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SUMMARY I
This document represents the final report on research performed under Contract No.

F49620-87-C-0078 from the Air Force Office of Scientific Research to Texas A&M University.
The period covered by this report is from October 1, 1988 through March 31, 1990.

Significant progress is reported on analytical, computational, and experimental methodol-
ogy applicable to sensing, actuation, identification, and control of flexible structures. Especially
significant are the following: (i) We have developed new analytical, numerical, and experimen-
tal results pertaining to optimal large angle maneuvers of flexible structures. (ii) We have
successfully demonstrated a stereo optical sensing method for measuring structural response, and
developed an associated new method for updating an a priori model to be consistent with ex-
perimental measurements of the free and forced vibratory behavior of the actual structure. (iii)
We have developed several test articles, implemented appropriate sensors, actuators, data acqui-
sition and computer systems, and have implemented a first version of the overall system iden-
tification method, as well as a most significant near-minimum-time large angle maneuver experi-
ment. (iv) We have developed some important analytical and numerical results which give new
insight into avoidance of well-known singularities encountered when using single-gimbal Con-
trol Moment Gyros to impart attitude maneuver control torques. The maneuver results are
especially significant because we have formulated and implemented successfully the most I
complete flexible body maneuver theory available for robust near-minimum-time maneuvers

The Investigators for this effort were as follows: J. L. Junkins served as Project Director I
and Principal Investigator; he played the leading role in the analytical and computational aspects
of this research. T.C. Pollock served as Co-Principal Investigator; he played the leading role in
design of experiments, actuator and sensor systems. The project benefited significantly from the
excellent analytical contributions of S.R. Vadali. Research Engineer Z.H. Rahman contributed
many important ideas and played the central role in carrying out the experimental research on I
large angle maneuvers. Six Graduate Research Assistants participated in this project: David
Anderson, Robert Byers, Johnny Hurtado, Steven Morgan, Matilda McVay, and George James.
Byers and Morgan completed Masters theses, while James finished a Ph.D. dissertation; Byers
and the remaining three students will complete their Ph. D. programs in the near future. The
technical monitors for the Air Force Office of Scientific Research were Drs. G.K. Haritos S. Wu,
and A.K. Amos of the Directorate of Aerospace Sciences; their support and constructive interac-
tions are most appreciated.

Organization of this report is a follows. We have elected to present most of the detailed
technical results as attachments to this report. We have written the body of this report as a
guided tour; following a brief introduction in Section 1, the sub-sections of Section 2 overview
the essence of the several contributions with reference to the attachments. Section 2 provides
only a macroscopic summary of the research results discussed in detail in the attachments.
Section 3 provides concluding remarks and discusses some promising avenues for extending the
research discussed in this report.

I
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-1 Introduction

Dynamics and control of structures research has recently entered a new era characterized by
close coordination of theoretical and experimental research. The "age of experiment" has swept
up many researchers who historically performed primarily analytical/computational research in
structural dynamics and control. In a rignificant minority of recent academic research projects
we are aware of, for example, analytical research and experimental research are being conducted
concurrently by the same team of investigators. The motivation for this highly important trend3 are several, and the implications are far-reaching. A key motivation, we believe, is an increasing
desire of structural dynamics and control researchers to more fully understand typical hardware
their invariably idealized equations are intended to represent, and as a consequence, to make a
more immediate and significant impact upon the evolution of the hardware and software systems
of tomorrow.

I Our recent research efforts, including the results documented in this report, provide examples
wherein significant analytical/theoretical/computational research has supported and proceeded in
parallel with a coordinated experimental research effort. The main benefit which has flowed
from our joint analytical/experimental work is that the analytical research is based upon realistic
insights into the hardware issues (for example, including consideration of non-ideal sensor and
actuator characteristics which arise when attempting to realize a maneuver control law), and the
experimental research is more likely to be addressed to current and meaningful questions. It is
self evident, we believe, that more informed analysts are more likely to produce research results
which are of fundamental theoretical as well as practical significance. We trust that most work-
ers in the field would agree that excellence in analytical and experimental research should not be
considered mutually exclusive (!), the results we report herein support this viewpoint. Ob-
viously, this perspective can be carried to extremes, we certainly do not propose a constraint that
every (or even most) basic research projects in mechanics and control of structures include

I complimentary hand-in-glove experimental research. Clearly, the cost of experimental research
dictates that one carefully define the experimental research so that useful insights can be obtained
for reasonable investments of time and resources, and many purely analytical basic research
topics are not amenable to early experimentation.

The present research project has led to remarkable new analytical results and associated ex- . .SPEC$ f

I perimental results/verifications. In the case of the near-minimum-time maneuvers we have
developed (and successfully demonstrated in our laboratory) a method to generate globally3 stable, near-minimum-time feedback controllers for flexible body single axis maneuvers. The
experimental research proved of importance because it provided qualitative insights needed to
define meaningful sensor/actuator models and performance measures which capture the tradeoff 0

I between minimum time and minimum vibration. It is obvious that the elapsed time from concep-
tion of the analytical results to demonstration of practical potential has been vastly accelerated as
a consequence of the successfully closed feedback loops between our analytical and experimental

research. Similar statements can be made regarding the structural identification analytical and

experimental research (Section 2.2 and Attachments 6-11). .odes

Dist Special
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Also discussed in this report are several sets of research results which have not been compli- I
mented by experimental studies. Attachments 4-5 discuss analytical and numerical results we
have developed for improved optimization and sensitivity analysis of linear feedback structural
control laws. Attachment 13 present new results on Control Moment Gyro steering laws which
gives insight into avoidance of singularities. Attachment 12 discusses nonlinear feedback control
for stable deployment and retrieval of tether-connected structures. Attachment 12 may at first l
glance seem loosely related with the results in Attachments 1-3. However, a close examination
reveals that Liapunov stability theory underlies all of the results in Attachments 1-3, 4, 12, and
together with the background problem area of space structure dynamics and control, we see that a
strong unifying thread runs through all of the research contained herein.

We discuss an on-going research analytical/experimental effort which makes use of star sensing I
and pattern recognition to determine spacecraft pointing. This work is on-going, but we have
demonstrated that sub five arc-second attitude can be determined, on-board, in real time, with an
all solid state system. Attachment 14 describes our experimental laboratories; this is a unique
facility developed for control/structure interaction research. The results reported span a wider
scope and achieved a much higher level of technical maturity than could be expected based upon I
the the proposal and contractual requirements. This fortuitous circumstance is the result of the
truly extraordinary productivity of the excellent corps of graduate students who worked on this

Iproject.

PHYSICALMODELIN Control FormulationI
PDEs & ODEs Performance index

SYTMOrder Reduction Optimuality Principles
ModelError Tolerance of Model Errors

ANALYSIS Solution Process
L IDENTIFYING ASSUMPTIONS Analytical vs Numerical

WHICH MAY REQUIRE CHANGING Open vs Closed Loop

A RNEEDED HARDWARE Linear vs Nonlinear

E ODIFICATIONS Robust AlgorithmsN
T SIMULATION CONTROL LAWS

I Robustness Studies Feedback Gains
0 Compatibility with Hardware Steering Commands

NWilItork? Switch FunctionsJ
Figure I A Roadmap for Dynamical Modeling, Control Analysis/Design and Imple-

mentation of Closed Loop Control on Large Flexible Structures
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I 2 Technical Accomplishments

3 With reference to Figure 1, we overview the research contributions in the context of this roadmap
of activities for dynamics and control of space structures. In this project we have contributed
new control law design and system identification methodology, and we have implemented

several of the new concepts in successful laboratory experiments. In Sub-sections 2.1-2.3, we

overview these contributions with reference to the Attachments which discuss the contributions

I in detail.

The most significant accomplishments of this research project are discussed in Section 2.1. We
have developed an important method for designing globally stable control laws for near-
minimum-time maneuvers of flexible spacecraft. The control law includes a provision for a
user-optimized feed-forward reference maneuver and the large motion control law blends
smoothly into a constant gain terminal controller for fine pointing and vibration suppression.
Both analytical and experimental results are summarized which conclusively demonstrate the
validity and some of the salient features of this approach. Since the results of Section 2.1 are

judged to be of exceptional significance, we summarize the main features of these contributions
in the body of this report. The remaining contributions are discussed in a briefer overview
fashion, with all details relegated to the attachments.

In Section 2.2, we present the results of our research into structural system identification. We
develop an improved approach for updating our available a priori structural model so that it is in
best agreement with free and forced response measurements. We develop a new approach to
structural sensing using stereo triangulation. We present both analytical and experimental
results. The stereo triangulation system makes stereo images of >20 light emitting (or reflecting)
targets on the vibrating structure @ 200 frames/sec; the three dimensional deflections of these

points are determined by ray intersection. This stereo measurement approach represents an
advance over the ideas successfully demonstrated in the 1984 Shuttle/SAFE experiment.
Whereas several man-weeks of post processing were required to extract useful information form

the SAFE video data, our image processing and triangulation software reduces this task to a
fraction of an hour of interactive processing (in a laboratory computer interfaced directly to an
analog video processor).

In Section 2.3, we overview four other sets of contributions made during this project. The first of

these is purely analytical. We developed the first and second order sensitivity of the singular
value decomposition. This will find widespread applications in control design studies. The

second area of research contributions is in the area of control law design for tethered satellite
deployment and retrieval; these are overviewed in Section 2.3.2. The design methodology is

similar to the Liapunov methods used in the control laws discussed in Section 2.1 and Attach-

I ments 1-3; we show that small thrusting on the sub-satellite can greatly reduce oscillations and

lead to significant reduction in retrieval times. The third set of results is discussed in SectionI
5
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2.3.3; we have developed an improved method for avoiding singularities when using Control I
Moment Gyroscopes (CMGs) to generate attitude control torques.

The final topic (Section 2.3.4) is analytical and experimental research on spacecraft pointing
determination using star pattern identification. This work was partially supported by a research
grant from the Texas Advanced Technology Program (ATP); it includes both analytical and I
experimental aspects. The experimental work is still in progress and will be brought to maturity
during this calendar year under ATP support.

I
2.1 A Novel Approach for Designing Globally Stable Control Laws for

Distributed Parameter Systems

With reference to Figure 2 and Attachments 1-3, we discuss the research contributions we have

made for designing globally stable control laws. The results involve both new analytical/
theoretical developments and also several successful laboratory experiments. We have estab-
lished that this approach applies to a wide class of dynamical systems described by coupled
ordinary, partial, and integro-differential equations. We first discuss the analytical results in an
overview fashion.

2.1.1 Analytical Results for Flexible Structure Maneuvers

The equations of motion for the structure in Figure 2 are discussed in Attachment 1; under usual I
approximations discussed in the attachments, the dynamics of this structure are described by the
following system of coupled ordinary and partial integro-differential equations:

I, d2-t =u +4(M. - Solo)

- - Solo)= fpx( +X - d)dx + ml( + I +HOT (1)
^,.2 a"O d7 ,,d

=0+ =0 +HOT

We will overview a method we have developed for designing globally stable control laws for

distributed parameter systems such as Eq. (1). The method does not rely upon the use of spatial
(or temporal) discretization/approximations, and known nonlinearities can accommodated
readily. It can be verified that for zero control torque (u = 0) the total energy of the system is

rigorously conserved:

6



2E d= I"4[dp()2 X xdll)2 dX +EJl - )2dX M(l d0 11)2-E l..-7J) -4 p( xd T + = constant (2)
1. at 1. ax

This motivates introducing the following error energy (Liapunov) function to measure the
departure of the actual, generally disturbed motion (using an arbitrary control u(t) ) from the
open-loop trajectory ( ), which is the rigorous solution of the equations of motion, Eq. (1),
corresponding to using a pre-optimized shaped control torque history urelt):

2U = a,1,802 + a2 + 4a3 {Ip [OZ +x86]2 dx + fEI(? )dx+m[l + 8Y]} (3)

10 at 1. ax at

where we use the departure motion notation 8( ) ( ) - ( )r. The scond term is introduced

because the energy integral is indefinite in the cyclic coordinate 0; note that U assumes its global
minimum value of zero everywhere along the ( )r trajectory. Also note that choosing values for

the positive weights ai allow us to place relative emphasis upon three subsets of the error energy.

In Attachment 1, we show that using the following feedback control law

U =Uref W {g 1 (e-Or) +g (-eO) +g[3W 0 S.-M.)-U.S0 -M.), (4)

with any values of the gains which satisfy g, a ja1 > 0, g2 >0, g3 E 4(a 3-a,)/a, > - 4, makes

the Liapunov error function of Eq. (3) become everywhere non-increasing, and in fact, results in
all motions being globally attracted to the ( ), trajectory. Therefore the control law of Eq. (4)
guarantees global Liapunov stability with respect to the ( )r path. Note that this is a rigorous
result in tie sense that we have proven it using the original system of ordinary and partial differ-
ential equations. We have furthermore showed that the same control law of Eq. (4) stabilizes the
obvious generalizations of the model (including rotational stiffening geometric nonlinearities,
rotary inertia, shear deformation, and aerodynamic drag). In short the stability of the system
using the control law of Eq. (4) has been found very forgiving of modeling assumpions. A
significant practical problem arises because this control law requires pre-computation of the
open-loop solution of the full partial differential equations of motion to obtain the ( )r quantities.
This difficulty can be avoided by introducing approximations which yield a simpler system of
reduced order equations whose solution ( )ref is both sufficiently accurate and computable in near

real time. In Attachment 1, we show that these ideas lead to the feedback law

U =Uf(t) -{g (O-Orf,) +g2(6 -Ol +g3 [(IoSo-M,)-(lI So.Ml)rf} (5)

which is globally stable in the sense that the motion is globally attracted to a small A neighbor-
hood near the ()rf motion; this region is defined by a simple inequality. The control of Eq. (5)

causes the error energy function of Eq. (3) to be strictly decreasing everywhere that the following

I
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Figure 2 Texas A&M Maeveale Flexible Structure ExperimentI

~~2
di 11

I4

Figure 3 Residual Vibration Energy At Nominal Rigid Body Maneuver Completion Time
(as a function of the torque shape parameters u.. and ax)

C0.

rA.ue

Figure 4 Bound on the A Region Near the Rigid Body Motion
(to which all motion is globally attracted, as a function of u.. and ac)
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Figure 5a Experimental Results Using Conventional Linear Output Feedback

control gains: g, = 600 oz-in/rad, g, = 800 oz-in/rad/s, g3 = 0
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(see) .L .a .00t
Figure 5b Experimental Results Using Globally Liapunov Stable Tracking Control

with a Torque-Shaped Reference Trajectory
torque shape parametr. a -- 0.2. contol gains: g, = 600 oz-birad. g, = 800 oz-inrrad/s, g3 = 0
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condition is satisfied: I
1

10-02 I> g 1 Ig A0 + g2 &0 + g3 A(I. S. -M,)l (6)

Since the A( ) = ),, - ( )ref quantities are differences between cwo open loop motions {which

ensue from ue/t)1, it is easy to bound the A( ) 's by directly by a priori simulation study (Figures

3, 4) and therefore establish a measure of how near the closed loop motion stays to the ( )ref

trajectory. We also prove that if the ( )ref trajectory is designed to spline smoothly into the fixed

target state at time tf, then after tf, the control law of Eq. (5) provides unqualified global
Liapunov (asymptotic) stability with respect to the fixed target state. Note that the A( ) quantities I
are simply interpreted as measures of how nearly the approximate ( )ref motion satisfies the

system equations of motion, Eq. (1), and therefore if the region defined by Eq. (6) is not suffi-
ciently small, then the reduced order model underlying the ( )ref trajectory can be revised ap-

propriately or, ure/t) can be modified. Physically, it is obvious that a single actuator cannot

make all infinity of degrees of freedom of a flexible structure behave exactly like, for example, a
rigid body, and the tracking errors are functions of (i) how well the assumptions underlying the (
),,motion models the actual system, and how aggressively one attempts to maneuver the struc-

ture ( one would expect, for example, that a very smooth, small reference torque input should
result in the flexible structure motion approaching the rigid body idealization, as is evident in

Figures 3 and 4).

If the reference open-loop control u,(t) is parameterized simply, then an a priori global

parameter study can provide complete visibility of these issues. For example, for the particular
family of near-minimum-time control laws studied in Attachments 1-3, Ure/t) depends upon a

torque-shape parameter a (0 _ a :< 0.25, a controls the sharpness of the control switches with
a=O corresponding to the zero-rise-time bang-bang case) and a parameter u,, which is the

saturation torque. An a priori parameter study led to Figures 3 and 4; these provide visibility of
the open-loop residual vibration energy (Figure 3) and the maximum value of the tracking bound
It (Figure 4, Eq. (6)) which describes the size of the region near the ( )ref motion in which

asymptotic stability cannot be guaranteed. Note that while Figure 4 bounds the closed loop

stability, only open loop solutions of the differential equations are required to construct this
surface; however selection of particular feedback gains is required. It is apparent that there is a
triangular region in (ax, u.a,) space wherein both of these surfaces approach zero. The near-bang

region, especially for large u,. , rings the structure badly. In the detailed examples studied in

Attachments 1-3, it is shown that a maneuver in the attractive (sufficiently small g.) region can be
selected with only a modest penalty on overall maneuver time (including time for vibration

settling), as compared to the minimum maneuver time for an equivalent rigid body.

I
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2.1.2 Experimental Results

In Attachments 1-3, we report several successful experiments; these results provide convincing
evidence that the above-discussed concepts are both valid and can be readily implemented. As
noted in Attachment 1, we achieved approximately a 100% reduction in overall maneuver and
vibration settling time as compared to a conventional constant gain feedback law to perform a

400 maneuver of the structure in Figure 2. The analytical and experimental results were in
* excellent agreement. The experimental hardware is described in Reference 1 and Attachments

1-3, and 14. One of the experimental maneuvers led to the results displayed in Figure 5. Note
that the dashed line is a rigid body ( )refpredicted solution using the reference torque Ure/t) {with

the parameter choices taken as (a, umax) = (0.2, 400 oz-in)}, whereas the solid line is the ex-
perimental results. The shaped torque rigid body maneuver was used as the target (reference)
motion, even though it was obvious that finite tracking errors would (and did) occur during the
mid-course phase of this maneuver. In Attachments 1-3, numerous other experimental results are
documented, including a comparison to a constant gain output feedback controller which in-
curred much larger vibrations and required over 12 seconds to do the same maneuver shown in
Figure 5. As described in Attachment 1, the presence of bearing nonlinearities, sensor noise and
other non ideal effects provided significant unintended robustness tests for the method; the highly
successful experiments confirmed that this approach to near-minimum-time control of distributed
parameter systems is valid, highly attractive, and physically realizable.

2.2 A Stereo Triangulation Approach to Structural Identification

U 2.2.1 Stereo Triangulation Measurement of Structural Deformation

In Attachments 6, 8-11 we present concepts and results of a non-contacting structural sensing
approach which involves intersecting rays from two or more synchronized high speed, high
resolution video cameras to targets on the vibrating structure. We have successfully demon-
strated that this approach can be used to measure the inertial motion of more than twenty targets
200 times per second with an application-dependent spatial resolution (typically a few mm). The
primary advantage of this approach is that non-intrusive, non-contacting inertial measurements of
the global vibration of the structure can be made, and the approach works best precisely in the
low frequency bandwith (0 to 20 Hz) where conventional sensors such as accelerometers are
least accurate. The primary disadvantage is that the limited spatial resolution usually means that
only the participation lowest frequency modes can be observed in the measurements. The
dissertation by George James , Ref. [2] details several advances of this approach to optical
sensing, including the use of analog video processing to detect edges and extract image centroids,
calibration of camera geometry and sensor model parameters from static measurements. The
results in James' dissertation are representative of the state of the art in the use of video camera
data to make structural vibration measurements.I

11
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2.2.2 System Identification Approach

Based upon the ideas we published in Ref. [31, a new approach has been established to update the
a priori finite element model using measurements of structural response. The key ingredients in
the approach are the enforcement of two fundamental constraints when updating a structural
model, for the purpose of control design, based upon dynamical response measurements:

(1) To the extent possible, the parameterization implicit in the a priori model should be
preserved, unless there is evidence of a serious modeling error, as a minimal requirement
the symmetry, sparsity, and coupling patterns of the a priori model's mass and stiffness
characterization should be preserved to the extent possible in the updated model.

(2) The updated model should be brought into "best agreement" with both (i) free vibra-
tion measurements, as well as (ii) forced response measurements.

To the extent that the first constraint must be abandoned (to obtain a good fit of the structure's
behavior), we obtain insight to the validity of the modeling process, on the other hand, not
attempting to enforce this constraint precludes learning very much about the shortcomings of the
original model. Furthermore the particular measurement process is often found to embody some
poorly understood issues, therefore one should be equally skeptical of both the model and the
measurements. The second constraint reflects the truth that the two basic approaches to struc-
tural vibration measurements (free vs forced vibrations) are complimentary and we believe both
data types should be used simultaneously to obtain updated models of highest fidelity. The fact
that an infinity of updated models can yield exactly the same measured free vibration results (i.
e., an infinity of mass and stiffness matrices lead to identical natural frequencies and mode
shapes) has not deterred the development of a large number of ad hoc C'nearest neighbor")
approaches which compute non-unique model updates using only free vibration measurements.
We believe that these methods are hazardous to the health of closed loop controllers and do not
provide a reliable basis for feedback control design purposes. Since feedback control involves,
by definition, forced response, the model update should ideally be based upon measurements of I
forced response; it is also evident that the model uniqueness criticism is alleviated on sound
physical grounds by using the forced response data (e. g., the frequency response function) to
impose the proper scaling on the system mass and stiffness characteristics.

In Attachments 6-10, we present some preliminary details of our formulations based upon this
approach, but the most complete and definitive results are contained in references [2,3]. In these
references, we establish a linear parameterization of the mass and stiffness matrices upon linear
scaling of the contributions of n substructures to the global mass and stiffness matrices. The best I
linear scaling is determined to fit available free and forced response measurements; the

I
I
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I definition/selection of substructures remains subjective, but we show that the spatial distribution
of energy (in the modes which lie in the frequency range where the poorest match between model
and measurements) provides some insight in this process.

I 2.2.3 Description of Experimental Results

In Attachments 8-11, and references [2,3], we apply the above methodology to both simulated
and actual measurements. In reference [2], we detail the analytical and experimental results for
an end-to-end application of the stereo-triangulation measurement system, and the free/forced
measurement model update system which we first proposed in Reference [3]. The experimental
test article is a 5' x 5' aluminum grid; we used 20 light emitting targets (fibre optic light guides)
for stereo triangulation. We imaged these targets 200 times per second and also utilized six
strain gauges and three accelerometers. We used several forms of actuation, including on-board
reaction wheels (driven by Clifton Precision motors with ± 20 Oz-in torque), impulse hammers,
and a conventional harmonic shaker). We were able to establish a fairly complete demonstration
of the analytical and experimental methodology, albeit using a small laboratory structure
(modeled by a 60 degree of freedom finite element model).

I 2.3 Other Research Results

In this section, we briefly describe four other subsets of research results. Except for the final
item (Section 2.3.4), these represent analytical/computational research results related to
spacecraft dynamics and control analysis. The final topic is addressed to experimental research
on spacecraft navigation by star sensing/star pattern recognition. Each of these research con-
tributions are subsets of recent or on-going Ph. D. dissertations.

2.3.1 Sensitivity of the Singular Value Decomposition

I The singular value decomposition (SVD) represents the singular most important advance in
computational linear algebra of the past two decades. Its applications in dynamics and control of
aerospace structures are rapidly growing. In Attachment 5, we make a fundamental contribution
of analytical partial derivatives for the singular values and singular vectors; these promise to be
of widespread utility. Both first and second order sensitivities are presented; the analytical
results have been verified by finite differences to nine digits. In Attachment 12, we use these
sensitivities to design a robust linear feedback law for a simple structure. Y. Kim is currently
nearing completion of his Ph. D. dissertation which extends these results, develops new
controller/structure formulations, and applies these ideas to optimization of actuator locations for
large flexible structures (Attachment 4).
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2.3.2 Analytical/Computational Results for Tethered Satellite Retrieval I
In Attachment 12, we present new research results on control of three dimensional tethered
satellite deployment and retrieval. Feedback control laws with guaranteed closed loop stabi-
lizability are obtained using the second method of Liapunov. First a coordinate transformation is
presented that partially uncouples the in-plane and out-of-plane dynamics. A combination of I
tension control as well as out-of-plane thrusting is shown to be adequate for a speedy retrieval.
Next, a unified control design method based on an integral of the nonlinear motion (related to the
Hamiltonion of the coupled system) is presented. It is shown that the controller designed by the
latter method is superior to that of the former primarily from the out-ot-plane thrust usage point
of view. A detailed analysis of stability of the closed loop system is presented and the exislence
of limit cycles is ruled out if out-of-plane thrusting is used in conjunction with tension control.
Finally, a tether rate control law is also developed using the integral of motion mentioned above.
These control laws can also be used for station-keeping. Current studies are focused upon l
evaluating the modification of these results to accommodate tether flexibility and extension
effects as well account for aerodynamics and other external disturbances.

2.3.3 Singularity Avoidance Steering for Control Moment Gyros (CMGs)

In Attachment 13, we present a novel approach to singularity avoidance steering for single
gimbal CMGs. These actuators are attractive for maneuvering large spacecraft as they provide
torque amplification and are mechanically simpler than double gimbal CMGs. A method based
on back integration of the CMG torque equation from the desired final state is utilized to deter-
mine a family of initial gimbal angles that avoid internal singularities. Each member of this
family is defined as a preferred initial gimbal angle set. The pseudo-inverse steering law is used
during the numerical integrations. A feedback control scheme based on "null motion" is also I
developed to position the gimbals at preferred locations. These results are a significant contribu-
tion to the CMG singularity avoidance literature, because this is the first time the existence of
these preferred angles has been noted and their implications studied.

I
2.3.4 A Star Pattern Recognition Approach for Autonomous Spacecraft

Attitude Determination

In Reference [5], we describe an analytical study and our experimental evaluation of a novel
method for spacecraft attitude determination form star pattern recognition. The idea is very
simple, two or more star cameras are fixed to the main body of a spacecraft, as stars pass through
the field of view their patterns are matched by reference to an on-board catalog and logic is
employed to answer the question "how must the spacecraft be pointing so that the cameras see

I
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the stars they are actually imaging?" We seek to answer this question (with essentially probabil-
ity 1) without making use of rate gyros or other electro-mechanical systems; we are seeking a
real-time, all stellar system which can operate continuously even in the presence of realistic
mis-matches expected between the sets of cataloged and imaged stars (due to uncertainty of the
cameras' spectral characteristics and the cataloged information, especially the spectral data for
fainter stars, electronic noise, and pixel granularity-induced centroiding errors). In Reference
[6], we published several years ago the essential ideas which we have extended in the present
research project; these ideas have been implemented in several successful ground-based-

computations for spacecraft attitude determination (e. g. the S3 DoD system). The star pattern
recognition ideas are based upon the fact that the instruments under discussion are fairly accurate
(<5 arc seconds), so the angles between pairs of measured stars can be accurately determined
from the measurements. The measured interstar angles can be compared with angles between
candidate pairs of stars from the catalog; we have shown that when three or more measured
interstar angles match cataloged interstar triplets, in each of two fields of view, to within 5 arc
seconds, then it is essentially the certain event that the measured stars have been correctly
identified with cataloged stars. All measured and cataloged stars in the field of view which were
not successfully matched are simply deleted. To achieve an on-board, real-time version of this
approach requires considerable sophistication of the formulation and algorithms, and the evalua-
tion of many salient issues are best addressed in a combined analytical/experimental study.

This project included a general development of the algorithms and a sharply focused experimen-
tal study. The experimental study was approached assuming that most of the sensor-related
issues could be resolved with a single camera. We mounted a two axis CCD camera (512 x 512
pixel format) on a Contraves air bearing. The air bearing has a 1 arc second angle encoder and
therefore the inertial pointing could be determined independently of the estimated attitude based
upon the attitude sensing and pattern identification process. The "stars" imaged were actually a
simulated starfield consisting of over 100 light emitting diodes arranged on inner surface of a
quarter cylinder with the air bearing and camera systems at the center of the cylinder. The
analytical/computational/experimental results were consistent with the conclusion that sub-five-
arc-second attitude determination can indeed be reliably achieved from an all stellar system, as
an on-board, real-time process. We encountered and solved many problems associated with the
fact that our laboratory experiment involved close-range photogrammetry, whereas the stars lie at
practical infinity in actual in-space implementations (i. e., errors in the calibrated relative position
in linear displacement of the camera with respect to the cylinder cause apparent angular displace-
ments of the simulated starfield). These difficulties made our laboratory experiments more
difficult than actual spacecraft attitude determination. Even though we have not engaged in an
extensive hardware development and associated experimental studies, we feel that we have
brought these ideas to a fairly mature stage of development. The Ph.D. dissertation by D.
Anderson will be completed during the current calendar year; this dissertation will include a
complete discussion of the analytical and experimental aspects of this research. On-board
implementation of these ideas on a spacecraft appears relatively straight-forward.
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3 Concluding Remarks I
During the course of this research, we have engaged in several parallel research efforts. Coordi-

nated analytical, numerical, and experimental studies have been undertaken in the following four

areas:

1. Design of control laws for nonlinear systems (Attachments 1-3, 11-13)

2. Structural Identification (Attachments 6-10) I
3. Spacecraft attitude determination (Reference 5)

4. Structure/Control design optimization (Attachments 4, 5)

In all four areas we have made significant advances and have engaged in both theoretical devel-
opments and computational studies. In the first there areas, we have also engaged in successful

hardware implementations and experimental studies. We have gained an unusually excellent
closure in the sense that innovative theoretical research has proceeded aggressively and in
parallel with the successful proof-of-concept experimental research. The elapsed time from idea
conception to hardware implications/feasibility evaluations has been greatly shortened as a
consequence of this research. The most significant conclusion is that progress in analytical and
experimental research can constructively co-exist and be significantly accelerated only if the
principal investigators are broadly involved in both the analytical research and experiment
design. The feedback loops are therefore efficiently closed around both the experiment and the
analysis.

The most significant of our innovations is believed to be the Liapunov stable control laws we
have developed for controlling nonlinear distributed parameter systems [Attachments 1-3,
11-13]. These ideas promise many new applications and provide a branch point for a diverse set
of research direction implementations including, but not limited to the following:

New methods for globally controlling nonlinear distributed parameter systems.

New methods for spacecraft deployment dynamics and control. I
New methods for stable control of flexible multi-body systems.

I
I
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Near-Minimum-Time Maneuvers of Flexible Vehicles: A Liapunov Control Law Design Method

J. L. Junkins Z. 1. Rahman H. Bang
Department of Aerospace Engineering

Texas A&M University
College Station, Texas 77843

Abstract We are interested in a class of rest-to-rest maneuvers and
An approach for designing globally stable feedback control under the above assumptions, we can show that the beams
laws for maneuvers of distributed parameter structural will deform in the anti-symmetric fashion (Figure 1) with
systems is presented. The analytical developments and the configuration's instantaneous mass center remaining at
results are supported by experimental results. the hub's geometrical center. Due to the anti-symmetric

deformation of the beams, we need concern ourselves only
I. Introduction with the deformation y(x,t) of a single beam. We adopt the

Considerable recent research has been directed toward the continuum viewpoint and avoid introducing spatial
problem of maneuvering a flexible spacecraft. The present approximations in the application of Liapunov concepts: the
paper grew out of our recent study (1]. In [2], we present a resulting control law and stability arguments will therefore
fairly comprehensive treatment of this family of problems apply rigorously to the distributed parameter system. The
up through 1985. Other analytical and experimental hybrid system of ordinary and partial differential equations
investigations3" have been carried out to evaluate: (i) governing the dynamics of this system are
feedback control laws based upon minimizing quadratic - - =u + 4(M. - S..)
indices. (ii) near-minimum time, switching-type controllers,
and (iii) implementation issues. The main configuration of a2 d2  d 2  

a2

interest in the present discussion is a hub-appendage -(M.-So)=Jpx( +x-)dx mI(l + ]I) (1)
structure similar to the configuration of the Vander Velde 2()

and He study", however, we address the use of variable p( + X d7)+ EI = 0+or
torque actuation via a raction wheel instead of on-off W

thrusters, and utilize Lyapunov control design approaches
and establish stable tracking-type control laws for distrib- p is the constant mass/unit length of the beams,utedparaetersystms.El is the assumed constant beam bending stiffness,
ute parameter systems. (M, S.) denote bending moment and shear force, at

11. Maneuvers and Vibration Control for the root of the beams,
Distributed Parameter Systems 0 denotes hub inenial rotation.

m denotes the mass of the tip mass, and
With reference to Figures I - 3, we consider single-axis (/, 1) denote the distance from the hub center to the
maneuvers of a rigid hub with four cantilevered flexible beam tip and the hub radius.
appendages. In [I], we present an analogous control law for
nonlinear three dimensional maneuvers. In (3], Wie, et al We denote higher order terms by HOT to indicate other
develop similar globally stable laws for rigid body known linear and non ear effects (such as rotational
maneuvers. For the present discussion, we consider
in-plane vibration and the appendages are assumed to be stiffening, shear deformation, etc.). The most
identical uniform flexible beams. We further invoke the fundamental of the developments given here do not
Euler-Bernoulli assunptions of negligible shear deforma- consider these higher order effects, however, we
Lion and distributed rotary inertia. Each beam is can- selectively discuss these generalizations as well. The
tilevered rigidly to the hub and has a finite tip mass. All boundary conditions on Eqs. (1) are
motion is restricted to the horizontal plane, and a control X x=I.: y(,.)= .2=O
torque ugt) acting on the hub is the only external effect (2)
considered at this stage of the developments. We subse- ' y m d' 0 C)
quently address rejection of disturbances and discuss atx-1: =O, ii -E(id + [,
generalizations to accommodate other modeling assump-
tions. The total energy of the system (constant in the

absence of control or disturbances) is:

Copyright (,) 1990 by John L Junkins. Published by the American

Institute of Aeron&--tics and Astronautics, Inc. with permission.
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2E 1 +dO xdOx This control law is elegant. Notice that controllers
, +[2 0 2 a d-t (3) based upon this output feedback law are easy to

+JI(-4) )O+m(l y 1,)2] implement since no state estimation is required. The
I. ax 71" at root shear and bending moment can be measured by

Motivated by the recent work of Fujii 5 and Vadali 9, conventional strain gauges. The value and sign of the

and in view of the energy integral of the open loop shear/moment feedback gain g, = 4(a, - a )/ a,system, we investigate the Liapunov function depends upon whether we wish to emphasize dissipa-

2U = a, 1 , .2 + a2 (0-)f)2  tion of the beam energy (for a3 > a,), or the motion
I. I a (1) O 1,)2 of the hub (for a3 < a,), as is evident from Eq. (4).+43[f p_(L +x 0) x+ )2dx 02O t

4a 3 [fP(ot +x0)'dx at ( Note U = -a02 is only negative semi-definite, since

(4) it is not an explicit function of the subset of state
where the positive weighting coefficients ai are variables (0,y(xJ), --- ); the stability arguments

introduced to allow relative emphasis upon the three t

sets of contributors to the "error energy" of the therefore implicitly depend upon the truth that all

system. We anticipate that only two of these weight infinity of modes of motion of this structure, under

parameters really matter, since we can scale Eq. (4) the assumption of anti-symmetric deflections, have

by an arbitrary constant without changing the location generally non-zero hub angular velocity (().

of the global minimum. Notice that the open loop
system energy integral of Eq. (3) does not depend It is of significance that the linear feedback law of Eq.
upon t1he rigid body displacement coordinate 0. In (7) maintains it's globally stabilizing character even

addition to introducing weights on subsets of the when the Euler/Bernoulli assumptions are relaxed to
system energy, to construct a meaningful Lyapunov include additional linear and nonlinear effects; in
function [Eq.. (4)] for the closed loop system, we have particular, closed loop stability is maintained when
modified the open loop energy integral by adding the we include the following effects neglected above:
second term a2 (0-0 ) to make the desired final state rotational stiffening, coriolis kinematic coupling

(,, yJ 3=(, )terms, aerodynamic drag, shear deformation, beam I
(8, 0, y , (0t , 0, 0, 0) rotary inertia, and finite rotational inertia of the tip

be the global minimum of U. It is obvious by mass. The verification of these truths requires
inspection that the logical requirement that aj>0 appropriate modifications of the kinetic and potential

guarantees that U O, and that indeed the global energy functions, and of course, the differential
minimum of U=O occurs only at the desired state. equations of motion must be generalized consistently.
Differentiation of Eq. (4), substitution of the equa- In short, global stability of the system using thetions of motion (Eqs. (1), (2)), and some calculus simple linear control law of Eq. (7) has been found I
leads to very forgiving of modeling assumptions and therefore

U =0 [a, u + a2 (0-0,) + 4(a3 -at )(1. S. -M.)] (5) modeling errors.

Since we require that U.0 to guarantee stability, we On the other hand, the overall performance measures

set the [ ] term to -a4 0 and this leads to U = a4 02  (time constants, required energy, rms output errors,

and the control law etc.) of the system versus our simulations are gener-
ally not as forgiving as the most fundamental per-u =- a2 (0-0) + a&0 + 4(a 3-al )(l.S.-M)](6) formance measure (stability). While we can

or, we see that the following linear, spatially discrete guarantee stability for a large family of model errors,
output feedback law globally stabilizes this distrib, it should be apparent that performance predictions are
uted parameter system: generally very sensitive to modeling errors. With

appropriate system modeling and selection of theU - [g '(-t) + g + g (1 -M ](7) feedback gains, however, we have found numerically
,uh g 0 0, g, > 0, g, a -4, fo, global a*abil. and experimentally, that this feedback law works well
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I over finite regions of the state and gain space, and in smoothed control approximations presented in Ref.
the presence of typical model errors. [1, 8] has been studied in the context of near-

minimum-time maneuvers of flexible bodies. These
While the constant gain linear feedback works well studies motivate the use of a smoothly switching
for terminal pointing and vibration suppression, we family of controls for single axis maneuvers. TheI have found it to be a poor law for carrying out both approach involves applying a judiciously shaped
large angle maneuvers and terminal pointing/vibration torque profile to a rigid body to provide a nearly
suppression. In fact, it is evident from both analytical achievable target trajectory for the flexible bodyHand experimental studies that gain scheduling is maneuver. One such smooth family of rigid body
needed to use the linear feedback law of Eq. (7) to maneuvers for near minimum time control is gener-
efficiently control both the large maneuvering ated as follows:Emotions and the small terminal motions. This is 10 = U + uf(At, tf, t) (8)
because the large gains required for effective vibra- where
tion suppression and disturbance rejection near the u.. is the saturation torque,
target state typically differ by several orders of t is the maneuver time, we choose the + sign if Of > e.
magnitude from the smaller ones needed far from the - At
target state (i., e., large gains appropriate for terminal = - t t= + at. t, ti - at.
vibration suppression, when used during a large angle At is the rise time and the smooth torque shape function

maneuver typically result in actuator saturation and adopted is
significant 0 overshoots). To obtain a control law
more appropriate for large angle maneuvers with ) =  (3 - 2(-)I, for 05 t _ At

vibration suppression, we can modify the above1= 1, 2 for At !t s t,
developments; a stable tracking-type feedback control f(A, ti, t) =1 -2 (') [3 - 2(r )l). fort, <t ! t2
law is presented in the following discussion. for t2 < t !5 h

III. Near-Minimum-Time Maneuvers of -1 t- tt--- +- ) 3-2(-) forhttS:

Distributed Parameter Systems

Consider the near-minimum-time, single axis
maneuver of a rigid body. We know that the strict Adopting the positive sign, Eq. (8) integrates to yield
minimum tiiae control is a bang-bang law2 which for 0(t) = 0. + -I Jf(t, , t, t)d'c
the rest-to-rest maneuver-to-the-origin case, saturates t(9)
negatively during the first half of the maneuver and
positively during the last half of the maneuver. O(t)= 0. + 0. (t-t.) + -f f f(t,t, 2)dx2dr,
However, the switch times for arresting many modes tt
of a vibrating structure are sensitive to model errors; The integrations indicated in Eq. (9) can be carriedwe prefer to adopt an approach which is inherently out in terms of elementary functions which are notSsmoother and more robust. Note that discontinuous presented here for brevity. Figure 4 shows thecontrols will almost certaintlyexcite higher frequency maneuver resulting from these integrations for amodes as well as fail to perfectly arrest the lower typical selection of parameters. For rest-to-restfrequency modes. We seek to generalize the above maneuvers, we can impose the boundary conditionsfreqenc moes.We eekto enealie te aoveat t. =0: 0(0) = 0. , 0(0) -- 0;
vibration suppression approach which does not (10)
require we control the structure mode-by-mode, so at t, =T: O(T)= 0, , O(T)= 0
that it permits the user to shape the overall maneuver and upon carrying through the integrations of Eqs.
as well as incorporate vibration suppression feedback. (9), we find the useful relationship

-0o =-0 -  a + I a2 ]T2

Recently, an attractive family of controllably smooth (1)

approximations of the sign (sgn) function which arises with t1 = At = aT, 0 < a <4
I in time-optimal control has been introduced. The
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"smoothed bang-bang" open-loop controls such as Eq. 1
or T (of - 0.1 112 (8) to generate maneuvers of a flexible body results in

u,,,r( 1- - ' (12) moderate structural vibration, for sufficiently slow
1 4 1 TO Iand smooth maneuvers (small u.., and large aX). Of

In Eq. (12) we see the rigid body tradeoff between course unmodeled disturbances, control implementa-
tnoq.(e s eeping the, mane botime (T), maneuver tion errors, and model errors negate some of these
torque shaping (a), maneuvertie1),mnur

angle (0rO), and maximum angular acceleration apparent gains, especially without feedback. For

(u,.1I). Obviously, Eq. (11) can be inverted for any relatively small penalties in maneuver time"7, actual
torque-shaped maneuvers enjoy several orders of

of these as a function of the remaining parameters. If magnitude reduction in residual vibration, even
we set ox= t /T=0, of course, we obtain the special without feedback, although some offset in rigid body
case result [ r = 41(01 -0.)/ u,) expressing the position usually results. Thus overall maneuver time,
well-known square-root relationship between the including vibration arrest, can be reduced dramati-
minimum time, maneuver angle, inertia, and satura- cally by modest torque shaping, as compared to
tion torque for bang-bang control. simply using bang-bang control augmented by

vibration suppression. Also of significance, we find
Figure 5 shows the rigid body maneuver time (T) that it is usually desirable to select the torque profile
versus a and u,,. Notice that the maneuver time is (e.g., u,,, a, etc.) to consider the sensor and actuator

strongly dependent upon u,,., but varies much less as dynamics and thereby make the commanded torque
a function of aX. However, we find when the torque history more nearly physically achievable. More
u,.It) = u,,. flaT, T, t) of Eq. (8) is applied to a generally, however, we can use any reference

flexible body, the reverse is true vis-a-vis the residual maneuver (not necessarily a rigid body torque-shaped

vibration energy at time T. To illustrate this point, we maneuver).

approximated the solution of Eqs. (1) by introducing a Se
Galerkin expansion (of the beam deflection in term Suppose we adopt a reference open-loop rigid body
of the first ten clamped-free cantilever mode shapes maneuver denoted by the subscript ref as

times time varying generalized coordinates). The {0,.1 (), 0,.f (t), 0,1, (t) = u. , /I } and satisfying

forced response of the resulting 20th order system Eqs. (8-12). Note I is the undeformed moment of
was judged adequately converged. Using this inertia, and we have implicitly selected the torque
solution, we applied the same family of torques used shaping parameters ac, u,,,., and thereby established
for the rigid body results of Figure 5 and computed the corresponding target maneuver time T from Eq.
the flexible body open loop response for each choice (12) for specified initial and final angle. Motivated
of a and u,,,. Figure 6 shows the total energy of the by the issues discussed above and the quadratic

flexible body system at time T for this same family of regulator perturbation feedback controllers in refs.
maneuvers. As is evident, the vibration energy [^.,11,13], we hypothesize the following stracture for
vanishes for sufficiently small u,, and is sig- the control law
nificantly reduced for any given u,, by increasing a. U = 4 ,,tW-[g (0-0,.) +g (13)

Notice the triangular region (large a, smv1 u,. ) for + g ((4S.- S.-M )] (13)
which the vibration energy at time T is negligible, where the root moment for the reference (rigid body)
We will subsequently see that measures of the largest motion is proportional to the angular acceleration:
errors with which the closed-loop-controlled flexible (1. S.- M.),, = [P/ _ 1.f )13 + m 12 ]., (t). n
body system can track the rigid body maneuvers of
Figure 5 behave in a qualitatively similar way. We wish to gain insight on the stability characteristics

of the flexible body's closed-loop departure dynamics
The above results and those of Ref. [1, 6, 7, 8] support [from the target (ref) rigid body motion (for t<T ),
the intuitively obvious truth that applying judiciously and from the fixed target state (for t >T)], and we will I
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provide an analytical justification for the tracking notation A0=(),-(),,f, Eq. (15) simplifies to
control law of Eq. (13). Let us denote by the sub- U= -a, (0-0,) {g2 (0-) + [g, AO + g2 A + g3 A(l. S-M-)]}
script r the state variables alohg the open-loop (17)
flexible body solution of Eqs. (1) when driven by the A sufficient condition characterizing the region where
torque u,,It) of Eqs. (8-12). The instantaneous U < 0 is the dominance of the first term in the {} of
displacement of the open-loop flexible body solution Eq. (17), this gives the inequality
from the open loop rigid body motion is denoted AO = 0-,> -1AO + gAO + gA(S. S . J. (18)
0r" 0r,f; for example, AO(t) = 0,() -Ore/t). Variables 92

without subscripts represent the actual instantaneous It is further apparent that the A quantities on the rightwtosubsripts rntrolled soluthen vacuale. instaes hand side of Eq. (18) are finite and (pre-) computable
closed-loop controlled solution variables. Consider dfeecsbtenteoe opfeil n ii
the candidate error energy Liapunov function differences between the open loop flexible and rigid
2t = a, i. (0e- 0)2 + a2(- o v ) body motions, thus an upper bound can be established

[a,( a,) +(-,)] (14) directly by a one-time family of a priori simulations
+ 4a, [(L - of the two open loop motions, and using a particularat " )2,x +m[l(a-t,)+, 1 set of feedback gains. Equation (18) thus determines

0at _ _j an angular velocity boundary region. Note that largeAssuming the actual control is some general, to-be- motions are globally attracted to the region boundeddetermined u(t), and that the actual motion satisfies by g± of Eq. (18). Thus the control law of Eq. (13) isEqs. (1), we have investigated the time derivative of almost globally stabilizing, and the only region whereU of Eq. (14) and found that it is given by the follow- asymptotic stability cannot be guaranteed is a bound-ing equation ary layer region near the target trajectory. Further-in a [(..)+4 .[(IS..M.)_(I.S.M.),] more, note the right hand side of Eq. (18) is essen-
U= at (0-0,)[u-U,+!a, tially a weighted measure of how nearly the target

1 (15) trajectory satisfies the flexible body equations of
Analogous to the logic leading to Eq. (5), we see that motion; further note that judicious choice of the
we could determine a globally stabilizing u(t) by torque shaping parameters defining the target trajec-
setting the bracketed term to a positive quantity g. tory can result in g± being arbitrarily small.

times -(0-0) {i. e., this makes U a negative definitefunction of the error in hub angular velocity), and A bounded-input/bounded-output viewpoint of
gi the glob in contr law stability can also be considered, based upon theu iv u,,s - [g (0- 0,.) + g (0 - l) departure motion differential equations obtain by

2 2 (16) differencing Eqs. (1) evaluated at each instant along
+g ((l.s.-M.)- (l.S.- K),)] the flexible body closed loop trajectory and along the

= - a g - a we flexible body open loop 0, motion. Upon formulating
with U = s-a , a2(" , and introduced the gain these equations, we find departure motion is governed
definitions as gaa2 /ai , and g 4(a3 - a, )/a,.

by an otherwise asymptoticaly stable system of
Notice, to guarantee global stability, that g, and g2  differential equations forced by the known A( ) terms
must be positive, but as before g3 must be greater than which appear in Eqs. (18). Since these forcing terms

-4. The only difficulty with this control law is that it can be bounded by direct calculation, the resulting
requires pre-computing the flexible body solution, departure motion can also be bounded. Since the
which is generally infeasible in an on-line implemen- actual numerical bounds on the A quantities can be
tation. Obviously, we'd prefer a tracking law which made arbitrarily small (depending upon how nearly
requires a much simpler (e., g., rigid body) maneuver the user defined reference trajectory is made to satisfy
to be pre-computed. Let us pursue this objective, the open loop equations of motion), we have a very
Since Eq. (15) holds for an arbitrary gt), we intro. attractive theoretical and practical situation vis-a-vis
duce instead of Eq. (16) the control law of Eq. (13), stability of the closed loop tracking motion. We see
and investigate it's stability characteristics. Using the that the closed-loop motion is globally attracted to the

controllably small region near the target trajectory

303

(26)



I
I

which violates the inequality of Eq. (18), and consid- 6, 7] support the conclusion that we can use these
ering the motions within this small region, we have surfaces (together with disturbance rejection simula-
bounded-input, bounded-output stability, tions to select the reference trajectory and tune the I

feedback gains) to establish a large family of feasible
The above discussion can probably be generalized for designs. Prior to discussing our experimental results,
any smooth target trajectory, but we find that it is we present some further simulations to show state and I
attractive to use a torque-shaped rigid body reference control variables histories along typical trajectories of
trajectory, such as Eqs. (8)-(12). Note that Eqs. underlying the above surfaces. We include in these
(8)-(13) result in a C1 continuous transition: simulations the effects of disturbance torques, to I

&, (t), ., (s), o, (t., s). s, ( =* {o, 0, 0, 0, 0 illustrate the effectiveness of the controls in the
as t :=T; so that for t > T, only the three feedback presence of unmodeled effects. Table I summarizes

terms of Eq. (13) are contributing to the terminal the physical parameters and a detailed hardware I
fine-pointing/vibration arrest control. Thus the description of the maneuver experiment is given in
controls blend continuously from the large angle Ref. [1]. For simplicity, we consider here only the

tracking law into a constant gain controller (for t > T) case of a 400 rest-to-rest maneuver, and set u,, = 400 $
identical to the globally stable fixed point output oz-in for all cases.
feedback case of Eq. (7).

For our computational and experimental studies, we I
IV. Simulated Results: consider two control laws, namely the output feed-

Large Angle Maneuvers Experiment back law (Control Law I) of Eq. (7), and the

Returning to the family of 400 open loop maneuvers tracking-type feedback control law (Control Law II)
used to generate the energy surface of Figure 6, we of Eq. (13). While Control Law II could be used with
computed the velocity tracking bound . for Liapunov an arbitrary reference trajectory, we elect to specifi'
stability [as given by Eq. (18)] and found the maxi- cally investigate the torque-shaped rigid body trajec- I
mum value ( g..) of ±t) along each trajectory. tories of Eqs. (8)-(12). The torque-shaped open loop

Figure 7 displays this worst case tracking bound control history u,./t) is pre-computed (in a fraction of

(maximum value of gt) surface g, ( a, u,, ) over a second!) from Eqs. (8)-(12) and stored. Note that
the boundary conditions of Eq. (10) are enforced bythe same ( a, u,, ) region used to generate Figures 5, using Eq. (12) to compute the target trajectory

6. The closed-loop tracking error bound has a roughly mne tim as at o n o the a e uvr a er
analgou beavio totheopenloo reidua vira- maneuver time as a function of the maneuver angle,

analogous behavior to the open-loop residual vibra- saturation torque, and torque-shape parameter.

tion energy surface of Figure 6. Recall that outside

the region bounded by the inequality of Eq. (18), we We now discuss the simulation results using Control1

have guaranteed Liapunov stability, using the control Law II, which obviously blends into to Control Law I

law of Eq. (13) and the reference rigid body torque in the end game (for t T). In the experimental
given by Eqs. (8)-(12). From Figure 6, it is clear that results, we report maneuvers carried out by both I
sufficiently small u,,,. and large a result in arbitrarily control laws. Both open loop (all gi a 0) and closed
small tracking errors, but the (small a, large u,,. ) loop time histories of selected variables are shown in

near-bang reference maneuvers cannot be tracked as Figures 8a-8d. On the left of Figure 8, we show the I
accurately. It.is easy to see how a family of candidate hub angle and angular velocity for the case of an open
( Cc, u, ) designs can be found which satisfy speci- loop control and in the presence of substantial

fled inequalities on maneuver times, tracking errors, impulsive and quasi-random (5 oz-in, 1 a) distur-
and residual vibration energy, by direct examination bance torques. It is evident that the disturbance
of the surfaces of Figures 5-7. torque history is significant vis-a-vis exciting substan-

tial rigid body and flexural motions. On the right, we
Our experiments with simulations (and in the actual show the closed loop behavior of the system excited
hardware implementations presented below and in [1, by the same disturbance torque history. The random
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component of this disturbance has been found to be is a very versatile and highly effective way to incor-
I typically pessimistic vis-a-vis our experimental porate open loop torque shape optimization with

hardware, however certain non-random, nonlinear vibration suppression. The fact that a globally
effects associated with the bearing friction cause continuous control structure is implicit in this ap-I disturbances which are correlated in time and are not proach leads to minimal difficulties in realizing robust
well represented by the present white noise model of control laws; note the handoff from lare However, as
the disturbance torques. In spite of the substantial previously reported in [1], we did encounter someI disturbance torques (Figs. 8a-8b), it is evident that we practical difficulties in our experimental work.
obtain a near minimum time rigid body motion while Firstly, the shear and bending moment measurements
effectively suppressing vibration (8c-8d). This fact via strain gauges resulted in sufficiently noisyI was also confirmed by evaluation of the energy measurements that this feedback (g3 * 0 ) did not
distribution in the first six modes. improve the controlled response over, for example the

results in Figure 10. Also, deriving the angular
V. Experimental Results velocity estimate from the noisy angle encoder

In all of the experiments discussed below, we set the readout was difficult to accomplish with high preci-
target final angle to 400 and u,,. =400 oz-in. The sion, and as a consequence, we constructed a digital
values of the tracking gains (g,, g2, g3) and of the noise filter to process our angle encoder data and

tt (a eliminate all of the frequency content above 10 Hz;
torquese sape parameter (dm were assigned several this was necessary to avoid erroneous, phase lagged
feasible values values to demonstrate the effects of feedback which would otherwise disturb the higher

othese upon the closed loop behavior of the system. frequency modes. This problem can be eliminated by
Moderate bearing friction and aerodynamic damping investing in a more precise sensor to measure angular
were present in our experiments. displacement and/or angular velocity.

Figure 9 shows the system response for a Control Law Finally, our bearing presented us with some practical
I (the constant gain control law of Eq. (11)) maneuver difficulties. Based upon mechanical tests and analysis
with (g, = 600 oz-in/rad, g2 = 800 oz-in/rad/sec, and of our bearing hardware, it is evident that interaction
g3 = 0). Since this initial position error is large, the of the structure with the bearing accounts for the
maneuver starts from zero with an initial discontinuity overwhelming source of unmodeled disturbances.

to a large torque. For this gain selection, we see a The bearing friction/stiction model developed from

large overshoot ( - 100) and significant structural our analysis [1] has the form

vibration which settled around 12 seconds; the control w bearing we = c1 sign(e) - c20 + HOT (19)
I was terminated at 16 seconds. where we find c1- 20 oz-in and c2 - 0.001 oz-in/rad/

sec. Thus the first (stiction) term of Eq. (19)
I Control Law II leads to very attractive near- dominates the bearing torque for moderate 0 and is

minimum-time maneuvers. One good set of gain about 5% of the peak commanded torque of 400 oz-in.
settings and torque shape parameters leads to the While we believe Eq. (19) models the bearing frictionI results in Figure 10. The effect of using a smooth, well, it is difficult to use this model to compente for
judiciously shaped reference torque history is evident bearing friction in real time, since our estimated value
if one compares the output and control variable of 0 is uncertain due to angle encoder measurementI histories in Figure 10 with those of Figure 9. Law II noise. Thus if we modify our control using Eq. (19),
produced much smaller overshoot (- 1.50 vs - 10°), the commanded discontinuity (near ihe estimated time
shorter settling time (6 sec. vs 12 sec.) and greatly 0 changes sign) will not coincide exactly with theI reduced the severity of peak vibration. These results, actual discontinuity; mis-timed compensation torque
especially when considered in conjunction with discontinuities can actually worsen the disturbance!
numerous other cases are reported in [1, 7, 81 are While we experimented with several bearing frictionI convincing evidence of the truth that Control Law II compensation schemes, we ultimately decided to
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Table 1. Hub/Appendage Configuration Parameters

Hub & Appendages
Total System Inertia,I 2128 (oz-in-sec2 -in]

Hub Center to Gage Center, 1. 5.5470 [in]

Hub Center to Tip Mass, ! 51.07 [in] Reaction
Tip Mass, m .15627 [oz-sec2/in] Whel
Appendage Modules of Elasticity, E 161.6 [106 oz/im2] _______ 3_
Inertia of Bending Section, I .000813 [in]
Density of Appendages P .00307 [oz-sec

2 /iM2]
Distance between two gage set 1.365 [in]

Motor (PML Servodisc DC Motor. JR16M 4 CH)
Torque Constant. K, 52.77 [oz-in/mnp]

Back EMF Constant, K. 39.77 [v/1000rpm grated glass pcal
Tachometer Constant 3 [v/1000rp]n disk

Power Supply (KEPCO BOP 36-12M) encoder
Current Gain 1.2 [amp/volt]

Figure 1. Texas A&M Hub-Appendage Configuration: Figure 3. System Functional Block Diagram

Anti-Symmetric Deformation

strain gauge #1 Reaction

pdx =dm 2 jWheel

* "antisymmetric in unison deformation" Y( ,t) strain

* gauge #2 optical PMI

Motor angle Motor
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I 0digital currn
I/O control
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N T Data Translation 2841 Current
A I/O oard mplifier
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N
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Figure 4. Torque Shaped Rigid Body Maneuver
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Figure 7. Boundary of the Liapunov-Stable Tracking Region
vs. Saturation Torque and Shape Parameter
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Figure 9. Experimental Results: Control Law I
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I Stable Maneuver Control Laws for Distributed Parameter Systems

J. L. Junkins Z. H. Rahman H. Bang
Texas A &M University

College Station, Texas 77843I
Abstract

I An approach for designing globally stable feedback control laws for maneuvers of
distributed parameter structural systems is presented. Analytical and experimental
results are discussed which support the practical merit of this approach. The method
accommodates known nonlinearities and applies to systems described by hybrid
coupled sets of ordinary and partial differential equations. Liapunov stability can be
established for a large family of distributed parameter systems without relying upon
spatial discretization. We develop tracking-type control laws to suppress the depar-
ture of the system state from an a priori determined bmooti target trajectory. The
target trajectory may be chosen as an exact or as an approximate solution of the
system equations of motion. This approach is used to generate a family of near-
minimum-time feedback controllers which accommodates general "torque-shaping".
We show how to establish path-type stability-in-the-large during the maneuver, in the
sense that the motion is globally attracted to a small region near the target trajectory.
The flexibility of this approach permits one to achieve a judicious compromise
between near-minimum-time and competing performance indices such as levels of
vibration during the maneuver, sensitivity to model errors, disturbances, and control
implementation errors. The experimental results provide significant evidence
supporting the practical value of this approach.

L Introduction

I Considerable recent research has been directed toward the problem of maneuvering a
flexible spacecraft. The present paper grew out of our recent study [1]. In (2]. we
present a fairly comprehensive treatment of this family of problems up through 1985.
Other analytical and experimental investigations3"13 have been carried out to evaluate:
(i) feedback control laws based upon minimizing quadratic indices, (ii) near-
minimum time, switching-type controllers, and (iii) implementation issues. The main
configuration of interest in the present discussion is a hub-appendage structure
similar to the configuration of the Vander Velde and He study 3 , however, we address
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the use of variable torque actuation via a reaction wheel instead of on-off thrusters,
and utilize Lyapunov control design approaches and establish stable tracking-type
control laws for distributed parameter systems.

IL Maneuvers and Vibration Control for
Distributed Parameter Systems

With reference to Figures I - 3, we consider single-axis maneuvers of a rigid hub
with four cantilevered flexible appendages. In [11, we present an analogous control
law for nonlinear three dimensional maneuvers. In [3], Wie, et al develop similar
globally stable laws for rigid body maneuvers. For the present discussion, wei
consider in-plane vibration and the appendages are assumed to be identical uniform
flexible beams. We further invoke the Euler-Bernoulli assumptions of negligible
shear deformation and distributed rotary inertia. Each beam is cantilevered rigidly to
the hub and has a finite tip mass. All motion is restricted to the horizontal plane, and
a control torque u(t) acting on the hub is the only external effect considered at this
stage of the developments. We subsequently address rejection of disturbances and
discuss generalizations to accommodate other modeling assumptions.

We are interested in a class of rest-to-rest maneuvers and under the above assump- I
tions, we can show that the beams will deform in the anti-symmetric fashion (Figure
I) with the configuration's instantaneous mass center remaining at the hub's
geometrical center. Due to the anti-symmetric deformation of the beams, we need
concern ourselves only with the deformation y(x,t) of a single beam. We adopt the
continuum viewpoint and avoid introducing spatial approximations in the application
of Liapunov concepts; the resulting control law and stability arguments will therefore
apply rigorously to the distributed parameter system. The hybrid system of ordinary
and partial differential equations governing the dynamics of this system are

d0
=u +4(M. -So 1)

1 Y dO d eae 2

-(M- S 0 4)fJpx( z+ X _)dx + ml (1Id7.+ lVj) +HOT(1

p +x-- 7 ) + EI F, = O+Hor

where
p is the assumed constant mass/unit length of the beams,
El is the assumed constant beam bending stiffness,
(Mo, SO) denote bending moment and shear force, at the root of the beams,

0 denotes hub inertial rotation,
m denotes the mass of the tip mass, and
(/, I) denote the distance from the hub center to the beam tip and the hub radius.

We denote higher order terms by HOT to indicate other known linear and nonlinear
effects (such as rotational stiffening, shear deformation, etc.). The most fundamental
of the developments given here do not consider these higher order effects, however,
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we selectively discuss these generalizations as well. The boundary conditions on
Eqs. (1) are

atx=I.: y(t, : ,) = a ,=O

2 r3 - d (2)at = 1: a2 0-- + --2 IY

The total energy of the system (constant in the absence of control or disturbances) is:

2E = I . (-)2
2E 2v d ~ y) (3)

+4[ - + -)2dx+ fEl(.y )2dx + m(I d ± + Y1)2]

d. at t o dt at

Motivated by the recent work of Fujii5 and Vadali9 , and in view of the energy integral
of the open loop system, we investigate the Liapunov function

2U = a,1 , I0 '  a2 (e-ef) 2

I I D2(4)+4a3 [Ip( +xe)2d + I(-x )dx +m(le+ It)2][fl 2 Ola 1,)

434 at 4(ax at

I where the positive weighting coefficients ai are introduced to allow relative emphasis
upon the three sets of contributors to the "error energy" of the system. We anticipate
that only two of these weight parameters really matter, since we can scale Eq. (4) by
an arbitrary constant without changing the location of the global minimum. Notice
that the open loop system energy integral of Eq. (3) does not depend upon the rigid
body displacement coordinate 0. In addition to introducing weights on subsets of the
system energy, to construct a meaningful Lyapunov function [Eq. (4)] for the closed
loop system, we have modified the open loop energy integral by adding the second
term a2 (e-0,)" to make the desired final state

~e, e, y, , - (of, 0, 0, 0)(e, 0, y (x1), I at Lesired =-- 0 10

be the global minimum of U. It is obvious by inspection that the logical requirement
that ai>O guarantees that U :0, and that indeed the global minimum of U=O occurs
only at the desired state. Differentiation of Eq. (4), substitution of the equations of
motion (Eqs. (1), (2)), and some calculus leads to

U - = [ a u + a2 ((-Of) + 4(a3-al )(l. S. -M.)] (5)

I Since we require that UO to guarantee stability, we set the [ term to - a4 e and this

leads to U - a4  and the control law

u= - [a 2 (0-ef) + a4 + 4(a 3 -a, )(1 S.-M.)] (6)
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or, we see that the following linear, spatially discrete output feedback law globally
stabilizes this distributed parameter system:

U =- [g (--Of) + g2 + g3 ( S.-M )]; (7)

with g > 0, g2  0, g 3 a -4, for global stability.

This control law is elegant. Notice that controllers based upon this output feedback
law are easy to implement since no state estimation is required. The root shcar and
bending moment can be measured by conventional strain gauges. The value and sign
of the shear/moment feedback gain g. = 4(a3 - a, )/ a, depends upon whether we

wish to emphasize dissipation of the beam energy (for a3 > a,), or the motion of the

hub (for a, < a,), as is evident from Eq. (4). Note U = -a4 02 is only negative

semi-deunite, since it is not an explicit function of the subset of state variables
(0, y (x,t), -'-T-); the stability arguments therefore implicitly depend upon the

truth that all infinity of modes of motion of this structure, under the assumption of

anti-symmetric deflections, have generally non-zero hub angular velocity (0).

It is of significance that the linear feedback law of Eq. (7) maintains it's globally
stabilizing character even when the Euler/Bemoulli assumptions are relaxed to I
include additional linear and nonlinear effects; in particular, closed loop stability is
maintained when we include the following effects neglected above: rotational
stiffening, coriolis kinematic coupling terms, aerodynamic drag, shear deformation,
beam rotary inertia, and finite rotational inertia of the tip mass. The verification of
these truths requires appropriate modifications of the kinetic and potential energy
functions, and of course, the differential equations of motion must be generalized
consistently. In short, global stability of the system using the simple linear control
law of Eq. (7) has been found very forgiving of modeling assumptions and therefore
modeling errors.

On the other hand, the overall performance measures (time constants, required
energy, rms output errors, etc.) of the system versus our simulations are generally not I
as forgiving as the most fundamental performance measure (stability). While we can
guarantee stability for a large family of model errors, it should be apparent that
performance predictions are generally very sensitive to modeling errors. With I
appropriate system modeling and selection of the feedback gains, however, we have
found numerically and experimentally, that this feedback law works well over finite
regions of the state and gain space, and in the presence of typical model errors.

While the constant gain linear feedback works well for terminal pointing and vibra-
tion suppression, we have found it to be a poor law for carrying out both large angle I
maneuvers and terminal pointing/vibration suppression. In fact, it is evident from
both analytical and experimental studies that gain scheduling is needed to use the
linear feedback law of Eq. (7) to efficiently control both the large maneuvering I
motions and the small terminal motions. This is because the large gains required for
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Ueffective vibration suppression and disturbance rejection near the target state typically
differ by several orders of magnitude from the smaller ones needed far from the target
state (i., e., large gains appropriate for terminal vibration suppression, when used
during a large angle maneuver typically result in actuator saturation and significant 0
overshoots). To obtain a control law more appropriate for large angle maneuvers
with vibration suppression, we can modify the above developments; a stable
tracking-type feedback control law is presented in the following discussion.

IIIL Near.Minimum.Time Maneuvers of Distributed Parameter Systems

Consider first the near-minimum-time maneuver of a rigid body. We know that the
strict minimum time control is a bang-bang law2, which for the rest-to-rest
maneuver-to-the-origin case, saturates negatively during the first half of the
maneuver and positively during the last half of the maneuver. From an implementa-
tion point of view, the instantaneous switches of bang-bang control are often
troublesome for several reasons:

I (i) no torque-generating device exists which can switch instantaneously,

(ii) when generalized and applied to flexible structures, the discontinuous class
of controls typically excite poorly modeled higher frequency modes, and

(iii) the predicted (model-derived) switch times and the predicted response of the
actual system are usually sensitive to modeling errors.

As a consequence, we find that bang-bang control of flexible body dynamics usually
lacks robustness with respect to modeling errors, especially when one attempts to
control several modes of vibration in addition to the large angle motion.

Recently, an attractive family of controllably smooth approximations of the sign (sgn)
function which arises in time-optimal control has been introduced. The smoothed
control approximations presented in Ref. [1, 8] has been studied in the context of
near-minimum-time maneuvers of flexible bodies. These studies motivate the use of
a smoothly switching family of controls for single axis maneuvers. The approach
involves applying a judiciously shaped torque profile to a rigid body to provide a
nearly achievable target trajectory for the flexible body maneuver. One such smooth
family of rigid body maneuvers for near minimum time control is generated as

*follows:

IA =u =+ n=af(At, tf , t) (8)
*where

I
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u,,. is the saturation torque. I
tf is the maneuver time, we choose the + sign if Of > 0.

t1=..-At, t= +At, 3=If -At,

At is the rise time, and the smooth torque shape function

adopted is

- (3 - 2('i] for 0:5 :At

- ,for At : t tt-tj 2 tt

f(At, tf,t) = I-2 ( -) [3- 2( )]), for ti<t_ t2

-- 1, for r2 < t <- t3

- + (-L-) [3 - 2(--) forr 3: t r I
Adopting the positive sign, Eq. (8) integrates to yield

e ~ + ft+- f(t, , ty, )dTI
to 9

O(t) =0 + + E,(t)f + Jf(ti , tf, r2)d 2dr
to to

The integrations indicated in Eq. (9) can be carried out in terms of elementary
functions which are not presented her for brevity. Figure 4 shows the maneuver
resulting from these integrations for a typical selection of parameters. For rest-to-rest
maneuvers, we can impose the boundary conditions

at t. 0: (0) =, O ,6(0)=; I
at tf =T: O(T) = Of, 6(T) = 0(0

and upon carrying through the integrations of Eqs. (9), we find the useful relationship

Of-O u - 'a+ Ia2]t2 with 1 = At = aT, 0< c< 1 (11) 1

or T= ua( f - + ) 112 (12)

In Eq. (12) we have the explicit rigid body tradeoff between torque shaping (a), I
(40)
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maneuver time (M), maneuver angle (Of - 0.), and maximum angular acceleration
(u,,,/ I ). Obviously, Eq. (11) can be inverted for any of these as a function of the

I remaining parameters. If we set a = At / T = 0, of course, we obtain the special case
result ( T2 = 41(Gf - 0 .)/ u,.} expressing the well-known square-root relationship
between the minimum time, maneuver angle, inertia, and saturation torque for
bang-bang control.

Figure 5 shows the rigid body maneuver time MT) versus a and u,,. Notice that the
maneuver time is strongly dependent upon u,,., but varies much less as a function of
a. However, we find when the torque u,,/:) = u,,f(aT, T, 0 of Eq. (8) is applied
to a flexible body, the reverse is true vis-a-vis the residual vibration energy at time T.
To illustrate this point, we approximated the solution of Eqs. (1) by introducing a
Galerkin expansion (of the beam deflection in terms of the first ten clamped-free
cantilever mode shapes times time varying generalized coordinates). The forced
response of the resulting 20th order system was judged adequately converged. Using
this solution, we applied the same family of torques used for the rigid body results of
Figure 5 and computed the flexible body open loop response for each choice of a and
U,,. Figure 6 shows the total energy of the flexible body s) .tem at time T for this
same family of maneuvers. As is evident, the vibration energy vanishes for suffi-
ciently small u,,. and is significantly reduced for any given u,. by increasing a.
Notice the triangular region (large a, small u,,. ) for which the vibration energy at
time T is negligible. We will subsequently see that measures of the largest errors
with which the closed-loop-controlled flexible body system can track the rigid body
maneuvers of Figure 5 behave in a qualitatively similar way.

The above results and those of Ref. [1, 6, 7, 8) support the intuitively obvious truth
that applying judiciously "smoothed bang-bang" open-loop controls such as Eq. (8) to
generate maneuvers of a flexible body results in moderate structural vibration, for
sufficiently slow and smooth maneuvers (small u, and large a). Of course un-
modeled disturbances, control implementation errors, and model errors negate some
of these apparent gains, especially without feedback. For relatively small penalties in
maneuver time1'7, actual torque-shaped maneuvers enjoy several orders of magnitude
reduction in residual vibration, even without feedback, although some offset in rigid
body position usually results. Thus overall maneuver time, including vibration arTest,
can be reduced dramatically by modest torque shaping, as compared to simply using
bang-bang control augmented by vibration suppression. Also of significance, we find
that it is usually desirable to select the torque profile (e.g., u,, a, etc.) to consider

the sensor and actuator dynamics and thereby make the commanded torque history
more nearly physically achievable. More generally, however, we can use any
reference maneuver (not necessarily a rigid body torque-shaped maneuver).

Suppose we adopt a reference open-loop rigid body maneuver denoted by the sub-
script ref as {e,. (t), 6, (t), Of (t) = , /I } and satisfying Eqs. (8-12). Note I is
the undeformed moment of inertia, and we have implicitly selected the torque
shaping parameters a, u,,. , and thereby established the corresponding target
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maneuver time T from Eq. (12) for specified initial and final angle. Motivated by the
issues discussed above and the quadratic regulator perturbation feedback controllers
in refs. [2,11,13], we hypothesize the following structure for the control law

U Urei t-[g ( 6,f) +g (00., ) I

+ g3 ((I s.- M. ) - (I. S.- M.),.f)] I

where the root moment for the reference (rigid body) motion is proportional to the

angular acceleration: (l.So- M.), = [p ( 3_3)/3 + m I ],(t). I
We wish to gain insight on the stability characteristics of the flexible body's closed-
loop departure dynamics [from the target (ref) rigid body motion (for t<T ), and from
the fixed target state (for t n-)], and we will provide an analytical justification for the
tracking control law of Eq. (13). Let us denote by the subscript r the state variables
along the open-loop flexible body solution of Eqs. (1) when driven by the torque
u,ltO of Eqs. (8-12). The instantaneous displacement of the open-loop flexible body
solution from the open loop rigid body motion is denoted AO = 0,- Oef; for example,
AO(t) = 0,(t) - e, ,/O. Variables without subscripts represent the actual instantaneous
closed-loop controlled solution variables. Consider the candidate error energy
Liapunov function

2U = [Jp_(&- =aI + a,(0 - 0,)
[o [(L --y,) +mo-,) +(],2,) I

I. aU ax at at

Assuming the actual control is some general, to-be-determined u(t), and that the I
actual motion satisfies Eqs. (1), we have investigated the time derivative of U of Eq.
(14) and found that it is given by the following equation

J= a (O-0,) -uf + a2(e-e,) + 4 a3" a[(IS.-M ) - (1.S.-M.),] (15)a, a,

Analogous to the logic leading to Eq. (5), we see that we could determine a globally
stabilizing u(t) by setting the bracketed term to a positive quantity g2 times -(0-e,)
{i. e., this makes 0 a negative definite function of the error in hub angular velocity),
and gives the globally stabilizing control law

U u,, 1 ()- [g (0 -e,) + g2 (6 - 0 (12 (16)

+g3 ((/.S.- (.) -(S.- NI,)]
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with U a2 6-4g-,) 2 and we introduced the gain definitions as g,- a2/a1 , and

g -4(a, - a, )/a,. Notice, to guarantee global stability, that g, and g2 must be

positive, but as before g. must be greater than -4. The only difficulty with this
control law is that it requires pre-computing the flexible body solution, which is
generally infeasible in an on-line implementation. Obviously, we'd prefer a tracking
law which requires a much simpler (e., g., rigid body) maneuver to be pre-computed.
Let us pursue this objective. Since Eq. (15) holds for an arbitrary u(), we introduce
instead of Eq. (16) the control law of Eq. (13), and investigate it's stability charac-
teristics. Using the notation Ao=o,-O,,f, Eq. (15) simplifies to

U= -a, (e-e,) [92 (0-0,) + [g1 AB + g2 A0 + g3 A(. S.-M. )] (17)
A sufficient condition characterizing the region where U <_ 0 is the dominance of the
first term in the { } of Eq. (17), this gives the inequality

10-0,1 > -Lg AO + g2 Ae + = AY.S. -M)I[ (18)
92

It is further apparent that the A quantities on the right hand side of Eq. (18) are finite
and (pre-) computable differences between the open loop flexible and rigid body
motions, thus an upper bound can be established directly by a one-time family of a
priori simulations of the two open loop motions, and using a particular set of feed-
back gains. Equation (18) thus determines an angular velocity boundary region.
Note that large motions are globally attracted to the region bounded by AL of Eq. (18).
Thus the control law of Eq. (13) is almost globally stabilizing, and the only region
where asymptotic stability cannot be guaranteed is a boundary layer region near the
target trajectory. Furthermore, note the right hand side of Eq. (18) is essentially a
weighted measure of how nearly the target trajectory satisfies the flexible body
equations of motion; further note that judicious choice of the torque shaping
parameters defining the target trajectory can result in .L being arbitrarily small.

A bounded-input/bounded-output viewpoint of stability can also be considered, based
upon the departure motion differential equations obtain by differencing Eqs. (1)
evaluated at each instant along the flexible body closed loop trajectory and along the

flexible body open loop 0, motion. Upon formulating these equations, we find
depamre motion is governed by an otherwise asymptoticaly stable system of differ-
ential equations forced by the known A( ) terms which appear in Eqs. (18). Since
these forcing terms can be bounded by direct calculation, the resulting departure
motion can also be bounded. Since the actual numerical bounds on the A quantities
can be made arbitrarily small (depending upon how nearly the user defined reference
trajectory is made to satisfy the open loop equations of motion), we have a very
attractive theoretical and practical situation vis-a-vis stability of the closed loop
tracking motion. We see that the closed-loop motion is globally attracted to the
controllably small region near the target trajectory which violates the inequality of
Eq. (18), and considering the motions within this small region, we have bounded-
input, bounded-output stability.

The above discussion can probably be generalized for any smooth target trajectory,
but we find that it is attractive to use a torque-shaped rigid body reference trajectory,
such as Eqs. (8)-(12). Note that Eqs. (8)-(13) result in a C' continuous transition:
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{Uref (1), O7 (t), 0 ,.f Q:). M.,~f (t), Si(t)} =* {0, O 0, 0, O} as t T; so that for

t > T, only the three feedback terms of Eq. (13) are contributing to the terminal
fine-pointing/vibration arrest control. Thus the controls blend continuously from the
large angle tracking law into a constant gain controller (for t > T) identical to me I
globally stable fixed point output feedback case of Eq. (7).

IV. Simulated Results for the Large Angle Maneuvers Experiment

Returning to the family of 400 open loop maneuvers used to generate the energy
surface of Figure 6, we computed the velocity tracking bound g± for Liapunov
stability [as given by Eq. (18)] and found the maximum value ( g,,,) of jt(t) along I
each trajectory. Figure 7 displays this worst case tracking bound (maximum value of
gt) surface .,,, ( a, u,,) over the same ( a, u,,,) region used to generate Figures 5,
6. The closed-loop tracking error bound has a roughly analogous behavior to the
open-loop residual vibration energy surface of Figure 6. Recall that outside the
region bounded by the inequality of Eq. (18), we have guaranteed Liapunov stability,
using the control law of Eq. (13) and the reference rigid body torque given by Eqs.
(8)-(12). From Figure 6, it is clear that sufficiently small u,,. and large a result in

arbitrarily small tracking errors, but the (small a, large u, ) near-bang reference
maneuvers cannot be tracked as accurately. It is easy to see how a family of candi-
date ( a, u,, ) designs can be found which satisfy specified inequalities on maneuver

times, tracking errors, and residual vibration energy, by direct examination of the I
surfaces of Figures 5-7.

Our experiments with simulations (and in the actual hardware implementations
presented below and in [1, 6, 7] support the conclusion that we can use these surfaces
(together with disturbance rejection simulations to select the reference trajectory and
tune the feedback gains) to establish a large family of feasible designs. Prior to I
discussing our experimental results, we present some further simulations to show
state and control variables histories along typical trajectories of underlying the above
surfaces. We include in these simulations the effects of disturbance torques, to I
illustrate the effectiveness of the controls in the presence of unmodeled effects. Table
I summarizes the physical parameters and a detailed hardware description of the
maneuver experiment is given in Ref. (I]. For simplicity, we consider here only the I
case of a 400 rest-to-rest maneuver, and set u, = 400 oz-in for all cases.

For our computational and experimental studies, we consider two control laws, I
namely the output feedback law (Control Law I) of Eq. (7), and the tracking-type
feedback control law (Control Law II) of Eq. (13). While Control Law II could be
used with an arbitrary reference trajectory, we elect to specifically investigate the I
torque-shaped rigid body trajectories of Eqs. (8)-(12). The torque-shaped open loop
control history u,*/t) is pre-computed (in a fraction of a second!) from Eqs. (8)-(12)

and stored. Note that the boundary conditions of Eq. (10) are enforced by using Eq. I
(12) to compute the target trajectory maneuver time as a function of the maneuver
angle, saturation torque, and torque-shape parameter.

We now discuss the simulation results using Control Law II, which obviously blends
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I into to Control Law I in the end game (for t _> T). In the experimental results, we
report maneuvers carried out by both control laws. Both open loop (all gi = 0) and
closed loop time histories of selected variables are shown in Figures 8a-8d. On the
left of Figure 8, we show the hub angle and angular velocity for the case of an open
loop control and in the presence of substantial impulsive and quasi-random (5 oz-in,
1 CY) disturbance torques. It is evident that the disturbance torque history is signifi-
cant vis-a-vis exciting substantial rigid body and flexural motions. On the right, we
show the closed loop behavior of the system excited by the same disturbance torque
history. The random component of this disturbance has been found to be typically
pessimistic vis-a-vis our experimental hardware, however certain non-random,
nonlinear effects associated with the bearing friction cause disturbances which are
correlated in time and are not well represented by the present white noise model of
the disturbance torques. In spite of the substantial disturbance torques (Figs. 8a-Sb),
it is evident that we obtain a near minimum time rigid body motion while effectively
suppressing vibration (8c-8d). This fact was also confirmed by evaluation of the
energy distribution in the first six modes.

V. Experimental Results

In all of the experiments discussed below, we set the target final angle to 400 and u,
=400 oz-in. The values of the tracking gains (g, g2, g,) and of the torque shape
parameter (a) were assigned several feasible values values to demonstrate the effects
of these upon the closed loop behavior of the system. Moderate bearing friction and
aerodynamic damping were present in our experiments.

Figure 9 shows the system response for a Control Law I (the constant gain control
law of Eq. (11)) maneuver with (g, = 600 oz-ir/rad, g2 = 800 oz-in/rad/sec, and g. =

0). Since this initial position error is large, the maneuver starts from zero with an
initial discontinuity to a large torque. For this gain selection, we see a large over-
shoot ( - 10") and significant structural vibration which settled around 12 seconds;
the control was terminated at 16 seconds.

* Control Law 11 leads to very attractive near-minimum-time maneuvers. One good set
of gain settings and torque shape parameters leads to the results in Figure 10. The
effect of using a smooth, judiciously shaped reference torque history is evident if one
compares the output and control variable histories in Figure 10 with those of Figure
9. Law 1 produced much smaller cvershoot (- 1.50 vs - 100), shorter settling time (6
sec. vs 12 sec.) and greatly reduced the severity of peak vibration. These results,
especially when considered in conjunction with numerous other cases are reported in
[n, 7, 8] are convincing evidence of the truth that Control Law II is a very versatile
and highly effective way to incorporate open loop torque shape optimization with
vibration suppression. The fact that a globally continuous control structure is implicit
in this approach leads to minimal difficulties in realizing robust control laws; note the
handoff from lare However, as previously reported in [1], we did encounter some
practical difficulties in our experimental work. Firstly, the shear and bending
moment measurements via strain gauges resulted in sufficiently noisy measurements
that this feedback (g3 * 0 ) did not improve the controlled response over, for example
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the results in Figure 10. Also, deriving the angular velocity estimate from the noisy
angle encoder readout was difficult to accomplish with high precision, and as a
consequence, we constructed a digital noise filter to process our angle encoder data
and eliminate all of the frequency content above 10 Hz; this was necessary to avoid I
erroneous, phase lagged feedback which would otherwise disturb the higher fre-
quency modes. This problem can be eliminated by investing in a more precise sensor
to measure angular displacement and/or angular velocity.

Finally, our bearing presented us with some practical difficulties. Based upon
mechanical tests and analysis of our bearing hardware, it is evident that interaction of
the structure with the bearing accounts for the overwhelming source of unmodeled
disturbances. The bearing friction/stiction model developed from our analysis [1] has
the form

tbeaing =-c sign(0) - c2 0 + HOT (19)
where we find c i- 20 oz-in and c2 - 0.001 oz-in/rad/sec. Thus the first (stiction)

term of Eq. (19) dominates the bearing torque for moderate 0 and is about 5% of the
peak commanded torque of 400 oz-in. While we believe Eq. (19) models the bearing
friction well, it is difficult to use this model to compensate for bearing friction in real
time, since our estimated value of 0 is uncertain due to angle encoder measurement I
noise. Thus if we modify our control using Eq. (19), the commanded discontinuity
(near the estimated time 0 changes sign) will not coincide exactly with the actual
discontinuity; mis-timed compensation torque discontinuities can actually worsen the
disturbance! While we experimented with several bearing friction compensation
schemes, we ultimately decided to simply consider this an anticipated and well-
modeled disturbance. Our simulations (such as the results shown in Figure 8) I
indicated our control approach could easily tolerate disturbances of this magnitude,
and our successful experiments Figures 9, 10, and in [1], certainly confirm that our
implemented control laws are robust in the presence of the actual disturbances. I

VI. Concluding Remarks

We have presented an approach to design of feedback control laws for large I
maneuvers of distributed parameter systems, and have conducted successful experi-
ments. This approach establishes stable gain regions over which subsequent op-
timizations can be carried out with global stability guaranteed (to within model m
errors, of course). The formulation permits approximate imposition of actuator
saturation constraints and a priori control shaping via user specification of a torque-
shaped, optimized reference trajectory. The resulting tracking-type control law is
shown to result in Liapunov stability in the sense that all trajectories are globally
attracted to a small region near the reference trajectory. The tracking law automati-
cally blends smoothly into a globally stable, constant gain, terminal output feedback m
controller. We believe this approach is much more attractive than gain scheduling,
because the logical and implementation complications associated with discontinuous
gain change ("handoff') logic can be avoided altogether. We have considered in I
detail the case of single axis maneuvers of a flexible body system and a particular
family of torque-shaped, near-minimum-time rigid body reference trajectories. We
demonstrated numerically the effects of torque shaping upon maneuver time and I
established a pre-computable bound on the size of region near the target trajectory in
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which Liapunov-stable tracking cannot be guaranteed. We described hardware
experiments which successfully implemented these ideas.

U We have demonstrated the feasibility of our analytical formulations and experimental
approach. We are optimistic that these ideas extend to a significant family of
multi-axis maneuvers of multiple flexible body systems and the maneuver control
problems associated with multiple body re-configuration, pointing/tracking, and
deployment dynamics.3 VIL Acknowledgments
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Table 1. Hub/Appendage Configuration Parameters I
Hub & Appendages

Total System Inertia, I 2128 [oz - sec, - iI
Hub Center to Gage Center, 10 5.5470 [in]
Hub Center to Tip Mass, 1 51.07 [in]
Tip Mass, m 0.15627 [oz - sec2fin]
Appendage Modules of Elasticity, E 161.6 [million oz/in 2]
Inertia of Bending Section, I .000813 (in4]

Density of Appendages p .00307 [oz - sec2fin 2]
Distance between two gage set 1.365 [in]

Motor (PMI, Servodisc DC Motor: JR 16M 4 CH)
Torque Constant, K 52.77 [oz-in/amp]

Back EMF Constant, K, 39.77 [v/1000rpm]
Tachometer Constant 3 [v/10OOrpm]

Power Supply (KEPCO" BOP 36-12M)
Current Gain 1.2 [amp/volt]

I
I
I
I
I
I
I
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I Figure 1. Texas A&M Maneuverable Space Structure Experiment
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Figure 2. Hub AssemblyI
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I Figure 4. Torque Shaped Rigid Body Maneuver
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Figure S. Rigid Body Maneuver vs. Saturation Torque and

Shape ParameterI
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U Figure 7. Boundary of the Liapunov-Stable Tracking Re-ion

- vs SauraionTorque and Shape Parameter
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Abstract

A method for designing globally stable feedback control laws for maneuvers of flexible I
dynamical systems is presented. Both- analytical and experimental results are discussed.
The approach readily accommodates known nonlinearities and applies to systems described
by hybrid coupled sets of ordinary and partial differential equations. Our proof of Liapunov I
stability does not rely upon spatially discretizing distributed parameter systems. The most
fundamental developments lead to output feedback controls which drive the system to a
target fixed point in the state space. More generally, we develop feedforward/feedback
tracking-type control laws to null the departure of the system state from an a priori deter-
mined smooth target trajectory. The target trajectory may be an exact or an approximate
solution of the system equations of motion. This approach can be used to generate, for
example, near-minimum-time feedback controllers which accommodates general "torque-
shaping" to achieve a judicious compromise between near-minimum-time and competing I
performance indices such as levels of sensitivity to model errors, disturbances, and control
implementation errors. The method has a seamless continuous handoff from the large angle
"approach pattern" control to the "end game" controls for fine pointing. Experimental I
results are presented for a variety of control gains and shaped torque reference maneuvers;
the results are in excellent agreement with the analytical developments and simulated results.
The analytical and experimental results jointly provide strong analytical justification and I
conclusive experimental evidence of the practical merit of this approach to design of control-
lers for distributed parameter systems.

I
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L Introduction

-- Considerable recent research has been directed toward the problem of maneuvering a

flexible spacecraft. In Reference 1, we present a fairly comprehensive treatment of thisI
family of problems up through 1985. Other analytical and experimental investigations 2 12

have been carried out to evaluate: (i) feedback control laws based upon minimizing quad-

ratic indices, (ii|)near-minimum time, switching-type controllers, and (ii) implementation

issues. The main configuration of interest in the present discussion is similar to the structure

of the Vander Velde and He study12, however, we address the use of variable torque actua-

I tion via a reaction wheel instead of on-off thrusters, and utilize Lyapunov control design

approaches and establish stable tracking-type control laws for distributed parameter systems.

We present a method for generating globally stable feedback control laws for maneuvers of

distributed parameter structural systems. The method can accommodate nonlinearity and

our proof of stability does not rely upon spatially discretizing distributed parameter systems.

The most fundamental developments are related to similar ideas presented in Refs. (3, 6],

and lead to controls which drive the system to a target fixed point in the state space.

However, we extend these ideas to achieve near-minimum-time control. We present novel

tracking-type control laws to null the departure motion of the system state from an arbitrary

smooth target trajectory, and develop the conditions for stability of the closed loop system.

The control law structure is such that the large motion controller (a tracking law) blends

continuously into a constant gain terminal controller. This "seamless" transition is qualita-

tively more attractive than, for example, gain scheduling approaches. The target trajectory

(for the tracking law) may be any smooth path; i. e., the target trajectory can be selected as

I an exact or approximate solution of the system equations of motion. We show how this

approach can be used to generate near-minimum-time feedback controllers which achieve

global stability about a fixed terminal state. This approach accommodates general "torque-

shaping" to achieve a compromise between near-minimum-time and competing performance

indices such as levels of sensitivity to model errors, disturbances, and implementation errors.

2
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While we subsequently develop methods for controlling distributed parameter systems

governed by hybrid coupled sets of ordinary and partial differential equations, we first

consider a system described by a sixth order set of nonlinear, ordinary differential equations.

IL Motivation of the Approach Using Rigid Body Maneuvers

The ideas are easily introduced by considering general three dimensional nonlinear

maneuvers of a single rigid body. The equations governing large motion can be written as'

It 0 =- (I:-I)o)3 +ut 24, =oh -tq3 +"q2 +q, (q, o) + q2o)2 +q3oh)

126)2 (13-I1)03Oh +112 242 -o -co3q, + " q3 +q2(qcoi+q2 )2 +q3 " ) (1) 1
I3 C03= (I-I2)0)02 + U 23 =o3 - co, q2 + 032q, +q3(ql0l+q22 +q3 cz3)

where (o, %a, ons) and (q, , qz, qs) are the principal axis components of angular velocity

and the Euler-Rodriguez parameters, respectively. Also (Ii, 12, 13) and (u, 112, u3 ) are the

principal momentz of inertia and the principal axis components of the external control

torque, respectively. For the case of zero control torque, it can be readily verified that total I
rotational kinetic energy is an exact integral of the motion, viz. 2T = (I1 0 + 2 0 + I3 Cn).

Motivated by this total system energy integral, we investigate the trial Liapunov function

U='(Ico? +I2 2 +13 ) + A(q? +q4 + q) mkinetic energy +A tan2 (2)

where 0 is the instantaneous principal rotation angle (about the instantaneous Eulerian

principal rotation axis, from the current angular position to the desired final angular position

of the body1). It is apparent that the additive term A(qe + +q;) can be viewed as the

potential energy stored in a conservative spring. We can therefore anticipate that the system

dynamics will evolve suclh that U is constant, if the only external torque is the associated

conservative moment. Of course, we are not interested in preserving U as a constant, but

rather we seek to drive it to zero. We therefore anticipate the necessity to determine an

additional judicious control moment to guarantee that U is a decreasing function of time. It

is obvious by inspection that U is positive definite and vanishes only at the desired state qi -

3
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I

= 0. Differentiation of Eq. (2) and substitution of Eqs. (1) leads directly to the following

I expression for U

U=( [u, + Aq (1 +q? +q ) +o) (3)

Of all of the infinity of possible control laws, we can see that any ui (q, , q2, q3, co1, Uo2, (0

which reduces the bracketed terms to a negative definite function times (a will guarantee that

U is globally negative semi-definite. The simplest choice: Select ui so that the ith bracketed

term becomes - ki c%; this gives U - - (k co? + k2 c4 + k3 ao) which is obviously a negative

I definite function of angular velocity, if we choose all ki 0 0. It is easy to verify from Eqs.

(1) that (oh, oh, o) are generally non-zero, except at an equilibrium state, and the only

equilibrium point (where (C01, (0, 0)3) , 0) (0, 0, 0) of the closed loop system

is the origin of the state space: (q, , q, , oq2, oq2,c )f (0, 0,, O, 0,). Thus we obtain a

globally stabilizing nonlinear feedback control law2"4 for large angle attitude control:

I ui=-[kQo +Aq(l+q1+q+q)], i=1,2,3 (4)

Since U is a positive definite, decreasing function of time along all trajectories, and since it

vanishes at the origin, then the necessary and sufficient conditions are satisfied for global

Liapunov stability. We have implicitly excluded the geometric singularity (q-+ -), associ-

ated with this parameterization of rotational motion as € -+ ni; we can use the quaternion or

Euler parameter description of motion and avoid all geometric singularities, as well. The

nonlinear feedback control law of Eq. (4) guarantees stability of the nonlinear closed loop

system, under the assumption of zero model errors. In practice, of course, guaranteed

stability in the presence of zero model error is not a sufficient condition to guarantee stability

of the actual plant having arbitrary model errors and disturbances. On the other hand,

rigorously defining a region in gain space guaranteeing global stability for our best model of

the nonlinear system is an important step; it is reasonable to restrict the optimization of gains

to this stable family of designs.

I
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The determination of the particular gain values, selected from the space of globally stabi-

lizing gains, is usually based upon performance optimization criteria specified in considera-

tion of the disturbance environment, sensitivity to model errors, desired system time con-

stants, actuator saturation, and sensor/actuator bandwith limitations. For the purpose of gain I
optimization, it is usually convenient to introduce spatial approximations and discretize

partial differential equation systems to obtain a finite set of ordinary differential equations.

It is also typically useful to linearize nonlinear differential equations about one or more

points in the anticipated operation envelope. Using a generalization of the above example, I
we can rigorously determine a region of admissible gains which stabilize globally a gener-

ally nonlinear, partial differential equation description of the system. Note that approxima-

tions subsequently introduced in the gain design process cannot destabilize the zero model I
error system, if the gains are optimized over this known-to-be stable region. In in the above

rigid body discussion, so long as we restrict (A, k, , k2 , k3 ) to be positive, for example,

approximations such as small angle linearizations used to select particular values cannot

destabilize the system. Of course, approximations introduced to facillitate the gain design

process can indeed lead to undesired and unanticipated performance variations of the actual

nonlinear distributed parameter system, as compared to predictions based upon approximate I
models used to design the control gains.

Before generalizing the methodology to consider partial differential equation systems, it is

important to reflect upon the selection of the above Liapunov function. Notice that if a I
system has no inherent stiffness with respect to rigid body displacements, it is necessary to

augment the open loop energy integral by a pseudo potential energy term [such as

A(q? + 4 + qj) in the above example]; generally speaking, the pseudo energy term should'

be defined such that the candidate Liapunov function (U) is a positive-definite measure of

motion which has its global minimum at the desired target state. Then, the controls are

usually selected as simply as possible (from an implementation point of view) to force

pervasive dissipation (U<0) of the modified energy (Liapunov) function along all trajec-

tories of the closed-loop system and thereby guarantee closed-loop stability.

5
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While the above insights are useful, the Liapunov function is generally not unique. We'll

see below that these ideas lead to an attractive strategy which define the Liapunov function

I with relative weights on the portions of the total energy associated with structural subsys-

tems. To accommodate discussion of path-type stability of tracking motion control, we'll

also introduce "error" energies measured from an a priori computed time varying trajectory.

The lack of uniqueness of the Liapunov function is not necessarily a disadvantage in prac-

tice, because it is a source of user flexibility providing control design freedom qualitatively

comparable to the freedom one has in selecting performance indices when applying optimal

control theory.

I
MI. Maneuvers and Vibration Control for Distributed Parameter Systems

I With reference to Figures 1 - 3, we consider control of a rigid hub with four cantilevered

flexible appendages. We consider the appendages to be identical uniform flexible beams

and make the Euler-Bernoulli assumptions of negligible shear deformation and distributed

rotary inertia. Each beam is cantilevered rigidly to the hub and has a finite tip mass. Motion

is restricted to the horizontal plane, and a control torque u(t) acting on the hub is the only

external effect considered at this stage of the developments. We subsequently address

rejection of disturbances.

We are interested in a class of rest-to-rest maneuvers and under the above assumptions, we

can show that the beams will deform in the anti-symmetric fashion (Figure 1) with the

configuration's instantaneous mass center remaining at the hub's geometrical center. Also,

I due to the anti-symmetric deformation of the beams, we need concern ourselves only with

the deformation y(x,t) of a single beam. We adopt the continuum viewpoint and avoid

introducing spatial approximations in the application of Liapunov concepts; the resulting

control law and stability arguments will therefore apply rigorously to the distributed

parameter system. The hybrid system of ordinary and partial differential equations govern-

ing the dynamics of this system are

6
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d-- =u +4(M -SSolo)

a(M-+ )=dX(+X )dX +MI(d2+ I2) +HOT (5)10

OPY + xd a 0° 4y
p( + d )+EIa-=o +HOT

where p is the assumed constant mass/unit length of the beams,
El is the assumed constant bending stiffness of the beams, I
(M,, S,) deuote bending moment and shear force, at the root of the beam,
0 denotes hub inertial rotation,
m denotes the mass of the tip mass, and
(1, 1) denote the distance from the hub center to the beam tip and the hub radius.

We denote higher order terms by HOT to indicate other known linear and nonlinear effects I
(such as rotational stiffening, shear deformation, etc.). The most fundamental developments

do not consider these higher order effects, however, we selectively discuss these generaliza-

tions as well. The boundary conditions on Eqs. (5) are
atx =I.: y (tl.)= 14 = 0

Sm P a2  (6)
atx=l: =0 (moment), a I(d +' at ) (shear)

The total energy of the system (constant in the absence of control or disturbances) is: I
2E=I,.(±-)2(L + O 2 + ' ? "+ + LIt] (7)

4 at dt L. ax a

Motivated by the recent work of Fujii3 and VadaliP, we investigate the Liapunov function
2U =a 1 I. 02 + a2 (0-f)2

1( + _a2e I)2] (8)
+4a 3 [P< +x0dx + ax a+ m 2tU

where the weighting coefficients a, are included to allow relative emphasis upon the three I
contributors to the "error energy" of the system. We have added the "torsional spring

energy" term a2 (0-f )2 to make the final state (0, e, y(xt), ) =(ef 0, 0, 0)

7
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be the global minimum of U. It is obvious by inspection that imposing a1>O guarantees that

I- U O, and that indeed the global minimum of U=O occurs only at the desired state. Differen-

tiation, substitution of the equations of motion (Eqs. (5), (6)), and some calculus lead to

= dU 0 [au + a2(o- ef) + 4(a3- a,)(l. S.- M.)] (9)

Since we require that U.' ) to guarantee stability, we set the [ term to - a4 0 and this leads

to the control law

IU = a 1 [ a2(0 - Of) + a40 +4(a3- a,)(1.S.- (10)

or, we see that the following linear, spatially discrete output feedback law globally sLabilizes

this distributed parameter system:

U u=-[g (0-f) +gO0+g (I.S-M.)]; g a0, g2 a0, g3>-4, forstability (11)

I
This control law is elegant. Notice that controllers based upon this law are easy to imple-

I ment since no state estimation is required. The root shear and bending moment can be

measured by (albeit somewhat noisy) conventional strain gauges. The value and sign of the

shear/moment feedback gain g3 =4(a3 - a, )/ a, depends upon whether we wish to empha-

size dissipation of the beam energy (for a3 > a,), or the moticn of the hub (for a3 <a,), as

is evident from Eq. (8). Since U f - a4 62 is not an explicit, negative definite function of

the subset of state variables (0, y(x), %), the stability arguments implicitly depends

I upon the truth that all infinity of modes of motion of this structure, under the assumption of

and-symmetric deflections have generally non-zero hub angular velocity (e6).

It is of significance that this same linear feedback law of Eq. (11) maintains it's globally

stabilizing character even when the Euler/Bernoulli assumptions are relaxed to include

additional linear and nonlinear effects; in particular, we have verified that closed loop

8
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stability is maintained when we include the following: rotational stiffening, coriolis

kinematic coupling terms, aerodynamic drag, shear deformation, beam rotary inertia, and

finite inertia of the tip mass. The verification of these truths requires appropriate modifica-

tions of the kinetic and potential energy functions, and of course, the differential equations

of motion must be generalized consistently. In short, global stability of the system using the

simple linear control law of Eq. (11) has been found very forgiving of modeling assumptions I
and therefore modeling errors.

On the other hand, the overall performance measures (time constants, required energy, rms

output errors, etc.) of the system versus our simulations are generally not as forgiving as the

most fundamental performance measure (stability). While we are guaranteed stability for a

large family of model errors, it should be apparent that performance predictions are gener-

ally very sensitive to modeling errors. With appropriate system modeling and selection of

the feedback gains, however, it has been demonstrated experimentally 3,5 and in our results

presented below, that this feedback law works well over finite regions of the state and gain

space, and in the presence of typical model errors. I
While the constant gain linear feedback works well for terminal pointing and vibration

suppression, we have found it to be a poor law for carrying out both large angle maneuvers I
and terminal pointing/vibration suppression. In fact, it is evident from both analytical and

experimental studies that gain scheduling is needed to use the linear feedback law of Eq. I
(11) to efficiently control both the large maneuvering motions and the small terminal mo-

tions. This is because the large gains required for effective vibration suppression and

disturbance rejection near the target state are typically differ by several orders of magnitude I
from the smaller ones needed far from the target state (i., e., large gains appropriate for

terminal vibration suppression, when used during a large angle maneuver typically result in

actuator saturation and significant e overshoots). To obtain a control law more appropriate

for large angle maneuvers with vibration suppression, we can modify the above develop-

ments; a stable tracking-type feedback control law is presented in the following discussion.

9I
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IV. Near-Minimum-Time Maneuvers of Distributed Parameter Systems

Consider first the near-minimum-time maneuver of a rigid body. We know that the strict

minimum time control is a bang-bang law l, which for the rest-to-rest maneuver-to-the-origin

case, saturates negatively during the first half of the maneuver and positively during the last

half of the maneuver. From an implementation point of view, the instantaneous switches of

bang-bang control are often troublesome for several reasons:

(i) no torque-generating device exists which can in fact switch instantaneously,

(ii) when generalized and applied to flexible structures, the discontinuous class of

controls will typically excite poorly modeled higher frequency modes and

(iii) the predicted (model-derived) switch times and the response of the actual system

are usually very sensitive to modeling errors.

As a consequence of these sources of difficulty, our analytical and experimental work

inidcate that bang-bang control of flexible body dynamics usually lacks robustness with

respect to modeling errors.

Recently, an intuitively attractive family of controllably smooth approximations of the sign

(sgn) function which arises in time-optimal control has been introduced. The smoothed sign

function approximations presented in Ref. (6] been studied in the context of optimization of

near-minimum-time maneuvers considering multiple flexible body modes. However, this

approach requires expensive pre-calculation of the solution to a two-point boundary-value

problem (tpbvp) or interpolation from an apriori computed map of tpbvp solutions. Our

recent analytical and experimental work 4 indicates that much simpler piecewise continuous

spline approximations of the sign function used in conjunction with analytical approxima-

tions of the optimum maneuvers and associated optimum controls are more attractive from

an implementation point of view. Using this approach, a typical near-minimum-time control

law (for single axis, rest-to-rest maneuvers of a rigid body) has the form

I
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I =u =+u,,f(At, tf, t) (12)

where u. is the saturation torque,

t! is the maneuver time, we choose the + sign if Of > Oo,

At is the rise time, and the smooth sgn function approximation adopted is
2  t

-(A) [3 -2(s)], for 0 : tS At

-1, 2 A t2 =

f(t, tft) 1-2 ( ) [3-2(t-)], fort1<t< +Atar2  I
for t < t 5 tf - At t3

=I+( (-4--) 2[3 -2(-t4)], for t3<5t :5tf

Adopting the positive sign, Eq. (12) integrates to yield

Umxt

+ T- ff(&t, I,~-
to (13)t

0(t) = o + Oo(t-to) + 7 ff(At, tf, 'r2 )dr2 dr(
to to

The integrations can be carried out in terms of elementary functions which are not presented I
here for brevity. Figure 4 shows the maneuver resulting from these integrations for a typical

selection of parameters. For rest-to-rest maneuvers, we can impose the boundary conditions I
at to =0: 0(0)=00, (0)=0; at t1 =T: 0(T)=Of , O(T)=0 (14)

and from carrying through the integrations of Eqs. (13), we obtain the useful relationship

0f-O [=--ax-'- 0a+ 2 ]T2, At=aT, 0 1<a< (15)

or T u ) 1(16)I I
In Eq. (16) we have the explicit rigid body tradeoff between torque shaping (a), maneuver

time (T), maneuver angle (Of - 0,), and maximum angular acceleration (u,,,/ 1). Obviously,

Eq. (15) can be inverted for any of these as a function of the remaining parameters. If we set

1(67)I



I

I
a = At/T = 0, of course, we obtain the special case result ( T2 = 41(Of - 90 )/Ua x

I expressing the well-known square-root relationship between the minimum time, maneuver

angle, inertia, and saturation torque for bang-bang control.

Figure 5 shows the rigid body maneuver time (T) versus a and u... Notice that the

maneuver time is strongly dependent upon u., , but varies much less as a function of a.

However, we find when the torque u --) = u. f(aT, T, 0 of Eq. (12) is applied to a

flexible body, the reverse is true. To illustrate this point, we approximated the solution of

Eqs. (5) by introducing a Galerkin expansion (of the beam deflection in terms of the first ten

clamped-free cantilever mode shapes times time varying generalized coordinates). The

forced response of the resulting 20th order system was judged adequately converged. Using

this solution, we applied the same family of torques used in for the rigid body results of

Figure 5 and computed the flexible body open loop response for each choice of a and u,..

Figure 6 shows the total energy of the flexible body system at time T for this same family of

maneuvers. As is evident, the vibration energy vanishes for sufficiently small u,. and is

significantly reduced for any given u, by increasing a. Notice the triangular region (large

a, small u,, ) for which the vibration energy at time T is negligible. We will subsequently

see that measures of the largest errors with which the closed-loop-controlled flexible body

system can track the rigid body maneuvers of Figure 5 behave in a qualitatively similar way.

The above results and those of Ref. [41 support the intuitively obvious truth that applying

judiciously "smoothed bang-bang" open-loop controls such as Eq. (12) to generate

maneuvers of a flexible body results in moderate structural vibration, for sufficiently slow

and smooth maneuvers (small u,.. and large a). Of course unmodeled disturbances, control

_ implementation errors, and model errors negate some of these apparent gains, especially

without feedback. For relatively small penalties in maneuver time '5, actual torque-shaped

maneuvers enjoy several orders of magnitude reduction in residual vibration, even without

feedback, although some offset in rigid body position usually results. Thus overall

12
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maneuver time, including vibration arrest, can be reduced dramatically by modest torque

shaping, as compared to simply using bang-bang control augmented by vibration suppres-

sion. Also of significance, we find that it is usually desirable to select the torque profile

(e.g., u,., a, etc.) to consider the sensor and actuator dynamics and thereby make the I
commanded torque history more nearly physically achievable. More generally, however, we

can use any reference maneuver (not necessarily a rigid body torque-shaped maneuver). We

will find merit in considering a certain class of flexible body reference motions in our

discussion below. I
Suppose we adopt a reference open-loop rigid body maneuver denoted by the subscript ref

as {Ore, (t), O (t), Oef(t) = Urf II I and satisfying Eqs. (12-16). Note I is the un- m

deformed moment of inertia, and we have implicitly selected the torque shaping parameters I
a, u., and thereby established the corresponding target maneuver time T from Eq. (16) for

specified initial and final angle. Motivated by the issues discussed above and the quadratic

regulator perturbation feedback controllers discussed in Refs. [1, 9, 11], we hypothesize the

following structure for the control law

U = U,, t)- [g (0 - Oer ) + g(0-,.,) +g3((I.S.-M)-(I.S.-KM),,f)] (17)

where it is easy to show that the root moment for the reference (rigid body) motion is

proportional to the angular acceleration: (1.- M),! = + [p(l - )/3 + m 12 ]G,,e(t).

We wish to gain insight on the stability characteristics of the flexible body's closed-loop I
departure dynamics [from the target (ref) rigid body motion (for t<T ), and from the fixed

target state (for t>T)], and we anticipate providing an analytical justification for the tracking

control law of Eq. (17). Let us denote by the subscript r the state variables along the open-

loop flexible body solution of Eqs. (5) when driven by the torque u,,/:) of Eqs. (12 -16).

The instantaneous displacement of the open-loop flexible body solution from the open loop

rigid body motion is denoted AO = 0,.- ,f ; for example, AG(t) = O/r) - O,/t). Variables

13

(69)



I
without subscripts represent the "actual" instantaneous closed-loop controiled solution

variables. Consider the candidate error energy Liapunov function

2U al (e-'e) + a2 (0 - 0,)(
+4a3[rrnr(.. T2.)+X(e - ,)I~) (18)

0+l0 dE -( dx + m[1(O-O,) + 7 -Li- 1)]2

10 ax ax2 at at
Assuming the actual control is some general, to-be-determined u(t), and that the actual

motion satisfies Eqs. (5), we have investigated the time derivative of U of Eq. (18) and

found that it is given by the following equation
tj-a O-rU rf+ 2(0-Or 4 a3" a' [(I. S.- M.) (I. S. - .), (19)

aA a,U=-a1(e-er)[u- Urcf +,(e-er) a (19)

Analogous to the logic leading to Eq. (9), we see that we could determine a stabilizing u(t)

by setting the bracketed term to a positive quantity (g2) times (0-0r) Ii. e., this makes 0 a

negative definite function of the error in hub angular velocity). This gives the control law

U = Urf (-) [g (0 - e) +g, (0- Or) +g ((So-M ) - (.So- Me)r)] (20)

with i -- - a, g2 (0-_0,)2 and we introduced the definitions a2  /a , g. -,a3 - a, )/al.
0 4

Notice, to guarantee stability, that gj and g2 must be positive, but as before g3must be greater

than -4. The main difficulty with this control law is that it requires pre-computing the

flexible body solution, we'd prefer a tracking law which requires a much simpler rigid body3 maneuver to be pre-computed. Let us pursue this objective. Since Eq. (19) holds for an

arbitrary u(t), we introduce the control law of Eq. (17) and investigate it's stability charac-

teristics. Making use of the notation A0 = 0, - 0,,, we are led to

U -a, (-0,) {g2(0-A,)f[gxAe +926 +,g3 (I. S.-M.)]} (21)

Obviously, a sufficient condition characterizing the region where U < 0 is the dominance of

I- the first term in the { of Eq. (21), this gives the inequality

14
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Ie-OrI>iI 1 91AO+g 2A +g93 AY.S. -K )I (22)
92

It is apparent that the A quantities on the right hand side of Eq. (22) are finite and (pre-)

computable differences between the open loop flexible and rigid body motions, thus an

upper bound can be established directly by a priori simulation of the two open loop motions,

and using a particular set of feedback gains. Note the right hand side of Eq. (22) is essen-

tially a weighted measure of how nearly the target trajectory satisfies the flexible body

equations of motion. I
A bounded-input/bounded-output viewpoint of stability can also be considered, based upon

the departure motion differential equations obtain by differencing Eqs. (5) evaluated at each I
instant along the actual closed loop trajectory and along the flexible body open loop (),

motion. Upon formulating these equations, we find departure motion motion is governed by I
an otherwise asymptotically stable system of differential equations forced by the known A( ) I

terms which appear in Eqs. (22). Since these forcing terms can be bounded by direct cal-

culation, the resulting departure motion can also be bounded. Since the actual numerical

bounds on the A quantities can be made arbitrarily small (depending upon how, nearly the

user defined reference trajectory is made to satisfy the open loop equations of motion), we

have a very attractive theoretical and practical situation vis-a-vis stability of the closed loop

tracking motion. We see that the closed-loop motion is globally attracted to the controllably 3
small region near the target trajectory which violates the inequality of Eq. (22), and consid-

ering the motions within this small region, we have bounded-input, bounded-outpu stability.

The above discussion can probably be generalized for any smooth target trajectory, but we I
find that it is attractive to use a torque-shaped rigid body reference trajectory, such as Eqs.

(12)-(16). An attractive and significant feature of Eqs. (12)-(17) is that we have a CE

continuous transition: {u,, (t), 6,, 1 (t), Oef(t), Mo,, (t), Sof,(t)} =* (0, Of, 0, 0, 0} as t=*T;

so that for :>T, only the three feedback terms of Eq. (17) are contributing to the terminal

fine-pointing/vibration arrest control. Thus the controls blend continuously from the large
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angle tracking law into a constant gain controller identical to the globally stable fixed point

output feedback case.

V. Simulated Results for the AFOSRITAMU Large Angle Maneuvers Experiment

Returning to the family of 40* open loop maneuvers used to generate the energy surface of

I Figure 6, we computed the velocity tracking bound p. for Liapunov stability [as given by Eq.

(22)] and found the maximum value (g.,) of 9(t) along each trajectory. Figure 7 displays

this worst case tracking bound. surface g, (a, u,. ) over the same (a, u,. ) region as

3 Figures 5, 6. As evident the closed-loop tracking error bound has a roughly analogous

behavior to the open-loop residual vibration energy surface of Figure 6. Recall that outside

I the region bounded by the inequality of Eq. (22), we have guaranteed Liapunov stability,

when using the control law of Eq. (17) and the reference rigid body torque given by Eqs.

I (12)-(16). From Figure 6, it is clear that sufficiently small u. and sufficiently large a

result in arbitrarily small tracking errors, but the (small a) near-bang reference maneuvers

cannot be tracked as accurately. It is easy to see how a family of candidate (a, u,, ) designs

could be selected which satisfy specified inequalities on maneuver times, tracking errors,

and residual vibration energy, by direct examination of the surfaces of Figures 5-7.

Our experiments with simulations (and in the actual hardware implementations presented in

Reference [5] and below) support the conclusion that it is easy to use the above surfaces

(together with disturbance rejection simulations to select the reference trajectory and the

I feedback gains to obtain well-behaved closed loop control) to establish a large family of

feasible designs. Prior to discussing our experimental results, we present some further

simulations to show typical state and control variables histories along some of the trajec-

tories of underlying the above surfaces. We include in these simulations the effects of

disturbance torques, to illustrate the effectiveness of the controls in the presence of un-

modeled effects. The Appendix summarizes the physical parameters and hardware descrip-
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tion of the maneuver experiment, sketched in Fig. 1. For simplicity, we consider only the

case of a 400 rest-to-rest maneuver, and set u, =400 oz-in for all cases.

For our computational and experimental studies, we consider two control laws, namely the 1

output feedback law (Control Law I)3" of Eq. (11), and the tracking-type feedback control

law (Control Law Hi) of Eq. (17). While Control Law II could be used with an arbitrary

reference trajectory, we elect to specifically investigate the torque-shaped rigid body trajec-

tories of Eqs. (12)-(16). The torque-shaped open loop control history u,,/t) is pre-computed

(in a fraction of a second!) from Eqs. (12)-(16) and stored. Note that the boundary condi-

tions of Eq. (14) are enforced by using Eq. (16) to compute the target trajectory maneuver

time as a function of the maneuver angle, saturation torque, and torque-shape parameter.

We now discuss the simulation results using Control Law IL which obviously blends into to

Control Law I in the end game (for t ;> T). In the experimental results, we report maneuvers

carried out by both control laws. Both open loop (all gi z 0) and closed loop time histories of

selected variables are shown in Figures 8a-8d. On the left of Figure 8, we show the hub

angle and angular velocity for the case of an open loop control and in the presence of

substantial impulsive and quasi-random (5 oz-in, lo) disturbance torques. It is evident that

the disturbance torque history is significant vis-a-vis exciting substantial rigid body and

flexural motions. On the right, we show the closed loop behavior of the system excited by

the same disturbance torque history. The random component of this disturbance has been

found to be typically pessimistic vis-a-vis our experimental hardware, however certain I
non-random, nonlinear effects associated with the bearing friction cause disturbances which

are highly correlated in time and are not well represented by the present white noise repre- l

sentation of the disturbance torques. In spite of the substantial disturbance torques (Figs. I
8a-8b), it is evident that we obtain a near minimum time rigid body motion while effectively

suppressing vibration (8c-8d). This fact was also confirmed by evaluation of the energy

distribution in the first six modes.

I
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VIL Description of Experimental Results

In all of the experiments discussed below, we set the target final angle to 400 and u,. -400

oz-in. The values of the tracking gains (g,, g92, 3) and of the torque shape parameter (C)

were assigned several fea"ible values values to demonstrate the effects of these upon the

closed loop behavior of the system. Moderate bearing friction and aerodynamic damping

were present in our experiments.

Figure 9 shows the system response for a Control Law I (the constant gain control law of Eq.

(11)) maneuver with (g, = 600 oz-in/rad, g2 = 0 oz-in/rad/sec, and g. = 0). Since this initial

position error is large, the maneuver starts'from zero with an initial discontinuity to a large

torque. For this gain selection, we see a large overshoot (- 34") which has not settled when

the control was terminated at 30 seconds. Figure 10 shows a similar experiment but with g2

= 800 oz-in/rad/sec, to illustrate the constructive effects of active damping during the

maneuver. This is representative set of "good" gains for Law I, but we will see that the

maneuver time can be reduced by more than a factor of 2 by using Law II, whereas only

about a 15% reduction can be achieved by optimizing gains for Law I(subject to a 400 oz-in

saturation constraint). Notice the large transient (induced by instantaneously applying the

gain g, to the 40* initial angle error) decays after about 5 seconds, and the target rigid body

position is acquired with small residual vibrations in about 12 seconds.

A family of results of using Control Law l, Eq. (17), (with a = 0.1 and 0.2, g, = 3000, g2 =

0, 200, and 800, and g. = 0, 0.8, and -0.8 ) are shown in Figure 11-16. These results demon-

strate the effectiveness of Law II in comparison to Law I (e. g., compare Figures 10,14), and

show the effects of varying the torque shape parameter (a) and the feedback gains (g, g2,

g3). Due to the tracking type of control, the initial errors operated upon by these gains are

not as large for Law II as in the case of Law I, as a consequence of using a reference trajec-

tory which departs smoothly from the initial state. Moreover, the smoothly increasing

18
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I
torque profile of Law II does not "ring" the structure with an initial jump discontinuity at

time r = 0 to a large torque as in Law I. The effect of using a smooth, judiciously shaped

reference torque history is evident if one compares the results in Figure 14 with those of

Figure 10. Law II produced much smaller overshoot (= 1.50 vs >100), shorter settling time (

6 seconds vs over 12 seconds) and greatly reduced the severity of peak vibration. Notice in I
Figures 9, 11, 12, that significant passive energy dissipation exists due to the combined

effects of bearing friction, aerodynamics, and structural mechanisms, because the velocity

feedback gain is zero in these three experiments. On the other hand the rate of passive

energy dissipation is sufficiently lo- that active vibration control is required to satisfactorily

arrest the structure. In comparing Figures 11 and 12, notice that increasing a results in

significantly reducing the amplitude of the structural vibration (which is primarily the first

cantilever mode). As is evident in Figures 13 and 14, a judicious selection of the velocity

feedback gain (g2) and the torque shaping parameter (a) suppresses the structural vibration

during the maneuver as well as in the end game.

Figures 15, 16 provide some additional experimental results to contrast with the best design I

studied (Figure 14). Notice that including feedback (g3 ) on the root bending moment was

not found to be effective in further refining our results. We did a number of experiments

with other g3 values without improving over the results of Figure 14. The reason has been

traced to the noisy derived angular rate from the angle encoder, and the fact that the ac-

celerometer acts as a noisy angular accelerometer. Our simulations indicated that noise-free

root bending moment feedback would be effective, over and above the hub angle and

angular rate feedback, in suppressing the vibrations of all modes above 12 Hz. However, the

effective bandwith of our derived angular velocity was only 0-10 Hz and therefore we were

unable to control the higher frequencies without injecting substantial noise-induced distur- I
bance accelerations. We anticipate that enough attention to optimizing the design of analog

and/or digital filters will lead to marginal improvements over the excellent results of Figure I
14, however, we feel that it would be more productive to invest in an accurate angular rate

measuring device and eliminate the source of this paradox.
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Based upon mechanical tests and analysis of our bearing hardware, it is evident that interac-

tion of the structure with the bearing accounts for the overwhelming source of unmodeled

disturbances. The bearing friction/stiction model developed from our analysis has the formI
Tbe=ing -c sign(O) - C2 ) + HOT (23)

where we find c1- 20 oz-in and c2 - 0.001 oz-in/rad/sec. Thus the first (stiction) term of Eq.

(23) dominates the bearing torque for moderate 0 and is about 5% of the peak commanded

torque of 400 oz-in. While we believe Eq. (23) models the bearing friction well, it is diffi-

cult to use this model to compensate for bearing friction in real time, since our estimated

value of ) is uncertain due to angle encoder measurement noise. Thus if we modify our

control using Eq. (23), the commanded discontinuity (near the estimated time 0 changes

sign) will not coincide exactly with the actual discontinuity; mis-timed compensation torque

discontinuities can actually worsen the disturbance! While we experimented with bearing

friction compensation schemes, we ultimately decided to simply consider this an anticipated

and well-modeled disturbance. Our simulations (such as the results shown in Figure 8)

indicated our control approach could easily tolerate disturbances of this magnitude, and our

successful experiments (Figures 9-16) certainly confirm that our implemented control laws

are robust in the presence of the actual disturbances.

I.
VIL Concluding Remarks

We have presented a novel approach to design of feedback control laws for large maneuvers

of distributed parameter systems, and have conducted successful experiments. The approach

* permits approximate imposition of actuator saturation constraints and a priori control

shaping via user specification of a torque-shaped, optimized reference trajectory. The

tracking-type control law is shown to result in Liapunov stability in the sense that all trajec-

tories are globally attracted to a controllably small region near the reference trajectory. The

I
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tracking law automatically blends smoothly into a globally stable, constant gain, terminal

output feedback controller. We believe this approach is much more attractive than, for

example, gain scheduling, because the logical and implementation complications associated

with discontinuous gain change ("handoff") logic can be avoided altogether. We have I
considered in detail the case of single axis maneuvers of a flexible body system and a

particular family of torque-shaped, near-minimum-time rigid body reference trajectories. I
We demonstrated numerically the effects of torque shaping upon maneuver time and estab-

lished a bound on the usually small region near the target trajectory in which Liapunov-

stable tracking cannot be guaranteed.

We described hardware experiments which successfully implemented near-minimum-time

feedback control of single axis maneuvers of a flexible structure, using a family of torque-

shaped rigid body reference trajectories. We presented new analytical developments,

numerical simulations, and experimental results all of which support the conclusion that

robust, near-minimum time control can be achieved by this approach. The simplicity of

implementation makes this approach attractive, notice that no state estimator is required, and

no truncation or spillover effects degrade our stability arguments. Our relatively low-budget

experimental work afforded an excellent opportunity to demonstrate the validity and robust-

ness of this feedback control approach: We were blessed (cursed?!) by difficulties associ- I
ated with nonlinear friction/stiction phenomena in our hub bearing system, and significant

angle encoder sensor noise. In particular, most of our implementation difficulties arose from I
relatively crude (-0.5 deg/sec) angular velocity estimates derived from the prediction/

smoothing of the moderately precise (-0.01 deg) angle encoder measurements of hub

rotation angle. The particular choice of the angle encoder filtering/smoothing/differentiation j
algorithms and the sample interval were found to impact the behavior of the control law,

although we had no difficulty finding a large family of stable designs. Use of an accurate

gyro to directly measure the hub angular velocity should eliminate this source of difficulty.

It is also significant that more accurate angular rate measurements would permit correspond-

ingly more accurate compensation for the-bearing friction/stiction effects. I
21
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Of course, roughly analogous problems are associated with the support mechanism (in our

case, bearing friction) in any ground maneuver experiment, but obviously disappear in actual

zero-g on-orbit implementations. The non-ideal sensor and actuator problems we encoun-

tered are judged to be typical of those associated with on-orbit implementations, although

hindsight suggests we should have invested in a sensor to directly measure hub angular

velocity to eliminate the primary source of difficulty. While the effect of departures from

ideal sensor, actuator and support system behavior are present in our experiments, especially

I near zero angular velocity, the control law nevertheless achieved excellent qualitative

agreement with our simulated closed loop response, and routinely isolated the terminal state

to within our sensor precision. Furthermore, our experiments were repeatable to within

sensor precision. Our simulations and hardware experiments clearly establish that the

I unmodeled effects are well within the stability robustness margins of our control law.

We feel we have conclusively demonstrated the feasibility of our analytical formulations and

experimental approach. We are optimistic that these ideas can be extended to a significant

family of multiple flexible body systems and the maneuver control problems associated with

multiple body re-configuration, pointing/tracking, and deployment dynamics.

I
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Appendix: TAMUIAFOSR Maneuver Experiment Hardware Description I
Figures 1 - 2 shows sketches of our experimental smcture. The structure is comprised of

four identical cantilevered flexible appendages, each having a finite tip mass. The actuator

is a DC motor with a reaction wheel. The stator of the motor is rigidly connected to the top

of the hub keeping the axis of rotation aligned. The whole assembly is pivoted on a ceramic I
bearing such that it can rotate freely in the horizontal plane. Tipping motion is restrained by

an adjustable slip bearing. An angle encoder, two full-bridge strain gauges near the root of I
an appendage and a motor tachometer are employed to respectively measure the hub angular

position, the appendage bending moment and shear forces, and the reaction wheel speed as

functions of time. Based on these measurements, and an appropriate control law, a control

signal is provided to a current amplifier which drives the DC motor to produce the necessary

torque.

Figure 3 shows a block diagram of the overall system. The central unit for the system is a

Packard Bell 286 (PB286) computer and Data Translation DT2841 I/O board. The DT2841

performs digital input/output (I/O), analog to digital (A/D) conversion, digital to analog

(D/A) conversion and timing operations. Packard Bell 286 reads in data from the I/O board,

and does the necessary computations in its own CPU and then sends out the resulting control

signal to the amplifier through the 1/0 board.

The angle encoder (Teledyne Gurley: 8708) output is decoded and converted into a 16 bit

digital number in hundredths of a degree by a logic converter (Teledyne Gurley: SCA CC) U
and counter (C-Tek. Lin-101-50-21-41-BE) combination. The angle encoder is accurate to

0.010. This angle information is read into PB286 through the 16 bit digital port of DT2841.

We utilize a sequential least squares filter to extract smoothed angle and angular velocity

estimates from the angle encoder measurements. Least square filters are also used to smooth

the shear and moment measurements.

I
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The motor used to apply the torque is a PMI Servodisc DC motor equipped with a

tachometer. The motor produces a torque proportional to the current in the armature as sent

by the current amplifier. The commanded current is sent out to the amplifier by PB286

i through digital to analog line (DACO) of DT2841. The tachometer output is read by the

computer through one analog to digital line (ADC2) and used in our control laws to corn-

I= pensate for the motor friction torque. A separate study has been carried out to characterize

the motor bearing friction. Except near zero wheel speed, the friction is well-modeled as a

quadratic function of the wheel speed. A discontinuity characterizes the nonlinear stiction

region at zero wheel speed.

3 The two full bridge strain gauges are employed near the root of one of the appendages at a

finite distance apart from each other to determine the instantaneous bending moment and

shear force. The strain gauge signals are read with the PB286 through 2 additional analog to

digital channels (ADCO, ADC1). Least square filters are also used to smooth the shear and

moment measurements. The bandwidth of the closed loop system was found to be about

10Hz, the limitation to low frequencies is a direct consequence of the errors introduced by

deriving the angular rate approximation from the angle encoder measurements.

I Four KEPCO Bipolar-operational power supply (BOP's) in series are used to supply current

to the motor. They can supply up to 12 Amperes of current for up to a compliance voltage

Iof 150volts. The BOP's are remotely programmed by PB286 through one of the D/A

channels (DACO) of DT2841.

DT2841 from Data Translation Inc. performs all the I/O (Digital, A/D, D/A) operations forI PB286. The board has two programmable clocks (DACLK and ADCLK). DACLK and

ADCLK are programmed to run at 75Hz and 4000Hz respectively; DACLK runs continu-

ously during a whole control operation and ADCLK runs in a burst mode (i.e.,inter-

mittently).
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Every DACLK timing signal initiates the following:

a.) Converts a digital data into an analog signal to be used by the BOP to push the

corresponding current through the motor.

b) Generates a hardware interrupt to initiate a new control cycle. I:
The new control cycle proceeds as follows:

i) read angle encoder (through digital port) I
ii) start ADCLK, complete reading the two strain gauges and the tachometer values

(through A/D channels 0, 1, & 2) during the next three ADCLK cycles and then

disable ADCLK.

iii) filter the data digitally

iv) predict the current required at the beginning of the next cycle

v) store the data in RAM for time history and make the predicted data available to the I
D/A converter to be converted at the beginning of the next cycle.

vii) wait till next DACLK signal which converts the digital data into an analog signal

and generates a hardware interrupt to initiate the next control cycle.

The control software is written in FORTRAN except the PB286's interrupt controller

setting, the I/O board functions, and I/O routines which are all written in assembly code.

The control cycle is updated at the rate of 75Hz (DACLK rate). I
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Table 1. Hub/Appendage Experiment Configuration ParametersI
Hub & Appendages

Total System Inertia, I 2128 [oz - sec2 -in]

Hub Center to Gage Center, 1o 5.5470 [in]

Hub Center to Tip Mass, 1 51.07 [in]

Tip Mass, m 0.15627 [oz - sec 2/im]

Appendage Modules of Elasticity, E 161.6 [million o/im2]

I Inertia of Bending Section, I 0.000813 [in4]

Mass Density of Appendage/Length, p 0.003007 [oz - sec 2/in2]

Distance between two gage set 1.365 [in]

Motor (PMI Servodisc DC Motor: JR16M 4 CH)

Torque Constant, K, 52.77 [oz-in/amp]

Back EMF Constant, K, 39.77 [v/10OOrpm]

I Tachometer Constant 3 [v/10OOrpm]

I Power Supply (KEPCO BOP 36-12M)

Current Gain 1.2 [amp/commanded volt]

I
I
I
I
I
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Figure 1. Texas A&M Maneuverable Space Structure Experiment
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I Figure 2. Hub Assembly
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Figure 4. Torque Shaped Rigid Body Maneuver U
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I Figure 5. Rigid Body Maneuver vs. Saturation Torque and Shape Parameter
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Figure 7. Boundary of the Liapunov-Stable Tracking Region i
vs. Saturation Torque and Shape Parameter
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Figure 9. Experimental Results: Control Law I
conuroi gains: gt - 600 oz-in/rad, 2 = 0 oz-in/trad/s, g3 0
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I Figure 11. Experimental Results: Control Law 11
torque shape parameter a. 0.1, control gains: g, "3000 oz-inlrad, g2 = 0 oz-ini/rads, g3 = 0
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Figure 12. Experimental Results: Control Law I
torque shape parameter a o.2, control gin S, 3000 oz-in/rad, g2 0 oz-in/rad/s. g3 0
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I
Figure 13. Experimental Results: Control Law II
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Figure 14. Experimental Results: Control Law 11
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Figure 15. Experimental Results: Control Law 11
torque shape pararneter a o. 01, control gains: S, 3000 oz-in/rad, g*200 oz-icx/rad/s, g3 O'0.
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A Measure of Controllability for Actuator Placement

I Youdan Kim' and John L. Junkinst
Tezas A&.1 Unirersity. College Station. TexasI

Abstract

.A new measure of controllability for linear time invariant dynamical systems is

introduced. The controllability measure is designed especially to guide the placement

of actuators to control vibrating structures. An ezample is presented and the design

I of optimal feedback con,'rol laws for each of several actuator configurations supports

the practical value of the new controllability measure.

I
I. Introduction

The problem of choosing actuator locations for the control of large flexible space

structures is an important area of current research. By recognizing the fundamental

role played by the actuator locations, it is natural that the problem of placing ac-

tuators be considered simultaneously with the quest to define meaningful measures

of controllability (MOC).

Ph.D. Candidate, Department of Aerospace Engineering, Member AIAA
t George J. Eppright Chair Professor, Department of Aerospace Eg.np,-ring.

Fellow AIAA
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Longman" 2 presents a definition of a degree of controllability and applies it

to optimize actuator placement. For the purpose of model reduction, Moore3

introduces an internally balanced system by using the singular values to define m
measures of nearness to rank deficiency of the controllability and observability

grarnians. The smallest singular value of the controllability grarnian (of Moore's

balanced system) can be taken as the NIOC. Hamdan and Nayfeh proposed a new

measure of modal controllability by using the generalized angles between the left

eigenvectors of the system matrix A and the colvmns of the input influence matrix

B for the system described by the triple (A,B.C). They also showed that their

measure has interesting connections with Longman's degree of controllability, and

is also related to the singular values of Moore's balancing method3 . Hamdan and

Nayfeh's measure provides us useful information on each mode's controllability.

In this paper, we extend Hamdan and Nayfeh's measure by introducing a new

controllability index which combines their controllability ideas with modal cost

analysis 6'7 . Our index adresses simultaneously the physical importance of each

mode and its degree of controllability. In order to evaluate the usefullness of the

proposed new index, we design two sets of controllers - one set using symmetric

output feedback6 and another set using the linear quadratic regulator approach:

each set includes controllers for ten different configurations (that is, ten different

actuator locations for the same structure), and compare the results of the ten pairs

I
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of controllers with the new indices.

II. Measure of Modal Controllability

I Consider the linear dynamical system in the state-space form

I * = Ax - Bu (1)

I where x E R'. u E R", A and B real matrices with appropirate dimensions.

I It is well known that the Popov, Belevitch, and Hautus (PBH) eigenvector test 9

is useful to test the modal controllability of the system (1). The PBH eigenvector

test specifies that any column vector bj of input matrix B cannot be orthogonal

to the i-th left eigenvector qi of A, if the i-th mode of the system is controllable.

Unfortunetely, the information from the PBH eigenvector test is a binary Yes!'No

type. By introducing an idea baset, upon a geometrical interpretation of the PBH

eigenvector test, Hamdan and Nayfeh 4 proposed the following two measures of

Icontrollability:

I Proposition (Hamdan and Nayfeh)

I 1) A measure of controllability of the i-th mode from the j.th actuator input of the

given system is cos Oij, where Oij is the angle between bj and qi.

qrTbj (2)I O qi (2)

I
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2) The Eucledian (root sum square) norm of the vector fi, where fiT - q r B/ qi 1j is

a gross measure of controllability pi of the i-th mode from all inputs.

Note that the different power levels in the different inputs on modal controllability

is considered in the gross measure of controllability. The gross measure of control- i

lability pi is related with the measure of controllability as follows:

pi = (3)I

F = (cos G)diagjilb 1  I be ....... b, 1'

where fiT is the i-th row of F, and cos E is the m x n matrix of modal controllability

measures. I

Since a gross measure. of controllability of a given mode considering all input is

important, we will adopt the second measure of the above proposition as each mode's

me3sure of controllability. When we compute the measure of controllab..iz.. w!

should be careful dealing with the coordinate transformation. Since these measures

are not invariant under any coordinate transformation that is not orthogonal, I
the measures should be used consistently only after all transformations, including

scaling have been carried out.

The least controllable mode is often considered to be critical for the controllability I
of the system, therefore we could conjecture the following rule. --The smallest calue

of the gross measures of controllability pj is the controllability index for the giren
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systern. " This rule is definitely "false" for most practical applications. Consider a

system for which the k.th mode of the system is the least controllable, then the

I k-th mode's gross measure of controllability Pk (i.e., the minimum Pk) would be

taken as the system's controllability index if we use the above rule. However. if

the k-th mode does not participate significantly in the important physical outputs

of the system, then using only the controllability of the kth mode to chara;ctcrizc

I the system controllability is clearly not suitable. Therefore we need an index which

incorporates more information in order to properly measure the controllability of

the system. Using some measure of the "relative importance of each mode" to the

system performance is recommended to weight the modal controllability measures.

I The most appealing approach is to combine the modal cost ideas of Skelton et

al.6"7 with the modal controllability ideas of Hamdan and Nayfeh'. We develop this

approach in the following sections and define a new measure of controllabili-tv.I
III. Modal Cost Analysis

I The scalar function

I0 
y T (t)Qy(t)dt

is widely used as a measure of system performance where the vector y(t) is co mposed

I of those output error variables that are of importance to the designer. The unit

I1 (100)



impulse response with zero initial condition is also commonly used to discuss the

transient response of the system. By considering the above two observations, we

can take the cost function which represents the system performance as follows: I

yT(t)Q,.yd(t)dt0 (4)

Yd(t) = Cdx(t) I

where x(t) is the response due to the unit impulse input applied at t = 0 with zero I
initial conditions, Q, is a weighting matrix, and Cd is taken such that yd(t) be an

important variable for the design objectives.

The developments leading to a modal decomposition of this cost function have been

derived by Skelton6 . We may use the contribution of each modal state variable to I
the cost function as a measure of that mode's relative importance in the system

performance. The cost function V and the contribution V', of the szate variabie x:

in the cost function V can be computed as follows6 :

I
V = trace{QVCdXC T } (5) I

V, = ,XC~dQCd!I (6) I
where X is the controllability gramian which satisfies the following Lyapunov

equation

XAT - AX - BBT0 (7) I

I
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What we really need is each modes's contribution to the cost function, which is called

the "modal cost". When the "modal" coordinates are used as the state vector, it is

I obvious that each state's contribution becomes the modal cost. For a formulation

of the system dynamics which uses "physical" or "configuration" coordinates in

the state vector, on the other hand, the modal cost can be obtained via a modal

coordinate transformation.I
For a system having a given actuator placement configuration, we can determine

1 each mode's gross measure of controllability and modal cost by using the results

presented above and in the current section. In the following section, we address

the issue of how to combine the modal cost with the gross measure of modal

controllability, to define a new measure of controllability, for the purpose of deciding

I where to place the actuators.

I
IV. Output Measure of Controllability for the Second Order System

In the study of vibrating mechanical systems we usually encounter the system of n

second order equations

M1it- C - Kx = Du (8)

I
where x E R ' and u = R' are configuration and control vectors, respectively. .NI is

I an n x n positive definite symmetric mass matrix, C is an n x n positive semi-definite

I
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symmetric structural damping matrix, K is an n x n positive semi-definite stiffness

matrix, D is an n x m control influence matrix, and () represents differentiation

with respect to time.

In Section II. we mentioned that the MOC is generally variant under any coordinate

transformation that is not orthogonal. We need to choose the coordinate system in

order to discuss controllability. \.hen modal coordinates are used, two weil-k.,own

benefits are realized: (i) the computational processes become simplified, and (ii) I
each state's contribution to the cost function corresponds to the modal cost. We

will use the modal coordinates for all subsequent discussions.

To perform the modal coordinate transformation, the following open-loop eigenvalue

problem should be solved first 1". I
Ko. = Ai Mo.. i = 1.2 ..... n (9)

with the normalization equation 1

o. M, =1. i.1 = 1,2..... n (10) I

Introduce the modal matrix I

The general modal coordinate transformation is 1

x(t) = $i (t) (12)
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where r7(t) is the n x 1 vector of modal coordinates.

The transformed equation of motion becomes

Mi, Ct k-117 b u (13)

where

.= T~,= I

I C = ,rc4 = diag(2C ,. 2( 2 .2 .

K TKP = diag(w 2 ..... 2.)

f) = TD

The diagonal structure of C requires that C be a linear combination of M and K.

we make this restriction for the sake of convenience. The results developed for

I computing Hamdan and Navfeh's controllability measures are directly applicable to

the second-order representation (13), the!e are reported in Ref. 4.

For control applications, the system dynamics are usually modeled in first order

differential equations. Let us introduce the "2n" dimensional modal state vector

3 (14)

Equation (13) can be written as the first order system

I = Az - Bu 13)

I
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where [ 0 B 0 1 i

I
The right and left eigenvalue problems 'associated with z = pext solutions of the

open loop system in Eq. (15)' are

right: Aip, = Api i = 1.2....,2n

left: Aiq i = ATqj i = 1.2,....2n

where the conventional normalization11 of the biorthogonality conditions for the

eigenvectors are adopted as I
p'p=i 1.2..... 2n

(18)I

so that

qjAp = ,\A i,j 1,2,...,2n (19)

The gross measure of modal controllability can be obtained by using the proposition I

in Section II with the above left eigenvectors and B matrix in Eq. (15).

In order to evaluate the modal cost for the system, we take the following system

performance (Eq. (4)) as the cost function 3
V=j yT(t)Qyd(t)dt (20)

Yd (t) Cdx 0 (X(t)) Cd (t) (21)

I
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where Q, is a weighting matrix, yd(t) is a vector of physically important variables

and x(t) is a physical (configuration) coordinate vector.

]
We adopted the weighting matrix as follows:

0 Q[ X QO~ (22)
I . 0 I

By introducing the modal coordinate transformation, the vector yd(t) becomes

U Yd( )7(t) - [ Cdk' _(t) -Cd1, (23)
Yd W)= Cd 4( 0 t)

Therefore matrix Cd in Eqs. (5)-(6) must be replaced by Cd,7 to evaluate the total

cost and modal cost in the modal coordinate system. Since modal coordinates are

I used, we can take advantage of the analytical solution of the 2n x 2n Lyapunov

equation (7,). available in Ref. 7:

x=( ' X,, (24)I -. /XT. X, ,

where the elements of n x n block matrices are

2 .2
jrDD .i.j = 1.2. n (25)

)= f T ij  .j = 1.2. n

I with

I
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Note that the i-th mode's modal cost consists of two parts: the modal cost of the

i.th mode's displacement and the modal cost of the corresponding mode's velocity, I

that is,

Vi V' -- , (26)

where Vi is the i-th mode's cost and 2. is the modal coordinate.

The above V,% and V , can be obtained by substituting Eqs. (22)-(24) into Eq. (6)

as follows:

V -- X ,7i CdxQCdxC!i

(27)
., =LX,, C *Q*Cd*4 'ii

By judicious selection (problem dependent, obviously) of the physically important

variable vector yd(t), the modal cost Vi in the cost function V represents the

contribution of the i-th mode. Thus the normalized modal cost (V: V) prnvides

a measure of each mode's relative importance in the system performance. We

conjecture that the normalized modal cost (Vi,/V) is precisely the "measure of

importance" needed to weight the modal controllability measure of Hamdan and

Nayfeh.

In view of the above considerations, we introduce the following new index as a I
measure of controllability.

2 2 A (28)
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where

a -New controllability index

i V: i-th mode's component cost in the cost function V

Pi :i-th mode's gross measure of modal controllability from all inputs

(Eq. (3)).

Qualitatively, this new index represents a measure of "output. controllability" which

reflects both modal controllability and the modal participation of all modes in the

phsically important cost function.

In the following section, we design two controllers (with several actuator configura-

tions) for an example flexible structure, and use the results to evaluate the utility

I of the new index.

I
V. Numerical Examples

To study the utility of the new index proposed in the previous section, two

controllers: (i) a robust output feedback controller" '2 and (ii) a linear quadratic

regulator, will be designed for the example flexible structure: we will compare

i the results of these controllers (for several actuator configurations) with the new

controllability index.

I
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I
We adopt as an example, a sixty degree-of-freedom model of a grid structure12 . A

finite element analysis of the grid was performed. Nodes were placed at each of the

twenty joints on the grid. Each substructure of the grid were modeled using beam I
elements. Three degrees of freedom (one normal displacement and two. transverse

and vertical rotations) appropriate for motion normal to the nominal plane of the

grid were considered for each node. Figure 1 shows the flexible grid experimental

configuration. The material properties for this model are listed in Table 1. 1

Angular velocity feedback torques are provided by three reaction wheel actuators. I
The actuator axes (about which control torques are applied) lie in the plane of the

grid as indicated by the arrows in Fig. 1. The actuators (Clifton Precision Motors)

have approximately a 60 Hz bandwidth and =20 oz-in (=0.1412 N-m) saturation.

The grid angular displacement and velocity are measured about the same axes I
with Watson solid state sensors. These sensors have a DC to 100 Hz bandwidth

accurate to =0.0010 and ;I0- s rad/sec. The particular position and orientation

of the sensors and actuators shown in Figure 1 represent one (Configuration 6)

of the ten configurations which will be discussed. In order to avoid disruption I
of the symmetrical property of the grid structure, only symmetrical locations and

the direction of the actuators are considered in the present discussion. and the

admissible actuator locations considered are the 20 grid locations and the direction 1

of the actuators are permitted to be either vertical or horizontal. The locations

I
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Table 1. Material Properties of Grid Model

El 3255.2 lb in2  9.34982 N . m2

I GJ 4943.0 lb in2  14.18550 N m2

pA 0.0000648 lb. sec2 An2  0.44678 kg,'m

pJ 0.00002171b • sec 2  0.0000965 kg •m

I
and the direction of the actuators of ten configurations are displayed in Figure 2.

In all cases the actuator torque axis and the active sensor axis are co-located as

I accurately as possible. We present only numerical studies in the present paper. A

future paper will address experimental issues and results.

For high order systems such as a flexible structure, it is usually desirable and often

necessary to develop a reduced-order model to save on computational time when

designing control laws. A high order model is generally retained to verify the

I resulting design. The most common order reduction method is the modal truncation

method in which a partition is introducecd into the modal matrix to select a subset

of low frequency modes (determined to be of most importance in the particular

application). The criteria for mode selection can be based upon modal cost. for

example. The general modal coordinate transformation is partitioned as

* x(t)= lh(t)=' 1  I2'( ( t) (29)

where ( is the modal matrix solved from the eigenvalue problem (Eq. (9)), q1 is

(110)
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the retained subset of n, modal coordinates which we are interested in including in

the reduced order model, and r-2 is the residual modal coordinates.

The reduced-order equation of motion becomes m

Ni1, ±Cr, - kr 7 = Du (30) I
where

= 1 = ,(2j,,, ..... 2(,,,I m

Kt diag(4.,,2

I D

A reduced order model is used for the current design process. In this example, we I
simply adopted the first ten lowest frequency modes. The order reduction process

is nut ct.,ntral to this discussion, although it is important that a "'good" reducedI

order model be used to obtain practical results efficiently. Since the controllers

are designed by using the reduced-order model, there is no additional problems I
introduced by using a reduced-order model to evaluate the new index. Some

physically important variable vector is selected to construct the cost function. For

this simple illustration, the normal displacement (perpendicular to the grid plane)

of the lower-left corner is taken to be yj.

I
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Control Design 1 : Symmetric Output Feedback Design

For the above model, we apply a symmetric output feedback controller8 1 2 design

U method to move the system's first three modes to a desired region and. subject to

this condition, minimize a robustness measure (e.g., the sensitivity of the eigenvalues

with respect to variation of uncertain parameters). For the measure of gensitivity.

we ue the cond* ion number of the closed loop eigenvector matrix.

The symmetric or "'structural" output feedback form of the control law (collocated

sensors and actuators) is given by

u = -(GID1T - G21T) ,) (31)

I
where G, and G2 are m x m positive definite symmetric gain matrices.]
For an.'all choices f(. the gain matrices from this stable fa-ily(i.e.. :he :et of

I all positive definite Gi matrices), asymptotic stability of the closed-loop system is

guaranteed in the Lyapunov sense. Of course, we do not choose the Gi at random.

Positive definite gain matrices are parameterized by introducing the Cholesky

decomposition, and the gain parameter vector is defined as Pgain, the distinct

I elements of the Cholesky factors of G, and G2
s ' 3 . With the above formulation.

our gain design problem becomes a nonlinear optimization problem as follows:

Minimize K(,C(pgain)) (32)

I
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subject to closed-loop eigenvalue placement constraints, for example, we adopt the

frequency constraints I
.A; -, - Aw- Aw, percent of .,Z'. i=1. 3

and the time constant constraints I
T, . =. 3 I

where

we (Pgain) = IR(Ai)

-Ai)

C (Pgain)) is the condition number of the closed loop eigenvector matrix,

and the superscripts c and o denote the closed-loop and the open loop.

For this e::arnT!e we take the :ime constants as T. =.. T =... and -3._.

The above nonlinear constrained optimization problem can be solved by homotopic

nonlinear programming 13,14 in conjunction with a minimum norm gain correction

strategy.

The computed output measures (a of Eq. (28)) of the system controllability for

the ten different configurations and the results of the controllers designed for the

corresponding configurations are summarized in Table 2. The configuration number

is an arbitrary reference number we assigned a priori for each configuration.

I
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i Table 2. The Measure of Controllability (Output Feedback Controller)

Configuration New Index(a) Gi 2 1. f Cond. No.

i 9 0.00333 0.306 6.514 129.864

8 0.00234 0.142 7.434 131.611

10 0.00208 0.444 7.691 161.167

4 0.00158 1.600 7.732 128.707

3 0.00153 6.804 9.S27 " I J 53

6 0.00130 1.595 31.143 147.774

3 0.00123 6.745 19.920 159.009

2 0.00102 13.379 16.483 140.672

7 0.00084 21.576 16.411 140.715

1 0.00078 22.160 25.379 141.402

I
In the Section IV, the output measure of controllability is conjectured to properly

weigh both modal controllability and participation in the output cost function.

That means, we expect the configuration possessing the large index to be more

i output controllable than one having the small index. We further expect that

more controllable configurations should require less energy to control the system,

and therefore, we anticipate the associated optimal controller to have smaller gain

matrices. Based upon these heuristic observations, for example, if Eq. (28) is an

I appropriate measure, we should anticipate the large a designs will correspond to

the smaller control gains. As we can see in Table 2, the magnitudes of the total gain

I
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norms of the first four configurations (configuration number 9,8,10, and 4) are indeed

significantly smaller than those of the remaining six configurations. In fact, designs

9.8,10, and 4 appear to be correctly ranked based upon the fact that decreasing I
a corresponds to an increasing control gain norm. All of the above designs have

closed loop modal matrices with small condition numbers, but it is also significant

that the small condition numbers appear to be negatively well-cur.eh ted with lhtre

a values. These results imply that the new index proposed is highly correlated to

the actual controllability and robustness of the system and can apparently serve as

an excellent indication of the desirability of a'given actuator configuration. I

Control Design 2 : Linear Quadratic Regulator Design I

The symmetric output feedback controller used in Controller Design I (and imolicit U
in Table 2) is perhaps unfamiliar to many readers. Since this is true and in order

to confirm the usefullness of the new index, we also designed control laws for each

of the ten actuator configurations using the well-known linear quadratic regulator

(LQR) and we compare the results with the new indices as well as the symmetric U
output feedback designs of Table 2. We adopted the following performance index

for LQR:

j = j (zTQz - uTRu)dt (33)

I
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where R=rI

IQ

I -= dag:, .2

the scalar r is chosen in order to satisfy the conditions ..', _ T,.

i = 1. 3 with T, = 0.2. T2 = 0.2. and T 3 = 0.25.

I The above performance index is an energy type, since the first term and the second

term in the performance index correspond to the state energy and the control energy

I respectively. Note r is a tuning factor used to place the first three closed-loop

eigenv-aues to achieve the desired time constant. Without judiciously assigning

the tuning factor r we cannot control the position of the closed-loop eigenvalues.

and the closed-loop performances for the different conE...uratio's beccme dinene ,

I The results of the LQR controller desings for the ten configurations and the

corresponding configuration's new index are summarized in Table 3. Note in Table 3

that the magnitude of the gain norm of the first four configurations is again smaller

that that of the remaining six configurations.I
Note in Table 3 that the after the first four designs (9,8.10,4). the descending order

I of the new index is different from that of the magnitude of the output feedback

controller, and is also different from that of LQR. It is obvious that the two
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Table 3. The Measure of Controllability (LQR : Full State Feedback))

Configuration New Index(a) G:!r  Cond. No.

9 0.00333 11.2704 128.3908

8 0.00234 10.5103 127.8386

10 0.00208 22.1138 131.9951

4 0.00158 15.1570 129.2909

5 0.00153 45.3070 14J0.6412

6 0.00130 96.3776 144.0756

3 0.00123 48.9767 135.9563

2 0.00102 48.8298 135.6727

7 0.00084 47.4010 135.7873

1 0.00078 47.0973 135.7440 i
I

gain optimization problems should not be expected to produce the same results.

espec;ally since the deskizn of Table 2 are output feedback whereas those o Table

3 are full-state feedback. Therefore we can not expect that the new index is one- i
to-one mapped with the results of the two design methods studied (or any other!)

In view of this, the proposed new index appears to be a remarkably good measure

of controllability for the given configuration, since the results in Tables 2 and 3 are

well correlated. Notice that the first four configurations (9.8.10.4) have smallest i
gains in both Table 2 and 3 as compared to the other six designs.

Two of the ten configurations - to illustrate the consequences of using relatively
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I
"good" and "bad" configurationcs, we adopted for further study. Specially config-

urations No. 9 and 6 were taken to study the closed-loop performance of both

the symmetric output feedback control (design 1) and the LQR full-state feedback

control (design 2). The closed loop response histories of the normal displacement

to the grid plane (at three nodes of the bottom of the grid structure) of two con-

e figurations due to a typical set of initial conditions are sh-,wn in Fizures :; and 5.

and the control input histories are displayed in Figures 4 and 6. The typical set of

initial conditions are constructed by using static loading such that the displacement

of the lower-left corner be 1 inch (2.54 cm). The static load is removed at the initial

i time. We have imposed control saturation bounds (20 oz-in; 0.1412 N-m) to keep

the reaction wheel speeds to modest levels. First, consider the symmetric output

feedback design (control design 1). Note in the figures (a) and (b) of Fig. 3 that

the closed-loop performance of configuration No. 6 and No. 9 are almost iden:ica'.

I When you study the figures (a) and (b) in Fig. 5, however, it is evident by inspec-

tion that configuration No. 9 needs more control input energy. That is consistent

with our expectation based upon the computed output measures of controllability.

We reach the same conclusion when we compare the closed-loop responses (Fig. 4)

I and the control torque histories (Fig. 6) of the LQR (control design 2.) Thus we are

again encouraged that the controllability measure predicts the correct trend for the

controlled response with two distinct underlying controller design optimizations.

I
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VI. Discussion

The present paper introduces a new measure of controllability and considers its I
implications for actuator placement. The proposed new index a of Eq. (28) I
is a combination of the squares of Hamdan and Nayfeh's modal controllability

measures weighted by the respective modes' contributions t, a quadratic output

cost function. The usefullness of this new index has been verified by comparing the

results of two control design methods for a grid structure with ten different actuator

configurations. I
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I Figure 2. Ten Sets of Actuator Locations
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I

John L. Junkinst and Youdan Kim'
I

Abstract

We develop algebraic expressions for the first- and second-order sensitivities of the singular
value decomposition of a general complex matrix. These algebraic results have been verified
by numerical methods. Owing to the increasing analytical and computational applications of
singular N alue analysis of dynamical systems, these results have many potential applications.
To illustrate a typical family of applications in design of robust controllers, we consider a sta-
bilizing class of output feedback controllers, and set up an approach to minimize the conditior
number of the matrix of closed-loop eigenvectors. As specific numerical illustrations, we use
the formulation as an integral part of a control design algorithm to design. cntrols for a low
dimensicned example (6th order. 4 outputs, 2 inputs) and a moderately high dimensioned ex-
ample (40th order, 6 outputs, 3 inputs). In the latter case we also illustrate the use of the meth-
odology in a problem where order reduction is an issue. In both cases, we optimize the
feedback gains to maximize a robustness measure for the closed loop system. subject to in-
equality constraints on the system time constants.

I Introduction

Singular value decomposition (SVD) analysis has emerged during the past decade
as a very important aspect of many diverse sub-disciplines of dynamical system
analysis, and numerous researchers are rapidly expanding the applications of the
SVD. In [1], the usefulness of SVD to measure the robustness of feedback-controlled
linear systems is discussed. Matrix singular value methods are given in [2] for evalu-
ating gain and phase margins of multiloop control systems. In [3], singular value era-
dients and parameter optimization techniques are used to design robust controllers for

multiloop control systems. In [4, 5], SVD methods are developed for system identifi-
cation, model truncation, and error analysis.

In this paper, we develop algebraic expressions for the first and second partial
derivatives of singular values of a general complex matrix, with respect to a parame-
ter vector (upon which the matrix depends in a twice differentiable fashion). These
developments provide important gradients in applying first and second order numeri-
cal optimization algorithms to singular value measures of system performance. The

'Department of Aerospace Engineering, Te.xas A&M L niversi., Colege Station. TX 7TS.
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analytical developments have been carefully verified by first and second order finite I
differences.

We also address an illustrative numerical controller design example wherein the
condition number (ratio of maximum and minimum singular values) of the closed-
loop matrix of eigenvectors is minimized (over a family of stable output feedback
gains, subject to cigenvalue placement and system time constant constraints). The "'
minimization of this condition number, for fixed eigenvalue placement, is equivalem
to maximizing the robustness with respect to plant uncertainty (as measured by the
Patel-Toda [6] measure).

Singular Value Decomposition

We restrict the initial discussion to the partial derivatives of a square (2n) X ".) Ix
complex-valued matrix (P, the singular value decomposition, that is the matri;:
factorization P= ()

where U and V are (2n) x (2n) unitary matrices normalized so that

UHU = 1 (2)

V V = 1 (3) 1

The matrix 1 = diag(o,,oh,. ... os,), contains as its elements the real singular
values of (b ordered as o-1 - o7 a: ... a (r2, a 0. The superscript H denotes the i
conjugate transpose.

Since U and V are unitary, we can use equations (2) and (3) to rearrange equa-
tion (1) as I

S= U4,V (4)

The above four equations can be expressed as conditions upon the (2n) X I complex
column vectors of U = [UI U, ... U2,] and V = [VI V,... Vi,] as

)V. Uicr,, i = 1, 2,... 2n (5) I
e"U= Vio-,, i= 1,2,... ,2n (6)

Uuj =80 (7) I

vH V (8)
O-i8ij= U ,vi (9)

Using equz..'ons (7) through (9) in equations (5) and (6), it is easy to verify that
o(', V, are eigenvalue, cigenvector pairs of the symmetic matrix 4,'4, whereas o-2, U,
are eignevalue, eigenvector pairs of the symmetric matrix O1V. This interpretation of
the singular values is of theoretical significance, but does not lead to good algorithms.
(It is not necessary or advisable to square the matrix; the decomposition of equation (1)
can be generated directly from Householder reductions of ), using the methods of
[7, 8].) It has been our experience that the SVD can be computed more routinely and
more accurately than usual matrix operations such as Cholesky decompositions or in-
version. Since the SVD also applies to rectangular, complex, rank-deficient matrices
as well, the range of applications is large indeed. While we are concerned with the
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case of a general 4P, certain of the details presented herein apply only to the case of
distinct singular values. The generalizations for the repeated singular value cases can
likely be pursued in a fashion analogous to the developments in [9], for the sensitivity
of eigenvectors for repeated eigenvalues.

Partial Derivatives of the Singular Values

We define the N X 1 parameter vector p as

P = [P,,P2,...,P,]r (10)

and we assume that the matrix 4) is a twice differentiable function of p, namely.

= 4)(p) (11)

Differentiating equations (5) and (6) with respect to a typical element p, o: p. upon
premultiplying the resulting two equations by U,' and VH, giveS

__ aav co-
U -V . -- = + uhUi (12)Sap V i , p ,P i ,Ui-pk

I + 01 + V, - (13)

ap, ap, apk Pk

Adding equations (12) and (13) gives

Ulf + vi'teU, + (u",) - . __orSaP k ap k -V ~ kV NiI aP. ak-

+ - = - (u, u, -r

Using equations (5) to (9) in equation (12), we obtain the following result (identical to
that in [2]) for the gradient of the singular values

60= I .MvdoV, + U. = Re )V), O ' ('PT (15)

Upon differentiating equation (15) with respect to p,, we obtain the following expres-
sion for the second partial derivatives of the singular values

-2OiRe - U7-V+ U8 4 ' Vi U-aU, 84kv' 8pkp, i PI 16aPk aPJ Bp 8  16

Since equation (16) involves the singular vector gradients 8Ui/ap, and ;V,/ap, we
must either evaluate them or eliminate them, we choose the latter approach.

Notice that either set of unitary vectors (the columns of U or V) form a complete set of
basis vectors spanning the 2n x 1 complex vector space, so any other vector can be

I formed as a linear combination of one of these two sets of basis vectors. We choose
to project aU/ap, and aV,/ap, onto the corresponding sets of unitary vectors as

I~ ap/ "8p, :.I

a= bjV (17)
apt .,. I

I (132)
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SaI I
where a and b!. are scalar complex constant "components" of the singular vector
gradients.

Differentiating equation (5) with respect to the typical parameter pl, upon premulti-
plying the result by Um" and making use of equations (17), gives

U -OVi + Zb'U,4P = o'iXa Z U,U + UU, (18)
apt I j1 Opt

Using equations (7) and (9) in equation (18), we obtain the following equation
a n04) , Ocri

o-ia n - ab, = U, L o , " i, 8- . (19)
U ' -V -1 (19); . .

Similarly, differentiating equation (6) with respect to p, upon premultiplying the
resulting equation b' VN and making use of equations (5), (7), (8), and (17), gives

- ibl = - u, + -, (2)
n1 ap t p t

In the case of the "diagonal" terms for which r = i, eauations (19) and (20) become

a iH±V -b& I.VO apt' aptI

at - bt = -I ui a " (21)ii C \ ap t p

It is evident that subtraction of the first of equations (21) from the second provides
another verification of equation (15), but we have another use for equa.tons (21) in
evaluating the second partials of equation (16).

In the case of r # i, we have the following result from equations (19) and (20.

o-ic.' - -rb.UHA

Excep for the V UiQV (22)I
o., ',,. -U ,,b= ,-ap t v

Except for the r = i case, and the case of repeated singular values, we can solve
equations (22) for the singular vector gradient projection coefficients as

I I ,( aOi+ ,( aOV)H

01 = -; 'oap\ tapt /

2l [- F/U- ) ~+ OjiU aDV) H (23)£ - c-r L  dPi ap,]
The singular vector sensitivities must be consistent with the normalization of equa-
tions (7) and (8). Upon setting j = i and differentiating with respect to p,, then sul -
stituting equations (17) and making use of equations (7) and (8), we find the diagonal
projection coefficients are purely imaginary

(a')+ a , = Re(4 ) I

(b'.'+ b',= Re(b ) = 0 (24)
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Using equations (21) in (24), and substitution of equations (15) into the result gives

(a!. +b- i U f PV. - L -Ii)= u"ov) i V ZcT (25)
-1r, apt Po' -/ (U apt

Substitution of equations (17) into equation (16) gives

a2 TZ' (;- U , + ( 1) " U N + -) k C I

P. aP Rei-I
* or

~apk apI

ReI (a')HU,-V- + (b'.)U" 4±V ' U+H __v
Je " + _H8V' + [(a°l) + -N

(26)

Finally, eliminating (a i)H + (bl) using equation (25) and a'1, b', for j 94 i using
equation (23) and after straightforward algebraic operations, we obtain the fina2 ex-
pression for the second partial derivatives of the singular values

a _ 2A U[(+ ° v, ) + (UHa : H
aPk OPI R j- 2 I4 aLJ -V K-j ap a

L j0i

(Ulf a(( HJ)] [+(Ua.('V]o HV) IUJ SV)+(JNj )(H' j
-~ J *J i .l Jp

aP+aP, 1 (Us PkII U. a* +Im(Ui._a /im U;O (27)

This expression has been carefully validated by second finite difference studies,
analogous to those reported in [10] for validating analytical partial derivatives for
eigenvalue and eigenvector derivatives.

Example: Minimum Sensitivity Symmetric Output Feedback Gain Design

Suppose that a mechanical system is defined by the equation of motion

Mk + Ck + Kx-= Du (28)

where x E R" and u E R' are the configuration and control vectors, respectively. M
is the n x n positive-definite symmetric mass matrix, C is the n X n positive semi-
definite symmetric damping matrix, K is the n X n positive semi-definite symmetric
stiffness matrix, D is the n X m control influence matrix, and () = d( )/dr.

Motivated by the developments in [5, 11, 12], we introduce the symmetric or
"structural" output feedback form of the control law

u = -(GDrx + GDri) (29)

where G, and G, are m X m positive definite symmeL-ic gain matrices. For all mem-
bers of this special class of output feedback controllers, we can verify that asymrototic
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stability is guaranteed. The most familiar member of the family is the so-called "direct I

feedback" case of diagonal G, and G2. More generally, fully populated gains allow
every actuator to linearly operate on all sensor measurements and thereby provides
more controller design freedom. This class of controllers is attractive because a stable
family of controllers is guaranteed even in the presence of model errors, and it is not
necessary to implement a state observer. However, it is necessary to have all sensors "
located at actuator stations, and this requirement presents a stumbling block in some
applications. For this reason, generalizations and modifications of this approach have
recently been proposed (11] to circumvent these difficulties. I

We admit the most general family of positive definite gain matrices by introdu:ing
the Cholesky decomposition gain parameterizations

G = L,L r and G. = L 2L' (3C')

G, and G2 are guaranteed to be positive semi-definite for any real elements (q,, r,,) as-
signed to the lower triangular matrices I

q2, 0 0 r 2 0 0:11q:, q-11 0 " 0 r: r,, r

L 1 q3, q32 q33 0 and L,= ri r 0 (31)

q., q,.: q,, " q ..tj r.I rm2 r-

The corresponding global gain parameter vector then becomes

p = [q1 q2  ... q, q=. . q,,, r,, r ., ... r, . ,,] r  (32)

We consider G, and G, to be functions of p; through equations (30) and (31), it is
clear that

G, = G,(p) and G, = G,(p) (33)

and that, for example, the partial derivatives of the gain matrices with respect to the
elements of the parameter vector p can be constructed easily.

Substitution of equation (29) into equation (28) gives the closed-loop system

M1 + Ci + Rx = 0 (34)

where the closed-loop system matrices are 1
C=C+DG2 DT  and k=K+DGDr  (35)

It is apparent from equations (33) and (35) that the closed-loop damping and stiffness 1
matrices are simple algebraic functions of the gain vector p, i.e.,

= C(p) and k = k(p) (36,

Considering a f'rst-order state-space form of the system differential equations which
is equivalent to the second-order closed-loop system of equation (34), we write

Bi = Az (37)

where

z , A [ M , B=[o = ] (3S) 1
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It is evident that

A = A(p) (39)

The right and left eigenvalue problems associated with z = 4e" ' solutions of
equation (37) are

right: XiB&;= Ao,, i = 1, 2...., 2n

left: XjBr = Ar, i = 1,2,..., 2n (40)

where we adopt the usual normalizations [10) of the biorthogonality conditions
OjrB i I l, = 1. 2... 2n
rB4=l, i, 1,2.... 2n

djA6, - X45,,, ij 1, 2. .. 2r (4-)

Since A = A(p), it is natural that we consider the eigenvalues and eigenvectors to be
functions of p. Except for isolated events of multiple eigenvalues and root bifurca-
tions, we can consider the eigenvalues and eigenvectors to be smooth differentiable
functions of p.

In order to apply gradient-based optimization algorithms, it is useful to compute
analytical partial derivatives of the eigenvalues and eigenvectors. Differentiating
equations (40) and using equations (41), we can obtain the following results [10]

axj .r(TaA aB\I~k T)£Pl 0,ip, i = 1, 2... 2n

apk= 2n .
I= I

= I d',, = PD (42)apk j-1

with4 = , , = [*1* 2 ... ip], C* = [c]. D = [d j
where

1 , TB '6 2- 5 T)o)t

2 apt,.

Xi= - Xj \Opk "ap14 ,

= A B OiCk, j = i(43)

It is apparent that we can also obtain expressions for the second partial derivatives of
the right (or left) eigenvectors by differentiating equation (42) with respect to P, as

ePk apt apt apt
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where

Ck = [c,] and -- LaP,] I
We can obtain expressions for acU/ap, by differentiating c' in equation (43), using
the chain rule as is developed in ( 10].

Numerical Demonstrations I
We consider two specific physical systems to illustrate the above ideas. The first

system is a transparent low order example of 6th order. The second example is a I
flexible structure which provides an occasion to indicate how the issues of order re-
duction approximations enter the developments.

First we consider the low order system which has three degrees of freedom and
two actuators. The mass, stiffness, and control influence matrices are

020 -10 0] 0I
M= 1 , K= -10 30 -20, D = (45)

0 L 0 -20 20 L 1- I
Conditioning of the eigenvectors is a direct measure of the sensitivity of the corre-
sponding eigenvalue to perturbations in the elements of the closed loop system matrces
(13]. The condition number of the modal matrix of closed loop eigenvectors can be
used to establish finite bounds on the system matrices within which stability can be
guaranteed [6]. We therefore adopt the condition number X(V)) of the closed loop
modal matrix V" as our performance measure. This performance measure is related tothe singular values as ( ) = X DP = Tl D( ) 46J(p) = X(cI'(p)) = o-,(4C(p)) (6

02. (4())

where a, and o-2. denote the maximum and minimum singular values of the right
modal matrix V?.

We also adopt the two equality and two inequality constraints on eigenvalue
placement I

f,(p) = Oi. - oW,.(p) = 0, t = 1, 2

gi(p) = cu(p)X,(p) -> T,, i = 1,2 (47) I
where

ci (P) = Re(,i (48)

The eigenvalues are ordered according to increasing frequencies

Ilm XI(p)I < IM X2(p)-<I :5 X(P)I ... - lir X2.(p)I (49)
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Thus, we impose constraints on the first two closed-loop frequencies and time
constants.

The objective values for the frequencies, c,, are simply taken as their correspond-
ing zero gain values. The inequality constraints are introduced to bound the slowest
system time constant, and we adopted T, = 0.3. i = 1, 2.

Utilizing the minimum norm differential correction algorithm and the homotopy
technique of [14], we successfully solved the above nonlinear programming problem.

The characteristics of the open-loop and closed-loop systems are summarized in
Tables 1 and 2. The final converged position and velocity gain matrices are

I 1.1591 0.02531 IG1,lf 1.5682,
S[0.0253 1.0557] 1

G 2.2539 0.2834]
L0.2834 2.6918 IIG"IY= 3.5336

where uIGhl1 is the Frobenius norm of the gain matrix G.
As is evident, we successfully imposed the system time constant constraints and

also improved the conditioning of the closed-loop eigenvectors as compared to the
open loop system. For fixed cigenvalue constraints, minimization of the condition
number maximizes the Patel-Toda measure (6] of robustness with respec-. to plant
uncertainty.

The optimization process was initiated by simply adopting identitymatrices for the
Gi starting iteratives. Ten homotopy steps were required with three to four minimum
norm differential gain corrections on each step. The singular value gradients were com-
puted using equation (15). The minimum norm correction process did not require the
second partials, but these were computed as well and verified by finite differences.I
TABLE 1. Characteristics of the Open Loop System

I Eigenvalues (di C,0, Cond. No. X41

± 1.4447i 1.4447 0
± ±4.4721i 4.4721 0 9.4903
±6.9219i 6.9219 0I

TABLE 2. Characteristics of the Closed Loop System

Eigenvalues Cond. No. X'()

I -0.8833 t 1.4447i 1.4447 0.7532
-1.0574 t 4.4721i 4.4721 1.0189 8.1291
-0.5322 ± 6.7872i 6.7872 0.5306
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As a second example, consider the planar rotationallvibrational dynamics of the
flexible 'structure consisting of a rigid hub with four cantilevered flexible appendages
(Fig. 1).-Table 3 summarizes the flraper/RPL configuration parameters (14].7-The
model is restricted such that the opposing beams deflect antisymmetrically. The equa-
tions can be derived by-~using a Lagrangian approach:

d aT aT 8v
t a , i, = I,-.n (50)

where T is the system kinetic energy, V is the system potential energy, F, is the ith

generalized force, and xi is the ith element of the configuration vector, x:
x 10 q1Iq2 j ... qv. qt2q2 2 .... q,J (51

Clifton rClifton
PrecsionPrecsio

Reaction uReaction

Wheels Wel

FIG. 1. Maneuverable Flexible Structure: Experimental Configuration I

TABLE 3. DraperIRPL Configuration Parameters

Parameter Symbol Value

Hub radius r I ft
Rotary inertia of hub J,8 slug-ft2
Mass density of beams p 0.027 1875 slug/ft
Elastic modulus of the arms E 0.l1584E + 10 lb/fr2
Arn thickness t 0. 125 in
Arm height h 6.0 in
Arm length L 4.0 ftI
T ip mass m 0. 156941 slug
Rotary inertia of Uip masses J,0.0019 slug-ft2
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The q1 are generalized beam coordinates which result from using a Ritz approach to
approximate the local beam deflections, y,, as the truncated series

N

Yi (t, Z) = j0 q 1 (ck(z), i = 1, 2, 0:S z :5 L (52)

The comparison functions 0,(z) in equation (52) are chosen as [15]

4j(z) = I - cos -(-l (53)

which satisfy the geometric and physical boundary conditions of a clamped-free beam
(clamped to the hub).

We apply a torque u, to the hub, a torque u2 to the end of appendages 1 and 3, and
a torque u3 to the end of the appendages 2 and 4.

Lagrange's equations then lead to the following matrix form for the system equations
of motion

MT M M T 0 OK 2() 0
M871 [,,,, 0 1 +/o K,,,, 0=o 26'(L) 0 u

Mq 2  I .0 0 K.o  o 20'(L)
(54)

where

J = Jh + 4 0L(X + r)2& + 4[J, + m(r + L)z]

I 2 fp.i(x)(x)dx + +

U,[Kq=qli. = [Kqq 21 , 2f + E (X)4g() d,

Note that Jh is the rotary inertia of the hub, J, is the rotary inertia of the tip mass, p isthe mass density of the beam, m is the mass of the tip mass, L is the arm length, r is
the hub radius, and Oj(x) is the comparison function (equation (53)). More simply,

MI + Kx = Du (55)
The eigenvalues (natural frequencies) and eigenvectors (mode shapes) of the free vibra-
tion problem associated with equation (55) satisfy the orthogonality conditions

orMo = I

1DTK4) = diag(&)2, &J,.. WD ) (56)

where 4) is the (n X n) modal matrix of eigenvectors.
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For high order systems such as a flexible structure, it is usually desirable and often
necessary to develop a reduced-order model to save on computational time when de-
signing control laws. The high order model is generally retained to verify the resulting
design. We elect to make use of truncation to construct the reduced order model, for
illustration purposes.

The modal coordinate transformation is introduced as

x(t) = 'pt) Od f4 4111 } (57)

where i/, is the first n, modal coordinates which we are interested in retaining in the
reduced order model. Then the reduced-order equation of motion becomes

M-, + Ki = Du (58) I
where

For "structural feedback" control, the control force vector takes the following form

U = ((4,L6T1,+0 2 5T ,71) (59)

In the present example, we take N = 20, and n, = 9. Therefore we design the control
gain matrices G1 and (12 by using the reduced (18th) order model and use the full I
(42nd) order system to verify the controller design.

We adopt the condition number of the closed-loop modal matrix as our performance
measure, and impose constraints on the first three closed-loop frequencies and time
constants. The objective value for the closed-loop frequency of the rigid body mode
is taken as 0.3, and the objective values for the first two flexible mode closed-loop
frequencies are taken as their corresponding zero gain values. We adopt the following
time constants for lower bounds on the first three closed-loop eigenvalues: T, = 0.2,
T2 = 0.2, and T3 = 0.25.

The optimization process was initiated by simply adopting identity matrices for the
G, starting iteratives. The characteristics of the open loop and closed loop systems are
summarized in Table 4. The final converged position and velocity gain matrices are

F1.8342 0.2592 0.26011
G, = 0.2592 0.0409 0.0405 I1G111 = 1.9080

L0.2601 0.0405 0.04031

r7.4284 0.4579 0.83351 I
G2 = 0.4579 0.2411 0.0211 IlG211f = 7.5612

L0.8335 0.0211 0.35091

The small differences of the first two flexible mode frequencies stem from the fact
that we designed the controller by using a reduced-order model and used it for the
full order system. It is obvious that our reduced-order model was sufficiently accurate I
for control design purposes. Due to the positive definite symmetry of the gain matri-
ces, all modes of the full order model are stabilized. It is important that the symmet-
ric feedback form of the control guarantees stability, even though we may not have
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TABLE 4. The Characteristics of the Open-loop and Closed-loop System (First Nine Modes of the
Full Order System)

OPEN LOOP CLOSED LOOP

0 0 0.3000 0.2000
4.3724 0 4.3726 0.2061
7.9070 0 7.9071 0.2539

51.4510 0 52.0041 5.3354
52.8058 0 53.0653 8.0875

157.5566 0 158.0285 14.0467
158.3659 0 158.5273 21.4808
313.7099 0 308.8039 34.8815
314.3402 0 311.7689 22.6602

Condition No. 0 Condition No. 37210.8

chosen a good reduced-order model. In this case it is obvious that we have success-
fully imposed the specified constraints on the closed-loop eigenvalues and improved
conditioning of the closed-loop eigenvectors.

These examples are illustrations of the utility of singular value derivatives in the
optimization of feedback control laws; while we have adopted a particular stable family
of output feedback control gains, any parameterization of the feedback law can in
principle be employed.

Concluding Remarks

Algebraic expressions for the sensitivity of the singular value decomposition has
been derived and verified numerically. We also summarize a simple numerical
demonstration of the utility of these derivatives to optimize feedback control gains to
minimize the closed-loop eigenvector condition number subject to eigenvalue place-
ment constraints. The main contribution of this paper is a concise derivation of the
singular value first and second order partial derivatives; these will find wide applica-
tions in singular value analysis of dynamical systems. A significant secondary contri-
bution is the presentation and demonstration of an algorithm utilizing these singular
value sensitivities to design robust output feedback controllers.
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Appendix: Homotopic Nonlinear Programming Based Upon Minimizing
Successive Design Modifications

Figure Al provides a logical flow chart showing (the macroscopic details of) a ho-
motopic nonlinear programming algorithm which achieves convergence reliability by
defining a sequence of neighboring constraint specifications and minimizing the se-

quence of design modifications required to satisfy the constraint sequence.
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The central feature of our nonlinear programming algorithm is the use of the mini-I

mum norm differential correction of the design variables. This is a generalized New- •

ton process for solving a system of underdetermined nonlinear equations; on each

iteration, we seek to minimize the norm (sum square) of the correction vector to sat-1

isfy the specified 
constraints. 

The constraint 
functions 

are lcally linearized 
to pro-
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vide a system of linear algebraic equations to solve for the correction vector; the
process is iterated with the derivatives (the Jacobian matrix) locally evaluated. We
discuss below the procedure used to deal with inequality as well as equality con-
straints. Of course the key requirements underlying successful convergence of any
Newton-like algorithm are: (i) the existence of a feasible solution and (ii) the avail-
ability of a sufficiently close starting iterative. As we show below, the homotopic
continuation method effectively guarantees that we can deform the constraints by con-
trollable, arbitrarily small amounts and thereby remain controllably close to a neigh-
boring converged solution; this effectively guarantees "arbitrarily good" starting
iteratives for each local iteration. An embedding method is used to define a continu-
ous family of problems which contain two important members: (i) a trivial problem
(one for which the solution is available) and (ii) the problem of interest.

The continuous one-parameter family of problems is constructed in such a way that
an imbedding parameter (0 -- y <5 1) may be set to define any member of the family
with y = 0 generating the trivial problem and y = 1 generating the problem of inter-
est. By sweeping y and controlling the y increments, we control how closely spaced
the neighboring solutions lie (in the space of the constraint functions), and the -y in-
crements can be assigned adaptively based upon convergence progress. Thus we can
remain as near to neighboring converged solutions as is necessary to maintain suffi-
ciently good starting iteratives. Therefore, if a local convergence cannot be achieved
(for some y value), we have eliminated the most common problem (of having a poor
starting iterative), and we can focus on other, more interesting convergence issues,
such as the non-existence of feasible solutions, local linear dependence of the
linearized constraint equations, turning points, and other issues. For example, com-
paring the active constraint sets and the corresponding Jacobian rows between the ap
parently un-reachable set (the one for which convergence cannot be achieved) and the
previous converged solution, will usually reveal which constraints are in competition
and will usually suggest avenues for revision of the problem and/or provide insights
as to why the convergence failure occurred.

We now discuss the algorithm, beginning with the statement of the parameter opti-
mization problem we are addressing: We seek to find p* which minimizes a function

J = 1(p) (Al1)

* subject to the constraints

Sf (p) = f,, i = 1, 2,... mt

gj(p) a T, j = 1,2,... (A2)

where fo, is the "objective" value of the ith equality constraint, and T represents
boundaries on the feasible region.

Converging from an approximate starting solution p,.,,, to a feasible solution satisfying
the constraints of equations (A2) may be approached by locally considering all of the
equality constraints and only the active (locally violated) subset of inequality con-
straints. The locally violated subset of inequality constraints are simply considered as
additional equality constraints of the form

fj(p) -( Tj, j = m + l,m + 2,... (M)
I (144)
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The subset of inequality constraints gJ(p) -: T included in equations (A3), as local
equality constraints, obviously depends upon which constraints are locally violated
and thus will typically change during the differential correction process. So long as r
(the number of locally violated constraints plus the m equality constraints) does not
exceed N (the number of elements in p), then we can proceed with the discussion be-
low, otherwise, only the N - m "most important" inequality constraints will be locally
imposed, assuming the original ordering represents the "importance hierachy" of the I
inequality constraints. Adopting this approach permits the specification of greater
than N - m inequality constraints, although not more than N - m can be active on
any iteration, especially the last one. Note that it is often the case that final conver- I
gence to a feasible solution satisfying equations (A2) is achieved even when local
iterations encounter more than N - m locally active constraints (i.e., it is typical that
only a small subset of the specified inequality constraints are active when conver-
gence to a feasible solution is achieved, and only under special circumstances will
this finally active subset of constraints be invariant during the local iterations). These
ideas must also be viewed in the context of the homotopy procedure which we discuss
below.

Thus our re-stated optimization problem is to minimize J of equation (Al) subject to

f(p) = f. (A4)

where f(p) is the r x I vector of m equality constraints and the r - m active inequality
constraints.

We initially address the problem of achieving a feasible solution near our starting
solution, and delay considering minimization of J until a feasible design has been I
achieved. To enhance covergence, we introduce a "portable objective" vector f,(-Y) as
the one parameter family of objective constraint values

f(y) = A + ( - Y)f(p.), 0 :. Y 1 (A5)

where y is the homotopy parameter. The linear homotopy map H(p(y/), y) is generated
by replacing f, in equation (A4) by f. from equation (A) to obtain

H(p(3), y) f + (1 - y)f(p .) - f(p(y)) = 0 (A6)

Notice the 'y boundary conditions satisfied by H(p(y), y) in equation (A6): m
at -v = 0, trivial problem:

H(p(O), 0) m f(p.) - f(p(O)) = 0 p(O) = p.

at y = 1, problem of interest:

H(p(l), 1) - f. - f(p(l)) = 0 *> p(l) = Pf, (A7) I
It is apparent that an arbitrary guess p.., satisfies the homotopy map of equation (A6)
for y = 0, and if we can obtain a solution for y = 1, then we have a feasible solution I
Ppw. It is apparent that sweeping y at a suitably small increment generates a se-
quence of neighboring problems. We solve this sequence of problems, using the
neighboring converged solutions to generate starting iteratives for each subsequent I
problem.

The local corrections (for each y specification) are done by linearizing equation (A6)
about the local p iterative and computing the differential correction which will satisfy I
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the linearized constraint equation with the minimum correction norm. So we minimize
ApTWAp, subjcct to H(p~y),y) + AAp = 0, where A - a/dp =-f(p(y))/8p,
a-d W is a suitable positive definite weight matrix. The solution provides the mini-
mum norm differential correction result [16)

Ap = -W-Ar(AW-iAr)-H(p(3y)) (A)

and we use the recursion p,,,.. = p,,d + A p iterate until equation (A6) is satisfied for
each local y value. Upon achieving a local convergence, y is incremented by a pre-
scribed amount. If local convergence is not achieved, the y increment is reduced and
y is assigned nearer the largest y value for which convergence was previously
achieved. The process is halted if (i) convergence to a feasible solution is achieved
(at ' = 1), or (ii) local convergence cannot be achieved when we increment y by
some small tolerance Ay -< e. In the latter case the user should re-evaluate the problem
statement in view of the active constraint set and other considerations from evaluation
of the largest y solution achieved.

Having achieved convergence to a feasible solution, we now consider minimization
of the performance index J subject to the local equality constraint of equation (A6).
Assuming there are r < N active constraints, this can readily be accomplished [16]
by simply introducing an objective value for the performance index J. and treating it
as the (r + l)th equality constraint. The corresponding minimum norm differential
correction, in lieu of equation (A8) is

Ap = W-'A T(,W-'AT-'I (p( Y)) (A9)

where

. . 1.... ... . ........... A
Pi -l IJ(p(M)) - J. (A)

Upon achieving convergence to the feasible region, we reset y = 0 and subsequently
use equation (A9) to compute the differential corrections. For the iterations subsequent to
the first feasible solution, a new homotopy process is established to drive the objective
function to its minimum value., or alternatively, drive it to a "goal" value J,,.. The
objective value Jo(y) is assigned the one parameter family of values

J.(y) = -'J,. + (0 - ')J(pf,.,') (All)

where P,., is the first feasible solution (satisfies equation (A6) with y = 1).
The value for J,. may be an actual goal, but is more typically interpreted as "the

I best one could possibly hope for"; it is often taken as zero for a minimization problem.
We increment y from zero toward unity, with the size of the increments dictated by
convergence progress of the differential corrections for each y value. When conver-
gence can not be achieved for a small tolerance increase in y, we adopt the solution
corresponding to the largest y for which convergence was achieved as the constrained
minimum. We have rigorously proven [16] that this process is mathematically equiva-
lent to a gradient projection with appropriate strategies for correction step size control.
However this algorithm is superior to the gradient projection method because (i) the
correction formulas are more easily programmed, and (ii) the one parameter homo-
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topic continuation process has been found much more attractive than step size control,
in that it is inherently self-starting. Of course, if the problem under consideration has
multiple constrained minima, one will find that the above problem formulation does

Inot save you from the local versus global convergence difficulties.
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NOVEL SENSING AND STRUCTURAL IDENTIFICATION METHODS:

PRELIM]NARY ANALYTICAL AND EXPERIMENTAL RESULTS

G.H LJames and J. L Junkins
Department of Aerospace Engineering

Texas A & M University
College Station, Texas 77843

I We present results of recent structural identification research in the Dynamics and Control
I Laboratory at Texas A & M University. Analytical developments, sensor/actuator systems and

experimental results are described. The general framework of our identification method is
presented. The method is an extension of the Creamer/Junkins 12 approach which scales user-
defined substructures' contributions to the model matrices to fit the system's experimentally
determined free and forced response in a least squares sense.

The test article is a 5' X 5' aluminum grid cantilevered in the vertical plane. The grid was
cut from a single sheet of metal and is thus free of joints. A stereo-triangulation optical imaging
system operating at 200 fields per second is used to measure inertial deflections of twenty active
targets mounted on the structure. Conventional strain gauges are also mounted on the structure,
both for identification measurement and for eventual real time control. Three reaction wheels are
mounted on the structure for actuation. An instrumented impulse hammer is also available to

I excite the structure. The Eigensystem Realization Algorithm and software developed at Texas
A&M are used for data reduction and modal identification.

I
INTRODUCTION

I The anticipated exploitation of the space environment for habitation, large scale scientific
experiments, increased communication services, ballistic missile defense, surveillance, andE energy production will require large structures on-orbit. Launch costs are extremely high and
will force these structures to be very lightweight and therefore very flexible. The increased
flexibility will cause the lower natural frequencies to be easily excited by control forces or other
input forces. Mathematical models which reliably predict the dynamical response of these
structures will be necessary to implement control systems or for analysis. These models are

I usually generated from a finite element process and give theoretical estimates of the natural
frequencies, mode shapes, damping ratios, and frequency response functions.

A subset of these theoretical results can be experimentally determined on the actual
structure or a representative test article. However the theoretical and experimental results will
almost never agree. The sources of discrepancy are many, but the most important are: (i) model

I errors, (ii) measurement errors, and (iii) algorithm-induced errors. A process called structural
identification is used to upgrade the mathematical model to obtain best estimated results in close
agreem ent with experiment. 15 0)

I



I
HARDWARE DESCRITON

The test article used in this work is a 3003 H14 aluminum grid. The dimensions are shown
in Fig. 1. The grid was cut from a single 5 foot wide sheet and is therefore monolithic. This i
unique feature eliminates nonlinear effects which arise in bolted or rivited structures. The test
article is cantilevered in the vertical plane by a 6.5 inch tab. The tab is sandwiched between a 5
by 7 inch rectangular steel tube and a 5/8 inch thick aluminum plate. Ten bolts are used in the I
attachment.

Six full bridge strain gauge packets were mounted on the grid. The Micromeasurements I
CEA-13-250UW-350 strain gauges were placed in pairs on opposite sides of the grid. The
locations of the strain gauges are shown in Fig. 1. Three dual channel Micromeasurments
2120-A conditioners are used to drive the strain gauges and amplify the signal. A Packard-Bell
280 P.C. and a Data Translation DT 281-G-16SE A to D board are used for data acquisition of
strain gauge response. Edmund Scientific D-2536 jacketed light guides of outer diameter .087"
are used to illuminate the 20 node points marked on the grid. The light guides are illuminated
with a Kodak Carousel 850 projector with 500 watt bulb.

Three Clifton Precision AS-780D- 100 electric motors with reaction wheels are mounted on
the negative side of the grid at the locations marked in Fig. 1. The motor at node 3 is mounted
with the shaft (torque axis) parallel to the y axis. The motors at nodes 7 and 9 are mounted with
shafts parallel to the x axis. The motors can produce approximately 8 oz.-in of torque continu-
ously or up to 16 oz.-in for short periods. The electrical time constant is approximately .35
milliseconds and the friction torque is approximately .6 oz.-in. The motors are powered by
Kepco BOP-36-13M four quadrant power supplies. A Wavetek Model 188 Function Generator
is used to provide sinusoidal input signals to drive the power supplies. A Hewlett Packard
53 1SA Universal Counter is used to read the frequency input to the motors. A reaction wheel is
placed at each end of each motor shaft. These reaction wheels are brass disks 1.25" in diameter
and .25' thick. A Kistler 9722A50 calibrated hammer is used for impulse testing.

Two NAC V-14B 200/60 field per second video cameras are being used in this research.
These cameras contain 213 inch MOS focal plane charged coupled device detector arrays with
320 pixels in the horizontal direction and 244 pixels in the vertical direction. Two NAC model
VTR V-32 video recorders are used to record the camera images at 200 f/s on 1/2" VHS video
cassettes. A NAC V-61 viewfinder is available to monitor images at 200 f/s. A motion analysis
SG-20 signal generator is used to externally synchronize both cameras and dub audio tones (used
for timing) on the tapes. The 200 f/s recorded images are read at 60 f/s with a Panasonic AG- I
6300 video recorder and a Panasonic TR-124MA black and white monitor. A Motion Analysis
VP-110 video processor is used to perform threshold-based edge detection, hardware editing,
filtering, image boundary digitization, and data transfer of recorded images. A Sun 2/120 i
computer and Motion Analysis Corporation Experrvision 2D software are used to centroid image
boundaries and produce focal plane trajectories of each centroid time history.

(151) I
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MATHEMATICAL MODELLING

The grid structure is modelled using the following linear differential equation:

CM]{q + [C]{q} + [K]{ql = [B]{u} (1)

{fe = [H] {q} (2)I

where (M is the n x n mass matrix;
(C] is the n x n damping matrix;

(K] is the n x n stiffness matrix;
(B] is the n x m input matrix;
[H] is the s x n strain transformation matrix;
{q} is the n x I state vector,
(u) is the m x I control vector, I
(el is the s x 1 strain vector,
n is the order of the system;
m is the number of inputs; and I
s is the number of strain inputs.

STRUCTURAL IDENTIFICATION I

Creamer and JunkinslZ have developed a structural identification method which 3
parameterizes the system matrices as follows:

M-K +lA1 Mj (3)I

C=Co+. Aj C3  (4)I

K-Ko + X-&Kk (5)I
k-I

H=HD + i g, (6)I

B=Bo + Zv.B. (7)I

M,C, K, H, and B are the identified matrices. M ., C., K., H. and Bo are the initial estimates.

MI, Cj, Kk, H,, and B. are user defined submatrices which model contributions due to physical

parameters, single elements, groups of elements, or parial derivative matrices.
a,, N,^A, gi, and v. are submatrix scale factors which are scaled to match experimentallydetermined subsets of the natural frequencies, mode shapes, damping ratios, and frequency

(153) I



I
I response functions in a least squares sense. The relationship between the model matrix scale

factors and the system response is generally non-linear and an iterative solution is usually
necessary.

Least squares differential correction3 will be used to solve the above identificationI problem. The following parameter vector is defined:

pT P {at ...,a., 01 ... ,90q, Y ,---,'r1, . 2..,j9 V ,I...,Vt} (8)

The parameter vector is then upgraded iteratively in the following fashion:

Pi. = Pi + A ? (9)
AP? = (AT W Ai )- ATWAQj (10)

AQi = Qn.azt.d -QcalcIa; (11)
Q={X, V, , hr hi, Rr, Ri, 0, Ok  0 0P}; and (12)
A Q= 

(13)

. is a subset of the undamped natural frequencies. V is a subset of the undamped mode shapes.
is a subset of the damping ratios. hr is real part of a subset of the frequency response funtions
away from resonance. h' is the imaginary part of a subset of the frequency response functions
near resonance. Rr is the real part of a subset of the frequency response functions near
resonance. R' is the imaginary part of a subset of the frequency response functions near
resonance. 0. are zero entries in the Q vector which minimizes changes in the orthogonality of
the undamped eigenvectors with respect to the mass matrix. Ok are zero entries in the Q vector
which minimize changes in the orthogonality of the undamped eigenvectors with respect to the
stiffness matrix. On are zero entries in the Q vector which minimize changes in the normalization
of the undamped eigenv-t-trs. n are zero entries in the Q vector which minimize sizes of the
submatrix scale factors. W is a weighting matrix for the Q vector.

The weights for X, V, , hY, h', Rr, and Ri can be obtained from the uncertainty in the
experiments. The weights on Om, Ok, 

0 n, and 0P are user supplied and serve to constrain the
problem to assure a solution. It may be necessary to utilize a structural identification preproces-
sor to assure that the starting estimates are close to the final estimates. Methods such as
Creamer's"2 original method, Smith and Beatties' method4 or Wei and Zhangs'5 method would
be possible candidates.

II
I
I (54)



I
INrTIAL MODEL

Mass and Stiffness Matrices

The mass and stiffness properties of the structure are modelled using the approach of Paz 6.

Paz models simple grid structures as having three global degrees of freedom (d.o.f.) per node.
The coordinate system given in Fig. 1 can be used to visualize the global d.o.f. as a rotation about
the x-axis, a rotation about the y axis, and a displacement in the z direction. Paz therefore
derives his grid element from an Euler-Bernoulli beam undergoing transverse displacement and
an uncoupled torsional rotation. For our case, a total of 36 beam elements which connect the 25 I
nodes in Fig. 1 are used. All d.o.f. at nodes 21-25 are assumed fixed. This creates a global
model of order 60.

The mass matrix is corrected to account for the effects of motor inertias at the appropriate
modal locations using lumped masses and rotary inertias. A stiffness matrix correction for
gravity was also calculated. The gravity correction is calculated by approximately the mass
distribution as being lumped at the nodes and that the lumped masses act like multiple pendulum
connected only in the vertical direction. The potential energy of this approximate representation 1
assuming small angles is given as:

V =- gMi I., { 1- (1/2) [ (zi - zis )/.,i ]2} (14)

where, g is acceleration due to gravity; 1
M i is the pendulum mass acting at each node;

L, is the length of the element connecting each node to the node above;
zi is the z displacement at node i ; and

zi. 5 is the z displacement at the node directly above node i.

A correction matrix for stiffness is calculated from T, and added to the original stiffness

matrix. Since the stiffness induced by gravity is a perturbation, the above approximations were I
found to give acceptable accuracy. 1
Initial Damping Matrix g

A proportional damping matrix is calculated as described by Craig7 for an initial estimate.
The initial damping matrix was calculated as:

C = 2 1  M (15)

where , is the expected damping ratio of the first mode, and co is the first theoretical 1
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I
natural frequency.

Input and Strain TransformationMatrix

The initial input matrix B is calculated by Filling the appropriate entries in a 60x3 matrix of
zeros with the current to torque constants for each motor. The strain transformation matrix is
calculated from the following formula for a beam element undergoing a positive moments:

-t d2 Z(1
Ei = f" = (16)

where, Ei is the ith strain gauge output;

t is the beam element thickness;
x. is the length along the beam element; and

z, is the transverse displacement of the beam element.

z, is approximated as:

ze = W, 81 + W/2 82 + X3 83 + V4 84 (17)

where 81 and 83 are z displacements at the nodes of the beam elements;
52 and 84 are x rotation or y rotation (depending on beam. element orientation) at the
element nodes; and
I i are shape functions.

The cubic shape functions are those which are commonly used for beam elements7 :

4t2 =x - +L (19)

Wj3 = 3 LI -~2(x (20)

W4 = -L +L (21)

The 6x60 H matrix is filled by equations (16) - (21) for each beam element containing a
strain gauge.

(
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OPTICAL SENSOR SYSTEM

The relationship between real world 3-dimensional ("object space") coordinates and
2-dimensional camera ("image space") coordinates is given by the following colinearity
equations9:

u-uo +Au+f. FcII (xp -X) +c2(Yp -Yc)+C13 ( )(22)
c31 (xp - Xc) + C32 (Yp - Yc) + C33 (z z)

V=VO +Av+f.,C1(p-Xc)+C Ye :)+ C73 ( - Zc] (23)
I

1C31 (xp - Xc ) + C32 (yp -Yc) + C33 (Zp - 4

C = C ( 01 , 02, 03,) (24)

where,u and v are image plane coordinates;
uo and vo are principle point offsets; 3
f. andf, are focal lengths;
x,, yp, zP are the coordinates of the camera focal point in 3-D space.

x, y, zP are the 3-D coordinates of point being imaged;
C# are elements of (1, 2, 3) Euler rotation matrix;

e1, e2, and 63 are (1, 2, 3) Euler angles; and Au and Av model lens distortion.

First order expressions for Au and Av are given as:

Au = U Kr 2 +P 1 (r2 +2U 2 ) +P 2 (2U 2 V) (25)
Av = VKI r2 + P, (2U 2 V)+ P2 (r2 + 2V2 ) (26)

r = [U2 + V2 ]7 (27)
U =u-uo (28)
V= v-v 0  (29)

where, K, is a parameter correcting radial distortion; and P1 and P2 correct for decentering

distortion.

Resection I
The first step in using the optical sensor system is a static calibration (or resection) of the

camera parameters given in equations (22) - (26). The twenty illuminated node points are
viewed from two cameras while the structure is not in motion. This allows u and v focal plane
coordinates and the associated statistics to be calculated for each point using both cameras. The I
static position of the grid nodal points and estimated uncertainties are also calculated. Initial
estimates of the camera parameters and associated uncertainties could also be used as inputs to
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I
the problem. The following vector of known quantities can then be collected:

QT= {u 1
1, vII, U,,'.... 2 , 20 x.., yV,,2, X ..... ,2O

X I C, YIC, zlcIt 612, 01 3, ful1, N1'lo, kj, p1, P,2 , ., p 2 } (30)

The exact positions of the static nodal points can be considered as unknowns as well as the
camera parameters. The following 86x1 parameter vector then results:

I
pT = {X P ,yl, Zpl .... I Zp20, XIC, Y I , , C, 61 el 2, 6 3'

fuII, fv I, U1
0 k1', p11, P12, 2C ..... , p22} (31)

I The numerical subscripts in equations (30) and (31) denote the node number. The super-
scripts represent the first camera or second camera. The final parameter vector p is calculatedE iteratively using least squares differential correction3:

Pi+ = Pj+AP (32)

,&Pi = (AiTWAi). A iTWAQ i  (33)

I where, APj is the i th upgrade of the p vector;,
AQ is the i th change in the Q vector;
W is the 166 by 166 diagonal covariance matrix with the inverses of the variances
of the Q vector on the diagonal; and
,A is the sensitivity matrix containing the partial derivatives of the Q vector with
respect to the p vector.

3 The output of this problem includes the final parameter vector Pf and its approximate

covariance matrix 3 W = (AT WAf)" . These are input to the next step which includes dynamicItriangulation of the moving structure.

ITriangulation
This step allows the structure to move under the influence of free vibration or forced

inputs. The position of each illuminated node is then calculated for each field of video data. The
uncertainties of the final results are calculated by retaining the camera parameters as non-updated
parameters and as measurements. The 30 by 1 vector of knowns is given as:

I
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I
fu I I fvl Iut 110 , k' 1, P 1 , P 12, x 2, ..... , 2 2Y (34)

and the 29xl parameter vector is given as: I
pT = {xp,yP, zP, xI", yIC, zIl, 01, 02, 013

fulI, fv I, U , k1 , P 1 2, p 2 XC ..... , p22} (35)

The final values of xP, yp, and zP are given by: I

Pi+ = Pi+AkPi (36)

= (AITWA,)"'AjTWAQ (37)

This problem is solved iteratively as above. The final uncertainties are given in
(ATW )l . This procedure allows the z displacement entries in the state vector to be measured

d-ectly, in non-contact fashion, and over a large area. I
DATA SET

Natural Frequencies I
The experimental natural frequencies will be determined from steady state, forced input 3

tests with strain gauge output, from free vibration tests with strain gauge output, and from free
vibration tests with video output. Fig. 2 shows a 14 second free vibration test with strain gauge
output and its Fourier transform. Fig. 3 shows a 4.5 second free vibration test with video cutput.
The Eigensystem Realization Algorithm (ERA) is currently being used to estimate damping
ratios and natural frequencies from free vibration tests. Table 1 contains the modelled values of
the first five natural frequencies in column one. Column two contains the current expected I
values of these frequencies. Standard errors for these frequencies will be estimated when the
data base is large enough.

Mode Shapes

The z displacement mode shapes are measurable with the video system from free or forced
vibration tests. The free vibration data will be analyzed using ERA and time domain curve fits.
The forced response data will be analyzed with sine-cosine curve fits. The curve fit method of I
data reduction has the advantage of providing estimates of the standard errors of the results.
Table 2 contains the modelled values for the first mode z displacement mode shape in column
one. Colum two provides the experimentally determined values for the first mode. These
results were obtained using a curve fit in the time domain on video data. The estimated standard

I
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I
I deviations are provided in column three. It should be noted that these results have been scaled

with the analytical mass matrix.

U Table 1

NATURAL FREQUENCY DATA

# Modelled (Hz) Experiment (Hz) Damping Ratio D. R. Uncertainty
1 .809 .877 .00603 .00043
2 2.21 2.19 .00489 .00033
3 4.48 4.81 .01105 .00208
4 5.65 6.17 .00596 .00045
5 7.76 8.18 .01293 .00116

Damping Ratios

The damping ratios will be estimated using ERA on free vibration tests and with time
domain curve fits. Column three of Table 1 contains the current best estimates and column four
contains the associated standard deviations. The standard deviations are most likely optimistic.
Future analysis with a larger data base will probably refine these values. The first mode esti-
mates were ERA results from long term strain gauge data. The estimates for modes 2, 3, 4, and 5

I were obtained from short term video data.

Frequency Response Functions

The frequency response functions between all three motor inputs and all six strain gauge
outputs were measured between .4Hz and 10.0Hz in increments of .2Hz. Additional data was
taken at each of the first five frequencies simultaneously with video data. A linear sine and
cosine curve fit to the data using the known forcing frequency was used to estirnate real andI imaginary parts of the response and the associated uncertainties. Fig. 4 provides a typical
frequency response between the motor at mode 9 and the strain gauge near mode 14.

I FUTURE WORK

The future analysis of free vibration video data will strengthen the estimation of the natural
frequencies, mode shapes, and damping ratios as well as the associated statistics. The use of
forced video data at resonance will also be used to strengthen the estimation of mode shapes,
damping ratios, and aid in the identification of the strain transformation matrix.

The structural identification framework mentioned earlier will be used to upgrade the
initial model to better fit the experimental data base. The use of the identified model for closed

I loop control is the real objective. This will be performed in subsequent work.

I
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Table 2

FIRST FREQUENCY MODE SHAPE m

Node # Modelled Experiment Uncertainty
1 8.25 7.66 .069
2 8.35 7.83 .060
3 8.40 8.18 .070
4 8.35 7.97 .074
5 8.25 8.54 .079
6 5.44 4.99 .071 l
7 5.52 5.10 .058
8 5.55 4.94 .085
9 5.52 6.17 .073

10 5.44 6.23 .072
11 2.85 2.12 .053
12 2.90 2.78 .052
13 2.92 3.57 .059
14 2.90 3.33 .069 I
15 2.85 3.95 .078
16 .871 1.14 .105
17 .897 .763 .096 I
18 .906 1.26 .079
19 .897 1.59 .092
20 .871 1.43 .080

II
I
I
I
I
I
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A structural modd idelca nethd i deloe for detemidti of th rs sdml snntriesaof am
nape I a wa aoim with the d qm atri =&of* a gbdy damped strocture Using meanuimmof astoral

frellemein, da ftping fats OW frequencr9spee dnelees, a oqae ideutlcaion o the model is eetabhlad
throgh ic1patlo of the spectral decompoeldo of the frequency respme ftmcte. ae the modal orthi oeal i y
c ts Numercal siulation demometae th fleillty mod potenal of e proposmd metod.

U
Introduction dent on the number of sensors used on the structure and that

of the mass, damping, and stiff the parameter vector consists of every element of the highlyA'2 associatknowledge of t mass, dampingrdiess redundant mass, damping, and stiffness matrices.
associated with a dynamical system is a key ingredient for A method for identifying the mass, damping, and stiffness

correlating theoretical and experimental results and for design- matrices of an undamped or lightly damped structure using
ing active control schemes for vibration suppression and atti- measured modal information and frequency response elements
tude maneuvering. Discretization of a linear continuous is developed in this paper. This method is designed to eliminate
structure by means of finite-element analysis (or other similar the problems described above and is simple to implement.
methods) yields the well-known mass and stiffness matrices.
Although this discretization process may be well defined, the
resulting structural model will be only as accurate as the
parameters and modeling assumptions used to characterize the Idetficatio of Undmped St res
structural behavior. Also, determination of the damping ma-
trix requires knowledge of parameters which may be difficult, if Consider the classical second-order equations governing the
not impossible, to measure in the laboratory. motion of an undamped structural system

Methods for refining a priori structural models are readily
available in the literature. References 1-6 address the identifi- Mi + Ka -f (1)
cation of a set of physical/geometrical parameters using non-
linear least-squares and Bayesian estimation methods. The where M and K are the n x n mass and stiffness matrices, a is
disadvantages of these methods are the following. the I coordinate the !
1) Use of natural frequencies and/or mode shapes, exclu- geralized f c e vector alis th gen-sivlyresltsin onuiqu idntiicaionof he nital arae, eralized force vector. The initial estimates of the mass and

sively, results in nonunique identification of the initial parame- stiffness matrices, A? and k are obtained from a standard
terized model (in the sense that an infinity of linear models can dit tias-
produce the same set of eigenvalues and eigenvectors), unless sumed that the following measurements, extracted from re-
some parameters are "fixed" at their initial values. sume ta the fol masure, extract frm (n-

2) Convergence of the nonlinear estimation algorithms re- onse of the actual stcture, are available: I) a set ofm ( <n)inital aramterestiate tobe "los" tother ~natural frequencies cix 2) a set of corresponding n x i mode
quires initial parameter estimates to be "Close" to their true shapes + (or approximations from the initial structural

R rvalues. model), and 3) a small set of frequency response elementsprovements to 1 enforcerminexact agreement sbetweeness matrix im () measured throughout the frequency range of interest forexperiment. Again, use of modal information alone results in the structure. (A complete row/column of the frequency re-experiet. Agasolutions and physically unrealistic coupling. sponse matrix is not required.) Ewins" provides a review ofboth nonunique many frequency- and time-domain approaches for generating
Reference 12 utilizes submatrix scale factors to improve the these measurements. Ewins and Gleesonil developed a tech-
initial mass and stiffness matrices using modal information, nique for obtaining modal measurements for lightly damped
with the uniqueness problem once again surfacing. In Refs. structures. Juang provides a review of frequency- and time-13-15, a linear algorithm is used to identify the mass , domain modal identification techniques using system realiz-
and stiffness matrices from forced time-domain response. Al- tion odal iengoaton the u sing mode reia-

though there is no initial estimate required for the model and n theory. The goal of the structural model identification
the uniqueness problem is, in principle, eliminated, the disad- methi to e the nital and tifness mares
vantages are now that the order of the resulting model is depen- such that the theoretical and cperimental results are in agree-ment.

To begin, it is desirable to introduce the well-known spectralI decomposition of the frequency response function
Received May i, 1987; revision received Sept. 3, 1987. Copyright C

1987 by J. L. Junkins. Published by the American Institute of Aero-
nautics and Astronautics, Inc., with permission.

*Technical Staff. Member AIAA. h*(0o) Q- 2 _0 (2)
tTEES Chair Professor, Aerospace Engineering. Fellow AIAA.
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572 N. G. CREAMER AND J. L. JUNKINS 1. GUIDANCE I
where #,, is the jth element of the rth mass-normalized mode ing Eqs. (8) into Eqs. (7) and re-arranging terms yields
shape that, in matrix form, satisfies

* M I(3) - 1A~ [ - TMA~ ... il7ptM4, f 7 1I
S(9a)

Since the true mass matrix is not known, an approximation to 7P M, J ... r.1
Eq. (2) must be utilized. Introducing the relation J L .. t I

) a - , 1,... (4) _ FTO" + jrK,#J, .. TKvr, ,

into Eq. (2), and motivated by Ewins,' 6 an approximation of = (9b)

the spectral decomposition can be written as - J ... JTK r

C+ (5) where the second set of equations in Eqs. (9a) and (9b) are
CL0) W~ 0 valid when i 0j. Collecting Eqs. (9) for each measured natural

frequency yields a set of equations (linear in the unknown
In Eq. (5), the first term represents the contribution from any submatrix scale factors), which can be solved by a least-squares
rigid-body modes (Z, - 0), the last term represents an approx- method, provided that m~n + 1)/2 is greater than max(PQ).
imate residual contribution from high-frequency modes Since Eq. (5) represents an approximation to the frequency
(outside the measured frequency range), and the a are to-be- response function, an iterative procedure can be used whereby
determined modal normalization factors. By "sampling" the unmeasured natural frequencies and mode shapes are pre-
throughout the frequency range of interest (N represents the dicted from the present best estimate of the structural model
number of samples), Eq. (5) can be rearranged into the follow- and used in Eq. (5) in lieu of measurements.
ing standard linear format to identify the modal normalization
factors by the method of least squares Idendfation of Lightly Damped Stuctures

If a small amount of damping is present in a structure, the

LIIL2... I,,,structural identification method developed in the previous sec.Rik (W~) L,L,2 ...L1_, I tion can be used, in conjunction with matrix perturbationj WO theory, to identify the mass, damping, and stiffness matrices.i " " " : i (6a) Consider the symmetrical stat-space representation of Eq. (1)
in the form

wherewhere
LM - (6b) A 0 B -(10b)

wqheP 0 M K 0 (b

If light viscous damping is introduced into the equations of
To include measurements from more than one frequency re- motion in the form of the symmetric damping matrix C, the
sponge element, if available, a simple augmentation (or "stack- state-space representation is perturbed by the relation
ing") of Eqs. (6) is required.

Once the modal normalization factors have been deter- [0 O 0
mined, the orthonormality conditions that the mode shapes B K + 0 C 8B + B 0 )
must satisfy can be written as

where B, represents the perturbation matrix due to the pres-J- /aJ  (7a) ence of the light damping. A first-order perturbation solution
to the free-response eigenvalue problem of Eqs. (10) can be

r -6 J1, (7b) obtained to approximate the change in the eigenvalues due to
the inclusion of the damping matrix."

To identify the true mass and stiffness matrices, the following Consider the eigenvalue problem

exsin are used 12  -,o.A*,,o1, - BOO, (12)

M ,M, (a) where AG and Be are 2n x 2n symmetric matrices and ,and

m0, (r - 1,2,...,2n) are the eigenvalues and eigenvectors. It is

K- 9+ K,, (8b) assumed that the eigenvectors are normalized such that
' -

where M, and K, are the rth predetermined mas and stiffness

submatrices, y, and f, the to-be-determined rth mass and stiff-
ness submatrix scale factors, and P and Q the total number of - -,Ao1J , (13b)
m and stifns submatrices. The mass and stiffness subma-
tricm can represent single finite elements or (more commonly)
groups of common finite elements assembled into their corre- If small perturbations A , and B, are added to each matrix, the

sponding global locations. The flexibility (and responsibility) resulting eigenvalue problem becomes

in defining M, and K, in Eqs. (8) is an important feature that -IA, = BO, (14a)
can be used to exploit an engineer's insight explicitly. Substitut-
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where a, necessary to normalize 00, such that Eq. (13) is satisfied

A = - A !A ( 14 b ) _, 0 T . 1 - K12 1

8 = go + B, (14c) 0 J0 oa

+ (14d) or

4b, =00, + 0 , (14e) a( -0 - M ,) = I (21b)

or
The eigenvalues A,, and eigenvectors 0., represent small per-
turbations from their original values. Expanding Eq. (14a), I
using Eq. (12), and neglecting second-order terms yields the a, = -2 (21c)
equation

B , + Bo , I A-,o,,0,. - oAoOI, - ,AoOo, (15) The normalized eigenvectors 4b, can now be written as

Multiplying Eq. (15) by 4T and utilizing Eqs. (13) yields the 0o, - o 1 (22)

relation l "w,4owf

O , -Expanding the damping matrix in a similar fashion to Eqs. (8),
B4o~ , 0. , 0 ,-, 0 o , -,,6, and using Eqs. (22) and (19b) in Eq. (18) with A, -0 and B,

(16) defined in Eq. (II), yields the relation

it can be observed from Eqs. (14) that if A, and B, are zero, 1,+i - ,-- + er i,C.1 (23)then A!,, = 0 (r = 1,2....,2n) and 01, become scalar multiples of '+ &,-WO 2 IC+qiI

*o,. In general, 0,, can be written as a linear combination of
the vectors 00,02,..,-,0o,. To guarantee that 0,, - 0, when A, where C is the initial damping matrix, C. the qth damping

and B, are zero, it is assumed that the perturbation eigenvector submatrix, , the qth damping submatrix scale factor, and R

has the form" the total number of damping submatrices. Because the right
side of Eq. (23) is real, the first-order perturbation s'.lution

2A does not predict a change in the undamped natural frequencies

0. ,- a,0, c. - 0, s - 1,2,...,2n (17) due to the addition of the light damping and, therefore, only
the measured damping terms C, are used to identify the damp-

Using Eq. (17) in Eq. (16) and letting s = r result in an expres- ing matrix. Rearranging Eq. (23) to solve for the submatrix
sion for the perturbed eigenvalues scale factors yields the linear least-squares problem

-ADL,)- IO 1 + B]410,, r-12..a (18) - 03- o (o, 00,C100o, ... 0 fCR " I a

In the sequel. it will be shown that Eq. (18) can be used as the " o .I. "1"
central equation for identification of the damping matrix. -. - r J

For a lightly damped structure, the frequency response func- - "'" L C,4 .

tion closely resembles that of the corresponding undamped (24)structure. except near the resonant peaks. Therefore, given a
set of complex frequency response measurements from a lightly where it is assumed that there are m (> R) measured damping
damped structure, identification of the mass and stiffness ma- terms. Solving Eq. (24) for the submatrix scale factors leads to
trices can be performed, as described in the previous section, by the desired damping matrix. The advantages of this perturba-
using the real components of the frequency response measure- tion approach are twofold: Identification of the damped eaua-

ments and the imaginary components of the eigenvalue mea- tions of motion can be performed in configuration space
surements. Again, this method will only be accurate for without the need to solve the state-space eigenvalue problem,
frequency response measurements away from the resonant and the original damping matrix C need only represent the true
peaks. Once the mass and stiffness matrices have been iden- damping matrix in the coupling of the element. (Due to the
tified, the damping matrix can be determined as follows. First, linarity of at the c original numerical values can beithe perturbed eigenvalues ,, are obtained by simply subtract- lnaiyo h qainteoiia ueia auscnb

the udapedmodeled eigenvalues A, fm td bsm sure- off by orders of magnitude.) In most practical applications, the
ing the undamped modeled eigenvalues , from the measured form of the initial damping matrix C will not be known. How-

Sever, if an assumed form is prescribed (from a Rayleigh dissi-
(19) pation function, for example) Eq. (24) can still be used to

provide a best fit (in a least-squares sense) to the measured

j, +*Dr- WO (9b) damping terms 5,

where j, and 65, are the rth measured damping term and Exaile I
damped natural frequency. To utilize Eq. (18), the eigenvectors The mas and stiffness matrices are identified for the simple

o, must be normalized according to Eqs. (13). In general, the manipulator arm, shown in Fig. 1. The structure consists of
form of the eigenvectors becomes two flexible appendages, rotational springs at the base and at

the connecting joint, and a grip with mass and inertia.

o, - 4 , (20) The estimation process is initiated using approximate man
and stiffness matrices obtained by increasing the true mas
properties by 10% and decreasing the true stiffness properties

where #0, are the mode shapes from the identified undamped by 10%. The first five natural frequencies of the true model and
model, normalized with respect to the identified mass matrix, the frequency response function representing the ratio of trans-
Therefore, using Eq. (20) in Eq. (13a) determines scale factors verse displacement at the connecting joint to torque at the base
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Tall I Group mod a neg distlbudom for ls am*l mampulaor -~ii

Kinetic energy (%) Potntia energy (%)
of mass groups of stiffness groups

Mode 1 11 111 IV 1 II 111 IV

1 0.0 0.5 0.0 99.5 0.2 0.1 66.5 33.2
2 58.8 39.1 1.9 0.2 0.1 0.1 33.3 66.5
3 27.5 47.3 25.2 0.0 19.5 80.5 0.0 0.0
4 64.0 22.1 13.9 0.0 75.7 24.1 0.1 0.1
5 16.3 38.8 44.7 0.0 7.4 92.6 0.0 0.0

joint *Nutts

Sa.DtOPIaCOMmt Initial Model

Ifi I Simple amupuator arm.

Tall 2 Frmwm~ae Wmila*Ualam l for die impla

WOONlsor -rn

Mode ij W. War

10.0230 rad/s 0.0209 mad/s 0.0230 tad/s
2 1.062 0.9617 1.066

355.44 50.15 55.55
4 91.12 8.29.9-

5 156.75 141.78 156.98

-3a
0. 0.1 0.2 0W 4A OA 0. 0.7 CA 0.A 1.0 11 1.2

ame treated as measurements. The mode shapes from the ap- IPOOC A/1C
proximate initial model are used for -measured" mode shapes.
To cast the model in term of mass and stiffiness submatrices, Fig. 2a Iaw-mp qamwy ruapam emi for the smbl maipul-
the following mass and stiffness element groups are chosen- te am

Mass:
Group I Mass matrix contribution of appendage I
Group 11 Mass matrix contribution of appendage 2
Group III rip mas moment of inertia Momen

Group IV Tip mass 0 Initia H"de

Stiffness:
Group I Stiffness matrix contribution of appendage 1 -1
Group H Stiffnaess matrix contribution of appendage 2
Group III Base rotational stiffness
Group IV Joint rotational stiffness

The intial firactional modal energy contributions from each SO t
element group (obtained from 00"M,0 0 and OOj1K,*./w,)) am it k'
given in Table I. It is apparent from examination of the poten- -3'
tial energy distribution that the first two modes approximate
those that would be obtained for a two degree-of-freedom f
model with rigid appendages and that the higher modes repre -4
sent the flexibility of the appendages. As a consequenc of this
observation, a two-step process was used to identify the struc-

ture First, the three highest modes were used to identify mas 4element groups 1, 11, and III and stiffnes element groups I andI
11. Then, the two lowest modes were used to identify mass
element group IV and stiffness element groups III and IV. The ______________

free- and forced-response identification results (after two iteri- -
tions) are provided in Table 2 and Fig. 2, respectively. mau

The mass, damping. and stiffness matrices are identified for Fig. 2b Hti-na fieaimm, rupem ma for the dowh muwula-
the planar truss structure shown in Fig. 3. Both internal (mate- tor aim.
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UyI ,
Fig. 3 Pa tu sauaciwe.

I-I
Table 3 Free-mpeme inadlcat i s fr *o the ntti -ModelI~~I 1in 1an Fi-nal Model

mode AO Af

I -0.0872 + 6.73i 6.11i -0.0872 + 6.93i
- 2 -0.0190 + 34.59i 31.45i -0.0888 + 35.46"

3 -0.0891 + 87.58i 78.89i -0.0898 + 88.291
4 -0.1042 +117.11i 106.67i -0.1039+ 119.391 /
S -0.0907 + 156.49i 142.12i -0.0906 + 157.86i I l fl
6 -0.0914 + 240.33i 217.54i -0.0915 + 240.05i " / / ~ I
7 -0.0929 + 332.09i 302.00i -0.0925+331.391 \ \\
8 -0.1039 + 359.29i 325.25i -0.1042 + 363.28i - 1.

rial) and external (atmospheric) light viscous damping is '
present, although the magnitude of damping is unknown.

The measurement set consists of the first eight complex
eigenvalues and transverse and longitudinal frequency re-
sponse functions between points A and B. To simulate mea-
surement errors, the eigenvalue and frequency response 20 3W 40

mesreets are corrupted with random Gaussia noise WO/I(ze=ro maSA- 0.0I 11,1, SD, - 0. 11 jhj 1). As in Example 1, F.4 rswrefeuMr~s e~sfra lgrtathe mode shapes from the initial model are chosen for "mea- T frequency rspom results for the phanr tnm
sured" mode shapes. To cast the model in terms of subma-
trics, the following element groups are chosen:

Mass and stiffness: Intial MoeGroup 1 20 upper and lower bending elements Final-Meda,Group II 20 diagonal bending/shear elements

Damping:
Group I External viscous damping matrixrGroup 11 Internal viscous damping matrixI

Preliminary examination of the modal kinetic and potential GO
energy distributions indicates that the vertical truss members I

contribute no energy to the first eight modes and are, therefore,
not used for model improvement.
The mass and stiffness matrices are approximated initially by -4 1

increasing the true mass properties by 10% and decreasing the
true stiffness properties by 10%. The initial approximations of
the external and internal passive damping matrices are only *
accurate in the coupling of the elements (the numerical values
are off by orders of magnitude). The identification process re-
quires two steps: I) identification of the mass and stiffness ......... _, _ ......._,_ ......_ .
matrices from the real components of the measured frequency 0 am 30 4W

response functions and the imaginary components of the mea-
sured eigenvalues, and 2) identification of the damping matrix (
from the real components of the measured eigenvalues. The f it 4b Lm iabd freqeancy respme forts ro the 0m mW
free- and forced-response identification results for the structure

are ptsted in Table 3 and Fig. 4, respectively.
1) Incorporation of measured frequency response functions

provides a unique scaling of prescribed submatrices of an ini-
Conclusions tial mathematical model of the structure.

A method for updating initial mathematical models of un- 2) All least-squares formulations are linear.
damped and lightly damped linear structures has been pre- 3) The consistency of the original model is maintained. (No
sented and successfully tested in two simulated examples. The unmodeled coupling occurs as a consequence of the identifica-
advantages of the method are the following: tion process.)
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A Stereo-Triangulation Approach to Sensing
I . for Structural Identification

I John L. Junkins and George H. James III

Department of Aerospace Engineering
Texas A&M University

College Station, Texas, USA 77843

I 1.0 INTRODUCTION
Identification of large space structures' distributed mass, stiffness, and energy dissipa-

tion characteristics poses formidable analytical, numerical, and implementation difficulties.
Structural identification is crucial for implementing active vibration suppression concepts
which are under widespread study in the large space structures community. Near the heart of
the identification problem lies the necessity of making a large number of spatially distributed
measurements of the structure's free and/or forced vibratory response, with sufficient spatial
and frequency resolution, and without introducing unwieldy sensor and actuator calibration
requirements which are potentially more difficult than the structural identification problem.

We discuss herein a stereo-optical triangulation approach to making a large number of
spatially distributed structural response measurements. A close-range photogrammetric
triangulation has already been demonstrated on-orbit with the 1984 Shuttle mission in which
a ten story solar panel was deployed from the orbiter bay and vibration tests were imaged by
four cameras mounted in the orbitor bay. The concept we propose is a sophistication of these
ideas, primarily in the incorporation of unique subsystems for analog edge detection and
video processing algorithms. Tens of active or passive (retro-reflecting) targets on the
structure are tracked simultaneously in the focal planes of two or more video cameras
mounted on an adjacent platform. Triangulation (optical ray intersection) of the conjugate
image centroids yield inertial trajectories of each target on the structure. This approach
remains in a research stage of development, but have successfully tracked and stereo triangu-
lated 20 targets (on a vibrating cantilevered grid structure) at a sample frequency of 200HZ,
and have established conclusively the feasibility and desirability of this approach.

A small number of easy-to-calibrate optical sensors tracking inertial motions of many
points on the structure is an attractive concept vis-a-vis practical implementation, as com-
pared to mounting numerous motion measuring sensors on the structure, in which case each
sensor must be individually calibrated and its environmental stability established. Our
approach brings recent advances in video camera hardware, analog and digital video process-

I
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ing methodology to bear on the structural sensing problem. The present paper includes a
discussion of our experimental hardware and some recent experimental results which support
the practical feasibility of this structural vibration sensing approach.

2.0 OPTICAL MEASUREMENT GEOMETRY AND
STEREO TRIANGULATION

We summare the idealized(zero measurement and model errors) geometric equations
for triangulation of video camera imagery. With reference to Figure 1, the image coordinates
(x, y), measured in the positive focal plane of a single lens camera, are related [1, 2] to the
object space coordinates (X, Y, Z ) of the imaged point, the camera's principal point (XC, Yc' I
Zc ), orientation angles (, , 4f), principal point offset (xo, y), and focal length (f ), by the

colinearity equations

f C31 (X-X ) + C32 (Y-Y,) + C33 (Z-Z:)l
x =Y0 - C21 (X-X,) + C2 (Y-Y,) + C23 (Z-Zc) - F(X,Y,ZX ,Y,, Z, ;0,e,NVx0 ,yo ,f)

(1)

C31 (X-X,) + C3 (Y-Y,) + C3 (Z-Ze) 1

where the direction cosine matrix [C] is parameterized in terms of 3-2-1 Euler angles as

C11 C12 Cir 0 0'fCosO -sinlr coso Sino 0-
LC] C2lC.Cj3 =[ I sin¢osj 0 1 j -sino cosmo0

sinO 0 csIC31 C32 C 3 0-sin,# cosw_ LsinO 0 cosO.. - 0 0 1

For the case of two cameras simultaneously imaging the same structure, we generalize the
discussion to briefly discuss how the stereo triangulation calculations are made. We adopt a
double subscript notation for Eqs. (1), to denote the image coordinates of the eh point meas-
ured in the/h camera's image space as

x ij = F (x , , l z ,; x , , Z -J, z 0 j; j, % v ; xz , , y o p fi ) j 1 2; i 1 2( )yij =G(Xi, Yi, Z; X, ,ro ,Zci; 0j, ejIVj; Xoi YJ,yoj)" ~ ; ... 2

In the event that the camera position, orientation, and calibration constants are considered
known, and for measurement of discretely visible images of object space points at unknown
locations, it is evident that Eqs. (2) provide 4 equations for the 3 unknown coordinates of
each point. Equations (2) can be inverted by least squares to determine the object space
coordinates.

2
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The dynamic triangulation process should be preceded by a static calibration to determine
the camera calibration constants, and for the case of fixed cameras, the position and orienta-
tion coordinates of the cameras. The calibration should use at least three fixed targets which
will subsequently be visible in the dynamic experiments. These three points serve to define
the object space coordinate system. The points are numbered in some arbitrary (but sys-
tematic!) fashion. Point 1 is arbitrarily adopted as the origin: (X1, Y, Z1) = (0, 0, 0). Point 2
is used to define the X axis: (X2, Y2, Z2 ) = (X2, 0, 0). Point 3 is used to define the X,Y plane:

(X3, Y3 , Z3)=(X3 , Y3, 0). Thus the first 3 points have a total of 3 unknowns (X2, X3 , Y3), and

each additional point introduces 3 unknowns (X,, Yi, Z), for a total of 3N - 6 unknown object

space coordinates. Notice that each object space point has four associated measurements
(two measured coordinates in each of the two image planes). Thus, in the most general case,
we have the 3N - 6 unknown object space coordinates plus the 18 unknowns associated with
the cameras (X,, Y,; Z ; 4, O, i ; x0, , Y, fi ; for i = 1, 2). We conclude that we have a

total of 4N equations and 3N + 12 unknowns; if N _> 12 congujate images are measured, we
have enough equations to determine all of the 3N object space coordinates and the 18 camera
position, orientation, and calibration parameters. Also of significance, when using Charged
Coupled Device (CCD) focal plane arrays (as in the present application) the effective focal
length is different for the x and y axes (actually, there is a ratio of the x and y dimensions of
the array as a consequence of the rectangular pixels, which can be absorbed into effective
focal lengths which are determined during calibration) thereby increasing the number of
unknowns by one for each camera and one additional object space point is required. The
calibration is very well behaved and can be accomplished in fifteen minutes of real time.

The calibration process is strengthened, of course, by making redundant measurements
and using other apriori measurements of object space points and/or camera calibration
parameters. The details of the calculations underlying the above are discussed in [1-2, 7].
The precision of the results is dependent most heavily upon the accuracy with which the
image coordinates are measured and, of course, the geometric strength of the triangulation
process. Upon completing a satisfactory static calibration, the subsequent dynamic triangula-
tion process need consider only four of Eqs. (2) at a time to sequentially accomplish the least
square solution for the object space coordinates (Xi, Yi, Zj) of the points imaged on the
flexible structure.

The particular scheme adopted to extract the improved structural model from the triangu-
lated measurements of inertial structural motion is not central to the present discussion, but
we briefly review below the approach we are taking.

3.0 STRUCTURAL IDENTIFICATION

We consider the class of linear elastic structures suitably modeled by a finite element or
similar discretization approach, leading to a finite :ystem of 2nd order differential equations
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of the form I
M9 +Ct+Kx=Bu (3)

where x is an nxl configuration vector, u is an mxl excitation function (or control force)
vector, M, C, and K are the mass, damping, and stiffness matrices, respectively, and B is the
control influence matrix. It is clear that the results of the triangulation process gives the time
history of a finite set of points on the structure; these are typically a subset of the x vector.

Since we are considering stable systems, the fourier transform can be obtained from the
Laplace transform by setting s = jao. To outline some of the details, we consider a special
case. For harmonic excitation u = r exp(Mt), zero damping, and an identity B matrix, the
frequency response is given by taking the fourier transform of Eq. (3) to obtain

X(ico) =[-(o2M+K] 1 r=H(io)r, - -=j r decomposin) (4) I

where {ok, k} are the free vibration eigenvalues(natural frequencies) and eigenvectors (mode

shapes) satisfying det [K- - M] = 0, or {0 ,.., (), and [K- 0i M]0 i = 0 with

the orthonormality conditions 3
D T D I= ...( , ( = 0 1 . . ] .1

Of course, we are interested in the case of damped systems, the generalization of Eqns. (4),
(5) are classical developments which are the basis of the approach under discussion. Based
upon experimental determination of a subset of the eigenvalues, eigenvectors and one or I
more elements of the frequency response function matrix H(icq), Creamer and Junkins[3, 4]
have developed an identification process whereby linearly parameterized mass, stiffness and
damping properties can be estimated to bring the computed eigenvalues, eigenvectors, and
frequency response functions into least square agreement with the corresponding measure-
ments, over a prescribed range of sample frequencies. Given triangulated motion of a
sufficient number of points on the structure, the eigenstructure realization method of [5] can
be used to find the minimum rank linear discrete-time model which represents the measured
motion, from this linear model, eigenvalues and eigenvectors can be determined. I

The structural parameterization adopted for the present discussion is of the form

M -=M.+ grMr, K= Ko + Il rKr, C--Co+ I ,rCr ()I
r =I r = I rff(

where gr ,Kr, Xr are scalars determined to bring the calculated and measured eigenvalues, I
eigenvectors, and frequency response functions into least square agreement. Notice that the
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structure has been subjectively divided into substructures whose contributions to the nominal
mass, stiffness, and damping matrices are scaled in unison; M, , Kr , Cr are the nominal

contributions of the prescribed substructures to the global assembly of M, K, C. These do
not necessarily conform to physical substructures, but can be based upon collections of
nominally identical members, and/or members made of the same material, etc. In the limit,
of course, the sub-structures could be the finite elements themselves, but we usually find a
much coarser parameterization to be highly satisfactory. The subjectivity involved in select-
ing substructures should not be viewed as a weakness of this approach, it is in fact a strength.
The parameterization of Eq. (6) is essentially a "parameter linking" method [5] in which the
engineer is permitted convenient latitude in modifying the dimensionality of the parameter
estimation process to achieve accuracy and computational efficiency. Based upon partition-
ing the energy for each mode associated with each substructure [6], it is possible to revise the
substructuring decisions and define reduced order structural identification problems. We
refer to [3, 4] for further discussion of the identification discussion, including details of the

generalizations to identify systems with damping, closed-loop, non-self-adjoint systems.

4.0 OVERVIEW OF THE HARDWARE AND
EXPERIMENTAL CONFIGURATION

The optical sensor system depicted in Figure 2 has the advantages of non-contact
measurement, high-coverage measurements, excellent large amplitude and low frequency
response, ease of calibration, and reflective targets can be placed anyplace on the visible
surface of the structure. These advantages make the system extremely attractive for labora-
tory use; and it is easy to extrapolate that an on-orbit realization of analogous systems should
be attractive for identification of large flexible structures. The current laboratory system
requires that the motion of a structure of interest be viewed from two different positions by
the NAC 200HZ cameras. The stereo pair of images are recorded simultaneously by
synchronization of the cameras and recorders. The two recorded images are played back
using a standard 60HZ video recorder to the Motion Analysis VP-110 video processor
(analog) for the filtering, masking, edge detection and A/D conversion processes.

The VP- 110 allows a user interaction to establish a gray scale threshold so the edges of
the target image boundaries are reliably determined; only the pixel locations which cor-
respond to the edge-detected image boundary are A/D converted for subsequent digital
processing in the SUN 2/120 computer. Thus near-circular image boundaries are digitized
and their centroids can be calculated to an uncertainty of about .5 pixel for the present
implementation (a sophistication of the present analog/digital processing is presently under
study which should result in a resolution of about .1 pixel). The VP- 110 processor makes use
of several tuneable analog features to filter, window, and mask the imagery to remove
unwanted information and improve the signal-to-noise ratio before digitizing the imagry.

In the SUN computer, we make use of the Expertvision software package (developed by

5
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Motion Analysis) to centroid the image boundaries and connect them in time to form a
sequence of focal plane coordinates along the time trajectory of each image centroid. By
virtue of the fact that the two cameras have been synchronized, each target's inertial motion
will correspond to a stereo pair of focal plane trajectories whose centroids are measured by
the output of the Expertvision digital processing. We then make use of algorithms and I
software we have developed, based upon least square inversion of Eqns. (2), to complete the
stereo triangulation and thereby determine the laboratory (object space) 3-D trajectories for
each marker on the structure. These target trajectories then provide the response measure-
ments for estimation of cigenvalues, eigenvectors, frequency response functions, and struc-
tural model parameters. Clearly these digital processes are not executed in real time, but they
can be performed post-experiment in less than 1/2 hour of real time.

The test article used in the present discussion is a 5' x 5' grid, with 12.5"x2"xl/8" members.
The grid was cut from a a single sheet of 3003.H14 aluminum, to eliminate modeling prob-
lems associated with bolted or riveted joints. The structure is designed to accommodate
accelerometer, strain gauge, as well as optical data acquisition. Excitation of the test struc- I
ture is accomplished by an impulse hammer or by a harmonic shaker. The resulting motion
can be processed to determine frequency, mode shape, and frequency response information
which can then be used as input to structural parameter identification methods such as those
discussed in Section 3 above.

5.0 DISCUSSION OF RESULTS: CONCLUDING REMARKS

In Figure 3, we show typical image centroids, image space trajectories, and inertial I
trajectories for one of 20 targets tracked in a typical transient response. In Figure 4, the finite
element modeled mode shapes[8,9] and the modeled and experimentally determined values
the first six natural frequencies (determined from the free response to an impulsive excitation,
using the Eigenstructure Realization Algorithm [5]) for the first six modes. The rightmost
column shows the natural frequencies of the a model for which three stiffness parameters (El, I
GJ, and a gravitational stiffening effect) are adjusted by the method of Creamer and Junkins.
Excellent agreement exists between the identified model and the experimental results. Figure

5 provides a comparison between video-measured deflections with accelerometer measure-
ments. It is apparent that the video data has more invormation in the low frequency portion
of the spectrum than the accelerometer, but the accelerometer measures the high frequency I
motions. In this case, the accelerometer measurements are nearly useless below 1 Hz, and
the optical measurements are useless above 15 Hz.

In summary, we have presented a novel approach for structural identification. The
approach is a stereo triangulation method wherein conjugate images (measured by a combi-
nation of analog and digital processing) of tens of passive targets' images can be measured I
by a pair of video cameras. The result is a non-contacting measurement and structural
identification approach which is an attractive candidate for implementation.
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MAJOR HARDWARE ITEMS
ITEM DESCRIP'TION

Fexble Structure monobihic 3003 lil 4 aluminum Crid (SxS') cantilevered
in the vertical plane (clamped-fre boundary Conditions)

markers (tarets) 3M Scorchlite Reflective Sheeting #3290

Video Cazneras(2) NAC model V'.14E. 200/60 lIM 253 MOS imaging CCD

w ith 320x244 pixels

Video Recorder(2) NAC model VTR V.32. 200I1. configured for VI S
casettes

Video, Processo.- Motion Analysis model V'P-31 0 for thretshold-based
edge Gecxor. hardware editing and filtering. digitizing
ima.-e boundaries, and data transferIComputer SUN I A 20 uith 42 megabyte hard disk and UNIX

oneratin. sslem

IFigure 2. "Motion. Analy1S is Hardwvare
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I

U Figure 4. Modeled, Measured, and Identified
Natural Frequencies of the Frame Structure

Mode #1 Mode #2 Mode #3

II.iI!r Mode #4 Mode #5 Mode #6

I00",i

The finite element model mode shapes as reported by bas et al are shown above. The fir-st six finite
Ielement natural frequencies are given below as well as the first six experimentally determined natural

frequencies. These natural frequencies were detemined by the eigenstructure realization algorithm using
free response to an impulsive loading. Preliminary results of the structural identification method of

I Creamer and Junkins are given. These results were obtained by holding the mass matrix constant and

using three stiffness submatrices to match the natural frequencies.

I -.

U. . - .: - I .

Value after
Mode No. Modeled Value Measured Value Initial Identification

1 .90 Hz .91 Hz .92 Hz
2 2.34 2.07 2.06

3 4.85 4.76 4.76

4 6.05 5.14 5.58

5 7.78 6.57 7.09

6 12.84 10.86 11.57

1 11 (186)



U
Figure 5. Comparision of Video-Derived Position I

Measurements with Accelerometer Measurements

-IN A

iAccmu Data FFT f Vid~me Dam

is-  _ I

4A

The graphs shown above provide some insight into the advantages and disadvantages of the camera

system versus an accelerometer. The video data is very useful at the low frequency large amplitude end of
the spectrum. Ile accelerometer response is most reliable at the high frequency end of the spectrum. I

This data was taken on the AFAL structural identification test article which is similar to the TAMfUstucture. T8he video data was taken with a TAMU RCA TC2811 60 Hz video camera. An AFAL En-

devco model 7751-500 accelerometer was also used.
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Figure 1L Stereo Triangulation Geometry

ZI Z7 I
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Figure 2. Motion Analysis Hardware

I"% ... '' ' "

video flexible

cameras(structure
videocners2
recorders(2)

_ markerI

computer,,,...= I -
videoI processor

U MAJOR HARDWARE ITEMS
U ITEM DESCRIPTION

Flexible Structure monolithic 3003 H14 aluminum grid (5'xS') cantilevered
in the vertical plane (clamped-free boundary conditions)

markers (targets) 3M Scotchlite Reflective Sheeting #3290

3 Video Cameras(2) NAC modcl V-14B, 200/60 HZ, 2/3" MOS imaginm CCD
array with 320x244 pixels

Video Recorder(2) NAC model VTR V-32, 200HZ, configured for VHS
casettes

Video Processor Motion Analysis model VP-3 10 for threshold-based
edge detection, hardware editing and filtering, dizLzing
image boundanes, and data transfer

I Computer SUNTI/120 with 4_2 megabyte hard disk and UNLN
operating system
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Figure 4. Modeled, Measured, and Identified

Natural Frequencies of the Frame Structure

Mode #1 Mode #2 Mode #3 I

M Mod4e 
I

N- A;

I-I

7he finite element model mode shapes as reposrted by Das et al are shown above. The first six finit-.

freuecis.Thse arra f~encies were determined by the eigen-s~trurm rezlization alecorithrn using

Creamer and Junkins are given. These results were obtained by holding the mass matrix constant and
sing three stiffness submarrices to match the natural frequencies.

Mode No. Modeled Value Measured Value Identified Value*

1 .90 lIN .92 Hz .91 flzI

2 2.34 2.32 2.32

3 4.85 4.93 4.93I

4 6.05 6.38 6.38
5 7.78 7.27 7.26

e . Element submatrices used (2 0) 
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I Figure 5. Comparision of Video-Derived Position
Measurements with Accelerometer Measurements

V4eo Data F" of Ydeo Deia

I ____ _ __ _ __ _

" iI\Ai ______________________________

I Aclerommtr Data Fa Accoaromeow D"
-I bUi J1.-I

Ta - _.____:___II' -[ --- ----- 1--r 72-
II

IThe raahs shown above provide some insig.ht into the advant,,,es and disadvantages of the cameraz

i yvs tern versus an accelerometer. Tne video data is ve-y useful at the low frequency lare amplitude end of
1h: spec=um. The accejerometer response is most reliable at the high frequency end of the spear~um.

.is data was taken rn the AFA.L s=uczural iden'ification test a,-cie which is similar to the 7ANFL.
I s:rucure. The video data was taken wih a T.AU RCA TC2 811 60 Hz video camera. An A%.AL En-

cevco modl' 7751-500 acc.eirom._r was aso used.

I
I( 2011)



I

FIN
.- 

- -

wkS.. * -I

'-Co-

V.. co.

Pt V. ( r)s-._ '

4-.a~.

.1 ell)

cot Z'-j

.0 I

~i%) t.5

cn z - o

.5(202)



I

ATTACHMENT 10

I.
I

IA Stereo Triangulation System for Structural Identification:
* Analytical and Experimental Results

J. L. Junkins
G. H. James III
T. C. Pollock
Z. H. RahmanI

Department of Aerospace Engineering
* Texas A&M University

College Station, Texas, USA 77843

USAF/NASA Workshop on Model Determination
for Large Space Structures
Jet Propulsion Laboratory

March 22-24, 1988

II
I

* (203)



sIc
OUO =0

. ow

ca 0E~ 0 0 t
2 bu

r- U

4)4~
0Cu4~ CO

Gn >

Cu (u 00 c

Cu 4

zu~ 0 *

cvE2o 0C0.II C~ 0

let rC1Uu Q p

5- Cu

(D u 0 , u 0~ 
Cd. = 9 P 0.

0) C6 Ca 0 . 4

.2 L

0 cc
Cuu 0c 00.i d cc.

3c U 0 u ) 0 ) 5

(204))



I
I

~0 I

c~cd

con~
o oo '-•

gtv

q. -I

40,

0 0 IN '.

'ne4 M
z~ u. Q

4-4-
__ - ~ -0 0 ~'

~~I ks) mJ~.~-
IIz

CA 0~

P_ CA

~ + + + +205)



I$Z
It cn CA,

cn c-

0z

Ic

*"-4 t 0 t. c

11--1 * 

*n .-- -

-0*
Un >

___ M

(26



Figure 1. Stereo Triangulation Geometry
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I.
* Figure 2. Motion Analysis Hardware

video flexible
caIers2 structure

vide cmeoas(2) -
recorders(2)

I marker

video
processor

I €-

I MAJOR HARDWARE ITEMS
ITEM DESCRIPTION

Flexible Stru-:cure monolithic 3003 H14 aluminum grid (5'x5') cantilevered
in the vertical plane (clamped-free boundary conditions)

markers (targets) 3M Scotchlite Reflective Sheeting #3290

Video Cameras(2) NAC model V-14B, 200/60 HZ, 2/3" MOS imaging CCD
array with 320x244 pixels

Video Recorder(2) NAC model VTR V-32, 200HZ, configured for VHS
casettes

Video Processor Motion Analysis model VP-3 10 for threshold-based
edge detection, hardware editing and filtering, digitizing
image boundaries, and data transfer

Computer SUN 1/120 with 42 megabyte hard disk and UNIX
operating system
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Figure 1. Motion Analysis Hardware
1p Zible

(gvideo U N video structure
recorder camera

' -- marker I
I '

, , _ ,, , , ¢~omputer/ .,; ,.,.' I

video

processor

MAJOR HARDWARE ITEMS

ITEM DESCRIPTION

Flexible Structure monolithic 3003 H14 aluminum grid (5'x5') cantilevered
in the vertical plane (clamped-free boundary conditions)

markers (targets) 3M Scotchlite Reflective Sheeting #3290

Video Cameras(2) NAC model V-14B, 200/60 HZ, 2/3" MOS imaging CCD
array with 320x244 pixels

Video Recorder(2) NAC model VTR V-32, 200HZ, configured for VHS
casettes

Video Processor Motion Analysis model VP-I 10 for threshold-based
edge detection, hardware editing and filtering, digitizing
image boundaries, and data transfer

Computer SUN 2/120 with 42 megabyte hard disk and UNIX
operating system
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Figure 1. Stereo Triangulation Geometry
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A ,Novel Approach to Structural Identification

STRUCTURAL MODEL IDENTIFICATION1

Estmation of the best-fiting liner structural bestfiting linear system: I
mooe via Cramc-./lunins subsruvcturinn,, - j + C 5 + Kx = B u

J1{J
A I
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.stimztio. of tht frmquency response functo " " .
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Figure 4. Modeled, Measured, and Identified

Natural Frequencies of the Frame Structure

Mode #1 Mode #2 Mode #3

Mode #4Mode 11,5 Mode #6. .,

/Il I. '
.'

Mode No. Modeled Value Mesured Value Identified Value

1 .90 Hz .92 Hz .91 Hz

2 2.34 2.32 2.32
3 4.S5 4.93 4.93
4 6.05 6.3M 6.3S

5 7.7S 7.27 7.26
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IDENTIFICATION OF A DAMPED TRUSS STRUCTURE

Measurements: 8 open-loop eigenvalues
8 closed-loop elgenvalues
Longitudinal FRF between A and B
Transverse FRF between A and B

EIGENVALUES

measured apriori identified model

MODE 0 f

1 -0.0872 v 6.731 6.111 -0.0872 + 6.931
2 -0.0890 t 34.591 31.451 -0.0888 + 35.461
3 -0.0891 + 87.581 78.891 -0.0898 + 88.291
4 -0.1042 + 117.111 106.671 -0.1039 + 119.391
5 -0.0907 + 156.491 142.121 -0.0906 + 157.861
6 -0.0914 + 240.331 217.541 -0.0915 + 240.051
7 -0.0929 + 332.091 302.001 -0.0925 + 331.391
8 -0.1039 + 359.291 325.251 -0.1042 + 363.281
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AIAA Paper 90-1197

I

FEEDBACK CONTROL OF TETHERED SATELLITES USING
LIAPUNOV STABILITY THEORY

I
S. R. Vadali* and E-S. Kim**

Texas A&M University
College Station, Texas

Abstract

_ This paper treats the three dimensional aspects of tethered satellite deployment

and retrieval. Feedback control laws with guaranteed closed loop stabilizability are

obtained using the second method of Liapunov. Tether mass and aerodynamic effects

are not included in the design of the control laws. First, a coordinate transformation is

presented that partially uncouples the in-plane and out-of-plane dynamics. A combi-

nation of tension control as well as out-of-plane thrusting is shown to be adequate for

a speedy retrieval. Next, a unified control design method based on an integral of motion

(for the coupled system) is presented. It is shown that the controller designed by the

Ilatter method is superior to that of the former primarily from the out-of-plane thrust

usage point of view. A detailed analysis of stability of the closed loop system is

presented and existence of limit cycles is ruled out if out-of-plane thrusting is used in

I conjunction with tension control. Finally a tether rate control law is also developed

using the integral of motion mentioned above. The control laws developed in the paper

can also be used for stationkeeping.I
* Assistant Professor, Aerospace Engineering, Member AIAA.

** Graduate Student.
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U Introduction

U Currently many space missions involving tethers are being planned. One of these is the Tether

Dynamics Explorer (TDE-1) mission scheduled for July 1991. TDE-1 will deploy a 22.7 kg,

rectangular subsatellite attached to the spent second stage of a Delta-II using a 20 km tether'. The

main aim of this mission is to validate tether deployment performance of various control laws

proposed to date. The TSS-1 (Tethered Satellite System) mission is also being planned for 1991

for conducting electrodynamic research. Space tethers can also be utilized for study of the lower

atmosphere, micro and variable "g" experiments, space construction, and gravity gradient stabili-

zation.I
One of the primary issues in tether utilization is fast deployment/retrieval of attached payloads.

Rupp2 provided the impetus for the study of tether dynamics and control law development and since

then a vast body of literature has come to exist. An excellent survey of the literature has been

I conducted by Misra and Modi 3. Rupp' s control law was originally designed for in-plane deployment

and utilized a feedforward tether length command as well as linear feedback of length and length

rate. Later studies have proposed control laws for deployment and retrieval involving additional

linear/nonlinear feedback of in-plane pitch angle and its rate, the out-of-plane roll angle and its rate,

and tether extensional as well as flexural modes4"6. Liangdong and Bainum 6 also investigate the

I effect of tether mass and flexibility and the gains of the tension control law on the (in-plane) stability

of stationkeeping. They show that the stability conditions involving the length and rate gains for

a flexible tether are qualitatively similar to those for a rigid tether.I.
It has been concluded that deployment can be controlled with relative ease but retrieval is

more difficult to control as large amplitude in-plane as well as out-of-plane tether librations are

excited and sufficient tension can not be maintained during terminal retrieval phases. Thruster

I augmentation has been suggested to overcome these difficulties by Banerjee and Kane7. Retrieval

utilizing tether-normal thrusting and based on shuttle orbiter maneuvering and sliding mode control

(257)



I

has been proposed by Pines, von Flotow, and Reddingg. A mechanism by which the subsatellite I
crawls on the tether has also been proposed by Kane". A comparison of tension controlled retrieval

and retrieval using the crawler mechanism has been conducted by Glickman and Rybak'0 and it is

shown that the latter technique has several advantages including low levels of libration amplitudes

and fast terminal retrieval rates. The disadvantage of this method is that if the tether is not retrieved,

it may have to be jettisoned. This will add to the already serious space debris problem. I

Even if characteristics such as tether flexibility and atmospheric effects are neglected, the I
equations of motion are highly nonlinear, nonautonomous, and coupled. A Liapunov (mission

function) approach has been used for tether deployment and retrieval by Fujii and Ishijima". Tether

mass and flexibility as well as aerodynamic effects are neglected in this study. The proposed

nonlinear tension control law has been designed for controlling deployment and retrieval in the

orbital plane. It is based on feedback of tether length, length rate, pitch angle, and pitch rate. A

feedforward length command is not needed. An alternate treatment of the same problem by Vadali12

concludes that under similar assumptions, a linear feedback of tether length and its rate is sufficient I
to guarantee asymptotic stability of the closed loop system to the desired equilibrium point. Fast

retrieval is possible if the pitch angle is not actively controlled to be near its equilibrium value but

allowed to deviate sufficiently either in the mid or terminal phases of retrieval.

This paper treats the three dimensional aspects of tethered satellite deployment and retrieval.

Feedback control laws with guaranteed closed loop stabilizability are obtained using the second

method of Liapunov. Tether mass and aerodynamic effects are not included in the design of the I
control laws. First, a coordinate transformation is presented that partially uncouples the in-plane

and out-of-plane dynamics. A combination of tension control as well as out-of-plane thrusting is

shown to be adequate for a speedy retrieval. Next, a unified control design method based on an

integral of motion (for the coupled system) is presented. It is shown that the controller designed

by the latter method is superior to that of the former primarily from the out-of-plane thrust usage I
point of view. A detailed analysis of stability of the closed loop system is presented and existence
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of limit cycles is ruled out if out-of-plane thrusting is used in conjunction with tension control.

Finally a tether rate control law is also developed using the integral of motion mentioned above.

The control laws developed in the paper can also be used for stationkeeping.

I The Liapunov Approach

I In many instances, one can consider control and stabilization to be equivalent. Global

asymptotic stability can be ascertained by using Liapunov's second method". Choosing the right

Liapunov function is a difficult task but one can sometimes find suitable positive definite energy

or Hamiltonian functions based on the principles of Analytical Dynamics' 4. The beauty of the

method is that it is not based on linearization.

The Liapunov approach is briefly outlined next. Let the dynamic system be described by the

I system of nonlinear ordinary differential equations

t =f f(x,u,) (1)

where x is the state vector, u is the control vector, and t denotes time. The desired final state is

I assumed to be the origin of the state space. This framework is still valid if a nontrivial equilibrium

point is desired, for the origin can be placed there by a suitable coordinate transformation. Let V

be a positive definite function. The time derivative of V can be written as

V] f , (2)
I If the above identity can be solved for u as a function of x and t, such that V is globally negative

definite, a feedback control law is obtained that globally, asymptotically stabilizes the closed loop

system. Of course, the nature of the control law depends on the type of V chosen. If f/ can only

I be made negative semidefinite, it must be verified that this V remains zero only at the desired final

state.
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The earliest work utilizing this method has been presented by Kalman and Bertram"5 . Since

then many applications of this method for controlling spacecraft attitude maneuvers can be found I
in References 16-22. A different approach is followed by Lee and Grantham23, in which the

directional derivative of V in the direction of f is minimized using the method of steepest descent.

This procedure has benifits of optimality but it typically involves on-line computation of roots of

a polynomial/transcendental equation. I
I

Equations of Motion

Assuming that the tether remains straight, the equations of motion of the tether and the attached I
satellite are 3

-l[$2 + cos 2$(O + ) 2 _ W+ U? cos2 cos2 0] = -Tim

+ 2 -, tan ( + 2) + 3fl2 cos B sin9 =0 (3)

I.I
+2 + cos 0 sinO[(+ + 30?cos2 O] = F/(ml)

where I indicates the instantaneous tether length; 0, the pitch angle(in-plane); 0, the yaw

angle(out-of-plane); Q, the orbital rate; T, the tension; F, the out-of-plane thrust; and m, the mass

of the subsatellite. These equations can be nondimensionalized by defining the following nondi-

mensional variables: 3
l T adF

¢=flt, X.=-, = ],and ,= FL m fL ]m IM2L I

where L is the reference tether length. The nondimensional equations are
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X[0 -[I2 + cos 2 O(1 + 9/)2 _ 1 +3 cos 2 cos2 0]

U 0W+2( -O'tanOJ(1 +0')+3cos0sin0 =0 (4)

I02 2

" +2 0 +cososin4(1 + 0) +3cos 0] =F/

I where superscript (' indicates the derivative with respect to nondimensional time. t and P are

treated as the control variables and methods for designing control laws are discussed in the following

sections. A tether rate control law is also developed by treating A! as the control variable instead

I of t.

In-plane Control Law

A control law for in-plane deployment and retrieval is first reviewed for completeness. If

and + are assumed to be zero at the initial time and P is zero, only the in-plane equations are

I needed to describe the motion of the tether. This is also true if the out-of-plane motion is actively

controlled. The in-plane equations of the tether are

V "- X[(1 + 0e)2 -1 + 3 COS2 0]---

I (5)

0"+2 + (l+0')+3cos0sin0 =0

If downward deployment and upward retrieval are considered, the desired final boundary conditions

on the pitch angle and its rate are 0=0 = 0. A simple control law applicable in this situation is

based on the following Liapunov function12 :

V = 1/2 [ 2 +K(_)Lf)2 +(K2 + X2) ( 02 + 3 sin20)] (6)

where Xf > 0, is the desired final value of X. K, is a positive constant and K 2 can either be positive

I or zero. The nature of the Liapunov function is such that the undesirable conditions 0 = 7C and 0'= 0

can also be reached. This Liapunov function has some similarity to that used by Fujii and Ishijima1 .
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It is primarily a quadratic function; the quartic terms have been included to obtain mathematical U
simplifications. The nondimensional tension control law is

t= 3%+K , (X- Xf)- 2 K2 0'(1 +')/X+KX' (7)

It can be verified that this feedback control law locally asymptotically stabilizes the closed loop

system in the neighborhood of the desired final conditions. Care must be exercised in selecting the

gains as the tension must remain positive and the undesirable equilibrium point must be avoided.

A particularly interesting special case is obtained if K2 is set to zero. The control law then feeds

back the instantaneous tether length and its rate. This is a continuous equivalent of Rupp's control

law without the discrete feedforward commands. It is observed that the stability conditions derived

by Liangdong and Bainum for Rupp's control law (K1 > 0K 2 = 0 andK 3 > 0) are clearly satisfied I
by the above control law. A nonzero K2 is effective in suppressing the pitch deviations but the

tether length response slows down considerably. For nondimensional tether lengths below 0.01,

better performance is obtained with K2 set to zero.

I
An Integral of Motion

Before proceeding with a choice of a Liapunov function, the existence of integrals of motion

should be examined. Such integrals for the linearized in-plane motion have been derived by Rajan I
and Anderson2 using Noether's theorem. Integrals of motion of the nonlinear system of equations

are of interest here. Consider the differential equations (4) and the following positive definite

function: I
V1 = 1/2 (612 COS2 + 3 sin 2 0 cos2  + 12 +4sin 2 0) (8)

It can be shown that if t is assumed to be zero,

IVil = -2 [0e(1 +O0) co€+ €2] (9)
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Thus, if the tether length is held constant then V, is an integral of motion. This is an important

result as it can be used to determine maximum libration amplitudes analytically and even more, it

can be said that if X'/A is extremely small, the tether librations will closely reseriible limit cycles.

Figure 1 shows a roll angle versus pitch angle plot for a constant tether length (X = 1.0) and initial

Iconditions O = = 5° , and @'= 0 = 0.

I A tether rate control law can easily be developed to damp the pitch and roll librations. The

tether rate may be oscillatory depending on the initial conditions. A stationkeeping strategy based

on modulating the tether length has been proposed by Davis and Banerjee25. It is also seen from

I Eq. (9) that for the function V, to decrease, X! has to be positive for O' t 1. On the other hand, for

very small values of 4 and ' and small negative values of 0', ) has to be negative for V, to decrease.

This suggests that if 0 is allowed to increase initially in a positive sense and 4 and 0' are small, a

unidirectional retrieval is possible without tether oscillations. This further implies that a unidirec-

tional retrieval is possible if out-of-plane thrust is utilized to control roll and roll rate.

Presence of pitch as well as roll motions is considered next. Out-of-plane thrust is utilized

to keep roll motion bounded. Tension, rate, and out-of-plane thrust control laws are developed in

the following sections using the Liapunov approach.I

I Tension Control Law Design Based on Decoupled Equations of Motion

The first method is based on a coordinate transformation that nearly uncouples the in-plane

and out-of-plane motions. If we define z = Xcos0 and y = %sin 0, the differential equations (4)

transform to
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+"z( 01)2 13COS2 I 0] I

00+2 ( +O')+3cosOsin0 =0 (10)

It will be useful to note the following relationships: U
yy +zz'/=Wk (11) 1

zy' -yz' = ' (12)

The nonhomogeneous part of each of the above equations can be treated as a generalized force. It

is interesting to note that the first two of Eqs. (10) are similar to Eqs. (5). The third of Eqs. (10)

has the form of a linear oscillator with a forcing function. Thus, the in-plane motion can be controlled

by using a modified version of the tension control law given by Eq. (7) and it is a simple matter to I
control the out-of-plane motion using derivative feedback for the generalized out-of-plane force.

Hence the following control laws are chosen:

- z +-{&}{3z.) -z K2 0(1+ +')/z+Kiz (13)

Equation (13) can always be solved for t and F because the determinant of the matrix to be inverted

is -V. The control laws can be written in terms of the original variables using Eqs. (11) and (12),

as

n t (3 + K) cos 2 - KXcos- 2 K20(1 + ') / X + K3X (14)

and

,=,- R' )X cossin-KXfsin -2 K2e(1+ ) /Xan+K3' (15)

In what follows, retrieval of a tethered satellite is considered. The primary body is the space

shuttle assumed to be in a circular orbit at an altitude of 220 km, with an orbital rate of .07068

I
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rad/min. The orbital period is nearly 1.48 hours. The tether is assumed to be 20 km long. The

initial conditions for the motion of the tether are =1.0 , A!= 0 ,0 = 0 = 5' , and 0' = = 0 and the

final conditions are X = .01 and X! = 0 = =4) ==' 0. Note that if an exponential feedforward

command is used, the initial velocity has to be finite.

Figure 2 shows the variations of tether length, pitch angle, and tension and Fig. 3 shows the

roll angle and out-of-plane thrust variations during retrieval for gain settings

K, = 1.0, K 2 = 0, and/K3 = 3. The results indicate that the tether length and pitch angle reach their

respective final values in nearly two orbits but the roll angle response is slower. The reason for

this uncoupled behaviour can be explained as a result of the decoupled control design. The pitch

angle undergoes a sharp change near the end of the retrieval The initial nondimensional tension

is 4, the equilibrium initial value being 3. In dimensional form, assuming a satellite mass of 22.7

kg, the initial tension is 2.52 N. This value will be higher if tether mass is included. It should be

noted that this example depicts a fast retrieval. The initial value of tension can be decreased further

for a slower retrieval. Thrust usage has been quantified by evaluating the index f I P I dt over two

orbits. This nondimensional index is 0.9 which amounts to an average thrust impulse of 481 N-s.

I
Tension Control Law Design Based on the Coupled Equations of Motion

The second method is based on the following candidate Liapunov function:

V= 1/2 ++KI(X - f)2 +(K 2 +X) (O2 cos2 4+3sin 2 0cos24+4)a+4sin20)] (16)

A significant part of the above function is the integral of motion obtained previously. Note that

this choice of V automatically admits the possibility of existence of multiple equilibria. They are

given by
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1) X=Xf,,.=O,and='= = /=O H
2) X=)LfX!=0,e= Y=0, = , and = I
3) )L= LX'=O,0=,O'=O,andO=O'=O

The last two equilibria are one and the same and also undesirable for downward deployment/upward

retrieval. Besides these, other equilibria might exist. This possibility will be investigated subse-

quently.

T h e tim e d eriv a tiv e o f V is g iv e n b y + 2 + 2 ]/ 1+ $(k(

V'= L {3 JA- t + Kj(% -))- 2 Kje(l +, oZ+'2l}O(.+ .2)PIL' (17)

If we assume that out-of-plane thrust is not utilized, the tension control law can be selected as I
t = 3X + K(X- Xf) - 2 K2['(1 + 9')cos2 +' 2] /X + K3X' (18)

so that

V' =-K 3X
2  (19) 1

Simulations using the above control law reveal that there is a significant interplay between the tether

length and swing motion. If K2 is set to zero, the pitch and roll libration amplitudes become

alarmingly high. Even with a positive K2, the tether retrieval rate is oscillatory and convergence to I
the desired equilibrium point is extremely slow.

If out-of-plane thrust is utilized, the tension control law ii. d not be changed. Simple rate

feedback thrust control is sufficient to enhance the stability of the closed loop system significantly.

The out-of-plane control law is selected to be

ft = -K 4 X4 (20)

Roll angle feedback can also be included in the out-of-plane thrust control law by adding a quadratic

term in 0 to the Liapunov function. The usage of the tension as well as the out-of-plane control

law leads to
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v' = - K3X 2- (K2 + ')K40'2  (21)

It is easy to verify the stability of the closed loop system. If k' and $' are both zero, the closed loop

system is given by the following equations:

-[cos 2  (1 + 0i)2 _ 1 + 3 cos 2 cosS2 61 -A K1 (X -X ) + 2K2[0(1 + 0') coss2 ]/.

00 cos 0 + 3 cos cos 0 sin 0 = 0 (22)

cos ) sin 0((1 +0,)2 +3 cos 2 0)) = 0

It can be shown that a local equilibrium point is X = Xf and k' = 0 = (=Y = =0. Other undesirable

equilibria do exist but can be avoided by properly selecting the control gains.I
Simulation results using this control law with gains K, = 1.0, K2 =0, K3 -3, and K, = 2.0

are shown in Figs. 4 and 5. It is observed that the retrieval process is unidirectional and quite similar

to the previous example. However, the required out-of-plane thrust is much less and the roll response

is faster. The nondimensional thrust impulse index, defined earlier, evaluated over two orbits is

0.24 which is 128.4 N-s. If K4 is selected as 3 instead in the above example, the thrust impulse

index amounts to 0.258.

The desired nondimensional final length of the tether in the above examples has been 0.01.

The effect of a smaller desired final length (0.001) on the performance of the control laws is

investigated next. The control parameters are K, = 1.0, K2 = 0, K3= 3, and K4 = 2.0. The initial

conditions are the same as before. The tether length, pitch angle, and tension are shown in Fig. 6.

The pitch angle is too large and an undesirable equilibrium point is reached. A slight change in the

gain k, from 1.0 to 0.9 produces a nice retrieval as shown in Fig. 7. The maximum value of the

pitch angle is 21.9' in Fig. 7 as compared to 29.3' in Fig. 4. An increase in the gain K2 also serves

the same purpose as decreasing K1.
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A Tether Rate Control Law I

A tether rate control law can easily be developed using the integral of motion given by Eq.

(8). Out-of-plane thrust is utilized for this application also. Based on the previous developments,

the following candidate Liapunov function is chosen: I
V = 1/2 [K1Q..._-Xf) 2 +K 2V (23)

The rate control law and the out-of-plane thrust law can be obtained following the usual process as

- -K,(X -X) + K2j0'(1 + 0')cos2 +)2] / ) (24)

and

P=- (25)

If K2 is very small, the retrieval process is nearly exponential. This leads to a nearly constant (slow

decay) pitch angle daring the terminal phases of retrieval. Figure 8 shows the tether length and I
pitch and roll angles for K, = 0.25, K2 = 0.01, andK3 = 1.0. The initial conditions on the tether motion

are the same as before and Xf = .01. The value of K, dictates the initial tether retrieval rate for this

example as the initial pitch and roll rates are zero. The above choice of K, results in an initial

dimensional retrieval rate of 30 r/s which is moderate. The pitch angle behavior for this example

is oscillatory unlike that for the previous examples. The slow decay of the pitch angle is also noted. I
I

Conclusions I
Liapunov feedback control design methods have been presented for deployment and retrieval

of tethered satellites. The first method is based on partial decoupling of the equations of motion I
and utilization of a two-dimensional control law developed previously using Liapunov stability

theory. The second method uses a Liapunov function based on a first integral of motion of the

original set of differential euations. Controllers designed by both the methods work very well but

the second controller has the advantage of using lesser out-of-plane thrust. These control laws are

I
(268)I



1

1 quite simple and utilize tether tension control as well as out-of-plane thrusting. Liapunov stability

analysis is used to rule out the possibility of limit cycles. It is recommended that the control gains

be chosen such that the pitch angle does not exceed ±301. This will ensure that undesirable equi-

I librium points are not reached. The gains in the tension control law should be adjusted according

to the desired final tether length. A rate control law derived using the integral of motion is also

presented. Finally, it is apparent that controlling the roll librations is essential for retrieval.

Further validation of the effectiveness of these control laws in the presence of tether flexibility

and extension and aerodynamic effects is necessary.
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ABSTRACT

This paper deals with torque command generation using Single Gimbal Control

Moment Gyros. The angular momentum and torque envelopes are assumed to be known apriori.

A method based on back integration of the gyro torque equation from desired final conditions is

utilized to determine a family of initial gimbal angles that avoid singularities. Each member of

I this family is defined as a preferred initial gimbal angle set. The pseudo-inverse steering law is

used during the numerical integrations. This procedure is demonstrated by means of numerical

I examples which include attitude control and momentum management of the space station

"Freedom". A feedback control scheme based on "null motion" is also developed to position the

gimbals at preferred locations.
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U INTRODUCTIONI
Control Moment Gyros (CMGs) are attractive spacecraft attitude control devices.

I They require no expendable propellant, which is a limited resource and can contaminate the

spacecraft environment. Their fixed rotor speeds minimize structural dynamic excitations. They

can be used for rapid slewing maneuvers and precision pointing. For low earth orbiting

I spacecraft, momentum dumping can be easily achieved by gravity gradient torques. From the

steering law viewpoint, it is widely accepted that double-gimbal CMGs (DCMGs) are preferable

to single-gimbal CMGs (SCMGs). For DCMGs, steering laws proposed by Kennel1, have been

well accepted. The SCMGs have the advantages of possessing relative mechanical simplicity

H and producing amplified torques (for low spacecraft angular velocities) on the spacecraft.

I However, development of gimbal steering laws for their use is made difficult by the existence of

internal singular states. For any system of n CMGs and any direction in space, there exist 2n

sets of gimbal angles 3 for which no torque can be produced in that direction, and these sets are

called internal singularities. External singular states correspond to directional angular momen-

I tum saturation. DCMG's have internal singularities also, but they are easier to avoid.

I Margulies and Aubrun3 present a geometric theory of SCMG systems. They charac-

I terize the momentum envelope of a cluster of SCMGs and identify the internal singular states.

Yoshikawa4 presents a steering law for a roof-type configuration with four SCMGs. His steering

I law is based on making all the internal singular states unstable by providing two jumps with

hystereses around the singularities. Cornick 5 develops singularity avoidance control laws for the

I pyramid configuration. His technique is based on the ability to calculate the instantaneous

I locations of all singularities. Hefner and McKenzie 6 develop a technique for maximizing the

minimum torque capability of a cluster of SCMGs in the pyramid configuration. Bauer7 con-

I cludes that it is impossible to avoid some singularities and in general, no global singularity

avoidance steering law can exist.

I
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Consequently, there will be instances when torque demand can not be met exactly. I

Meffe8 presents a parametric trade-off study between CMG systems (type and number) I
for the space station. Specifically, the indicators are reliability, weight, power, volume, main-

tenance, safety, control law, and life cycle cost. The conclusions are in favor of either the 4/6 or

5/6 SCMG clusters. The numbers 4/6 indicate a total of six CMGs with four being active. The

Soviet space station MIR uses the 4/6 SCMG cluster. The DCMG clusters are found superior to

SCMG clusters only from power consumption view point. In a recent paper, Blondin, et al.9  I
discuss the selection of a prototype DCMG for the space station. One of the reasons behind this

choice is that the space station does not have requirements to perform rapid maneuvers.

The requirements for the space station are to control the attitude in the presence of I

disturbance torques due to environmental effects, motion of sun tracking devices, and shuttle

docking. Besides the attitude constraints of Torque Equilibrium Attitude (TEA) reference within

10 degrees of Local Vertical Local Horizontal (LVLH) and rates less than 0.02 deg/sec, the 3
CMG momentum must be restricted s to a spherical storage radius (initial phase) of 20,000

ft-lbs-sec. The torque is limited to 400 ft-lbs (spherical). These figures are subject to change.

An active momentum management and attitude controller for the space station has been devel-

oped by Wie, et al.' 0"1 . This scheme seeks TEA and provides periodic-disturbance rejection.

The design of the pitch axis controller is decoupled from that of roll-yaw. Perioaxc-disturbance

rejection filters are developed to reject disturbances in the attitude or angular momentum at the

orbital rate and multiples of the orbital rate. CMG dynamics and steering laws have not been I
considered in this work.

In the present paper, we consider the determination of initial gimbal angles for SCMG

systems to avoid internal singularities. Throughout the study, four SCMGs in a pyramid con- I
figuration shown in Fig. 1 are used. The motivation for this study came from earlier works

mentioned above, wherein it has been shown that many singularity avoidance steering laws are
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not capable of avoiding singularities consistently even for unidirectional torque demands. We

approach the torque generation problem from a more conservative view point. Rather than trying

to develop a singularity avoidance law, we present a simple procedure for determining the

preferred initial gimbal angles for specific torque and momentum envelopes. In many instances,

I- these can be obtained by performing attitude control simulations without including the CMG

dynamics for a veriety of initial conditions, parameter variations, etc. The proposed method is

based on back integration of the CMG torque equation, typically starting near the saturation

envelope (to utilize the entire envelope) and going to the specified initial angular momentum

Estate. The pseudo-inverse steering law is used during the numerical integraton. It is shown by

means of examples given in the literature that the preferred initial gimbal angles do avoid internal

Isingularities. Finally, the attitude control and momentum management of the Phase-I space

station is considered as an additional example. This example clearly shows the advantage of

using a preferred set of initial gimbal angles.

An important issue is the reorientation of the gimbals from arbitrary values to a preferred

I- set. A feedback scheme for performing such reorientations while minimizing output torques on

the spacecraft is also discussed.

CMG STEERING

We consider CMG gimbal steering for four SCMG's mounted in the pyramid con-

I figuration shown in Fig. 1. It is assumed that the x,y,z axes (roll, pitch, and yaw, respectively)

-- shown in the figure coincide with the vehicle body axes and the center of the pyramid base is

assumed to be located at the center of mass of the vehicle. Only the axial angular momentum of

each CMG is included in the mathematical model.
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The angular momentum vector h and its derivative fi in the body axes can be written as I
I

-Cos8Sina1  - Cos0 2 + CosSSinO3 + Cosa 4 I

h = h Cosa, - CosSSina 2 - Cosa 3  + CosSSin0 4  (1)

SinSSinal + Sin8SinO2 + Sin8Sina 3 + SinSSina 4

U
and

aCos8Cosal Sina 2  Cos8Cosa 3  -Sina] [T11 I

A CC = h -SinGi -Cos8Cosa 2  Sina 3  Cos8Cosa 4  2 )

Sinosa Sin8Coscr2 Sin8Cosa 3  SinSosa4 63
" - .4J I

where h is the constant magnitude of the axial angular momentum of each CMG, a1 are theI

gimbal angles, and 8 is the pyramid angle as shown in Fig. 1.

The Euler equations for a system consisting of a spacecraft and a CMG cluster can be

written as

[1) o+.+o {[I] co+h}=O (3)

where [I] is the inertia matrix of the spacecraft, co is the angular velocity vector. We can write

Eq. (3) as

(11 6)(b+ x[I] co)=-hi-coxh !u(4)

where u is the internal torque vector. The CMG steering equation is written, using Eqs. (2) and

(4) as

Cd=T (5) I
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where

T !-coxh+u (6)

The usual procedure for obtaining the gimbal rates from Eq. (6) is to use the Pseudo-inverse of

I C. Thus we have

&= CT(CCT)-lT (7)

Determinant of the matrix CCT can be thought of as the average gain of the cluster. It is well

I known that if Rank (C CT) is less than three, the pseudo-inverse does not exist. The sets of

states at which this happens are called singular states or singularities. Many steering laws have

I been developed to avoid singular states, yet, none has been proven to do so consistently. A

factor common to these schemes is the addition of "null motion" - motion of the gimbals such

that no torque is produced on the spacecraft. In many situations, it is difficult to anticipate the

I approching singular states fast enough to add sufficient null motion. The scheme proposed by

Kurokawa, et al. 12 is based on off-line calculation and table look-up of gimbal angles which

I globally maximize the gain for a given momentum. This scheme also has not been able to

provide singularity-free steering. As mentioned above, our objective is to develop a systematic

I approach for determining a set of initial gimbal angles that can avoid singular states for a given

I torque and momentum envelopes. This is discussed in the next section.

I DETERMINATION OF PREFERRED

INITIAL GIMBAL ANGLES

I
Perhaps the most severe demand on the CMGs is a secular torque. (T in Eq. (6)).

I Bauer7 shows that for the present CMG configuration (8 = 54.740 ), with the pseudo-inverse

I steering law, starting with all the gimbal angles at zero, for a constant positive torque about the

x-axis, an internal singularity is encountered at a momentum value of 1. 15h. This corresponds to

I an antiparallel situation, i.e., two of the CMG angular momentum vectors are pointed in opposite

directions. The gimbal angles at the singularity are a = [-90O, 00, -.900, (0 IT.

I
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The gimbal rates, without imposed constraints, are large near a singularity. It is noted that for the I
same torque demand, multiple trajectories can exist from one momentum state to another, in the

gimbal angle space. A set of initial gimbal angles that allows smooth gimbal rates throughout,

up to saturation is termed "a preferred set". In order to investigate the existence of preferred sets,

a backward integration of Eq. (7) was attempted, for specified torque demands. I
At saturation along the positive x-axis, all the momentum vectors are maximally

projected along the x-axis, i.e., o = [-900 1800 900 00 ]T and h = [h(2coss + 2), 0, 0 ] T

= [3.1545 h, 0, 0 ]T " The saturation gimbal angles for a given direction are unique. Since

saturation is an external singularity, we can not start the integration process exactly there. I
Hence, the gimbal angles were perturbed slightly. For example, we selected the near-saturation

angles as a = [-890, 1770, 900, -1 ° ]T. This choice is arbitrary and forces the selection of one

of the many trajectories leading toward the zero momentum state. On back integration of Eq. (7),

with a unit torque along the x-axis, the following gimbal angles were obtained near the zero

angular momentum state: t-59.69, 60.70, 1180, -1210 ]T. The angular momentum vector at this

point was [.003, -.023, .0 2 9 ]T. It is interesting to. note that singularities were not encountered

during this process. The nearest gimbal angles for zero angular momentum state are

a = [-600, 600, 1200, - 12 0O] T . These initial gimbal angles provide a local maximum for the

CMG gain for zero momentum, which is 1.1854. The gimbal angles and rates with these pre-

ferred settings (forward integration with pseudo inverse steering law) are shown in Figs. (2 - 3).

Figure 4 shows the CMG gain and it is clear that the gain margin is quite high throughout except

near saturation. Moreover, near the x-axis momentum of 1.15, the gain is increasing. It can be

verified that a pseudo-inverse steering law with this initial gimbal angle set does indeed avoid all

singular states for torques along the x-axis.

Several sets of initial gimbal angles for null momentum were obtained for other desired i

torques as shown in Table 1. It should be noted that due to symmetry of the configuration, the

set [- 1200, -600, 600, 12001 is admissible for a torque demand of [0 1 01T.

I
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I TABLE 1. INITIAL GIMBAL ANGLES FOR NULL MOMENTUM

I Torque Demand Initial Gimbal Angles

[1 0 0] [ - 600 1200 -12001 [450 -450 450 .450]

[0 1 01 [-1200 -600 600 12001 [450 -450 450 -4501

I [0 0 1] [ 0 0 0 00 ]

[1 1 1] [ 0 00 00 00] [450 -450 450 -4501

[4 2 0] [ -60 600 1200 -1200] [450 -450 450 -450]

[2 4 0] [-1200 -W 600 1200] [450 -450 450 -450]

I
Preferred gimbal angles for nonzero momentum states can also be obtained by this procedure. It

I is also interesting that the set [450, -450, 450, -450] provided singularity-free operation for all

the examples in Table 1, except for the uniaxial z-torque example.I
Kurokawa, et al. 12 cosider the following torque demand:

I Tx = 0.2 sin(47t)

Ty =0.3

T= 0.0

I
I Our simulations were performed with gimbal angles initially set at [-1200, -600, 600, 1200] as

well as [450, -450, 450, --,450 ]. These choices were made because the torque lies in the x-y

I plane. No internal singular gimbal states were encountered and saturation occurred at about ten

seconds.

I
I
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The next example is similar to that considered by Bedrossian13 . The required angular

momentum distribution is shown in Fig. 5. The momentum envelope can be extended to the

saturation limit to obtain initial conditions for back integration. The absolute values of the x- and

y-components of the torque are both held constant at 0.707. Gimbal rates with zero initial angles I
are shown in Fig. 6. It is clear that a singularity is encountered at 1.5 seconds. Figure 7 shows

the gimbal rates with the preferred set [450, -450 , 450 , -450] . It is evident that no singularities

are encountered. Figure 8 shows the gain along the trajectory and again we see that there is

sufficient gain margin and the gain is increasing near the region where a singularity was encoun-

tered during the previous simulation (Fig. 6).

SPACE STATION EXAMPLE I
We now consider the attitude control and momentum management of the space station.

This study also includes input disturbances which are not used in the control design model. The

space station data are given in Table 2. Although the angular momentum storage capability of

20,000 ft-lb-sec dictates the use of 5/6 CMG's, we only use four. The following assumptions are

made to obtain linearized equations:

i) Products of inertia are neglected.

ii) 01, 02 and 03 are small excursions from LVLH: roll, pitch, and yaw respectively. I
iii) The effect of CMG gimbal and rotor transverse inertia are neglected.

The linearized equations are 2

I 161 + n (12 -13 ) co + 3n2 (12 - I3)1 = -u + w1

12 e2 + 3n2 (I_ -13))2 = -u2 + w 2  (8)

13 -3 - n (12 - 11 ) ) = -u3 + w3 I

01 - n0 3 =1 (9)

03 + n~l = o3

I
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I fil - nh3 = uII
f = U2 (10)

i 3 + nh = U3

I where 1,, 12, and 13 are moments of inertia, (o is the angular velocity vector of the space station,

n is the orbital rate, h is the CMG angular momentum vector along the body axes of the space

I station, u is the torque vector, and w is the vector of disturbance torques.

* TABLE 2

2
I1 5-.28E6 slug-ft (roll)

2
12 10.80E6 slug-ft (pitch)

13 58.57E6 slug-tt (yaw)

In .0011 r/sec

h 3500 ft-lb-sec

I

I The design disturbance model10 is

w = 1 + Sin(nt) + 0.5 Sin(2nt) ft-lb

w2 = 4 + 2 Sin(nt) + 0.5 Sin(2nt) ft-lb (11)

w3 = 1 + Sin(nt) + 0-5 Sin(2nt) ft-lb

I One filter for each frequency of the model disturbance is used in each channel. The filter equa-

tions for pitch attitude disturbance rejection are of the form10
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+ n2 a =0 (12) I
+ (2n)2 = 0 1

Similar filters can be incorporated for momentum management. A more refined disturbance

model (AERO1 disturbance) 14 which includes variable aerodynamic drag characteristics is also I

included. The AEROI disturbances are shown in Fig. 9. This model includes disturbances at

higher frequencies than twice the orbit rate as well as orbit decay. In principle, one can filter out

disturbances at three and four times the orbit rate using filters defined abovel I; we have chosen

not to do this, as our main aim is to assess CMG steering performance.

I
The pitch axis controller is designed using LQR techniques'0 . The states are

i = [02,02, h2 , fh2 dt, and filter states]

The states for the roll-yaw controller are

x = [01 ,ca , h, , Jh1 dt, 03, (03, h3 , Jh3 dt, and filter states]

The state weighting matrix Q is selected to .be diagonal and each entry is chosen such that

xi Q xi = 1, where xi is the anticipated maximum value of the i± state. The control weighting

matrix is selected to be the unity matrix. For the purpose of simulation, the intial attitude errors I
are selected to be 10 about each axis.

As h a-a u are known approximately after the controller design simulation, ii can be

thought of as a known quantity to determine steering histories for the gimbals. In flight opera- I
tion, the CMG loop will be driven in parallel with the attitude control loop. In the present

context, the two loops have been separated for ease of simulation. This can be justified as the

attitude control bandwidth is low , of the order of .01 r/sec. For convenience , Eq. (5) is written

as

CC=T

I

II
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I

where T = {}u3

Starting with initial conditions of a = [0, 0, 0, 0]T , simulation of the Pseudo-inverse steering law

shows that a singularity is encountered quite early in the first orbit (in about 720 seconds), as

I shown in Fig. 10.

From initial simulations with out including CMG dynamics, we see that during the initial

phases (less than one orbit) the pitch and roll momenta are much higher than the the yaw momen-

I tumtum. Figure 11 shows the gimbal angle histories with the initial gimbal angles selected as

; - [ 450, -450, 450, -4 5 0 ]T. No singular states are encountered and the momentum magnitudes

I show near periodic variations within limits. A small secular component is noticable in the pitch

aerodynamic torque due to orbit decay. This will lead to saturation of the CMG's if uncompen-

E sated for.

GIMBAL REORIENTATION USING NULL MOTION

CMG momentum vectors can be repositioned at desired orientations by a feedback

scheme using null motion. Let Of be the desired gimbal angle set and ( the current gimbal

angle set. The relative error between the two is e =Oj-0. We define a candidate Liapunov

function V eTe

I The time derivative of V can be written as

V =eT 6 = -(f - C)T a (12)

If the reorientation process is to be performed without producing torques on the spacecraft, null

IE motion equation for ' must be used. That is, let

d=[I-CT(CCT) 'IC] d (13)

I
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where d is any non zero vector and I, the identity matrix. Equation. (13) can be written as

5 = 'cd (14)

where T = [I - CT (CCT )- C]. It is easy to verify that if we premultiply Eq. (13) by C, the result

is C 6 = o. It is also important to note that T2 = T, i.e., T is a projection matrix. From Eqs. (12) I
and (14), it is clear that V is at least locally negative if

d = k (af -cy) (15)I

where k is a scalar and

V =-k ( af-)T t (of-o) (16)

Even though this scheme seems simple, there exists one drawback. If an internal singularity is

encountered during the transit, T becomes undefined. To avoid this problem, near a singularity,

the following modification is made by using the so-called singular robustness inverse1 3' 15: I
6 = [I-CT(CCT + aI)"C] d (17)

where c is a small positive constant of the order of 0.001. It is true that with this modification, it

is unavoidable that during the gimbal transit, small torques could act on the spacecraft. Figure 12

shows the gimbal reorientation using the above scheme. The initial gimbal angles are

(C - [ 00, 0 , 00, 00o T and the final gimbal angles are a - [ 4. 45o, 45
, 45 ]T. The gimbal I

rates are shown in Fig. 13. It is evident that as the singularity is reached, the giblrates ap-

proach zero and it becomes necessary to to use the correction. Figure 14 shows the gain variation

and it is clear that for this example, the output torque on the spacecraft is negligible.

CONCLUSIONS I
A new methodology for determining preferred initial gimbal angle sets for SCMG

clusters is presented. It is assumed that torque and angular momentum envelopes are known

apriori. These need not be known exactly but in a qualitative sense. The basic element of this

procedure is back integration of the CMG torque equation from the final conditions to the initial

conditions. The procedure can be applied to any number of CMGs (more than three) in a cluster.

I
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I
Several examples, including active momentum management and attitude control of the space

I station are presented. It is shown that singularity avoidance for a variety of problems can be

easily achieved by selecting proper initial gimbal angles. Except in one instance, the gimbal

I angle set a - [ 450 .450 450 -450 IT has been found to be applicable in all the examples con-

sidered. Data regarding the preferred gimbal angle sets for various torque and momentum

conditions have to be stored to use this procedure in practice. A feedback scheme for positioning

I the gimbals is also discussed. If this is done slowly, the disturbance on the spacecraft is negli-

gible, and can be compensated for by a feedback control law. For this reason, the gimbal

I reorientation control law may have to be active along with the torque producing control law.

It is true that there are many preferred sets for a given problem and one may be better

than the others. To determine this, a meaningful performance index such as integral sum squares

I of the gimbal rates can be utilized and an optimal control problem solved.
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Dynamics and Controls
II Laboratory Facilities and Equipment

Department of Aerospace Engineering
Texas A&M University

Facilites for experimental studies in control structure interaction (CSI) have been developed during

the past four years. Located in the newly completed Engineering Sciences Building are several

equipment systems which represent an investment of more than $.LM in new equipment over that

I time span. Presented below is a brief discription of each system.

* The Fine Pointing System

The central component of the Fine Pointing System is a Contraves Goerz single axis air bearing
table capable of pointing an 800 pound experimental apparatus to better than arc second accuracy.

This table can be controlled remotely from a computer workstation or directly frora an in-line
microprocessor. At the present time, the table is partially surrounded by a simulated star field

composed of more than one hundred light emitting diodes set into a curved plastic substrate. This

configuration is used in the study of spacecraft attitude position sensing by star tracking. Supporting
this experiment is a dedicated 80286-based workstation carrying add-in cards which perform frame
grabbing and array processing functions. These cards, supplied by Data Translation, Inc., receive
pixel information from a high resolution CCD video camera and perform most o? the data reduction
tasks. The table is also equipped with a second axis capable of supporting small experiments. This

device, designed and fabricated in house, can be pointed to an accuracy of 10 arc seconds.

The Stereo Triangulation System

The Stereo Triangulation System consists of four video cameras (two high speed NAC200 and two

high resolution (NEC T123A) linked to two high speed recorders. These recorders can accept data

from the cameras at rates up to 200 frames per second. A Motion Analysis (VP1 10) analog video
processor is linked to a Sun workstation to reduce pixel information and perform the triangulation

calculations in a user-interactive environment. This system also performs a number of structural

identification tasks using data from the stereo camera pair.

I Single Axis Maneuvering Structure

A structure consisting of a hub with four flexible appendages has been fabricated for performing
large angle maneuvers with active vibration control. This unit rests on a low friction bearing systen
of our design. The actuator is a reaction wheel powered by a permanent magnet dc motor chosen
for very low cogging torque. A variety of sensors are attached to this experiments, which are listed

later.
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Dynamic Testing and Structural Identification
Test Articles and Fixtures I
Several test articles have been fabricated to provide a capability for making precise measurements
of dynamic response. Some of the structures investigated to date include simple cantilever beams,

a 5' x 5' aluminum grid of monolithic (jointless) construction and aircraft propeller blades.

When the Engineering Science Building was erected, anchor points were placed in the floors of
two rooms. Large, steel spaceframes attached to these points support experimentF such as the ones I
mentioned above, and provide fully clamped constraints where desired. The anchor points an%-
support frames were designed to allow quick reconfiguration so that several experiments can proceed
in parallel. Test articles as long as 26 feet or as tall as 13 feet can be tested in these labiratories.

Actuators

A variety of actuators are used. Several reaction wheel torquers have been built in our labor-tory.
These range in size from 2 oz-in to 10 lb-f t, and are currently used on the hub appendage experiment
and the monolithic grid experiment. Larger units are currently being designed for implementation
on the ASTREX flexibile structure at the Air Force Astronautics Laboratory. Power to these
actuators is provided by a bank of eight 400 watt linear operational amplifiers. These class A
amplifiers (Kepco BOP series) can be controlled from the workstation in either a commanded
voltage (wheel speed) mode or a commanded current (torque) mode. 3
Two shakers are used as linear actuators. These are B&K vibration exciters powei ed by matching
B&K amplifiers. The larger unit provides 380 N rated peak force and 2060 m/sec2 (210 &) maximum
acceleration, and the smaller unit is about one tenth of that size. The primary use for the shakers
at the present time is to provide identification excitation.

A Kistler Instruments instrumented hammer is also used as an actuator in certain free response
experiments.

Sensors I
The stereo triangulation system previously described is one of the sensor systems used for structural
identification. In the near future, we expect the fine pointing / star tracker system to be utilized
as a sensor for control feedback. There are several other types of sensors in use, as well, which
are listed below.

Angular position sensing is accomplished digitally, using Teledyne Gurley optical sensors having
a resolution of 36,000 counts per revolution.

Angular rate sensors from Watson Industries are used on the grid experiment, and are being evaluated

for other applications.

2
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Linear accelerometers are used on several experiments. In current use are Kistler piezoelectric
units, and servoaccelerometers have been ordered in an effort to expand our measurement capability
to frequencies below 0.5 Hz.

Force sensors include two linear piezoelectric devices kKistler) and one torque sens.r (Sensor
Developments, Inc.)

Conventional strain gages are used on the hub / appendage experiment and the grid experiment.

Data Acquisition and Processing

Data acquisition boards have been installed in three 80286 - class microcomputers running under
MS DOS. The boards are Data Translation 28xx series which may be used in an interactive control
mode or a high speed direct memory access (DMA) mode. The fastest of these boards performs
250,000 conversions per second in single channel DMA mode. Two digital oscilloscope cards with
FFT capability are also available for general data reduction chores.

I
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