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SUMMARY

This document represents the final report on research performed under Contract No.
F49620-87-C-0078 from the Air Force Office of Scientific Research to Texas A&M University.
The period covered by this report is from October 1, 1988 through March 31, 1990.

Significant progress is reported on analytical, computational, and experimental methodol-
ogy applicable to sensing, actuation, identification, and control of flexible structures. Especially
significant are the following: (i) We have developed new analytical, numerical, and experimen-
tal results pertaining to optimal large angle maneuvers of flexible structures. (ii) We have
successfully demonstrated a stereo optical sensing method for measuring structural response, and
developed an associated new method for updating an a priori model to be consistent with ex-
perimental measurements of the free and forced vibratory behavior of the actual structure. (iii)
We have developed several test articles, implemented appropriate sensors, actuators, data acqui-
sition and computer systems, and have implemented a first version of the overall system iden-
tification method, as well as a most significant near-minimum-time large angle maneuver experi-
ment. (iv) We have developed some important analytical and numerical results which give new
insight into avoidance of well-known singularities encountered when using single-gimbal Con-
trol Moment Gyros to impart attitude maneuver control torques. The maneuver results are
especially significant because we have formulated and implemented successfully the most
complete flexible body maneuver theory available for robust near-minimum-time maneuvers

The Investigators for this effort were as follows: J. L. Junkins served as Project Director
and Principal Investigator; he played the leading role in the analytical and computational aspects
of this research. T.C. Pollock served as Co-Principal Investigator; he played the leading role in
design of experiments, actuator and sensor systems. The project benefited significantly from the
excellent analytical contributions of S.R. Vadali. Research Engineer Z.H. Rahman contributed
many important ideas and played the central role in carrying out the experimental research on
large angle maneuvers. Six Graduate Research Assistants participated in this project: David
Anderson, Robert Byers, Johnny Hurtado, Steven Morgan, Matilda McVay, and George James.
Byers and Morgan completed Masters theses, while James finished a Ph.D. dissertation; Byers
and the remaining three students will complete their Ph. D. programs in the near future. The
technical monitors for the Air Force Office of Scientific Research were Drs. G.K. Haritos S. Wu,
and A K. Amos of the Directorate of Aerospace Sciences; their support and constructive interac-
tions are most appreciated.

Organization of this report is a follows. We have elected to present most of the detailed
technical results as attachments to this report. We have written the body of this report as a
guided tour; following a brief introduction in Section 1, the sub-sections of Section 2 overview
the essence of the several contributions with reference to the attachments. Section 2 provides
only a macroscopic summary of the research results discussed in detail in the attachments.
Section 3 provides concluding remarks and discusses some promising avenues for extending the
research discussed in this report.




1 Introduction

Dynamics and control of structures research has recently entered a new era characterized by
close coordination of theoretical and experimental research. The "age of experiment” has swept
up many researchers who historically performed primarily analytical/computational research in
structural dynamics and control. In a rignificant minority of recent academic research projects
we are aware of, for example, analytical research and experimental research are being conducted
concurrently by the same team of investigators. The motivation for this highly important trend
are several, and the implications are far-reaching. A key motivation, we believe, is an increasing
desire of structural dynamics and control researchers to more fully understand typical hardware
their invariably idealized equations are intended to represent, and as a consequence, to make a
more immediate and significant impact upon the evolution of the hardware and software systems
of tomorrow.

Our recent research efforts, including the results documented in this report, provide examples
wherein significant analytical/theoretical/computational research has supported and proceeded in
parallel with a coordinated experimental research effort. The main benefit which has flowed
from our joint analytical/experimental work is that the analytical research is based upon realistic
insights into the hardware issues (for example, including consideration of non-ideal sensor and
actuator characteristics which arise when attempting to realize a maneuver control law), and the
experimental research is more likely to be addressed to current and meaningful questions. It is
self evident, we believe, that more informed analysts are more likely to produce research results
which are of fundamental theoretical as well as practical significance. We trust that most work-
ers in the field would agree that excellence in analytical and experimental research should not be
considered mutually exclusive (!), the results we report herein support this viewpoint. Ob-
viously, this perspective can be carried to extremes, we certainly do not propose a constraint that
every (or even most) basic research projects in mechanics and control of structures include
complimentary hand-in-glove experimental research. Clearly, the cost of experimental research
dictates that one carefully define the experimental research so that useful insights can be obtained
for reasonable investments of time and resources, and many purely analytical basic research
topics are not amenable to early experimentation.

The present research project has led to remarkable new analytical results and associated ex-
perimental results/verifications. In the case of the near-minimum-time maneuvers we have
developed (and successfully demonstrated in our laboratory) a method to generate globally
stable, near-minimum-time feedback controllers for flexible body single axis maneuvers. The
experimental research proved of importance because it provided qualitative insights needed to
define meaningful sensor/actuator models and performance measures which capture the tradeoff
between minimum time and minimum vibration. It is obvious that the elapsed time from concep-

tion of the analytical results to demonstration of practical potential has been vastly accelerated as
a consequence of the successfully closed feedback loops between our analytical and experimental
research. Similar statements can be made regarding the structural identification analytical and
experimental research (Section 2.2 and Attachments 6-11).
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Also discussed in this report are several sets of research results which have not been compli-
mented by experimental studies. Attachments 4-5 discuss analytical and numerical results we
have developed for improved optimization and sensitivity analysis of linear feedback structural
control laws. Attachment 13 present new results on Control Moment Gyro steering laws which
gives insight into avoidance of singularities. Attachment 12 discusses nonlinear feedback control
for stable deployment and retrieval of tether-connected structures. Attachment 12 may at first
glance seem loosely related with the results in Attachments 1-3. However, a close examination
reveals that Liapunov stability theory underlies all of the results in Attachments 1-3, 4, 12, and
together with the background problem area of space structure dynamics and control, we see that a
strong unifying thread runs through all of the research contained herein,

We discuss an on-going research analytical/experimental effort which makes use of star sensing
and pattern recognition to determine spacecraft pointing. This work is on-going, but we have
demonstrated that sub five arc-second attitude can be determined, on-board, in real time, with an
all solid state system. Attachment 14 describes our experimental laboratories; this is a unique
facility developed for control/structure interaction research. The results reported span a wider
scope and achieved a much higher level of technical maturity than could be expected based upon
the the proposal and contractual requirements. This fortuitous circumstance is the result of the

truly extraordinary productivity of the excellent corps of graduate students who worked on this
project.

SYSTEM Order Reduction Optimality Principles
Model Errors Tolerance of Model Errors

ANALYSIS Solution Process
IDENTIFYING ASSUMPTIONS Analytical vs Numerical
WHICH MAY REQUIRE CHANGING Open vs Closed Loop
AND/OR NEEDED HARDWARE Linear vs Nonlinear
Robust Algorithms
SIMULATION CONTROL LAWS
Robustness Studies Feedback Gains
Compatibility with Hardware Steering Commands
Will It Work?! Switch Functions

Figure 1 A Roadmap for Dynamical Modeling, Control Analysis/Design and Imple-
mentation of Closed Loop Control on Large Flexible Structures




2 Technical Accomplishments

With reference to Figure 1, we overview the research contributions in the context of this roadmap
of activities for dynamics and control of space structures. In this project we have contributed
new control law design and system identification methodology, and we have implemented
several of the new concepts in successful laboratory experiments. In Sub-sections 2.1-2.3, we
overview these contributions with reference to the Attachments which discuss the contributions
in detail.

The most significant accomplishments of this research project are discussed in Section 2.1. We
have developed an important method for designing globally stable control laws for near-
minimum-time maneuvers of flexible spacecraft. The control law includes a provision for a
user-optimized feed-forward reference maneuver and the large motion control law blends
smoothly into a constant gain terminal controller for fine pointing and vibration suppression.
Both analytical and experimental results are summarized which conclusively demonstrate the
validity and some of the salient features of this approach. Since the results of Section 2.1 are
judged to be of exceptional significance, we summarize the main features of these contributions
in the body of this report. The remaining contributions are discussed in a briefer overview
fashion, with all details relegated to the attachments.

In Section 2.2, we present the results of our research into structural system identification. We
develop an improved approach for updating our available a priori structural model so that it is in
best agreement with free and forced response measurements. We develop a new approach to
structural sensing using stereo triangulation. We present both analytical and experimental
results. The stereo triangulation system makes stereo images of >20 light emitting (or reflecting)
targets on the vibrating structure @ 200 frames/sec; the three dimensional deflections of these
points are determined by ray intersection. This stereo measurement approach represents an
advance over the ideas successfully demonstrated in the 1984 Shuttle/SAFE experiment.
Whereas several man-weeks of post processing were required to extract useful information form
the SAFE video data, our image processing and triangulation software reduces this task to a
fraction of an hour of interactive processing (in a laboratory computer interfaced directly to an
analog video processor).

In Section 2.3, we overview four other sets of contributions made during this project. The first of
these is purely analytical. We developed the first and second order sensitivity of the singular
value decomposition. This will find widespread applications in control design studies. The
second area of research contributions is in the area of control law design for tethered satellite
deployment and retrieval; these are overviewed in Section 2.3.2. The design methodology is
similar to the Liapunov methods used in the control laws discussed in Section 2.1 and Attach-
ments 1-3; we show that small thrusting on the sub-satellite can greatly reduce oscillations and
lead to significant reduction in retrieval times. The third set of results is discussed in Section




2.3.3; we have developed an improved method for avoiding singularities when using Control
Moment Gyroscopes (CMGs) to generate attitude control torques.

The final topic (Section 2.3.4) is analytical and experimental research on spacecraft pointing
determination using star pattern identification. This work was partially supported by a research
grant from the Texas Advanced Technology Program (ATP); it includes both analytical and
experimental aspects. The experimental work is still in progress and will be brought to maturity
during this calendar year under ATP support.

2.1 A Novel Approach for Designing Globally Stable Control Laws for
Distributed Parameter Systems

With reference to Figure 2 and Attachments 1-3, we discuss the research contributions we have
made for designing globally stable control laws. The results involve both new analytical/
theoretical developments and also several successful laboratory experiments. We have estab-
lished that this approach applies to a wide class of dynamical systems described by coupled

ordinary, partial, and integro-differential equations. We first discuss the analytical results in an
overview fashion.

2.1.1 Analytical Results for Flexible Structure Maneuvers

The equations of motion for the structure in Figure 2 are discussed in Attachment 1; under usual
approximations discussed in the attachments, the dynamics of this structure are described by the
following system of coupled ordinary and partial integro-differential equations:

I,,..it,e- =u+4M, -S,1,)

~-M,-S.l,) = _[px(—% +x )dx + mI(ldze +a—}|,) + HOT (1)

'y 40 a‘

p(W+x——;-)+EI-5—; 0 +Hor

We will overview a method we have developed for designing globally stable control laws for
distributed parameter systems such as Eq. (1). The method does not rely upon the use of spatial
(or temporal) discretization/approximations, and known nonlinearities can accommodated
readily. It can be verified that for zero control torque (4 = 0) the total energy of the system is
rigorously conserved:




2 l 2 l ‘ 2 2
2E =1 (%) +4[ij(%§+x%$) dx +ljsz(§x;)dx +m(l%$+%%|,) ] = constant (2)

This motivates introducing the following error energy (Liapunov) function to measure the
departure of the actual, generally disturbed motion (using an arbitrary control u(t) ) from the
open-loop trajectory ( ), which is the rigorous solution of the equations of motion, Eq. (1),

corresponding to using a pre-optimized shaped control torque history u, ej( t):
L , i ,

2U = all_,862 + 2,00° + aas {[p [5%% +x80]  dx + [Er (5%} ) dx + m[180 + 8%}]1]2 } 3
Iy I

where we use the departure motion notation &( ) = () - ( ),. The sccond term is introduced

because the energy integral is indefinite in the cyclic coordinate 8; note that U assumes its global
minimum value of zero everywhere along the (), trajectory. Also note that choosing values for

the positive weights a, allow us to place relative emphasis upon three subsets of the error energy.
In Attachment 1, we show that using the following feedback control law

U=t~ {8 (0-6,) +g (6-6,) +g [(L.S.-M)~(4S.-M.) 1} 4
with any values of the gains which satisfy g, =a,/a,; >0, g, >0, g;=4(a;-a,)/a; > -4, makes
the Liapunov error function of Eq. (3) become everywhere non-increasing, and in fact, results in
all motions being globally attracted to the ( ), trajectory. Therefore the control law of Eq. (4)
guarantees global Liapunov stability with respect to the (), path. Note that this is a rigorous

result in the sense that we have proven it using the original system of ordinary and partial differ-
ential equations. We have furthermore showed that the same control law of Eq. (4) stabilizes the
obvious generalizations of the model (including rotational stiffening geometric nonlinearities,
rotary inertia, shear deformation, and aerodynamic drag). In short the stability of the system
using the control law of Eq. (4) has been found very forgiving of modeling assumpiions. A

significant practical problem arises because this control law requires pre-computation of the
open-loop solution of the full partial differential equations of motion to obtain the (), quantities.

This difficulty can be avoided by introducing approximations which yield a simpler system of
reduced order equations whose solution ( Dref 18 both sufficiently accurate and computable in near

real time. In Attachment 1, we show that these ideas lead to the feedback law
u= uref(’) - {g1 (e - eref) + gz (e - eref) + 83 [(loso— Mo) - (IoSo_ Mo)ref]} (5)

which is globally stable in the sense that the motion is globally attracted to a small A neighbor-
hood near the ( )uf motion, this region is defined by a simple inequality. The control of Eq. (5)

causes the error energy function of Eq. (3) to be strictly decreasing everywhere that the following
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Figure Sa Experimental Results Using Conventional Linear Output Feedback
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condition is satisfied:

0-0.| > L= gllg‘ 20 +g 80 +g ALS.-M,) ©)
L
Since the A() = (), - ( ),ef quantities are differences between two open loop motions {which

ensue from U, (1)}, it is easy to bound the A( ) 's by directly by a priori simulation study (Figures
3, 4) and therefore establish a measure of how near the closed loop motion stays to the ( ),ef
trajectory. We also prove that if the ( )ref trajectory is designed to spline smoothly into the fixed
target state at time z, , then after t the control law of Eq. (5) provides unqualified global

Liapunov (asymptotic) stability with respect to the fixed target state. Note that the A( ) quantities
are simply interpreted as measures of how nearly the approximate ( Dref motion satisfies the

system equations of motion, Eq. (1), and therefore if the region defined by Eq. {6) is not suffi-
ciently small, then the reduced order model underlying the (), of trajectory can be revised ap-

propriately or, u,e,(t) can be modified. Physically, it is obvious that a single actuator cannot

make all infinity of degrees of freedom of a flexible structure behave exactly like, for example, a
rigid body, and the tracking errors are functions of (i) how well the assumptions underlying the (
),ef motion models the actual system, and how aggressively one attempts to maneuver the struc-

ture ( one would expect, for example, that a very smooth, small reference torque input should
result in the flexible structure motion approaching the rigid body idealization, as is evident in
Figures 3 and 4).

If the reference open-loop control uref(t) is parameterized simply, then an a priori global

parameter study can provide complete visibility of these issues. For example, for the particular
family of near-minimum-time control laws studied in Attachments 1-3, ure/t,‘ depends upon a

torque-shape parameter o {0 < a < 0.25, a controls the sharpness of the control switches with

=0 corresponding to the zero-rise-time bang-bang case} and a parameter u,,, which is the
saturation torque. An a priori parameter study led to Figures 3 and 4; these provide visibility of
the open-loop residual vibration energy (Figure 3) and the maximum value of the tracking bound
p (Figure 4, Eq. (6)) which describes the size of the region near the ( ),ef motion in which

asymptotic stability cannot be guaranteed. Note that while Figure 4 bounds the closed loop
stability, only open loop solutions of the differential equations are required to construct this
surface; however selection of particular feedback gains is required. It is apparent that there is a
triangular region in (a, u,,,.) space wherein both of these surfaces approach zero. The near-bang

region, especially for large u__ , rings the structure badly. In the detailed examples studied in

Attachments 1-3, it is shown that a maneuver in the attractive (sufficiently small pt) region can be
selected with only a modest penalty on overall maneuver time (including time for vibration
settling), as compared to the minimum maneuver time for an equivalent rigid body.

10




2.1.2 Experimental Results

In Attachments 1-3, we report several successful experiments; these results provide convincing
evidence that the above-discussed concepts are both valid and can be readily implemented. As
noted in Attachment 1, we achieved approximately a 100% reduction in overall maneuver and
vibration settling time as compared to a conventional constant gain feedback law to perform a

40° maneuver of the structure in Figure 2. The analytical and experimental results were in
excellent agreement. The experimental hardware is described in Reference 1 and Attachments
1-3, and 14. One of the experimental maneuvers led to the results displayed in Figure 5. Note
that the dashed line is a rigid body ( ),ef predicted solution using the reference torque u, q(t) {with

the parameter choices taken as (a, u,, ) = (0.2, 400 oz-in)}, whereas the solid line is the ex-

perimental results. The shaped torque rigid body maneuver was used as the target (reference)
motion, even though it was obvious that finite tracking errors would (and did) occur during the
mid-course phase of this maneuver. In Attachments 1-3, numerous other experimental results are
documented, including a comparison t¢ & constant gain output feedback controller which in-
curred much larger vibrations and required over 12 seconds to do the same maneuver shown in
Figure 5. As described in Attachment 1, the presence of bearing nonlinearities, sensor noise and
other non ideal effects provided significant unintended robustness tests for the method; the highly
successful experiments confirmed that this approach to near-minimum-time control of distributed
parameter systems is valid, highly attractive, and physicallv realizable.

2.2 A Stereo Triangulation Approach to Structural Identification
2.2.1 Stereo Triangulation Measurement of Structural Deformation

In Attachments 6, 8-11 we present concepts and results of a non-contacting structural sensing
approach which involves intersecting rays from two or more synchronized high speed, high
resolution video cameras to targets on the vibrating structure. We have successfully demon-
strated that this approach can be used to measure the inertial motion of more than twenty targets
200 times per second with an application-dependent spatial resolution (typically a few mm). The
primary advantage of this approach is that non-intrusive, non-contacting inertial measurements of
the global vibration of the structure can be made, and the approach works best precisely in the
low frequency bandwith (0 to 20 Hz) where conventional sensors such as accelerometers are
least accurate. The primary disadvantage is that the limited spatial resolution usually means that
only the participation lowest frequency modes can be observed in the measurements. The
dissertation by George James , Ref. [2] details several advances of this approach to optical
sensing, including the use of analog video processing to detect edges and extract image centroids,
calibration of camera geometry and sensor model parameters from static measurements. The
results in James’ dissertation are representative of the state of the art in the use of video camera
data to make structural vibration measurements.

11




2.2.2 System Identification Approach

Based upon the ideas we published in Ref. [3], a new approach has been established to update the
a priori finite element model using measurements of structural response. The key ingredients in
the approach are the enforcement of two fundamental constraints when updating a structural
model, for the purpose of control design, based upon dynamical response measurements:

(1) To the extent possible, the parameterization implicit in the a priori model should be
preserved, unless there is evidence of a serious modeling error, as a minimal requirement
the symmetry, sparsity, and coupling patterns of the a priori model’s mass and stiffness
characterization should be preserved to the extent possible in the updated model.

(2) The updated model should be brought into "best agreement” with both (i) free vibra-
tion measurements, as well as (ii) forced response measurements.

To the extent that the first constraint must be abandoned (to obtain a good fit of the structure’s
behavior), we obtain insight to the validity of the modeling process, on the other hand, not
attempting to enforce this constraint precludes learning very much about the shortcomings of the
original model. Furthermore the particular measurement process is often found to embody some
poorly understood issues, therefore one should be equally skeptical of both the model and the
measurements. The second constraint reflects the truth that the two basic approaches to struc-
tural vibration measurements (free vs forced vibrations) are complimentary and we believe both
data types should be used simultaneously to obtain updated models of highest fidelity. The fact
that an infinity of updated models can yield exactly the same measured free vibration results (i.
¢., an infinity of mass and stiffness matrices lead to identical natural frequencies and mode
shapes) has not deterred the development of a large number of ad hoc ("nearest neighbor™)
approaches which compute non-unique model updates using only free vibration measurements.
We believe that these methods are hazardous to the health of closed loop controllers and do not
provide a reliable basis for feedback control design purposes. Since feedback control involves,
by definition, forced response, the model update should ideally be based upon measurements of
forced response; it is also evident that the model uniqueness criticism is alleviated on sound
physical grounds by using the forced response data (e. g., the frequency response function) to
impose the proper scaling on the system mass and stiffness characteristics.

In Attachments 6-10, we present some preliminary details of our formulations based upon this
approach, but the most complete and definitive results are contained in references [2,3]. In these
references, we establish a linear parameterization of the mass and stiffness matrices upon linear
scaling of the contributions of n substructures to the global mass and stiffness matrices. The best
linear scaling is determined to fit available free and forced response measurements; the
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definition/selection of substructures remains subjective, but we show that the spatial distribution
of energy (in the modes which lie in the frequency range where the poorest match between model
and measurements) provides some insight in this process.

2.2.3 Description of Experimental Results

In Attachments 8-11, and references [2,3], we apply the above methodology to both simulated
and actual measurements. In reference [2], we detail the analytical and experimental results for
an end-to-end application of the stereo-triangulation measurement system, and the free/forced
measurement model update system which we first proposed in Reference [3]. The experimental
test article is a 5’ x 5’ aluminum grid; we used 20 light emitting targets (fibre optic light guides)
for stereo triangulation. We imaged these targets 200 times per second and also utilized six
strain gauges and three accelerometers. We used several forms of actuation, including on-board
reaction wheels (driven by Clifton Precision motors with + 20 Oz-in torque), impulse hammers,
and a conventional harmonic shaker). We were able to establish a fairly complete demonstration
of the analytical and experimental methodology, albeit using a small laboratory structure
(modeled by a 60 degree of freedom finite element model).

2.3 Other Research Results

In this section, we briefly describe four other subsets of research results. Except for the final
item (Section 2.3.4), these represent analytical/computational research results related to
spacecraft dynamics and control analysis. The final topic is addressed to experimental research
on spacecraft navigation by star sensing/star pattern recognition. Each of these research con-
tributions are subsets of recent or on-going Ph. D. dissertations.

2.3.1 Sensitivity of the Singular Value Decomposition

The singular value decomposition (SVD) represents the singular most important advance in
computational linear algebra of the past two decades. Its applications in dynamics and control of
aerospace structures are rapidly growing. In Attachment 5, we make a fundamental contribution
of analytical partial derivatives for the singular values and singular vectors; these promise to be
of widespread utility. Both first and second order seasitivities are presented; the analytical
results have been verified by finite differences to nine digits. In Attachment 12, we use these
sensitivities to design a robust linear feedback law for a simple structure. Y. Kim is currently
nearing completion of his Ph. D. dissertation which extends these results, develops new
controller/structure formulations, and applies these ideas to optimization of actuator locations for
large flexible structures (Attachment 4).
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2.3.2 Analytical/Computational Results for Tethered Satellite Retrieval

In Attachment 12, we present new research results on control of three dimensional tethered
satellite deployment and retrieval. Feedback control laws with guaranteed closed loop stabi-
lizability are obtained using the second method of Liapunov. First a coordinate transformation is
presented that partially uncouples the in-plane and out-of-plane dynamics. A combination of
tension control as well as out-of-plane thrusting is shown to be adequate for a speedy retrieval.
Next, a unified control design method based on an integral of the nonlinear motion (related to the
Hamiltonion of the coupled system) is presented. It is shown that the controller designed by the
latter method is superior to that of the former primarily from the out-ot-plane thrust usage point
of view. A detailed analysis of stability of the closed loop system is presented and thc existence
of limit cycles is ruled out if out-of-plane thrusting is used in conjunction with tension control.
Finally, a tether rate control law is also developed using the integral of motion mentioned above.
These control laws can also be used for station-keeping. Current studies are focused upon
evaluating the modification of these results to accommodate tether flexibility and extension
effects as well account for aerodynamics and other external disturbances.

2.3.3 Singularity Avoidance Steering for Control Moment Gyros (CMGs)

In Attachment 13, we present a novel approach to singularity avoidance steering for single
gimbal CMGs. These actuators are attractive for maneuvering large spacecraft as they provide
torque amplification and are mechanically simpler than double gimbal CMGs. A method based
on back integration of the CMG torque equation from the desired final state is utilized to deter-
mine a family of initial gimbal angles that avoid internal singularities. Each member of this
family is defined as a preferred initial gimbal angle set. The pseudo-inverse steering law is used
during the numerical integrations. A feedback control scheme based on "null motion" is also
developed to position the gimbals at preferred locations. These results are a significant contribu-
tion to the CMG singularity avoidance literature, because this is the first time the existence of
these preferred angles has been noted and their implications studied.

2.3.4 A Star Pattern Recognition Approach for Autonomous Spacecraft
Attitude Determination

In Reference [5], we describe an analytical study and our experimental evaluation of a novel
method for spacecraft attitude determination form star pattern recognition. The idea is very
simple, two or more star cameras are fixed to the main body of a spacecraft, as stars pass through
the field of view their patterns are matched by reference to an on-board catalog and logic is
employed to answer the question "how must the spacecraft be pointing so that the cameras see
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the stars they are actually imaging?” We seek to answer this question (with essentially probabil-
ity 1) without making use of rate gyros or other electro-mechanical systems; we are seeking a
real-time, all stellar system which can operate continuously even in the presence of realistic
mis-matches expected between the sets of cataloged and imaged stars (due to uncertainty of the
cameras’ spectral characteristics and the cataloged information, especially the spectral data for
fainter stars, electronic noise, and pixel granularity-induced centroiding errors). In Reference
[6], we published several years ago the essential ideas which we have extended in the present
research project; these ideas have been implemented in several successful ground-based-
computations for spacecraft attitude determination (e. g. the S DoD system). The star pattern
recognition ideas are based upon the fact that the instruments under discussion are fairly accurate
(<5 arc seconds), so the angles between pairs of measured stars can be accurately determined
from the measurements. The measured interstar angles can be compared with angles between
candidate pairs of stars from the catalog; we have shown that when three or more measured
interstar angles match cataloged interstar triplets, in each of two fields of view, to within 5 arc
seconds, then it is essentially the certain event that the measured stars have been correctly
identified with cataloged stars. All measured and cataloged stars in the field of view which were
not successfully matched are simply deleted. To achieve an on-board, real-time version of this
approach requires considerable sophistication of the formulation and algorithms, and the evalua-
tion of many salient issues are best addressed in a combined analytical/experimental study.

This project included a general development of the algorithms and a sharply focused experimen-
tal study. The experimental study was approached assuming that most of the sensor-related
issues could be resolved with a single camera. We mounted a two axis CCD camera (512 x 512
pixel format) on a Contraves air bearing. The air bearing has a 1 arc second angle encoder and
therefore the inertial pointing could be determined independently of the estimated attitude based
upon the attitude sensing and pattern identification process. The "stars" imaged were actually a
simulated starfield consisting of over 100 light emitting diodes arranged on inner surface of a
quarter cylinder with the air bearing and camera systems at the center of the cylinder. The
analytical/computational/experimental results were consistent with the conclusion that sub-five-
arc-second attitude determination can indeed be reliably achieved from an all stellar system, as
an on-board, real-time process. We encountered and solved many problems associated with the
fact that our laboratory experiment involved close-range photogrammetry, whereas the stars lie at
practical infinity in actual in-space implementations (i. €., errors in the calibrated relative position
in linear displacement of the camera with respect to the cylinder cause apparent angular displace-
ments of the simulated starfield). These difficulties made our laboratory experiments more
difficult than actual spacecraft attitude determination. Even though we have not engaged in an
extensive hardware development and associated experimental studies, we feel that we have
brought these ideas to a fairly mature stage of development. The Ph.D. dissertation by D.
Anderson will be completed during the current calendar year; this dissertation will include a
complete discussion of the analytical and experimental aspects of this research. On-board
implementation of these ideas on a spacecraft appears relatively straight-forward.
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3 Concluding Remarks

During the course of this research, we have engaged in several parallel research efforts. Coordi-
nated analytical, numerical, and experimental studies have been undertaken in the following four
areas:

1. Design of control laws for nonlinear systems (Attachments 1-3, 11-13)
2. Structural Identification (Attachments 6-10)
3. Spacecraft attitude determination (Reference 5)

4. Structure/Control design optimization (Attachments 4, 5)

In all four areas we have made significant advances and have engaged in both theoretical devel-
opments and computational studies. In the first there areas, we have also engaged in successful
hardware implementations and experimental studies. We have gained an unusually excellent
closure in the sense that innovative theoretical research has proceeded aggressively and in
parallel with the successful proof-of-concept experimental research. The elapsed time from idea
conception to hardware implications/feasibility evaluations has been greatly shortened as a
consequence of this research. The most significant conclusion is that progress in analytical and
experimental research can constructively co-exist and be significantly accelerated only if the
principal investigators are broadly involved in both the analytical research and experiment
design. The feedback loops are therefore efficiently closed around both the experiment and the
analysis.

The most significant of our innovations is believed to be the Liapunov stable control laws we
have developed for controlling nonlinear distributed parameter systems [Attachments 1-3,
11-13]. These ideas promise many new applications and provide a branch point for a diverse set
of research direction implementations including, but not limited to the following:

New methods for globally controlling nonlinear distributed parameter systems.

New methods for spacecraft deployment dynamics and control.

New methods for stable control of flexible multi-body systems.
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Abstract
An approach for designing globally stable feedback control
laws for maneuvers of distributed parameter structural
systems is presented. The analytical developments and
results are supported by experimental results.

I. Introduction

Considerable recent rescarch has been directed toward the
problem of maneuvering a flexible spacecraft. The prescnt
paper grew out of our recent study [1}. In [2], we present a
fairly comprehensive treatment of this family of problems
up through 1985. Other analytical and experimental
investigations>'* have been carried out to evaluate: (i)
feedback control laws based upon minimizing quadratic
indices, (ii) near-minimum time, switching-type controllers,
and (iii) implementation issues. The main configuration of
interest in the present discussion is a hub-appendage
structure similar to the configuration of the Vander Velde
and He study", however, we address the use of variable
torque actuation via a reaction wheel instead of on-off
thrusters, and utilize Lyapunov control design approaches
and establish stable tracking-type control laws for distrib-
utcd parameter systems.

I1. Maneuvers and Vibration Control for
Distributed Parameter Systems

With reference to Figures 1 - 3, we consider single-axis
manecuvers of a rigid hub with four cantilevered flexible
appendages. In (1), we present an analogous control law for
nonlinear three dimensional maneuvers. In (3], Wie, et al
develop similar globally stable laws for rigid body
maneuvers. For the present discussion, we consider
in-plane vibration and the appendages are assumed to be
identical uniform flexible beams. We further invoke the
Euler-Bernoulli assumptions of negligible shear deforma-
tion and distributed rotary inertia. Each beam is can-
tilevered rigidly to the hub and has a finite tip mass. Ail
motion is restricted to the horizontal plane, and a control
torque u(t) acting on the hub is the only external effect
considered at this stage of the developments. We subse-
quently address rejection of disturbances and discuss
generalizations to accommodate other modcling assump-
uons.

We are interested in a class of rest-to-rest maneuvers and
under the above assumptions, we can show that the beams
will deform in the anti-symmetric fashion (Figure 1) with
the configuration’s instantaneous mass center remaining at
the hub’s geometrical center. Due to the anti-symmetric
deformation of the beams, we need concem ourselves only
with the deformation y(x,t) of a single beam. We adopt the
continuum viewpoint and avoid introducing spaual
approximations in the application of Liapunov concepts; the
resulting control law and stability arguments will thercfore
apply rigorously to the distributed parameter system. The
hybrid system of ordinary and partial differential equations
governing the dynamics of this system are

1...33=u+4(M.-s.1,)

! 2
- Mo-Sutr=fox Y+ x Eax e ma £34221) ()
b +HoT

p(aaz% +X%)+EI%=O+M
where

P is the constant mass/unit length of the beams,

EI is the assumed constant beam bending stiffness,
(M,, S,) denote bending moment and shear force, at
the root of the beams,

0 denotes hub inertial rotation,

m denotes the mass of the tip mass, and

(, 1) denote the distance from the hub center to the

beam tip and the hub radius.

We denote higher order terms by HOT to indicate other
known linear and nonlinear effects (such as rotational
stiffening, shear deformation, etc.). The most
fundamental of the developments given here do not
consider these higher order effects, however, we
selectively discuss these generalizations as well. The
boundary conditions on Egs. (1) are

atx=l,: y(t.l.)=%£|:.=0
atx=|: %L*O. §L=§u§g+%;¥b)

The total energy of the system (constant in the
absence of control or disturbances) is:

)]

i i i the American
Copyright (€) 1990 by John L. Junkms: Publlshqd by the Ar
lnsztyute of(A)etonantics and Astronautics, Inc. with permission.
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Motivated by the recent work of FUJII and Vadali®,
and in view of the energy integral of the open loop
systcm, we investigate the Liapunov function

W=a,l, 9‘ + (6-6,)’

+4a,[fp(%;+xe)’dx+}a(3' Y dx +m(16+221,)']
L 8

C))
where the positive weighting coefficients a, are
introduced to allow relative emphasis upon the three
scts of contributors to the "error encrgy” of the
system. We anticipate that only two of these weight
parameters really matter, since we can scale Eq. (4)
by an arbitrary constant without changing the location
of the global minimum. Notice that the open loop
system energy integral of Eq. (3) does not depend
upon the rigid body displacement coordinate 6. In
addition to introducing weights on subsets of the
system energy, to construct a meaningful Lyapunov
function [Eq. (4)] for the closed loop system, we have
modified the open loop energy integral by adding the
second term a, (-6, )’ to make the desired final state

Y (x.0)

(8.0.yea, 252), ., =(8,,0,0,0)
be the global minimum of U. It is obvious by
inspection that the logical requirement that a,>0

guarantees that U20, and that indeed the global
minimum of U=0 occurs only at the desired state.
Differentiation of Eq. (4), substitution of the equa-
tions of motion (Egs. (1), (2)), and some calculus
leads to

u =9 [ au+ a2 (e'ef) + 4(33 -4 )(lo sc 'M- )] (5)
Since we require that U<0 10 guarantee stability, we

set the [ ] term to -240 and this leads to U = -2, 6°
and the control law

u= _%[ a; (6-6,) + 2, 0 + 4(a;—a, )(I,S.-M.,)](6)

or, we see that the following linear, spatially discrete
output feedback law globally stabilizes this distrib-
uted parameter system:

=—[g 6-6) +g 9+g(IS -M,)):

2
withg 20, 8, 20, 8, 2 -4, forglobalmb.my M
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This control law is elegant. Notice that controllers
based upon this output feedback law are easy to
implement since no state estimation is required. The
root shear and bending moment can be measured by
conventional strain gauges. The value and sign of the
shear/moment fecdback gaing =4(a -a)/a

depends upon whether we wish to emphasize dissipa-
tion of the beam energy (for a, >a,), or the motion

of the hub (for a, <a), as is evident from Eq. ).

: 2. . . o
Note U = -2,0° is only negative semi-definite, since
it is not an explicit function of the subset of state

a)'(.)

variables (0, y(x.r), ==—); the stability arguments

therefore implicitly depend upon the truth that all
infinity of modes of motion of this structure, under
the assumption of anti-symmetric deflections, have

generally non-zero hub angular velocity (9).

It is of significance that the linear feedback law of Eq.
(7) maintains it’s globally stabilizing character even
when the Euler/Bemnoulli assumptions are relaxed to
include additional linear and nonlinear effects; in
particular, closed loop stability is maintained when
we include the following effects neglected above:
rotational stiffening, corolis kinematic coupling
terms, aerodynamic drag, shear deformation, beam
rotary inertia, and finite rotational inertia of the tip
mass. The verification of these truths requires
appropriate modifications of the kinetic and potential
energy functions, and of course, the differential
equations of motion must be generalized consistently.
In short, global stability of the system using the
simple linear control law of Eq. (7) has been found
very forgiving of modeling assumptions and therefore
modeling errors.

On the other hand, the overall performance measures
(time constants, required energy, rms output errors,
etc.) of the system versus our simulations are gener-
ally not as forgiving as the most fundamental per-
formance measure (stability). While we can
guarantee stability for a large family of model errors,
it should be apparent that performance predictions are
generally very sensitive to modeling errors. With
appropriate system modeling and selection of the
feedback gains, however, we have found numerically

and experimentally, that this feedback law works well

(23)




over finite regions of the state and gain space, and in
the presence of typical mode! errors.

While the constant gain linear feedback works well
for terminal pointing and vibration suppression, we
have found it to be a poor law for carrying out both
large angle maneuvers and terminal pointing/vibration
suppression. In fact, it is evident from both analytical
and experimental studies that gain scheduling is
needed to use the linear feedback law of Eq. (7) to
efficiently control both the large maneuvering
motions and the small terminal motions. This is
because the large gains required for effective vibra-
tion suppression and disturbance rejection near the
target state typically differ by several orders of
magnitude from the smaller ones needed far from the
target state (i., e., large gains appropriate for terminal
vibration suppression, when used during a large angle
maneuver typically result in actuator saturation and
significant © overshoots). To obtain a control law
more appropriate for large angle maneuvers with
vibration suppression, we can modify the above
developments; a stable tracking-type feedback control
law is presented in the following discussion.

III. Near-Minimum-Time Maneuvers of
Distributed Parameter Systems
Consider the near-minimum-time, single axis
mancuver of a rigid body. We know that the strict
minimum tirne control is a bang-bang law?, which for
the rest-to-rest maneuver-to-the-origin case, saturates
negatvely during the first half of the maneuver and
positively during the last half of the maneuver.
However, the switch times for arresting many modes
of a vibrating structure are sensitive to model errors;
we prefer to adopt an approach which is inherently
smoother and more robust. Note that discontinuous
controls will almost certaintly excite higher frequency
modes as well as fail to perfectly arrest the lower
frequency modes. We seek to generalize the above
vibration suppression approach which does not
require we control the structure mode-by-mode, so
that it permits the user to shape the overall maneuver
as well as incorporate vibration suppression feedback.

Recently, an attractive family of controllably smooth
approximations of the sign (sgn) function which arises
in time-optimal control has been introduced. The
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smoothed control approximations presented in Ref.
[1, 8] has been studied in the context of near-
minimum-time maneuvers of flexible bodies. These
studies motivate the use of a smoothly switching
family of controls for single axis maneuvers. The
approach involves applying a judiciously shaped
torque profile to a rigid body to provide a nearly
achievable target trajectory for the flexible body
maneuver. One such smooth family of rigid body
maneuvers for near minimum time control is gener-
ated as follows:

I0=u=12 thm f(AL, 85 , t) (8)

where
Unax is the saturation torque,

4 is the maneuver time, we choose the + sign if 8, > 0, ,
f|=g' -A‘, tz=“2, +A‘. lg=f’ -N.

At is the rise time, and the smooth torque shape function
adopted is

(=) B-2L)L for0<t<ar

forAr<es o,
-4 -4

=1,
f(Af.f/J)ﬁ =1-2((m)2[3-2(m)1). fort,S1< 4

=-1, fort; <t < 4

2
L =1+ B-20)1

fotl;SlSt,

Adopting the positive sign, Eq. (8) integrates to yield
L
8y =6, + i]"s‘[f(tl .1, 1)dT
“ )
u....‘ T
81)=6, +6,(r-1,) + TI [f@. 1, n)dudy
Ll

The integrations indicated in Eq. (9) can be carried
out in terms of elementary functions which are not
presented here for brevity. Figure 4 shows the
maneuver resulting from these integrations for a
typical selection of parameters. For rest-to-rest
maneuvers, we can impose the boundary conditions
at t,=0: 8(0)=0,, 6(0)=0;
(10)
at, =T &1)=6,, 6(1)=0
and upon carrying through the integrations of Eqgs.
(9), we find the useful relationship

Upa
9;-90 = T[}- {,a+l-‘5a2]T2,

(11
withtj=At=aT, O<a<}
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In Eq. (12) we see the rigid body tradeoff between
torque shaping (x), maneuver time (T), maneuver
angle (efeo). and maximum angular acceleration

(u,,./D. Obviously, Eq. (11) can be inverted for any

of these as a function of the remaining parameters. If
we set a= t /T=0, of course, we obtain the special
case result {T® =4/(6; —0,)/ U} expressing the
well-known square-root relationship between the
minimum time, maneuver angle, inertia, and satura-
tion torque for bang-bang control.

Figure 5 shows the rigid body maneuver time (T)
versus & and u,, . Notice that the maneuver time is
strongly dependent upon «,, . , but varies much less as
a function of a. However, we find when the torque
U,of(t) = Upgy AXT, T, 1) of Eq. (8) is applied to a
flexible body, the reverse is true vis-a-vis the residual
vibration energy at time T. To illustrate this point, we
approximated the solution of Egs. (1) by introducing a
Galerkin expansion (of the beam deflection in terms
of the first ten clamped-free cantilever mode shapes
times time varying generalized coordinates). The
forced response of the resulting 20th order system
was judged adequately converged. Using this
solution, we applied the same family of torques used
for the rigid body results of Figure S and computed
the flexible body open loop response for each choice
of o and u,, . Figure 6 shows the total energy of the
flexible body system at time T for this same family of
maneuvers. As is evident, the vibration energy
vanishes for sufficiendy small «,,. and is sig-
nificantly reduced for any given u,, by increasing .
Notice the triangular region (large o, smzll u,, ) for
which the vibration energy at time T is negligible.
We will subsequently see that measures of the largest
errors with which the closed-loop-controlled flexible
body system can track the rigid body maneuvers of
Figure S behave in a qualitatively similar way.

The above results and those of Ref. {1, 6, 7, 8] support
the intuitively obvious truth that applying judiciously

"smoothed bang-bang" open-loop controls such as Eq.
(8) to generate maneuvers of a flexible body results in
moderate structural vibration, for sufficiendy slow
and smooth maneuvers (small «,__and large o). Of

course unmodeled disturbances, control implementa-
tion errors, and modcl errors negate some of these
apparent gains, especially without feedback. For
relatively small penalties in maneuver time'”, actual
torque-shaped maneuvers enjoy several orders of
magnitude reduction in residual vibration, even
without feedback, although some offset in rigid body
position usually results. Thus overall maneuver time,
including vibration arrest, can be reduced dramati-
cally by modest torque shaping, as compared to
simply using bang-bang control augmented by
vibration suppression. Also of significance, we find
that it is usually desirable to select the torque profile
(e.g., u,,,, @, etc.) to consider the sensor and actuator

dynamics and thereby make the commanded torque
history more nearly physically achievable. More
generally, however, we can use any reference
maneuver (not necessarily a rigid body torque-shaped
maneuver).

Suppose we adopt a reference open-loop rigid body
maneuver denoted by the subscript ref as
{Bns(2), 0., (£), 0., (¢) =Uns /I } and satisfying
Egs. (8-12). Note / is the undeformed moment of
inertia, and we have implicitly selected the torque
shaping parameters «, u,,,, , and thereby established

the corresponding target maneuver time T from Eq.
(12) for specified initial and final angle. Motivated
by the issues discussed above and the quadratic
regulator perturbation feedback controllers in refs.
[Z.11,13], we hypothesize the following stracture for
the control law

U = Upeg )= [gl (0-6.1) + g (0-0.,)
+8 ((LSe=M.) = (1. Se-M,)ms )]

where the root moment for the reference (rigid body)
motion is proportional to the angular acceleration:
(Se-M)ny = [p(*=1)3+mI218,,(1).

(13)

We wish to gain insight on the stability characteristics
of the flexible body’s closed-loop departure dynamics
[from the target (ref ) rigid body motion (for T ),
and from the fixed target state (for ¢ 2T)], and we will
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provide an analytical justification for the tracking
control law of Eq. (13). Let us denote by the sub-
script r the state variables alohg the open-loop
flexible body solution of Eqgs. (1) when driven by the
torque uu,(t) of Egs. (8-12). The instantancous

displacement of the open-loop flexible body solution
from the open loop rigid body motion is denoted A() =
O,- O+ for example, AB(1) = 8,(1) - 8, (1). Variables
without subscripts represent the actual instantaneous
closed-ioop controlled solution variables. Consider
the candidate error energy Liapunov function
W=alu(0-0) +a,0-6)

+ 42, [jm@;;y -%—’“HX(G -0.)T (14)

+' 2y Py X dy; 3y \y2
o232 Ve« mli@0) + 8212 Nd

Assuming the actual control is some general, to-be-
determined u(t¢), and that the actual motion satisfies
Eqgs. (1), we have investigated the time derivative of
U of Eq. (14) and found that it is given by the follow-
ing equation

U= 2, (0-0,)[u - tyg + :_j(e.e, )+42 '|"' [l e -Mo)-(Lu So-M, ), ]

a
(15)
Analogous to the logic leading to Eq. (5), we see that
we could detcrmine a globally stabilizing u(¢) by
setting the bracketed term to a positive quantity g,

times -(8-9,) {i. e., this makes U a negative definite
function of the error in hub angular velocity), and
gives the globally stabilizing control law
U=tyo-[g (6-0)+g(6-6)
2

+ g’ ((loso- Mo) - (loso- Mo)r )]

with U=-2,¢,(6-0,)? and we introduced the gain
definitions as g =a,/a), and g =4(a;—a)/a,.

Notice, to guarantee global stability, that g, and 8
must be positive, but as before g; must be greater than

-4. The only difficulty with this control law is that it
requircs pre-computing the flexible body solution,
which is gencrally infeasible in an on-line implemen-
tation. Obviously, we’d prefer a tracking law which
requires a much simpler (e., g., rigid body) maneuver
1o be pre-computed. Let us pursue this objective.
Since Eq. (15) holds for an arbitrary u(t), we intro-
duce instead of Eq. (16) the control law of Eq. (13),
and investigate it’s stability characteristics. Using the

(16)
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notation A():(),-()uf, Eq. (15) simplifies to

U=-a1(6-6,) {g2(8-6,) + [£140 + g240 + g34(/,S.-M,)]}

a7

A sufficient condition characterizing the region where

U £0is the dominance of the first term in the {} of
Eq. (17), this gives the inequality

16-0,1 > %IglAG + 280 + a0 S-M)I=|L (18)

It is further apparent that the A quantities on the right
hand side of Eq. (18) are finite and (pre-) computable
differences between the open loop flexible and rigid
body motions, thus an upper bound can be established
directly by a one-time family of a prioni simulations
of the two open loop motions, and using a particular
set of feedback gains. Equation (18) thus determines
an angular velocity boundary region. Note that large
motions are globally attracted to the region bounded
by W of Eq. (18). Thus the control law of Eq. (13) is
almost globally stabilizing, and the only region where
asymptotic stability cannot be guaranteed is a bound-
ary layer region near the target trajectory. Further-
more, note the right hand side of Eq. (18) is essen-
tially a weighted measure of how nearly the target
trajectory satisfies the flexible body equations of
motion; further note that judicious choice of the
torque shaping parameters defining the target trajec-
tory can result in K being arbitrarily small.

A bounded-input/bounded-output  viewpoint of
stability can also be considered, based upon the
departure motion differential equations obtain by
differencing Egs. (1) evaluated at each instant along
the flexible body closed loop trajectory and along the
flexible body open loop ), motion. Upon formulating

these equations, we find departure motion is govemned
by an otherwise asymptoticaly stable system of
differential equations forced by the known A( ) terms
which appear in Egs. (18). Since these forcing terms
can be bounded by direct calculation, the resulting
departure motion can also be bounded. Since the
actual numerical bounds on the A quantities can be
made arbitrarily small (depending upon how nearly
the user defined reference trajectory is made to satisfy
the open loop equations of motion), we have a very
attractive theoretical and practical situation vis-a-vis
stability of the closed loop tracking motion. We see
that the closed-loop motion is globally attracted to the
controllably small region near the target trajectory
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which violates the inequality of Eq. (18), and consid-
ering the motions within this small region, we have
bounded-input, bounded-output stability.

The above discussion can probably be generalized for
any smooth target trajectory, but we find that it is
attractive to use a torque-shaped rigid body reference
trajectory, such as Egs. (8)-(12). Note that Egs.
8)-(13) result in a C!' continuous transition:
{re (), Breg (), By 0. Mo, ), S, 0} =5 {0, 64, 0, 0, 0}
as ¢t =T, so that for ¢ > T, only the three feedback
terms of Eq. (13) are contributing to the terminal
fine-pointing/vibration arrest control. Thus the
controls blend continuously from the large angle
tracking law into a constant gain controller (for ¢ > T)
identical to the globally stable fixed point output
feedback case of Eq. (7).

IV. Simulated Resuits:
Large Angle Maneuvers Experiment

Retuming to the family of 40° open loop maneuvers
used to generate the energy surface of Figure 6, we
computed the velocity tracking bound |t for Liapunov
stability {as given by Eq. (18)] and found the maxi-
mum value ( 1 .) of H(r) along each trajectory.
Figure 7 displays this worst case tracking bound
(maximum value of u) surface |, (@, 4, ) over
the same ( @, u,. ) region used to generate Figures §,
6. The closed-loop tracking error bound has a roughly
analogous behavior to the open-loop residual vibra-
tion energy surface of Figure 6. Recall that outside
the region bounded by the inequality of Eq. (18), we
have guaranteed Liapunov stability, using the control
law of Eq. (13) and the reference rigid body torque
given by Egs. (8)-(12). From Figure 6, it is clear that
sufficiently small u, _ and large & result in arbitrarily

small tracking errors, but the (small o, large u,, )
near-bang reference maneuvers cannot be tracked as
accurately. It.is easy to see how a family of candidate
(Q, u,,, ) designs can be found which satisfy speci-
fied inequalities on maneuver times, tracking errors,

and residual vibration energy, by direct examination
of the surfaces of Figures 5-7.

Our experiments with simulations (and in the actual
hardware implementations presented below and in [1,
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6, 7] support the conclusion that we can use these
surfaces (together with disturbance rejection simula-
tions to select the reference trajectory and tune the
feedback gains) to establish a large family of feasible
designs. Prior to discussing our experimental results,
we present some further simulations to show state and
control variables histories along typical trajectories of
underlying the above surfaces. We include in these
simulations the effects of disturbance torques, to
illustrate the effectiveness of the controls in the
presence of unmodeled effects. Table 1 summarizes
the physical parameters and a detailed hardware
description of the maneuver experiment is given in
Ref. [1]. For simplicity, we consider here only the
case of a 40° rest-to-rest maneuver, and set u,,,, = 400

oz-in for all cases.

For our computational and experimental studies, we
consider two control laws, namely the output feed-
back law (Control Law I) of Eq. (7), and the
tracking-type feedback control law (Control Law II)
of Eq. (13). While Control Law II could be used with
an arbitrary reference trajectory, we elect to specifi-
cally investigate the torque-shaped rigid body trajec-
tories of Egs. (8)-(12). The torque-shaped open loop
control history u,,(t) is pre-computed (in a fraction of
a second!) from Egs. (8)-(12) and stored. Note that
the boundary conditions of Eq. (10) are enforced by
using Eq. (12) to compute the target trajectory
maneuver time as a function of the maneuver angle,
saturation torque, and torque-shape parameter.

We now discuss the simulation results using Control
Law II, which obviously blends into to Control Law I
in the end game (for t 2 T). In the experimental
results, we report maneuvers carried out by both
control laws. Both open loop (all g; = 0) and closed

loop time histories of selected variables are shown in
Figures 8a-8d. On the left of Figure 8, we show the

hub angle and angular velocity for the case of an open
loop control and in the presence of substantial
impulsive and quasi-random (5 oz-in, 1 ©) distur-
bance torques. It is evident that the disturbance
torque history is significant vis-a-vis exciting substan-
tial rigid body and flexural motions. On the right, we
show the closed loop behavior of the system excited
by the same disturbance torque history. The random

(27)
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component of this disturbance has been found to be
typically pessimistic vis-a-vis our experimental
hardware, however certain non-random, nonlinear
effects associated with the bearing friction cause
disturbances which are correlated in time and are not
well represented by the present white noise model of
the disturbance torques. In spite of the substantial
disturbance torques (Figs. 8a-8b), it is evident that we
obtain a near minimum time rigid body motion while
effectively suppressing vibration (8c-8d). This fact
was also confirmed by evaluation of the energy
distribution in the first six modes.

V. Experimental Results
In all of the experiments discussed below, we set the
target final angle to 40° and u,, =400 oz-in. The
values of the tracking gains (g,, g,. g;) and of the

torque shape parameter (0t) were assigned several
feasible values values to demonstrate the effects of
these upon the closed loop behavior of the system.
Moderate bearing friction and aerodynamic damping
were present in our experiments.

Figure 9 shows the system response for a Control Law
I (the constant gain control law of Eq. (11)) maneuver
with (g, = 600 oz-in/rad, g, = 800 oz-in/rad/sec, and
&; = 0). Since this initial position error is large, the
maneuver starts from zero with an initial discontinuity
to a large torque. For this gain selection, we see a
large overshoot ( ~ 10°) and significant structural
vibration which settled around 12 seconds; the control
was terminated at 16 seconds.

Control Law II leads to very attractive near-
minimum-time maneuvers. One good set of gain
settings and torque shape parameters leads to the
results in Figure 10. The effect of using a smooth,
judiciously shaped reference torque history is evident
if one compares the output and control variable
histories in Figure 10 with those of Figure 9. Law II
produced much smaller overshoot (= 1.5° vs ~ 109,
shorter settling time (6 sec. vs 12 sec.) and greatly
reduced the severity of peak vibration. These results,
especially when considered in conjunction with
numerous other cases are reported in [1, 7, 8] are
convincing evidence of the truth that Control Law II
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is a very versatile and highly effective way to incor-
porate open loop torque shape optimization with
vibration suppression. The fact that a globally
continuous control structure is implicit in this ap-
proach leads to minimal difficulties in realizing robust
control laws; note the handoff from lare However, as
previously reported in [1], we did encounter some
practical difficulties in our experimental work.
Firstly, the shear and bending moment measurements
via strain gauges resulted in sufficiently noisy
measurements that this feedback (g; # 0 ) did not

improve the controlled response over, for example the
results in Figure 10. Also, deriving the angular
velocity estimate from the noisy angle encoder
readout was difficult to accomplish with high preci-
sion, and as a consequence, we constructed a digital
noise filter to process our angle encoder data and
eliminate all of the frequency content above 10 Hz;
this was necessary to avoid erroneous, phase lagged
feedback which would otherwise disturb the higher
frequency modes. This problem can be eliminated by
investing in a more precise sensor to measure angular
displacement and/or angular velocity.

Finally, our bearing presented us with some practical
difficulties. Based upon mechanical tests and analysis
of our bearing hardware, it is evident that interaction
of the structure with the bearing accounts for the
overwhelming source of unmodeled disturbances.
The bearing friction/stiction model developed from
our analysis [1) has the form

Thearing = - C15ign(0) - c20 + HoT (19)
where we find ¢,~ 20 oz-in and ¢, ~ 0.001 oz-in/rad/

sec. Thus the first (stiction) term of Eq. (19)
dominates the bearing torque for moderate § and is
about 5% of the peak commanded torque of 400 0z-in.
While we believe Eq. (19) models the bearing friction
well, it is difficult to use this model to compensate for
bearing friction in real time, since our estimated value
of O is uncertain due to angle encoder measurement
noise. Thus if we modify our control using Eq. (19),
the commanded discontinuity (near the estimated time
6 changes sign) will not coincide exactly with the
actual discontinuity; mis-timed compensation torque
discontinuities can actually worsen the disturbance!
While we experimented with several bearing friction
compensation schemes, we ultimately decided to
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simply consider this an anticipated and well-modeled
disturbance. Our simulations (such as the results
shown in Figure 8) indicated our control approach
could easily tolerate disturbances of this magnitude,
and our successful experiments Figures 9, 10, and in
[1], certainly confirm that our implemented control
laws are robust in the presence of the actual
disturbances.
VI. Concluding Remarks

We have presented an approach to design of feedback
control laws for large maneuvers of distributed
parameter systems, and have conducted successful
experiments. This approach establishes stable gain
regions over which subsequent optimizations can be
carried out with global stabi'ity guaranteed (to within
model errors, of course). The formulation permits
approximate imposition of actuator saturation con-
straints and a priori control shaping via user specifica-
tion of a torque-shaped, optimized reference trajec-
tory. The resulting tracking-type control law is shown
to rcsult in Liapunov stability in the sense that all
trajectories are globally attracted to a small region
near the reference trajectory. The tracking law
automatically blends smoothly into a globally stable,
constant gain, terminal output feedback controller.
We believe this approach is much more attractive than
gain scheduling, because the logical and implementa-
tion complications associated with discontinuous gain
change ("handoff™) logic can be avoided altogether.
We have considered in detail the case of single axis
maneuvers of a flexible body system and a particular
family of torque-shaped, near-minimum-time rigid
body reference trajectories. We demonstrated
numerically the effects of torque shaping upon
maneuver time and established a pre-computable
bound on the size of region near the target trajectory
in which Liapunov-stable tracking cannot be
guaranteed. 'We described hardware experiments
which successfully implemented these ideas.

We have demonstrated the feasibility of our analytical
formulations and experimental approach. We are
optimistic that these ideas extend to a significant
family of multi-axis maneuvers of multiple flexible
body systems and the mancuver control problems
associated with multiple body re-configuration,
pointing/tracking, and deployment dynamics.
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Table 1. Hub/Appendage Configuration Parameters

Hub & Appendages
Total System Inertia,l

Hub Center to Gage Center, I,

Hub Center to Tip Mass, /

Tip Mass, m

Appendage Modules of Elasticity, E

2128 [oz-in-sec?-in]
5.5470 {in]

51.07 (in]

.15627 [oz-sec¥/in)
161.6 [10° 0zfin?]

Inertia of Bending Section, I .000813 [in‘]
Density of Appendages P .00307 [oz-sec?fin’]
Distance between two gage set 1.365 [in]

Motor (PMI, Servodisc DC Motor: JR16M 4 CH)

Torque Constant, K, 52.77 [oz-in/amp])
Back EMF Constant, K, 39.77 (v/1000rpm] grated glass '
Tachometer Constant 3 {v/1000rpm] disk s 1

Power Supply (KEPCO BOP 36-12M)

Current Gain 1.2 [amp/volt]

Figure 1. Texas A&M Hub-Appendage Configuration:
Anti-Symmetric Deformation

Figure 2. Hub Assembly:
Motor, Reaction Wheel, and Sensing Systems

PMI
Electric Motor

Reaction
Wheel

strain gauges

Figure 3. System Functional Block Diagram
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Figure 4. Torque Shaped Rigid Body Maneuver
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Figure 5. Rigid Body Maneuver vs. Saturation Torque and
Shape Parameter
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Figure 6. Flexible Body Residual Vibration Energy
vs. Saturation Torque and Shape Parameter
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Figure 7. Boundary of the Liapunov-Stable Tracking Region
vs. Saturation Torque and Shape Parameter
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Figure 8. Simulated Open- and Closed-loop 40° Maneuver with Disturbances
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Figure 9. Experimental Results: Control Law I

control gains: g, = 600 oz-in/rad, g, = 800 oz-in/rad/s, g, = 0
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Figure 10. Experimental Results: Control Law I1
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Stable Maneuver Control Laws for Distributed Parameter Systems

J.L.Junkins Z.H.Rahman  H.Bang
Texas A&M University
College Station, Texas 77843

Abstract

An approach for designing globally stable feedback control laws for maneuvers of
distributed parameter structural systems is presented. Analytical and experimental
results are discussed which support the practical merit of this approach. The method
accommodates known nonlinearities and applies to systems described by hybrid
coupled sets of ordinary and partial differential equations. Liapunov stability can be
established for a large family of distributed parameter systems without relying upon
spatial discretization. We develop tracking-type control laws to suppress the depar-
ture of the system state from an a priori determined sinootn target trajectory. The
target trajectory may be chosen as an exact or as an approximate solution of the
system equations of motion. This approach is used to generate a family of near-
minimum-time feedback controllers which accommodates general "torque-shaping”.
We show how to establish path-type stability-in-the-large during the maneuver, in the
sense that the motion is globally attracted to a small region near the target trajectory.
The flexibility of this approach permits one to achieve a judicious compromise
between near-minimum-time and competing performance indices such as levels of
vibration during the maneuver, sensitivity to model errors, disturbances, and control
implementation errors. The experimental results provide significant evidence
supporting the practical value of this approach.

I. Introduction

Considerable recent research has been directed toward the problem of maneuvering a
flexible spacecraft. The present paper grew out of our recent study (1]. In (2], we
present a fairly comprehensive treatment of this family of problems up through 1985.
Other analytical and experimental investigations®"'> have been carried out to evaluate:
(i) feedback control laws based upon minimizing quadratic indices, (ii) near-
minimum time, switching-type controllers, and (iii) implementation issues. The main
configuration of interest in the present discussion is a hub-appendage structure
similar to the configuration of the Vander Velde and He study”. however, we address
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the use of variable torque actuation via a reaction wheel instead of on-off thrusters,
and utilize Lyapunov control design approaches and establish stable tracking-type
control laws for distributed parameter systems.

II. Maneuvers and Vibration Control for
Distributed Parameter Systems

With reference to Figures 1 - 3, we consider single-axis maneuvers of a rigid hub
with four cantilevered flexible appendages. In [1], we present an analogous control
law for nonlinear three dimensional maneuvers. In [3], Wie, et al develop similar
globally stable laws for rigid body maneuvers. For the present discussion, we
consider in-plane vibration and the appendages are assumed to be identical uniform
flexible beams. We further invoke the Euler-Bemoulli assumptions of negligible
shear deformation and distributed rotary inertia. Each beam is cantilevered rigidly to
the hub and has a finite tip mass. All motion is restricted to the horizontal plane, and
a control torque u(?) acting on the hub is the only external effect considered at this
stage of the developments. We subsequently address rejection of disturbances and
discuss generalizations to accommodate other modeling assumptions.

We are interested in a class of rest-to-rest maneuvers and under the above assump-
tions, we can show that the beams will deform in the anti-symmetric fashion (Figure
1) with the configuration’s instantaneous mass center remaining at the hub’s
geometrical center. Due to the anti-symmetric deformation of the beams, we need
concem ourselves only with the deformation y(x.?) of a single beam. We adopt the
continuum viewpoint and avoid introducing spatial approximations in the application
of Liapunov concepts; the resulting control law and stability arguments will therefore
apply rigorously to the distributed parameter system. The hybrid system of ordinary
and partial differential equations governing the dynamics of this system are

1 Z8 =, - .
l 2
- (Mo~ S°1°)=ljipx(%3: +x§3—)dx + ml(l%%?- +%3:|1) + HoT ¢))

J de a'y _
p(# +x-a?') +EI-a}¥ = 0 +nor
where
p is the assumed constant mass/unit length of the beams,

El is the assumed constant beam bending stiffness ,

M., S denote bending moment and shear force, at the root of the beams,

0 denotes hub inertial rotation,

m denotes the mass of the tip mass, and

(1, 1) denote the distance from the hub center to the beam tip and the hub radius.

We denote higher order terms by HOT to indicate other known linear and nonlinear
effects (such as rotational stiffening, shear deformation, etc.). The most fundamental
of the developments given here do not consider these higher order effects, however,
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we selectively discuss these generalizations as well. The boundary conditions on
Eqgs. (1) are

atx=1:y(. l)= %z—'l[, =0

2 2)
S T 0 L8, 9y
atx=|[: a—x¥|,-o —%’—ll -d—r 3;:"1)

The total energy of the system (constant in the absence of control or disturbances) is:

2E =1“’(§ 2 3)

+4[J'p(—+x )dx IEI( Y dx + m(ld? +%%|1)2]

Motivated by the recent work of Fujii5 and Vadali’, and in view of the energy integral
of the open loop system, we investigate the Liapunov function

W=a1u0 + 2 (e-ef)’
+4a; [Ip(—2+x ) dx + fEl(-; ) dx +m(l 9+ |1) ]

where the positive weighting coefficients a; are introduced to allow relative emphasis

upon the three sets of contributors to the "error energy” of the system. We anticipate
that only two of these weight parameters really matter, since we can scale Eq. (4) by
an arbitrary constant without changing the location of the global minimum. Notice
that the open loop system energy integral of Eq. (3) does not depend upon the rigid
body displacement coordinate 6. In addition to introducing weights on subsets of the
system energy, to construct a meaningful Lyapunov function [Eq. (4)] for the closed
loop system, we have modified the open loop energy integral by adding the second

term a2 (8-6; )’ to make the desired final state

(e’ e’ Y(x.t), (x’ )daand = (ef, 0 O O)

be the global mimmum of U. It is obvious by inspection that the logical requirement
that a>0 guarantees that U20, and that indeed the global minimum of U=0 occurs

only at the desired state. Differentiation of Eq. (4), substitution of the equations of
motion (Egs. (1), (2)), and some calculus leads to

G=20=6 [au +2,(8-6) +4(as-21)(LS.-M.)] )

Since we require that U<0to guarantee stability, we setthe [ ] term to - a4 6 and this
. 2
leadsto U=-2a4 8" and the control law

u= —al1 [ a; (e-ef) + a4 9 + 4(33 -4 )(lo So 'Mo )] (6)
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or, we see that the following linear, spatially discrete output feedback law globally
stabilizes this distributed parameter system:

u=-[g 08 +g 6+g (L.S.-M.)];

Q)
withg 2 0, 8,2 0, 8,2 -4, for global stability.

This control law is elegant. Notice that controllers based upon this output feedback
law are easy to implement since no state estimation is required. The root shcar and
bending moment can be measured by conventional strain gauges. The value and sign
of the shear/moment feedback gain g = 4(a, - @, )/ @, depends upon whether we

wish to emphasize dissipation of the beam energy (for a, > a,), or the motion of the

hub (for a, <a)), as is evident from Eq. (4). Note U= -3.402 is only negative

semi-dennite, since it is not an explicit function of the subset of state variables

(6, yx.n, al%’ﬂ); the stability arguments therefore implicitly depend upon the

truth that all infinity of modes of modan of this structure, under the assumption of
anti-symmetric deflections, have generally non-zero hub angular velocity (9).

It is of significance that the linear feedback law of Eq. (7) maintains it’s globally
stabilizing character even when the Euler/Bemoulli assumptions are relaxed to
include additional linear and nonlinear effects; in particular, closed loop stability is
maintained when we include the following effects neglected above: rotational
stiffening, coriolis kinematic coupling terms, aerodynamic drag, shear deformation,
beam rotary inertia, #2nd finite rotational inertia of the tip mass. The verification of
these truths requires appropriate modifications of the kinetic and potential energy
functions, and of course, the differential equations of motion must be generalized
consistently. In short, global stability of the system using the simple linear control
law of Eq. (7) has been found very forgiving of modeling assumptions and therefore
modeling errors.

On the other hand, the overall performance measures (time constants, required
energy, mms output errors, etc.) of the system versus our simulations are generally not
as forgiving as the most fundamental performance measure (stability). While we can
guarantee stability for a large family of model errors, it should be apparent that
performance predictions are generally very sensitive to modeling errors. With
appropriate system modeling and selection of the feedback gains, however, we have
found numerically and experimentally, that this feedback law works well over finite
regions of the state and gain space, and in the presence of typical model errors.

While the constant gain linear feedback works well for terminal pointing and vibra-
tion suppression, we have found it to be a poor law for carrying out both large angle
maneuvers and terminal pointing/vibration suppression. In fact, it is evident from
both analytical and experimental studies that gain scheduling is needed to use the
linear feedback law of Eq. (7) to efficiently control both the large maneuvering
motions and the small terminal motions. This is because the large gains required for
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effective vibration suppression and disturbance rejection near the target state typically
differ by several orders of magnitude from the smaller ones needed far from the target
state (i., e., large gains appropriate for terminal vibration suppression, when used-
during a large angle maneuver typically result in actuator saturation and significant 0
overshoots). To obtain a control law more appropriate for large angle maneuvers
with vibration suppression, we can modify the above developments; a stable
tracking-type fecdback control law is presented in the following discussion.

I Near-Minimum-Time Maneuvers of Distributed Parameter Systems

Consider first the near-minimum-time maneuver of a rigid body. We know that the

strict minimum time control is a bang-bang law?, which for the rest-to-rest
maneuver-to-the-origin case, saturates negatively during the first half of the
maneuver and positively during the last half of the maneuver. From an implementa-
tion point of view, the instantaneous switches of bang-bang control are often
troublesome for several reasons:

(i) no torque-generating device exists which can switch instantaneously,

(ii) when generalized and applied to flexible structures, the discontinuous class
of controls typically excite poorly modeled higher frequency modes, and

(iii) the predicted (model-derived) switch times and the predicted response of the
actual system are usually sensitive to modeling errors.

As a consequence, we find that bang-bang control of flexible body dynamics usually
lacks robustness with respect to modeling errors, especially when one attempts to
control several modes of vibration in addition to the large angle motion.

Recently, an attractive family of controllably smooth approximations of the sign (sgn)
function which arises in time-optimal control has been introduced. The smoothed
control approximations presented in Ref. [1, 8] has been studied in the context of
near-minimum-time maneuvers of flexible bodies. These studies motivate the use of
a smoothly switching family of controls for single axis maneuvers. The approach
involves applying a judiciously shaped torque profile to a rigid body to provide a
nearly achievable target trajectory for the flexible body maneuver. One such smooth
family of rigid body maneuvers for near minimum time control is generated as
follows:

I8=u==% 1 f(AL, 15, 1) (8)

where
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Unax is the saturation torque,

1; is the maneuver time, we choose the + sign if 8y > 6, ,
t t
n=4-A n=o +A, n=i- A

At is the rise time, and the smooth torque shape function

adopted is
(=(§)2[3-2(Z’7)], for0<r<As
=1, forAr<r<
f(Ate, t!J){ = 1-2((%)2[3-2(%)]). fornst<
=-1, forns<tsn
=1 +(%ttl)2[3-2(%)] forn<t <y

Adopting the positive sign, Eq. (8) integrates to yield

81) =6, + u—;‘-’jf(tl b, T)dT
o ©)
U t T
8(t)=0, +8,(t—t,) + Ty w)dndu

o to

The integrations indicated in Eq. (9) can be carried out in terms of elementary
functions which are not presented here for brevity. Figure 4 shows the maneuver
resulting from these integrations for a typical selection of parameters. For rest-to-rest
maneuvers, we can impose the boundary conditions

at t, =0: 6(0)=8,, 6(0)=0;

(10
at t, =T: (1)=6,, 6(1)=0 )

and upon carrying through the integrations of Egs. (9), we find the useful relationship

8-, = %=[ 1 - o+ o] T, wint==ol, Ococ} 4D
) 12
or T=[: 1(f1 0)1 % :I (12)

In Eq. (12) we have the explicit rigid body tradeoff between torque shaping (),
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maneuver time (T), maneuver angle (Of - 0,), and maximum angular acceleration
Uppe /1) Obviously, Eq. (11) can be inverted for any of these as a function of the

remaining parameters. If we set & = Ar/ T = 0, of course, we ¢btain the special case
result { T2 =4/(65 - 6,)/ Umax} expressing the well-known square-root relationship
between the minimum time, maneuver angle, inertia, and saturation torque for
bang-bang control.

Figure 5 shows the rigid body maneuver time (T) versus o and u, .. Notice that the
manecuver time is strongly dependent upon u,,, , but varies much less as a function of
a. However, we find when the torque Upof(t) = Uy, NaT, T, t) of Eq. (8) is applied

to a flexible body, the reverse is true vis-a-vis the residual vibration energy at time T.
To illustrate this point, we approximated the solution of Egs. (1) by introducing a
Galerkin expansion (of the beam deflection in terms of the first ten clamped-free
cantilever mode shapes times time varying generalized coordinates). The forced
response of the resulting 20th order system was judged adequately converged. Using
this solution, we applied the same family of torques used for the rigid body results of
Figure 5 and computed the flexible body open loop response for each choice of & and
u,.,. . Figure 6 shows the total energy of the flexible body system at time T for this
same family of maneuvers. As is evident, the vibration energy vanishes for suffi-
ciendy small u,,, and is significantly reduced for any given u,, by increasing .
Notice the triangular region (large ¢, small u,,. ) for which the vibration energy at
time T is ncgligible. We will subsequently see that measures of the largest errors

with which the closed-loop-controlled flexible body system can track the rigid body
maneuvers of Figure § behave in a qualitatively similar way.

The above results and those of Ref. [1, 6, 7, 8] support the intuitively obvious truth
that applying judiciously "smoothed bang-bang"” open-loop controls such as Eq. (8) to
generate maneuvers of a flexible body results in moderate structural vibration, for
sufficiently slow and smooth maneuvers (small u, . and large @). Of course un-
modeled disturbances, control implementation errors, and model errors negate some
of these apparent gains, especially without feedback. For relatively small penalties in
maneuver time'"’, actual torque-shaped maneuvers enjoy several orders of magnitude
reduction in residual vibration, even without feedback, although some offset in rigid
body position usually results. Thus overall maneuver time, including vibration arrest,
can be reduced dramatically by modest torque shaping, as compared to simply using
bang-bang control augmented by vibration suppression. Also of significance, we find
that it is usually desirable to select the torque profile (e.g., 4,,,,. O, etc.) to consider

the sensor and actuator dynamics and thereby make the commanded torque history
more nearly physically achievable. More generally, however, we can use any
reference maneuver (not necessarily a rigid body torque-shaped maneuver).

Suppose we adopt a reference open-loop rigid body maneuver denoted by the sub-
script ref as {8, (¢), 8,/ (2), Oy (1) = ttns /I } and satisfying Egs. (8-12). Note / is
the undeformed moment of inertia, and we have implicitly selected the torque
shaping parameters ., u,, . and thereby established the corresponding target
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maneuver time T from Eq. (12) for specified initial and final angle. Motivated by the
issues discussed above and the quadratic regulator perturbation feedback controllers
in refs. {2,11,13], we hypothesize the following structure for the control law

U= Upeg )= [8 (0= 0rep) +8 (6-0n)

(13)
+8 ((Se= Mo) = (k5. Mo)rey )]

where the root moment for the reference (rigid body) motion is proportional to the
angular acceleration: (1, So- M.)er = [P(3=1))/3 +m12)8,.,(2).

We wish to gain insight on the stability characteristics of the flexible body’s closed-
loop departure dynamics [from the target (ref) rigid body motion (for ¢<T ), and from
the fixed target state (for r 2T)], and we will provide an analytical justification for the
tracking control law of Eq. (13). Let us denote by the subscript 7 the state variables
along the open-loop flexible body solution of Egs. (1) when driven by the torque

u,e/t) of Egs. (8-12). The instantaneous displacement of the open-loop flexible body
solution from the open loop rigid body motion is denoted AQ = Q,- Oy + for example,
A8(1) = (1) - 6,,t). Variables without subscripts represent the actual instantaneous

closed-loop controlled solution variables. Consider the candidate error energy
Liapunov function

W=a,1,(6-6) +2,0-6,)
!
+ 423 [Jp[(;} -22)+ x(6-6,) T (14)

.,.IEI(—{ ) dax + m[l(6-6, )+("‘zll‘—1| )] ]

Assuming the actual control is some general, to-be-determined u(t), and that the
actual motion satisfies Egs. (1), we have investigated the time derivative of U of Eq.
(14) and found that it is given by the following equation

U= a; (8-6,)[ue - uyer + :—f(e-e,) + 4a-’a'lﬁ [(,S.-M.) - (1, S.-M.), ] (15)

Analogous to the logic leading to Eq. (5), we see that we could determine a globally
stabilizing (1) by setting the bracketed term to a positive quantity g, times -(6-6,)

(i. ., this makes U a negative definite function of the error in hub angular velocity},
and gives the globally stabilizing control law

U= Uest)— [gl ©-96,) +8, 6-6,)
+ 8, ((LSe- Mo) = (L So- M.), )]

(16)
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with U =-2a, g,(6-8,)® and we introduced the gain definitions as g =a./a1, and
g,= 4(a;—a,)/a,. Notice, to guarantee global stability, that g, and g, must be
positive, but as before g, must be greater than -4. The only difficulty with this

control law is that it requires pre-computing the flexible body solution, which is
generally infeasible in an on-line implementation. Obviously, we'd prefer a tracking
law which requires a much simpler (e., g., rigid body) maneuver to be pre-computed.
Let us pursue this objective. Since Eq. (15) holds for an arbitrary u(r), we introduce
instead of Eq. (16) the control law of Eq. (13), and investigate it’s stability charac-
teristics. Using the notation A0=(),-0,¢f. Eq. (15) simplifies to

U= -2, (6-6,) {22(6-6,) + [2146 + g240 + g34(LS.-M,)]} an

A sufficient condition characterizing the region where U < 0 is the dominance of the
first term in the (} of Eq. (17), this gives the inequality

16-6,1 > %Igl A0+ g2a8 +g3A(LS,-M.)i = L (18)

It is further apparent that the A quantities on the right hand side of Eq. (18) are finite
and (pre-) computable differences between the open loop flexible and rigid body
motions, thus an upper bound can be established directly by a one-time family of a
priori simulations of the two open loop motions, and using a particular set of feed-
back gains. Equation (18) thus determines an angular velocity boundary region.
Note that large motions are globally attracted to the region bounded by M of Eq. (18).
Thus the control law of Eq. (13) is almost globally stabilizing, and the only region
where asymptotic stability cannot be guaranteed is a boundary layer region near the
target trajectory. Furthermore, note the right hand side of Eq. (18) is essentially a
weighted measure of how nearly the target trajectory satisfies the flexible body
equations of motion; further note that judicious choice of the torque shaping
parameters defining the target trajectory can result in W being arbitrarily small.

A bounded-input/bounded-output viewpoint of stability can also be considered, based
upon the departure motion differential equations obtain by differencing Egs. (1)
evaluated at each instant along the flexible body closed loop trajectory and along the
flexible body open loop Q, motion. Upon formulating these equations, we find

departure motion is governed by an otherwise asymptoticaly stable system of differ-
ential equations forced by the known A( ) terms which appear in Egs. (18). Since
these forcing terms can be bounded by direct calculation, the resulting departure
motion can also be bounded. Since the actual numerical bounds on the A quantities
can be made arbitrarily small (depending upon how nearly the user defined reference
trajectory is made to satisfy the open loop equations of motion), we have a very
attractive theoretical and practical situation vis-a-vis stability of the closed loop
tracking motion. We see that the closed-loop motion is globally attracted to the
controllably small region near the target trajectory which violates the inequality of
Eq. (18), and considering the motions within this small region, we have bounded-
input, bounded-output stability.

The above discussion can probably be generalized for any smooth target trajectory,
but we find that it is attractive to use a torque-shaped rigid body reference trajectory,

such as Eqgs. (8)-(12). Note that Egs. (8)-(13) result in a C' continuous transition:
(43)




{Ureg (1), Bref (1), Ores (), Mo, (1), So,,; (0} = {0, 67,0,0, 0} as ¢ =T; so that for
t > T, only the three feedback terms of Eq. (13) are contributing to the terminal
fine-pointing/vibration arrest control. Thus the controls blend continuously from the
large angle tracking law into a constant gain controller (for ¢ > T) identical to e
globally stable fixed point output feedback case of Eq. (7).

IV. Simulated Results for the Large Angle Maneuvers Experiment

Returning to the family of 40° open loop maneuvers used to generate the energy
surface of Figure 6, we computed the velocity tracking bound p for Liapunov
stability [as given by Eq. (18)] and found the maximum value ( i) of W(¢) along

cach trajectory. Figure 7 displays this worst case tracking bound (maximum value of
W) surfacep . (o, u,, ) overthe same (&, u,, ) region used to generate Figures 5,
6. The closed-loop tracking error bound has a roughly analogous behavior to the
open-loop residual vibration energy surface of Figure 6. Recall that outside the
region bounded by the inequality of Eq. (18), we have guaranteed Liapunov stability,
using the control law of Eq. (13) and the reference rigid body torque given by Eqgs.
(8)-(12). From Figure 6, it is clear that sufficiently small 4, and large o result in

arbitrarily small tracking errors, but the (small «, large u, . ) near-bang reference

maneuvers cannot be tracked as accurately. It is easy to see how a family of candi-
date ( @, u,., ) designs can be found which satisfy specified inequalities on maneuver

times, tracking errors, and residual vibration energy, by direct examination of the
surfaces of Figures 5-7.

Our experiments with simulations (and in the actual hardware implementations
presented below and in {1, 6, 7] support the conclusion that we can use these surfaces
(together with disturbance rejection simulations to select the reference trajectory and
tune the feedback gains) to establish a large family of feasible designs. Prior to
discussing our experimental results, we present some further simulations to show
state and control variables histories along typical trajectories of underlying the above
surfaces. We include in these simulations the effects of disturbance torques, to
illustrate the effectiveness of the controls in the presence of unmodeled effects. Table
1 summarizes the physical parameters and a detailed hardware description of the
maneuver experiment is given in Ref. [1]. For simplicity, we consider here only the
case of a 40° rest-to-rest maneuver, and set 4, = 400 oz-in for all cases.

For our computational and experimental studies, we consider two control laws,
namely the output feedback law (Control Law I) of Eq. (7), and the tracking-type
feedback control law (Control Law II) of Eq. (13). While Control Law II could be
used with an arbitrary reference trajectory, we elect to specifically investigate the
torque-shaped rigid body trajectories of Eqs. (8)-(12). The torque-shaped open loop
control history U, A1) is pre-computed (in a fraction of a second!) from Egs. (8)-(12)
and stored. Note that the boundary conditions of Eq. (10) are enforced by using Eq.
(12) to compute the target trajectory maneuver time as a function of the maneuver
angle, saturation torque, and torque-shape parameter.

We now discuss the simulation results using Control Law II, which obviously blends
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into to Control Law I in the end game (for t 2 T). In the experimental results, we
report maneuvers carried out by both control laws. Both open loop (all g; = 0) and

closcd loop time histories of selected variables are shown in Figures 8a-8d. On the

left of Figure 8, we show the hub angle and angular velocity for the case of an open
loop control and in the presence of substantial impulsive and quasi-random (S oz-in,
1 o) disturbance torques. It is evident that the disturbance torque history is signifi-
cant vis-a-vis exciting substantial rigid body and flexural motions. On the right, we
show the closed loop behavior of the system excited by the same disturbance torque
history. The random component of this disturbance has been found to be typically
pessimistic vis-a-vis our experimental hardware, however certain non-random,
nonlinear effects associated with the bearing friction cause disturbances which are
correlated in time and are not well represented by the present white noise model of
the disturbance torques. In spite of the substantial disturbance torques (Figs. 8a-8b),
it is evident that we obtain a near minimum time rigid body motion while effectively
suppressing vibration (8c-8d). This fact was also confirmed by evaluation of the
energy distribution in the first six modes.

V. Experimental Results
In all of the experiments discussed below, we set the target final angle to 40° and u,,,,
=400 oz-in. The values of the tracking gains (g,, g,, £;) and of the torque shape

parameter (Ct) were assigned several feasible values values to demonstrate the effects
of these upon the closed loop behavior of the system. Moderate bearing friction and
aerodynamic damping were present in our experiments.

Figure 9 shows the system response for a Control Law I (the constant gain control
law of Eq. (11)) maneuver with (g, = 600 oz-in/rad, g, = 800 oz-in/rad/sec, and g; =

0). Since this initial position error is large, the maneuver starts from zero with an
initial discontinuity to a large torque. For this gain selection, we see a large over-
shoot ( ~ 10°) and significant structural vibration which settled around 12 seconds;
the control was terminated at 16 seconds.

Control Law II leads to very attractive near-minimum-time maneuvers. One good set
of gain settings and torque shape parameters leads to the results in Figure 10. The
effect of using a smooth, judiciously shaped reference torque history is evident if one
compares the output and control variable histories in Figure 10 with those of Figure
9. Law II produced much smaller cvershoot (= 1.5° vs ~ 10°), shorter settling time (6
sec. vs 12 sec.) and greatly reduced the severity of peak vibration. These results,
especially when considered in conjunction with numerous other cases are reported in
(1, 7, 8] are convincing evidence of the truth that Control Law II is a very versatile
and highly effective way to incorporate open loop torque shape optimization with
vibration suppression. The fact that a globally continuous control structure is implicit
in this approach leads to minimal difficulties in realizing robust control laws; note the
handoff from lare However, as previously reported in [1], we did encounter some
practical difficulties in our experimental work. Firstly, the shear and bending
moment measurements via strain gauges resulted in sufficiently noisy measurements
that this feedback (g; # 0) did not improve the controlled response over, for example
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the results in Figure 10. Also, deriving the angular velocity estimate from the noisy
angle encoder readout was difficult to accomplish with high precision, and as a
conscquence, we constructed a digital noise filter to process our angle encoder data
and eliminate all of the frequency content above 10 Hz; this was necessary to avoid
erroneous, phase lagged feedback which would otherwise disturb the higher fre-
quency modes. This problem can be eliminated by investing in a more precise sensor
to measure angular displacement and/or angular velocity.

Finally, our bearing presented us with some practical difficulties. Based upon
mechanical tests and analysis of our bearing hardware, it is evident that interaction of
the structure with the bearing accounts for the overwhelming source of unmodeled
disturbances. The bearing friction/stiction model developed from our analysis [1] has
the form

Thearing = - C15ign(8) - c20 + HOT (19)
where we find ¢,~ 20 oz-in and ¢, ~ 0.001 oz-in/rad/sec. Thus the first (stiction)

term of Eq. (19) dominates the bearing torque for moderate 0 and is about 5% of the
peak commanded torque of 400 oz-in. While we believe Eq. (19) models the bearing
friction well, it is difficult to use this model to compensate for bearing friction in real
time, since our estimated value of 8 is uncertain due to angle encoder measurement
noise. Thus if we modify our control using Eq. (19), the commanded discontinuity
(near the estimated time © changes sign) will not coincide exactly with the actual
discontinuity; mis-timed compensation torque discontinuities can actually worsen the
disturbance! While we experimented with several bearing friction compensation
schemes, we ultimately decided to simply consider this an anticipated and well-
modeled disturbance. Our simulations (such as the results shown in Figure 8)
indicated our control approach could easily tolerate disturbances of this magnitude,
and our successful experiments Figures 9, 10, and in {1}, certainly confirm that our
implemented control laws are robust in the presence of the actual disturbances.

VL Concluding Remarks

We have presented an approach to design of feedback control laws for large
maneuvers of distributed parameter systems, and have conducted successful experi-
ments. This approach establishes stable gain regions over which subsequent op-
timizatons can be carried out with global stability guaranteed (to within model
errors, of course). The formulation permits approximate imposition of actuator
saturation constraints and a priori control shaping via user specification of a torque-
shaped, optimized reference trajectory. The resulting tracking-type control law is
shown to result in Liapunov stability in the sense that all trajectories are globally
attracted to a small region near the reference trajectory. The tracking law automati-
cally blends smoothly into a globally stable, constant gain, terminal output feedback
controller. We believe this approach is much more attractive than gain scheduling,
because the logical and implementation complications associated with discontinuous
gain change ("handoff") logic can be avoided altogether. We have considered in
detail the case of single axis maneuvers of a flexible body system and a particular
family of torque-shaped, near-minimum-time rigid body reference trajectories. We
demonstrated numerically the effects of torque shaping upon maneuver time and
established a pre-computable bound on the size of region near the target trajectory in
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which Liapunov-stable tracking cannot be guaranteed. We described hardware
experiments which successfully implemented these ideas.

We have demonstrated the feasibility of our analytical formulations and experimental
approach. We are optimisuc that these ideas extend to a significant family of
multi-axis maneuvers of multiple flexible body systems and the maneuver control
problems associated with multiple body re-configuration, pointing/tracking, and
deployment dynamics.
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Table 1. Hub/Appendage Configuration Parameters
Hub & Appendages

Total System Inertia, I 2128 {oz - sec’ - in!
Hub Center to Gage Center, [, 5.5470 [in)

Hub Center to Tip Mass, / 51.07 (in)

Tip Mass, m 0.15627 [oz - sec*/in]
Appendage Modules of Elasticity, E 161.6 [million 0z/in’]
Inertia of Bending Section, I .000813 [in*]

Density of Appendages p .00307 [0z - sec?/in?]
Distance between two gage set 1.365 [in]

Motor (PMI, Servodisc DC Motor: JR16M 4 CH)

Torque Constant, K, 52.77 [oz-in/amp]
Back EMF Constant, K, 39.77 [v/1000rpm]
Tachometer Constant 3 [v/1000rpm]
Power Supply (KEPCO " BOP 36-12M)
Current Gain 1.2 [amp/volti]
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Figure 1. Texas A&M Maneuverable Space Structure Experiment
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Figure 1c. Notation for Forces, Moments, and Euler-Bernoulli Constituitive Model
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Figure 2. Hub Assembly
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Figure 4. Torque Shaped Rigid Body Maneuver
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Figure 7. Boundary of the Liapunov-Stable Tracking Region
vs. Saturation Torque and Shape Parameter
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Near-Minimum-Time Maneuvers of Flexible Vehicles:
Analytical and Experimental Results

J. L. Junkins'
Z. H. Rahman™*

H.Bang™
Texas A&M University

Abstract

A method for designing globally stable feedback control laws for maneuvers of flexible
dynamical systems is presented. Both-analytical and experimental results are discussed.
The approach readily accommodates known nonlinearities and applies to systems described
by hybrid coupled sets of ordinary and partial differential equations. Our proof of Liapunov
stability does not rely upon spatially discretizing distributed parameter systems. The most
fundamental developments lead to output feedback controls which drive the system to a
target fixed point in the state space. More generally, we develop feedforward/feedback
tracking-type control laws to null the departure of the system state from an a priori deter-
mined smooth target trajectory. The target trajectory may be an exact or an approximate
solution of the system equations of motion. This approach can be used to generate, for
example, near-minimum-time feedback controllers which accommodates general "torque-
shaping” to achieve a judicious compromise between near-minimum-time and competing
performance indices such as levels of sensitivity to model errors, disturbances, and control
implementation errors. The method has a seamless continuous handoff from the large angle
"approach pattern” control to the "end game" controls for fine pointing. Experimental
results are presented for a variety of control gains and shaped torque reference maneuvers;
the results are in excellent agreement with the analytical developments and simulated results.
The analytical and experimental results jointly provide strong analytical justification and
conclusive experimental evidence of the practical merit of this approach to design of control-
lers for distributed parameter systems.

*George J. Eppright Chair Professor of Aerospace Engineering, Fellow AIAA
** Research Engineer

***Ph. D. Candidate
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L. Introduction

Considerable recent research has been directed toward the problem of maneuvering a

flexible spacecraft. In Reference 1, we present a fairly comprehensive treatment of this
family of problems up through 1985. Other analytical and experimental investigations®'?
have been carried out to evaluate: (i) feedback control laws based upon minimizing quad-
ratic indices, (iij)near-minimum time, switching-type controllers, and (ii) implementation
issues. The main configuration of interest in the present discussion is similar to the structure
of the Vander Velde and He study'?, however, we address the use of variable torque actua-
ticn via a reaction wheel instead of on-off thrusters, and utilize Lyapunov control design

approaches and establish stable tracking-type control laws for distributed parameter systems.

We present a method for generating globally stable feedback control laws for maneuvers of
distributed parameter structural systems. The method can accommodate nonlinearity and
our proof of stability does not rely upon spatially discretizing distributed parameter systems.
The most fundamental developments are related to similar ideds presented in Refs. [3, 6],
and lead to controls which drive the system to a target fixed point in the state space.
However, we extend these ideas to achieve near-minimum-time control. We present novel
tracking-type control laws to null the departure motion of the system state from an arbitrary
smooth target trajectory, and develop the conditions for stability of the closed loop system.
The control law structure is such that the large motion controller (a tracking law) blends
continuously into a constant gain terminal controller. This "seamless" transition is qualita-
tively more attractive than, for example, gain scheduling approaches. The target trajectory
(for the tracking law) may be any smooth path; i. e., the target trajectory can be selected as
an exact or approximate solution of the system equations of motion. We show how this
approach can be used to generate near-minimum-time feedback controllers which achieve
global stability about a fixed terminal state. This approach accommodates general "torque-
shaping” to achieve a compromise between near-minimum-time and competing performance

indices such as levels of sensitivity to model errors, disturbances, and implementation errors.




While we subsequently develop methods for controlling distributed parameter systems
governed by hybrid coupled sets of ordinary and partial differential equations, we first
consider a system described by a sixth order set of nonlinear, ordinary differential equations.

IL Motivation of the Approach Using Rigid Body Maneuvers
The ideas are easily introduced by considering general three dimensional nonlinear

maneuvers of a single rigid body. The equations governing large motion can be written as'

Lon =~I) 0 +u 2q) =1 = 2Gs + WGz + Qi (Q 1+ G2 +q33)
L@, = (=1, Jas & +uz 20 =2 ~ 3Gy + Qs +Q2(Q O+ G2 +qas) (1)
Lay={-L)n o, +us 205 =03 ~ s + G +qs(Q O+ 20 + ¢y 0y)

where (o, @2, ) and (qi,qz,qs) are the principal axis components of angular velocity
and the Euler-Rodriguez parameters, respectively. Also (I;, Iz, Is) and (u;, uz, us) are the
principal moments of inertia and the principal axis components of the external control
torque, respectively. For the case of zero control torque, it can be readily verified that total
rotational kinetic energy is an exact integral of the motion, viz. 2T = (; @ + Lo} + L ?).

Motvated by this total system energy integral, we investigate the trial Liapunov function

U=}@ e} +La} +Lad) + Al +a +q?) = kinetic energy + A tan’ § @)

where ¢ is the instantaneous principal rotation angle (about the instantaneous Eulerian
principal rotation axis, from the current angular position to the desired final angular position
of the body’). It is apparent that the additive term A(q® +qZ +q?) can be viewed as the
potential energy stored in a conservative spring. We can therefore anticipate that the system
dynamics will evolve such thﬁt U is constant, if the only external torque is the associated
conservative moment. Of course, we are not interested in preserving U as a constant, but
rather we seek to drive it to zero. We therefore anticipate the necessity to determine an
additional judicious control moment to guarantee that U is a decreasing function of time. It

is obvious by inspection that U is positive definite and vanishes only at the desired state q, =

(59)




, = 0. Differentiation of Eq. (2) and substitution of Egs. (1) leads directly to the following
expression for U

. 3

U=Zalw + Ag(l+qf +¢; +q3)] SN )

Of all of the infinity of possible control laws, we can see that any ui(q;, G2, q3, Oy, @2, 03)
which reduces the bracketed terms to a negative definite function times , will guarantee that

U is globally negative semi-definite. The simplest choice: Select u; so that the i bracketed
term becomes - k; ax; this gives U=-(k o} +k: @2 +k; o) which is obviously a negative
definite function of angular velocity, if we choose all k; > 0. It is easy to verify from Egs.
(1) that (o, 02, @s) are generally non-zero, except at an equilibrium state, and the only
equilibrium point {where (i, @2, ;) = (61, G2, ) =(0,0,0) } of the closed loop systexﬁ
is the origin of the state space: (qi,qz2,qs, 0, 2, @) =(0,0,0,0, 0, 0). Thus we obtain a
globally stabilizing nonlinear feedback control law?™ for large angle attitude control:

u=-Tko +AqG(l+q +q; +q})], i=1,2,3 @

Since U is a positive definite, decreasing function of time along all trajectories, and since it
vanishes at the origin, then the necessary and sufficient conditions are satisfied for global
Liapunov stability. We have implicitly excluded the geometric singularity (q;— ), associ-

ated with this parameterization of rotational motion as ¢ — nx; we can use the quaternion or
Euler parameter description of motion and avoid all geometric singularities, as well. The

nonlinear feedback control law of Eq. (4) guarantees stability of the nonlinear closed loop

~ system, under the assumption of zero model errors. In practice, of course, guaranteed

stability in the presence of zero model error is not a sufficient condition to guarantee stability
of the actual plant having arbitrary model errors and disturbances. On the other hand,
rigorously defining a region in gain space guaranteeing global stability for our best model of
the nonlinear system is an important step; it is reasonable to restrict the optimization of gains
to this stable family of designs.

{60)




The determination of the barticular gain values, selected from the space of globally stabi-
lizing gains, is usually based upon performance optimization criteria specified in considera-
tion of the disturbance environment, sensitivity to model errors, desired system time con-
stants, actuator saturation, and sensor/actuator bandwith limitations. For the purpose of gain
optimization, it is usually convenient to introduce spatial approximations and discretize
partial differential equation systems to obtain a finite set of ordinary differential equations.
It is also typically useful to linearize nonlinear differential equations about oné or more
points in the anticipated operation envelope. Using a generalization of the above example,
we can rigorously determine a region of admissible gains which stabilize globally a gener-
ally nonlinear, partial differential equation description of the system. Note that approxima-
tions subsequently introduced in the gain design process cannot destabilize the zero model
error system, if the gains are optimized over this known-to-be stable region. In in the above
rigid body discussion, so long as we restrict {A, k,, ka2, ks } to be positive, for example,
approximations such as small angle linearizations used to select particular values cannot
destabilize the system. Of course, approximations introduced to facillitate the gain design
process can indeed lead to undesired and unanticipated performance variations of the actual
nonlinear distributed parameter system, as compared to predictions based upon approximate
models used to design the control gains. |

Before generalizing the methodology to consider partial differential equation systems, it is
important to reflect upon the selection of the above Liapunov function. Notce that if a
system has no inherent stiffness with respect to rigid body displacements, it is necessary to
augment the open loop energy integral by a pseudo potential energy term [such as

A(q} +q} +q?2) in the above example]; generally speaking, the pseudo energy term should

be defined such that the candidate Liapunov function (U) is a positive-definite measure of
motion which has its global minimum at the desired targetr state. Then, the controis are
usually selected as simply as possible (from an implementation point of view) to force
pervasive dissipation ( U<0) of the modified energy (Liapunov) function along all trajec-
tories of the closed-loop system and thereby guarantee closed-loop stability.

(61)




While the above insights are useful, the Liapunov function is generally not unique. We’ll
see below that these ideas lead to an attractive strategy which define the Liapunov function
with relative weights on the portions of the total energy associated with structural subsys-
tems. To accommodate discussion of path-type stability of tracking motion control, we'll
also introduce "error” energies measured from an a priori computed time varying trajectory.
The lack of uniqueness of the Liapunov function is not necessarily a disadvantage in prac-
tice, because it is a source of user flexibility providing control design freedom qualitatively
comparable to the freedom one has in selecting performance indices when applying optimal
control theory.

III. Maneuvers and Vibration Control for Distributed Parameter Systems

With reference to Figures 1 - 3, we consider control of a rigid hub with four cantilevered
flexible appendages. We consider the appendages to be identical uniform flexible beams
and make the Euler-Bernoulli assumptions of negligible shear deformation and distributed
rotary inertia. Each beam is cantilevered rigidly to the hub and has a finite tip mass. Motion .
is restricted to the horizontal plane, and a control torque u(z) acting on the hub is the only
external effect considered at this stage of the developments. We subsequently address

rejection of disturbances.

We are interested in a class of rest-to-rest maneuvers and under the above assumptions, we
can show that the beams will deform in the anti-symmetric fashion (Figure 1) with the
configuration’s instantaneous mass center remaining at the hub’s geometrical center. Also,
due to the anti-symmetric deformation of the beams, we need concern ourselves only with
the deformation y(x,z) of a single beam. We adopt the continuum viewpoint and avoid
introducing spatial approximations in the application of Liapunov concepts; the resulting
control law and stability arguments will therefore apply rigorously to the distributed
parameter system. The hybrid system of ordinary and partial differential equations govemn-

ing the dynamics of this system are




Iuit!e' =u +4(M, -Solo)

= (Mo-Sok) = Ipx( +xit?)dx+ zait? z}ln T O

d’e oy

7+x—7') Elﬂ‘ 0 +#HoT

where p is the assumed constant mass/unit length of the beams,
El is the assumed constant bending stiffness of the beams,
M,, S,) denote bending moment and shear force, at the root of the beam,

0 denotes hub inertial rotation,
m denotes the mass of the tip mass, and
(4, I,) denote the distance from the hub center to the beam tip and the hub radius.

We denote higher order terms by HOT to indicate other known linear and nonlinear effects
(such as rotational stiffening, shear deformation, etc.). The most fundamental developments
do not consider these higher order effects, however, we selectively discuss these generaliza-
tions as well. The boundary conditions on Egs. (5) are

arx=1:y@1)=ZL=0

' 2 (6)
atx=1: %}h =0 (moment), %—%’-l, F(ldzje- +%1-|1) (shear)

The total energy of the system (constant in the absence of control or disturbances) is:

2E = I,..( ) +4[j'p(at + X ?)2dx+j'EI(Z?} de«o-m(lde 9y I)z] )
L

Motivated by the recent work of Fujii® and Vadali®, we investigate the Liapunov function
2U=a,/., ez + 2 (e-ef)2

{ P { o’y \2 d 2 ®)
+aa3[[p(5F +x6) dx + [EIEE Y dx + m(16 +521,)']
i L ox at

where the weighting coefficients a; are included to allow relative emphasis upon the three
contributors to the "error energy” of the system. We have added the "torsional spring

energy" term a; (6-87 )’ to make the final state (8, 8, y@.), Zo2), .. = (6, 0,0,0)
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be the global minimum of U. It is obvious by inspection that imposing a,>0 guarantees that

U20, and that indeed the global minimum of U=0 occurs only at the desired state. Differen-

tiation, substitution of the equations of motion (Egs. (5), (6)), and some calculus lead to

U=% =6 au+2(0-0) +4(as-2:)(LS,-M,)] OF

Since we require that U<0 to guarantee stability, we set the [ ] term to - a4 8 and this leads

to the control law

u=-[2(0-8) +20+4(a3-2)(0.S.- M,)] 10)

or, we see that the following linear, spatially discrete output feedback law globally stabilizes
this distributed parameter system:

u=-[g (6-6) +g0+g (L.S.-M.)]; 820,8,20, g,2-4, for suability (11)

This control law is elegant. Notice that controllers based upon this law are easy to imple-
ment since no state estimation is required. The root shear and bending moment can be
measured by (albeit somewhat noisy) conventional strain gauges. The value and sign of the

shear/moment feedback gain 8, =4(a, — a, )/ a, depends upon whether we wish to empha-
size dissipation of the beam energy (for a, > a,), or the motica of the hub (fora, <a,), as
is evident from Eq. (8). Since U=-a4 92 is not an explicit, negative definite function of
the subset of state variables (0, y(x.), ngﬁ), the stability arguments implicitly depends

upon the truth that all infinity of modes of motion of this structure, under the assumption of

anti-symmetric deflections have generally non-zero hub angular velocity ( 8).

It is of significance that this same linear feedback law of Eq. (11) maintains it’s globally
stabilizing character even when the Euler/Bernoulli assumptions are relaxed to include

additional linear and nonlinear effects; in particular, we have verified that closed loop

8
(64)




stability is maintained when we include the following: rotational stiffening, coriolis
kinematic coupling terms, aerodynamic drag, shear deformation, beam rotary inertia, and
finite inertia of the tip mass. The verification of these truths requires appropriate modifica-
tions of the kinetic and potential energy functions, and of course, the differential equations
of motion must be generalized consistently. In short, global stability of the system using the
simple linear control law of Eq. (11) has been found very forgiving of modeling assumptions
and therefore modeling errors.

On the other hand, the overall performance measures (time constants, required energy, rms
output errors, etc.) of the system versus our simulations are generally not as forgiving as the
most fundamental performance measure (stability). While we are guaranteed stability for a
large family of model ;errors, it should be apparent that performance predictions are gener-
ally very sensitive to modeling errors. With appropriate system modeling and selection of
the feedback gains, however, it has been demonstrated cxperimentally"’ and in our results
presented below, that this feedback law works well over finite regions of the state and gain
space, and in the prcséncc of typical model errors. |

While the constant gain linear feedback works well for terminal pointing and vibration

suppression, we have found it to be a poor law for carrying out both large angle maneuvers

and terminal pointing/vibration suppression. In fact, it is evident from both analytical and
experimental studies that gain scheduling is needed to use the linear feedback law of Eq.
(11) to efficiently control both the large maneuvering motions and the small terminal mo-
tons. This is because the large gains required for effective vibration suppression and
disturbance rejection near the target state are typically differ by several orders of magnitude
from the smaller ones needed far from the target state (i., e., large gains appropriate for
terminal vibration suppression, when used during a large angle maneuver typically result in
actuator saturation and significant 0 overshoots). To obtain a control law more appropriate
for large angle maneuvers with vibration suppression, we can modify the above develop-

ments; a stable tracking-type feedback control law is presented in the following discussion.
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IV. Near-Minimum-Time Maneuvers of Distributed Parameter Systems

Consider first the near-minimum-time maneuver of a rigid body. We know that the strict
minimum time control is a bang-bang law', which for the rest-to-rest maneuver-to-the-origin
case, saturates negatively during the first half of the maneuver and positively during the last
half of the maneuver. From an implementation point of view, the instantaneous switches of
bang-bang control are often troublesome for several reasons:

(i) no torque-generating device exists which can in fact switch instantaneously,

(i) when generalized and applied to flexible structures, the discontinuous class of

controls will typically excite poorly modeled higher frequency modes and

(iii) the predicted (model-derived) switch times and the response of the actual system
are usually very sensitive to modeling errors.
As a consequence of these sources of difficulty, our analytical and experimental work
inidcate that bang-bang control of flexible body dynamics usually lacks robustness with
respect to modeling errors.

Recently, an intuitively attractive family of controllably smooth approximations of the sign
(sgn) function which arises in time-optimal control has been introduced. The smoothed sign
function approximations presented in Ref. [6] been studied in the context of optimization of
near-minimum-time maneuvers considering multiple flexible body modes. However, this
approach requires expensive pre-calculation of the solution to a two-point boundary-value
problem (tpbvp) or interpolation from an apriori computed map of tpbvp solutions. Our
recent analytical and experimental work® indicates that much simpler piecewise continuous
spline approximations of the sign function used in conjunction with analytical approxima-
tions of the optimum maneuvers and associated optimum controls are more attractive from
an implementation point of view. Using this approach, a typical near-minimum-time control

law (for single axis, rest-to-rest maneuvers of a rigid body) has the form
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18 =u=2%upyf(At, ¢ ,1) (12)
where uma is the saturation torque,
Iy is the maneuver time, we choose the + sign if 8, > 6, ,
At is the rise time, and the smooth sgn function approximation adopted is

2 :
r=(-A‘—t) [3- 265, for0 <t <Ar
=1, forA:srsﬂzf-A:an
Ar _ t-ny t-ty ¥ A=
flAt, t5,0)< = (m) 3-2zx) ) fornsesL+ar=n
=-1, forr, StsSt-Ar=n
k_.1.,.(52) [3- 2(‘_9.)] forn<t <t

Adopting the positive sign, Eq. (12) integrates to yield

t
8(t) =, + = [§(Ar, 1y, v)d1
- t T (13)
1
0(t)=6, +6,( to)+—7—fff(At te, T)dTod Ty

L to
The integrations can be carried out in terms of elementary functions which are not presented

here for brevity. Figure 4 shows the maneuver resulting from these integrations for a typical
selection of parameters. For rest-to-rest maneuvers, we can impose the boundary conditions

at t, =0: 6(0)=86,, 6(0)=0; at ¢t =T: 6(T)=6;, T =0 (14

and from carrying through the integrations of Egs. (13), we obtain the useful relationship

85-0, = —7—[%—%(1-1--13602]'1‘2, At=0T, 0O<a<x (15)
I8 -6,) 12
or T= T (16)

In Eq. (16) we have the explicit rigid body tradeoff between torque shaping (o), maneuver

time (T), maneuver angle (6, - 8,), and maximum angular acceleration (u,,,/ ). Obviously,

Eq. (15) can be inverted for any of these as a function of the remaining parameters. If we set
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o = AT = 0, of course, we obtain the special case result { T2 =4/(8f —0,)/ Uy )

expressing the well-known square-root relationship between the minimum time, maneuver

angle, inertia, and saturation torque for bang-bang control.

Figure 5 shows the rigid body maneuver time (T) versus @ and «,,,. Notice that the
maneuver time is strongly dependent upon «,_. , but varies much less as a function of a.
However, we find when the torque u, (1) = u,, f(aT, T, 1) of Eq. (12) is applied to a
flexible body, the reverse is true. To illustrate this point, we approximated the solution of
Egs. (5) by introducing a Galerkin expansion (of the beam deflection in terms of the first ten
clamped-free cantilever mode shapes times time varying generalized coordinatcs).. The
forced response of the resulting 20th order system was judged adequately converged. Using
this solution, we applied the same family of torques used in for the rigid body results of
Figure 5 and computed the flexible body open loop response for each choice of o and «, . .

Figure 6 shows the total energy of the flexible body system at time T for this same family of
maneuvers. As is evident, the vibration energy vanishes for sufficiently small u___ and is
significantly reduced for any given u,_ by increasing .. Notice the triangular region (large
c, small u_, ) for which the vibration energy at time T is negligible. We will subsequently

see that measures of the largest errors with which the closed-loop-controlled flexible body

system can track the rigid body maneuvers of Figure 5 behave in a qualitatively similar way.

The above results and those of Ref. [4] support the intuitively obvious truth that applying
judiciously "smoothed bang-bang" open-loop controls such as Eq. (12) to generate
maneuvers of a flexible body results in moderate structural vibration, for sufficiently slow

and smooth maneuvers (small 4, and large &0). Of course unmodeled disturbances, control
implementation errors, and model errors negate some of these apparent gains, especially
without feedback. For relatively small penalties in maneuver time*’, actual torque-shaped

maneuvers enjoy several orders of magnitude reduction in residual vibration, even without

feedback, although some offset in rigid body position usually results. Thus overall
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maneuver time, including vibration arrest, can be reduced dramatically by modest torque
shaping, as compared to simply using bang-bang control augmented by vibration suppres-
sion. Also of significance, we find that it is usually desirable to select the torque profile

(e.g., U, O, etc.) to consider the sensor and actuator dynamics and thereby make the

commanded torque history more nearly physically achievable. More generally, however, we
can use any reference maneuver (not necessarily a rigid body torque-shaped maneuver). We
will find merit in considering a certain class of flexible body reference motions in our

discussion below.

Suppose we adopt a reference open-loop rigid body maneuver denoted by the subscript ref
as {Oref (), Ores (), Bres (¢) = Utres /I } and satisfying Egs. (12-16). Note [ is the un-
deformed moment of inertia, and we have implicitly selected the torque shaping parameters
@, 4., » and thereby established the corresponding target maneuver time T from Eq. (16) for

specified initial and final angle. Motivated by the issues discussed above and the quadratic
regulator perturbation feedback controllers discussed in Refs. [1, 9, 11], we hypothesize the
following structure for the control law

u= un}(r) - [gl (0-06,5) + 8, (6 -0ny) + 8, ((1Se=M,) = (LS~ M)per)] (A7)

where it is easy to show that the root moment for the reference (rigid body) motion is

proportional to the angular acceleration: (/,S.- M. )y =+ [p(/ 3~ lc,3 W3 +mi2]10.(2).

We wish to gain insight on the stability characteristics of the flexible body’s closed-loop
departure dynamics [from the target (ref ) rigid body motion (for ¢<T ), and from the fixed
target state (for r2T)], and we anticipate providing an analytical justification for the tracking
control law of Eq. (17). Let us denote by the subscript r the state variables along the open-

loop flexible body solution of Egs. (5) when driven by the torque u,,(r) of Egs. (12 -16).

The instantaneous displacement of the open-loop flexible body solution from the open loop

rigid body motion is denoted A() = (), - (), ; for example, AB(¢) = 8,(¢) - 6,,(t). Variables
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without subscripts represent the "actual” instantaneous closed-loop controlled solution

variables. Consider the candidate error energy Liapunov function
2U=21/u(6-6,) +2,(6-8,)
I
raa [JIG - T+ x(0- 807 dx (8)

qm‘” "’") dx + m{1(6-6,) +(3 l,- 1)1 ]
Assuming the actual conrrol 1s some general, to-be-determined u(r), and that the actual
motion satisfies Egs. (5), we have investigated the time derivative of U of Eq. (18) and

found that it is given by the following equation

U=-21 8-8,)[u - urey + 2(0-8,) +42R[(LS,- M) - (LS.- M), ] 19)

Analogous to the logic leading 10 Eq. (9), we see that we could determine a stabilizing u(r)
by setting the bracketed term 10 a positive quantity (g5 ) times (8-68,) {i. ¢., this makes U a
negative definite function of the error in hub angular velocity). This gives the conmol law

u=ue0)-[g ©-6,) + g,©-6,)+g ((L.S.-M.) = (L.S.- M.),)) (20)

with U = — 2; g2 (6-6, )? and we introduced the definitions g =axfay , 8. =(a-2;)/a.
4

Notice, to guarantee stability, that g, and g, must be positive, but as before g;must be greater
than -4. The main difficulty with this control law is that it requires pre-computing the
flexible body solution, we’d prefer a tracking law which requires a much simpler rigid body
maneuver to be pre-computed. Let us pursue this objective. Since Eq. (19) holds for an
arbitrary u(r), we introduce the control law of Eq. (17) and investigate it’s stability charac-

teristics. Making use of the notation AQ) = 0, - O,y» we areled to
I:I= a1 (6-9,) {gz (9-6,) +[g1 A8 +g22 Ae +g3 A(I. S.-M, )] } V (21)

Obviously, a sufficient condition characterizing the region where U < 0 is the dominance of

the first term in the {} of Eq. (21), this gives the inequality

ainchepl 3
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16-6,1 > é@l A8+ 2,40 + g3A(LS.-M)I=|L : @)

It is apparent that the A quantities on the right hand side of Eq. (22) are finite and (pre-)
» computable differences between the open loop flexible and rigid body uﬁotions, thus an
upper bound can be established directly by a priori simulation of the two open loop motons,
and using a particular set of feedback gains. Note the right hand side of Eq. (22) is essen-
tially a weighted measure of how nearly the target trajectory satisfies the ﬂcxib_lé body

equations of moton.

A boundcd-input/boundcd-outpﬁt viewpoint of stability can also be considered, based upon
the departure motion differendal equations obtain by differencing Egs. (5) evaluated at each

instant along the actual closed loop trajectory and along the flexible body open loop (),

motion. Upon formulating these equations, we find departure motion motion is governed by

an otherwise asymptotically stable system of differential equations forced by the known A()

terms which appear in Egs. (22). Since these forcing terms can be bounded by direct cal-

culation, the resulting departure motion can also be bounded. Since the actual humen‘cal
bounds on the A quantties can be made arbitrarily small (depending upon how: nearly the
user defined reference tréjcctory is made to satsfy the open loop equadons of motion), we
have a very atractive theoretical and practical situation vis-a-vis stability of the closed loop
tracking moton. We see that the closed-loop motion is globally attracted to the controllably
small region near the targer trajectory which violates the inequality of Eq. (22), and consid-

ering the motions within this small region, we have bounded-input, bounded-output stabiliry.

The above discussion can probably be generalized for any smooth target trajectory, but we
find that it is attractive to use a torque-shaped rigid body reference wajectory, such as Egs.
(12)-(16). An artractive and significant feature of Eqs. (12)-(17) is that we have a C'
CONtNUOUS transition: {ires (1), Oref (), Ores (1), Mo,y (0)s So,, s (0} = {0, 87, 0,0, 0} as :=T;
so that for »T, only the three feedback terms of Eq. (17) are conuibuting to the terminal

fine-pointing/vibration arrest control. Thus the controls blend continuously from the large
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angle tracking law into a constant gain controller identical to the globally stable fixed point

output feedback case.

V. Simulated Resuits for the AFOSR/TAMU Large Angle Maneuvers Experiment

Returning to the family of 40° open loop maneuvers used to generate the energy surface of
Figure 6, we computed the velocity tracking bound p for Liapunov stability [as given by Eq.
(22)] and found the maximum value (L

maz)

of u(r) along each trajectory. Figure 7 displays
this worst case tracking bound. surface p .. (@, u,,. ) over the same (c, u,, ) region as

Figures S, 6. As evident the closed-loop tracking error bound has a roughly analogous
behavior to the open-loop residual vibration energy surface of Figure 6. Recall that outside
the region bounded by the inequality of Eq. (22), we have guaranteed Liapunov stability,
when using the control law of Eq (17) and the reference rigid body torque given by Egs.
(12)-(16). From Figure 6, it is clear that sufficiently small &, and sufficiently large o
result in arbitrarily small tracking errors, but the (small o) near-bang reference maneuvers

cannot be tracked as accurately. It is easy to see how a family of candidate (a, «,,,, ) designs

could be selected which satisfy specified inequalities on maneuver times, tracking errors,
and residual vibration energy, by direct examination of the surfaces of Figures 5-7.

Our experiments with simulations (and in the actual hardware implementations presented in
Reference [5] and below) support the conclusion that it is easy to use the above surfaces

(together with disturbance rejection simulations to select the reference trajectory and the

. feedback gains to obtain well-behaved closed loop control) to establish a large family of

feasible designs. Prior to discussing our experimental results, we present some further
simulations to show typical state and control variables histories along some of the trajec-
tories of underlying the above surfaces. We include in these simulations the effects of
disturbance torques, to illustrate the effectiveness of the controls in the presence of un-

modeled effects. The Appendix summarizes the physical parameters and hardware descrip-
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tion of the maneuver experiment, sketched in Fig. 1. For simplicity, we consider only the

case of a 40° rest-to-rest maneuver, and set 4, ,, = 400 oz-in for all cases.

For our computational and experimental studies, we éonsidcr two control laws, namely the
output feedback law (Control Law I)** of Eq. (11), and the tracking-type feedback control
law (Control Law II) of Eq. (17). While Control Law II could be used with an arbitrary
reference trajectory, we elect to specifically investigate the torque-shaped rigid body trajec-
tories of Egs. (12)-(16). The torque-shaped open loop control history u, () is pre-computed
(in a fraction of a second!) from Egs. (12)-(16) and stored. Note that the boundary condi-
tions of Eq. (14) are enforced by using Eq. (16) to compute the target trajectory maneuver

time as a function of the maneuver angle, saturation torque, and torque-shape parameter.

We now discuss the simulation results using Control Law II, which obviously blends into to
Control Law I in the end game (for t 2 T). In the experimental results, we report maneuvers
carried out by both control laws. Both open loop (all g, = 0) and closed loop time histories of

selected variables are shown in Figures 8a-8d. On the left of Figure 8, we show the hub

angle and angular velocity for the case of an open loop control and in the presence of
substantial impulsive and quasi-random (5 oz-in, 16) disturbance torques. It is evident that
the disturbance torque history is significant vis-a-vis exciting substantial rigid body and
flexural motions. On the right, we show the closed loop behavior of the system excited by
the same disturbance torque history. The random component of this disturbance has been
found to be typically pessimistic vis-a-vis our experimental hardvare, however certain
non-random, nonlinear effects associated with the bearing friction cause disturbances which
are highly correlated in time and are not well represented by the present white noise repre-
sentation of the disturbance torques. In spite of the substantial disturbance torques (Figs.
8a-8b), it is evident that we obtain a near minimum time rigid body motion while effectively
" suppressing vibration (8c-8d). This fact was also confirmed by evaluation of the energy
distribution in the first six modes.
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V1. Description of Experimental Resulits
In all of the experiments discussed below, we set the target final angle to 40° and u,,, =400
oz-in. The values of the tracking gains (g,, £,, §;) and of the torque shape parameter (ct)

were assigned several feazible values values to demonstrate the effects of these upon the
closed loop behavior of the system. Moderate bearing friction and aerodynamic damping

were present in our experiments.

Figure 9 shows the system response for a Control Law I (the constant gain control law of Eq.
(11)) maneuver with (g, = 600 oi-in/rad, g, = 0 oz-in/rad/sec, and g; = 0). Since this inital
position error is large, the maneuver starts-from zero with an inidal discontinuity to a large
torque. For this gain selection, we see a large overshoot ( ~ 34°) which has not settled when
the control was terminated at 30 seconds. Figure 10 shows a similar experiment but with g,
= 800 oz-Wme, to illustrate the constructive effects of active damping during the
maneuver. This is representative set of "good" gains for Law I, but we will see that the
maneuver time can be reduced by more than a factor of 2 by using Law I, whereas only
about a 15% reduction can be achieved by optmizing gains for Law I(subject to a 400 oz-in
saturation constraint). Notice the large transient (induced by instantaneously applying the

gain g, to the 40° initial angle error) decays after about 5 seconds, and the target rigid body

posidon is acquired with small residual vibratons in about 12 seconds.

A family of results of using Control Law II, Eq. (17), (with @ =0.1 and 0.2, g, = 3000, g, =
0, 200, and 800, and g, =0, 0.8, and -0.8 } are shown in Figure 11-16. These results demon-

strate the effectveness of Law II in comparison to Law I (e. g., compare Figures 10,14), and

show thc effects of varying the torque shape parameter (@) and the feedback gains (g,, g,.
g;). Due to the tracking type of control, the initial errors operated upon by these gains are

not as large for Law II as in the case of Law I, as a consequence of using a reference trajec-

tory which departs smoothly from the initial state. Moreover, the smoothly increasing




torque profile of Law II does not "ring” the structure with an initial jump discontinuity at
time ¢ = 0 to a large torque as in Law 1. The effect of using a smooth, judiciously shaped
reference torque history is evident if one compares the results in Figure 14 with those of
Figure 10. Law II produced much smaller overshoot (= 1.5° vs >10°), shorter settling time (
6 seconds vs over 12 seconds) and greatly reduced the severity of peak vibration. Notice in
Figures 9, 11, 12, that significant passive energy dissipation exists due to the combined
effects of bearing friction, acrodynamics, and structural mechanisms, because the velocity
feedback gain is zero in these three experiments. On the other hand the rate of passive
energy dissipation is sufficiently lo that active vibration control is required to satisfactorily
arrest the stucture. In comparing Figures 11 and 12, notice that increasing o results in
significantly reducing the amplitude of the structural vibration (which is primarily the first
cantilever mode). As is evident in Figures 13 and 14, a judicious selection of the velocity

feedback gain (g,) and the torque shaping parameter (&) suppresses the structural vibration

during the maneuver as well as in the end game.
Figures 15, 16 provide some additional experimental results to contrast with the best design

studied (Figure 14). Notice that including feedback (g;) on the root bending moment was

not found 1o be effective in further refining our results. We did a number of experiments

with other g, values without improving over the results of Figure 14. The reason has been

traced to the noisy derived angular rate from the angle encoder, and the fact that the ac-
celerometer acts as a noisy angular accelerometer. Our simulations indicated that noise-free
root bending moment feedback would be effective, over and above the hub angle and
angular rate feedback, in suppressing the vibrations of all modes above 12 Hz. However, the
effective bandwith of our derived angular velocity was only 0-10 Hz and therefore we were
unable to control the higher frequencies without injecting substantial noise-induced distur-
bance accelerations. We anticipate that enough attention to optimizing the design of analog
and/or digital filters will lead to marginal improvements over the excellent results of Figure
14, however, we feel that it would be more productive to invest in an accurate angular rate
measuring device and eliminate the source of this paradox.

sisachapl 4
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Based upon mechanical tests and analysis of our bearing hardware, it is-evident that interac-
tion of the structure with the bearing accounts for the overwhelming source of unmodeled

disturbances. The bearing friction/stiction model developed from our analysis has the form

Thearing = - C1 sign(é) - c26 + HOT (23)
where we find ¢,~ 20 oz-in and ¢, ~ 0.001 oz-in/rad/sec. Thus the first (stiction) term of Eq.

(23) dominates the bearing torque for moderate 0 and is about 5% of the peak commanded
torque of 400 oz-in. While we believe Eq. (23) models the bearing friction well, it is diffi-
cult to use this model to compensate for bearing friction in real time, since our estimated

value of 0 is uncertain due to angle encoder measurement noise. Thus if we modify our

control using Eq. (23), the commandcd discontinuity (near the estimated time O changes
sign) will not coincide exactly with the actual discontinuity; mis-timed compensation torque
discontinuities can actually worsen the disturbance! While we experimented with bearing
friction compensation schemes, we ultimately decided to simply consider this an anticipated
and wcll-model&d disturbance. Our simulations (§uch as the results shown in Figure 8)
indicated our control approach could easily tolerate disturbances of this magnitude, and our
successful experiments (Figures 9-16) certainly confirm that our implemented control laws

are robust in the presence of the actual disturbances.

VII. Concluding Remarks

We have presented a novel approach to design of feedback control laws for large maneuvers
of distributed parameter systems, and have conducted successful experiments. The approach
permits approximate imposition of actuator saturation constraints and a priori control
shaping via user specificaton of a torque-shaped, optimized reference trajectory. The
tracking-type control law is shown to result in Liapunov stability in the sense that all rajec-

tories are globally attracted to a controllably small region near the referernice trajectory. The
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tracking law automatically blends smoothly into a globally stable, constant gain, terminal
output feedback controller. We believe this approach is much more attractive than, for
example, gain scheduling, because the logical and implementation complications associated
with discontinuous gain change ("handoff™) logic can be avoided altogether. We have
considered in detail the case of single axis maneuvers of a flexible body system and a
particular family of torque-shaped, near-minimum-time rigid body reference trajectories.
We demonstrated numerically the effects of torque shaping upon maneuver time and estab-
lished a bound on the usually small region near the target trajectory in which Liapunov-
stable tracking cannot be guaranteed.

We described hardware experiments which successfully implemented near-minimum-time
feedback control of single axis maneuvers of a flexible structure, using a family of torque-

shaped rigid body reference trajectories. We presented new analytical developments,

numerical simulations, and experimental results all of which support the conclusion that

robust, near-minimum time control can be achieved by this approach. The simplicity of
implementation makes this approach attractive, notice that no state estimator is required, and
no truncation or spillover effects degrade our stability arguments. Our relatively low-budget
experimental work afforded an excellent opportunity to demonstrate the validity and robust-
ness of this feedback control approach: We were blessed (cursed?!) by difficulties associ-
ated with nonlinear friction/stiction phenomena in our hub bearing system, and significant
angle encoder sensor noise. In particular, most of our implementation difficulties arose from
relatively crude (~0.5 deg/sec) angular velocity estimates derived from the prediction/
smoothing of the moderately precise (~0.01 deg) angle encoder measurements of hub
rotation angle. The particular choice of the angle encoder filtering/smoothing/differentiation
algorithms and the sample interval were found to impact the behavior of the control law,
although we had no difficulty finding a large family of stable designs. Use of an accurate
gyro to directly measure the hub angular velocity should eliminate this source of difficulty.
It is also significant that more accurate angular rate measurements would permit correspond-

ingly more accurate compensation for thebearing friction/stiction effects.
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Of course, roughly analogous problems are associated with the support mechanism (in our
case, bearing friction) in any ground maneuver experiment, but obviously disappear in actual
zero-g on-orbit implementations. The non-ideal sensor and actuator problems we encoun-
tered are judged to be typical of those associated with on-orbit implementations, although
hindsight suggests we should have invested in a sensor to directly measure hub angular
velocity to eliminate the primary source of difficulty. While the effect of departures from
ideal sensor, actuator and support system behavior are present in our experiments, especially
near zero angular velocity, the control law nevertheless achieved excellent qualitative
agreement with our simulated closed loop response, and routinely isolated the terminal state
to within our sensor precision. Furthermore, our experiments were repeatable to within
sensor precision. Our simulations and hardware experiments clearly establish that the

unmodeled effects are well within the stability robustness margins of our control law.

We feel we have conclusively demonstrated the feasibility of our analytical formulations and
experimental apprbach. We are optimistic that these ideas can be extended to a significant
family of multiple flexible body systems and the maneuver control problems associated with

multiple body re-configuration, pointing/tracking, and deployment dynamics.
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Appendix: TAMU/AFOSR Maneuver Experiment Hardware Description

Figures 1 - 2 shows sketches of our experimental structure. The structure is comprised of
four identical cantilevered flexible appendages, each having a finite tip mass. The actuator
is a DC motor with a reaction wheel. The stator of the motor is rigidly connected to the top
of the hub keeping the axis of rotation aligned. The whole assembly is pivoted on a ceramic
bearing such that it can rotate freely in the horizontal plane. Tipping motion is restrained by
an adjustable slip bearing. An angle encoder, two full-bridge strain gauges near the root of
an appendage and a motor tachometer are employed to respectively measure the hub angular
position, the appendage bending moment and shear forces, and the reaction wheel speed as
functions of time. Based on these measurements, and an appropriate control law, a control
signal is provided to a current amplifier which drives the DC motor to produce the necessary
torque.

Figure 3 shows a block diagram of the overall system. The central unit for the system is a
Packard Bell 286 (PB286) computer and Data Translation DT2841 I/O board. The DT2841
performs digital input/output (I/O), analog to digital (A/D) conversion, digital to analog
(D/A) conversion and timing operations. Packard Bell 286 reads in data from the I/O board,
and does the necessary computations in its own CPU and then sends out the resulting control
signal to the amplifier through the /O board.

The angle encoder (Teledyne Gurley: 8708) output is decoded and converted into a 16 bit
digital number in hundredths of a degree by a logic converter (Teledyne Gurley: SCA CC)
and counter (C-Tek: Lin-101-50-21-41-BE) combination. The angle encoder is accurate to
0.01°. This angle information is read into PB286 through the 16 bit digital port of DT2841.
We udlize a sequential least squares filter to extract smoothed angle and angular velocity
estimates from the angle encoder measurements. Least square filters are also used to smooth

the shear and moment measurements.
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The motor used to apply the torque is a PMI Servodisc DC motor equipped with a
tachometer. The motor produces a torque proportional to the current in the armature as sent
by the current amplifier. The commanded current is sent out to the amplifier by PB286
through digital to analog line (DACO) of DT2841. The tachometer output is read by the
computer through one analog to digital line (ADC2) and used in our control laws to com-
pensate for the motor friction torque. A separate study has been carried out to characterize
the motor bearing friction. Except near zero wheel speed, the friction is well-modeled as a
quadratic function of the wheel speed. A discontinuity characterizes the nonlinear stiction
region at zero wheel speed.

The two full bridge strain gauges are employed near the root of one of the appendages at a
finite distance apart from each other to determine the instantaneous bending moment and
shear force. The strain gaugé signals are read with the PB286 through 2 additional analog to
digital channels (ADCO, ADC1). Least square filters are also used to smooth the shear and
moment measurements. The bandwidth of the closed loop system was found to be about
10Hz, the limitation to low frequencies is a direct consequence of the errors introduced by

deriving the angular rate approximation from the angle encoder measurements.

Four KEPCO Bipolar-operational power supply (BOP’s) in series are used to supply current
to the motor. They can supply up to 12 Amperes of current for up to a compliance voltage
of 150volts. The BOP’s are remotely programmed by PB286 through one of the D/A
channels (DACO) of DT2841.

DT2841 from Data Translation Inc. performs all the /O (Digital, A/D, D/A) operations for
PB286. The board has two programmable clocks (DACLK and ADCLK). DACLK and
ADCLK are programmed to run at 75Hz and 4000Hz respectively; DACLK runs continu-
ously during a whole control operation and ADCLK runs in a burst mode (i.e.,inter-

mittently).
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Every DACLK timing signal initiates the following:

a) Converts a digital data into an analog signal to be used by the BOP to push the
corresponding current through the motor.

b) Generates a hardware interrupt to initiate a new control cycle.

The new control cycle proceeds as follows:
i) read angle encoder (through digital port)

ii) start ADCLK, complete reading the two strain gauges and the tachometer values
(through A/D channels 0, 1, & 2) during the next three ADCLK cycles and then
disable ADCLK.

iif) filter the data digitally
iv) predict the current required at the beginning of the next cycle

v) store the data in RAM for time history and make the predicted data available to the
D/A converter to be converted at the beginning of the next cycle.

vii) wait till next DACLK signal which converts the digital data into an analog signal

and generates a hardware interrupt to initiate the next control cycle.

The control software is written in FOR’I'RAN except the PB286’s interrupt controller
setting, the I/O board functions, and I/O routines which are all written in assembly code.
The control cycle is updated at the rate of 75SHz (DACLK rate). ’
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Table 1. Hub/Appendage Experiment Configuration Parameters

Hub & Appendages

Total System Inertia, I

Hub Center to Gage Center, /,

Hub Center to Tip Mass, /

Tip Mass, m

Appendage Modules of Elasticity, E
Inertia of Bending Section, I
Mass'Dcnsity of Appendage/Length, p

Distance between two gage set

Motor (PMI, Servodisc DC Motor: JR16M 4 CH)

Torque Constant, K,
Back EMF Constant, K,

Tachometer Constant

Power Supply (KEPCO BOP 36-12M)

Current Gain
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2128 [0z - sec’ - in]
5.5470 [in]

51.07 [in]

0.15627 [oz - sec*/in]
161.6 [million 0z/in’]
0.000813 [in*]
0.003007 [oz - sec’/in’]
1.365 [in]

52.77 [oz-in/amp]
39.77 [v/1000rpm]
3 [v/1000rpm]

1.2 [amp/commanded volt]




Figure 1. Texas A&M Maneuverable Space Structure Experiment
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Figure 1c. Notation for Forces, Moments, and Euler-Bernoulli Constituitive Model

29
(85)




~S|rlhcug|0l.'-

Figure 2. Hub Assembly
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Figure 4. Torque Shaped Rigid Body Maneuver
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Figure 5. Rigid Body Maneuver vs. Saturation Torque and Shape Parameter
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Figure 6. Flexible Body Residual Vibration Energy
vs. Saturation Torque and Shape Parameter
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Figure 7. Boundary of the Liapunov-Stable Tracking Region
vs. Saturation Torque and Shape Parameter
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Figure 11. Experimental Results: Control Law II
torque shape parameter: & = 0.1,  control gains: g, = 3000 oz-in/rad, g, = 0 oz-i/rad’s, g; =0
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Figure 13. Experimental Results: Control Law II
torque shape parameter: O, = 0.1,  congol gains: g, = 3000 oz-iv/rad, g, = 800 oz-in/rad/s, g, = 0
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Figure 15. Experimental Results: Control Law II
torque shape parameter: O = C.1,  control gains: g, = 3000 oz-in/rad, g, = 200 oz-in/rad/s, g, = 0.8
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A Measure of Controllability for Actuator Placement

Youdan Kim™ and John L. Junkinsi
Teras A& M University. College Station. Teras

Abstract

4 new measure of controllability for linear time invariant dynamical systems is
introduced. The controllability measure is designed especially to guide the placement
of actuators to control vibrating structures. An ezample is presented and the design
of optimal feedback conirol laws for each of several actuator configurations supports

the practical value of the new céntrollability measure.

I. Introduction

The problem of choosing actuator locations for the control of large flexible space
structures is an important area of current research. By recognizing the fundamental
role played by the actuator locations, it is natural that the problem of placing ac-

tuators be considered simultaneously with the quest to define meaningful measures

of controllability (MOC).

Ph.D. Candidate, Department of Aerospace Engineering, Member AIAA
i George J. Eppright Chair Professor, Department of Aerospace Engineering,
Fellow AIAA
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Longman?-2

presents a definition of a degree of controllability and applies it
to optimize actuator placement. For the purpose of model reduction, Moore?
introduces an internally balanced system by using the singular values to define
measures of nearness to rank deficiency of the controllability and observability
gramians. The smallest singular value of the controllability gramian (of Moore’s
balanced system) can be taken as the NMIOC. Hamdan and Nayfeh* proposed a new
measure of modal controllability by using the generalized angles between the left
eigenvectors of the system matrix A and the colvmns of the input influence matrix
B for the system described by the triple (A,B,C). They also showed that their
measure has interesting connections with Longman’s degree of controllability, and

is also related to the singular values of Moore’s balancing method®. Hamdan and

Nayfeh’s measure provides us useful information on each mode’s controllability.

In this paper, we extend Hamdan and Nayfeh’s measure by introducing a new

controllability index which combines their controllability ideas with modal cost

analysis®7. Our index adresses simultaneously the physical importance of each
mode and its degree of controllability. In order to evaluate the usefullness of the
proposed new index, we design two sets of controllers - one set using svmmetric
output feedback® and another set using the linear quadratic regulator approach:

each set includes controllers for ten different configurations (that is, ten different

actuator locations for the same structure), and compare the results of the ten pairs
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of controllers with the new indices.

II. Measure of Modal Controllability

Consider the linear dvnamical system in the state-space form
x = Ax - Bu (1)

where x € R™",u € R™, A and B real matrices with appropirate dimensions.

It is well known that the Popov, Belevitch, and Hautus (PBH) eigenvector test®
is useful to test the modal controllability of the system (1). The PBH eigenvector
test specifies that any column vector b; of input matrix B cannot be orthogonal
to the i-th left eigenvector q; of A, if the i/-th mode of the system is controllable.
Unfortunetely, the information from the PBH eigenvector test is a binary Yes,/No
type. By introducing an idea baseu upon a geometrical interpretation oi the PBH
eigenvector test, Hamdan and Nayfeh* proposed the follov'ving two measures of

controllability:

Proposition (Hamdan and Nayfeh)

1) A measure of controllability of the i-th mode from the j-th actuator input of the

given system is cos §;;, where 8;; is the angle between b; and q;.

T .
1qy bj'
gi. - 1 4
[o{w]] 3 |q,E‘bJ'§ (

[1%]
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2) The Eucledian (root sum square) norm of the vector f;, where fT = qTB/liq;|| is

a gross measure of controllability p; of the i-th mode from all inputs.

Note that the different power levels in the different inputs on modal controllability
is considered in the gross measure of controllability. The gross measure of control-

lability p; is related with the measure of controllability as follows:

(3)
F = (cos O)diag(||b,}.|ibaii.. ..., bm |

where fiT is the i-th row of F, and cos © is the m x n matrix of modal controllability

measures.

Since a gross measure of controllability of a given mode considering all input is
important, we will adopt the second measure of the above proposition as each mode’s
measure of controllabilitv. When we compute the measure of controildability. we
should be careful dealing with the coordinate transformation. Since these measures
are not invariant under any coordinate transformation that is not orthogonal,
the measures should be used consistently only after all transformations, including

scaling have been carried out.

The least controllable mode is often considered to be critical for the controllability
of the system, therefore we could conjecture the following rule. “The smallest value

of the gross measures of controllability p; is the controllability indez for the given
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system.” This rule is definitely “false” for most practical applications. Consider a
system for which the k-th mode of the system is the least controllable, then the
k-th mode’s gross measure of controllability py (i.e.. the minimum py) would be
taken as the system’s controllability index if we use the above rule. However. if
the k-th mode does not participate significantly in the important physical outputs
of the system. then using only the controllability of the &-¢A mode to charactersize
the system controllability is clearly not suitable. Therefore we need an index which
incorporates more information in order to properly measure the controllability of
the system. Using some measure of the “relative importance of each mode™ to the
system performance is recommended to weight the modal controllability measures.
The most appealing approach is to combine the modal cost ideas of Skelton et
al.®7 with the modal controllability ideas of Hamdan and Nayfeh*. We develop this

approach in the following sections and define a new measure of controllability.

ITI. Modal Cost Analysis

The scalar function
< T
/ yT(1)Qy(t)dt
0

is widely used as a measure of system performance where the vector y(t) is composed

of those output error variables that are of importance to the designer. The unit
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impulse response with zero initial condition is also commonly used to discuss the
transient response of the system. By considering the above two observations, we

can take the cost function which represents the system performance as follows:

V= / yT(1)Quya(t)dt

ya(t) = Cax(t)

where x(t) is the response due to the unit impulse input applied at t = 0 with zero
initial conditions, Q. is a weighting matrix, and Cgq is taken such that y4(t) be an

important variable for the design objectives.

The developments leading to a modal deccmposition of this cost function have been
derived by Skelton®. We may use the contribution of each modal state variable to
the cost function as a measure of that mode’s relative importance in the system
performance. The cost function V and the contribution V, of thie state varianie x;

in the cost function V can be computed as follows®:
V = trace{Q, C4XC[} (3)

Vx-. = ZXC}Qde,u (6)

where X is the controllability gramian which satisfies the following Lyapunov

equation

XAT-AX-BBT =0 (

~1
p—
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What we really need is each modes’s contribution to the cost function, which is called
the “modal cost”. When the “modal” coordinates are used as the state vector. it is
obvious that each state’s contribution becomes the modal cost. For a formulation
of the system dynamics which uses “physical” or “configuration” coordinates in
the state vector, on the other hand, the modal cost can be obtained via a modal

coordinate transformation.

For a system having a given actuator placement configuration, we can determine
each mode’s gross measure of controllability and modal cost by using the results
presented above and in the current section. In the following section, we address
the issue of how to combine the modal cost with the gross measure of modal
controllability, to define a new measure of controllability, for the purpose of deciding

where to place the actuators.

IV. Output Measure of Controllability for the Second Order System

In the study of vibrating mechanical systems we usually encounter the system of n

second order equations

Mx — Cx - Kx =Du (8)

where x € R™ and u € R™ are configuration and control vectors, respectively, M is

an n x n positive definite symmetric mass matrix, C is an n x n positive semi-definite
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symmetric structural damping matrix, K is an n x n positive semi-definite stiffness

matrix, D is an n x m control influence matrix. and () represents differentiation

with respect to time.

In Section II. we mentioned that the MOC is generally variant under any coordinate
transformation that is not orthogonal. We need to choose the coordinate system in
order to discuss controllability. \When modal coorcinates are used. two well-known
benefits are realized: (i) the computational processes become simplified. and (ii)
each state’s contribution to the cost function corresponds to the modal cost. We

will use the modal coordinates for all subsequent discussions.

To perform the modal coordinate transformation, the following open-loop eigenvalue

problem should be solved first!°.

Ko, = AMo.. i=1.2.....n (9)
with the normalization equation

ol Mo =1. Li=1.2.....n (10)

Introduce the modal matrix

The general modal coordinate transformation is

x(t) = &n(t) (12)
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where 7(t) is the n x 1 vector of modal coordinates.

The transformed equation of motion becomes

fany)
-3¢
|
)
-3
I
=i
-3
!
O
[=4
—_
(9%

where

M=dTNME =1

C=0TC® = diag(2¢;w1.2Cowz. . ... 2(nwn)
K = 8TK® = diag(w?. w2.... . &2

D =4TD

The diagonal structure of C requires that C be a linear combination of M and K,
we make this restriction for the sake of convenience. The results developed for
computing Hamdan and Nayfeh’s controllability measures are directly applicable to

the second-order representation (13), these are reported in Ref. 4.

For control applications. the system dynamics are usually modeled in first order

differential equations. Let us introduce the “2n™ dimensional modal state vector

z=(%) (14)

Equation (13) can be written as the first order system

z = Az - Bu (13)
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where
0 | 0

The right and left eigenvalue problems ‘associated with z = pe** solutions of the
open loop system in Eq. (13), are

right: Aipi = Api 1i=1.2.....2n

—
[
~—

left: g = ATg i=1.2,....2n
where the conventional normalization!! of the biorthogonality conditions for the

eigenvectors are adopted as

pipi = 1. i=1,2,....2n
(18)
q;rpi=5ij- j=1,2,....2n
so that
qf Api = \iyj. ,j=1,2,....2n (19)

The gross measure of modal controllability can be obtained by using the proposition

in Section II with the above left eigenvectors and B matrix in Eq. (13).

In order to evaluate the modal cost for the system, we take the following system

performance (Eq. (4)) as the cost function

ve | T YT ()Quya(t)dt (20)
0
C{Cae 0 ] [x(t)) _ . (X(1)
v =[5 e (50) =e (3) .
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where Q. is a weighting matrix, y4(t) is a vector of physically important variables

and x(t) is a physical (configuration) coordinate vector.

We adopted the weighting matrix as follows:

e o s
Q\‘ - [ 0 Q'( (")

By introducing the modal coordinate transformation, the vector yq4(t) becomes

Bn(1) ) Cax® 0 ] (n(t) ) ( () )

t)=C = = < =C - 23
a0 =Ca (530 = |57 coe) (F0) =co (F) o9
Therefore matrix Cq in Eqs. (5)-(6) must be replaced by Cq, to evaluate the total
cost and modal cost in the modal coordinate system. Since modal coordinates are

used, we can take advantage of the analytical solution of the 2n x 2n Lyapunov

equation (7), available in Ref. T:

where the elements of n x n block matrices are

v 2(Giwi = (i) -z =T .
'.‘\ﬂ'l.'ij = ——S‘#_DDT,?U g =1.2..... n
22 _
ix'lﬁ;ij = — KN 2 {DDTE;J- dg=1.2..... n (23)
2w; iwi = Gw;) .z =
.Xﬁﬁjij = ~ JJ(C:J CJ ) DDT i 1.j=1.2..... n

with
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Note that the i-th mode’s modal cost consists of two parts: the modal cost of the
i-th mode’s displacement and the modal cost of the corresponding mode’s velocity,

that is,

Vi= Vo =V, (26)

where V; is the i-th mode’s cost and n, 1s the modal coordinate.

The above V,, and V;, can be obtained by substituting Eqs. (22)-(24) into Eq. (6)

as follows:

Vni ={XM«I>T C;rx Qx Cax @Eii

(27)
Vi

;= X33 ®TC;QuCax @i

By judicious selection (problem dependent, obviously) of the physically important
variable vector yq4(t), the modal cost V; in the cost function V represents the
contributien of the i-th mode. Thus the normalized modal cnst (V; "V} nrovides
a measure of each mode’s relative importance in the system performance. We

conjecture that the normalized modal cost (V;/V) is precisely the “measure of

importance” needed to weight the modal controllability measure of Hamdan and

Nayfeh.

In view of the above considerations, we introduce the following new index as a

measure of controllability.

I -

n

a=y
o

i=1

L p? (28)

«*
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where

a: New controllability index

Vi: i.th mode’s component cost in the cost function V
pi : i-th mode’s gross measure of modal controllability from all inputs
(Eq. (3)).

Qualitatively, this new index represents a measure of “output controllability” which
reflects both modal controllability and the modal participation of all modes in the

phsically important cost function.

In the following section, we design two controllers (with several actuator configura-

tions) for an example flexible structure, and use the results to evaluate the utility

of the new index.

V. Numerical Examples

To study the utility of the new index proposed in the previous section, two
controllers: (i) a robust output feedback controller®!? and (ii) a linear quadratic
regulator, will be designed for the example flexible structure: we will compare
the results of these controllers (for several actuator configurations) with the new

controllability index.
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We adopt as an example, a sixty degree-of-freedom model of a grid structure!?. A
finite element analysis of the grid was performed. Nodes were placed at each of the
twenty joints on the grid. Each substructure of the grid were modeled using beam
elements. Three degrees of freedom (one normal displacement and two. transverse
and vertical rotations) appropriate for motion normal to the nominal plane of the
grid were considered for each node. Figure 1 shows the fexible grid experimenta:

configuration. The material properties for this model are listed in Table 1.

Angular velocity feedback torques are provided by three reaction wheel actuators.
The actuator axes (about which control torques are applied) lie in the plane of the
grid as indicated by the arrows in Fig. 1. The actuators (Clifton Precision Motors)
have approximately a 60 Hz bandwidth and =20 oz-in (=0.1412 N-m) saturation.
The grid angular displacement and velocity are measured about the same axes
with Watson solid state sensors. These sensors have a DC to 100 Hz bandwidth
accurate to =0.001° and =10~° rad,;sec. The particular position and orientation
of the sensors and actuators shown in Figure 1 represent one (Configuration 6)
of the ten configurations which will be discussed. In order to avoid disruption
of the symmetrical property of the grid structure, only symmetrical locations and
the direction of the actuators are considered in the present discussion. and the
admissible actuator locations considered are the 20 grid locations and the direction

of the actuators are permitted to be either vertical or horizontal. The locations
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Table 1. Material Properties of Grid Model

EI ~ 3255.21b-in’? 9.34982 N - m?
Gl 4943.0 b - in? 14.18350 N - m?
pA 0.0000648 Ib - sec? in? 0.41678 kg,/m
pd 0.0000217lb - sec? 0.0000965 kg - m

and the direction of the actuators of ten configurations are displayed in Figure 2.
In all cases the actuator torque axis and the active sensor axis are co-located as
accurately as possible. We present only numerical studies in the present paper. A

future paper will address experimental issues and results.

For high order systems such as a flexible structure, it is usually desirable and often
necessary to develop a reduced-order model to save on computational time when
designing control laws. A high order model is generally retained to verify the
resulting design. The most common order reduction method is the modal truncation
method in which a partition is introducecd into the modal matrix to select a subset
of low frequency modes (determined to be of most importance in the particular
application). The criteria for mode selection can be based upon modal cost. for

example. The general modal coordinate transformation is partitioned as

x(t) = &n(t) = (&1 &, (%18 ) (29)
L2

where @ is the modal matrix solved from the eigenvalue problem (Eq. (9)), n, is
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the retained subset of n. modal coordinates which we are interested in including in

the reduced order model. and 1, is the residual modal coordinates.

The reduced-order equation of motion becomes

Mij, + Ch, —Kn, =Du (30)
where A
M=6TM®, =1
C’ = Q?C@l = dldg(.?clu)l ..... an'sdn')
K = #TK®, = diag(?..... w2)

A reduced order model is used for the current design process. In this example, we
simply adopted the first ten lowest frequency modes. The order reduction process
is nut cenical o this discussion, although it is important that a “good™ reduced
order model be used to obtain practical results efficiently. Since the controllers
are designed by using the reduced-order model, there is no additional problems
introduced by using a reduced-order model to evaluate the new index. Some
physically important variable vector is selected to construct the cost function. For
this simple illustration, the normal displacement (perpendicular to the grid plane)

of the lower-left corner is taken to be y4.
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Control Design 1 : Symmetric Output Feedback Design

For the above model, we apply a symmetric output feedback controller®:!?

design
method to move the system’s first three modes to a desired region and. subject to
this condition. minimize a robustness measure (e.g., the sensitivity of the eigenvalues

with respect to variation of uncertain parameters). For the measure of sensitivity.,

we use the cond’ ion number of the closed loop eigenvector matrix.

The symmetric or “structural” output feedback form of the control law (collocated

sensors and actuators) is given by
T , NT -
u=-(G,D Ql-e-G;D Ql) (31)
where G; and G; are m x m positive definite symmetric gain matrices.

For any/all choices {r - the gain matrices rom this stable family{i.e.. the set of
all positive definite G; rm;trices), asymptotic stability of the closed-loop system is
guaranteed in the Lyapunov sense. Of course, we do not choose the G; at random.
Positive definite gain matrices are parameterized by introducing the Cholesky
decomposition, and the gain parameter vector is defined as pgain. the distinct

8.13

elements of the Cholesky factors of G; and G, With the above formulation.

our gain design problem becomes a nonlinear optimization problem as follows:
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subject to closed-loop eigenvalue placement constraints, for example, we adopt the

frequency constraints

¢

W= Aw, Lwi Swli—-Aw,. Aw, =1 percentof w. 1=1..... 3

and the time constant constraints

where

“’f(pguin) = Im(/\i)

Cf(pglin) = "R—:e/%"l

K(®°(pgain)) is the condition number of the closed loop eigenvector matrix,

and the superscripts ¢ and o denote the closed-loop and the open loop.

For this example we take the :time constants as T,=0.2. T,=7.2, and T;=0.20.
The above nonlinear constrained optimization problem can be solved by homotopic

nonlinear programming®3** in conjunction with 2 minimum norm gain correction

strategy.

The computed output measures (a of Eq. (28)) of the system controllability for
the ten different configurations and the results of the controllers designed for the
corresponding configurations are summarized in Table 2. The configuration number

is an arbitrary reference number we assigned a priori for each configuration.
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Table 2. The Measure of Controllability (Output Feedback Controller)

Configuration New Index(a) ;‘Cl'if "Ga Cond. No.
9 0.00333 0.306 6.514 129.864
8 0.00234 0.142 7.434 131.611
10 0.00208 0.444 7.691 161.167
1 0.00158 1.600 7.732 128.707
) 0.00133 6.804 g.82v 130.593
6 0.00130 1.595 31.143 147.774
3 0.00123 6.745 19.920 159.009
2 0.00102 13.379 16.483 140.672
7 0.00084 21.376 16.411 140.713
1 0.00078 22.160 25.379 141.402

In the Section IV, the output measure of controllability is conjectured to properly
weigh both modal controllability and participation in the output cost function.
That means, we expect the configuration possessing the large index to be more
output controllable than one having the small index. We further expect that
more controllable configurations should require less energy to control the system,
and therefore, we anticipate the associated optimal controller to have smaller gain
matrices. Based upon these heuristic observations, for example, if Eq. (28) is an
appropriate measure, we should anticipate the large o desigas will correspond to

the smaller control gains. As we can see in Table 2, the magnitudes of the total gain
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norms of the first four configurations (configuration number 9,8,10, and 4) are indeed
significantly smaller than those of the remaining six configurations. In fact, designs
9.8,10, and 4 appear to be correctly ranked based upon the fact that decreasing
a corresponds to an increasing control gain norm. All of the above designs have
closed loop modal matrices with small condition numbers, but it is also significant
that the small condition numbers appear to be negatively well-correiuted with large
a values. These résults imply that the new index proposed is highly correlated to

the actual controllability and robustness of the system and can apparently serve as

an excellent indication of the desirability of a'given actuator configuration.

Control Design 2 : Linear Quadratic Regulator Design

The symmetric output feedback controller used in Controller Design 1 (and implicit
in Table 2) is perhaps unfamiliar to many readers. Since this is true and in order
to confirm the usefullness of the new index, we also designed control laws for each
of the ten actuator configurations using the well-known linear quadratic regulator
(LQR) and we compare the results with the new indices as well as the symmetric

output feedback designs of Table 2. We adopted the following performance index

for LQR:

- X Ta, T
J /0 (z°Qz — u” Ru)dt (33)
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where

Qo0

the scalar r is chosen in order to satisfy the conditions «¢(f > T,

t=1...., 3 with T] = 0.2, Tz = 0.2. and T;; = 0.25.

The above performance index is an energy type, since the first term and the second
term in the performance index correspond to the state energy and the control energy
respectively. Note r is a tuning factor used to place the first three closed-loop
eigenvalues to ach.icve the desired time constant. Without judiciously assigning
the tuning factor r we cannot control the position of the closed-loop eigenvalues.
and the closed-loop performances ior the differeat configurations beccme dispersel.
The results of the LQR controller desings for the ten configurations and the
corresponding conﬁguration’s new index are summarized in Table 3. Note in Table 3
that the magnitude of the gain norm of the first four configurations is again smaller

that that of the remaining six configurations.

Note in Table 3 that the after the first four designs (9,8,10,4). the descending order
of the new index is different from that of the magnitude of the output feedback

controller, and is also different from that of LQR. It is obvious that the two
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Table 3. The Measure of Controllability (LQR : Full State Feedback))

Configuration New Index(a) G, Cond. No.
9 0.00333 11.2704 128.3908
8 0.00234 10.5103 127.8386
10 0.00208 22,1138 131.9951
4 0.001358 13.1570 129.2909
3 0.00153 43.3070 i40.0212
6 0.00130 96.3776 144.0736
3 0.00123 48.9767 135.9563
2 0.00102 18.8298 135.6727
T 0.00084 47.4010 135.7873
1 0.00078 47.0973 135.7440

gain optimization problems should not be expected to produce the same resuits.
especially since the design of Table 2 are output feedback whereas those of Table
3 are full-state feedback. Therefore we can not expect that the new index is one-
to-one mapped with the results of the two design methods studied (or any other!)
In view of this, the proposed new index appears to be a remarkably good measure
of controllability for the given configuration, since the results in Tables 2 and 3 are
well correlated. Notice that the first four configurations (9.8.10.4) have smallest

gains in both Table 2 and 3 as compared to the other six designs.

- Two of the ten configurations - to illustrate the consequences of using relatively

(117)




“good” and “bad” configurations, we adopted for further study. Specially config-
urations No. 9 and 6 were taken to studv the closed-loop performance of both
the symmetric output feedback control (design 1) and the LQR full-state feedback
control (design 2). The closed loop response histories of the normal displacement
to the grid plane (at three nodes of the bottom of the grid structure) of two con-
figurations due to a typical set of initial conditions are shown in Figures 3 and 3.
and the control input histories are displayed in Figures 4 and 6. The typical set of
initial conditions are constructed by using static loading such that the displacement
of the lower-left corner be 1 inch (2.54 cm). The static load is removed at the initial
time. We have imposed control saturation bounds (20 oz-in; 0.1412 N-m) to keep
the reaction wheel speeds to modest levels. First, consider the symmetric output
feedback design (control design 1). Note in the figures (a) and (b) of Fig. 3 that
the closed-loop performance of configuration No. 6 and No. 9 are almost identical.
When you study the figures (a) and (b) in Fig. 3. however, it is evident by inspec-
tion that configuration No. 9 needs more control input energy. That is consistent
with our expectation based upon the computed output measures of controllability.
We reach the same conclusion when we compare the closed-loop responses (Fig. 1)
and the control torque histories (Fig. 6) of the LQR (control design 2.) Thus we are
again encouraged that the controllability measure predicts the correct trend for the

controlled response with two distinct underlying controller design optimizations.
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VI. Discussion

The present paper introduces a new measure of controllability and considers its
implications for actuator placement. The proposed new index o of Eq. (28)
is a combination of the squares of Hamdan and Navfeh’'s modal controllability
measures weighted by the respective modes’ contributipns tn a quadratic output
cost function. The usefullness of this new index has been verified by comparing the

results of two control design methods for a grid structure with ten different actuator

configurations.
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First and Second Order Sensitivity of
the Singular Value Decomposition

John L. Junkins! and Youdan Kim*

Abstract

We develop algebraic expressions for the first- and second-order sensitivities of the singular
value decomposition of a general complex matrix. These algebraic results have been verified
ty numerical methods. Owing to the increasing analytical and computational applications of
singular value analysis of dynamical systems, these results have many potential applications.
To illustrate a typical family of applications in design of robust controllers, we consider 2 sta-
bilizing class of output feedback controllers, and set up an approach to minimize the condition
number of the matrix of closed-loop eigenvectors. As specific numerical illustrations, we use
the formulation as an integral part of a control design algorithm to design«cpntrols for 2 low
dimensicned example (6th order, 4 outputs, 2 inputs) and a moderately high dimensioned ex-
ample (40th order, 6 outputs, 3 inputs). In the latter case we also illustrate the use of the meth-
odology in a problem where order reduction is an issue. In both casss. we optimize the
feedback gains to maximize a robustness measure for the closed loop system. subject to in-
equality constraints on the system time constants.

Introduction

Singular value decomposition (SVD) analysis has emerged during the past decade

" as a very important aspect of many diverse sub-disciplines of dynamical system

analysis, and numerous rescarchers are rapidly expanding the applications of the
SVD. In {1], the usefulness of SVD to measure the robustness of feedback-controlled
linear systems i< discussed. Matrix singular value methods are given in [2] for evalu-
ating gain and phase margins of multiloop control systems. In {3], singular value gra-
dients and parameter optimization techniques are used to design robust controliers for
multiloop control systems. In [4,5], SVD methods are developed for system identifi-
cation, model truncation, and error analysis.

In this paper, we develop algebraic expressions for the first and second partial
derivatives of singular values of a general complex matrix, with respect to 2 parame-
ter vector (upon which the matrix depends in a twice differentiable fzshion). These
developments provide important gradients in applying first and second order numeri-
cal optimization algorithms to singular value measures of system performance. The

'Department of Aerospace Engineering, Texas A&M University, College Station, TX 77841
69
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analytical developments have been carefully verified by first and second order finite
differences. .

We also address an illustrative numerical controller design example wherein the
condition number (ratio of maximum and minimum singular values) of the closed-
loop matrix of eigenvectors is minimized (over a family of stable output feedback
gains, subject to eigenvalue placement and system time constant constraints). The
minimization of this condition number, for fixed eigenvalue placement, is equivalen:
to maximizing the robustness with respect to plant uncertainty (as measured by the
Patel-Toda [6] measure).

Singular Value Decomposition

We restrict the initial discussion tc the partial derivatives of a square {2n) x (1=}
compliex-valued matrix , the singular vaiue decomposition. that is the matri:
factorization

¢ =yzvt (1

where U and V are (2n) X (2n) unitary matrices normalized so that

viu =1 (2
ViV =1 (3)
The matrix X = diag(c,, 0,,...,0,,), contains as its elements the real singular
values of ® ordered as oy, = o, = ... = ¢y, = 0. The superscript H denotes the

conjugate transpose.
Since U and V are unitary, we can use equations (2) and (3) to rearrange =qua-
tion (1) as <
= = UV (&)

The above four equations can be expressed as conditions upon the (2n) X 1 complex
column vectors of U = [U; U,...U,]and V= [V, V,.. .V, ] as

¢V, =Uo, i=12,...,2n (5)
U, =V, i=12...,2n (6)
Uy, = 3, ™

VEV, =5, ®)

0.8, = UkoV, (%)

Using equ:..ons (7) through (9) in equations (5) and (6), it is easy to verify that
o}, V, are eigenvalue, eigenvector pairs of the symmetric matrix ¢"®, whereas o2, U,
are eignevalue, eigenvector pairs of the symmerric matrix $&”. This interpretation of
the singular values is of theoretical significance, but does not lead to good algorithms.
(It is not necessary or advisable to square the matrix; the decomposition of equation (1)
can be generated directly from Householder reductions of &, using the methods of
(7, 8].) It has been our experience that the SVD can be computed more routinely and
more accurately than usual matrix operations such as Cholesky decompositions or in-
version. Since the SVD also applies to rectangular, complex, rank-deficient matrices
as well, the range of applications is large indsed. While we are concerned with the
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case of a general @, certain of the details presented herein apply only to the case of
distinct singular values. The generalizations for the repeated singular value cases can
likely be pursued in a fashion analogous to thc developments in [9], for the sensitivity
of eigenvectors fer repeated eigenvalues.

Partial Derivatives of the Singular Values

We define the N X | parameter vector p as

p = [Plvph""ph‘]r (10)
and we assume that the matrix ¢ is a twice differentiable function of p, namely,
& = d(p) (11)

Differentiating equations (5) and (6) with respect to a typical element p, of p. upon
premultiplying the resulting two equations by U¥ and Vf’ , gives

7 ] . =
v, + ve Ll = v, 4 iy, 2 (12
op: apk ap, op:
- -
vf’i‘)—ﬂu vigrdYi o @iy 99 (13)
ap: ap, op, op,
Adding equations (12) and (13) gives
U”acbv + v”fﬂu + (U - V”o')—-—
ap; op: Pr

aU. :
+ (vier - Uo) 2 ATiury Ry 4
(v} ap,

k

Using equations (5) to (9) in equation (12), wé obtain the following result (identical o
that in [2]) for the gradicnt of the singular values

apt 2 *op p ' 3p,

Upon differentiating equation (15) with respect to p,, we obtair. the following expres-
sion for the second partial derivatives of the singular values

Fo _ oo <au” A J— R U,,gga_\’,)

/

i i - i i - (16)
dp: 9p, op; 9p: ap, 9p, op: 9P
Since equatior: (16) involves the singular vector gradients dU,/dp, and AV, /op,, we
must either evaluate them or eliminate them, we choose the latter approach.

Notice that either set of unitary vectors (the columns of U or V) form a complete set of
basis vectors spanning the 2n X 1 complex vector space, so any other vector can be
formed as a linear combination of one of these two sets of basis vectors. We choose
to project dU,/dp, and 3V,/dp, onto the corresponding sets of unitary vectors as

U, &
— = U,
ap, ,%aﬂ ’
A 2 bV, (17)
ap =
(132)
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where a, and b, are scalar complex constant “components” of the singular vector
gradients.

 Differentiating equation (5) with respect to the typical parameter p,, upon premulti-

plying the result by U¥ and making use of equations (17), gives

n 9P & H Q@ ryoh wyy 9T
U/ —V, + 2 b, UV, = 0,3 a, UMY, + UU,— (18)
op, j=l =t ap
Using equations (7) and (9) in equation (18), we obtain the following equation
gal - abl = Uf—ag\’,- - 6:—0’16,, (19)
ap; op;

Similarly, differentiating equation (6) with respect to p,, upon premultiplying the
resulting equation by V¥ and making use of equations (5), (7), (8), and (17), gives
: 3o 60, _
g.a, —obl = -vI—U, + 0._0'6" (20
ap, op;

In the case of the “diagonal” terms for which r = i, equations (19) and (20) become

a,{,. - bf‘ = _L(Uuﬂd_)v - 0_0')

o\ 'dp ' p
H
a; = b; = l(—VfﬁU,- + E) 2n
gi 9P ap,

It is evident that subtraction of the first of equations (21) from the second provides
another verification of equation (15), but we have another use for equations (21) in
evaluating the second partials of equation (16).
In the case of r * [, we have the following result from equations (19) and (20}
gl —abl = U{'i?v,.
op,

Y H
op; ap,

Except for the r = i case, and the case of repeated singular values, we can solve
equations (22) for the singular vector gradient projection coefficients as

H
al, = — 1 ,[a',<U‘,"?£Vi> + U,<Uf’2?V,> ]
o = 0o, ap ap,

H
ot = i (022w + o (urS2v) ] @)
o — 0o, op, ap,

The singular vector sensitivities must be consistent with the normalization of equa-
tons (7) and (8). Upon setting j = i and differentiating with respect to p,, then sut-
stituting equations (17) and making use of equations (7) and (8), we find the diagonal
projection coefficients are purely imaginary

(@)Y + a!, =Relcl) =0

(b)Y + bl = Re(b}) = 0 (24)
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Using equations (21) in (24), and substitution-of equations (15) into the result gives -

@) + bl = _(UHN’ - .‘E) = Im (Ullid_)v) , i= V=l (25)
p ' dp) o - ap - :
Substitution of equations (17) into equation (16) gives
d'c; o d) ER)
—— = Re a U” V+bU” )+U” V,]
dp,p, [2:1(( ')” ! ap, ®x) 0p: 9p,
or
o _
dp, 9p,
2n 2 ) -4¢
el 3 (@rury.+ epury )+ U S, el + Gl
jet \ k apkdpl ap‘
Fill

(26)

Finally, eliminating (al)” + (b%) using equation (25) and aj;, bj; for j * i using
equation (23) and after straightforward algebraic operations, we obtain the fina! ex-
pression for the second partial derivatives of the singular values

2 K
22 sl S 2 ) (o)
ap; p, ,-l op ap op,

) (o))

sy ~—l-Im<Uf'QV,)I (U"Q\> (27)
R ap, ap

This expression has been carefully validated by second finite difference studies,
analogous to those reported in [10] for validating analytical partial derivatives for
eigenvalue and eigenvector derivatives.

Example: Minimum Sensitivity Symmetric Output Feedback Gain Design
Suppose that a mechanical system is defined by the equation of motion
Mx + Cx + Kx.= Du (28)

where x € R” and u € R” are the configuration and control vectors, respectively, M
is the n X n positive-definite symmetric mass matrix, C is the n X n positive semi-
definite symmetric damping matrix, K is the n X n positive semi-definite symmetric
stiffness matrix, D is the n X m control influence matrix, and () = 4()/d:.

Motivated by the developments in [§, 11, 12], we introduce the symmetric or
“structural” output feedback form of the control law

u=—-(GDx + G.D'x) (29)

where G, and G, are m X m positive definite svmmetric gain matrices. For 2i! mem-
bers of this special class of output feedback controllers. we can verify that asymptotic
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* stability is guaranteed. The most familiar member of the family is the so-called “direct
feedback™ case of diagonal G, and G,. More generally, fully populated gains allow
every actuator to linearly operate on all sensor measurements and thereby provides
more controller design freedom. This class.of controllers is attractive because a stable
family of controllers is guaranteed even in the presence of model errors, and it is not
necessary to implement a state observer. However, it is necessary to have all sensors
located at actuator stations; and this requirement presents a stumbling block in some
applications. For this reason, generalizations and medifications of this approach hzve
recently been proposed [11] to circumvent these difficulties.

We admit the most general family of positive definite gain matrices by introducing
the Cholesky decomposition gain parameterizations

G,=LLT and G.=1L,L} (3C

G, and G, are guaranteed to be positive semi-definite for any real elements (g, ) as-
signed to the lower triangular matrices

¢ 0 0 - 0] (7 0 - 0]
92 qg.: o -~ 0 ry l'i; - 0
Li=1gqy qun a5 = 0 and Ly={ry rn - 0O (31
| 9mt Gz Gz T 45..._ [ Tt Tm2 7 ".zm_

The corresponding global gain parameter vector then becomes

P=[qudu- - Gmdn - Gum Ty 2T ’:.:---"m]r (32)

We consider G, and G, to be functions of p; through equations (30) and (31), it is
clear that .

G, = Gp) and G, = G,(p) (33)

and that, for example, the partial derivatives of the gain matrices with respect 1o the
elements of the parameter vector p can be constructed easily.
Substitution of equation (29) into equation (28) gives the closed-loop system

Mx+Cx+Kx=0 (34)
where the closed-loop system matrices are
C=C+DG,D" and K=K+ DG,D" (35)

It is apparent from equations (33) and (35) that the closed-loop damping and stiffness
matrices are simple algebraic functions of the gain vector p, i.e.,

¢ =Cp) and K = K(p) (36.

Considering a first-order state-space form of the system differential equations which
is equivalent to the second-order closed-loop system of equation (34), we write

Bz = Az 37
where
_[x _|l0] M _|M [0] .
‘ {x} A [—K’ —é}’ B‘[[o] M} G
(135)
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It is evident that
A = A(p) (39)
The right and left cigenvﬂalue- pfoblcrﬁs associated with z = ¢e* solutions of
equation (37) are
right \Bd, = Ad,, i=12,...,2n
left  ABTY, =AY, i=1,2,...,2n (40)
where we adopt the usual normalizations [10) of the biorthogonality conditions
&/Bh, =1, i=1,2,...2n
Y;Bd, =3, i,j=12,...2n
YAD, =AS,, ij=1,2,...2 (=1)

Since A = A(p), it is natural that we consider the eigenvalues and eigenvectors to be
functions of p. Except for isolated events of multiple eigenvalues and root bifurca-
tions, we can consider the eigenvalues and eigenvectors to be smooth differentiable
functions of p.

In order to apply gradient-based optimization algorithms, it is useful to compute
analytical partial derivatives of the eigenvalues and eigenvectors. Differentiating
equations (40) and using equations (41), we can obtain the following results [10]

IA; dA dB
-—'=¢’r(——}\.—~)¢' i=1,2,..2’l
ap; ap, ap
3d’i = b k S
— = C..d)‘. = CDC
op: ;-21 !
2
L/ > diy; = ¥D* (42)
Py jet

with ® = (&, bo), ¥ = [ . ], C* = [c}), D* = [d}

where

s 1 - 0A aB L
i oY\ AT, *
C}l Ai - xj J apl A; ap ¢: J 1
1 EY:] 2 . .
=-=¢—d + TcidlB + BN, =i
2 Bp, 'l-l'
| 0A aB
df.: T—"')\'_ iy Eaki
Y V¥ v (aPk 'ap) * s
dB
T k - .
-y —d, — c,, =1 (43)
9p; ’

It is apparent that we can also obtain expressions for the second partial derivatives of
the right (or left) eigenvectors by differentiating equation (42) with respect to p, as

L I

- = —Ct+ d— ' (44)
¢pydp;  dp; ap,
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where

aCt _ fac;
Ct=[c'] and — = [-—1]
Leu] ap, ap,
We can obtain expressions for dc;/dp, by differentiating c}; in equation (43), using
the chain rule as is developed in {10].

Numerical Demonstrations

We consider two specific physical systems to illustrate the above ideas. The first
system is a transparent low order example of 6th order. The second example is a
flexible structure which provides an occasion to indicate how the issues of order re-
duction approximations enter the developments.

First we consider the low order system which has three degrees of freedom and
two actuators. The mass, stiffness, and control influence matrices are

1 00 20 =10 O 1 0
M=|0 1 0}, K={(-10 30 -20y, D={0 0 (45)
0 01 0 -20 20 01

Conditioning of the eigenvectors is a direct measure of the sensitivity of the corre-
sponding eigenvalue to perturbations in the elements of the closed loop system matrices
(13]. The condition number of the modal matrix of closed loop eigenvectors can be
used to establish finite bounds on the system matrices within which stability can be
guaranteed [6]. We therefore adopt the condition number N(®°) of the closed loop
modal matrix ®° as our performance measure. This performance measure is related to
the singular values as

a,(®(p)
o2 (P(p))

where o, and o,, denote the maximum and minimum singular values of the right
modal matrix ¢°.

We also adopt the two equality and two inequality constraints on eigenvalue
placement '

J(p) = N(@(p)) = (46)

flp) = w, — wip) =0, = 1,2
&P = w(PX(P) =T, i=1,2 (47
where
w;(p) = Im(A)
RCO\.')
L(p) v (48)
The eigenvalues are ordered according to increasing frequencies
tm A,(p)| = |Im Ay(p)| = Im Ay(p)| = ... = |Im A, (p)| (49)
(137)




First and Second Order Sensitivity of the Singuiar Value Decomposition g4

Thus, we impose constraints on the first two closed-loop frequencies and time
constants.

The objective values for the frequencies, w,,, are simply taken as their correspond-
ing zero gain values. The inequality constraints are introduced to bound the slowest
system time constant, and we adopted T, = 0.3, i = 1, 2.

Utilizing the minimum norm differential correction algorithm and the homotopy
technique of [14], we successfully solved the above nonlinear programming problem.

The characteristics of the open-loop and closed-loop systems are summarized in
Tables 1 and 2. The final converged position and velocity gain matrices are

1.1591 0.0253

= . 2'
¢ [0.0253 1_0557}' ”G|"/ 1.568
2.2539 0.2834 )

G: = [0.2834 2.6918]' IGAll, = 3.5336

where ||Gl|, is the Frobenius norm of the gain matrix G.

As is evident, we successfully imposed the system time constan: constraints and
also improved the conditioning of the closed-loop eigenvectors as compared to the
open loop system. For fixed eigenvalue constraints, minimization of the condition
number maximizes the Patel-Toda measure {6] of robustness with respec: to plant
uncertainty.

The optimization process was initiated by simply adopting identity. matrices for the
G, starting iteratives. Ten homotopy steps were required with three to four minimum
norm differential gain corrections on each step. The singular value gradients were com-
puted using equation (15). The minimum norm correction process did not require the
second partials, but these were computed as well and verified by finite differences.

TABLE 1. Characteristics of the Open Loop System

Eigenvalues w; {w, Cond. No. N ($°)
*1.4447i 1.4447 0o -
*4.4721i 4.4721 0 9.4903
+6.9219i 6.9219 0

TABLE 2. Characteristics of the Closed Loop System

Eigenvalues w; {iw; Cond. No. N(®9)
—0.8833 = 1.4447i 1.4447 0.7532
-1.0574 = 4.4721i 4.4721 1.0189 8.1291
-0.5322 = 6.7872 6.7872 0.5306
(138)
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As a second example, consider the planar rotational/vibrational dynamics of the
_ flexible structure consxstmg of a rigid hub with four cantilevered flexible appendages
(Fig. 1). “Table 3 summarizes the nrapc:r/RPl. configuration parameters [14].-The

model is restricted such that the opposing beams deflect antxsymmetncally The equa-

- tions can be derived by using a Lagrangian approach:
d{aT ar av .
dr(ax) ax, ax = F; i=1,...n (50)

where T is the system kinetic energy, V is the system potential energy, F, is the ith
generalized force, and x; is the ith element of the configuration vector, x:

x_={6‘?u%n----‘lm‘quzz----Qn}T (1)
i “2
ServoDisk Motor/ . *
Reaction Wheel —
Clifion 2 - Clifton
Precision Precision
Reaction Reaction
Wheels Wheels

FIG. 1. Maneuverable Flexible Structure: Experimental Configuration.

TABLE 3. Draper/RPL Configuration Parameters

Parameter Symbol \alue

Hub radivs r 1ft

" Rotary inertia of hub Js 8 slug-ft’
Mass density of beams P 0.0271875 slug/f1
Elastic modulus of the arms E 0.1584E + 10 Ib/f°
Arm thickness t 0.125 in
Arm height h 6.0in
Amm length L 4.0 ft
Tip mass m 0.156941 slug
Rotary inertia of tip masses J, 0.0018 slug-f?

(139)
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The g, are generalized beam coordinates which result from using a Ritz approach to
approximate the local beam deflections, y;, as the truncated series

y(t.2) = D qin;(2), i=12 0=zsL (52)

j=i

The comparison functions ¢,(2) in equation (52) are chosen as [15]

- 1 = cos[ ™2} + L pyifimE)’
$(2) =1 cos(L)+2( 1y (L) (53)

which satisfy the geometric and physical boundary conditions of a clamped-free beam
(clamped to the hub).

We apply a torque u, to the hub, a torque u, to the end of appendages 1 and 3, and
a torque u, to the end of the appendages 2 and 4.

Lagrange’s equations then lead to the following matrix form for the system equations
of motion

J My ML, 0 0 0 12 2
My, Mg, O |X+10 K., O |x=]0 2¢'(L) 0 |u
My, O M| |0 0 K., 0 0 20'()

(54)

where

J=J,+ 4pr(: + rdx + 4[J, + m(r + L))
0
L
[M,.,|],~ = [M,qz],. = 2[ j plx + Neg,(x)dx + m(r + L)¢,(L) + J,¢;(L)]
0
L
Mooy = M,,); = 2[ J; pd;(x)d;(x)dx + me(L)d;(L) + 1,¢;(L)¢;(L)]

'L
Koo = Kol = 2 E81030500

Note that J, is the rotary inertia of the hub, J, is the rotary inertia of the tip mass, p is
the mass density of the beam, m is the mass of the tip mass, L is the arm length, r is
the hub radius, and ¢,(x) is the comparison function (equation (53)). More simply,
Mx + Kx = Du (55)
The eigenvalues (natural frequencies) and eigenvectors (mode shapes) of the free vibra-
tion problem associated with equation (55) satisfy the orthogonality conditions
™MD =1

SKD = ding(es, ol .. D) o

where @ is the (n X n) modal matrix of eigenvectors.
(140)
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For high order systems such as a flexible structure, it is usually desirable and often
necessary to develop a reduced-order model to save on computational time when de-
signing control laws. The high order model is generally retained to verify the resulting
design. We elect to make use of truncation to construct the reduced order model, for
illustration purposes.

The modal coordinate transformation is introduced as

x(t) = D) = [@,qaz]{:"‘} 57)
2

where 7, is the first n, modal coordinates which we are interested in retaining in the
reduced order model. Then the reduced-order equation of motion becomes

Mij, + K9, = Du (58)
where
M=dMb,, K=00Tkd,, D=9oD
For “structural feedback™ control, the control force vector takes the following form
u=(GD0™+G,D7y,) (59)

In the present example, we take N = 20, and n, = 9. Therefore we design the control
gain matrices G, and G, by using the reduced (18th) order model! and use the full
(42nd) order system to verify the controller design.

We adopt the condition number of the closed-loop modal matrix as our performance
measure, and impose constraints on the first three closed-loop frequencies and time
constants. The objective value for the closed-loop frequency of the rigid body mode
is taken as 0.3, and the objective values for the first two flexible mode closed-loop
frequencies are taken as their corresponding zero gain values. We adopt the following
time constants for lower bounds on the first three closed-loop eigenvalues: T, = 0.2,
T,=02,and T, = 0.25.

The optimization process was initiated by simply adopting identity matrices for the
G, starting iteratives. The characteristics of the open loop and closed loop systems are
summarized in Table 4. The final converged position and velocity gain matrices are

[1.8342 0.2502 0.26017
G, = | 0.2592 0.0409 0.0405 IGll, = 1.9080
| 0.2601 0.0405 0.0403

"7.4284 0.4579 0.83357
G, = | 0.4579 0.2411 0.0211 IG:ll, = 7.5612
| 0.8335 0.0211 0.3509._

The small differences of the first two flexible mode frequencies stem from the fact
that we designed the controller by using a reduced-order model and used it for the
full order system. It is obvious that our reduced-order model was sufficiently accurate
for control design purposes. Due to the positive definite symmetry of the gain matri-
ces, all modes of the full order model are stabilized. It is important that the symmet-
ric feedback form of the control guarantﬁsl‘s;n;bility, even though we may not have
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TABLE 4. The Characteristics of the Open-loop and Closed-loop System (First Nine Modes of the
Full Order System)

OPEN LOOP CLOSED LOOP

wl ;l'wl ml c:wl
0 0 0.3000 0.2000
4.3724 0 4.3726 0.2061
7.9070 0 7.9071 0.2539
51.4510 0 52.0041 5.3354
52.8058 0 53.0653 8.0875
157.5566 0 158.0285 14.0467
158.3659 0 158.5273 21.4808
313.7099 0 308.8039 34.8815
314.3402 0 311.7689 22.6602
Condition No. ® Condition No. 37210.8

chosen a good reduced-order model. In this case it is obvious that we have success-
fully imposed the specified constraints on the closed-loop eigenvalues and imnroved
conditioning of the closed-loop eigenvectors.

These examples are illustrations of the utility of singular value derivatives in the
optimization of feedback control laws; while we have adopted a particular stable family
of output feedback control gains, any parameterization of the feedback law can in
principle be employed.

Concluding Remarks

Algebraic expressions for the sensitivity of the singular value decomposition has
been derived and verified numerically. We also summarize a simple numerical
demonstration of the utility of these derivatives to optimize feedback control gains to
minimize the closed-loop eigenvector condition number subject to eigenvalue place-
ment constraints. The main contribution of this paper is a concise derivation of the
singular value first and second order partial derivatives; these will find wide applica-
tions in singular value analysis of dynamical systems. A significant secondary contri-
bution is the presentation and demonstration of an algorithm utilizing these singular
value sensitivities to design robust output feedback controllers.
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Appendix: Homotopic Nonlinear Programming Based Upon Minimizing
Successive Design Modifications

Figure Al provides a logical flow chart showing (the macroscopic details of) a ho-
motopic nonlinear programming algorithm which achieves convergence reliability by
defining a sequence of neighboring constraint specifications and minimizing the se-

quence of design modifications required to satisfy the constraint sequence.
(142)
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FIG. Al. Logic Flow of the Minimum Correction Homotopy Algorithm for Nonlinear Programming.

The central feature of our nonlinear programming algorithm is the use of the mini-
mum norm differential correction of the design variables. This is a generalized New-
ton process for solving a system of underdetermined nonlinear equations; on each
iteration, we seek to minimize the norm (sum square) of the correction vector to sat-
isfy the specified constraints. The constraint functions are locally linearized to pro-
(143)
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vide a system of linear algebraic equations to solve for the correction vector; the
process is iterated with the derivatives (the Jacobian matrix) locally evaluated. We
discuss below the procedure used to deal with inequality as well as equality con-
straints. Of course the key requirements underlying successful convergence of any
Newton-like algorithm are: (i) the existence of a feasible solution and (ii) the avail-
ability of a sufficiently close starting iterative. As we show below, the homotopic
continuation method effectively guarantees that we can deform the constraints by con-
trollable, arbitrarily small amounts and thereby remain controllably close to a neigh-
boring converged solution; this effectively guarantees “arbitrarily good™ starting
iteratives for each local iteration. An embedding method is used to define a continu-
ous family of problems which contain two important members: (i) a trivial problem
(one for which the solution is available) and (ii) the problem of interest.

The continuous one-parameter family of problems is constructed in such a way that
an imbedding parameter (0 = vy = 1) may be set to define any member of the family
with ¥ = 0 generating the trivial problem and y = 1 generating the problem of inter-
est. By sweeping vy and controlling the y increments, we control how closely spaced
the neighboring solutions lie (in the space of the constraint functions), and the y in-
crements can be assigned adaptively based upon convergence progress. Thus we can
remain as near to neighboring converged solutions as is necessary to maintain suffi-
ciently good starting iteratives. Therefore, if a local convergence cannot be achieved
(for some vy value), we have eliminated the most common problem (of having a poor
starting iterative), and we can focus on other, more interesting convergence issues,
such as the non-existence of feasible solutions, local linear dependence of the
linearized constraint equations, turning points, and other issues. For example, com-
paring the active constraint sets and the corresponding Jacobian rows between the ap-
parently un-reachable set (the one for which convergence cannot be achieved) and the
previous converged solution, will usually reveal which constraints are in competition
and will usually suggest avenues for revision of the problem and/or provide insights
as to why the convergence failure occurred.

We now discuss the algorithm, beginning with the statement of the parameter opti-
mization problem we are addressing: We seek to find p* which minimizes a function

J = J(p) (AD)
subject to the constraints

fp)=fi i=L12,....m
gp) =T, j=12,... (A2)

where f,; is the “objective™ value of the ith equality constraint, and T, represents
boundaries on the feasible region.

Converging from an approximate starting solution p,,,, to a feasible solution satisfying
the constraints of equations (A2) may be approached by locally considering all of the
equality constraints and only the active (locally violated) subset of inequality con-
straints. The locally violated subset of inequality constraints are simply considered as
additional equality constraints of the form

fp) =T, j=Em+1lm+2,...,r (A3)
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The subset of inequality constraints g(p) = T; included in equations (A3), as local
equality constraints, obviously depends upon which constraints are locally violated
and thus will typically change during the differential correction process. So long as r
(the number of locally violated constraints plus the m equality constraints) does not
exceed N (the number of elements in p), then we can proceed with the discussion be-
low, otherwise, only the N — m “most important™ inequality constraints will be locally
imposed, assuming the original ordering represents the “importance hierachy” of the
inequality constraints. Adopting this approach permits the specification of greater
than N — m inequality constraints, although not more than N — m can be active on
any iteration, especially the last one. Note that it is often the case that final conver-
gence to a feasible solution satisfying equations (A2) is achieved even when local
iterations encounter more than N — m locally active constraints (i.e., it is typical that
only a small subset of the specified inequality constraints are active when conver-
gence to a feasible solution is achieved, and only under special circumstances will
this finally active subset of constraints be invariant during the local iterations). These
ideas must also be viewed in the context of the homotopy procedure which we discuss

below. '
Thus our re-stated optimization problem is to minimize J of equation (A1) subject to
flp) = 1, (Ad)
where f(p) is the r X 1 vector of m equality constraints and the r — m active inequality
constraints.

We initially address the problem of achieving a feasible solution near our starting
solution, and delay considering minimization of J until a feasible design has been
achieved. To enhance covergence, we introduce a “portable objective™ vector £,(y) as
the one parameter family of objective constraint values

£(y) =+, + (1 - YVMPur), O0sy=l (AS)

where v is the homotopy parameter. The linear homotopy map H(p(y), y) is generated
by replacing f, in equation (A4) by f, from equation (AS) to obtain

H(p(v),y) = A, + (1 = Y)(Puer) — f(p(y)) = 0 (A6)

Notice the y boundary conditions satisfied by H(p(y), ) in equation (A6):
at y = 0, trivial problem:

H(p(0),0) = f(p....) — f(p(0)) = 0 & p(0) = p,.
at y = 1, problem of interest:

H(p(l)v l) = fa - f(P(l)) = 0 < P(l) = p/miblc (A7)

It is apparent that an arbitrary guess p,,, satisfies the homotopy map of equation (A6)
for y = 0, and if we can obtain a solution for y = 1, then we have a feasible solution
Preasivie - It iS apparent that sweeping y at a suitably small increment generates a se-
quence of neighboring problems. We solve this sequence of problems, using the
neighboring converged solutions to generate starting iteratives for each subsequent
problem.

The local corrections (for each y specification) are done by linearizing equation (A6)
about the local p iterative and computing (the di)fferential correction which will satisfy
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the linearized constraint e~uation with the minimum correction norm. So we minimize
Ap'W Ap, subjcct to H(p(y),y) + AAp = 0, where A = gH/3p = —af(p(y))/op.
and W is a suitable positive definite weight matrix. The solution provides the mini-
mum norm differential correction result [16]

Ap = -W™'AT(AW 'AT)"'H(p(y)) (A8)

and we use the recursion p,. = p.s + Ap iterate until equation (A6) is satisfied for
each local y value. Upon achieving a local convergence, vy is incremented by a pre-
scribed amount. If local convergence is not achieved, the y increment is reduced and
y is assigned nearer the largest y value for which convergence was previously
achieved. The process is halted if (i) convergence to a feasible solution is achieved
(at y = 1), or (ii) local convergence cannot be achieved when we increment y by
some small tolerance Ay = &. In the latter case the user should re-evaluate the problem
statement in view of the active constraint set and other considerations from evaluation
of the largest y solution achieved.

Having achieved convergence to a feasible solution, we now consider minimization
of the performance index J subject to the local equality constraint of equation (A6).
Assuming there are r < N active constraints, this can readily be accomplished [16]
by simply introducing an objective value for the performance index J, and treating it
as the (r + I1)th equality constraint. The corresponding minimum norm differential
correction, in lieu of equation (A8) is

Ap = W ATAW AN Hi(p(y)) (A9)
where
) A ) H(p(y)
A=|-- aJ .a'J ..... af -1, H(p(‘y)) = { ........... } (A10)
per e Jp() - J,

Upon achieving convergence to the feasible region, we reset y = 0 and subsequently
use equation (A9) to compute the differential corrections. For the iterations subsequent to
the first feasible solution, a new homotopy process is established to drive the objective
function to its minimum value, or alternatively, drive it to a “goal™ value J,,,. The
objective value J,(y) is assigned the one parameter family of values

1Y) = Ypa + (1 = YW (Preasivie) (All)

where p,,.... is the first feasible solution (satisfies equation (A6) with y = 1).

The value for J,,, may be an actual goal, but is more typically interpreted as “the
best one could possibly hope for”; it is often taken as zero for a minimization problem.
We increment y from zero toward unity, with the size of the increments dictated by
convergence progress of the differential corrections for each y value. When conver-
gence can not be achieved for a small tolerance increase in vy, we adopt the solution
corresponding to the largest -y for which convergence was achieved as the constrained
minimum. We have rigorously proven [16] that this process is mathematically equiva-
lent to a gradient projection with appropriate strategies for correction step size control.
However this algorithm is superior to the gradient projection method because (i) the
correction formulas are more easily programmed, and (ii) the one parameter homo-
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topic continuation process has been found much more attractive than step size control,
in that it is inherently self-starting. Of course, if the problem under consideration has
multiple constrained minima, one will find that the above problem formulation does
not save you from the local versus global convergence difficulties.
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NOVEL SENSING AND STRUCTURAL IDENTIFICATION METHODS:
PRELIMINARY ANALYTICAL AND EXPERIMENTAL RESULTS

G. H. James and J. L. Junkins
Department of Aerospace Engineering
Texas A & M University
College Station, Texas 77843

We present results of recent structural identification research in the Dynamics and Control
Laboratory at Texas A & M University. Analytical developments, sensor/actuator systems and
experimental results are described. The general framework of our identification method is
presented. The method is an extension of the Creamer/Junkins'? approach which scales user-
defined substructures’ contributions to the model matrices to fit the system's experimentally
determined free and forced response in a least squares sense.

The test article is a 5’ X 5’ aluminum grid cantilevered in the vertical plane. The grid was
cut from a single sheet of metal and is thus free of joints. A stereo-triangulation optical imaging
system operating at 200 fields per second is used to measure inertial deflections of twenty active
targets mounted on the structure. Conventional strain gauges are also mounted on the structure,
both for identification measurement and for eventual real time control. Three reaction wheels are
mounted on the structure for actuation. An instrumented impulse hammer is also available to
excite the structure. The Eigensystem Realization Algorithm and software developed at Texas
A&M are used for data reduction and modal identification.

INTRODUCTION

The anticipated exploitation of the space environment for habitation, large scale scientific
experiments, increased communication services, ballistic missile defense, surveillance, and
energy production will require large structures on-orbit. Launch costs are extremely high and
will force these structures to be very lightweight and therefore very flexible. The increased
flexibility will cause the lower natural frequencies to be easily excited by control forces or other
input forces. Mathematical models which reliably predict the dynamical response of these
structures will be necessary to implement control systems or for analysis. These models are
usually generated from a finite element process and give theoretical estimates of the natural
frequencies, mode shapes, damping ratios, and frequency response functions.

A subset of these theoretical results can be experimentally determined on the actual
structure or a representative test article. However the theoretical and experimental results will
almost never agree. The sources of discrepancy are many, but the most important are: (i) model
errors, (ii) measurement errors, and (iii) algorithm-induced errors. A process called structural
identification is used to upgrade the mathematical model to obtain best estimated results in close
agreement with experiment.
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HARDWARE DESCRIPTION

The test article used in this work is a 3003 H14 aluminum grid. The dimensions are shown
in Fig. 1. The grid was cut from a single 5 foot wide sheet and is therefore monolithic. This
unique feature eliminates nonlinear effects which arise in bolted or rivited structures. The test
article is cantilevered in the vertical plane by a 6.5 inch tab. The tab is sandwiched between a §
by 7 inch rectangular steel tube and a 5/8 inch thick aluminum plate. Ten bolts are used in the
attachment.

Six full bridge strain gauge packets were mounted on the grid. The Micromeasurements
CEA-13-250UW-350 strain gauges were placed in pairs on opposite sides of the grid. The
locations of the strain gauges are shown in Fig. 1. Three dual channel Micromeasurments
2120-A conditioners are used to drive the strain gauges and amplify the signal. A Packard-Bell
280 P.C. and a Data Translation DT 281-G-16SE A to D board are used for data acquisition of
strain gauge response. Edmund Scientific D-2536 jacketed light guides of outer diameter .087"
are used to illuminate the 20 node points marked on the grid. The light guides are illuminated
with a Kodak Carousel 850 projector with 500 watt bulb.

Three Clifton Precision AS-780D-100 electric motors with reaction wheels are mounted on
the negative side of the grid at the locations marked in Fig. 1. The motor at node 3 is mounted
with the shaft (torque axis) parallel to the y axis. The motors at nodes 7 and 9 are mounted with
shafts parallel to the x axis. The motors can produce approximately 8 oz.-in of torque continu-
ously or up to 16 oz.-in for short periods. The electrical time constant is approximately .35
milliseconds and the friction torque is approximately .6 oz.-in. The motors are powered by
Kepco BOP-36-13M four quadrant power supplies. A Wavetck Model 188 Function Generator
is used to provide sinusoidal input signals to drive the power supplies. A Hewlett Packard
5315A Universal Counter is used to read the frequency input to the motors. A reaction wheel is
placed at each end of each motor shaft. These reaction wheels are brass disks 1.25" in diameter
and .25" thick. A Kistler 9722A50 calibrated hammer is used for impulse testing.

Two NAC V-14B 200/60 field per second video cameras are being used in this research.
These cameras contain 2/3 inch MOS focal plane charged coupled device detector arrays with
320 pixels in the horizontal direction and 244 pixels in the vertical direction. Two NAC model
VTR V-32 video recorders are used to record the camera images at 200 f/s on 1/2" VHS video
cassettes. A NAC V-61 viewfinder is available to monitor images at 200 f/s. A motion analysis
SG-20 signal generator is used to externally synchronize both cameras and dub audio tones (used
for iming) on the tapes. The 200 f/s recorded images are read at 60 f/s with a Panasonic AG-
6300 video recorder and a Panasonic TR-124MA black and white monitor. A Moton Analysis
VP-110 video processor is used to perform threshold-based edge detection, hardware editing,
filtering, image boundary digitization, and data transfer of recorded images. A Sun 2/120
computer and Motion Analysis Corporation Expertvision 2D software are used to centroid image
boundaries and produce focal plane trajectories of each centroid time history.
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1 - 25 denote structure nodes
B - denotes strain gauge location
X @ - denotes motor location

Fig. 1 Grid Structure Dimensions
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MATHEMATICAL MODELLING

where

The grid structure is modelled using the following linear differential equation:

MI{q} + [C){q} + [K]{q} = (B}{u}
{e} = [H] {q}

[M] is the n x n mass matrix;
[C] is the n x n damping matrix;
[K] is the n x n stiffness matrix;
[B] is the n x m input matrix;
[H] is the s x n strain transformation matrix;
{q} is the n x 1 state vector;

{u} is the m x 1 control vector;
{e} is the s x 1 strain vector;

n is the order of the system;

m is the number of inputs; and
s is the number of strain inputs.

STRUCTURAL IDENTIFICATION

parameterizes the system matrices as follows:

M=M, «1-5-1 o M;
C=Co *,-.ix B G
K=Ko+Z 1K
H=H, +1§1 W H,

B=Bo+ £ Vg By
mel

¢y
@)

Creamer and Junkins'? have developed a structural identification method which

©)

4)

&)

Q)

M

M, C, K, H, and B are the identified matrices. M,, C,, K, H, and B, are the initjal estimates.

Ml,

parameters,

single elements, groups of elements,

C;, K,, H, and B, are user defined submatrices which model contributions due to physical
parial derivative matrices.

i, By, Y%, i, and Vg are submatrix scale factors which are scaled to match experimentally
determined subsets of the natural frequencies, mode shapes, damping ratios, and frequency
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response functions in a least squares sense. The relationship between the mode! matrix scale
factors and the system response is generally non-linear and an iterative solution is usually
necessary. '

Least squares differential correction® will be used to solve the above identification
problem. The following parameter vector is defined:

PT = {al -":ap » Bl '-°9Bq ’ Yl y---:Yr ’ “'l "",ul vl ,""vt} (8)

The parameter vector is then upgraded iteratively in the following fashion:

Pii =P; + AP, ©)

AP, = (AT W A ATWAQ, (10)

AQ; = Queaqured = Latcutateds (11)

Q"= {% v, {,h"h, R, R}, 0,,0,,0,,0,}; and (12)
9Qu

Ay = oP. (13)

A is a subset of the undamped natural frequencies.  is a subset of the undamped mode shapes.
is a subset of the damping ratios. h'is real part of a subset of the frequency response funtions
away from resonance. h' is the imaginary part of a subset of the frequency response functions
near resonance. R’ is the real part of a subset of the frequency response functions near
resonance. R' is the imaginary part of a subset of the frequency response functions near
resonance. 0, are zero entries in the Q vector which minimizes changes in the orthogonality of

the undamped eigenvectors with respect to the mass matrix. 0, are zero entries in the Q vector

which minimize changes in the orthogonality of the undamped eigenvectors with respect to the
stiffness matrix. O, are zero entries in the Q vector which minimize changes in the normalization

of the undamped eigenvectnrs. OP are zero entries in the Q vector which minimize sizes of the
submatrix scale factors. W is a weighting matrix for the Q vector.

The weights for A, W, §, hY, b\, R", and R’ can be obtained from the uncertainty in the
experiments. The weights on O, 0,, 0,, and 0, are user supplied and serve to constrain the
problem to assure a solution. It may be necessary to utilize a structural identification preproces-
sor to assure that the starting estimates are close to the final estimates. Methods such as
Creamer’s'? original method, Smith and Beatties’ method* or Wei and Zhangs'® method would
be possible candidates.
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INITIAL MODEL

Mass and Stiffness Matrices

The mass and stiffness properties of the structure are modelled using the approach of Paz®.
Paz models simple grid structures as having three global degrees of freedom (d.o.f.) per node.
The coordinate system given in Fig. 1 can be used to visualize the global d.o.f. as a rotation about
the x-axis, a rotation about the y axis, and a displacement in the z direction. Paz therefore
derives his grid element from an Euler-Bernoulli beam undergoing transverse displacement and
an uncoupled torsional rotation. For our case, a total of 36 beam elements which connect the 25
nodes in Fig. 1 are used. All d.o.f. at nodes 21-25 are assumed fixed. This creates a global
model of order 60.

The mass matrix is corrected to account for the effects of motor inertias at the appropriate
modal locations using lumped masses and rotary inertias. A stiffness matrix correction for
gravity was also calculated. The gravity correction is calculated by approximately the mass
distribution as being lumped at the nodes and that the lumped masses act like multiple pendulum
connected only in the vertical direction. The potential energy of this approximate representation
assuming small angles is given as:

20
Ve ZgMLi{1-(172) [ @ - zs)Li )%} (14)

where, g is acceleration due to gravity;
M, is the pendulum mass acting at each node;

L, is the length of the element connecting each node to the node above;
z; is the z displacement at node i ; and
z; ,sis the zdisplacement at the node directly above node i.
A correction matrix for stiffness is calculated from %% and added to the original stiffness

matrix. Since the stiffness induced by gravity is a perturbation, the above approximations were
found to give acceptable accuracy.

Initial Damping Matrix

A proportional damping matrix is calculated as described by Craig’ for an initial estimate.
The initial damping matrix was calculated as: '

C=2, 0, M (15)

where {, is the expected damping ratio of the first mode, and ®, is the first theoretical
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natural frequency.

Input and Strain TransformationMatrix

The initial input matrix B is calculated by filling the appropriate entries in a 60x3 matrix of
zeros with the current to torque constants for each motor. The strain transformation matrix is

calculated from the following formula for a beam element undergoing a positive moment®:
g = 5 d—:— (16)

where, €, is the ith strain gauge output;

t is the beamn element thickness;

x, is the length along the beam element; and

z, is the transverse displacement of the beam element.
z, is approximated as:

Z, =V, 8, + Y, 8, +y; 8, + y, §, (17)

where 8, and 8, are z displacements at the nodes of the beam elements;
8, and §, are x rotation or y rotation (depending on beam element orientation) at the

element nodes; and
; are shape functions.

The cubic shape functions are those which are commonly used for beam elements’:

werofe) 1)
ARG e
oo(e] 2]
ORG

The 6x60 H matrix is filled by equations (16) - (21) for each beam element containing a
strain gauge.
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OPTICAL SENSOR SYSTEM

The relationship between real world 3-dimensional ("object space”) coordinates and
2-dimensional camera (“image space") coordinates is given by the following colinearity

equations®:
1y (Xp - Xc) +€12(Yp - Ye) +C13 (Zp - Z) |
u=uo +Au+fy | S31 (Xp - Xc) +C32(¥p - ¥e) +C33 (Zp - %) | 22)
K3 (Xp - Xc)+Ccn(¥p -¥c) +¢23 (2 -ze) ]
V=vo+ AV | €31 (Xp = Xc) +C32(¥p - Ye) +C33 (7p - ) | (23)
C=C(8,, 6,, 6,,) (24)

where,u and v are image plane coordinates;
u, and v, are principle point offsets;
f, and f, are focal lengths;
Xe» Yp» 2, are the coordinates of the camera focal point in 3-D space.
X.» ¥p» Zp are the 3-D coordinates of point being imaged;
C,-j are elements of (1, 2, 3) Euler rotation matrix;
0,, 8,, and 8, are (1, 2, 3) Euler angles; -and Au and Av model lens distortion.

First order expressions for Au and Av are given as:

Au=T K, P +P, (2 +2u2)+P, 2 V) (25)

Av=VK,? + P23V )+ P, (P +2V®) (26)
1

r=[a? +v2)? 27)

T=u-up (28)

V=v-vy . 29

where, K| is a parameter correcting radial distortion; and P, and P, correct for decentering
distortion.

Resection

The first step in using the optical sensor system is a static calibration (or resection) of the
camera parameters given in equations (22) - (26). The twenty illuminated node points are
viewed from two cameras while the structure is not in motion. This allows u and v focal plane
coordinates and the associated statistics to be calculated for each point using both cameras. The
static position of the grid nodal points and estimated uncertainties are also calculated. Initial
estimates of the camera parameters and associated uncertainties could also be used as inputs to
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the problem. The following vector of known quantities can then be collected:

T 1 11 12
Q ={u,v,u . vyt .., szo' Xo1s Ypur Zpireeer Zp20e

1,1 1l al gl gl gl o1 o1 1 1 2 2
XY 20,050,V 0,k ,p P g X g Py} (30)

The exact positions of the static nodal points can be considered as unknowns as well as the
camera parameters. The following 86x1 parameter vector then results:

T 1 1 1 1 1 1 1
P ={x Y0 Zppes Ziap X 0 Y 0 2, 01,072,075,

ful,, ', u'y, k'YLl Y Xrees PRy} @31

The numerical subscripts in equations (30) and (31) denote the node number. The super-
scripts represent the first camera or second camera. The final parameter vector p is calculated

iteratively using least squares differential correction®:
P =P+AP,; (32)
AP, = (A,TWA)'ATWAQ, (33)

where, AP, is the i th upgrade of the p vector;
AQ; is the i th change in the Q vector;
W is the 166 by 166 diagonal covariance matrix with the inverses of the variances
of the Q vector on the diagonal; and
A is the sensitivity matrix containing the partial derivatives of the Q vector with
respect to the p vector.

The output of this problem includes the final parameter vector P, and its approximate
covariance matrix’ W, = (AT, WA)"". These are input to the next step which includes dynamic
triangulation of the moving structure.

Triangglation

This step allows the structure to move under the influence of free vibration or forced
inputs. The position of each illuminated node is then calculated for each field of video data. The
uncertainties of the final results are calculated by retaining the camera parameters as non-updated
parameters and as measurements. The 30 by 1 vector of knowns is given as:
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QT = {u, v}, u% V2, <,y 2!, 9’,, 912’ 913’
ful,, fv‘l, u'o, k',, p’,, p'z, xzc,...., pzz} _ 34

and the 29x1 parameter vector is given as:

P'= (xp¥p 2p x'0y 2, 0, 015, 0"y,
fu'}, fv'}, uly, k'), ply Ly X2, P} 35)

The final values of X, Yo and z, are given by:
Pi.1 = P+4P, (36)
AP, = (ATWA)'ATWAQ, 37

This problem is solved iteratively as above. The final uncertainties are given in

(A,TWA,)“. This procedure allows the z displacement entries in the state vector to be measured
directly, in non-contact fashion, and over a large area.

DATA SET

Natural Frequencies

- The experimental natural frequencies will be determined from steady state, forced input
tests with strain gauge output, from free vibration tests with strain gauge output, and from free
vibration tests with video output. Fig. 2 shows a 14 second free vibration test with strain gauge
output and its Fourier transform. Fig. 3 shows a 4.5 second free vibration test with video cutput.
The Eigensystem Realization Algorithm (ERA) is currently being used to estimate damping
ratios and natural frequencies from free vibration tests. Table 1 contains the modelled values of
the first five natural frequencies in column one. Column two contains the current expected
values of these frequencies. Standard errors for these frequencies will be estimated when the
data base is large enough.

Mode Shapes

The z displacement mode shapes are measurable with the video system from free or forced
vibration tests. The free vibration data will be analyzed using ERA and time domain curve fits.
The forced response data will be analyzed with sine-cosine curve fits. The curve fit method of
data reduction has the advantage of providing estimates of the standard errors of the results.
Table 2 contains the modelled values for the first mode z displacement mode shape in column
one. Column two provides the experimentally determined values for the first mode. These
results were obtained using a curve fit in the time domain on video data. The estimated standard
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Fig. 3 Video Data Free Vibration Test
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deviations are provided in column three. It should be noted that these results have been scaled
with the analytical mass matrix.

Table 1
NATURAL FREQUENCY DATA
#  Modelled (Hz) Experiment (Hz) Damping Ratio D.R. Uncertainty
1 .809 877 .00603 .00043
2 2.21 2.19 004389 .00033
3 4.48 481 .01105 .00208
4 5.65 6.17 00596 .00045
5 7.76 8.18 01293 00116

Damping Ratios

The damping ratios will be estimated using ERA on free vibration tests and with time
domain curve fits. Column three of Table 1 contains the current best estimates and column four
contains the associated standard deviations. The standard deviations are most likely optimistic.
Future analysis with a larger data base will probably refine these values. The first mode est-
mates were ERA results from long term strain gauge data. The estimates for modes 2, 3, 4, and 5
were obtained from short term video data.

Frequency Response Functions

The frequency response functions between all three motor inputs and all six strain gauge
outputs were measured between .4Hz and 10.0Hz in increments of .2Hz. Additional data was
taken at each of the first five frequencies simultaneously with video data. A linear sine and
cosine curve fit to the data using the known forcing frequency was used to estimate real and
imaginary parts of the response and the associated uncertaintes. Fig. 4 provides a typical
frequency response between the motor at mode 9 and the strain gauge near mode 14.

FUTURE WORK

The future analysis of free vibration video data will strengthen the estimation of the natural
frequencies, mode shapes, and damping ratios as well as the associated statistics. The use of
forced video data at resonance will also be used to strengthen the estimation of mode shapes,
damping ratios, and aid in the identification of the strain transformation matrix.

The structural identification framework mentioned earlier will be used to upgrade the
initial model to better fit the experimental data base. The use of the identified model for closed

. loop control is the real objective. This will be performed in subsequent work.

(162)




Node #

Pt
O WO NV WD~

11
12
13
14
15
16
17
18
19
20

Table 2

FIRST FREQUENCY MODE SHAPE

Modelled

8.25
8.35
8.40
8.35
8.25
5.44
5.52
5.55
5.52
5.44
2.85
2.90
2.92
2.90
2.85
871
897
906
.897
871

Experiment Uncertainty
7.66 .069
7.83 .060
8.18 070
7.97 .074
8.54 079
4.99 .071
5.10 .058
4.94 .085
6.17 .073
6.23 072
2.12 .053
2.78 .052
3.57 .059
3.33 .069
3.95 .078
1.14 .105
.763 .096
1.26 079
1.59 .092
1.43 .080
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Identification Method for Lightly Damped Structures

Nelson G. Creamer*
General Research Corporation, Arlington, Virginia

John L. Junkinst
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A strectural model idestification methed is developed for determinstion of the mass and stiffness matrices of an
mm“mmmmu.mwmumwo{uw
frequencies, damping factors, and frequency resposse clements, a umique identification of the model is established
Mmummwormtwmmuuqu
conditions. Numerical simaiations demonsirate the flexibility and potential of the proposed method.

Introduction

CCURATE knowiedge of the mass, damping, and stiffness
associated with a dynamical system is a key ingredient for
correlating theoretical and experimental results and for design-
ing active control schemes for vibration suppression and atti-
tude maneuvering. Discretization of a linear continuous
structure by means of finite-element analysis (or other similar
methods) yields the well-known mass and stiffness matrices.
Although this discretization process may be well defined, the
resulting structural model will be only as accurate as the
parameters and modeling assumptions used to characterize the
structural behavior. Also, determination of the damping ma-
trix requires knowledge of parameters which may be difficult, if
not impossible, to measure in the laboratory.

Methods for refining a priori structural modeis are readily
available in the literature. References 1-6 address the identifi-
cation of a set of physical/gecometrical parameters using non-
linear least-squares and Bayesian estimation methods. The
disadvantages of these methods are the following:

1) Use of natural frequencies and/or mode shapes, exclu-
sively, results in nonunique identification of the initial parame-
terized model (in the sense that an infinity of linear models can
produce the same set of cigenvalues and eigenvectors), unless
some parameters are “fixed” at their initial values.

2) Convergence of the nonlinear estimation algorithms re-
quires initial parameter estimates to be *‘close” to their true
values.

References 7-11 determine mass and stiffness matrix im-
provements to enforce exact agreement between theory and
experiment. Again, use of modal information alone results in
both nonunique solutions and physically unrealistic coupling.
Reference 12 utilizes submatrix scale factors to improve the
initial mass and stiffness matrices using modal information,
with the uniqueness problem once again surfacing. In Refs.
13-15, a linear algorithm is used to identify the mass, damping,
and stiffness matrices from forced time-domain response. Al-
though there is no initial estimate required for the model and
the uniqueness problem is, in principle, eliminated, the disad-
vantages are now that the order of the resulting model is depen-

Received May 1, 1987; revision received Sept. 3, 1987. Copyright ®
1987 by J. L. Junkins. Published by the American Institute of Aero-
nautics and Astronautics, Inc., with permission.

*Technical Staff. Member AIAA.

{TEES Chair Professor, Aerospace Engineering. Fellow AIAA.

dent on the number of sensors used on the structure and that
the parameter vector consists of every element of the highly
redundant mass, damping, and stiffness matrices.

A method for identifying the mass, damping, and stiffness
matrices of an undamped or lightly damped structure using
measured modal information and frequency response eiements
is developed in this paper. This method is designed to climinate
the problems described above and is simple to implement.

Identification of Undamped Structures

Consider the classical second-order equations governing the
motion of an undamped structural system

Mii + Kn = f 9}

where M and K are the n x n mass and stiffness matrices, a is
the n x | generalized coordinate vector, and fis the » x 1 gen-
eralized force vector. The initial estimates of the mass and
stiffness matrices, M and X, are obtained from a standard
discretization process, i.c., the finite-clement method. It is as-
sumed that the following measurements, extracted from re.
sponse of the actual structure, are available: [) asetof m(<n)
natural frequencies d, 2) a set of corresponding 7 x | mode
shapes ¥, (or approximations from the initial structural
model), and 3) a small set of frequency response elements
fiy(w) measured throughout the frequency range of interest for
the structure. (A complete row/column of the frequency re-
sponse matrix is not required.) Ewins'® provides a review of
many frequency- and time-domain approaches for generating
these measurements. Ewins and Gleeson'” developed a tech-
nique for obtaining modal measurements for lightly damped
structures. Juang'® provides a review of frequency- and time-
domain modal identification techniques using system realiza-
tion theory. The goal of the structural model identification
method is to improve the initial mass and stiffness matrices
such that the theoretical and experimental results are in agree-
ment.

To begin, it is desirable to introduce the well-known spectral
decomposition of the frequency response function

ha(@) = \:: (i&"_) ?

w?~-w?

re|

(168)
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where ¢, is the jth element of the rth mass-normalized mode
shape that, in matrix form, satisfies

d'Mp=1I (3)

Since the true mass matrix is not known, an approximation to
Eq. (2) must be utilized. Introducing the relation

b = \/;'Ji"

into Eq. (2), and motivated by Ewins,'¢ an approximation of
the spectral decomposition can be written as

r=1.2,...m (4)

futw) = 2% + I(E’—fﬂf—;’-;a,>+a, (s)

In Eq. (5), the first term represents the contribution from any
rigid-body modes (w, = 0), the last term represents an approx-
imate residual contribution from high-frequency modes
(outside the measured frequency range), and the a are to-be-
determined modal normalization factors. By ‘“‘sampling”
throughout the frequency range of interest (N represents the
number of samples), Eq. (5) can be rearranged into the follow-
ing standard linear format to identify the modal normalization
factors by the method of least squares

1 a
E‘(wl) w—"% L"le...Ll. 1 1:
= Lo (6)
t %X,
Ry(wy) ps LyLyg-Lym 1 .
where o
Ly= > - ol (6b)

To include measurements from more than one frequency re-
sponse element, if available, a simple augmentation (or *stack-
ing™") of Eqgs. (6) is required.

Once the modal normalization factors have been deter-
mined, the orthonormality conditions that the mode shapes
must satisfy can be written as

CHC TR (7a)
VTKG, = b0} a, (T0)

To identify the true mass and stiffness matrices, the following
expansions are used'?

P
M=M+ 3 1M, (8a)

re|

K=R+ ¥ 8K, (8b)

ra}

where M, and K, are the rth predetermined mass and stiffness
submatrices, 7, and §, the to-be-determined rth mass and stiff-
ness submatrix scale factors, and P and Q the total number of
mass and stiffness submatrices. The mass and stiffness subma-
trices can represent single finite elements or (more coq:monly)
groups of common finite elements assembied into their corre-
sponding global locations. The flexibility (and responsibility)
in defining M, and K, in Eqs. (8) is an important feature .that
can be used to exploit an engineer’s insight explicitly. Substitut-
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ing Eqs. (8) into Eqs. (7) and re-arranging terms yields

—grag L) o . i) [

% b= Sp (%)
-§Tmy, VM, .. §TM, lv»

-2
""FirR‘Fl*'a';—l ViKW, .. d;,TKQJ, B

i p= L r(9b)
(7 H 7 dTKW, | | Bo

where the second set of equations in Eqs. (92) and (9b) are
valid when i # j. Collecting Eqs. (9) for each measured natural
frequency yields a2 set of equations (linear in the unknown
submatrix scale factors), which can be solved by a least-squares
method, provided that m(m 4 1)/2 is greater than max(P.Q).
Since Eq. (5) represents an approximation to the frequency
response function, an iterative procedure can be used whereby
the unmeasured natural frequencies and mode shapes are pre-
dicted from the present best estimate of the structural model
and used in Eq. (5) in lieu of measurements.

Identification of Lightly Damped Structures
If a small amount of damping is present in a structure, the
structural identification method developed in the previous sec-
tion can be used, in conjunction with matrix perturbation
theory, to identify the mass, damping, and stiffness matrices.
Consider the symmetrical state-space representation of Eq. (1)

T el

-k 0 0 K
A -[ 0 M]’ B= [K 0] (10b)
If light viscous damping is introduced into the equations of

motion in the form of the symmetric damping matrix C, the
state-space representation is perturbed by the relation

0 00
B'[x ﬂ+[° C]-—-B,,+B. (11

where B, represents the perturbation matrix due to the pres-
ence of the light damping. A first-order perturbation solution
to the free-response eigenvalue problem of Eqs. (10) can be
obtained to approximate the change in the eigenvalues due to
the inclusion of the damping matrix.'®

Consider the cigenvalue problem

—AoAo®o = B, ®,, (12)

where

where A4, and B, are 21 x 2n symmetric matrices and Ao and
@, (r = 1,2,...,.2n) are the cigenvalues and eigenvectors. It is
assumed that the eigenvectors are normalized such that

DLADy =5, (13a)
OB,y = — b (13b)
If small perturbations 4, and B, are added to each matnix, the

resulting eigenvalue problem becomes
-1, A® = B®, (14a)

(169)
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where
A=A+ A4, (14b)
B =B, + B, (14c)
A, = + Ay, (14d)
O, =20, +9, (14¢)

The eigenvalues 4,, and cigenvectors ®,, represent small per-
turbations from their original values. Expanding Eq. (14a),
using Eq. (12), and neglecting second-order terms yields the
cquation

B\ ®q, + By®,, = ~ oA ®g, = do Ae®y, — 4, 4Dy, (15)

Multiplying Eq. (15) by #7, and utilizing Eqs. (13) yields the
relation

DLB, 0y, +OL B, = — o, LA Do, — i, BT, AP, — 4,5,
(16)

It can be observed from Egs. (14) that if 4, and B, are zero,
then 1, =0 (r = 1,2,...,2n) and ®,, become scalar multipies of
®,,. In general, ®,, can be written as a linear combination of
the vectors ©g,,Pys,-.-Do2,- TO guarantee that ®,, =0, when 4,
and B, are zero, it is assumed that the perturbation cigenvector
has the form'?

2
O, =Y £,®q £,=0, s=12,.2n an

kel

Using Eq. (17) in Eq. (16) and letting s = r result in an expres-
sion for the perturbed eigenvalues

4y, = —®LioA, + B0, r=12..2n (18)

In the sequel, it will be shown that Eq. (18) can be used as the
central equation for identification of the damping matrix.

For a lightly damped structure, the frequency response func-
tion closely resembies that of the corresponding undamped
structure, except near the resonant peaks. Therefore, given a
set of complex frequency response measurements from a lightly
damped structure, identification of the mass and stiffness ma-
trices can be performed, as described in the previous section, by
using the real components of the frequency response measure-
ments and the imaginary components of the cigenvalue mea-
surements. Again, this method will only be accurate for
frequency response measurements away from the resonant
peaks. Once the mass and stiffness matrices have been iden-
tified, the damping matrix can be determined as follows. First,
the perturbed eigenvalues 4,, are obtained by simply subtract-
ing the undamped modeied eigenvalues i, from the measured
eigenvalues [,

2 =L =g = (G, + i) — (i) (192)

4y = 0, + i@, - wy,) (19b)

where &, and @, are the rth measured damping term and
damped natural frequency. To utilize Eq. (18), the eigenvectors
®,, must be normalized according to Egs. (13). In general, the
form of the eigenvectors becomes

Do
®or = {iwo'¢nv} (20)

where ¢, are the mode shapes from the identified undamped
model, normalized with respect to the identified mass matrix.
Therefore, using Eq. (20) in Eq. (13a) determines scale factors

(170)
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a, necessary to normalize ®,,, such that Eq. (13) is satisfied

a.{¢£iwo,¢&}[_K o]{¢“ }-l 212*

0 M|liwedo
or
e —$3Kdo, — wid5EMdo) = 1 (21b)
or
1
%= =T (21¢)

The normalized cigenvectors ®,, can now be written as

- %o 2

Expanding the damping matrix in a similar fashion to Egs. (8),
and using Egs. (22) and (19b) in Eq. (18) with 4, =0 and B,
defined in Eq. (11), yields the relation

R
G, + {d, — wg,) = -%4’5[6 + X C.C.]%, (23
¢=1

where C is the initial damping matrix, C, the gth damping
submatrix, &, the gth damping submatrix scale factor, and R
the total number of damping submatrices. Because the right
side of Eq. (23) is real, the first-order perturbation solution
does not predict a change in the undamped natural frequencies
due to the addition of the light damping and, therefore, only
the measured damping terms g, are used to identify the damp-
ing matrix. Rearranging Eq. (23) to solve for the submatrix
scale factors yields the linear least-squares problem

-261 - ¢z’lc¢0l ¢€ICI¢OI bt

#5Crtar | S0

v L Cutom| |En
(24)

~25, = 0Z.Coom| |PL.Cibom

where it is assumed that there are mr (> R) measured damping
terms. Solving Eq. (24) for the submatrix scale factors leads to
the desired damping matrix. The advantages of this perturba-
tion approach are twofold: Identification of the damped ecua-
tions of motion can be performed in configuration space
without the need to solve the state-space eigenvalue problem,
and the original damping matrix € need only represent the true
damping matrix in the coupling of the elements. (Due to the
linearity of the equations, the original numerical values can be
off by orders of magnitude.) In most practical applications, the
form of the initial damping matrix ¢ will not be known. How-
ever, if an assumed form is prescribed (from a Rayleigh dissi-
pation function, for example) Eq. (24) can still be used to
provide a best fit (in a least-squares sense) to the measured
damping terms &,

Example 1

The mass and stiffness matrices are identified for the simple
manipulator arm, shown in Fig. 1. The structure consists of
two flexible appendages, rotational springs at the base and at
the connecting joint, and a grip with mass and inertia.

The estimation process is initiated using approximate mass
and stiffness matrices obtained by increasing the true mass
properties by 10% and decreasing the true stiffness properties
by 10%. The first five natural frequencies of the true model and
the frequency response function representing the ratio of trans-
verse displacement at the connecting joint to torque at the base
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Table | Growp modal energy distributions for the simple manipuistor arm
Kinetic energy (%) Potential energy (%)
of mass groups of stiffness groups
Mode 1 n 1 v I I m v
| 0.0 0.5 0.0 99.5 0.2 0.1 66.5 33.2
2 58.8 39.1 1.9 0.2 0.1 0.1 333 66.5
3 275 473 252 0.0 19.5 80.5 0.0 0.0
4 64.0 2.1 139 00 757 24.1 0.1 0.1
s 16.5 388 4.7 0.0 74 92.6 0.0 0.0
Joint ¢  Messurements
Base Oisplacement «=— Initial Model
Torque t 39 —— Fioal Model

Jor——————]

Fig. 1 Simple manipulator arm.

Table 2 Free-respoase identification results for the simple

msaipulator arm
—————

Mode @, W, a,,
1 0.0230 rad/s 0.0209 rad/s 0.0230 rad/s
2 1.062 0.9617 1.066
3 55.44 50.15 55.55
4 91.12 82.42 91.19
) 156.75 141.78 156.98

are treated as measurements. The mode shapes from the ap-
proximate initial model are used for “measured” mode shapes.
To cast the model in terms of mass and stifiness submatrices,
the following mass and stiffness element groups are chosen:

Mass:
Groupl  Mass matrix contribution of appendage 1
Group Il  Mass matrix contribution of appendage 2
Group III Tip mass moment of inertia
Group IV Tip mass
Stiffness: ]
Groupl  Stiffness matrix contribution of appendage 1
Group II  Stiffness matrix contribution of appendage 2
Group [11  Base rotational stiffness
Group [V Joint rotational stiffness

The initial fractional modal energy contributions from each
element group (obtained from ¢JM,d, and ¢JK,¢,/w?) are
given in Tabie 1. It is apparent from examination of the poten-
tial energy distribution that the first two modes approximate
those that would be obtained for a two degree-of-freedom
model with rigid appendages and that the higher modes repre-
sent the flexibility of the appendages. As a consequence of this
observation, a two-step process was used to identify the struc-
ture. First, the three highest modes were used to identify mass
element groups |, I1, and III and stiffness element groups I and
I1. Then, the two lowest modes were used to identify mass
element group IV and stiffness element groups 111 and IV. The
free- and forced-response identification results (after two itera-
tions) are provided in Table 2 and Fig. 2, respectively.

Example 2
The mass, damping, and stiffness matrices are identified for
the planar truss structure shown in Fig. 3. Both internal (mate-

FRF MODULUS L0

-3 Y T Y T T T T T T Y

Q0 01 02 O3 04 05 08 07 08 09 W U 2

Fig. 2a Low-range frequency response resuits for the simple manipulae-

Laamenn |

*  Measuresents
01 === Initial Model
— Final Model

FRF MODULUS .0G)

y v y v T y T o)
7 90 M ™ WO 7 W 20
PREQUENCY (RAD/BEC)

—
N &

Fig. 20 High-range frequency respomse resuits for the simple manipuls-
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Fig. 3 Planar truss structure.

Table 3 Free-response identification resuits for the planar

truss structwre

Mode T X 4

1 -00872+ 673 611i  -00812+ 693
2 —0.0890 + 34.59i 3145i 00838+ 3S.46i
3 —0.0891 + 87.58i 7889  —00898+ 88.29i
4 —0.1042+ 117.11i 10667  —0.1039+ 119.39%
s —00907 + 15649  142.12i  —0.0906 + 157.86i
6 —00914+24033i  217.54  —0.0915+ 240.0Si
7 —0.0929+33209  30200i  —0.0925+331.39
8 —0.1039+359.29i  32525i  —0.1042 + 363.28i

nal) and external (atmospheric) light viscous damping is
present, although the magnitude of damping is unknown.

The measurement set consists of the first eight complex
cigenvalues and transverse and longitudinal frequency re-
sponse functions between points A and B. To simulate mea-
surement errors, the ecigenvalue and frequency response
measurements are corrupted with random Gaussian noise
(zero mean, SD; = 0.01],], SD, = 0.11{A,]). As in Example 1,
the mode shapes from the initial model are chosen for “mea-
sured” mode shapes. To cast the model in terms of subma-
trices, the following eiement groups are chosen:

Mass and stiffness:
Group I 20 upper and lower bending elements
Group I1 20 diagonal bending/shear elements

Damping:
Group I  External viscous damping matrix
Group II Internal viscous damping matrix

Preliminary examination of the modal kinetic and potential
energy distributions indicates that the vertical truss members
contribute no energy to the first eight modes and are, therefore,
not used for model improvement.

The mass and stiffness matrices are approximated initially by
increasing the true mass properties by 10% and decreasing the
true stiffness properties by 10%. The initial approximations of
the external and internal passive damping matrices are only
accurate in the coupling of the elements (the numerical values
are off by orders of magnitude). The identification process re-
quires two steps: 1) identification of the mass and stiffness
matrices from the real components of the measured frequency
response functions and the imaginary components of the mea-
sured cigenvalues, and 2) identification of the damping matrix
from the real components of the measured eigenvalues. The
free- and forced-response identification resuits for the structure
are presented in Table 3 and Fig. 4, respectively.

Conclusions
A method for updating initial mathematical models of un-
damped and lightly damped linear structures has been pre-
sented and successfully tested in two simulated examples. The
advantages of the method are the following:

LIGHTLY DAMPED STRUCTURE IDENTIFICATION METHOD 575

11 *  Messurtaments
-~ loitial Model
=== Pinal Model

Fig. 4a Traasverse frequency respouse results for the plamar truss
structure.

*  Measurements
== Initial Model
=== Tioal Model

FAF MODWLUS OGN

PREQUENCY (RAD/3EC)

Fig. ® w&nmmmfwhilmru—
structare,

1) Incorporation of measured frequency response functions
provides a unique scaling of prescribed submatrices of an ini-
tial mathematical model of the structure.

2) All least-squares formulations are linear.

3) The consistency of the original model is maintained. (No
unmodeled coupling occurs as a consequence of the identifica-
tion process.)

(172)
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4) Use of submatrix scale factors can potentially limit the
identification process to a relatively small set of parameters.

5) For lightly damped structures, the identification can be
performed in the n configuration space without the need to
solve the 2n state-space cigenproblem.

6) For lightly damped structures, the original estimate of
the damping matrix need only be accurate in the coupling of
the clements. (The numerical values can be off by orders of
magnitude.) However, if the original form of the damping ma-
trix is unknown, the method will still provide a unique scaling
of an assumed initial (symmetric) damping matrix and its sub-
matrices to best fit measured damping terms.

It should be noted that the examples presented in this paper
considered only those structures with widely spaced, well-
defined modes. Further research is needed to address the appli-
cability of the method to actual structures containing dense
modal spectra and in the presence of real measurement and
modeling errors.
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for Structural Identification
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Department of Aerospace Engineering
Texas A&M University
College Station, Texas, USA 77843

1.0 INTRODUCTION

Identification of large space structures’ distributed mass, stiffness, and energy dissipa-
tion characteristics poses formidable analytical, numerical, and implementation difficulties.
Structural identification is crucial for implementing active vibration suppression concepts
which are under widespread study in the large space structures community. Near the heart of
the identification problem lies the necessity of making a large number of spatially distributed
measurements of the structure’s free and/or forced vibratory response, with sufficient spatial
and frequency resolution, and without introducing unwieldy sensor and actuator calibration
requirements which are potentially more difficult than the structural identification problem.

We discuss herein a stereo-optical riangulation approach to making a large number of
spatially distributed structural response measurements. A close-range photogrammetric
triangulation has already been demonstrated on-orbit with the 1984 Shuttle mission in which
a ten story solar panel was deployed from the orbiter bay and vibration tests were imaged by
four cameras mounted in the orbitor bay. The concept we propose is a sophistication of these
ideas, primarily in the incorporation of unique subsystems for analog edge detection and
video processing algorithms. Tens of active or passive (retro-reflecting) targets on the
structure are tracked simultaneously in the focal planes of two or more video cameras
mounted on an adjacent platform. Triangulation (optical ray intersection) of the conjugate
image centroids yield inertial trajectories of each target on the structure. This approach
remains in a research stage of development, but have successfully tracked and stereo triangu-
lated 20 targets (on a vibrating cantilevered grid structure) at a sample frequency of 200HZ,
and have established conclusively the feasibility and desirability of this approach.

A small number of easy-to-calibrate optical sensors tracking inertial motions of many
points on the structure is an attractive concept vis-a-vis practical implementation, as com-
pared to mounting numerous motion measuring sensors on the structure, in which case each
sensor must be individually calibrated and its environmental stability established. Our
approach brings recent advances in video camera hardware, analog and digital video process-
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ing methodology to bear on the structural sensing problem. The present paper includes a
discussion of our experimental hardware and some recent experimental results which support
the practical feasibility of this structural vibration sensing approach.

2.0 OPTICAL MEASUREMENT GEOMETRY AND
STEREO TRIANGULATION

We summare the idealized(zero measurement and model errors) geometric equations
for triangulation of video camera imagery. With reference to Figure 1, the image coordinates
(x, ¥), measured in the positive focal plane of a single lens camera, are related [1, 2] to the
object space coordinates (X, Y, Z ) of the imaged point, the camera’s principal point (X JS o

Z, ), orientation angles (¢, 8, y), principal point offset (x,, y,), and focal length (f), by the
colinearity equations

o CuX=X)+C(¥-Y.)+Ci(Z-Z.)] _ . 6.8~
X=X, ,[C:“ XX )+Cn(-Y.)+Cx(Z=Z, )- =FX,YZX..)Y.,2Z ’¢,ev.\vrxc Yo.f)

(1)

e _d CaXX)+Cn(Y-Y.)+Cn(Z-Z:) ] _ . 6.6,
)' - }’o /[C3l (X—Xc) + C32 (Y-Yc) + C33 (z_zc) - G(XyYZrXC ,Yc L] ZC ,¢,6,\V.xo ,)’a sf)

where the direction cosine matrix [C] is parameterized in terms of 3-2-1 Euler angles as

Cu Ci2 Cis 1 0 0 cos® 0 ~sin0— [~ cos¢ sin¢ 0
[C] =[Czl Cxn Cz:] =|:0 cosy :in\y][ 01 0 ][-simp cosd Ojl
C3 Cs2 Gy 0 —siny cosyd Lsin® O cos® 0 0 1

For the case of two cameras simultaneously imaging the same structure, we generalize the
discussion to briefly discuss how the stereo triangulation calculations are made. We adopt a
double subscript notation for Egs. (1), to denote the image coordinates of the i** point meas-
ured in the j* camera’s image space as

xij =F(Xl'y Yi,Zi; Xc,-,chch; ¢]s ej,\l’]; xo,,}’o},fj)

=12 i=12,...N @)
Yij =G(Xi1 Yi’zl'; chv Y‘i’z"i; ¢j| eja \l’]; xa,-;)'a,,fj)

In the event that the camera position, orientation, and calibration constants are considered
known, and for measurement of discretely visible images of object space points at unknown
locations, it is evident that Egs. (2) provide 4 equations for the 3 unknown coordinates of

each point. Equations (2) can be inverted by least squares to determine the object space
coordinates.
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The dynamic triangulation process should be preceded by a static calibration to determine
the camera calibration constants, and for the case of fixed cameras, the position and orienta-
tion coordinates of the cameras. The calibration should use at least three fixed targets which
will subsequently be visible in the dynamic experiments. These three points serve to define
the object space coordinate system. The points are numbered in some arbitrary (but sys-
tematic!) fashion. Point 1 is arbitrarily adopted as the origin: (X, Y,, Z,;) = (0,0, 0). Point 2
is used to define the X axis: (X,, Y,, Z,) = (X,, 0, 0). Point 3 is used to define the X,Y plane:
(X3, Y3, Z3)=(X;, Y3, 0). Thus the first 3 points have a total of 3 unknowns X,, X3, ¥3), and
each additional point introduces 3 unknowns (X;, Y;, Z), for a total of 3N - 6 unknown object

space coordinates. Notice that each object space point has four associated measurements
(two measured coordinates in each of the two image planes). Thus, in the most general case,
we have the 3NV - 6 unknown object space coordinates plus the 18 unknowns associated with
the cameras (X ¢’ Yc,.' Zc,. » 9,0, v, Xo1 Yo f;y fori=1,2). We conclude that we have a

total of 4N equations and 3N + 12 unknowns; if N 2 12 congujate images are measured, we
have enough equations to determine all of the 3N object space coordinates and the 18 camera
position, orientation, and calibration parameters. Also of significance, when using Charged
Coupled Device (CCD) focal plane arrays (as in the present application) the effective focal
length is different for the x and y axes (actually, there is a ratio of the x and y dimensions of
the array as a consequence of the rectangular pixels, which can be absorbed into effective
focal lengths which are determined during calibration) thereby increasing the number of
unknowns by one for each camera and one additional object space point is required. The
calibration is very well behaved and can be accomplished in fifteen minutes of real time.

The calibration process is strengthened, of course, by making redundant measurements
and using other apriori measurements of object space points and/or camera calibration
parameters. The details of the calculations underlying the above are discussed in [1-2, 7].
The precision of the results is dependent most heavily upon the accuracy with which the
image coordinates are measured and, of course, the geometric strength of the triangulation
process. Upon completing a satisfactory static calibration, the subsequent dynamic triangula-
tion process need consider only four of Eqgs. (2) at a time to sequentially accomplish the least
square solution for the object space coordinates (X, Y, Z,) of the points imaged on the

flexible structure.

The particular scheme adopted to extract the improved structural model from the triangu-
lated measurements of inertial structural motion is not central to the present discussion, but
we briefly review below the approach we are taking.

3.0 STRUCTURAL IDENTIFICATION

We consider the class of linear elastic structures suitably modeled by a finite element or
similar discretization approach, leading to a finite cystem of 2nd order differential equations
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of the form

M +Cx+ Kx=Bu 3)

where x is an nx1 configuration vector, u is an mx1 excitation function (or control force)
vector, M, C, and K are the mass, damping, and stiffness matrices, respectively, and B is the
control influence matrix. It is clear that the results of the triangulation process gives the time
history of a finite set of points on the structure; these are typically a subset of the x vector.

Since we are considering stable systems, the fourier transform can be obtained from the
Laplace transform by setting s = jw. To outline some of the details, we consider a special
case. For harmonic excitation u = r exp(jot), zero damping, and an identity B matrix, the
frequency response is given by taking the fourier transform of Eq. (3) to obtain

theorem

5 00 spectral
X(io)=[-0*M+K]'r=H(io)r, Hp(iw) = ’ZI _O?ELOJZ [decomposition] @)

where {®,, ¢,} are the free vibration eigenvalues(natural frequencies) and eigenvectors (mode

shapes) satisfying det [K - @’ M]=0, = (0, .. @2}, and [K - & M]d; =0 with
the orthonormality conditions

OTM D=1, O'K® =diag(&?,..., ), ©=[d; ..0, ] )

Of course, we are interested in the case of damped systems, the generalization of Eqns. (4),
(5) are classical developments which are the basis of the approach under discussion. Based
upon experimental determination of a subset of the eigenvalues, eigenvectors and one or
more elements of the frequency response function matrix H(iw), Creamer and Junkins{3, 4]
have developed an identification process whereby linearly parameterized mass, stiffness and
damping properties can be estimated to bring the computed eigenvalues, eigenvectors, and
frequency response functions into least square agreement with the corresponding measure-
ments, over a prescribed range of sample frequencies. Given triangulated motion of a
sufficient number of points on the structure, the eigenstructure realization method of [5] can
be used to find the minimum rank linear discrete-time model which represents the measured
motion, from this linear model, eigenvalues and eigenvectors can be determined.

The structural parameterization adopted for the present discussion is of the form

M=M, + EI}J.,M,, K=K, + )EIK,K,, C=¢C, + _)i‘.lx,C, (6)

where U, ,X,, X are scalars determined to bring the calculated and measured eigenvalues,
eigenvectors, and frequency response functions into least square agreement. Notice that the
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structure has been subjectively divided into substructures whose contributions to the nominal
mass, stiffness, and damping matrices are scaled in unison; M, , K, C, are the nominal

contributions of the prescribed substructures to the global assembly of M, K, C. These do
not necessarily conform to physical substructures, but can be based upon collections of
nominally identical members, and/or members made of the same material, etc. In the limit,
of course, the sub-structures could be the finite elements themselves, but we usually find a
much coarser parameterization to be highly satisfactory. The subjectivity involved in select-
ing substructures should not be viewed as a weakness of this approach, it is in fact a strength.
The parameterization of Eq. (6) is essentially a "parameter linking” method [5] in which the
engineer is permitted convenient latitude in modifying the dimensionality of the parameter
estimation process to achieve accuracy and computational efficiency. Based upon partition-
ing the energy for each mode associated with each substructure [6], it is possible to revise the
substructuring decisions and define reduced order structural identification problems. We
refer to [3, 4] for further discussion of the identification discussion, including details of the

generalizations to identify systems with damping, closed-loop, non-self-adjoint systems.

4.0 OVERVIEW OF THE HARDWARE AND
EXPERIMENTAL CONFIGURATION

The optical sensor system depicted in Figure 2 has the advantages of non-contact
measurement, high-coverage measurements, excellent large amplitude and low frequency
response, ease of calibration, and reflective targets can be placed anyplace on the visible
surface of the structure. These advantages make the system extremely attractive for labora-
tory use; and it is easy to extrapolate that an on-orbit realization of analogous systems should
be attractive for identification of large flexible structures. The current laboratory system
requires that the motion of a structure of interest be viewed from two different positions by
the NAC 200HZ cameras. The stereo pair of images are recorded simultaneously by
synchronization of the cameras and recorders. The two recorded images are played back
using a standard 60HZ video recorder to the Motion Analysis VP-110 video processor
(analog) for the filtering, masking, edge detection and A/D conversion processes.

The VP-110 allows a user interaction to establish a gray scale threshold so the edges of
the target image boundaries are reliably determined; only the pixel locations which cor-
respond to the edge-detected image boundary are A/D converted for subsequent digital
processing in the SUN 2/120 computer. Thus near-circular image boundaries are digitized
and their centroids can be calculated to an uncertainty of about .S pixel for the present
implementation (a sophistication of the present analog/digital processing is presently under
study which should result in a resolution of about .1 pixel). The VP-110 processor makes use
of several tuneable analog features to filter, window, and mask the imagery to remove
unwanted information and improve the signal-to-noise ratio before digitizing the imagry.

In the SUN computer, we make use of the Expertvision software package (developed by
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Motion Analysis) to centroid the image boundaries and connect them in time to form a
sequence of focal plane coordinates along the time trajectory of each image centroid. By
virtue of the fact that the two cameras have been synchronized, each target’s inertial motion
will correspond to a stereo pair of focal plane trajectories whose centroids are measured by
the output of the Expertvision digital processing. We then make use of algorithms and
software we have developed, based upon least square inversion of Eqns. (2), to complete the
stereo triangulation and thereby determine the laboratory (object space) 3-D trajectories for
each marker on the structure. These target trajectories then provide the response measure-
ments for estimation of cigenvalues, eigenvectors, frequency response functions, and struc-
tural model parameters. Clearly these digital processes are not executed in real time, but they
can be performed post-experiment in less than 1/2 hour of real time.

The test article used in the present discussion is a §° x §° grid, with 12.5"x2"x1/8" members.
The grid was cut from a a single sheet of 3003.H14 aluminum, to eliminate modeling prob-
lems associated with bolted or riveted joints. The structure is designed to accommodate
accelerometer, strain gauge, as well as optical data acquisition. Excitation of the test struc-
ture is accomplished by an impulse hammer or by a harmonic shaker. The resulting motion
can be processed to determine frequency, mode shape, and frequency response information
which can then be used as input to structural parameter identification methods such as those
discussed in Section 3 above.

5.0 DISCUSSION OF RESULTS: CONCLUDING REMARKS

In Figure 3, we show typical image centroids, image space trajectories, and inertial
trajectories for one of 20 targets tracked in a typical transient response. In Figure 4, the finite
element modeled mode shapes(§,9] and the modeled and experimentally determined values
the first six natural frequencies (determined from the free response to an impulsive excitation,
using the Eigenstructure Realization Algorithm [5]) for the first six modes. The rightmost
column shows the natural frequencies of the a model for which three stiffness parameters (EI,
GJ, and a gravitational stiffening effect) are adjusted by the method of Creamer and Junkins.
Excellent agreement exists between the identified model and the experimental results. Figure

5 provides a comparison between video-measured deflections with accelerometer measure-
ments. It is apparent that the video data has more invormation in the low frequency portion
of the spectrum than the accelerometer, but the accelerometer measures the high frequency
motions. In this case, the accelerometer measurements are nearly useless below 1 Hz, and
the optical measurements are useless above 15 Hz. '

In summary, we have presented a novel approach for structural identification. The
approach is a stereo triangulation method wherein conjugate images (measured by a combi-
nation of analog and digital processing) of tens of passive targets’ images can be measured
by a pair of video cameras. The result is a non-contacting measurement and structural
identification approach which is an attractive candidate for implementation.
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Figure 4. Modeled, Measured, and Identified
Natural Frequencies of the Frame Structure

Mode #2

The finite element model mode shapes as reported by Das et al * are shown above. The first six finite

- element natural frequencies are given below as well as the first six experimentally determined natural

frequencies. These natural frequencies were determined by the eigenstructure realization algorithm using
free response to an impulsive loading. Preliminary results of the structural identification method of
Creamer and Junkins are given. These results were obtained by holding the mass matrix constant and
using three stiffness submatrices to match the natural frequencies.

Value after
Mode No. Modeled Value Measured Value Initial Identification
1 90Hz 91 Hz 92 Hz
2 2.34 2.07 2.06
3 4.85 4.76 4.76
4 6.05 . 5.14 5.58
5 7.78 6.57 7.09
6 12.84 10.86 11.57
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Figure 5. Comparision of Video-Derived Position
Measurements with Accelerometer Measurements

Video Date
-

!lw

The graphs shown above provide some insight into the advantages and disadvantages of the camera
system versus an accelerometer. The video data is very useful at the low frequency large amplitude end of
the spectrum. The accelerometer response is most reliable at the high frequency end of the spectrum.
This data was taken on the AFAL structural identification test article which is similar to the TAMU
structure. The video data was taken with a TAMU RCA TC2811 60 Hz video camera. An AFAL En-
devco model 7751-500 accelerometer was also used.
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Figure 1. Stereo Triangulation Geometry
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Figure 2. Motion Analysis Hardware
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MAJOR HARDWARE ITEMS

ITEM DESCRIPTION
Flexible Structure monolithic 3003 H14 aluminum grid (5'x5°) cantilevered

in the vertical plane (clamped-free boundary conditions)
markers (targets) 3M Scotchlite Reflective Sheeting #3290

Video Cameras(2) NAC model V-14B, 200/60 HZ, 2/3" MOS imaging CCD
array with 320x244 pixels

Video Recorder(2) NAC model VTR V-32, 200HZ, configured for VHS
casettes

Video Processor Moton Analysis model VP-310 for threshold-based
edge detection, hardware editing and filtering, dizitzing
image boundanes, and data transfer

Computer SUNI120 with 22 megabyte hard disk and UNIX
operating system
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Figure 4. Modeled, Measured, and Identified
Natural Frequencies of the Frame Structure

The finite element model mode shapes as reported by Das et al are shown above. The first six finite
- element natural frequencies are given below as well as the first six experimentally determined natural
frequencies. These natural frequencies were determined by the eigenstructure realization algorithm using
fres response to an impulsive loading. Preliminary results of the szucturzl idendfication method of
Creamer and Junkins are given. These resuits were obtained by holding the mass mamix cons:ant anc

using three siffness submatrices to match the natural frequencies.

Mode No. Modeled Value Measured Value Identified Value *
1 90 Hz 92 Hz 91 Hz -
2 2.34 2.32 2.32
3 4.85 4.93 4.93
4 6.05 6.38 6.38
5 7.78 7.27 7.26
* . Element submatrices used (200)




Figure 5. Comparision of Video-Derived Position
Measurements with Accelerometer Measurements

Video Data FFT of Video Deta
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Vedre (VW = 2¢g)
.

Thne graphs shown above provide some insight into the advantages ancd disadvantages of the camerz
system versus an acceisrometer. Tne video data is very useful at the low frequency large amplitude end of
the speczum. The acceierometer response is most reliable at the high {requency end of the specirum.
This data was taken cn the AFAL structural idenification test arzicie which is similer to the TAMU
swructure. The vidso data was izken with a TAMU RCA TC28!1 60 Hz videso camera. An AFAL Zn-

G¢evco model 7731-300 acceisromatar was also usac.
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ATTACHMENT 10

BA Stereo Triangulation System for Structural Identification:
Analytical and Experimental Results

J. L. Junkins
G.H. James III
T.C. Pollock
Z. H. Rahman

Department of Aerospace Engineering
Texas A&M University
College Station, Texas, USA 77843

USAF/NASA Workshop on Model Determination
for Large Space Structures

Jet Propulsion Laboratory
March 22-24, 198§
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Figure 1. Stereo Triangulation Geometry
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Figure 2. Motion Analysis Hardware
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MAJOR HARDWARE ITEMS
ITEM DESCRIPTION

Flexible Str:cture monolithic 3003 H14 aluminum grid (5°x5") cantilevered
in the vertical plane (clamped-free boundary conditions)

markers (targets) 3M Scotchl@te Reflective Sheeting #3290

Video Cameras(2) NAC model V-14B, 200/60 HZ, 2/3" MOS imaging CCD
array with 320x244 pixels

Video Recorder(2) NAC model VIR V-32, 200HZ, configured for VHS
casettes

Video Processor Motion Analysis model VP-310 for threshold-based

edge detection, hardware editing and filtering, digitizing
image boundaries, and data transfer

Computer SUN 1/120 with 42 megabyte hard disk and UNIX
operating system
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ATTACHMENT 11

CSI Sensing and Control:
Analytical and Experimental Results
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Figure 1. Motion Analysis Hardware
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MAJOR HARDWARE ITEMS
ITEM DESCRIPTION

Flexible Structure

markers (targets)

Video Cameras(2)

Video Recorder(2)

Video Processor

Computer

monolithic 3003 H14 aluminum grid (5'x5") cantilevered
in the vertical plane (clamped-free boundary conditions)

3M Scotchlite Reflective Sheeting #3290

NAC model V-14B, 200/60 HZ, 2/3" MOS imaging CCD
array with 320x244 pixels

NAC model VTR V-32, 200HZ, configured for VHS
casettes

Motion Analysis model VP-110 for threshold-based
edge detection, hardware editing and filtering, digitizing
image boundaries, and data transfer

SUN /120 with 42 megabyte hard disk and UNIX

operating system
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Figure 1. Stereo Triangulation Geometry
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A Novel Approach to Structural Identification

STRUCTURAL MODEL IDENTIFICATION

Estmation of the besi-fitting linzar swuctural
mode! via Creamer/Junkins substucturing

best fitting linear system:

M3X+Cx+Kx=Bu

N
i-

FREQUENCY RESPONSE IDENTIFICATION

Esumation of the {requency responss funciion
via Creamer’s algorithm

>

4_}.

MODAL IDENTIFICATION

Determination of nztwral frequencies & mode
shapss viz Juang/Fzopa Sigenstucturs Reali-
zation Algorithen (ZRA)

|
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measured natural
l:"> Jfrequencies & mode shapes

2N

INERTIAL TARGET TRAJECTORIES

Compute inexial e history of zach targst's
coordinates via sizreo r2y inters=cion

<

FOCAL PLANE TRAJECTORIES

Connec: sucesssive image coordinates to form
fozal pians maieciories, for sach of two (or
mors) focal planes

]4>

<

IMAGE CENTROID CALCULATION

From the syncaronizad cameras® digitized
imags boundasies, determine the cenToids of
each image

=

VIDEO PROCESSING

Locate and digitize the image boundaries via
Motion Anaivsis’ edge deieztion prozsssor

field of view 1

; C!:); =12, ....n

field of view 2

— ==

200HZ

=

B=]

recorder 2

camera 2
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Figure 4. Comparison of Video-Derived Position

Measurements with Accelerometer
Measurements

Video Data
J9-1

Accclcrometer Data
J9-1

FFT of Video Data
Test J9-1

Test J9-1

16
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IDENTIFICATION OF A DAMPED TRUSS STRUCTURE

MUINN

Measurements: 8 open-loop eigenvalues
8 closed-loop eigenvalues
Longitudinal FRF between A and B
Transverse FRF between A and B

EIGENVALUES :
measured apriori identified model
MODE 3 Xg Ae
1 -0.0872 « 6.73i 6.111 -0.0872 « 6.931
2 -0.0890 + 34.591 31.454 -0.0888 + 235,461
3 -0.0891 + 87.58i 78.891 -0.0898 + 88,291
4 -0.1042 + 117,114 106.671 -0.1039 + 119.394
5 -0.0907 + 156.491 142,121 -0.0906 + 157.861
6 -0.0914 + 240,334 217.544 -0.0915 + 240.051
7 -0.0929 + 332.091 302.001 -0.0925 + 331.391
8 -0.1039 + 359.291 325.251 -0.1042 + 363.281
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LIAPUNOY STABILITY THEORY

S.R. Vadali’ and E-S. Kim"™
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College Station, Texas

Abstract

This paper treats the three dimensional aspects of tethered satellite deployment
and retricval. Feedback control laws with guaranteed closed loop stabilizability are
obtained using the second method of Liapunov. Tether mass and aerodynamic effects
are not included in the design of the control laws. First, a coordinate transformation is
presented that partially uncouples the in-plane and out—of-pl.ane dynamics. A combi-
nation of tension control as well as out-of-plane thrusting is shown to be adequate for .
aspeedy retrieval. Next, a unified control design method based on an integral of motion
(for the coupled system) is presented. It is shown that the controller designed by the
latter method is superior to that of the former primarily fron: the out-of-plane thrust
usage point of view. A detailed analysis of stability of the closed loop system is
presented and existence of limit cycles is ruled out if out-of-plane thrusting is used in
conjunction with tension control. Finally a tether rate control law is also developed
using the integral of motion mentioned above. The control laws developed in the paper

can also be used for stationkeeping.

* Assistant Professor, Aerospace Engineering, Member AIAA.

** Graduate Student.
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Introduction

Currently many space missions involving tethers are being planned. One of these is the Tether
Dynamics Explorer (TDE-1) mission scheduled for July 1991. TDE-1 will deploy a 22.7 kg,
rectangular subsatellite attached to the spent second stage of a Delta-II using a 20 km tether'. The
main aim of this mission is to validate tether deployment performance of various control laws
proposed to date. The TSS-1 (Tethered Satellite System) mission is also being planned for 1991
for conducting electrodynamic research. Space tethers can also be utilized for study of the lower
atmosphere, micro and variable "g" experiments, space construction, and gravity gradient stabili-

zation.

One of the prirhary issues in tether utilization is fast deployment/retrieval of attached payloads.
Rupp? provided the impetus for the study of tether dynamics and control law development and since
then a vast body of literature has come to exist. An excellent survey of the literature has been
conducted by Misraand Modi®. Rupp’s control law was originally designed for in-plane deployment
and utilized a feedforward tether length command as well as linear feedback of length and length
rate. Later studies have proposed control laws for deployment and retrieval involving additional
linear/nonlinear feedback of in-plane pitch angle and its rate, the out-of-plane roll angle and its rate,
and tether extensional as well as flexural modes*®. Liangdong and Bainum® also investigate the
effect of tether mass and flexibility and the gains of the tension control law on the (in-plane) stability
of stationkeeping. They show that the stability conditions involving the length and rate gains for

a flexible tether are qualitatively similar to those for a rigid tether.

It has been concluded that deployment can be controlled with relative ease but retrieval is
more difficult to control as large amplitude' in-plane as well as out-of-plane tether librations are
excited and sufficient tension can not be maintained during terminal retrieval phases. Thruster
augmentation has been suggested to overcome these difficulties by Banerjee and Kane’. Retrieval

utilizing tether-normal thrusting and based on shuttle orbiter maneuvering and sliding mode control
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has been proposed by Pines,‘von Flotow, and Redding®. A mechanism by which the subsatellite
crawls on the tether has also been proposed by Kane®. A comparison of tension controlled retrieval
and retrieval using the crawler mechanism has been conducted by Glickman and Rybak'® and it is
shown that the latter technique has several advantages including low levels of libration amplitudes
and fast terminal retrieval rates. The disadvantage of this method is that if the tether is not retrieved,

it may have to be jettisoned. This will add to the already serious space debris problem.

Even if characteristics such as tether flexibility and atmospheric effects are neglected, the
equations of motion are highly nonlinear, nonautonomous, and coupled. A Liapunov (mission
function) approach has been used for tether deployment and retrieval by Fujii and Ishijima'!. Tether
mass and flexibility as well as aerodynamic effects are neglected in this study. The proposed
nonlinear tension control law has been designed for controlling deployment and retrieval in the
orbital plane. It is based on feedback of tether length, length rate, pitch angle, and pitch rate. A
feedforward length command is not needed. An alternate treatment of the same problem by Vadali'?
concludes that under similar assumptions, a linear feedback of tether length and its rate is sufficient
to guarantee asymptotic stability of the closed loop system to the desired equilibrium point. Fast
retrieval is possible if the pitch angle is not actively controlled to be near its equilibrium value but

allowed to deviate sufficiently either in the mid or terminal phases of retrieval.

This paper treats the three dimensional aspects of tethered satellite deployment and retrieval.
Feedback control laws with guaranteed closed loop stabilizability are obtained using the second
method of Liapunov. Tether mass and aerodynamic effects are not included in the design of the
control laws. First, a coordinate transformation is presented that partially uncouples the in-plane
and out-of-plane dynamics. A combination of tension control as well as out-of-plane thrusting is
shown to be adequate for a speedy retrieval. Next, a unified control design method based on an
integral of motion (for the coupled system) is presented. It is shown that the conwoller designed
by the latter method is superior to that of the former primarily from the out-of-plane thrust usage

point of view. A detailed analysis of stability of the closed loop system is presented and existence
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of limit cycles is ruled out if out-of-plane thrusting is used in conjunction with tension control.
Finally a tether rate control law is also developed using the integral of motion mentioned above.

The control laws developed in the paper can also be used for stationkeeping.

The Liapunov Approach

In many instances, one can consider control and stabilization to be equivalent. Global
asymptotic stability can be ascertained by using Liapunov’s second method"®. Choosing the right
Liapunov function is a difficult task but one can sometimes find suitable positive definite energy
or Hamiltonian functions based on the principles of Analytical Dynamics'. The beauty of the

method is that it is not based on linearization.

The Liapunov approach is briefly outlined next. Let the dynamic system be described by the
system of nonlinear ordinary differential equations

x=f(x,u,?) (1

where x is the state vector, u is the control vector, and t denotes time. The desired final state is

assumed to be the origin of the state space. This framework is still valid if a nontrivial equilibrium

point is desired, for the origin can be placed there by a suitable coordinate transformation. Let V

be a positive definite function. The time derivative of V can be written as

o[ 2] @
If the above identity can be solved for u as a function of X and t, such that V is globally negative
definite, a feedback control law is obtained that globally, asymptotically stabilizes the closed loop
system. Of course, the nature of the control law depends on the type of V chosen. If V can only
be made negative semidefinite, it must be verified that this V remains zero only at the desired final

state.
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The earliest work utilizing this method has been presented by Kalman and Bertram'’. Since

then many applications of this method for controlling spacecraft attitude maneuvers can be found

in References 16-22. A different approach is followed by Lee and Grantham®, in which the

directional derivative of V in the direction of f is minimized using the method of steepest descent.

This procedure has benifits of optimality but it typically involves on-line computation of roots of

a polynomial/transcendental equation.

Equations of Motion

Assuming that the tether remains straight, the equations of motion of the tether and the attached

satellite* are
I =1[¢* +cos*&(0 + Q)* - Q* + 3Q* cos* ¢ cos*0) = =T/m

6+2G—¢tan¢)(9+Q)+3.chosesin9=O

$+2§¢+C°S¢Sin¢[(9+ﬂ)z+392c0529] =F/(ml)

3

where [/ indicates the instantaneous tether length; 6, the pitch angle(in-plane); ¢, the yaw

angle(out-of-plane); €, the orbital rate; T, the tension; F, the out-of-plane thrust; and m, the mass

of the subsatellite. These equations can be nondimensionalized by defining the following nondi-

mensional variables:

where L is the reference tether length. The nondimensional equations are
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A = A[¢” +cos? (1 +§) = 1 + 3 cos* ¢ cos®8] = T

e”+2(%é-¢’tan¢)(l+0’)+3cosGsin9=0 4)

!
¢”+2%¢'+cos¢sin¢[(l +8) +3cos’8] = F/A

where superscript () indicates the derivative with respect to nondimensional time. T and F are
treated as the control variables and methods for designing control laws are discussed in the following

sections. A tether rate control law is also developed by treating A’ as the control variable instead

of T.

In-plane Control Law

A control law for in-plane deployment and retrieval is first reviewed for completeness. If
¢ and ¢ are assumed to be zero at the initial time and F is zero, only the in-plane equations are
needed to describe the motion of the tether. This is also true if the out-of-plane motion is actively

controlled. The in-plane equations of the tether are
A’ —A[(1+6) ~1+3cos*6] =T
&)

/
6”+2(%-)(1+9’)+3cosesin9=0

If downward deployment and upward retrieval are considered, the desired final boundary conditions
on the pitch angle and its rate are 6 =6'=0. A simple control law applicable in this situation is
based on the following Liapunov function'?:

V=120 +KA-A) + K, +A%) (6% +3sin’0) ] (6)

where A, > 0, is the desired final value of A. X is a positive constant and K, can either be positive
or zero. The nature of the Liapunov function is such that the undesirable conditions® =mand 6 =0

can also be reached. This Liapunov function has some similarity to that used by Fujii and Ishijima"'.
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It is primarily a quadratic function; the quartic terms have been included to obtain mathematical

simplifications. The nondimensional tension control law is
T=3A+K,A-2A)-2K0(1+6)/L+K\ Q)

It can be verified that this feedback control law locally asymptotically stabilizes the closed loop
system in the neighborhood of the desired final conditions. Care must be exercised in selecting the
gains as the tension must remain positive and the undesirable equilibrium point must be avoided.
A particularly interesting special case is obtained if K is set to zero. The control law then feeds
back the instantaneous tether length and its rate. This is a continuous equivalent of Rupp’s control
law without the discrete feedforward commands. It is observed that the stability conditions derived
by Liangdong and Bainum® for Rupp’s control law (K, > 0 K, = 0 and K, > 0) are clearly satisfied
by the above control law. A nonzero K, is effective in suppressing the pitch deviations but the
tether length response slows down considerably. For nondimensional tether lengths below 0.01,

better performance is obtained with X, set to zero.

An Integral of Motion

Before proceeding with a choice of a Liapunov function, the existence of integrals of motion
should be examined. Such integrals for the linearized in-plane motion have been derived by Rajan
and Anderson® using Noether’s theorem. Integrals of motion of the nonlinear system of equations
are of interest here. Consider the differential equations (4) and the following positive definite

function:
V,=1/2(8*cos’ ¢ +3sin’ O cos’ ¢ + ¢'* + 4 sin’ ) ®)

It can be shown that if £ is assumed to be zero,

v, =-2%[e’(1 +@)cos’ o +¢'’] ©
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Thus, if the tether length is held constant then V, is an integral of motion. This is an important
result as it can be used to determine maximum libration amplitudes analytically and even more, it
can be said that if A'/A is extremely small, the tether librations will closely resemble limit cycles.
Figure 1 shows a roll angle versus pitch angle plot for a constant tether length ( A = 1.0) and initial

conditions 0 =¢ =5°,and & = ¢' = 0.

A tether rate control law can easily be developed to damp the pitch and roll librations. The
tether rate may be oscillatory depending on the initial conditions. A stationkeeping strategy based
on modulating the tether length has been proposed by Davis and Banerjee”. It is also seen from
Eq. (9) that for the function V, to decrease, A’ has to be positive for @ 2 1. On the other hand, for
very small values of ¢ and ¢’ and small negative values of &, A" has to be negative for V, to decrease.
This suggests that if 0 is allowed to increase initially in a positive sense and ¢ and ¢’ are small, a
unidirectional retrieval is possible without tether oscillations. This further implies that a unidirec-

tional retrieval is possible if out-of-plane thrust is utilized to control roll and roll rate.

Presence of pitch as well as roll motions is considered next. Qut-of-plane thrust is utilized
to keep roll motion bounded. Tension, rate, and out-of-plane thrust control laws are developed in

the following sections using the Liapunov approach.

Tension Control Law Design Based on Decoupled Equations of Motion

The first method is based on a coordinate transformation that nearly uncouples the in-plane
and out-of-plane motions. If we define z =Acos¢ and y =Asin¢, the differential equations (4)

transform to
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2" = 2[(1+6)’ =1 +3cos’0] =

>»|~1>
P"I""Jh
<

e”+2( )(1+6’)+3cosesxn9 0 (10)

Tey=—tyiL,

It will be useful to note the following relationships:
yy' +z2' =\ (11)
zy'-yz' =N/ (12)
The nonhomogeneous part of each of the above equations can be treated as a generalized force. It
is interesting to note that the first two of Eqgs. (10) are similar to Egs. (5). The third of Egs. (10)
has the form of a linear oscillator with a forcing function. Thus, the in-plane motion can be controlled
by using a modified version of the tension control law given by Eq. (7) and it is a simple matter to

control the out-of-plane motion using derivative feedback for the generalized out-of-plane force.

Hence the following control laws are chosen:

T
z y1ix {32 +K\(z-2)~2K,0(1+6)/2 +K,z’}
[ ] (- / (13)
y -z f_ K,y
A

Equation (13) can always be solved for T and £ because the determinant of the matrix to be inverted
is —A2. The control laws can be written in terms of the original variables using Eqgs. (11) and (12),
as

T=@+K)\cos’o—K A cos¢—2 K,8/(1+6)/A+K,\ (14)
and

F ={3+K)\cosgsing—K A sing—2 K,0(1 +6)/ han o + K Ao (15)

In what follows, retrieval of a tethered satellite is considered. The primary body is the space

shuttle assumed to be in a circular orbit at an altitude of 220 km, with an orbital rate of .07068
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rad/min. The orbital period is nearly 1.48 hours. The tether is assumed to be 20 km long. The
initial conditions for the motion of the tetherare A=1.0,A'=0,0=¢=5° and & =¢' =0 and the
final conditions are A=.01 and A'=0=6'=¢=¢ =0. Note that if an exponential feedforward

command is used, the initial velocity has to be finite.

Figure 2 shows the variations of tether length, pitch angle, and tension and Fig. 3 shows the
roll angle and out-of-plane thrust variations during retrieval for gain settings
K,=1.0,K,=0,and K, = 3. The results indicate that the tether length and pitch angle reach their
respective final values in nearly two orbits but the roll angle response is slower. The reason for
this uncoupled behaviour can be explained as a result of the decoupled control design. The pitch
angle undergoes a sharp change near the end of the retrieval The initial nondimensional tension
is 4, the equilibrium initial value being 3. In dimensional form, assuming a satellite mass of 22.7
kg, the initial tension is 2.52 N. This value will be higher if tether mass is included. It should be
noted that this example depicts a fast retrieval. The initial value of tension can be decreased further
for a slower retrieval. Thrust usage has been quantified by evaluating the index [ | £ | dt over two

orbits. This nondimensional index is 0.9 which amounts to an average thrust impulse of 481 N-s.

Tension Control Law Design Based on the Coupled Equations of Motion

The second method is based on the following candidate Liapunov function:

V=12 [N+ K,A-A)" +(K,+A%) (6% cos’ ¢ + 3sin’ O cos’ ¢ + ¢* + 4sin’ §)] (16)

A significant part of the above function is the integral of motion obtained previously. Note that
this choice of V automatically admits the possibility of existence of multiple equilibria. They are

given by
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o

1) A=A,A=0,and0=0=¢=¢'=0
2) A=A,A=0,0=0=0,¢0=m,and¢'=0
3) A=A,A=0,0=x,6=0,anddp=¢'=0

The last two equilibria are one and the same and also undesirable for downward deployment/ upward

retrieval. Besides these, other equilibria might exist. This possibility will be investigated subse-

quently.

The time derivative of V is given by
V=N BA=T +K,A=A) -2 K,[6(1 +8)cos’ o+ ¢'*1/ A} + ¢/ (ky + AD)F /A 17
If we assume that out-of-plane thrust is not utilized, the tension control law can be selected as
T =30 +K,A~A) -2 K,[6(1 +6)cos’d+¢'*1/ A+ KN (18)
so that
'=-KA? (19)

Simulations using the above control law reveal that there is a significant interplay between the tether

length and swing motion. If K is set to zero, the pitch and roll libration amplitudes become

alarmingly high. Even with a positive K,, the tether retrieval rate is oscillatory and convergence to

the desired equilibrium point is extremely slow.

If out-of-plane thrust is utilized, the tension control law nc2d not be changed. Simple rate
feedback thrust control is sufficient to enhance the stability of the closed loop system significantly.

The out-of-plane control law is selected to be
E =~k (20)

Roll angle feedback can also be included in the out-of-plane thrust control law by adding a quadratic
term in ¢ to the Liapunov function. The usage of the tension as well as the out-of-plane control

law leads to
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'=— KA - (K, +\)K ¢ 1)

Itis easy to verify the stability of the closed loop system. If A’ and ¢’ are both zero, the closed loop

system is given by the following equations:

~A[cos® (1 + 9’)2 —1+3cos’¢cos’0] ==3A-K,(A— A)+ 2K,[0'(1 +6')cos’ VA
@' cos¢+3cosdpcosOsin@=0 (22)

cos sind((1 +6)’ +3cos*0)) =0

Itcan be shown that a local equilibrium pointisA = A,and A’ =0 =6 = ¢ = ¢' = 0. Other undesirable

equilibria do exist but can be avoided by properly selecting the control gains.

Simulation results using this control law with gains X, =1.0,K,=0,K;=3, and K,=2.0

are shown in Figs. 4 and 5. Itis observed that the retrieval process is unidirectional and quite similar
to the previous example. However, the required out-of-plane thrustis much less and the roll response
is faster. The nondimensional thrust impulse index, defined earlier, evaluated over two orbits is

0.24 which is 128.4 N-s. If K, is selected as 3 instead in the above example, the thrust impulse

index amounts to 0.258.

The desired nondimensional final length of the tether in the above examples has been 0.01.
The effect of a smaller desired final length ( 0.001) on the performance of the control laws is
investigated next. The control parameters are K, =1.0,K,=0,K;=3, and K, =2.0. The initial
conditions are the same as before. The tether length, pitch angle, and tension are shown in Fig. 6.
The pitch angle is too large and an undesirable equilibrium point is reached. A slight change in the
gain k, from 1.0 to 0.9 produces a nice retrieval as shown in Fig. 7. The maximum value of the
pitch angle is 21.9° in Fig. 7 as compared to 29.3° in Fig. 4. An increase in the gain K, also serves

the same purpose as decreasing K.
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A Tether Rate Control Law

A tether rate control law can easily be developed using the integral of motion given by Eq.
(8). Out-of-plane thrust is utilized for this application also. Based on the previous developments,

the following candidate Liapunov function is chosen:
V=12([K,A-A)V+KV,] (23)
The rate control law and the out-of-plane thrust law can be obtained following the usual process as

X =-K,A=A)+ K,[6(1+6)cos’p+¢'*1/ A (24)

and
E =K\ 25)
If K, is very small, the retrieval process is nearly exponential. This leads to a nearly constant (slow
decay) pitch angle curing the terminal phases of retrieval. Figure 8 shows the tether length and
pitch and roll angles for K, = 0.25, K, = 0.01, andK}, = 1.0. The initial conditions on the tether motion
are the same as before and A,=.01. The value of K, dictates the initial tether retrieval rate for this
example as the initial pitch and roll rates are zero. The above choice of K, results in an initial
dimensional retrieval rate of 30 m/s which is moderate. The pitch angle behavior for this example

is oscillatory unlike that for the previous examples. The slow decay of the pitch angle is also noted.

Conclusions

Liapunov feedback control design methods have been presented for deployment and retrieval
of tethered satellites. The first method is based on partial decoupling of the equations of motion
and utilization of a two-dimensional ‘control law developed previously using Liapunov stability
theory. The second method uses a Liapunov function based on a first integral of motion of the
original set of differential euations. Controllers designed by both the methods work very well but

the second controller has the advantage of using lesser out-of-plane thrust. These control laws are
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quite simple and utilize tether tension control as well as out-of-plane thrusting. Liapunov stability
analysis is used to rule out the possibility of limit cycles. Itis recommended that the control gains
be chosen such that the pitch angle does not exceed £30°. This will ensure that undesirable equi-
librium points are not reached. The gains in the tension control law should be adjusted accorcing
to the desired final tether length. A rate control law derived using the integral of motion is also

presented. Finally, it is apparent that controlling the roll librations is essential for retrieval.

Further validation of the effectiveness of these control laws in the presence of tether flexibility

and extension and aerodynamic effects is necessary.
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ABSTRACT

This paper deals with torque command generation using Single Gimbal Control
Moment Gyros. The angular momentum and torque envelopes are assumed to be known apriori.
A method based on back integration of the gyro torque equation from desired final conditions is
utilized to determine a family of initial gimbal angles that avoid singularities. Each member of
this family is defined as a preferred initial gimbal angle set. The pseudo-inverse steering law is
used during the numerical integrations. This procedure is demonstrated by means of numerical
examples which include attitude control and momentum management of the space station
"Freedom". A feedback control scheme based on "null motion" is also developed to position the

gimbals at preferred locations.
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INTRODUCTION

Control Moment Gyros (CMGs) are attractive spacecraft attitude control devices.
They require no expendable propellant, which is a limited resource and can contaminate the
spacecraft environment. Their fixed rotor speeds minimize structural dynamic excitations. They
can be used for rapid slewing maneuvers and precision pointing. For low earth orbiting
spacecraft, momentum dumping can be easily achieved by gravity gradient torques. From the
steering law viewpoint, it is widely accepted that double-gimbal CMGs (DCMGs) are preferable
to single-gimbal CMGs (SCMGs). For DCMGs, steering laws proposed by Kennel!” have been
well accepted. The SCMGs have the advantages of possessing relative mechanical simplicity
and producing amplified torques (for low spacecraft angular velocities) on the spacecraft.
However, development of gimbal steering laws for their use is made difficult by the existence of

internal singular states. For any system of n CMGs and any direction in space, there exist 2°

sets of gimbal angles3 for which no torque can be produced in that direction, and these sets are
called internal singularities. External singular states correspond to directional angular momen-

tum saturation. DCMG’s have internal singularities also, but they are easier to avoid.

Margulies and Aubrun® present a geometric theory of SCMG systems. They charac-
terize the momentum envelope of a cluster of SCMGs and identify the internal singular states.
Yoshikawa® presents a steering law for a roof-type configuration with four SCMGs. His steering
law is based on making all the internal singular states unstable by providing two jumps with
hystereses around the singularities. Cornick’ develops singularity avoidance control laws for the
pyramid configuration. His technique is based on the ability to calculate the instantaneous
locations of all singularities. Hefner and McKenzie® develop a technique for maximizing the
minimum torque capability of a cluster of SCMGs in the pyramid configuration. Bauer’ con-
cludes that it is impossible to avoid some singularities and in general, no global singularity

avoidance steering law can exist.
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Consequently, there will be instances when torque demand can not be met exactly.

Meffe® presents a parametric trade-off study between CMG systems (type and number)
for the space station. Specifically, the indicators are reliability, weight, power, volume, main-
tenance, safety, control law, and life cycle cost. The conclusions are in favor of either the 4/6 or
5/6 SCMG clusters. The numbers 4/6 indicate a total of six CMGs with four being active. The
Soviet space station MIR uses the 4/6 SCMG cluster. The DCMG clusters are found superior to
SCMG clusters only from power consumption view point. In a recent paper, Blondin, et al?
discuss the selection of a prototype DCMG for the space station. One of the reasons behind this

choice is that the space station does not have requirements to perform rapid maneuvers.

The requirements for the space station are to control the attitude in the presence of
disturbance torques due to environmental effects, motion of sun tracking devices, and shuttle
docking. Besides the attitude constraints of Torque Equilibrium Attitude (TEA) reference within
10 degrees of Local Vertical Local Horizontal (LVLH) and rates less than 0.02 deg/sec, the
CMG momentum must be.restricteds to a spherical storage radius (initial phase) of 20,000
ft-Ibs-sec. The torque is limited to 400 ft-lbs (spherical). These figures are subject to change.
An active momentum management and attitude controller for the space station has been devel-
oped by Wie, et al.'®!!  This scheme seeks TEA and provides periodic-disturbance rejection.
The design of the pitch axis controller is decoupled from that of roll-yaw. Periodic-disturbance
rejection filters are developed to reject disturbances in the attitude or angular momentum at the
orbital rate and multiples of the orbital rate. CMG dynamics and steering laws have not been

considered in this work.

In the present paper, we consider the de:ermination of initial gimbal angles for SCMG
systems to avoid internal singularities. Throughout the study, four SCMGs in a pyramid con-
figuration shown in Fig. 1 are used. The motivation for this study came from earlier works

mentioned above, wherein it has been shown that many singularity avoidance steering laws are
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not capable of avoiding singularities consistently even for unidirectional torque demands. We
approach the torque generation problem from a more conservative view point. Rather than trying
to develop a singularity avoidance law, we present a simple procedure for determining the
preferred initial gimbal angles for specific torque and momentum envelopes. In many instances,
these can be obtained by performing attitude control simulations without including the CMG
dynamics for a veriety of initial conditions, parameter variations, etc. The proposed method is

based on back integration of the CMG torque equation, typically starting near the saturation

envelope (to utilize the entire envelope) and going to the specified initial angular momentum_

state. The pseudo-inverse steering law is used during the numerical integraton. It is shown by
means of examples given in the literature that the preferred initial gimbal angles do avoid internal
singularities. Finally, the attitude control and momentum management of the Phase-I space
station is considered as an additional example. This example clearly shows the advantage of

using a preferred set of initial gimbal angles.

An important issue is the reorientation of the gimbals from arbitrary values to a preferred
set. A feedback scheme for performing such reorientations while minimizing output torques on

the spacecraft is also discussed.

CMG STEERING

We consider CMG gimbal steering for four SCMG’s mounted in the pyramid con-
figuration shown in Fig. 1. It is assumed that the x,y,z axes (roll, pitch, and yaw, respectively)
shown in the figure coincide with the vehicle body axes and the center of the pyramid base is
assumed to be located at the center of mass of the vehicle. Only the axial angular momentum of

each CMG is included in the mathematical model.
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The angular momentum vector h and its derivative h in the body axes can be written as

r 3

-Cos6Sino, -Cosoy + CosdSino; +  Cosoy
heh 3 Coso; - CosdSinc, - Coso; + CosdSincy )
LSinSSincl + SindSino, + SindSinc; + SindSincy

and
-Cos5CosG; Sino;  CosdCoso; Sinc; | (1
h2Cs=h| -Sino; -CosdCoso,  Sino; CosdCoscy {GZ @
_Sinscoscl Sin8Coso; SindCoso; SinSCoso4_ L:j

where h is the constant magnitude of the axial angular momentum of each CMG, O, are the

gimbal angles, and J is the pyramid angle as shown in Fig. 1.

The Euler equations for a system consisting of a spacecraft and a CMG cluster can be
written as
[(I1d+h+ox{[I]o+h}=0 (3)
where (1] is the inertia matrix of the spacecraft, @ is the angular velocity vector. We can write
Eq. (3) as

[I1@+wx[I]o=-h-0oxh 2-u @

where u is the internal torque vector. The CMG steering equation is written, using Eqgs. (2) and
(4) as
Cé6=T &)
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where

TZ2-woxh+u (6)
The usual procedure for obtaining the gimbal rates from Eq. (6) is to use the Pseudo-inverse of
C. Thus we have

6= CT(ccTy!r (7
Determinant of the matrix CCT can be thought of as the average gain of the cluster. It is well
known that if Rank (C CT) is less than three, the pseudo-inverse does not exist. The sets of
states at which this happens are called singular states or singularities. Many steering laws have
been developed to avoid singular states, yet, none has been proven to do so consistently. A
factor common to these schemes is the addition of "null motion" - motion of the gimbals such
that no torque is produced on the spacecraft. In many situations, it is difficult to anticipate the
approching singular states fast enough to add sufficient null motion. The scheme proposed by
Kurokawa, et al.'? is based on off-line calculation and table look-up of gimbal angles which
globally maximize the gain for a given momentum. This scheme also has not been able to
provide singularity-free steering. As mentioned above, our objective is to develop a systematic
approach for determining a set of initial gimbal angles that can avoid singular states for a given

torque and momentum envelopes. This is discussed in the next section.

DETERMINATION OF PREFERRED
INITIAL GIMBAL ANGLES

Perhaps the most severe demand on the CMGs is a secular torque. (T in Eq. (6)).
Bauer’ shows that for the present CMG configuration (8 =54.74% ), with the pseudo-inverse
steering law, starting with all the gimbal angles at zero, for a constant positive torque about the
x-axis, an internal singularity is encountered at a momentum value of 1.15h. This corresponds to
an antiparallel situation, i.e., two of the CMG angular momentum vectors are pointed in opposite

directions. The gimbal angles at the singularity are & = [-90° 0°, -90°, 0°]™.
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The gimbal rates, without imposed constraints, are large near a singularity. It is noted that for the
same torque demand, multiple trajectories can exist from one momentum state to another, in the
gimbal angle space. A set of initial gimbal angles that allows smooth gimbal rates throughout,
up to saturation is termed "a preferred set". In order to investigate the existence of preferred sets,

a backward integration of Eq. (7) was attempted, for specified torque demands.

At saturation along the positive x-axis, all the momentum vectors are maximally
projected along the x-axis, ie., o=[-90° 180° 90° 0°]" and h=[h(2c0s§ +2), O, 0]
=[3.1545h, 0, O]T- The saturation gimbal angles for a given direction are unique. Since
saturation is an external singularity, we can not start the integration process exactly there.
Hence, the gimbal angles were perturbed slightly. For example, we selected the near-saturation
angles as o =[-89%, 177°,90%, -1° . This choice is arbitrary and forces the selection of one
of the many trajectories leading toward the zero momentum state. On back integration of Eq. (7),

with a unit torque along the x-axis, the following gimbal angles were obtained near the zero

angular momentum state: {~59.6°, 60.7°, 118%, —121°1". The angular momentum vector at this

point was [.003, -.023, 02917, 1Itis interesting to note that singularities were not encountered
during this process. The nearest gimbal angles for zero angular momentum state are

o =[-60°, 60°, 120°, -120°]". These initial gimbal angles provide a local maximum for the
CMG gain for zero momentum, which is 1.1854. The gimbal angles and rates with these pre-
ferred settings (forward integration with pseudo inverse steering law) are shown in Figs. (2 - 3).
Figure 4 shows the CMG gain and it is clear that the gain margin is quite high throughout except
near saturation. Moreover, near the x-axis momentum of 1.15, the gain is increasing. It can be
verified that a pscudo-inverse steering law with this initial gimbal angle set does indeed avoid all

singular states for torques along the x-axis.

Several sets of initial gimbal angles for null momentum were obtained for other desired
torques as shown in Table 1. It should be noted that due to symmetry of the configuration, the

set [-120°, -60°, 60°, 120°] is admissible for a torque demand of [0 1 O]T.

(281)




TABLE 1. INITIAL GIMBAL ANGLES FOR NULL MOMENTUM
Torque Demand Initial Gimbal Angles
[1 0 0] [ -60° 60° 120° -120°] [45° -45° 45° -45°]
[0 1 0] [-120° -60° 60° 120°] [45° -45° 45° -45°]
00 1] [ 0 0 0 0]
111 [ 0 0> 0° 0°] [45° -45° 45° -45°]
[4 2 0] [ -60° 60° 120° -120°] [45° -45° 45° -45°]
2 4 0] [-120° -60° 60° 120°] [45° -45° 45° -45°)]

Preferred gimbal angles for nonzero momentum states can also be obtained by this procedure. It
is also interesting that the set [45%, 459, 459, —45%] provided singularity-free operation for all

the examples in Table 1, except for the uniaxial z-torque example.

Kurokawa, et al.!? cosider the following torque demand:

x = 0.2 sin(4nt)
Ty = 0.3

T, =0.0

Our simulations were performed with gimbal angles initially set at {-120°, -60°, 60°, 120°] as
well as [459,-459,45%, 459]. These choices were made because the torque lies in the x-y
plane. No internal singular gimbal states were encountered and saturation occurred at about ten

seconds.
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The next example is similar to that considered by Bedrossian'®

. The required angular
momentum distribution is shown in Fig. 5. The momentum envelope can be extended to the
saturation limit to obtain initial conditions for back integration. The absolute values of the x- and
y-components of the toryue are both held constant at 0.707. Gimbal rates with zero initial angles

are shown in Fig. 6. It is clear that a singularity is encountered at 1.5 seconds. Figure 7 shows
the gimbal rates with the preferred set [45°, 45°, 452, -45°] . It is evident that no singularities
are encountered. Figure 8 shows the gain along the trajectory and again we see that there is
sufficient gain margin and the gain is increasing near the region where a singularity was encoun-
tered during the previous simulation (Fig. 6).

SPACE STATION EXAMPLE

We now consider the attitude control and momentum management of the space station.
This study alsc includes input disturbances which are not used in the control design model. The
space station data are given in Table 2. Although the angular momentum storage capability of
20,000 ft-1b-sec dictates the use of 5/6 CMG'’s, we only use four. The following assumptions are
made to obtain linearized equations:

i) Products of inertia are neglected.

ii) 61, 02 and 63 are small excursions from LVLH: roll, pitch, and yaw respectively.

iii) The effect of CMG gimbal and rotor transverse inertia are neglected.

The linearized equations are

Lo +n(1; -I;)a)+3n2(12-13)6; =-U; + W
18, + 3n(I;- I3)6; =-U; + Wy (8)
Ly -n(l2-1I)) oy =-U3 + W3
61 -n93 = (9)
63 +n9| =n
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fh - nh3 =W

hy = (10)

hs +nh; =u;

where I, I, and I5 are moments of inertia, w is the angular velocity vector of the space station,
n is the orbital rate, h is the CMG angular momentum vector along the body axes of the space

station, u is the torque vector, and w is the vector of disturbance torques.

TABLE 2
@
2
Il 5-.28E6 slug-ft (roll)
2
I 5 10.80E6 slug-ft (pitch)
. )
Iy 58.57E6 slug-tt (yaw)
n 0011 r/sec
h 3500 ft-1b-sec

The design disturbance model'? is
w; =1 + Sin(nt) + 0-5 Sin(2nt) ft-1b
wz =4 + 2 Sin(nt) + 0-5 Sin(2nt) ft-1b (an
w3 = 1 + Sin(nt) + 0-5 Sin(2nt) ft-1b

One filter for each frequency of the model disturbance is used in each channel. The filter equa-

tions for pitch attitude disturbance rejection are of the form!©
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&+nta=0

B+@2n32p=6

(12)

Similar filters can be incorporated for momentum management. A more refined disturbance
model (AERO1 disturbance)14 which includes variable aerodynamic drag characteristics is also
included. The AEROI disturbances are shown in Fig. 9. This model includes disturbances at
higher frequencies than twice the orbit rate as well as orbit decay. In principle, one can filter out
disturbances at three and four times the orbit rate using filters defined above'!; we have chosen

not to do this, as our main aim is to assess CMG steering performance.

The pitch axis controller is designed using LQR techniques'®, The states are
= [6,,6,, hy, fhydt, and filter states]
The states for the roll-yaw controller are
x = [0,,0, hy, fhy dt, 63, w3, hs, fhydt, and filter states]
The state weighting matrix Q is selected to be diagonal and each entry is chosen such that
xi Qi x; = 1, where x; is the anticipated maximum value of the i state. The control weighting
matrix is selected to be the unity matrix. For the purpose of simulation, the intial attitude errors

are selected to be 1° about each axis.

As h a~a u are known approximately after the controller design simulation, h can be
thought of as a known quantity to determine steering histories for the gimbals. In flight opera-
tion, the CMG loop will be driven in parallel with the attitude control loop. In the present
context, the two loops have been separated for ease of simulation. This can be justified as the
attitude control bandwidth is low , of the order of .01 r/sec. For convenience , Eq. (5) is written
as

C6=T
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u; + nhs

where T

uz

uz- nh‘

Starting with initial conditions of ¢ = [0, 0, 0, 0]T, simulation of the Pseudo-inverse steering law
shows that a singularity is encountered quite early in the first orbit (in about 720 seconds), as

shown in Fig. 10.

From initial simulations with out including CMG dynamics, we see that during the initial
phases (less than one orbit) the pitch and roll momenta are much higher than the the yaw momen-
tumtum. Figure 11 shows the gimbal angle histories with the initial gimbal angles selected as
O = [45°,-45°,45°,-45°]7 . No singular states are encountered and the momentum magnitudes
show near periodic variations within limits. A small secular component is noticable in the pitch
acrodynamic torque due to orbit decay. This will lead to saturation of the CMG’s if uncompen-

sated for.

GIMBAL REORIENTATION USING NULL MOTION

CMG momentum vectors can be repositioned at desired orientations by a feedback
scheme using null motion. Let Oy be the desired gimbal angle set and G the current gimbal
angle set. The relative error between the two is € =Of-0. We define a candidate Liapunov
function

_ Lot
V= Iee

The time derivative of V can be written as

V=eTée=—(0; -0)' (12)
If the reorientation process is to be performed without producing torques on the spacecraft, null
motion equation for & must be used. That is, let

6=[1-cTccTy'c] 4 (13)
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where d is any non zero vector and I, the identity matrix. Equation. (13) can be written as
S=1d (14)

where T = [I -CT (cCTy? C]. It is easy to verify that if we premultiply Eq. (13) by C, the result
is C & = 0. Itis also important to note that 2 =1,ie., Tisa projection matrix. From Egs. (12)
and (14), it is clear that V is at least locally negative if

d =k (67-0) 15)
where k is a scalar and

V= -k (67-0)' 1(0s-0) . (16)
Even though this scheme seems simple, there exists one drawback. If an internal singularity is
encountered during the transit, T becomes undefined. To avoid this problem, near a singularity,

_ the following modification is made by using the so-called singular robustness inverse!>1>;

6=[1-cTCcCT +an'c] d %))
where « is a small positive constant of the order of 0.001. It is true that with this modification, it
is unavoidable that during the gimbal transit, small torques could act on the spacecraft. Figure 12
shows the gimbal reorientation using the above scheme. The initial gimbal angles are
o = [0°,0°,0°, 0°]T and the final gimbal angles are ¢ = [ 45°, -45°, 45°, -45°] T, The gimbal
rates are shown in Fig. 13. It is evident that as the singularity is reached, the gimbal rates ap-
proach zero and it becomes necessary to to use the correction. Figure 14 shows the gain variation

and it is clear that for this example, the output torque on the spacecraft is negligible.
CONCLUSIONS

A new methodology for determining preferred initial gimbal angle sets for SCMG
clusters is presented. It is assumed that torque and angular momentum envelopes are known
apriori. These need not be known exactly but in a qualitative sense. The basic element of this
procedure is back integration of the CMG torque equation from the final conditions to the initial

conditions. The procedure can be applied to any number of CMGs (more than three) in a cluster.
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Several examples, including active momentum management and attitude control of the space
station are presented. It is shown that singularity avoidance for a variety of problems can be
easily achieved by selecting proper initial gimbal angles. Except in one instance, the gimbal
angie set G = [45° -45° 45° -45° 1" has been found to be applicable in all the examples con-
sidered. Data mgarding the preferred gimbal angle sets for various torque and momentum
conditions have to be stored to use this procedure in practice. A feedback scheme for positioning
the gimbals is also discussed. If this is done slowly, the disturbance on the spacecraft is negli-
gible, and can be compensated for by a feedback control law. For this reason, the gimbal

reorientation control law may have to be active along with the torque producing control law.

It is true that there are many preferred sets for a given problem and one may be better
than the others. To determine this, a meaningful performance index such as integral sum squares

of the gimbal rates can be utilized and an optimal control problem solved.
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FIG. 1 Pyramid configuration.
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Dynamics and Controls
Laboratory Facilities and Equipment

Department of Aerospace Engineering
Texas A&M University

Facilites for experimental studies in control structure interaction (CSI) have been developed during
the past four years. Located in the newly completed Engineering Sciences Building are several
equipment systems which represent an investment of more than $1.1M in new equipment over that
time span. Presented below is a brief discription of each system.

The Fine Pointing System

The central component of the Fine Pointing System is a Contraves Goerz single axis air bearing
table capable of pointing an 800 pound experimental apparatus to better than arc second accuracy.
This table can be controlled remotely from a computer workstation or directly fron: an in-line
microprocessor. At the present time, the table is partially surrounded by a simuiated star field
composed of more than one hundred light emitting diodes set into a curved plastic substrate. This
configuration is used in the study of spacecraft attitude position sensing by star tracking. Supporting
this experiment is a dedicated 80286-based workstation carrying add-in cards which perform frame
grabbing and array processing functions. These cards, supplied by Data Translation, Inc., receive
pixel information from a high resolution CCD video camera and perform most of the data reduction
tasks. The table is also equipped with a second axis capable of supporting small experiments. This
device, designed and fabricated in house, can be pointed to an accuracy of 10 arc seconds.

The Stereo Triangulation System

The Stereo Triangulation System consists of four video cameras (two high speed NAC200 and two
high resolution (NEC TI23A) linked to two high speed recorders. These recorders can accept data
from the cameras at rates up to 200 frames per second. A Motion Analysis (VP110) analog video
processor is linked to a Sun workstation to reduce pixel information and perform the triangulation
calculations in a user-interactive environment. This system also performs a number of structural
identification tasks using data from the stereo camera pair.

Single Axis Maneuvering Structure

A structure consisting of a hub with four flexible appendages has been fabricated for performing
large angle maneuvers with active vibration control. This unit rests on a low friction bearing systen:
of our design. The actuator is a reaction wheel powered by a permanent magnet dc motor chosen
for very low cogging torque. A variety of sensors are attached to this experiments, which are listed
later.
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Dynamic Testing and Structural Identification
Test Articles and Fixtures

Several test articles have been fabricated to provide a capability for making precise measurements
of dynamic response, Some of the structures investigated to date inciude simple cantilever beams,
a 5 x 5 aluminum grid of monolithic (jointless) construction and aircraft propelier blades.

When the Engineering Science Building was erected, anchor points were placed in the floors of
two rooms. Large, steel spaceframes attached to these points support experiments such as the ones
mentioned above, and provide fully clamped constraints where desired. The anchor points anc
support frames were designed to allow quick reconfiguration so that several experiments can proceec
in parallel. Test articles as long as 26 feet or as tall as 13 feet can be tested in these laborator:es.

Actuators

A variety of actuators are used. Several reaction wheel torquers have been built in our iaboratory.
These range in size from 2 oz-in to 10 1b-ft, and are currently used on the hub appendage experiment
and the monolithic grid experiment. Larger units are currently being designed for implementation
on the ASTREX flexibile structure at the Air Force Astronautics Laboratory. Power to these
actuators is provided by a bank of eight 400 watt linear operational amplifiers. These class A
amplifiers (Kepco BOP series) can be controlled from the workstation in either a commanded
voitage (wheel speed) mode or a commanded current (torque) mode.

Two shakers are used as linear actuators. These are B&K vibration exciters poweied by matching
B&K amplifiers. The larger unit provides 380 N rated peak force and 2060 m/sec? (210 g) maximum
acceleration, and the smaller unit is about one tenth of that size. The primary use for the shakers
at the present time is to provide identification excitation.

A Kistler Instruments instrumented hammer is also used as an actuator in certain free response
experiments.

Sensors

The stereo triangulation svstem previously described is one of the sensor systems used for structural
identification. In the near future, we expect the fine pointing / star tracker system to be utilized
as a sensor for control feedback. There are several other types of sensors in use, as well, which
are listed below.

Angular position sensing is accomplished digitally, using Teledyne Gurley optical sensors having
a resolution of 36,000 counts per revolution.

Angular rate sensors from Watson Industries are used on the grid experiment, and are being evaluated
for other applications.
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Linear accelerometers are used on several experiments. In current use are Kistler piezoelectric
units, and servoaccelerometers have been ordered in an effort to expand our measurement capability
to frequencies below 0.5 Hz.

Force sensors include two linear piezoelectric devices {Kistier) and one torque sensor (Sensor
Developments, Inc.)

Conventional strain gages are used on the hub / appendage experiment and the grid experiment.

Data Acquisition and Processing

Data acquisition boards have been installed in three 80286 - class microcomputers running under
MS DOS. The boards are Data Translation 28xx series which may be used in an interactive control
mode or a high speed direct memory access (DMA) mode. The fastest of these boards performs
250,000 conversions per second in single channel DMA mode. Two digital oscilloscope cards with
FFT capability are also available for general data reduction chores.
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