(tcrb) ’

G(v) = xl(V.Ta) y H(V) =« XZ(V.tb) . (41)

Then there follows immediately
Idt' exp(-12nvt’) R (t'+ht,T,) Ry(tr/-ht, 1, ) =
- Jdv' exp{+i2nrv't) xliv'+kv,ra) X;(V'-HV'Tb) . (42)

Now let Ty = T'+&%1t and Ty = t’-4%t, and Fourier transform on
T’'. The result is the first two relaticns, given below, of four
equivolent forms of the combined two-dimensional correlation and

Fourier ireasform

J(v,f,t,t) = (43)
- [[atraxr exp(-i2nvt’-i2nft’) R, (t'+ht,T’+i7) R;(t'—ht,T'—kT) -

- Rdv'dt' exp(+i2nv’'t-i2nft’) Xl(V'+HV,T'+kT) x;(v'—kv,t'mkt) -

- [[avrag’ exp(+i2nv t+i2n€rT) &, (V' +gv, £7+4f) Qg(v'—kv,f’—kf) =

- ;Jdt'df' exp(~12RVE/ +i20E7T) W, (L 4kt £7+hf) w;(t'—kt,f'—kf)

Alternative forms to (43) are possible; for example, the last

line can be expressed in the more typical correlation form

12
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jjdt'df' exp(-i2nvt +12nE°T) W (t!,£7) Wy(t'=t, £'=f) =

= exp(-invt+infr) J¢(v,£,t,t) . (44)

MIXED RELATIONS

The results in (39) and (43) all involve two W(t,f)
functions, or two X(v,T) functions, etc. However, it is possible
to obtain relations which involve, for example, one W(t,f)
function and one X(v,t) function. As an illustrative example,
consider (9) with g(t) = wl(t'fa) and h(t) = xz(fb,t). Then,

from figure 1, G(v) = Ql(v,fa) and H(v) = éz(fb,v), giving
*
[ate exp(-12mvtr) wytener £) xy(£,, t-ne) =
*
- Idv' exp(+120v ) & (VHlv’ £ ) #5(E, ,v-kv') . (45)

If we now let fa = f+4f’ and fb = f-4f’, and perform a

Fourier transform on f£', there follows immediately

det'df' exp(-i2nvt ' +120E7T) Wy (tit’, E+lEr) Xy (E-4E’, t-kt?) =
. (46)
- dev'df' exp(+i2nv’'t+i2nf’' ) 01(v+av',f+kf') i;(f—kf',v-kv')

Thus, a combined two-dimensional convolution and Fourier
transform of a W(t,f) function and a x(v,T) function can be
expressed in terms of two #(v,f) functions. (Strictly, some of

the arguments are reversed, as seen in (46).)

13
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I1f, instead, we use (8) with g(t) and h(t) assigned as above,

then we obtain
L.
[atr exp(-12mver) wy(trant,£,) xy(£, tr-nt) =
= favr expreizmure) # (vrenv, £ 0508 v ony) (47)

Letting £_ = f’4+kf, fb = fr-kf, and performing an additional

a
Fourier transform on £’, there follows

det'df' exp(~12nvt +i2RE°T) Wy (L7 +ht £/ 44E) Xy (£'-KE, tr-kt) =
(48)
- jjdv'df' exp(+i2RV/ t+i2RE T) & (v +hv, £/ +4E) &) (£7-HE, v/ -kv) .

Here, a combined two-dimensional correlation and Fourier
transform of a W(t,f) function and a x(v,t) function can be
expressed in terms of two #(v,f) functions. (Again, some
arguments are reversed or replaced. However, the first argument
in a X function is always a frequency variable, while the second
argument is always a time variable; similar restrictions hold for

the remaining functions R, W, & in figure 1.)

14
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SPECIALIZATION TO WAVEFORMS

In the previous section, the functions R, W, X, & were
arbitrary, except that they were related by Fourier transforms
according to figure 1. Here, we will specialize their forms,
thereby enabling more explicit relations for their two-
dimensional convolutions and correlations.

For arbitrary complex waveforms a(t), b(t), c(t), d(t), let
R,(t,T) = a(t+kT) b (t-%T) = R_, (t,T) , (49)
1 ab
R,(t,T) = c(t+kt) d (t-%7) = R g(t,T) . (50)
These are known as (cross) temporal correlation functions (TCFs).
Thus, Rab(t,r) is the "instantaneous" cross-correlation between
waveforms a and b, corresponding to center time t and separation

(or delay) time t. Then, from (31) and (29), or [4; (35)], there

follows

(v, £) = &, (v,f) = IIdt dt exp(-i2nvt-i2nft) R_ (t,7) =

= A(f+4v) B (f-%v) , (51)

,(v,£) = 8 _4(v,£) = C(£+kv) DY (f-kv) . (52)

These functions are known as (cross) spectral correlation
functions (SCFs). (In [4], the notation A(v,f) was used for this
function; however, A(f) will be used here for the Fourier
transform of waveform a(t).) The SCF corresponds to center

frequency f and separation (or shift) frequency v.

15
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The Fourier transform relationships in figure 1 and equations
(27) ~ (34) still hold true, but now are specialized to the
waveform cases above. Specifically, figure 2 illustrates the
four two-dimensional functions for waveforms a(t) and b(t), where
now W, = Wb is a cross Wigner distribution function (WDF) and

Xy = Xap is a cross complex ambiguity function (CAF).

TCF Rab(t,t) «

I |

WDF Wab(t,f) + - Qab(v,f) SCF

- Xab(\),‘t‘) CAF

Figure 2. Two-Dimensional Functions for Waveforms

The detailed Fourier transform interrelationships are now

Xyp (Vs T) = Idt exp(-i2nvt) R, (t, 1) , (53)
R, (t,T) = Jdv exp(+i2nvt) X_, (v, 1) , (54)
Wt £) = fdr exp(-i2nft) R, (t,1) , (55)
R, (t,T) = de exp(+i2nf1) W_, (t,f) (56)
¢ L (v,£) = Idt exp(-i2nvt) W_, (t,f) , (57)
Wt €)= Idv exp(+i2nvt) &, (v,f) (58)

16
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wab(v,f) = Idr exp(-i2nfx) xab(v,T) ' ({59)
Xyp (Vi) = Idf exp(+i2nfT) &, (v, f) . (60)

The function waa(t,f), for example, is an auto WDF, since it
involves ornly one, waveform, a(t). We will frequently drop the
terﬁinology auto.and cross, when possible without confusion, and
let che nrotation indicate the particular case.

It will be found advantageous for future purposes to define a

scaled and contracted WDF according to

Wab(t'f) = ;!wab(’!tll!f) . (61)

GENERAL CROSS PROPERTIES

Due to the restriction of form taken on by the TCF in (49)
and the SCF in (51), the four functions in figqure 2 obey some

symmetry rules; they are

R (t,-T) = Ry (t,7) ,
S -V E) = (v, ),
Xap{—V/—T) = X;a(v.r) '
Woplt,£) = w;a(t,f) . (62)
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AUTO PROPERTIES
When waveform b(t) = a(t), some specializations follow:

*
Raa(tl"T) - Raa(t'r) ’
£ * (v, £

Xoa{=v,~-1) = x;a(v,r) ,

aa

waa(t,f) = vreal for all t, £, a(t), (63)

with the only significant specialization being the realness of

WDF Waa(t,f). Waveform a(t) can still be complex.

SOME SPECIAL CASES

The ordinary cross-correlation of two waveforms a{t) and b(t}

is a special case of a CAF:
*
Vap(T) jdt a(t) b (t-1) = X, (0,7) . (64)

The ordinary cross-spectrum is then a special case of an SCF:

Y, (f) = IdT exp(~i21£7) (1) = & (0,€) = A(£) B (£) . (§5)
The autospectrum is then simply
2
|

Y, (E) = & (0,£) = la(£}|®, (66)

which is always nonnegative.
The ordinary convolution of two waveforms a(t) and b(t) is a

special case of a WDF:

Jdt a(t) b (t-1) = ¥W_, (¥t,0) = W, (t,0) . (67)

18
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REAL WAVEIORM a(t)

In addition, if waveform a(t) is real, the following (auto)

properties nold true:

R .(t,-T) = R, (t,T) and R, is real ,

(v mE) = 8 (N, E)

Xaa(Vi=T) = Xaa(v,T)

waa(t,—f) - waa(t,f) . (68)

The situation for a real waveform a{t) is summarized in figure 3

below.

T T
*
R X X
t v
L[] * . L]
R X X
TCF CAF
£ f
*
W ¥ N
—_ t v
* L] L ]
w ® L ]
WDF SCF

Figure 3., Symmetry Properties for Real Waveform a(t)
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MIRROR-IMAGE RELATIONS

For general complex waveforms a{(t} and b(t), define

mirror-image functions
a(t) = a(-tj , b(t) = b(-t) . (69)

Then it follows directly that the voltage density spectrum of

mirror-image a(t) is
A(£) = [dt exp(-i2mft) a(t) = A(-f) , (70)

which is the mirror-image of A(f). Also, there follows

Rab(ﬂt'-T) Reé(t'T) ’

Qab(—v,-f) ’ep(vcf) ’

Xab(-V,“T) - xép(vrt) ’

wab(—tl"f) wgé(t'f) . (71)

Thus, the mirror-image property for A(f) carries over into all
the two-dimensional domains, such as the WDF and CAF, as well.
There is no significant simplification for b(t) = a(t), except
for the realness of Waa(t,f), as before.

Use of mirror-image definition (69) allows for an interesting
connection between WDFs and CAFs. First, substituting (49) into

(53) and (55), we have cross CAF
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xab(v,T) = Idt exp(-i2nvt) a(t+it) b*(t—kr) -

- Idf exp(+i2rft) A(£+kv) B (£-kv) (v,T) (72)

and cross WDF

Wt £) = Idt exp(-i2nft) a(t+kt) b (t-kt) =

- Idv exp(+i2nvt) A(f+k4v) B (f-4v) = Wap(t,£) . (73)

Reference to (69) now immediately reveals that

Wab(t,f) = 2xa9(25,2t) (74)
or

Xap(VeT) = %Wap(%T,kv) - Qag(T.V) . (75)

Here, we also used (61), That is, the WDF of two waveforms
a and b is proportional to the CAF of waveforms a and b, the
mirror-image of b.

Finally, since
B*(£) » b"(-t) = b*(t) , (76)

then, using (72),

X L (v,T) = Idf exp(i2nft) A(f+kv) B(f-kv) =
AB

= X L(v,T) = %W (T, kv) =W _(T,v) . (77)
ab ab ab
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TWO-DIMENSIONAL TRANSFORM RELATIONS FOR WAVEFORMS

In 2n earlier section, general two-dimensional transform
relations were derived between sets of four functions related by
Fourier transforms; see figure 1 and (39) and (43). Here, we
will utilize the particular forms considered in the previous
section for waveforms (see figure 2) and will derive closed forms
for I and J in (39) and (43), respectively.

TWO-DIMENSIONAL CONVOLUTIONS

If we substitute (49) and (50) in the top relation in (39),

there follows

I(v,E,t,T) = IIdt'dt' exp(-12nvt -i2nft’) a(t+kt/+hrekt’) x
x b (t+kt -kT-4T') x c (t-ht’+kt-HT') d(t-kt'-Ntekt’) . (78)
Now let
u = kt'+it’, v = ht'-Yt'; u+v = t’, 2(u-v) = t', (79)

Since the Jacobian of this transformation is 4, (78) beconres

I(v,f,t,x) = 4IJdu dv exp(—ian(u+v)-ian2(u~v)) X

x a(t+kteu) b (t-kT+v) c (t+kT-u) d(t-kT-v) =

- Idu' exp(-i2nu’ (£+kv)) a(t+hTehu’) c (t+hT-ku’) x

x Idv' exp(+i2nv’ (E-%v)) b*(t-ktihv’) d(t-kt-kv') =
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= Wac(t+kt,f+kv) Wbd(t—kf,f—kv) . (80)

That is, all the following quantities are equal:

I(v,f,t,T) =
= [[atrdrs exp(-i2nver-i2nfvr) B, (t+kt’ teler) RE (t-ht', T-ke)m
= ~dv'd-t' exp(+iznv't-i2nft’) xab(v+kv',t+kt') x;d(v—av'.r-Ht')-

« [[avrde’ exp(+iznvrtsizngr ) @ p (VHEYY TelET) Q:d(v-kv',f~kf')-

- [[atrare exp(-iznvtrsiznero) W, (tents, E4ier) Wh (t-lt’ F-kE’)w

%
= wac(t+kr,f+av) Wbd(t-%T.f-%V) . {81)

All four double-integrals in (81) can be expressed as a product
of the same two one-dimensional integrals, which are c¢ross WDFs.
This reduction is only possible when the two-dimensicnal
functions, like W.p and Xap+ are WDFs and CAFs, respectively.
The transformations in (81) are combined two-dimensional Fourier
transforms and convolutions of TCFs, CAFs, SCFs, ot WDFs.

By use of (74), an aliternative expression for the end result

in (81) is
I(v,£,t,7) = 4 X, (26+v,2€47) x;d(Zf—v,Zt—r) , (82)

in terms of mirror-image functions; see (69). Also, a more

typical convolution form for (81), for example, is (using (61))
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deu dv exp(-i2rnvu+i2nvr) Wab(u,v) w;d(t—u,f~v) -

= exp(-imvt+infr) W, (t+ht, £4kv) Wy it-hT,E-kv) | (83)

TWO-DIMENSIONAL CORRELATIONS

In an identical fashion to that used above, result (43)

becomes

J(v,f,t,1) =

[dt’dt’ exp(-i2nvt’-iZnft’) R

| ap( 7+, T +hT) RY (7 -kt, T/ k1=

~dv'dt' exp(+i2nv’'t-i2nfx’) xab(v'+kv,r'+kt) x:d(v'—kv,T'—&T)-

4

dvrdfr exp(+i2nv't+i2nfrt) &, (v +igy, £/ +4f) Q;d(v'—kv,f'~8f)-

F

]
— — —y ey

rd

dt'df’ exp(-i2nvt’+i2nf’v) W gt £r+E) W (L7 -kt £1-kE)m

ab(t'

*
- xac(f+kvrt+kt) de(f-kv:t-kf) . (84) -

All these double integrals in (84) are equal to a product of two
cross CAFs. Again, this only holds for the special forms of the
two-dimensional functions, like W.b and Xap’ which are WDFs and
CAFs, respectively. The transformations in (84) are combined
two-dimensional Fourier transforms and correlations of TCFs,
CAFs, SCPs, or WDFs.

By use of (75), an alternative expression for the end resuit

in (84) is
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»
J(v,f,t,t) = Qag(t+51,f+kv) ng(t-Hr,f-kv) ' (85)

in terms of mirror-image functions. Also, a more typical

correlation form for (84) is, for example,

Ifdu dv exp(-i2rvu+i2nvr) wab(“'v) w;d(u—t,v—f) "

= exp(-invt+infT) X, (£+hv, tehT) Xy (E-4v, t-hT) . (86)

A MIXED RELATION
As an example in this category, if we take (46) with
Wy(t,£) = W, (t, ), Xp(v,T) = X q(2v,27} , (87)
then
(v, £) = 8., (v,£) = A(£+4v) B (£-kv) ,

(V) = b 8 4(2v,4E) = b C(hEry) p* (}4£-v) . (88)

Substitution of these results in (46) yields
det'df' @xp(~12RVE +120E/T) W, (tlt! E4kfr) X (26-£7,2t-t) =
= W (t+4T, E4hv) Xy (26-v,2t-T) . (89)

This mixed relation is a two-dimensional Fourier transform and
convolution, involving a2 WDF and a CAF, expressible in closed

form as a product of another WDF and CAF.
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SPECIAL CASES

The two-dimensional transforw renults in (81) and (84) in the
previous section involve four argum..i:, namely v,f,t,t, and four
functions, a(t), b(t), c(t), d(t). Thei. ~1.:~me generality
allows for numerous special cases upon sel:«c-ivn ¢f the
arguments and/or the functions. We consider ccme wWf these
possibilities, but are aware that this list coul¢ ke considerably

augmented.

Case 1. As an example of the generality of these results,

consider in (84) the particular selection
Ve fa=t=x=20, c(t) =a(t), d4d(t) = b(t). (90)

There follows immediately the "volume constraint"
v ’ 2,, ’ ’ 2,.
IIdv dt Ixab(v',T')| det'df |wab(t ,f')l
2 2
= X3a(0,0) X, (0,0) = at jace)1? far peer? . (o1

Case 2. In (84), take v = v = 0, b(t) = a(t), d(t) = c(t).

Then there follows, upon use of (85),

IIdv'dt' exp(+i2Rv/ t—i2RET!) X, (V',T') XL (V' 1) =
- jjdt'df' Wy, (E/+ht, £rakf) W__(t/=bst, £r-kE) =

2 2
- |xac(f.t)| - |gag(t,f)| : (92)
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vhich is nonnegative real for all £, t, a(t), c(t). Thus, the
two-dimensional correlation of two auto WDFs is nonnegative.

An alternative form of (92) is
IIdu av W, (u,v) W__(u-t,v-f) = |xac(f,t)i2 . (93)
Further specialization to t = £ = 0 yields
jjdu v W__(u,v) W_ (u,v) = lx (0 0)|2 - IIdt a(t) c*(t)lz (94)
aa' "' cc' ! ac' ' '
which yields Moyal’'s result {3] for c(t) = a{t), namely
IIdt af w2 (t,f) = [[at |a(t)|2]2 . (95)

Case 3. In (8l), take v = Tt = 0, b(t) = a(t), d(t) = c(t).

We then get the "smoothing result”
[Jatrase w, (tentr goner) w_ (t-nt, £-57) =
12 . * 2
- Iwac(t,f)l - IIdr' exp(-i2nfxt’) a(t+kt’) ¢ (t—kt')l 2 0 (96)
for all t, £, a(t), c(t). An alternative form is
[Jau av W, (uv) W  (t-u,£-v) - kwac(kt,%f)|2 - |gac(t,f)|2 -
* 2
- |Idr' exp(-i2nfr’) a(x’) c (t—t')l . (97)

That is, the two-dimensional convolution of two auto WDFs is

never negative (just as for the correlation in (92)).
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Case 4. Using (62), the same basic end result is obtained

from (81) for the following double integral involving CAFs:
[Javracr expleiznvie-tznter) x, 0500 5770 X (v 5T0) =
- |Waett 02| (98)
ac' '’ *

This right-hand side is nonnegative real for all t, £, a(t),

c(t). An alternative form is, upon use of (61),
’ 4 2
dev dt exp(+i2rvt-i2RE7) X, (v, T) X, (V,T) = |gac\t,f)| . (99)

Case 5. Consider (81) with c(t) = a(t), d(t) = b(t). Then

the right-hand side of (8l1) is always real. For example, we have

Ifdv'dt' exp(+i2nv't-i12nfx’) xab(v+kv',1+kr') x;b(v-kv',r—kr')s
- fjdt'df' exp(-12mvt’ +i2RE/T) W, (t+kt’, E+lfr) W, (t-%t’, f-%E')=

- Waa(t+%t,f+kv) Wbb(t—kf,f—kv) . (100)

This is real for all t, t, £, v, a(t), b(t), although it could go

negative.

Case 6. From (8l1), with v = v = 0, there follows
*
[[atrag wp(taner, eamer) wlge-ner, e-ner)

*
- wac(t'f) Wbd(t,f) ' (101)
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or, with the help of (61) and (75), alternative form

£) W £ £ * 10
= Eac(t' ) de(tc ) = Xas( L) ng(f.t) . (102)

Furthermore, if we gset c(t) = a(t), d(t) = b(t), we obtain

deu dv wab(“’v) W;b(t—u.f-v) -
*
- ‘!aa(tpf) v‘gbb(t'f) - Xae(f:t) Xbé(f,t) . (103)

Thus, the two-dimensional convolution of a complex cross WDF with

itself is always real, but could go negative.

Case 7. From (83) and (84), with v = vt = (0, there follows

det'df' Wy (74t £7 4kE) w:d(t'—%t,f'—kt) -
*
- IIdu dv W, (u,v) W. (u-t,v-£) =
= IIdv'dt' exp(+i2nv't-i2nfx’) xab(v',t') x:d(v',r') -
£ Y O(f,t W £) W £ 104
- Xac( 't) de( ’ ) = _as(tl )‘!bg(t' ) . { )

The two-dimensional correlation of two cross WDFs is a product of

two cross CAFs.
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Case 8. If we now set c(t) = a(t) and d(t) = b(t) in (104),

we obtain
*
JJdu dv Wab(u,v) Wab(u-t,v-f) -

- IIdv'dr' exp(+i2nv't-i2nfx’) xab(v',t') ‘ a

* *
= xaa(f,t) Xbb(f,t) = ﬂae(t.f) ﬂbg(t.f) . (105)

The two~dimensional correlation nf a cross WDF with itself is a

product of two auto CAFs.

Case 9. From (84), with t = £ = 0, c(t) = a(t), d(t) = b(t),

and with the help of (63), we find

Ifdt'df' exp(-iZmvt’+i2nfrt) W, (t’ £7) 2,

- xaa(&v,kt) xbb(HV.kt) . (106)

This is a generalization of (91).
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APPLICATION TO HERMITE FUNCTIONS

This material is heavily based on [5; appendix A, (A-36) and
the sequel]. Let Cn(t) be the n-th orthonormal Hermite function
with linear frequency-modulation, as given in [5; (A-36)]). Also

let waveforms

a(t) = gy (ut), blt) = & (yt), c(t) = L (ut), d(t) = L (vyt). (107)

The particular cross WDFs

W (t,£) = Idr exp(~121f1) , (Ht+kut) c;(yt-avr) ,

Weg(t €) = [dv exp(-i2nft) T (wtesut) Co(vt-hyT) ,  (108)

cannot be expressed in closed form. However, the cross WDFs

W, (t,£) = jdr exp(-i2nfT) T, (mtekpt) Lo (ut-hut) =

- % W, (ut, £/u) (109)

and

1

can be simply expressed, in the notation of (5; (A-40) and
(A-41)]). Thus, the very complicated two-dimensional convolution
and Fourier transform in (81), of W.b and W.q+ can be written in
a closed form involving the product of two generalized Laguerre

functions. Numerous specializations are pussible.
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SUMMARY

Some very general two-dimensional Fourier transforms of
convolution and correlation form have been derived for various
combinations of WDFs and CAFs. In particular, closed forms for
the convolution form are given in (81), while results for the
correlation form are given in (84). Numerous special cases may
be obtained from these results, of which a brief list has been
presented in (90) - (106).

Some extensions to more general arguments have been derived
in appendices A and B. In particular, appeﬁdix A treats the case
where a product of CAFs is of interest, while the case of a
product of WDFs is considered in appendix B. The possibility of
a combined convolution and correlation has also been considered
in appendix A.

For signals reflected ocff moving targets, it is necessary to
define a generalized WDF, allowing for contracted arguments.
This possibility has been considered in appendix C, where a
two-dimensional Fourier transform and convolution has been
evaluated in terms of the generalized WDF.

The results of this report should enable rapid evaluation of
integrals of products of WDFs and/or CA¥Fs with a wide variety of
arguments and including exponential terms with linear arguments.
They also significantly extend a number of special cases already

known in the literature,.
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APPENDIX A - PRODUCTS OF CAFs

In this appendix, we will further generalize the results in

(81) and (84), for products of two CAFs, to allow for more
. generai arguments. Hcwever, we begin by censidering general

two-dimensional functions as in figure 1. 1In particular, let
gz} = Xy(vy,T) +» h{T) = X,(v,, T}, (A-1)
in (4). Then
G(f) = ¢1(va,f) » HUE) = &,(v,f) , (A-2)
giving
Idr' exp(-i2nft’) xl(va,51'+ar) x;(vb,yr'+yr) = exp(ianTE%%%EJ X

*

x [agr exp(iznerttav-gu)) &) (vuv(E7+ 552)) o5 (v B('- 355)) -

B Iaviﬂﬂf exP(iznng%%%a) Idf' exp(i2nf’'t) x

x Ol(va, ;%Eé; + 5%) ’;(Vb’ ;%géz - 3%) . (A-3)

Now, let va-Bv'+av, vbnyv'+pv, where the boldface constants
- are unrelated to their counterparts; that is, B need not equal B,
witli the same true of e,y,vy. Then Fourier transform (A-3) on v’

to obtain
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Ifdv‘dt' exp(+i2nv't-i2nf<x’) xl(sv'+uv,ﬂr'+ar) X;(YV'+ﬂv,YT'+uT)-

- T;;%EZT exp(iantg%%gﬁ] dev'df' exp(+i2nv’'t+i2nf’'t) x

) _I_f'_ —...f.. * ’ £ - —-f- -
x 01(5v +av, av-Bo + 25] 02[yv +uv, ;%:E; 2y) . (A-4)

In general, we cannot proceed any further on this double integral
of a product of general two-dimensional functions Xy and Xq -

Now let Rl and Rz be TCFs; that is,

R (t,T) = a(t+lt) b (t-T) = R, (t,7} ,

Ry(t,T) = c(t+lt) d'(t-k7) = R_4(t,T) . (A-5)
Then 01 znd 02 become SCFs:

(v, £) = ¢, (v, £) = A(f+iv) B (£-kv) ,

$,(v,€) = & _4(v,£) = C(E+}sv) D" (£-%v) . (A-6)

As a first case, let vy=f and y=f. Then (A-4) becomes

jfdv'dt'exp(iva't—iant') xab(ﬂv'+av,61'+ar) x:d(ﬂv'+yv,51'+yt)-

) IB(i-ﬂ)l e*P(iZ"ffg%%) IIGV'df' exp(+i2nv/t+i2nf’T) x

x A[;gb +a% +4Bv’ +av) B*[;éi +3% —asv'-auv] x

x ¢ (;f—;l —‘s% +'sav'+'w\>) D(;-f—‘% —k% —lm\»'-’wv] =
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- }Bal’l exp[+i2nf13%% -ivatE%%] x

X xac(% +kv(u—ﬂ).% +%T(u—u)) x;d(g —kv(a-y),% -kr(a-u)). \A=T)

Thus, this very general two-dimensional correlation and Fourier
transform of cross CAFs can be expressed as a product of two
different cross CAFs. For f=f=l, amawl, usy=-%, this result

reduces to (84).

As a second case, let y=-8 and y=—8. Then (A-4}) becomes

IIdv'dT'exp(iZuv't—ianT') xab(uv+5v',ur+et') X:d(pv—ﬁv',ﬂT—BT')-

= TET%;;TT exp[ianrgg%) dev'df' exp(+i2nv’t+i2nf’t) x

X A(;%i +&% +&6v'+%uv) B*[;éi +3% -kﬂv'-kav] *

X C*(ifi +h% -aav'+gpv) D(i%i +k§ +kﬂv'—kHV),"

- |B§|‘1 exp(+i2uf15%% —ivatg%%) X

x gac[% +%1(u+u).§ +kv(a+u)) E;d[% -kt(a+u),% -gv(a+”)), (A-8)

where we used (61). Thus, this very general two-dimensional
convolution and Fourier transform of cross CAFs can be expressed
as a product of two different cross WDFs. For B=f=k, ama=l,

u=pu=1, this result reduces to (81).
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As a third case, let y=B, y=-8. Thare follows a two-
dimensional relation involving both a convoluticn and a

correlation:

dv’dt’exp(i2nrv’t-i2nrfr’) X _,. (BV'+av,Bt’'+at) x* {=BV'+pVv,BT' +uT)
ab cd

-1 -
les| ™! exp(+i2nerik -ivatgf%] x

Waaw (5 +47(a u) 5 +uvtarn ) Wy (§ “it(a-u) 5 Hvlasn)), (A<9)

where W(t,f) = %W(kt,kf) again. Observe the conjugates on
subscripts d and c of the scaled WDFs W.

For B=P=k, a=a~l, u=p=1, this relation becomes

dev'dr’ exp(i2nv’t-i2nft’) xab(v+kv',r+at') x;d(v-kv',t+kt') -
R *
= 4 exp(idnfr) @ad*(Zt,2f+v) gbc*(Zt,Zf-v) -

= explidRET) Wy, (%, E+iv) Hpow(t E-4V) (A~10)
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APPENDIX B - PRODUCTS OF WDFs

In this appendix, we wil) also generalize the results in (81)
and (84), but now for products of two WDFs, to allow for more
general arguments. Again, we begin by considering general two-

dimensional functions as in figure 1. 1In particular, let

g(t) = wl(t,fa) » h(t) = Wz(t,fb) ' (B-1)
in (4). Then

G(v) = &, (v,£.) , H(v) = (v, ) , (B-2)
giving
Jdt' exp(-i2nvt’) W, (Bt +at,f ) Walvtr+ut, £,) = exp(ivatE%%gg] x

x Jdv' exp(iva't(ay-ﬂu)] o (vo+ 53 £,) o, (v~ o J£y) . (B-3)

Now, let fa=pf'+uf, fb-yf'+yf, where the boldface constants
are unrelated to their counterparts; that is, B need not equal B8,
with the same true of «,u#,y. Then Fourier transform (B-3) on f’,

to obtain

IIdt'df' exp(-i2nve’+i2nf’ 1) W, (Bt’+at,BE’ +af) Wy (vt +ut, vE' +uf)=
= exp(iZuvtg%%%ﬂ] dev'df' exp(+12uv't(ay—sy)+i2nf'1] x

x Ql(yv'+ 55 ,ﬂf'+af] o;(ev'- L ,vf'+nf] ) (B-4)

e
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In general, we cannot proceed any further on this double integral
of a product of general two-dimensional functions L and LPY

Now let R1 and Rz be TCFs; that is,

Ry (t,T) = a(tsht) b (t-4T) = R, (t,7) ,

Ry(t,T) = c(teht) A (t-4T) = R y(t,T) . (B-5)
Then ¢, and ¢, become SCFs:

0;(v,f) - 8, (v, £) = A(£+kv) B (£-%v) ,

(v, £) = #4(v,£) = C(£+4v) D' (£-4v) . (B-6)

Substitution in (B-4) yields

IIdt'df'exp(—iZuvt'+12nf't) wab(st'+at,af'+af) W:d(yt'+ut,1f'+uf)

- exp(iZuvtg%%gﬂ) JIdv'df' exp(+12nv't(ay-6y)+i2uf'r] X
x A(BE'+af+iyvi+kv/B) B” (BE +at-tyv -kv/B) x

x c*[yf'+pf+gev'-av/y) D[yf'+yf-kﬁv'+hv/y] . (B-7)

As a first case, let y=8 and y=f. Then (B-7) becomes
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det'df'exp(-izuvc'+12uf'r) Wop (B! +at, B +af) Wo (B’ +ut,BE +uf)
- exp(izuvtggg] dev'df' exp(+12uv'ta(a—u)+i2uf'r] x
X A(pf'+uf+ksv'+kv/8] B*(ﬂf'+af—hsv'-kv/5] x

x C*(Bf'+yf+k6v'—kv/ﬁ) D[sf'+pf-k5v'+kv/a) -

-1 .
= 88| exp(+12nvt5§% -ianrggﬁ] X

=

x xac(f(u-ﬂ)+ 78 otlo-u)+ i%] xgd[f(a—p)- 5 o tlomu)- 5%] . (B-8)

e ]
>

Thus, the very general two-dimensional correlation and Fourier
transform of cross WDFs can be expressed as a product of two
different cross CAFs, For B=f=]l, a=a=l, u=pg=-%, this result
reduces to (84).

As a second case, let y=-8 and y=-g8. Then (B-7) becomes
det'dfvexp(-iznvt'+iznf'r) W (at+Bt’ af+BE') W, (ut-Bt’, uf-gf’)
- exp[iZuvtE%%] IIdv'df' exp(—iZuv'ta(a+y)+12nf'r) x
*
b A(Bf'+u£-86v'+kv/8) B (Bf'+uf+asv'-kv/8] X

x C*[—Bf'+yf+k5v'+av/ﬁ] D(—Bf'+yf—88v’—kv/a] -
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- |881™! exp(+i2nvts¥ ~i2nero3)

T v * T v
x gac(t(a+p)+ bT ,f(¢+e)+ 73] de(t‘“*”)' 6 ,E(atp)- 33)’ (B-9)

using (61). Thus, the very general two-dimensional convolution
and Fourier transform of cross WDFs can be expressed as a product
of two different cross WDFs. For B=fs=k, a=a=1l, uy=p=1, this

result reduces to (81).

For T = 0, ve 0, b(t) = a(t), 4d(t) = c(t), (B-9) reduces to
”dt'df' W, (at+Bt’,af+BE') W__(ut-Bt’ uf-BE') =
- |88t |vgac[t<a+u>. f(a+u)]|2 : (B-10)

which is nonnegative for all parameter values and waveforms a(t)

and ¢(t). This is a generalization of (96).
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APPENDIX C - A GENERALIZED WDF

When a signal is reflected
is to contract (or expand) the
than cause a frequency shift.

more general version of a WDF.
a(t) = a(at) ,

then their cross WDF is

Thus, we have need to consider
K!JJdt'df' exp(-i2nvt’+i2nf’ 1)

This form is general enough to

from a moving target, the effect

time scale of the echo, rather

This requires us to consider a

Tc begin, if waveforms
Lw  (at,f/a) (c-2)
a ab !

integrals of the form
Wop(t! £) W:d(t—at',f~f'/u).(c-3)

accommodate integrand

*
wab(st BE") wcd(t—at JE-£' /o) (C-4)
by a change of variable.
To accomplish evaluation of (C-3), we must define a
generalized WDF as
Wab(t,f;p) = Idt exp(-i2nft) a(t+pT) b*(t-(l—p)T) (C-5)
Then we have the usual WDF as a special case, namely
wab(t,f;k) = Wab(t,f) (C-6)
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Also, (C-5) enables us to evaluate the following more general

integral according to
[ats exp-12meer) acer) b (t-at’) -
- p exp(-i2Rftp) W, (pt,pfip) i P = 145 - (c=7)

Now we are in a position to reconsider integral K defined

above in (C-3):
K = det'df' exp(-i2nvt +i2nf’ <) Idu exp(-iZnf’u) a(t’+hu) x
x b (tF-ku) fdv expli2n(£-£7/a)v] ¢ (t-at’+kv) d(t-at’~kv). (C-8)

The integral on £’ yields 8(t-u-v/a). Integration on u then

yields

K = IIdt'dv exp(-i2nvt’'+i2nfv) a(t’'+lt-kv/a) x
x b (tr-ktelv/a) ¢’ (t-at’+4v) d(t-at’-kv) . (c-9)

Now let

X = t'+ht-4v/a , y = t'-kt+kv/a ;

L' = k(x+y) , v = a(y-x+71) . (C-10)

The Jacobian of this two-dimensional transformation is «, leading

to
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K = o Ifdx dy expl-inv(x+y)+i2nfa(y-x+1)] x

% a(x) b*(y) c*(t+kat—ax) d(t-%at-ay) =

= a exp(i2nafT) Idx expl{-i2n{af+kv)x] a(x) C*(t+8ut—ax) X

x Idy exp(i2n(af-~%v)y] b*(y) dit-dot-ay) =

o aft-vt t+bat af+kv 1 ) x

= (l+a)2 exp(12n l+a ) ac( lva /' 14+a "l+a

* [t—gut af-kv 1 ] , (Cc-11)

x wbd l+a ' 1+a "14+a

by use of (C-7). For a = 1, this reduces to alternative form

(83), upon use of (C-6) and (61).
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