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ImpIemer&ting Sporadic Servers in Ada

Abstract. The purpose of this paper_is to present the data structures and algorithms
for implementing sporadic servers[43kin real-time systems programmed in Ada. The
sporadic server algorithm is an extension of the rate monotonic scheduling algorithm
[6]. Sporadic servers are tasks created to provide limited and usually high-priority
service for other tasks, especially aperiodic tasks. Sporadic servers can be used to
guarantee deadlines for hard-deadline aperiodic tasks and provide substantial improve-
ments in average response times for soft-deadline aperiodic tasks over polling tech-
niques. Sporadic servers also provide a mechanism for implementing the Period
Transformation techniqué [9that can guarantee that a critical set of periodic tasks will
always meet their deadlines during a transient overload. Sporadic servers can also aid
fault detection and containment in a‘real-time system by limiting the maximum execu-
tion time consumed by a task and detecting attempts to exceed a specified limit. This
paper discusses two types of implementations for the sporadic server algorithm: (1) a
partiai implementation using an Ada task that requires no modifications to the Ada
runtime system and (2) a full implementation within the Ada runtime system. The over-
head due to the runtime sporadic server implementation and options for reducing this
overhead are discussed.~\Jhe interaction of sporadic servers and the priority ceiling
protocol {14d] is also deﬁned\ .~

oA ‘/C'P- . C/
1. Introduction

. /

The purpose of this paper is to present two high-level designs, in the form of data structures and
algorithms, for implementing sporadic servers [13] in real-time systems programmed in Ada. The
first design presented is a partial implementation of sporadic servers using an application-level
Ada task. This implem~ntation requires no runtime system modifications. The second sporadic
server design is a full implementation of the sporadic server algorithm within an Ada runtime
system. The Real-Time Scheduling in Ada project at the Software Engineering Institute (SEI) has
designed a prototype implementation of the full sporadic server algorithm using a commercially
available Ada runtime system. This technical report summarizes our implementation experietices
to date and should be of interest to both Ada runtime implementors and real-time Ada appilication
developers.

The sporadic server algorithm, developed by the Advanced Real-Time Technology project at
Carnegie Mellon University, was designed as an extension of the rate monotonic algorithm for
periodic tasks [6] to provide general support for both soft- and hard-deadiine aperiodic tasks. In
addition to providing a general scheduling solutions for aperiodic tasks, sporadic servers can be
used for other real-time scheduling problems. Sporadic servers provide a mechanism for im-
plementing the Period Transformation technique [9] for guaranteeing that a critical set of periodic
tasks will always meet their deadlines during a transient overload. Producer/Consumer problems
in real-time systems can be handled in a straightforward manner using sporadic servers.
Sporadic servers can also aid fault detection and containment in a real-time system by limiting the
execution time consumed by a task to a maximum value and detecting attempts to exceed the
specified limit.

CMU/SEI-90-TR-6 1




1.1. Background .

It is common practice to place a real-time task into one of four categories based upon its deadline
and its arrival pattern. If meeting a given task's deadline is critical to the system’s operation, then
the task’s deadline is considered to be hard. if a quick response for a real-time task is desirable,
but not absolutely necessary for correct system operation, then the task’s deadline is considered
to be soft. Tasks in real-time systems that have no timing constraints, such as data logging and
backup, are classified as background tasks. Tasks with regular arrival times are periodic tasks.
Periodic tasks are commonly used to process sensor data and update the current state of the
real-time system on a regular basis. Periodic tasks used in control and signal processing applica-
tions typically have hard deadlines. Tasks with irregular arrival times are aperiodic tasks.
Aperiodic tasks are used to handle the processing requirements of events with nondeterministic
request patterns, such as operator requests. Aperiodic tasks typically have soft deadlines, but
some aperiodic tasks can have hard deadlines. Aperiodic tasks with hard deadlines are sporadic
tasks. In summary, we have:

* Hard-Deadline Periodic Tasks. A periodic task consists of a sequence of requests
arriving at regular intervals. A periodic task’s deadline coincides with the end of its
period.

» Soft-Deadline Aperiodic Tasks. An aperiodic task consists of a stream of requests
arriving at irregular intervals. Soft deadline aperiodic tasks typically require a fast
average response time.

e Sporadic Tasks. A sporadic task is an aperiodic task with a hard deadline and a
minimum interarrival time (the amount of time between two requests) [7)].

* Background Tasks. A background task has no timing requirements and no partic-
ular arrival pattern. Background tasks are typically assigned the lowest priority in the
system and, as such, the scheduling of background tasks will not be considered in
this paper.

A well understood algorithm for scheduling hard-deadline periodic tasks is Liu and Layland's rate
monotonic scheduling algorithm [6]. The rate monotonic algorithm assigns fixed priorities to tasks
based upon the rate of their requests (i.e., a task with a relc*ively short period is given a relatively
high priority). Under the assumptions of negligible context switching overhead and independent
tasks (i.e., tasvs that require no synchronization with one another), Liu and Layland proved that
this algorithm is the optimum, tixed-priority pre-emptive scheduling algorithm for periodic tasks
with hard deadlines. The rate monotonic algorithm provides real-time system designers with a
well defined algorithm for determining a priori the timing correctness of the system, a quality that
potentially offers a great reduction in the costs of system development, testing, and maintenance.
The rate monotonic algorithm has the advantage of low scheduling overhead since priorities are
statically assigned. The rate monotonic algorithm has also been shown to have a high average
schedulable utilization bound of 88% [4], and has been extended to handle transient overloads
[9], periodic tasks that share resources [10], and multiprocessors [3, 2, 8].

To handle soft-deadline aperiodic tasks, Lehoczky, Sha, and Strosnider created the the
deferrable server (DS) and priority exchange (PE) algorithms [5]. These algorithms are exten-
sions of the basic rate monotonic algorithm and they operate by creating a poo! of high priority
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utilization that can be shared by soft-deadline aperiodic tasks. These algorithm.s have been
shown to greatly improve the average response time performance of soft-deadline aperiodic tasks
over polling and background service techniques [15]. However, Sprunt, Sha, and Lehoczky have
shown that these algorithms have some limitations [14]. The PE algorithm was shown to require
a prohibitively complex implementation. The schedulability bound for periodic tasks was shown
to be lower when using the DS algorithm than the PE algorithm. In other words, for a given
periodic task set, the maximum server size (the ratio of the server's maximum execution time to
the server's period) for the DS algorithm is typically smaller than the max,-num PE server size. It
was also shown that although these algorithms can be used to provide support for some sporadic
tasks, no technique had been developed for guaranteeing the deadline for a sporadic task that is
shorter than the sporadic task's minimum interarrival time.

The Sporadic Server (SS) algorithm [14] was developed to overcome these limitations of previous
aperiodic server algorithms. Specifically, the SS algorithm was originally developed to meet the
following goals:

 provide good responsiveness for soft-deadline aperiodic tasks and guaranteed dead-
lines for sporadic tasks while not compromising the timing constraints of any hard-
deadline periodic tasis

e attain a high degree of schedulable utilization
« allow for low implementation complexity and low runtime overhead

e provide a scheduling framework for real-time systems that are primarily composed ot
aperiodic tasks

Briefly, the specification and operation of a sporadic server is as follows (a complete description
of the SS algorithm is presented in Section 2). A sporadic server is specified by its period,
execution time, and priority. During system operation, a sporadic server preserves its execution
time until one of the tasks it is servicing becomes ready to execute, at which point the sporadic
server uses its available execution time to service the task. Service can continue as long as the
sporadic server has capacity available. Once the sporadic server's execution time is exhausted,
sporadic service is suspended until the consumed execution time is replenished. In its simplest
form, the sporadic server replenishes consumed execution time one sporadic server period after
the execution time is initially consumed.

Although the SS algorithm was developed for seivicing soft and hard-deadline aperiodic tasks,
sporadic servers can be also used to implement solutions for several other real-time scheduling
problems. The major uses of sporadic servers are:

« Improving Average Response Times for Soft-Deadline Aperiodic Tasks. A high -
priority sporadic server can be created to service a set of soft-deadline aperiodic
tasks. Since the sporadic server preserves itz high priority execution time until it is
needed, the sporadic server can provide immediate service for aperiodic tasks as
long as it has available execution time. This is a great improvement over polling or
background service techniques in which aperiodic tasks are either serviced at regular
intervals or whenever no other tasks are being serviced. Unlike polling or back-
ground service, a sporadic server can usually provide service "on demand,” and
therefore, provide a much better average response time.

CMU/SEI-90-TR-6 3




« Guaranteeing Response Times for Sporadic Tasks. To guarantee the response
time for a sporadic task, a sporadic server can be created to provide exclusive ser-
vice to the sporadic task. The sporadic server’s period and execution time are set
equal to the minimum interarrival time and worst case execution time, respectively, of
the sporadic task. In this manner, the sporadic server will always have execution
time available to service the sporadic task, even when the sporadic task arrives at its
maximum rate. Usually the deadline of the sporadic task is equal to or greater than
its minimum interarrival time and a rate monotonic priority is assigned to the sporadic
server (i.e., the priority is based upon the minimum interarrival time ot the sporadic
task). For the cases when the sporadic task's deadline is shorter than its minimum
interarrival time, the priority of the sporadic server must be based upon the deadline
of the sporadic task, not its minimum interarrival time (i.e., a deadline monotonic
priority assignment should be used). The necessity of a deadline monotonic priority
assignment and its associated schedulability analysis is discussed in [14).

Scheduling Producer/Consumer Tasks. In a real-time system a typical
producer/consumer scheduling problem occurs when a device can produce items at
a burst rate that is faster than the average rate at which those items can be con-
sumed. Since the burst production rate is greater than the average consumption
rate, items are placed in a queue as they are produced. The consumer removes
items from the queue as soon as possible. The bursty production rate is charac-
terized by an event density, which is the maximum number of events that can occur
during any interval of time of a specified duration.

Two sporadic servers can be used to schedule the producer and consumer tasks.
The execution time of the sporadic server servicing the producer is set equal to the
maximum number of items that can arrive in a burst, multiplied by the time required
to queue each item. The execution time of the sporadic server servicing the con-
sumer is set equal to the the maximum number of items that can arrive in a burst
multiplied by the time required to consume each item. The period of both sporadic
servers is set equal to duration of time used to define the event density. The priority
of the consumer sporadic server is based upon its period (i.e., it is assigned its rate
monotonic priority). However, the priority of the producer sporadic server is based
uz the minimum interarrival time of items. Thus, the producer sporadic server is
given a priority high enough to ensure that no items are lost and the consumer
sporadic server has a priority sufficient to guarantee that items are consu.ned at a
quick enough rate to prevent the queue from overflowing. With the characterization
of the bursty arrivals (event density) And the specification of the producer and con-
sumer sporadic servers, one can then bound the maximum queue length and the
maximum time to consume any item.

Implementing the Period Transformation Technique. Transient overloads occur
when stochastic execution times for periodic tasks lead to a desired utilization
greater than the schedulable utilization bound of the task set. Under the rate
monotonic algorithm, periodic task priorities are assigned based upon their rate, not
necessarily upon task importance. Thus, an important task may be assigned a low
priority and, as such, may miss its deadline under transient overioad conditions. For
these cases, the period transformation technique can be used to guarantee that a set
of critical periodic tasks will still meet their deadlines during a transient overload [9).
The basic idea of this technique 1s to force a critical task to be subdivided into tasks
with smaller execution times that are executed in sequential order at a higher rate.
The higher execution rate will give the task a high enough priority to allow it to
execute even during transient overloads.

A sporadic server can be used to implement the period transformation technique.
The execution time and period of the sporadic server are set equal to the execution
hudget and period of the transformed periodic task. Since the sporadic server will
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suspend service once its available execution time is exhausted, the desired execu-
tion pattern for the periodic task is obtained. Note that this approach requires no
special modifications to the code for the periodic task.

» Fauit Detection and Containment. A hardware fault or programming bug can cause
a task to execute longer than has been allowed for in the schedulability analysis.
Typically, the only mechanism used to detect these types of faults checks if the task
has not been completed by its deadline. However, this allows the task not only to
exhaust its own budget of execution time but also to consume part of the execution
time budgets of other lower priority tasks, possibly causing them to miss their dead-
lines. By servicing a periodic task using a sporadic server with an execution time,
period, and priority identical to that of the periodic task, the periodic task will be
restricted to consuming at most its execution time budget. If the sporadic server's
budget is ever completely exhausted and the periodic task is still ready to execute,
the sporadic server has detected a fault. Since the sporadic server will suspend the
execution of the periodic task once all its execution time has been consumed, the
errors resulting from any fault that has caused the periodic task execute longer than
it should are contained to the fauity task and not allowed to influence the execution of
other tasks.

Note that the use of sporadic servers to implement the period transformation technique or to
improve fault detection and containment requires that the full sporadic server algorithm be imple-
mented in the Ada runtime system. This is necessary because only within the runtime system
can sporadic service be suspended once the server's execution time has been exhausted,
regardless of whether or not the task being serviced has completed execution. For sporadic
servers implemented at the application level (see Section 3), sporadic service can only be
suspended once the task being serviced has completed execution.

The next section gives a complete description of the SS algorithm using examples for soft-
deadline aperiodic tasks and discusses the interaction of the SS algorithm and the priority ceiling
protocol [10] for scheduling periodic tasks that share data. Section 3 describes an application
level implementation of the SS algorithm as an Ada task that requires no modifications to Ada or
its runtime system. Section 4 presents the data structures and algorithms necessary for a full
Ada runtime implementation of sporadic servers. Section 6 presents a summary.

2. The Sporadic Server Algorithm

The SS algorithm creates a high priority task for servicing aperiodic tasks. The SS algorithm
preserves its server execution time at its high priority level until an aperiodic request occurs. The
SS algorithm replenishes its server execution time after some or all of the execution time is
consumed by aperiodic task execution. This method of replenishing server execution time sets
the SS algorithm apart from the previous aperiodic server algorithms [5, 14] and is central to
understanding the operation of the SS algorithm.

The following terms are used to explain the SS algorithm’s method of replenishing server execu-
tion time:

Pg Represents the task priority level at which the system is currently executing.
P, One of the priority levels in the system. Priority levels are consecutively
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numbered in priority order with P, being the highest priority level, P, being
the next highest, and so on.

Active This term is used to describe a priority level. A priority level, P;, is considered
to be active if the current priority of the system, Pg, is equal to or higher than
the priority of P;.

idle This term has the opposite meaning of the term active. A priority level, P,, is
idle if the current priority of the system, Pg, is lower than the priority of P;.

RT, Represents the replenishment time for priority level P,. This is the time at

which consumed execution time for the sporadic server of priority level P, will
be replenished. Whenever the replenishment time, RT;, is set, it is set equal
to the current time plus the period of P;.

Determining the schedule for replenishing consumed sporadic server execution time consists of
two separate operations: (1) determining the time at which any consumed execution time can be
replenished and (2) determining the amount of execution time (if any) that should be replenished.
Once both of these operations have been performed, the replenishment can be scheduled. The
time at which these operations are performed depends upon the available execution time of the
sporadic server and upon the active/idle status of the sporadic server’'s priority level. The rules
for these two operations are stated below for a sporadic server executing at priority level P;:

1. If the server has execution time available, the replenishment time, RT;, is set when
priority level P; becomes active. Otherwise, the server capacity has been ex-
hausted and RT; cannot be set until the server's capacity becomes greater than
zero and P, is active. In either case, the value of RT, is set equal to the current time
plus the period of P;.

2. The amount of execution time to be replenished can be determined when either the
priority level of the sporadic server, P,, becomes idle or when the sporadic server's
available execution time has been exhausted. The amount to be replenished at RT;
is equal to the amount of server execution time consumed since the fast time at
which the status of P; changed from idle to active.

2.1. SS Algorithm Examples

The operation of the SS algorithm will be demonstrated with four examples: a high priority
sporadic server, an equal priority sporadic server (i.e., a sporadic server with a priority that is
equal to the priority of another task), a medium priority sporadic server, and an exhausted
sporadic server. Figures 1-4 present the operation of the SS algorithm for each of these ex-
amples. The upper part of these figures shows the task execution order and the lower part shows
the sporadic server's capacity as a function of time. Unless otherwise noted, the periodic tasks in
each of these figures begin execution at time = 0.

Figure 1 shows task execution and the task set characteristics for the high priority sporadic server
example. In this example, two aperiodic requests occur. Both requests require 1 unit of execu-
tion time. The first request occurs at t = 1 and the second occurs at ¢t = 8. Since the sporadic
server is the only task executing at priority level P, (the highest priority level), P, becomes active
only when the sporadic server services an aperiodic task. Similarly, whenever the sporadic ser-
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ver is not servicing an aperiodic task, P, is idle. Therefore, RT, is set whenever an aperiodic task
is serviced by the sporadic server. Replenishment of consumed sporadic server execution time
will occur one server period after the sporadic server initially services an aperiodic task.

The task execution in Figure 1 proceeds as follows. For this example the sporadic server begins
with its full execution time capacity. At t =0, t, begins execution. At time = 1, the first aperiodic
request occurs and is serviced by the sporadic server. Priority level P, has become active and
RT,issetto 1 +5 =6. Att =2, the servicing of the first aperiodic request is completed,
exhausting the server’s execution time, and P, becomes idle. A replenishment of 1 unit of execu-
tion time is set for t = 6 (note the arrow in Figure 1 pointing from t = 1 on the task execution
timeline to t = 6 on the server capacity timeline). The response time of the first aperiodic request
is 1 unit of time. At t =3, 1, completes execution and 1, begins execution. At t = 6, the first
replenishment of server execution time occurs, bringing the server's capacity up to 1 unit of time.
At t = 8, the second aperiodic request occurs and P, becomes active as the aperiodic request is
serviced using the sporadic server's execution time. RT, is set equal to 13. At t =9, the
servicing of the second aperiodic request completes, P, becomes idle, and 1, is resumed. A
replenishment of 1 unit of time is set for t = 13 (note the arrow in Figure 1 pointing from t = 8 on
the task execution timeline to t = 13 on the server capacity timeline). At t = 13, the second
replenishment of server execution time occurs, bringing the server's capacity back up to 1 unit of
time.

Figure 2 shows the task execution and the task set characteristics for the equal priority sporadic
server example. As in the previous example, two aperiodic requests occur and each requires 1
unit uf execution time. The first aperiodic request occurs at t = 1 and the second occurs at ¢ = 8.
The sporadic server and t, both execute at priority level P, and 1, executes at priority level P,.
At t =0, T, begins execution, P, becomes active, and RT, is set to 10. At t =1, the first aperiodic
request occurs and is serviced by the sporadic server. At t =2, service is completed for the first
aperiodic request and t, resumes execution. At t =3, T, completes execution and 1, begins
execution. At this point, P; becomes idle and a replenishment of 1 unit of server execution time
is setfor t=10. At t =8, the second aperiodic request occurs and is serviced using the sporadic
server, P, becomes active, and RT, is set to 18. At t =9, service is completed for the second
aperiodic request, 1, resumes execution, P, becomes idle, and a replenishment of 1 unit of
server execution time is set for t = 18. At t = 10, 1, begins execution and causes P, to become
active and the value of RT, to be set. However, when 1, completes at t = 12 and P, becomes
idle, no sporadic server execution time has been consumed. Therefore, no replenishment time is
scheduled even though the priority level of the sporadic server became active.

Figure 2 illustrates two imporfant properties of the sporadic server algorithm. First, RT, can be
determined from a time that is earlier than the request time of an aperiodic task. This occurs for
the first aperiodic request in Figure 2 and is allowed because P, became active before and
remained active until the aperiodic request occurred. Second, the amount of execution time
replenished to the sporadic server is equal to the amount consumed.

Figure 3 shows the task execution and the task set characteristics for the medium priority
sporadic server example. in this example, two aperiodic requests occur and each requires 1 unit
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Aperiodic Aperiodic )
Request #1 Request #2 Sporadic .
Server
Task 1 \\
Task
Execution
\\\ Task 2
] i 1 ] | | 1
0 4 6 8 \10 122 14 16 18 20
Sporadic
Server
Capacity

1.0

Task Exec Time Period Utilization
SS 1 5 20.0%
4 2 10 20.0%
T, 6 14 42.9%

Figure 1: High Priority Sporadic Server Example

of execution time. The first request occurs at t = 4.5 and the second at ¢ =8. The sporadic server
executes at priority level P,, between the priority levels of T, (P,) and t, (P3). Att =0, t, begins
execution. At t =1, 1, completes execution and T, begins execution. Att=0, RT,is setto 10 ®
but, since no sporadic server execution time is consumed before P, becomes idle at f = 1, no

replenishment is scheduled. At t = 4.5, the first aperiodic request occurs and is serviced using

the sporadic server making priority level P, active. At t= 5, 1, becomes active and pre-empts the

sporadic server. At this point all priority levels are active since P, is active. Att =6, 1, completes

execution, P, becomes idle, and the sporadic server is resumed. At 1= 6.5, service for the first ®
aperiodic request is completed, t, resumes execution, and P, becomes idle. A replenishment of

1 unit of sporadic server execution time is scheduled for f = 14.5. Att= 8, the second aperiodic

request occurs and consumes 1 unit of sporadic server execution time. A replenishment of 1 unit

of sporadic server execution time is set for t = 18.

Figure 3 illustrates another important property of the sporadic server algorithm. Even if the
sporadic server is pre-empted and provides discontinuous service for an aperiodic request (as
occurs with the first aperiodic request in Figure 3), only one replenishment is necessary. Pre-
emption of the sporadic server does not cause the priority level of the sporadic server to become
idle, thus allowing several separate consumptions of sporadic server execution time to be PY
replenished together. Note that one replenishment for the consumption of sporadic server execu-
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Figure 2: Equal Priority Sporadic Server Example

tion time resulting from both aperiodic requests in Figure 3 is not permitted because the priority
level of the sporadic server became idle between the completion of the first aperiodic request and
the initial service of the second aperiodic request.

The final sporadic server example, presented in Figure 4, illustrates the application of the
replenishment rules stated in Section 2 for a case when the sporadic server's execution time is
exhausted. Figure 4 shows that even though the sporadic server's priority level may be active
before the sporadic server actually begins servicing an aperiodic request, the replenishment time
must be determined from the time at which the sporadic server's capacity becomes greater than
zero. In Figure 4, the sporadic server has a priority less than periodic task T, and greater than
periodic task t,. The initial period for T, begins at time = 2 and the initial period for t, begins at ¢
=0.

Task execution in Figure 4 proceeds as follows. At t =0, 1, becomes ready and begins execu-
tion. At ¢ =1, an aperiodic request occurs that requires 3 units of execution time. The sporadic
server pre-empts t, and begins servicing the aperiodic request. While the aperiodic request is
being serviced t, becomes ready at t = 2 and pre-empts the sporadic server. At t = 3, 1,
completes execution and servicing of the aperiodic request continues. At t = 4, the sporadic
server exhausts its execution time capacity and t, resumes execution. A replenishment of 2 units

CMU/SEI-90-TR-6 9




Aperiodic Aperiodic Sporadic
Request #1 Request #2 Server
Task 1 &
Task Q
Execution § N Task 2
I N LN
0 2 4 & 10\J2 14 16 18 20
. 3
Sporadic  ,
Server
Capacity

Task Exec Time Period Utilization
7 1.0 5 20.0%
SS 25 10 25.0%
) 6.0 14 42.9%

Figure 3: Medium Priority Sporadic Server Example

of sporadic server execution time is scheduled for t = 11. At t =6, t, pre-empts 1, and executes
until t = 7 when 1, resumes execution. At t = 10, t, again pre-empts t, and begins execution.
Note that at ¢t = 10 (as was also the case for t = 6), all priority levels become active because the
highest priority task is now executing. At t =11, T, completes execution and the replenishment of
2 units of sporadic server execution time occurs allowing the servicing of the aperiodic request to
continue. The aperiodic request is completed at t = 12 and 1, resumes execution. A second
replenishment for consumed sporadic server execution time must now be scheduled. However,
the replenishment time is not determined from t = 10, the point at which the sporadic server's
priority level became active, because at t = 10 the sporadic server's capacity was zero. The
replenishment time is instead determined from the ¢t = 11, the point at which the sporadic server’'s
capacity became greater than zero.

2.2, Sporadic Servers and Priority Inheritance Protocols

In this section we define the interaction of sporadic servers and the priority inheritance protocols
developed by Sha, Rajkumar, and Lehoczky in[11]. The schedulability impact of servicing
aperiodic tasks that share data using priority inheritance protocols is also discussed.

Mok [8] has shown that the problem of determining the schedulability of a set of periodic tasks
that use semaphores to enforce exclusive access to shared resources is NP-hard. The
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Figure 4: Exhausted Sporadic Server Replenishment

semaphores are used to guard critical sections of code (e.g., code to insert an element into a
shared linked list). To address this problem for rate monotonic scheduling, Sha, Rajkumar, and
Lehoczky [11] have developed priority inheritance protocols and derived sufficient conditions un-
der which a set of periodic tasks that share resources using these protocols can be scheduled.
The priority inheritance protocols require that the priority of a periodic task be temporarily in-
creased if it is holding a shared resource that is needed by a higher priority task. Since both
sporadic servers and the priority inheritance protocols manipulate the priorities of tasks, it is
necessary to define the interaction of these two scheduling techniques.

The priority inheritance protocols manipulate the priorities of tasks that enforce mutual exclusion
using semaphores in the following manner.! Consider the case of a task, T4, that is currently
executing and wants to lock a semaphore and enter a critical section. The priority inheritance
protocols will select one of the tollowihg two sequences of task execution:

1. Task 1, is allowed to lock the semaphore and enter the critical section. During the
critical section t, executes at its assigned priority.

'The description here of the operation of the priority inheritance protocols is very simplistic but sufficient for describing
the interaction of sporadic servers and the priority inheritance protocols. For a better description of the priority inheritance
protocols, the reader is referred to [11].
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2. Task 1, is not allowed to lock the semaphore and is biocked from executing. The
lower priority task, 1, that is causing the blocking then inherits the priority of T, and
continues execution. The lower priority task executes until the lock is released and
then 1, gets the lock and executes.

We are concerned with the problem of the interaction of priority inheritance protocols and a
sporadic server for the case when an aperiodic task that is using its sporadic server wants to lock
a semaphore and enter a critical section. The interactions to be defined concern the inheritance
of the sporadic server's priority and the consumption of sporadic server execution time. In order
to preserve the benefits of the priority inheritance protocols it is necessary to retain its rules of
operation without modification. Thus, a lower priority task that is blocking an aperiodic task from
entering its critical section inherits the priority of the aperiodic task's sporadic server. However,
two possibilities exist for the consumption of sporadic server execution time:

1. Allow the task that inherits the sporadic server’s priority to consume the sporadic
server's execution time.

2. Do not allow the task that inherits the sporadic server's priority to consume the
sporadic server's execution time.

The policy selection affects the efficiency and complexity of sporadic server implementations.

A comparison of the implementation effects of these two policy choices shows that the first policy
results in a more complex implementation that requires more overhead to manage sporadic ser-
ver execution time. The first policy requires that the implementation maintain more state to
manage the sporadic server's execution time. With the first pelicy, any task that can block the
execution of the aperiodic task can then consume the execution time of the aperiodic task's
sporadic server. This expands the execution time of potential users of the sporadic server
beyond the set of aperiodic tasks associated with the sporadic server, and this makes the con-
ditional tests in the implementation more complex and less efficient. The first policy choice would
also require that the implementation handle the case when the sporadic server's execution time is
exhausted by a task that has inherited the priority of the sporadic server. In this case, all tasks
that have inherited the sporadic server's priority must return to the priority they had before inherit-
ing the sporadic server's priority. Changing these priorities can be a complex operation espe-
cially when nested critical sections are involved. Also, once these priority changes have been
made it may be necessary to re-evaluate the priority inheritance protocols because the priority of
one or more tasks has changed during the middle of a critical section.

The better choice for the policy governing the consumption of sporadic server execution time is
not to allow tasks that inherit the sporadic server's priority to consume the sporadic server's
execution time. This allows the implementation of support for sporadic servers to be largely
independent of the implementation of support for the priority inheritance protocols. The resuilting
independence of the sporadic server and priority inheritance protocol implementations avoids the
problems associated with the first policy choice.

Now that the interaction of sporadic servers and the priority inheritance protocols has been de-
fined, we need to discuss the schedulability impact of using a sporadic server to service an
aperiodic task that shares data with a periodic task. To describe the schedulability impact we will
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use two examples, each describing the schedulability of one periodic task and one aperiodic task.
The periodic and aperiodic tasks share data using the priority ceiling protocol developed by Sha,
Rajkumar, and Lehoczky [10]. In the first example, the aperiodic task executes at a priority lower
than the periodic task. In the second example, a high-priority sporadic server is created to ser-
vice the aperiodic tasks.

To demonstrate the schedulability impact of the sporadic server we will use the following equation
developed in [10}:
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where C; and T, are respectively the execution time and period of task t; and B, is the worst-case
blocking time for task ;. This equation was derived using the worst case utilization bound equa-
tion for scheduling periodic tasks developed by Liu and Layland in [6] which, under the absolute
worst case conditions, provides a sufficient condition for determining schedulability of a rate
monotonic priority assignment.

For our examples, the blocking term B; will be used to represent the maximum amount of time
that the aperiodic task can block the execution of the periodic task, due to the possibility that the
aperiodic task may have already obtained exclusive access to the shared data when the periodic
task makes its request for the shared data. Note that "blocking time" is different from “pre-
emption time". Blocking occurs when a lower priority task blocks the execution of a higher priority
task. Pre-emption occurs when a higher priority task prevents the execution of a lower priority
task. The above equation provides a sufficient test to determine if the sum of the-pre-emption
time, blocking time, and execution time for each task is less than its deadline. The examples will
show that the addition of a high-priority sporadic server to service the aperiodic task increases the
pre-emption time imposed upon the periodic task and does not decrease the amount of blocking
time possible for the periodic task (unless special provisions are made as described later).

For the examples, we assume the following:

* The operations to be performed by either the periodic or aperiodic task upon the
shared data take, at most, 2 units of time.

* The periodic task has a maximum execution time of 8 units (Cp = 8) and a period of
20 units (Tp = 20). This maximum execution time includes the time to operate upon
the shared data, assuming no blocking occurs. The periodic task is the only task
with a hard deadline.

¢ The execution time and arrival pattern of the aperiodic task are not important for
these examples. However, whenever the aperiodic task executes it requires access
to the shared data and, once access is obtained, the aperiodic task may block the
periodic task from executing.

¢ The sporadic server (used only in the second example) has an execution time of 3
units (Cgg = 3) and a peviod of 10 units (Tgg = 10).

The first example is composed of the periodic task executing at a higher priority than the
aperiodic task. The schedulability criterion for the periodic task using equation 1 is shown below.
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As can be seen from the above evaluation, the periodic task can be guaranteed to meet its
deadline. This evaluation can be more simply described by noting that the maximum interval
from the initiation of the periodic task to its completion consists of the its maximum execution time
of 8 units plus the maximum amount of time that it can be blocked waiting for access to the
shared data. Thus, the periodic task can take no more than 10 units of time to complete, and,
therefore, will always meet its deadline of 20 units. Note that in this example, the only effect the
aperiodic task has upon the schedulability of the periodic task is due to blocking.

The second example is composed of a sporadic server with a high priority, the periodic task
executing at a medium priority, and the aperiodic task executing either at the high priority of the
sporadic server or at a low priority. To determine the schedulability of a task set using a sporadic
server, we treat the sporadic server as an equivalently sized periodic task. The use of Equation 1
to determine the schedulability of the second example proceeds as follows:

c
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Since both the inequality for the sporadic server and the inequality for the periodic task are
satisfied, the task set is schedulable. However, notice that the inequality for the periodic task
involves a term for pre-emption by the aperiodic task (for the case when it is executing at the high
priority of its sporadic server) and a term for blocking by the aperiodic task (for the case when the
aperiodic task is executing at low priority and has locked the shared data). This is necessary
because it is possible for the aperiodic task to be executing at its sporadic server's high priority to
exhaust the sporadic server's execution time just after after locking the shared data. In this case,
the aperiodic task can both pre-empt and block the execution of the periodic task. A periodic task
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that shares data with an aperiodic task that uses a sporadic server must be able to withstand both
the pre-emption time of the sporadic server and the blocking of time of the aperiodic task execu-
tion at low priority. Referring to the equations from both examples, one can see that the addition
of a high-priority sporadic server can increase the pre-emption time imposed upon a periodic task
while not decreasing the blocking time. This "double hit" in terms of schedulability for the periodic
task is a drawback of using sporadic servers to provide high priority service to aperiodic tasks that
share data with periodic tasks.

Earlier we mentioned that one could use a sporadic server to decrease the amount of blocking
time experienced by a periodic task that shares data with an aperiodic task. This can be accom-
plished if the aperiodic task is not allowed to execute at low priority and always completes and
releases the shared data before its sporadic server runs out of execution time. If the aperiodic
task only executes at its sporadic server’'s high priority and the sporadic server never suspends
aperiodic service when the shared data is locked by the aperiodic task, then the aperiodic task
can never block the periodic task. If the application characteristics allow the creation of a
sporadic server that can make these guarantees, then the blocking term can be removed from the
schedulability inequality for periodic task, improving its schedulability. [mplementation considera-
tions for such a sporadic server are discussed in Section 5.5.

3. Implementing a Sporadic Server with an Application-Level
Ada Task

This section describes an implementation of a sporadic server as an Ada task. This implemen-
tation requires no changes to the Ada runtime system. However, since an Ada task cannot
directly monitor the execution time it consumes or alter its priority, the sporadic server algorithm
must be simplified and the following assumptions and restrictions must be made:

1. The worst-case execution time of each aperiodic task must be known. Each time
an aperiodic task uses its sporadic server, it is assumed that the aperiodic task
consumes an amount of sporadic server execution time equal to the aperiodic
task’s worst-case execution time.

2. Aperiodic tasks that use sporadic servers must rely exclusively upon the sporadic
server to execute. In other words, an aperiodic task cannot execute both as a low
priority task when the sporadic server's capacity is exhausted or when the proces-
sor is idle and then as high priority task when some sporadic server capacity is
replenished (as is possible in the full Ada runtime implementation described in Sec-
tion 4).

3. A sporadic server is not allowed to service an aperiodic task unless it has an avail-
able execution time greater than or equal to the worst-case execution time of the
aperiodic task. When the sporadic server does not have enough capacity to com-
pletely service an aperiodic task, the aperiodic task must wait until the sporadic
server's available execution time is replenished to a value greater than or equal to
the worst-case execution time of the aperiodic task. This is necessary because
once the sporadic server task begins servicing an aperiodic task, it has no way of
suspending that service when its available execution time is exhausted.

4. Since it is not possible for the sporadic server task to track the activesidie status of
the priority levels in the system, it is necessary to use a simplified version of the
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sporadic server's replenishment policy (discussed in Section 5.4). This policy re-
quires that consumed execution time be replenished one sporadic server period
after sporadic service is initiated.

The basic mechanism used to implement a sporadic server task is Ada's selective wait with a
delay alternative (SWDA). Each accept statement of the SWDA corresponds to one of the
aperiodic tasks that can request service from the sporadic server. To request service, an
aperiodic task executes a call to the corresponding accept statement in the sporadic server.
Each of the accept statements in the sporadic server's SWDA has a guard that compares the
available execution time of the sporadic server to the worst-case execution time of the aperiodic
task. If the sporadic server has enough execution time to completely service the aperiodic task,
then the corresponding select alternative is open. The delay statement of the SWDA is used to
schedule replenishments for consumed sporadic server execution time. If any replenishments
are pending for the sporadic server, then the delay alternative is open and the delay will expire
when the next replenishment should occur. If upon exiting the sefect statement, it is determined
that an aperiodic task has consumed some of the sporadic server's execution time, then a
replenishment is scheduled to replenish the consumed execution time.

The sporadic server's replenishments are managed using the record variable, Next_Rep, and a
queue of replenishment reccrds referred to as the replenishment queue. If any replenishments
are pending, then Next_Rep hoids the replenishment time and amount for the next replenish-
ment. If the sporadic server has more than one pending replenishment, all the pending replenish-
ments except Next_Rep are stored in FIFO order on the replenishment queue.

The pseudo-code for the Ada task implementation of a sporadic server is presented in Figure 5.
The Sporadic_Service package body relies upon an application-level Ada package describing the
worst-case execution times and service procedures for the aperiodic tasks and an application-
level Ada package for the sporadic server's replenishment queue management. The specification
for these packages, Aperiodic_Tasks and SS_Replenishment_Queue_Manager, are presented in
Figure 6.

The task Sporadic_Server presented in Figure 5 consists of an infinite loop. The loop contains
the SWDA (as described above) and code to manage the replenishing of the sporadic server's
execution time. The SWDA supports N aperiodic tasks with N accept statements. Each accept
statement has a guard that will open it if the sporadic server has enough execution time to service
its corresponding aperiodic task. The body of each accept statement of the SWDA performs the
following operations:

1. The time at which service begins for the aperiodic task is remembered by setting
Exec_Begin_Time to the current time.

2. The aperiodic task is serviced by the sporadic server.
3. Consumed_Exec_Time is set to the maximum execution time of the aperiodic task.

The delay alternative of the SWDA in Figure 5 is used to replenish the sporadic server's execu-
tion time. It any replenishments are pending for the sporadic server (indicated by the boolean
variable, Reps_Are_Pending), the de/ay alternative will be open. When replenishments are pend-
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ing for the sporadic server, the record variable, Next_Rep, holds the amount and replenishment
time of the next replenishment. When body of delay alternative is executed a replenishment of
consumed sporadic server execution time is due. If the replenishment queue is empty, then the
replenishment due is the only outstanding replenishment and, therefore, the sporadic server is
brought to full capacity and the Reps_Are_Pending is set to FALSE. If the replenishment queue
is not empty, the replenishment amount in Next_Rep is added to Ava'able_Exec_Time and the
next replenishment is dequeued from the replenishment queue and stored in Next_Rep.

The code after the SWDA is used to decrement the sporadic server’s available execution time
and schedule replenishments for the consumed execution time. This code is executed after one
of the accept alternatives is taken because the value of Consumed_Exec_Time will then be
greater than zero. This code first decrements the Available_Exec_Time of the sporadic server by
Consumed_Exec_Time. It is then necessary to schedule a replenishment for the consumed
execution time. If any replenisiiments are pending, then the record variable, Next_Rep, already
holds the information for the next replenishment and, therefore, the replenishment for the most
recently consumed sporadic server execution time must be placed in the replenishment queue. |If
no replenishments are pending, then the info.mation for this replenishment is placed in Next_Rep
and the Reps_Are_Pending boolean variable is set to TRUE. The last part of this code resets the
value of Consumed_Exec_Time to zero.

The operation of the delay alternative of the SWDA can be different from what is desired. If the
evaluatior of the delay expression is pre-empted after reading the clock but before executing the
delay, the effect will be to make the delay longer than desired [1]. This will, at best, result in
wasted server capacity because the server will be replenished at a later time than desired. At
worst, a pre-emption during the evaluation of the delay expression will result in missing a desired
response time because server capacity that should be available at a given time will not be. A
solution to this problem is to support a delay _until [1] capability for the selective wait statement.
The delay_until statement presents an absolute time to the runtime system instead of a relative
duration, and, therefore, does not suffer from the pre-emption probiem described above.
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with Calendar; use Calendar;
with Aperiodic_Tasks; use Aperiodic Tasks;
with SS_Replenishment_Queue_Manager; use SS_Replenishment Queue_ Manager;

package body Sporadic_Service is

SS_Period : constant duration := Period of the Sporadic Server;
SS_Max_Exec Time : constant duration := Maximum Execution Budget of the Sporadic Server:

Available Exec Time : duration := SS_Max_Exec Time;
Consumed Exec_Time : duration := 0.0;

Exec_Begin_Time . time;
Next_Rep : replenishment;
Reps_Ara_Pending : boolean := FALSE;

task body Sporadic_Server is
begin
loop
select
when Available_Exec_Time >= Aperiodic_Task_l1_Max Exec_Time =>
accept Obtain_Service_For_Aperiodic Task_1;

Exec_Begin_Time := Clock;
Service_Aperiodic_Task_1:
Consumed Exec_Time := Max Exec_Time Aperiodic_Task_1;

end Obtain_Service_For Aperiodic_Task_l;
or

or
when Available Exec_Time >= Aperiodic_Task_N_Max Exac_Time =>
accept Obtain_Service_For_ Aperiodic Task_N;

Exec_Begin_ Time := Clock;
Service_Aperiodic_Task_N;
Consumed Exec Time := Max Exec_Time_Aperiodic_Task_N;

end Obtain_Service For Aperiodic_Task_N;
or when Reps_Are_Pending => delay Next Rep.Rep Time - Clock:;

if Replenishment Queue_Empty then
Available_Exec_Time := SS_Max Exec Time;
Reps_Are Panding := FALSE;
else
Available_Exec_Time := Available_Exec_Time + Next_Rep.Rep_ Amount;
Dequeue_Replenishment (Next Rep)’
end if;

end select;
if Consumed Exec_Time > 0.0 then
Available Exec_Time := Available Exec_Time - Consumed Exec_Time;

if Reps_Are_Pending then
Enqueue_Replenishment ( (Rep_Time => Exoc_Begin_Tim. + SS_Period,
Rep_Amount => Consumed Exec_Time));
else
Next Rep.Rep Time := Exec_Begin _Time + SS_Period;
Next_ Rep.Rep Amount := Consumed_ Exac_Time;
Reps_Are Pending := TRUE:
end if;

Consumed Exec _Time := 0.0;
end if;

end loop;
end Sporadic_Server;
end Sporadic Service;

Figure 5: Application-Level Sporadic Sarver
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package Aperiodic_Tasks is

Aperiodic_Task 1 Max Exec Time : constant duration :
procedure Service_Aperiodic_Task_1;

max exec time;

Aperiodic_Task_2 Max Exec_Time : constant duration :
procedure Service Aperiodic Task_2;

max exec time;

Aperiodic_Task N _Max Exec_Time : constant duration :
procedure Service_Aperiodic _Task_N;

max exec time;

end Aperiodic_ Tasks;

package SS_Replenishment Queue_Manager is
type replenishment is record
Rep_Time : timae;
Rep Amount : duration;
end record;
procedure Enqueue_Replenishment (New_Replenishment : in replenishment);
procedure Dequeue_Replenishment (0ld Replenishment : out replenishment);

function Replenishment_Queue_Empty return boolean;

end SS_Replenishment_Queue Manager;

Figure 6: Specifications for the Aperiodic_Tasks and
SS_Replenishment_Queue_Manager Packages

4. A Full Implementation of Sporadic Servers in an Ada Runtime
System

This section describes an impl2mentation of sporadic servers within an Ada runtime system. This
is a fullimplementation in that no simplification of the algorithm described in Section 2 is used, as
was necessary for the Ada *ask implementation described in the previous section. This section
begins with a brief description of how sporadic servers can be implemented within the existing
semantics of Ada. This is followed by a discussion of the runtime data structures that are as-
sumed to be available within an existing Ada runtime system. Next the discussion of the sporadic
server implementation is broken into two parts. First, the data structures and procedures used to
schedule aperiodic tasks that use sporadic servers are presented. Second, the data structures
and procedures for scheduling sporadic server replenishments are described. The next section
describes the sources of overhead in this implementation of sporadic servers and discusses
implementation options for reducing the overhead.
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4.1. Sporadic Servers and Ada Semantics

An Ada runtime system can support sporadic servers for aperiodic tasks within the semantics of
Ada. Ada does not specify any specific scheduling discipline for tasks with undefined priorities.
As discussed by Sha and Goodenough in[12], if the priority of a task is not assigned using
pragma PRIORITY then the Ada runtime system is free to employ any algorithm for deciding
which eligible task to run. Thus, an Ada runtime system can use the sporadic server algorithm to
provide high priority service for aperiodic tasks. Implementation dependent pragmas and/or runr-
time calls can be used to specify scheduiing priorities for tasks and the information necessary to
create and use sporadic servers.

4.2. Runtime Data Structures for Sporadic Servers
The implementation of sporadic servers within an Ada runtime relies upon these existing data
structures in the Ada runtime:

e Task_Control_Block (TCB) - a record containing all the information necessary to
schedule and execute an Ada task.

» Task_Ready_Queue - a priority-ordered list of tasks that are ready to execute. The
task at the head of the Task_Ready_Queue is always the currently executing task.
Whenever a scheduling decision is made that changes the task at the head of the
Task_Ready_Queue, the task placed at the head of the Task_Ready_Queue is se-
lected as the next task to execute. Tasks of equal priority are managed using a
FIFO policy.

» Delay_Queue - a time-ordered queue of tasks that are suspended waiting for a
timing event to occur (the Delay_Queue is typically used to implement the Ada delay
statement). :

In addition to the above data structures, new data structures and modifications to existing data
structures are necessary to support a complete implementation of sporadic servers. These run-
time modifications are needed to support the two primary operations of sporadic servers: (1)
scheduling aperiodic tasks that will consume sporadic server execution time and (2) scheduling
replenishments for consumed sporadic server execution time. This section breaks the discussion
of an Ada runtime implementation of sporadic servers into these two categories. As the data
structures for each category have been defined, pseudo-code for the corresponding procedures
that manipulate the data structures is presented and discussed.

4.3. Data Structures for Scheduling Aperiodic Tasks that Use Sporadic
Servers

4.3.1. Sporadic Server Queues

A ful' implementation of sporadic servers in an Ada runtime system allows muitiple sporadic
servers to be created and used corficurrently. To manage multiple sporadic servers and aid in the
scheduling aperiodic tasks that will use their sporadic server's execution time, several sporadic
server queues are maintained by the runtime system. The elements of these queues are pointers
to Sporadic Server Control Blocks (SSCBs) which are discussed in Section 4.3.3. The sporadic
server queues are listed below:

* SS_Ready_Queue - a priority-ordered queue of SSCBs that have both aperiodic
tasks ready to execute and execution time available to service the aperiodic tasks.
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e SS_Enabled_Queue - a priority-ordered queue of all SSCBs that are currently en-
abled. If the SS_Enabled_Queue is empty, then no sporadic servers have been
created for use (i.e., either none have ever been created or all that have been cre-
ated have been terminated).

4.3.2. Aperiodic Task Queues
A sporadic server is created to service one or more aperiodic tasks. The following queues are
used to manage the aperiodic tasks associated with a sporadic server:

e Aperiodic_Ready_Queue - a queue of ready-to-execute aperiodic tasks. An
Aperiodic_Ready_Queue exists for each sporadic server. If an aperiodic task is
ready to execute, then the runtime system places the aperiodic task’s TCB upon the
Aperiodic_Ready_Queue associated with the sporadic server assigned to the
aperiodic task. Similarly, if the aperiodic task is ever not ready to execute, then the
runtime system removes the aperiodic task from the Aperiodic_Ready Queue. The
Aperiodic_Ready_ Queue queue is managed with a FIFO queueing discipline. If pref-
erential service for some aperiodic tasks is desired, a separate sporadic server with
a higher priority can be used.

e Registered_Aperiodics_List - a list of aperiodic tasks that are registered to use the
sporadic server. The information on this list is used to unregister aperiodic tasks
from the sporadic server if sporadic service is ever terminated (e.g., during a mode
change [11]).

4.3.3. The Sporadic Server Control Block (SSCB)

To support sporadic servers in an Ada runtime system, a new data type is needed to contain the
information about each sporadic server created by the runtime system. This new data type is the
Sporadic Server Control Block (SSCB). The following fields in the SSCB are used to schedule
aperiodic tasks that will consume sporadic server execution time {other SSCB fields will be dis-
cussed in Section 4.5.4):

¢ Period - the period of the sporadic server

e Priority - the priority of the sporadic server

* Max_Exec_Time - the maximum execution time of the sporadic server

* Avail_Exec_Time - the execution time the server has available for aperiodic service
e SS_Ready_Queue_Link - a pointer to the next SSCB on the SS_Ready_Queue

e On_SS_Ready_Queue - a boolean value that indicates whether or not the sporadic
server is present on the SS_Ready_Queue

o SS_Enabled_Queue_Link - a pointer to the next SSCB on the Enabled_SS_Queue

e Exhausted_Task - a pointer to the TCB of a dummy task that is used to suspend the
processing of a task when the sporadic server it is using .exhausts its available ex-
ecution time (the use of an Exhausted_Task is discussed in Sections 4.3.7 and 4.4)

e Aperiodic_Ready_Queue_Head - a pointer to the first task on the sporadic server's
Aperiodic_Ready_Queue

o Registered_Aperiodics_Head - a pointer to the head of the
Registered_Aperiodics_List

Each sporadic server's period, priority, and maximum execution time are specified by either
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implementation-dependent pragmas or runtime calls. Pragmas or runtime calls are also neces-
sary to register each aperiodic task with its sporadic server. o

4.3.4. Task Control Block Extensions
Implementation of sporadic servers requires some information to be added to the TCB of each
task. These additions are summarized below:

e Base_Priority - the default execution priority of the task. o

o Current_Priority - the priority at which the task can currently execute. Both
Base_Priority and Current_Priority are necessary since the sporadic server algorithm
adjusts the priority of an aperiodic task depending upon whether or not it is using its
sporadic server. The Current_Priority is the priority used to queue TCBs on the
Task_Ready_Queue.

» Task_Category - the category to which this task is associated. A task that can
execute is in either the Normal _Task category or in the Aperiodic_Task category.
Only tasks in the Aperiodic_Task category can use a sporadic server. To prevent an
aperiodic task from consuming more than the available sporadic server capacity a
special task category is used: Exhausted_Task. A task in this special category is
never executed as an actual task; it is merely added to the Delay_Queue when
appropriate. When the delay for a task in the Exhausted_Task category expires, the ®
available execution time for the corresponding sporadic server has been exhausted
and sporadic service must be suspended. An Exhausted_Task exists for each
sporadic server. Another special task category, the Replenish_Task, is defined later
in Section 4.5.

» My_Sporadic_Server - a pointer to the SSCB used by this task. The pointer is set to ®
nult it the type of the task is Normal_Task.

e Using_Sporadic_Server - a boolean value that indicates whether or not the task is
currently consuming its sporadic server's execution time.

® Aperiodic_Queue_Link - a pointer to the TCB of the next aperiodic task on the
Aperiodic_Ready_Queue associated with this task’s sporadic server.

o
» On_Aperiodic_Queue - a boolean value that indicates whether or not this task is on
its sporadic server's Aperiodic_Ready_Queue.
* Registered_Aperiodic_Link - a pointer to the TCB of the next aperiodic task on the
Registered_Aperiodic_List.
4.3.5. Sporadic Server Data Structure Example ®
Figure 7 presents an example of the sporadic server data structures. In this section we will be
discussing the data structures used to schedule aperiodic tasks that lie outside the gray box in
Figure 7. The data structures enclosed in the gray box are used to manage the replenishment of
consumed sporadic execution time and will be defined and discussed later in Sections 4.5 and
4.6. ®

In Figure 7, five sporadic servers, SSCB-1 through SSCB-5, have been created and placed on

the SS_Enabled_Queue in priority order (SSCB-1 having the highest priority and SSCB-5 having

the lowest priority). Although five sporadic servers have been created, only two of them are

“ready” in the sense that they have execution time available and aperiodic tasks ready to con- ()
sume the execution time. These two "ready" sporadic servers (SSCB-3 and SSCB-5) have been

placed on the SS_Ready_Queue in priority order.
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Referring to the control block of the third sporadic server (SSCB-3) in Figure 7 we can confirm
that it should be on the SS_Ready_Queue because its Avail_Exec_Time is greater than zero and
its Aperiodic_Ready_Queue has two ready-to-execute aperiodic tasks, TCB-1 and TCB-2. By
following the links from the Registered_Aperiodics_Head we can see that three aperiodic tasks
(TCB-1, TCB-2, and TCB-3) ave registered to use this sporadic server. Also associated with this
sporadic server is its Exhausted_Task.

4.3.6. Modification of the Task_Ready_Queue Support Routines

As described above, the runtime system maintains two queues for “ready-to-execute" sporadic
servers and aperiodic tasks. The runtime system maintains an SS_Ready_Queue that is updated
whenever the readiness of a sporadic server or an aperiodic task changes. Also, each sporadic
server has an Aperiodic_Ready_Queue that is updated whenever the readiness changes for one
of the sporadic server's aperiodic tasks.

Typically, an Ada runtime will use procedures to manipulate the Task_Ready_Queue. For a
sporadic server implementation, these procedures must be modified to adjust the
SS_Ready_Queue and/or the sporadic servers Aperiodic_Ready_Queue whenever appropriate.
As an aperiodic task is added to or removed from the Task_Ready_Queue it should also be
added to or removed from its sporadic server's Aperiodic_Ready_Queue. Also, as a sporadic
server's Aperiodic_Ready_Queue is adjusted it is necessary to determine if the sporadic server
should be added to or removed from the SS_Ready_Queue. The pseudo-code for these proce-

_dures is gresented in Figure 8. It is also necessary to check if a sporadic server should be added
to or removed from the SS_Ready_ Queue whenever the sporadic server's execution time is
exhausted or replenished. These checks are discussed in Section 4.5.
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procedure Add_Task_To_Ready_Queue(task : TCB) is
begin

Add the task to the Task_Ready_Queve;
if task.Task_Category = Aperiodic_Task then
Add the task to its sporadic server's Aperiodic_Ready_Queue;

if (not task.My_ Sporadic_Server.On_SS_Ready Queue) and then
task.My_Sporadic_Servar.Avail Exec Time > 0.0 then

Add the task's sporadic server to the SS_Ready_Queue;
end if;
end if;
end Add_Task_To_Ready_Queua;

procedure Remove_Task_From Ready Queue(task : TCB) is
begin

Remove the task from the Task_Ready_Queue;
if task.Task_Category = Aperiodic_Task then
Remove the task from its sporadic server's Aperiodic_Ready_Queue;
if task.My Sporadic_ Server.On_SS_Ready Queue and then
(task.My Sporadic_ Server.Aperiodic_Ready Queue_Head = null or else
task.My Sporadic_Server.Avail Exec Time = 0.0) then
Remova the task's sporadic server from the SS_Ready_Queue;
end if;

end if;

end Remove_Task_From Ready Queue;

Figure 8: Add_Task_To_Ready_Queue and Remove_Task_From_Ready_Queue

4.3.7. Use of the Delay_Queue for Scheduling Aperiodic Tasks Using Sporadic
Servers
An Ada runtime system typically has a Delay_Queue that is used to implement the Ada delay
statement. When a task executes a delay statement, the task is removed from the
Task_Ready_Queue and placed upon the Delay_Queue to be awakened {moved back to the
Task_Ready_Queue) after some specified delay. A sporadic server implementation also uses
the Delay_Queue as a mechanism to prevent the execution of an aperiodic task from consuming
more sporadic server execution time than it is allocated. The Exhausted_Task category is used
for this purpose.

As an aperiodic task is about to begin execution and use its sporadic server, the Exhausted_Task
associated with the aperiodic task's sporadic server is placed on the Delay_Queue with a delay
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equal to the available execution time of the sporadic server. If the processing of the aperiodic
task completes, is suspended, or pre-empted before the Exhausted_Task’s delay expires, the
Erhausted_Task is simply removed from the Delay_Queue. However, if the delay for the
Exhausted_Task expires before the aperiodic task completes then the sporadic server has ex-
hausted its available execution time. In this case, sporadic service for the aperiodic task is
suspended, a replenishment is scheduled for the consumed execution time, and the
Current_Priority of the aperiodic task is reset to its Base_Priority (these actions are taken in the
sporadic server procedure Mark_SS_Consumption which is discussed in Section 4.6.1).

4.4. Scheduling Aperiodic Tasks Using Sporadic Servers

Now that the data structures used in scheduling aperiodic tasks that use sporadic servers have
been presented, the conditions governing the execution of an aperiodic task with a sporadic
server can be discussed.

The conditions under which an aperiodic task should be scheduled to execute using a sporadic
server are as follows:

1. The aperiodic task must be ready to execute;

2. The aperiodic task’'s sporadic server must have execution time available to execute
the aperiodic task;

3. The sporadic server must have a priority equal to or higher than all other tasks that
are ready to execute;

4. Use of the sporadic server must be necessary in order to execute the aperiodic
task. Otherwise, it would be wasteful to use a sporadic server's execution time for
an aperiodic task that could execute without the server (e.g., when the processor
would otherwise be idle).

The above rules are simply stated, but an application can have many sporadic servers with
different priorities and each sporadic server could be supporting several aperiodic tasks. As
such, a general test of the above conditions every time a new task becomes ready to execute
could be expensive, slowing the system's response to external events and increasing the general
runtime overhead of the system. To avoid these problems, a queue of sporadic servers is used.
The SS_Ready_Queue is a priority-ordered queue of sporadic servers that have both at least one
aperiodic task ready to use the sporadic server and execution time available to execute the
aperiodic task. Using the SS_Ready_Queue greatly simplifies the check of the first two con-
ditions above. If the head of the SS_Ready_Queue is null then none of the system’s sporadic
servers are ready to be used because either they have no execution time availabie or none of
their aperiodic tasks are ready to execute. If the head of the SS_Ready_Queue is not null then it
is necessary to check the third condition above. The sporadic server can be used only if it has a
priority equal to or greater than the task that would normally execute next. Finally, it the third
condition passes then the last check to be made determines whether or not the high priority of
sporadic server is necessary to execute the aperiodic task. This method of checking for sporadic
servers is efficient because no searches are necessary to find "ready" sporadic servers and
aperiodic tasks.
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Once it is determined that an aperiodic task can execute using its sporadic server the following
operations are necessary. The aperiodic task’s Current_Priority is set equal to the priority of its
sporadic server and the aperiodic task’s Using_Sporadic_Server boolean is set to TRUE. Next,
the aperiodic task is moved to the head of the Task_Ready_Queue. Before execution of the
aperiodic task begins it is necessary to add the sporadic servers Exhausted_Task to the
Delay_Queue to prevent the aperiodic task from overrunning the sporadic server's available ex-
ecution time. Finally, for proper monitoring of the execution time consumed by the aperiodic task,
the time that execution begins must be recorded (this is used later by the procedure
Mark_SS_Consumption discussed in Section 4.6.1). The time at which execution begins is
recorded in the sporadic server's Replenishment_Control_Block (the RCB is discussed in Section
4.5).
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procedure Execute_Next_ Task is
Next_Task : TCB := Task_Ready Queue; -~ the head of the Task Ready Queue
begin

if SS_Enabled_Queue /= null then -- Are any sporadic servers are enabled?

if SS_Ready Queue /= null and then
SS_Ready_ Queue.Priority >= Task_Ready Queue.Priority and then
Task_Ready Queue.Priority > SS_Ready Queue.Aperiodic_Queue.Base_Priority
then

Next_Task := Ss_Ready_Queue.Apcriodic_pueue;

Next_Task.Current_Priority := SS_Ready Queue.Priority:;
Next_Task.Using_Sporadic_Server := True;

Move the aperiodic task to the head of the Task_Ready_Q:

-- Place the Exhausted Task on the delay queue with a delay of
-~ Avail_Exec Time time units.

Add_Task_To_Delay Queue (SS_Ready Queue.Exhausted Task,
SS_Ready Queue.Avail Exec_Time);

Next_Task.Rep_ Data.Exec Begin_Time := Clock;
end 1if;

== Mark the consumption of sporadic server execution time if we are
-~ changing to a new task and the last task was using a sporadic
-- server.

if Current_Task.Using Sporadic_Server and Current_Task /= Next_Task then
Mark_SS_Consumption;
end if;

-~ Remember the priority level of the previously executing task and the
-~ the next task to execute.

Provioul_Priority_Lavol := Next_Priority_ Level;
Next Priority Lavel := Next_Task.Current_Priority;

~- Set the active/idle status of sporadic server priority levels and
-- schedule any replenishments as necessary.

Check_SS_Replenishment;
end 1f;
Current_Task := Next_Task;
Exacute the task at the head of the Task_Ready_Queua;

end Execute_Next_Task;

Figure 9: Execute_Next_Task
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Figure 9 presents the pseudo-code for the procedure Execute_Next _Task. The first half of
) Execute_Next_Task implements the operations described above for determining if a aperiodic

task can execute using its sporadic server and then prepares the aperiodic task for execution.

The second half of Execute_Next_Task shows the conditions that must be checked every time

tasks are switched if sporadic servers are in use. These checks concern the accurate monitoring

of the consumption of a sporadic server's execution time and the proper replenishing of any
[} consumed sporadic server execution time and are discussed in Sections 4.5 and 4.6.

4.5. Data Structures For Scheduling Sporadic Server Replenishments

4.5.1. The Replenishment Data Type
A new data type, replenishment, is the basic unit of information that is managed by the sporadic
® server for replenishing consumed execution time. A replenishment has two fields:

* Rep_Time - the time at which a replenishment is to be performed.

e ARep_Amount - the amount of execution time to be added to the sporadic server's
Avail_Exec_Time.

4.5.2. Sporadic Server Replenishment Queues

A sporadic server's execution time can be consumed during several distinct intervals of time,
each requiring a separate rep!enishment. As such, a queue of outstanding replenishments, the
Rep_Queue, must be maintained for each sporadic server. Each Rep_Queue is a FIFO queue of
Replenishments whose Rep_Times have not been reached yet. For efficiency, the storage for
the Rep_Queue should not be created dynamically, but instead preallocated at compile time.

4.5.3. The SS_Used_Queue

The runtime system maintains the SS_Used_Queue, a priority-ordered queue of sporadic servers
that have had some of their execution time consumed but have not yet scheduled the replenish-
ment for the consumed execution time. As priority levels become idle, the SS_Used_Queue is
checked for any sporadic servers that have replenishments that need to be scheduled.

4.5.4. SSCB Fields for Managing Replenishments
An SSCB has the following additional fields that are used to manage the replenishment of con-
sumed sporadic server execution time:

¢ Replenish_Task - a pointer to the TCB of a dummy task that is used to implement
replenishments for a sporadic server. When a Replenish_Task is awakened and
removed from the Delay_Queue, the corresponding sporadic server is replenished
using the replenishment information at the head of the sporadic server's replenish-
ment queue.

o SS_Used_Queue_Link - a pointer to the SSCB of the next sporadic server on the
SS_Used_Queue.

e On_SS_Used_Queue - a boolean value that indicates whether or not the sporadic
server is present on the SS_Used_Queue.

* Replenish_Data - a pointer to the Replenishment_Control_Block (RCB) for this
sporadic server. The RCB, described in Section 4.5.5, contains all the information
concerning the outstanding replenishments for a sporadic server.
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4.5.5. The Replenishment Control Block
Each sporadic server has an RCB that contains the information about the outstanding replenish-
ments for the sporadic server. The fields of the RCB are:

e Rep_Queue - a pointer to the head of a FIFO queue of Replenishments whose
Rep_Times have not been reached yet.

« Rep_Origin - the time from which the Rep_Time of a Replenishment is determined
(i.e., the actual replenishment time is equal to the Rep_Origin plus the period of the
sporadic server). Usually, the Rep_Origin corresponds to the time at which the
sporadic server's priority level becomes active (the exception occurs when the
sporadic server has exhausted its execution time as shown in Figure 4 in Section 2).

e Exec_Begin_Time - the time at which the sporadic server begins servicing an
aperiodic request. This value is used to compute the amount of sporadic server
execution time that is consumed by an aperiodic task.

» Pending_Replenishment - a Replenishment that has not yet been placed in the
Rep_Queue. Pending Replenishment is used to accumulate the execution time that
is consumed throughout one interval of time during which the sporadic server's prior-
ity level is active. If any sporadic server execution time is consumed, its
Pending_Replenishment is placed on the Rep_Queue when the sporadic server's
priority level becomes idle or when its execution time is exhausted. If the
Rep_Queue ever becomes full, Pending_Replenishment is used to accumulate
replenishments until an entry on the Rep_Queue becomes available. Note that for
the cases when the Rep_Queue becomes full, the earliest allowed replenishment for
consumed execution time may not occur.

4.5.6. Replenishment Data Structure Example

Now that the data structures used to manage the replenishment of consumed sporadic server
execution time have been presented we can refer to Figure 7 to see an example of these data
structures. Two sporadic servers, SSCB-3 and SSCB-5, are on the SS_Used_Queue indicating
that some of their execution time has been consumed but that the replenishment for the con-
sumed execution time has not yet been placed on their respective replenishment queues. The
Rep_Queue for SSCB-3 is shown to have three outstanding replenishments that are waiting for
their replenishment times to arrive. Also shown is SSCB-3's Replenish_Task that is placed upon
the Delay_Queue to wake up at the time the next replenishment is due.

4.6. Scheduling Sporadic Server Replenishments
The following are the basic operations necessary for handling sporadic server replenishments:

1. The consumption of sporadic server execution time must be monitored and the
replenishment amounts must be computed.

2. The times at which consumed sporadic server execution time are to be repienished
must be determined.

3. Each outstanding replenishment for a sporadic server must be queued until the
replenishment of sporadic server execution time is made.

The procedures for implementing th.ese operations are presented in this section.
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4.6.1. Tracking the Consumption of Sporadic Server Execution Time

Each time the execution of an aperiodic task that is using its sporadic server can be stopped, it is
necessary to keep track of the amount of the sporadic server's execution time that was con-
sumed. The execution of an aperiodic task that is using its sporadic server can be stopped by
one of the following events:

1. The aperiodic task execution is pre-empted by a higher priority task;

2. The aperiodic task suspends;

3. The aperiodic task completes execution; or,

4. The execution time of the aperiodic task’s sporadic server is exhausted.

The first three cases above are detected in the second half of the procedure Execute_Next_Task
(Figure 9) as task execution is switched from one task to another. If the previously executing task
was using its sporadic server and the next task to execute is a different task, then one of the first
three cases above hoids. The fourth case above is checked by the procedure that processes
tasks on the Delay_Queue as their delays expire. For each of the above cases, the procedure
Mark_SS_Consumption is called. The pseudo-code for the Mark_SS_Consumption procedure is
presented in Figure 10 and discussed beiow.

The first job that Mark_SS_Consumption must perform is to determine the reason the execution
of the ajeriodic task has stopped and, as necessary, adjust the sporadic server data in the
aperiodic task's TCB and/or re-queue the aperiodic task on the Task Ready_Queue. The
sporadic server data in the aperiodic task's TCB must be adjusted if the aperiodic task is no
longer ready to execute or if its sporadic server has exhausted its execution time. Thus, in cases
2, 3, and 4 the aperiodic task's Current_Priority must be set equal to its Base_Priority and its
Using_Sporadic_Server boolean must be set to FALSE. In case 1, neither of these changes is
necessary because when the higher priority activity ceases, the aperiodic task will still be ready to
execute and its sporadic server will still have execution time available.

To determine if the aperiodic task should be re-queued on the Task_Ready_Queue it is neces-
sary to determine its readiness. Even though the execution of the aperiodic task has stopped, the
aperiodic task may still be ready to execute and, therefore, still be on the Task_Ready_Queue. In
cases 1 and 4 above, the aperiodic task remains ready to execute but its priority is no longer high
enough to execute because either a higher priority task can now execute or the aperiodic task’s
sporadic server has exhausted its execution time. In both of these cases, the aperiodic task
should remain on the Task_Ready_Queue. For case 1, the aperiodic task can remain in its
current position on the Task_Ready_Queue because its priority remains unchanged. However, in
case 4 the aperiodic task must be re-queued on the Task_Ready_Queue because its priority has
dropped from its sporadic server's priority to its base priority.2

Next, the Delay_Queue must be checked for the presence of the sporadic server's

2Note: Re-queueing of a task to the Task_Ready_Queue is different from placing a task on the Task_Ready_Queue
that is not already there. When placing a task on the Task_Ready_Queus that is not already there, tasks of equal priority
are queued in FIFO order. However, re-queueing of a task on the Task_Ready_Queuse requires that tasks of equal
priority be placed on the queue in LIFO order.
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Exhausted_Task. In each of the first three cases above, consumption of the sporadic server's
execution time has stopped but the sporadic server's Exhausted_Task is still on the
Delay_Queue and, therefore, must he removed.

The consumption of sporadic server execution time is then calculated and any necessary adjust-
ments to the SS_Ready_Queue are made. The amount of execution time consumed is deter-
mined by subtracting Exec_Begin_Time from tne current time. Exec_Begin_Time was set in the
procedure Execute_Next_Task before the aperiodic task was scheduled to execute (see Section
4.6.1). Since some sporadic server execution time has been consumed, it is necassary to check
if the sporadic server should remain on the SS_Ready_Queue as is done when adding or remov-
ing an aperiodic task from the Task_Ready_Queue (Section 4.3.6)

Next, the amount of consumed execution time must be used to update the sporadic serve ‘s state
and be scheduled for replenishment. The sporadic server's execution time is decremented by the
amount of execution time consumed. The total amount of consumed sporadic server execution
time during this active period (which is stored in Pending_Replenishment) is incremented by the
amount of consumed execution time. Finally, if the sporadic server's execution time is ex-
hausted, then the Pending_Replenishment must be placed on the replenishment queue with a
call to the procedure Queue_Pending_Replenishment described in Section 4.6.3. Note that this
check for sporadic server exhaustion compares for an Avail_Exec_Time that is less than zero.
This allows for accounting errors in the value of Avail_Exec_Time due to runtime overhead and
clock granularity. If the sporadic server is not exhausted, then it is placed on the
SS_Used_Queue from which the procedure Track_Active_ldie_Status (Section 4.6.2) will
schedule the sporadic server's replenishment when its priority level becomes idle.
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procedure Mark SS_Consumption is
My_ss : access sporadic_server renames Current_Task.My_Sporadic_Server;
Consumed_Execution Time : duration;

begin

if Current_Task is not on the Task_Ready_Queue or
My_SS.Exhausted_Task is not on the Delay_Queue then

Current_Task.Using Sporadic Server := False;
Current_Task.Current Priority := Current_Task.Base_ Priority;

end if;

if Current_Task is cn the Task_Ready_Queue and My_SS.Exhausted_Task is not on the Delay_Queue then
Re-queue the Current_Task on the Task_Ready_Queue;
end if;

1f My _SS.Exhausted_Task is on the Delay_Queue then
Remove My _SS.Extausted_Task from the Delay_Queue;
end if;

Consumed Exec_Time := Clock - My_SS.Replenish_Data.Exec_Begin_Tima;
My _SS.Avail Exec_Time := My SS.Avail_Exec Tima - Consumed Exec_Tima;

if My SS.Aperiodic_Ready Queue = null or My_SS.Avail Exec_Time <= 0.0 then
Remove My_SS from the SS_Ready_Queue;
end if;

My SS.Replenish Data.Pending Replenishment.Rep Amount :=
. = _Rep -
My_SS.Replenish_Data.Pending_Replenishment.Rep_Amount + Consumed Exec_Time;

-=- 1If the sporadic server’s execution time is exhausted, then schedule the
-- Pending Replenishment. Otherwise, add the sporadic server to the SS_Used_Queue.

if My SS.Avail_Exec_Time <= 0.0 then

My_SS.Replenish Data.Pending Replenishment.Rep_ Time :=
My_SS.Replenish_Data.Rep Orxigin + My SS.Period;

Qu.u._?onding;ﬁoplcni-hment(My_SS):
My SS.Avail Exec_Time := 0.0;
elsif not My SS.0On_$S_Used Queue then
Add My_SS to the §5_Used_Queue;
end if;
end Mark_SS_Consumption;

Figure 10: Mark_SS_Consumption
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4.6.2. Tracking the Active/ldle Status of Sporadic Server Priority Levels
A full implementation of the sporadic server algorithm requires that the active/idle status of the
sporadic server priority levels be tracked as different tasks are scheduled. This is essential
because of the following two rules concerning sporadic server replenishments:

1. The time at which a sporadic server’'s consumed execution time is to be replenished

is determined from the time at which the sporadic server's priority level becomes
active.

2. The time at which the total amount of consumed execution time for a sporadic
%?;ver can be determined occurs when the sporadic server’s priority level becomes
When a new task is executed that has a priority higher than the previous task, some sporadic
server priority levels can become active. As the priority level for a sporadic server becomes
active, its replenishment origin (Rep_Origin) must be set equal to the current time. The replenish-
ment origins are set by using a priority-ordered list of enabled sporadic servers, the
Enabled_SS_Queue. Similarly, when a new task is executed that has a priority lower than the
previous task, then some sporadic server priority levels can become idle. As the priority level of a
sporadic server becomes idle, the sporadic server's pending replenishment (if it has positive
replenish amount) can be placed on the sporadic server's Rep_Queue. The pending replenish-
ments are placed on the Rep_Queue by using the SS_Used_Queue to select the sporadic ser-
vers whose priorities lie in the range of the newly idle priority levels. These are the operations
performed by the procedure Track_Active_Ildle_Status. The variables Previous_Priority_Level
and Next_Priority_Level are used by this procedure to track the active/idle status of sporadic
server priority levels. The values of Previous_Priority_Level and Next_Priority_Level are set as
different tasks are scheduled for execution by the procedure Execute_Next_Task (Figure 9). The
pseudo-code for Track_Active_ldle_Status is presented in Figure 11. The first section of
Track_Active_ldle_Status corresponds to the first rule above and the second section corresponds
to the second rule above.

The two exceptions to the above sporadic server replenishment rules occur when the sporadic
server's execution time has been exhausted. The first exception concerns the queueing of the
replenishment for the consumed execution time. This case is tested by the procedure
Mark_SS_Consumption (Section 4.6.1) which is called after each block ot sporadic server execu-
tion time is consumed. When Mark_SS_Consumption detects that the sporadic server's execu-
tion time has been exhausted, the procedure Queue_Pending_Replenishment (Section 4.6.3) is
cailed to add the pending replenishment to the replenishment queue. The second exception
concerns the setting of a sporadic server's replenishment origin (Rep_Origin) after the sporadic
server's execution time has been exhausted. As some execution time is replenished after the
sporadic server's capacity is exhausted, the replenishment origin should be set equal to the
current time to prevent any consumed execution time from being replenished too early (Figure 4
shows an example of this). The case is tested by the procedure Replenish_Sporadic_Server
(discussed later in Section 4.6.4) which is called as each sporadic server's replenish task wakes
up on the Delay_Queue. When Replenish_Sporadic_Server detects this case the replenishment
origin is set to the current time.
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o procedure Track_Active_Idle Status is
a_ss @ access sporadic server;
now : tiwne;

begin

if Previous_Priority Level < Next Priority_ Level then

-- The priority levels in the range from just above the previocus
. -- priority level up through the next priority level will become
-- active when Execute_Next_Task executes the next task. Set the
-~ Rep_Origin for each sporadj.c server within this range.

a_ss := SS_Enabled Quaeue;

while a_ss /= null and then a_ss.Priority > Next Priority_Level loocp
a_ss := a_8s. ss_Enablod_Quoue_Link

end loop;

. -- Sat the Rep_Origin for all the sporadic servers with priorities
== in the newly active range.

while a_ss /= null and then a_ss.Priority > Previous_Priority Level loop
a_ss.Replenish_Data.Rep Origin := now;
a_ss := a_sgs.SS_Enabled Queue_Link;

end loop;

~-~ The priority levels from the previous priority level down to the
-=- priority level just above the next priority level will become

-- 1dle when Execute_Next_Task executes the next task. Schedule
® -- replenishments for any sporadic servers within this range of
== priority levels that are currently on the SS_Used Queue.

-- Move down the SS_Used Queue and, process each sporadic server with
-- a priority greater than the next priority level.

. a_ss := SS Enabled ._Queue;
while a_ss " /= null and then a_ss.Priority > Next_ Priority_Level loop

Queue_Pending Replenishment (a_ss);
a_ss := a 8s8.SS_Used_Queue Link;
.o end loop:
end if;
end Track_Active_Idle_Status;
Figure 11: Track_Active_ldle_Status
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4.6.3. Queueing Sporadic Server Replenishments

Several conditions need to be checked when a request is made to add a replenishment to a
sporadic server’s replenishment queue. First, the pending replenishment cannot be added to the
replenishment queue if the replenishment queue is full. The replenishment queue can become
full if the consumption of execution time occurs during many distinct intervals of time (where each
consumption requires a different replenishment time) such that the last consumption of execution
time fills the replenishment queue. In this case of a full replenishment queue,
Pending_Replenishment is left unchanged and will be added to the replenishment queue when
space becomes available by the procedure Replenish_Sporadic_Server discussed in Section
4.6.4. Until space becomes available on the replenishment queue, additional replenishments
may be accumulated in Pending_Replenishment. Note that in this case, the replenishment time
of the last replenishment accumulated in Pending_Replenishment is used as the replenish time
when Pending_Replenishment is placed on the replenishment queue. If the replenishment queue
is not full, the pending replenishment is added to its replenishment queue and the replenish
amount of Pending_Replenishment is reset zero. Next, since the sporadic server no longer has a
pending replenishment, the sporadic server is removed from the SS_Used_Queue. Now that the
replenishment queue has at least one entry, the sporadic server's replenish task must be placed
upon the Delay_Queue if it is not already there. The pseudo-code for the procedure
Queue_Pending_Replenishment is presented in Figure 12.

procedure Queue Pending Replenishment (a_ss : access sporadic_server) is
begin

1f the sporadic server’s Rep_Queue is not full then
Add the pending replenishment to the Rep_Queue;
a_ss.Replenish Data.Pending Replenishment.Rep Amount :@= 0.0;

Remove the sporadic server from the SS_Used_Queue;

~= If the Rep_Queue was just previously empty, then the sporadic
-- server’'s Replenish_Task must be put on the Delay Queue.

;;-;h,e-;?;p_aueue has only one entry then
Add a_ss.Replenish_Task to the Delay_Queue to wake up at Pending_Replenishment. Rep_Time;
end if;
end if;

end Enqueue_Pending Replenishment;
Figure 12: Queue_Pending_Replenishment
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4.6.4. Replenishing Sporadic Servers

The procedure Replenish_Sporadic_Server (presented in Figure 13) is called whenever the delay
expires for a sporadic server's 