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Abstract______ ___

The fundamental fluctuations of physical cross sections and process rates in Quantum

Electrodynamics are known as quantum 1/f effect, are limiting most high-technology

applications, and are described by the simple quantum 1/f formula for the fractional spectral

density, S(f)=aA/fN. In spite of their basic character, they are a special case of 1/f chaos in

nonlinear systems. The present report provides for the first time a sufficient criterion for the

presence of a 1/f spectrum in a nonlinear system, proves its sufficient character, and

exemplifies it for the current carriers in semiconductors, for electrons in metals, for cars on

the highway, and for the nonlinear system of particle and field in electrodynamics. The report

gives some of the rigorous first principles analytical calculation results for the quantum 1/f
mobility fluctuations in electronic materials such as Si, GaAs, Hgl -xCdxTe, etc., derived for the

first time here under the present grant, on the bF -is of the quantum 1/f cross correlation

formulas derived under the previous AFOSR Gr,-it 85-0130. These quantum 1/f results give

the conventional quantum 1/f noise as an analytical function of temperature, applied field, and

all the physical parameters of the semiconductor material, allowing for optimization of the

material for any given application. For the quantum 1/f noise in Hgl-xCdxTe we also developed

a Monte Carlo computer simulation, which is currently being tested and improved, and which

will be compared with results calculated analytically. Finally, a suggestion is presented, which

provides an explanation of the discrepancies which have been noticed in the collector current

1/f noise of bipolar junction transistors.
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I. INTRODUCTION

Progress has been achieved during 1989 and 1990 in the study of
nonlinear systems which generate chaotic 1/f fluctuations, in the
application of the Quantum 1/f Theory1 -3 to various materials used in
small and ultrasmall electronic devices, and in the application of the
Quantum 1/f Theory to electronic devices.

The close similarity cf the classical and quantum 1/f tneones, ana
the initial development of the quantum 1/f theory by the author out of his
efforts to quantize his classical turbulence theory, have led to sustained
efforts of the author aimed to integrate all his theories as various forms
or realizations of a fundamental notion of chaos in nonlinear systems.
During this grant period, these efforts finally beared fruits. A general
sufficient criterion was formulated, allowing to identify the nonlinear
systems which exhibit 1/f spectra. This criterion is presented for the
first time in Sec. II below. It is followed in Sec. III by examples, in which
the criterion is applied to the classical and quantum mechanical forms of
the author's 1/f noise theory. These examples clarify the physical
meaning of the new criterion.

For the practical application of the Quantum 1/f Theory it is
necessary to derive the quantum 1/f fluctuations of various kinetic
(transport) coefficients which characterize the materials used in
electronic and microelectronic applications, from the author's
fundamental quantum 1/f formula. The latter is applicable only to cross
sections and rates of elementary processes. Most important is the
calculation of mobility fluctuations in Si, GaAs and Hgl-xCdxTe. An
earlier calculation (Kousik, Van Vliet, Handel, 1985) of mobility
fluctuations in Si and GaAs is replaced in Sec. IV by a more rigorous
calculation, based on the new quantum 1/f cross-correlations, developed
under the previous AFOSR Grant, and presented in the Final Technical
Report AFOSR -85-0130. The new calculation yields increased 1/f noise,
and is in vey good agreement with the experiment. Although not presented
here yet, we also performed a Monte Carlo simulation for HgCdTe during
this period. The simulation has yet to be improved and compared with the
experiment.
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Finally, we have tried to improve the application of quantum 1/f
theory to the collector noise of bipolar transistors. This short calculation
is presented in Sec. V.

In the same time, many new contributions to the quantum 1/f theory
and experiment were published by other workers in the field, considerably
advancing the field of infra-quantum physics and quantum 1/f noise in
high-technology applications. These new contributions, as well as new
PhD thesis work in this field and contributions presented at the IV
Conference on Quantum 1/f Noise and other Low-Frequency Fluctuations,
are included in the updated General Quantum 1/f Bibliography appended to
this Report.

I1. A SUFFICIENT CRITERION FOR 1/F NOISE IN NONLINEAR SYSTEMS

Consider a n-dimensional nonlinear system described in terms of the
dimensionless function Y(x,t) by the mth order nonlinear dynamical
equation

dY/dt + F(x, Y, dY/dxl...dY/dxn, d2 Y/dx 1 2 ..... dmy/dxnm) = 0 (1)

If

F[RX, Y, dY/(Xdx1)...dY/()Ldxn), d2 Y/()Ldxl) 2 ..... dmy/(,dxn)m]

= XPF(x, Y, dY/dxl ...dY/dxn, d2Y/dxl2 ..... dmY/dxnm) (2)

for any real number X, Eq. (1) is said to be homogeneous. Performing a
Fourier transformation with respect to the vector x, we get in terms of
the Fourier-tra~lsformed wavevector k the nonlinear integro-differential
equation

dy(k,t)/dt + G[k, y(k,t), kly(k,t)...kny(k,t), k12 y(k,t) ..... knmy(k,t)] = 0, (3)

where y(k,t) is the Fourier transform of Y(x,t). Due to Eq. (2), G satisfies
the relation
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G[.k, y, Xk 1 y.... knY, (?.kl) 2 y ..... (Xkn)my]

= XPG[k, y, kly...kny, k1
2 y ..... knmy]. (4)

Eq. (3) can thus be rewritten in the form

dy/d(t/LP) + G[)Lk, y, Xkly... ?kny, (Xkl) 2 y.....(Xkn)my] = 0, (5)

Taking X=1/k, where k=IkI=(x1 2 +....+xn2 )1 /2 , and setting kPt=z, we notice

that k has been eliminated from the dynamical equation, and only k/k is
left. This means that there is no privileged scale left for the system in x
or k space, other than the scale defined by the given time t, and expressed
by the dependence on z. We call this property of the dynamical system
"sliding-scale invariance".

In certain conditions, instabilities of a solution of Eq. (1) may generate
chaos, or turbulence. In a sufficiently large system described by the local
dynamical equation (1), in which the boundary conditions become
immaterial, homogeneous, isotropic turbulence, (chaos) can be obtained,
with a spectral density determined only by Eq. (1). The stationary
autocorrelation function A(r) is defined as an average over the turbulent

ensemble

A(tc) = <Y(x,t)Y(x,t+'c)> = J<y(k,t)y(k,t+t)>dnk = Ju(k,z)dnk (6)

Here we have introduced the scalar

u(k,z) = <y(k,t)y(k,t+,t)> (7)

of homogeneous, isotropic chaos (turbulence), which depends only on Ikl
and z=kPt. All integrals are from minus infinity to plus infinity. The
chain of integro-differential equations for the correlation functions of
any order obeys the same sliding-scale invariance which we have noticed
in the fundamental dynamical equation above. Therefore, in isotropic,
homogeneous, conditions, u can only depend on k and z. Furthermore, the
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direct dependence on k must reflect this sliding-scale invariance, and is
therefore of the form

u(k,z) = k-nv(z). (8)

Indeed, only this form insures that u(k,z)dnk and therefore also the
corresponding integrals and multiple convolutions in k space have the
necessary sliding-scale invariance.

According to the Wiener-Khintchine theorem, the spectral density is
the Fourier-transform of A(t),

Sy(f) = .e 2 nifTA(,c)dr = (1/f) Je2 nit'Jk'-nv(z)dnk'dt' = C/f, (9)

where we have set fc=t', kn=fk'n, z=knc=k'nt', and the integral

C = Je 2 nit'fk'-nv(z)dnk'dt' = fe2nit'fk"-nv(k"n)dnk"dt' (10)

is independent of f. We have defined the vector k"=t' l / n k.
In conclusion, we have shown that if the equation

dY/dt + F(x, Y, dY/dx1 ... dY/dxn, d 2 Y/dxl 2 ..... dmY/dxnm) = 0 (11)

with

F[X x, Y, dY/(Xdx1)...dY/(Xdx)n, d2Y/(Xdxl) 2 ..... dmY/(Xdxn)m] = XPF(x, Y,
dY/dxl ...dY/dxn, d 2 Y/dx 1 2 ..... dmy/dxnm) (12)

admits, in the limit of weak dissipation, quasistationary homogeneous
isotropic chaotic (turbulent) solutions which are practically independent
of the nature of the instabilities or bifurcations (or even stirring forces)
which have caused the chaotic state, the corresponding spectral density
must be proportional to 1/f.

We note that the solution (7) leads to a weak (logarithmic) divergence
of the integral over k in the last form of Eq. (6) and in Eq. (9). This seems
to contradict the fact that in practical applications the autocorrelation
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function A(t) is finite, and its value at tNO is usually given in the problem

at hand However, in practice one never deals with an infinite volume, and

the physical wave-vectors are also limited. For instance in fluid

dynamics, wave vectors exceeding the reciprocal average distance

between neighboring fluid molecules correspond to thermal motions, and

are therefore no longer meaningful for the hydrodynamic treatment. Due

to its logarithmic character, the divergnce is thus without practical

importance. Nevertheless, for a given level of chaos A(O), we can

construct an approximate solution

u(k,z)=kr-nv(z), (13)

with O<r<<l, which avoids the divergence at k=O. To get the correct chaos
level with k<k o , ko being an upper cutoff, we set

u=r[A(O)/v(O)]ko-rkr-nv(z). (14)

This yields for t=O the result A(O) when we integrate over dnk with an
upper limit ko . We notice that r is present both as a general factor, and as

a small defect in the exponent of k. This is a general feature, present both
in classical and quantum nonlinear systems with 1/f noise. In the limit
r--O, the approximate solution tends to become exact. In the classical

homogeneous, isotropic, turbulence theory, r can be arbitrarily small,
while in the quantum 1/f theory (quantum electrodynamics), r = aA =

(2cc/3n)(Av/c) 2 << 1/137 is the well-defined infrared exponent of the
process, with ac=e 2/hc=1/137, as we know from the theory of infrared

radiative corrections.
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Ill. EXAMPLES

The general criterion developed in the preceeding section will now
be illustrated on the basis of some examples.

111.1 Classical Turbulence Theory for the Current
Carriers in Semiconductors

In the case of homogeneous, isotropic turbulence4 -6 caused in the
electron-hole plasma of an infinite sample of a symmetric intrinsic
semiconductor by dynamical instabilities of any kind, we start from the
equations

vv+ = (e/2c)v-xB - (1/n)VP, (15)

vv- = 2e[E + v+xB/c] - (2/n)V(Pp - Pn), (16)

V.v+= 0 (n = const), (17)

V xE -(1/c)DB/ t, (18)

V xB = 2nenv-/c, (19)

V.B =0. (20)

Here n is the total carrier concentration including an equal number
of electrons and holes, vie their reciprocal mobility assumed to be the
same for electrons and holes, Pn and Pp the partial pressures of electrons
and holes, P the total carrier pressure, 2v + , v- the sum and the difference
of the carrier drift velocities. Inertial terms proportional to the
effective masses of the carriers, as well as electrostatic terms and
compressibility terms have been neglected here in a consistent way4 - 7 ,
because we are interested in the low-frequency domain only. Although we
do not work this out here, this system of equations can be shown to admit
an energy theorem. Performing a Fourier expansion, we o,.in
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vv+(k) = (e/2c)lk'V-(k')xB(k-k') - (i/n)k.P(k), (21)

vv-(k) =2e[E(k)+ Xk'v+(k')xB(k-k')/c]-(2i/n)k(Pp-Pn), (22)

k-v+(k) 0. (23)

ik xE(k) = -(1/c)aB(k)/at, (24)

ik xB(k) = 2,env-(k)/c, (25)

k-B(k) = 0, (26)

Substituting E from Eq. (22) into Eq. (24), we obtain with Eq. (25)

aB(k)/at + gk 2 B(k) = ikx ,k' v+(k') xB(k-k'), (27)

where i = c2v/4nne 2 . Eqs. (21) and (25) yield

v+(k) = (i/4tvn) Xk-{B(k")[k".B(k-k")] - k"[B(k").B(k-k")]

(28)

-(k/k 2 )(1-8k,o)[k".B(k-k") k.B(k") - B(k").B(k-k") (k-k")]}

Substituting this into Eq. (27), we obtain the fundamental dynamical
field-equation of turbulence in the electron-hole plasma of a symmetric

intrinsic semiconductor

bp(k,t)/aqt + g.k2bp(k,t) = ,k'k" bj(k-k',t) bi(k",t) bm(k'-k",t)

(29)
•(kj5ps-ksSpj)[ksIm-km"8ls + (ks'/k'2 )(1- k,O)(km"kl'-k'.k"b1m)],

in terms of b = B//2nvn. This dynamical equation has the form of Eq. (3),

with p=2 in Eq. (4), and with G defined as the r.h.s. minus the term in k2 on
the I.h.s.. Our sufficient criterion thus tells us that this nonlinear system

will yield a 1/f spectrum. We present below 2!ie direct derivation for this
example.
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Multiplying Eq. (29) with bcx*(k,t-'t) and taking the average over a

statistical ensemble which represents our notion of stationary
turbulence, we obtain in quasi-stationary conditions

oaWc~p(k,, )/a: + tk 2 wp(k,tr)

=X k'k"I<b a*(k,t-t)bj(k-k',t)bl(k",t)bm(k'-k",t)>Rjmll3, (30)

with waP(k,c) (L/2) 3 <ba*(k,t-,)bp(k,t)>, where L is the edge of the cubic
normalization box, and

Rjml =(kjls-ks<irj)[ks8Im-km"81s +(ks'/k' 2 )(1- 6 k',0)(km"kl'-k'k"51m)]. (31)

Multiplying Eq. (29) with more magnetic field components and
averaging, we obtain equations connecting the fourth-order correlation
tensor to the sixth-order tensor, and so on4 -7 . To end this infinite chain
of equations for the correlation functions, we make a quasinormality
assumption which expresses the fourth-order moment appearing in Eq.
(30) according to the scheme

<ABCD> = <AB> <CD> + <AC> <BD> + <AD> <BC>, (32)

valid if the four field components would approximate a joint normal

distribution. This approximation does not alter the homogeneity of the
system, which ultimately causes the 1/f spectrum. This approximation
yields the closed equation

oawc~p(k,,c)/a' + ik2wxp(lk,,r)

=(2n/L)3woj(k ,T)lk'Wlm(k',0) Rjmll3(k,k') • (33)

Isotropic turbulence requires wop = Al(k)86,p + A2(k)kako, with coefficients

A1 and A2 related through Eq. (26), yielding

wa1(k,t) = (1/2 )[8 0,p - kakp/k 2 ]u(k,T), (34)
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where u(k,t) = ,_wcO,(k,,t). Therefore, the scalar correlation function u(k,t)

satisfies the dynamical equation of homogeneous, isotropic, stationary

turbulence

oav(k,x) 1 , i-d3k ' k2+,,,,
-t VKX i(k,x~- (k k) -( kk' 2]v(k"O)' (35)

al~kx) + v(k,x) = - ____)~~ 2 k~~ -(k~)2vk' o (5

aIxI 0(~,2 kk

where v(k,x)=-k-3u(k,t), and x = .vrlk2  is a dimensionless variable replacing t.

We convince ourselves that the integral is independent of k, provided
v(k,x) does not depend on its first argument, by setting k'/k-K. This yields
a solution. However, with v=e-mlxl we get a logarithmic divergence at
K=O. We look for an exact solution of the form4 -7

v(k,x) = hkFe-lxlm(k), or u(k,x) = (h/k3-C) e-lxlm(k), (36)

where m(k) is very close to a constant, almost independent of k, and h is a
constant proportional to the intensity of the turbulence, or the turbulence
level. Substituting this into Eq. (35) and performing the integration, we
obtain a finite result only for O<s<2"

m(k) = 1 + h r(p)kE, with r()=[2i 2 cotan(c /2)]/[(1- 2 )(3- 2 )]. (37)

We notice that m(k) is indeed practically constant when O<c<<1 is very
small, arbitrarily small. The value e=O leads to a logarithmic divergence,
but we can set E=O for practical purposes.

The spectral density corresponding to Eq. (36) with E=O is

00

wo1P(o) = (1/n) Jcos(ord'c fwaP(k,tr)d3k
0

00
00 00 md r4 kd I 4 .J° + ~ 2 mkdk 3hco 80,P3. (38)

= 3a jk2dk Jd u(k,t)cosoc = h6cJ3 = 6~. (38)
0 0

0
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This is a 1/f spectrum. At the low frequency end we do not get a
divergent spectral integral, because the more exact form of the spectrum
wh a finite small <<1 is4 -7

00 
0Tmkl+Edk 1 (x1 +Fdx

C02 +m 2k4 = )l-_/2mE/2 J l+x 4  (39)

0 0

which is proportional to fe/ 2 -1. It is interesting to note that for C< < 1
cotan en/2 = 2/en in Eq. (37), and that the value of e calculated from Eq.
(37) is therefore proportional to h, or to the intensity of the turbulence.
This feature of the classical theory4 -7 is expressed with fascinating
clarity in the quantum form of the theory, where £ is replaced by 2oxA
which also appears as a intensity factor multiplying the quantum 1/f
noise.

The essential element which led to the 1/f spectrum in the classical

turbulence theory is the nonlinearity of the equations of motion, caused by
the reaction of the electric currents back on themselves via the generated
electromagnetic field. The same feedback reaction, via the
electromagnetic field, also caused the nonlinearity in the quantum 1/f
theory, and in QED in general, leading in the same way to an identical 1/f
spectrum, this time with a physically more meaningful £=2ctA. This

nonlinearity induces the coupling between various scales of turbulence

and leads to the dynamical equilibrium between eddies of all sizes,
expressed by the 1/f spectrum. In the e=0, or oxA=0, limit, this dynamical

equilibrium assumes both for the quantum case and for homogeneous,
isotropic, turbulence in the unbounded semiconductor sample the simplest

form, characterized by scale-homogeneity, or scale invariance. Indeed,
replacing for £=0 in Eqs. (35) and (36) k and k' by Xk and Xk', while also
replacing ,t by E/?2 , (or co by X2(0), Eq. (35) is not affected, and X drops out.
We conclude that in the weak turbulence limit (e=O) we obtain perfect

self-similarity of the turbulence process at all scales in space and time,
classically and quantum-mechanically. The implied scale invariance is
caused by the absence of any characteristic length or time scale, or by the
presence of a sliding scale. Indeed, the frequency scale p.k 2 is a function
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of the size of the eddies, given by the wave number k which can have any
value. The actual frequency and wave-number spectra are closely related

fractals, but in the weak-turbulence limit they approach an exact 1/f and
1/k 3 spectrum respectively. In fact, we are here understanding the
nonlinear dynamics which shapes this fractal for the first time.

111.2 Turbulence Theory for Drude Electrons in Metals

Our classical turbulence theory can be extended to the case of
metals or degenerate extrinsic semiconductors 7 in the Drude model. The
system of integro-differential equations is quite different,

vv + =-eE - (e/c)vxB - (1/n)VP (40)

VxE = -(1/c)DB/at (41)

VxB = -(4nen/c)v (42)

V.B =0, (43)

and leads to a third-order nonlinearity7 in the resulting closed equation of
motion, or nonlinear field-equation, which replaces Eq. (28):

aB(k,t)/at + vk 2 B(k,t) = -(c/47Ene)kxJd 3 k'B(k-k',t)x[k'xB(k',t)]. (44)

This is again in the form of Eq. (3), with p=2 in Eq. (4). We thus expecta
1/f spectrum in this system as well. This time we only sketch the
derivation. The corresponding infinite chain of equations for the
correlation tensors now goes in steps of one. As was shown above, it
went in steps of two for semiconductors. The third-order correlation can
be eliminated between the first and second equations in the chain. The
resulting dynamical equation 7 for homogeneous, isotropic, stationary
turbulence, which replaces Eq. (35), with the same notations, using e3 as
the unit vector of the third axis, is

14



a2 v(kx)
x2+ v(k,x)

lX ' d 2 3 K1e+K.e3 (K v ) (k, 2x)v(kle3+K,xle3 + KI2). (45)=--3 e+13[ 1 - 2 "K, -IxV~ e 3

This also admits, in the E=O limit of weak turbulence, a solution
v(k,x) which does not depend on the first argument, and u(k,x) = ke -

xm(x), this time with an x-dependent m. With the change of variables t=co't

and k'=k//o) in the second (middle, involving u) form of Eq. (38), x remains
invariant, and a factor l/ca will appear in front of the integrals which
themselves will just yield a constant factor independent of co, 'r or k. We
thus obtain again a universal 1/f spectrum. As is shown in detail
elsewhere 7 , this 1/f spectrum is expressed in the corresponding current
and voltage fluctuations which can be observed in the semiconductor or
metallic medium. We conclude that the 1/f spectrum is a general property
of electrically conducting systems in interaction with the
electromagnetic field, a property which is caused by the nonlinearity of
the system of carriers and field in mutual interaction due to the absence
of a characteristic scale in the nonlinear equation of motion, and which
finds its clearest expression in the Quantum 1/f Effect.

111.3 Theory of Highway Traffic Fluctuations

Musha and Higuchi 8 ,9 discovered the 1/f spectrum of highway traffic
fluctuations empirically in 1977, also developing a model based on a
postulated linear dependence of the average traffic speed v on the linear
concentration of cars n(x) on the road, v=vo(1-n/ns). The model was
reco.nized to be similar to Burger's model of turbulence, and was
simulated numerically leading to a 1/f-like spectrum at low frequencies.

The present paper develops a statistical turbulence theory for the
Musha model, showing how in the low wave number and low frequency
limit a universal 1/f spectrum emerges. In this limit, this is a particular
case of the author's sliding-scale-invariant ciass of nonlinear systems,
all characterized by the presence of a universal 1/f spectrum. The
author's classical10 ,11 and quantum 12 1/f theory is another example in
the same class13.
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Musha writes the traffic current J as a sum of drift and diffusion

currents

J = nv - Don/ax = nvo - (vo/ns)n 2 - Dan/Dx, (46)

where D is a "diffusion coefficient". The equation of continuity is8 ,9

0 = an/at + J/ax = (D/at + vo/ax)n - 2(vo/ns)nan/ax -Do2 n/ax 2 . (47)

This is Musha's fundamental equation of traffic dynamics, which also was
written 8 in a system of reference defined by

' = -x + Vot, t' = t (48)

in the final form 8

an/at' + anon/ax' = Do2 n/ax' 2 , (49)

where a = 2vo/ns.
We normalize the concentration to ns/2, the coordinate along the

road x to D/vo, and the time to D/v0
2 , thereby obtaining the dimensionless

form of the fundamental traffic-dynamical equation

an(x,t)/at + n(x,t)Dn(x,t)/ax = a2n(x,t)/ax 2 , (50)

where we did not bother to change the notation, and returned to the
original unprimed notation. Expanding in a Fourier series over the interval
L, we obtain

an/at + iyk,k'n(k')n(k-k') = -k2n(k,t). (51)

Comparing Eq. (50) with Eqs. (1),(2), or Eq. (51) with Eqs. (3),(4, we
notice that this time our criterion is not satisfied, due to the r.h.s. term.
However, in the limit of small k that term becomes negligible, and thus,
our criterion becomes applicable, and we should get a 1/f spectrum in the
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low frequency limit. This would correspond to p=1 in Eqs. (2) and (3). We

derive this 1/f spectrum below.
Defining the autocorrelation function

A(4,t) __<n*(x,t)n(x+4,t+ c)> =1k<n*(k,t)n(k,t+t)>eik =1kU(k,'r)eik , (52)

as a turbulent ensemble average <...>, in quasistationary homogeneous

conditions we obtain by multiplication of Eq. (51) with n*(k, t-C), after

ensemble averaging,

alU/a +k2U(k,t) + ilk,k'<n*(k, t-t)n(k',t)n(k-k',t)> = 0. (53)

Linking the complex function U(k,,t) to a third-order correlation function,

this is the first equation of an infinite chain of equations connecting the

Nth order to the order N+1 correlation function. Applying the operator
-a/aJt +k2 to Eq. (53), and using the complex conjugate of Eq. (51) to define

the action of this operator on the first factor inside the averaging

brackets in Eq. (53), we obtain

-.a2U/a x2 + k4 U = -i k-k'<[iyk-,k"n*(k",t-)n*(k-k",t-tc)]n(k',t)n(k-k',t)>
= Yk,,k,,k'k"[U(k",0)U(k',0)8k,0 +U(k',,r)U(k-k','E)8k"k' +U(k','r)U(k-k','r)5k.,k-k,].

(54)
The last form was obtained by approximating the fourth-order correlation

function with its expression in terms of the second-order correlation

applicable for Gaussian processes:

<ABCD> = 4AB><CD> + <AC><BD> + <AD><BC>. (55)

This approximation was used by Heisenberg14 in his turbulence theory, and

was successfully verified in its practical applicability by Uberoi 15 and

Batchelor1 6
In the limit L-)oo, setting U(k,,c)L/21c = u(kc), we write for k-0 Eq. (54)

in the form

-a2u/a,2 + k4 u = .f[k'2u(k',t)u(k-k', c) + k'(k-k')u(k',)u(k-k',t)]dk'
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or
-a2u(k,-T)/aT2 + k4 u(k,tc) = kfk'u(k',t)u(k-k', t)dk'. (56)

This is our fundamental dynamical equation of traffic turbulence. All
unspecified limits on integrals are from -oo to oo, as we mentioned earlier.
From the symmetry A( ,,t) =A(- ,-) =A*(4, ) we see that a physically
acceptable solution of this equation must satisfy the conditions

u(k,tr) = u(-k,-T) = u*(-k,-tr) = u*(k,-,t). (57)

A solution of the form

u(k,T) = V(k)e - imkt, with V(k) = V(-k) = V*(k) (58)

where m is a real constant, substituted into Eq. (56), yields

k(m 2 + k2 )V(k) = .fk'V(k')V(k-k')dk'. (59)

In the low wave number region k<<1 (i.e., k<<vo/D) we neglect the k2 term
which arises from diffusion, and get

m 2kV(k)-- fk'V(k')V(k-k')dk'. (60)

A solution V(k) - Clk le-1, with arbitrarily small e>0, yields the value of C,
independent of k only in the limit of P-*O:

00 00

m 2 /C = Jk'lk'je-1 l-k'/kl-ldk'/k =IkIE j' IKIe-1j-i eldK
-00 -00

2

= IklefIlF-I1-Kje1C = 2/c = I = const, (61)
0
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where we used the substitution k'/k=c. The divergence at e=O disappears
when we return to a finite value of the maximal road length L, which
corresponds to a minimal k (or k') value ko=2n/L, and transforms the
integrals back into sums.

Eq. (61) establishes a proportionality between the level of the
turbulence,described by C, and the magnitude of the small parameter £ as
in earlier turbulence calculations10 ,11 . The same fundamental feature is
more clearly expressed, without the pseudo-singularities present here, in
the quantum 1/f theory1 2 , where £ becomes the infrared exponent aA
known from quantum electrodynamics. Indeed, aA is present there, just as
we see it come in here, both as a factor in front of the final result, and as
a small defect in the exponent of the frequency. We also mention that the
apparent absolute determination of C by Eq. (61) is just an artifact which
reminds us that we omitted a source term in Eqs. (47), (49-51), (53-54),
(56), which comes in as a 6 function of time, h(k)5(t) on the r.h.s. of Eq.
(53), only if we assume the excitation in Eq. (47) to depend on time like
white noise. Once that source term is written explicitly, it will allow us
to determine C as this was done earlier 11 for a different equation, and it
does not affect our equations for ,r # 0.

We can rewrite Eq. (52) in the form

A( ,,r) a<n*(x,t)n(x+ ,t+,t)> = YkU(k,tc)eik = J'dk u(kj)eikk

= Cfeik(t-mc)Ik-1dk = IJ-mtC-I-(m2/I)feiKJE-1dK = m 2 1-mrl -e. (62)

Here we have used the substitution klI-mrl=c, and we have taken the limit
e-O in the integral and in I, noting that they exhibit the same divergence,
and therefore can be simplified in the limit. The cancellation of the
divergences in the expression of the 3utocorrelation function shows that
this important function is finite even in the continuum limit. It is only
the spectral distribution of turbulence which exhibits a singularity at low
wave numbers and frequencies.

Since only the limit e=O satisfies the fundamental dynamical
equation of traffic turbulence, Eq. (62) means that the autocorrelation
function is a constant. It also indicates that the constant has to be
interpreted as the limit of a slowly decreasing power law which depends
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only on therefore the spectrum in wave numbers is the same as the
spectrum in frequencies. The Fourier transform with respect to [ is the

spectral density

Sn'(RMo) =f<n*(x,t)n(x+ ,t+-t)>eGOTdz = Cff(dk/lkll-e)eik( -m)+i°i'tdt. (63)

To leave the moving (primed) frame and return to the system of reference
at rest, we replace co by co-kvo in the last integrand, actually just by co-k in
our (v0 =1) normalization:

SAM( o.) f< n* (x,t) n(x+ ,t+,c) >ei(c°-kvo)'Ed.T

=Cfjf(dk/kl -e)eik(--mt)+i(W-k)trd-T. (64)

The spectral density of concentration fluctuations in a given point is
obtained by setting =O. The integration with respect to t yields a delta
function 27r8[co-(m+1)k], and we finally obtain the spectrum

Sn(O,co) = C[(M+1)/Coli-F (65)

where again the constant will turn out to be finite when we coarse grain
the integrals. As mentioned above, the constant will actually be
determined by the excitation term omitted in Eq. (56).

According to Eq. (2) we can write J(k,co) = (co/k)n(k,co) in the system
at rest. Therefore, for J we include a factor (co/k) 2 into the integrand of
Eq. (64), and we get again the spectrum

SJ (0 c) =f<J *(x, t)J (x +4,t+-T)> e i(co-kvo)TdTc

= ff(co2dk/k3-)eik( -mt)+i(w-k)td.T; (66)
Sj(OCO) = C(m+1) 2 [(m+l)/o] 1-e = Const/co. (67)

Due to the neglect of the k2 term in Eq. (59), the universal 1/f
spectrum will be limited towards high frequencies by (o<v 0

2,'D, and the
1/k-spectrum by k<vo/D. This limitation occurs because only Eq. (60)
satisfies the condition of being free of any characteristic scale, thus
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exhibiting our sliding scale invariance 13 , while Eq. (59) does not have this
property. We have thus constructed a statistical dynamic theory of
traffic turbulence, proving analytically Musha's earlier result, without any
pretension of mathematical rigor. Traffic turbulence arising from
instabilities of the laminar traffic flow can be considered as a form of
classical fluid-dynamical chaos.

111.4 Quantum 1/f Noise (QED)

The nonlinearity causing the 1/f spectrum of turbulence in both
semiconductors and metals is the reaction of the field generated by
charged particles and their currents back on themselves. The same
nonlinearity is present in quantum electrodynamics (QED), causes the
intrared divergence, infrared radiative corrections for cross sections and
process rates, and causes the quantum 1/f effect. The basic equations of
QED are

agagAv=Jv, jv = .iexVy.vi, (68)

(Dg- + m)V = -ieAVyvN (69)
Here a. is a shorthand for o/ax, y4 are the Dirac matrices, the Greek
indices run from 0 to 3, and 4 is the Dirac spinor field.

We can formally solve Eq. (68) for the potential AV in momentum
space (i.e. by Fourier transforming)

Av = (1/ola )Jv, (70)

which can be substituted into Eq. (70), yielding with the expression (68)
of the current Jv,

(g + mnc/lp) = -ot[(1/IiPI)yvh),]vN. (71)

The integral operator (1/aga) has a kernel 1/q2 , where q is the Fourier
four-vector corresponding to x. Eq. (71) contains a third-order
nonlinearity and is therefore similar to the dynamical equation (29)
describing turbulence in semiconductors. In the spinless non-relativistic
limit, Schrodinger's equation yields

21



aV/at = [-ihV + A] 2V, (72)

or, with Eq. (68),

2mihau/at = [-ihV - i(e2 h/mc 2)(l/ooLt)V*VV] 2V (73)

At very low frequencies the last term in rectangular brackets is dominant
on the r.h.s., leading to

2iaf/at = -h[(e 2/mc 2)( 1 /agaj)V*VV] 2V (74)

Both Eq. (71), in which we neglect at low wave-numbers the terms in
a /axj (j=1,2,3) and eliminate the term with the rest mass m through a
substitution -v=4eimYt, and right away Eq. (74), satisfy our criterion with
p=2 in Eq. (2). Therefore, we expect a 1/f spectrum of current
fluctuations, i.e., of cross sections and process rates in physics. This is
in agreement with the well-known, and experimentally verified, results of
the conventional Quantum 1/f Theory.

In conclusion, we realize that, both in classical and quantum
mechanical nonlinear systems, the limiting behaviour at low wave
numbers is usually expressed by homogeneous functional dependences, (as
shown in Eq. 2), leading to fundamental 1/f spectra on the basis of our
criterion.

IV. ANALYTICAL CALCULATION OF MOBILITY FLUCTUATIONS
IN SEMICONDUCTORS, BASED ON THE QUANTUM 1/f

CROSS-CORRELATION FORMULA

Together with the graduate student Thomas H. Chung, the author has
performed an analytical calculation of mobility fluctuations in silicon and
gallium arsenide, using the new quantum 1/f cross-correlations formula
derived by the author in the previous AFOSR Grant period, and included in
the July 1989 Final Technical Report. This calculation is of mjor
importance for the 1/f noise-related optimization both of the two types
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of materials, and of the many devices constructed with them for military
and civilian applications in the electronic and opto-electronic industry.

The new cross-correlation formula gives the cross-spectral density
which describes the way in which symultaneous quantum 1/f scattering
rate fluctuations AW obseved in the direction of the outgoing scattered
wave-vector K' are correlated with those in the K" direction, when the
two corresponding incoming current carriers have the wave vectors K 1 and
K2:

SAW(K1 ,K';K 2 ,K";f)
= (2o/3f) (h/m*c) 2 WK,K,WK 2,K-,[(K'-K 1)2 +(K"-K2) 2 8K1 ,K2. (75)

The form conjectured by us earlier had 2(K'-K1)(K"-K 2) in place of the
rectangular bracket.

IV.1 Impurity Scattering

For impurity scattering of electrons in solids, fluctuations A'C of the
collision times r will cause mobility fluctuations

AJ.band(t) = [e/m*<<v 2 >>]YKvK 2AC(t)nK, (76)

where <<v2 >> is both the average over all states of wave-vectors K, with
occupation numbers nK, in the conduction band, and the thermal
equilibrium average of the quadratic carrier velocities. With the help of
the relation

1/t(K) = (V/8ir3)j(1 - cosO'/cose)WK,Kd 3 K', (77)

the mobility fluctuations are reduced to fluctuations of the elementary
scattering rates WK,K', governed by Eq. (75). Here V is the volume of the
normalization box which disappears in the final result, 0 and 0'
respectively the angles K and K' form with the direction of the applied
field. One finally obtains after tedious multiple integrations

9-2 SAe(f) = [256tcuCK2p 4hl 2 /3m* 8Z4e8 Ni2 ](1/f)Y-KK 10[ln(1 +a 2)-

a2 /(1 +a2 )]-3 [(2a 2+a 4)/(1 +a2 )-21n(1 +a2 )]F(EK)[YXKvK 2 t[(K)F(EK)] -2 , (78)
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where a=2KIK, K2=e2n(T)/e-kBT, n(T) is the electron concentration,
F(EK)=exp(EF-EK) for non-degenerate semiconductors, Ni the concentration
of impurities of charge Ze and E the dielectric constant. The
corresponding partial Hooge parameter for impurity scattering is thus

CIO

czi = [4'12nrCuh5Nc/3M*7/2(kBT)3/2c2I JdXXl l/ 2 e-x
0

[ln(bx+1 )-bx/(bx+1 )]-3[(2bx+b2X2)/(bx+1 )-21n(bx+1)
coo

{fdXX3e-x[ln(bx+1 )-bx/(bx+1 )]-l1}-2. (79)
0

IV.2 Acoustic Electron-Phonon Scattering

In this case the calculation is similar, and leads to the result

00

aac =[32nacNcm*C
7h3/3C2kBT) 4]{(1 /R2) Jdxx-4

1
[(x-1 )7/7+(R+1 )(x-1 )6/6+R(x- 1)5/5]
[(x-1 )5/5+(R+1 )(X-1 )4/4+R(x-1 )3/3]exp(-X2/4 R)

1
+ dxx-4r(y+1 )5/5-(x+1 )6/6+(x-1 )5/5+(x-1 )6/6]
0

[(X+1 )3/3+(x-1 )4/4+(x-1 )3 /3-(x+1 )4/4]exp(-x 2/4 R)
00

+ Jdxx-4[(x+1 )5/5-(x+1 )6/6][(x+1 )3/3-(x+1 )4/4]exp(-X2 /4R)}, (80)
1

where R=kBT/2m*01 2 , Ci is the deformation potential, and Nc is the
effective density of states for the conduction band.

24



IV.3 Non-Polar Optical Phonon Scattering

This time one obtains

CO

an.o.ph = [8V2h aoNch 2/3m*'/ 2 C2 (o]{ Jdxx5/2

0
[(F+1)(x-1)1/ 20(x-1)+F(x+1)1/2]-4
[(F+1 )2 (x-1 )(2x-1 )0(x-1 )+F 2 (x+1 )(2x+1 )]exp(-hoox/kBT)}

Jdxx3/2[(F+1 )(x-1 )1/ 2 e(x-1 )+F(x+1)1/2] -1 exp(-foox/kBT)}- 2 , (81)
0

where F=[exp(hlo 0/kBT)-1]- 1 , and wo is the optical phonon frequency.

V. CALCULATION OF COLLECTOR 1/f NOISE IN BJTs

Based on a consequent application of the conventional quantum 1/f
approach, we show that for the calculation of conventional quantum 1/f
noise in the collector current of BJTs the effective lifetime 'I of minority
carriers in the base must be used instead of their diffusion time tD
through the base. This allows us to represent the effective number of
carriers in the denominator of our quantum 1/f formula as Il/e for noise
in the collector current, and the theory of Van der Ziel and Kleinpenning
remains valid with TD replaced by 'r. A long-standing difficulty present in

the application of bulk noise sources to the collector current is thus
removed in a natural way, and the agreement of the quantum 1/f theory
with the experiment is substantially improved, particularly for narrow
base BJTs.

1/f noise in bipolar junction transistors (BJTs) was elegantly
treated by van der ZieI17 -19 who applied a Hooge-type approach similar to
Kleinpenning's treatment 20 of pn junctions, and used experimental data to
determine the Hooge constant which was in turn compared with the
quantum 1/f theory. However, since the BJT is a minority carrier device,
it requires the application of the quantum 1/f (Handel) equation 19 ,1-3 ,2 1
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from the beginning, for the correct interpretation of the number of
carriers in the denominator of the Langevin noise source.

In the most elementary model 2 2 of a BJT, the collector current IC
arises from minority carriers injected from the emitter into the base,
which diffuse across the width XB base and are then all swept across the
reverse-biased collector junction by the built-in field of the junction. If
we neglect the usually small leakage current of the collector junction and
the small fraction of the carriers recombining in the base, we get for a
n+pn BJT

IC = AqDn[noBexp(qVBE/kT)/XB], (82)

where A is the cross sectional area of the base, q=-e is the charge of the
minority carriers in the base, Dn their diffusion coefficient in the base,
nB(O)=noBexp(qVBE/kT) is the electron concentration at the limit of the
emitter space charge region, VBE is the applied base - emitter voltage, and
XB is the width of the base. The expression in rectangular brackets is the
electron concentration gradient calculated with the boundary condition of
a vanishing electron concentration at the limit of the collector space
charge region. We assume the base to be much narrower than the electron
diffusion length Ln=(Dn'), XB<<Ln, but sufficiently wide to avoid ballistic
electron transport across the base. Usually XB is a fraction of a micron.

Quantum 1/f fluctuations of the collisional cross sections of the
electrons in the base will yield fluctuations of the diffusion constant, and
of the mobility (Dn/Dn=51/p4)

81C = Aq(5Dn)[noBexp(qVBE/kT)/XB]. (83)

The corresponding spectral density of fractional fluctuations 1-2 Sic is

Ic-2<(51c)2>f = Dn- 2<(5Dn) 2> = g- 2 <(8 1)2> = an/fN. (84)

In the last step our quantum 1/f equation 19 ,1-3 was used, where N is the
number of carriers which define the scattered, or diffused, current
leaving the base and emerging in the collector, while an =otAn is the
effective quantum 1/f noise coefficient, or Hooge constant. The number of
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electrons N is thus determined by the effective lifetime t of the

electrons, which will be slightly lower than the lifetime in the unbounded
collector material, due to the collector lead contact processes, and due to
lateral surface recombination. Indeed, we can write N = rlc/q. Thus we
finally obtain the spectral density of the collector current fluctuations

Sic = anlq/ft, (85)

in which c is the effective lifetime of the majority carriers in the

collector. This expression is simpler, but similar to the expression
derived earlier, with the important difference that now we have a
lifetime of the carriers in the denominator, while before it was the
usually much smaller diffusion time "tD=XB2 /Dn of the electrons in the
base. Eq. (85) also implies that in narrow-base BJTs of various base-
widths an will be constant, as in other devices, rather than an/D.
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