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1. Introduction

In the search for longer wavelength solid-state lasers (wavelengths longer
than 1.5 .m), holmium appears to be the most popular active atom. Kaminskii
[ 1] lists over 25 different materials in which the holmium 1I7 to 1I, transition,
at about 2.0 g~m, is known to lase. A review article [2], devoted to diode-
pumped solid-state lasers, has many references to holmium as the active ion.
Although many references are available [3-101, a comparative study of
holmium laser materials is difficult because of experimental differences,
especially in the optical quality of the crystal. To avoid the expense and time
associated with growth of each of the candidate crystals, a theoretical method
of evaluating laser materials is needed.

A quantum mechanical point-charge model has been developed which
requires only x-ray data to predict both energy levels and dipole moments of
lanthanide series active atoms. X-ray data are available for many more
crystals than those which have experimentally reported holmium spectra.
Thus many more potential laser materials can be considered. In addition, the
quantum mechanical model predicts the matrix elements of both electric and
magnetic dipole operators. Both electric and magnetic dipole moments must
be calculated since they can be comparable for the 5I7 to 'I, transitions. These
matrix elements, or some similar quantity, are required to predict gain. If gain
is known, laser thresholds can be predicted. The experimental determination
of gains (including crystal growth, characterization, etc) requires considera-
bly more effort.

Although many crystal types could be evaluated, this report is restricted to the
garnets for several reasons. Among the reasons are the growth potential, the
desirable mechanical properties [11 ], and the relatively strong crystal field
associated with these materials. A measure of the strength of the crystal field
has been discussed by Leavitt [12]; for the parameters we have obtained by
fitting the experimental data, we obtain a value of this strength parameter, S,
to be 551 cm- 1 for Ho:YAG (yttrium aluminum garnet). This value is larger
than all other host crystals considered by Leavitt.

There are two primary obstacles to achieving threshold in a holmium laser
operating on the s1 to 51 transition. Since the 51, manifold contains the ground
level, the terminal laser level has a significant thermal population. If operation
near room temperature is desired, a relatively large thermal population must
be overcome. In addition, since the s17 manifold has a long lifetime, the
effective stimulated emission cross section tends to be low. The second
obstacle to overcome is the loss in the laser resonator, including the loss
associated with the output mirror. These two factors combine to provide a
figure of merit with which the various garnets can be compared.
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In the work reported here we use a quantum mechanical point-charge model
to predict the crystal-field split-energy levels of holmium and the matrix
elements of the dipole operators between all the levels in the '4 and the 11,
manifolds. The calculations are for the A ion site with D2 symmetry in the
garnets of the form A3 B2C3012. X-ray data are used to obtain the crystal-field
components, A., and the even-n crystal-field components are used to calcu-
late the crystal-field splittings. The A,, with n odd are used to calculate the
electric dipole transition probabilities. The magnetic dipole transition proba-
bilities were also calculated and were found to be of the same order of
magnitude as the electric dipole transition probabilities. Both transition
probabilities were used to calculate the branching ratios of the 1I7 levels to all
the levels of the si multiplet. Temperature effects were taken into account by
assuming a Boltzmann distribution for each of the '4 and 1, multiplets.
Dispersion effects of the index of refraction are included by the use of
Sellmeier equations which best fit the experimentally measured index of
refraction.

2. Method of Calculation

Because of the number of different operations, some details of the method of
computation of the branching ratios are presented. To limit the amount of
computation, we restrict the calculation of the crystal-field components to the
point-charge model [13-15]. The self-induced and dipole contributions
[16,17] are ignored. Instead, we consider these effects by using an effective
charge method [181.

In the point-charge model, the crystal-field components, A., are given by
[13,19]

A =-e 2 . qjCA ,) (1)
where R

Cm (Rj) = 14nt /(2n + 1) Ya (0j, 0j)

and q. is the effective charge in units of the electronic charge on the ion at R.
The Y(j, 0j) are the usual spherical harmonics. The crystallographic data
given in table 1, along with the detailed x-ray data given in table 2, were used
to obtain the interionic distance of the nearest neighbors of the various sites.
These distances are given in table 3. The theoretical crystal-field parameters,
B., for even-n values are given by

B,m = p, An ,(2)

where the p. values for all the rare-earth ions are given elsewhere [201.

6



Table 1. Crystallographic data for garnets A3B2C 0 1 (A = Y, La,
Gd, Lu; B = Al, Ga, Lu, Sc; C = Al, Ga), cubic 6 1 0 (Ia3d) 230

Ion Site Symm X Y Z qa

A 24c D2  0 1/4 1/8 3

B 16a C31  0 0 0 3

C 24d S4  0 1/4 3/8 1.8

0 96h C1  x y z -1.7
aqC = -5 - 4q0

Table 2. X-ray data on garnets A3BC 3 0 12

Ref.

A B C Compound a (A) X y z [271*

Y All A12 YAG 12.000 -0.0306 0.0512 0.1500 a
La Lu Ga LaLuGG 12.930 -0.02976 0.05819 0.15699 b
Gd Sc Al GdScAG 12.376 -0.0318 0.0549 0.1558 c
Y Sc Al YScAG 1 12.280 -0.03089 0.05625 0.15625 d
Y Sc Al YScAG2 12.251 -0.0274 0.0577 0.1558 e

Gd Gal Ga2 GdGG 12.377 -0.0284 0.0549 0.1497 a
Gd Sc Ga GdScGG 12.5684 -0.02887 0.05657 0.15378 f
Y Gal Ga2 YGG 12.280 -0.0272 0.0558 0.1501 a

Lu Gal Ga2 LuGG 12.188 -0.0252 0.0570 0.1506 b
Gd All A12 GdAG 12.113 -0.03110 0.05090 0.1490 a
Lu All A2 LuAG 11.906 -0.0290 0.05370 0.1509 a

*See reference 27 in Reference list.

Table 3. Distance and multiplicity of nearest oxygen to metal ions in garnet compounds'
[distance in angstroms]

Compound RA. 0  RBO RC-O
YAG 2.3030 (x4) 2.4323 (x4) 1.9371 (x6) 1.7609 (x4)
LaLuGG 2.4529 (x4) 2.5436 (x4) 2.1988 (x6) 1.8785 (x4)

GdScAG 2.3636 (x4) 2.4759 (x4) 2.0819 (x6) 1.7752 (x4)
YScAG1 2.3382 (x4) 2.4397 (x4) 2.0743 (x6) 1.7715 (x4)

YScAG2 2.3059 (x4) 2.4094 (x4) 2.0629 (x6) 1.8059 (x4)
GdGG 2.3680 (x4) 2.4593 (x4) 2.0046 (x6) 1.8527 (x4)

GdScGG 2.3891 (x4) 2.4845 (x4) 2.0911 (x6) 1.8514 (x4)
YGG 2.3383 (x4) 2.4277 (x4) 1.9946 (x6) 1.8485 (x4)

LuGG 2,3025 (x4) 2.3927 (x4) 1.9865 (x6) 1.8520 (x4)

GdAG 2.3347 (x4) 2.4578 (x4) 1.9438 (x6) 1.7804 (x4)
LuAG 2.2760 (x4) 2.3832 (x4) 1.9388 (x6) 1.7597 (x4)
aThe quantities in parentheses are the number of oxygen ions at that distance.
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If, on the other hand, the experimental crystal-field parameters, B'm, have
been obtained by fitting experimental data, then equation (2) can be used to
obtain experimentalA, by

A;, = B, / p, (3)

for each ion for which we have experimental B *,,,. We assume that the A " are
independent of the particular rare-earth ion. The effective charge on each ion
(in units of the electronic charge) was taken as q, = 3, qB = 3, and qc = -5 -
4qo,with the oxygen charge, qo, to be determined. This approximation can be
thought of as taking the (CO4) complex in A3B2 (CO4)3 as being covalent with
the total charge on the complex fixed at -5 (notice that this gives the valance
charge of qc = 3 if qo = -2). The choice that only the CO4 complex is covalent
was guided by the fact that the distance between the oxygen ions and the
aluminum (gallium) ions is considerably smaller (Rc4 = 1.8 A) than the other
interionic distance (RB_ = 2.0 A), as shown in table 3. A more nearly
complete theory should probably take this distance into account and have the
effective oxygen charge qo a function of this distance Rc-o , so that for large
Rc-o the effective charge qo approaches -2. We have data on Ho3 in YAG
from which we have obtained Bnm by fitting experimental data [21]. A more
detailed discussion of the results on YAG is given in the following section.

3. Yttrium Aluminum Garnet (YAG)

The free-ion Hamiltonian used in the analysis is of the form

HFI=E le+E e2 +E'e 3 + aL+ 1)+ OG(G 2)+ IG(R7)+ 1 -i.Si (4)

with the aqueous parameters (cm-1) [22]

E' = 6440.60, E = 30.22, E3 = 624.39, o = 23.64,

0 = -807.20, y = 12 78.4 0, = -2141.3.

The ei are operators described in detail by Judd [261, and the operators G(G2),
G(R 7) are the Casimir operators for the G2 and R 7 group, respectively. The last
term in equation (4) is the spin-orbit interaction with the sum on i covering the
10 electrons of the 4f'0 configuration of Ho3'. The free-ion wave functions
used throughout the analysis are those determined by equation (4) along with
the aqueous parameters.

Since we have experimental data on the spectra of Ho in YAG, we can check
how well the procedure employing the point-charge model compares with the
actual experimental data. The experimental data (135 levels, with an rms = 4.2
cm -t [21]) were least-squares fitted, varying the crystal-field parameters, B,
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in the crystal-field interaction:
N

HCEF =X.CT_. (n) (5)
nm

The B,,, (cm-1 ) of equation (5), determined by least-squares fitting of the data
of Gruber et al [21], are

B20 = 537 B22 = 60.5 B40 = -268
B42 

= -1557 B44 =-785 B6o =-1039 (6)

B62 
= -363 B64 = 558 B66 = -344

There are four irreducible representations (IR), 17, for ions having an even
number of electrons in D 2 symmetry [271, and although the IR of each level
was not determined experimentally, in fitting the data we accounted for the
fact that the transition Fi-4 Fi is forbidden in both electric and magnetic
dipoles.

The B. in equation (6) were used in equation (3) to determine a set of
experimental crystal-field components Ane (the B. of eq (6) are B nm ). The
point-charge crystal-field components were then calculated using equation
(1) with the constituent ions having the charge qY = 3, qA1 = 3 and qA,2 = -5 -
4qo. The resulting A. as a function of q0 were varied to find the best least-
squares fit to the A,mtO give the value q. = -1.78. A set of crystal-field
parameters, B, was calculated using equation (2) for q = -1.7 and p, from
Morrison and Leavitt [20]. Using these values of B, we calculated the energy
levels of Ho3 : the splitting of the 11, manifold was 756 cm-' and that of the 51
was 32I zm - 1. On the other hand, for the best fit parameters (eq (6)) the
splitting of the 11, was 521 cm-' and the splitting of the 5I7 was 256 cm-'.
Although the above procedure works quite well for many of the rare-earth
ions, it is not sufficiently accurate for our purposes here. If more data were
available on Ho' in garnet structures (we have found only Ho:YAG and
Ho:YGG (yttrium gallium garnet) [1] reported), the point-charge model of
crystal-field components, A., could be augmented with the self-induced and
dipole contributions [16,17].

We have therefore decided to approach the problem of finding the theoretical
B, in a different way. To obtain better theoretical B, for Ho 3+ in garnets, we
introduce the concept of rotational invariance [12], S,(X), defined here by

SnQ()[jXL Xrnj'" (7)

where the X, are spherical tensors such as A, B, etc. The values of pare
calculated using equation (1) for A, with q0 = -1.7 and the relation,

p = S,,(B) I S(A) , (8)
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with the best fit B of equation (6) to obtain

p2 = 0.09411 A 2

P4 = 0.2922 A4 , (9)

p6 = 0.6854 A6

With these values of p,, and A,,, values for qo = -1.7, we obtain the set of
crystal-field parameters given in table 4 for Ho3 in all the garnets considered.

The energy levels of Ho3' were calculated with the B. given in table 4. The
levels of the 'I, and 'l7 multiplets are given in table 5 along with the energy
levels calculated using the best-fit B,, for Ho:YAG. The first column in table
5 gives the number of the energy level which will be used later when referring
to a particular transition. That is, the transition from the lowest level of the sl7
multiplet to the ground state will be referred to as 18 -4 1.

As a check on the theoretical B,, predictions found by using the radial factors
from the YAG data, we compared experimental and theoretical energy levels
for YGG. YGG was the only other host besides YAG that had experimental
energies available from the literature. An rms deviation of less than 17 cm-'
was obtained for the two manifolds, for 28 levels between 0 and 5391 cm-1.
Based on the above results, the set of theoretical B.. given in table 4 for the
other garnets should give good estimates of the energy levels.

With qo = -1.7, the odd-n A, are obtained wit) equation (5) and are listed in
table 6. The odd-n A, were used in the calculation of the electric dipole
transition probabilities. The method of calculating the transition probabilities
is that of Judd and Ofelt [23,24]. The details of this calculation have been
presented by Leavitt and Morrison [25]. The intensity calculation gives the
line-to-line matrix elements of both electric dipole and magnetic dipole
operators; these results were used to calculate the branching ratios of the 15
levels of the 'I multiplet to the 17 levels of the 11, multiplet. Since for this
particular case, the magnetic dipole matrix elements are almost as large as the

Table 4. Theoretical crystal-field parameters, B. (cm-'), for Ho " in 24c site (D, symmetry) ror garnets listed
in table 2

1 2 3 4 5 6 7 8 9 10 11
Bnm YAG LaLuGG GdScAG YScAGI YScAG2 GdGG GdScGG YGG LuGG GdAG LuAG
B20 409 343 529 483 347 110 264 72.2 10.4 350 305
B22 233 126 254 210 7.06 93.9 97.6 23.4 -104 260 160
840 -67.2 -5.46 25.6 11.4 -85.0 -72.8 -40.6 -99.9 -153 -56.1 -73.3
B42 -1573 -1256 -1456 -1562 -1689 -1440 -1406 -1545 -1680 -1467 -1728
844 -787 -590 -660 -719 -812 -771 -697 -833 -914 -749 -878
B60 -1101 -672 -888 -951 -1019 -913 -829 -982 -1064 -1019 -1190
B62 -427 -326 -421 -454 -478 -334 -357 -363 -400 -377 -467
B64 428 336 389 441 514 422 400 476 550 390 517

B66 -378 -279 -347 -380 -386 -340 -322 -363 -382 -355 -430

10



W (4 en 00 000000 0 qj en In1 ,0 - 4 NNC ne

N' V' - M~ N' - V4 en N' l en N V - ('4n~ - V4 (e4 N~ - I4 en M ('4 en- V (4 4

-L 0 -r-r 0 e

50 00 (04 00' N A' kn ('4 a, (7I (' 04 - -~' ' - N ('4 ;Q - (4 4 C (4 m m~ en en en'

en (*) C. n e n. lw lwl w ) W l w l W )%

! oo

'D m 0% 00.(40 ( 000

W" r~~ ~ ~- - 4 : )W NC 4e

en Inc-n

00 O0N00 00 0~ m - 4 Aeicnln

C4 v- m- v en

A 0

WW,' ('44 Xl ene e e n

a o - C1 tW ar 0QAC (



Table 6. Odd-n crystal-field components, A. (cm-'/,.-), for 24c site (D2

symmetry) of garnets listed in table 2'

Anm YAG LaLuGG GdScAG YScAGI YScAG2 GdGG

A3 2  -1252 1539 945 1323 1315 -598
A5 2  -2311 -1549 -1969 -2084 -2203 -1915
A54  1271 889 1103 1180 1247 1112
A72 31.8 61.6 47.4 67.5 96.5 66.7
A74 245 88.6 140 144 178 187
A76  -200 -137 -169 -191 -226 -180

Anm GdScGG YGG LuGC GdAG LuAG

A3 2  636 -448 -262 -1412 -614
A5 2 -1819 -2045 -2202 -2137 -2451
A54  1040 1194 1293 1181 1386
A7 2 67.5 83.8 110 28.1 68.0
A7 4  143 206 235 222 253
A7 6  -169 -204 -238 -180 -235

aNole: All A nm values are imaginary.

electric dipole matrix elements, we are forced to use both in the branching
ratio calculation. In the calculation of the branching ratios, we used the
relation for the radiative lifetime given by

1 = 32,Lc (xSo + x'Si l)v, (10)
"Y 3c 2

where
+ 2)Y

X ij (11)
9

eXij = n,,3, (12)
(12

n.4 is the index of refraction at the wavelength X j (ij ( gm) = Ei EJ

and a is the fine structure constant.

The branching ratios as a function of temperature are given by

'P zi , (13)

= - /kT ,(14)

X e-AT
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with the range of the sums given by

i=18-32,j=1-17 , (15)

and this range will be assumed throughout. That is, i belongs to the 5I7
multiplet andj belongs to the 'I multiplet. The SO and S,,are the squared
matrix elements related to the electric and magnetic dipole operators; details
of their computation are given by Leavitt and Morrison [25].

To perform the calculation of the branching ratios given in equation (13), we
must have the index of refraction for a large range of wavelengths. To achieve
this, the experimental index of refraction is fitted to a Sellmeier equation of
the form

n2=A+BV12 /(, 2 -C)+D 2/[(X2 .2-.E) . (16)

For the garnets investigated here, the coefficients in the Sellmeier equations
used to calculate n are given in table 7; for those garnets for which we do not
have experimental data, we indicate the approximations used.

The three highest branching ratios (four for YGG) for the temperature range
50 K _ T _400 K, shown in figures 1 and 2, were computed using equation
(13). The branching ratio at room temperature (300 K) and 75 K is largest for
LuAG, which also has the lowest thermal occupation factor for the terminal
state. The results of these computations are discussed further below. The
branching ratio alone is of limited value in determining the merits of practical
laser systems. We therefore consider the threshold condition of a quasi-four-
level laser system. Such a condition should provide a better evaluation of a
given garnet laser's merit.

Table 7. Sellmeier coefficients for the index of refraction n2 = A + BXl(A - C) +
DIIXI - E). [Wavelength is in micrometers.]

Compound A B C (gm2) D E (m 2) Ref.
[28]*

YAG 1 2.2779 0.01142 0 0 a
LaLuGG 1 2.3891 0.03781 0 0 b
GdScAG 1 2.510 0.01537 0 0 c
YScAG 1 2.420 0.01520 0 0 d
YScAG 1 2.4118 0.01477 0 0 e
GdGG 2.39841 1.35724 0.03027 2.37981 165.753 f
GdScGG 2.11233 1.63589 0.02620 0.99161 62.87 g
YGG I 2.5297 0.019694 0 0 h
LuGG 1 2.2573 0.022833 0 0 i
LuAG 1 2.4822 0.009066 0 0 j
GdAG 1 2.0055 0.014559 0 0 j
'See reference 28 in Refernce list.
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4. Threshold of Quasi-Four-Level Laser

Thresholds can be estimated with the quantities used in the calculation of
branching ratios, radiative lifetimes, and energy levels. The threshold condi-
tion of a laser system can be defined as when the total loss in the laser cavity
is equal to the gain of the system. For a two-level system, the threshold
condition is given by [29]

R,,RL exp [21a4 V2Z - N1Zj)] = 1 , (17)

with
aq= g(v)/(8nnT4) (18)

The quantity R,, is the reflectivity of the output mirror, and RL represents the
other losses in the resonator. N2 is the density of ions in the excited state
manifold (IT), and N, is the density of ions in the terminal manifold (l). The
quantity Z is defined in equation (14), and Z. is a similar quantity for the
terminal manifold ('I.). Throughout the discussion, the i index refers to the I7
manifold whose number is given in the first column in table 5 (18 < i < 32),
andj, to those of the 11, multiplet (1 j: 17). The length of the laser rod is I.
It is assumed that only manifolds 1 - (51) and 2 - (517) have significant
occupation; thus,

N, +N 2 =NA (19)
where NA is the total number of holmium ions per unit volume.

We assume that the line shape function, g(v.), is Lorentzian with a full width
at half maximum of Av. at v. = vo; thus, the normalized line shape isgO =i v , 1 (20)

Taking the logarithm of equation (17), we obtain

-In (RmRL) = 21yij (NV2Zi- NZj) ; (21)

then, using equation (19), we have
N, In (RmRL) _+ Z (22)

NA 2/VAaAZZ + ZiJ +(Z2

for the threshold condition for a two-level system. All the quantities on the
right side of equation (22) are known, and the threshold value N/NA can be
computed at any temperature. This ratio can be considered a figure of merit
for the particular laser system, such that the smallest NINA, in general, is the
better system.

Unfortunately, for holmium, a large number of transitions lie at almost the
same wavelength because of the degeneracy or near degeneracy of the energy
levels of the 'IJ multiplets. Because of the finite line widths, transitions other
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than i -4 j can contribute significantly to the threshold. The contributions of
other transitions can be taken into account by modifying equation (2 1) to

-In (RRL) = 21 [ai.V N2Z- NiZj) + X:'" ,j.2Zk-N1Zm)], (23)

where the prime on the summation indicates that k i and m *j simultane-
ously. Using equation (19), as before, we get,

2L+ Gij+) H,n
N 2 _z + " (24)
NA I+'F

/aj

where
21 In (RRL)
21NAOij (4 + Zj)

Hn= ObnrLm

Fi = ykra (Zk + Zm)
j a i kZ + Z,)

In equation (24), the i - j transition is assumed to be the laser transition, so
that v. = v., and we assume all line widths to be the same. With this
assumption,

g(vY) = .. v" (25)

The levels that are considered in the sum over k and m in equation (24) are
determined by

Ek-Em=Ei-Ej±AE. (26)

In the calculation we have taken R,,, = 0.90, RL = 0.90, the laser rod length I =
0.05 m, and Av = 3 x 1011/s (width in energy = 10 cm-1). With these
assumptions, we have nA - n.. and )L, ~- X. Thus, in equation (24) we have

- In (R,,RL) 4n2 Avn2 ,ti
Gj= 2 NA (7 + 44) 5

HkJa = xAv g(Vkn) it Zm, (27)2 k,,(7,i+ Z)

Fkm = V g(vO (Zk + Z,)tj
2 + zj)rb1
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The values given in equation (27) were used in equation (24) to determine N21

N for the 10 garnets considered. The lasing levels E,- E. were selected from
the highest three values of the branching ratios calculated'foreach garnet. The
results are shown in figures 3 and 4. The garnet with the best figure of merit
(N/NA, lowest at threshold) at 300 K was LuGG, while that with the best
figure of merit at 75 K was YGG.

5. Results

Branching ratios were calculated for all the levels of the 51 to 'I. manifolds for
temperatures between 50 and 400 K. Plots were made for the largest lines at
300 K. YScAG was plotted twice, once for each set of x-ray data available.

The figure of merit, which is defined as the fractional population inversion
required for threshold, is plotted for the same temperature range. Again, the
lines with the highest branching ratios at 300 K were the lines plotted for the
figure of merit. Any other lines that may have been close enough to contribute
and had fairly large branching ratios were included in the figure of merit
calculation of that line. Because contributing lines were considered in the
figures of merit, it is not always true that the transition with the largest
branching ratio has the lowest figure of merit. The figure of merit should be
a better indication of where the lasing will occur, because it considers other
factors, such as other contributing lines, manifold lifetimes, concentration of
the holmium, and losses in the resonator.

The top branching ratio line for YAG shown in figure I a illustrates this change
of order. At 300 K, the line with the largest branching ratio is the 21-12
transition (2.092 mm). But this transition never has the lowest figure of merit
for the parameters selected. The 18-17 transition (2.120 mm) has the lowest
figure of merit at high temperatures (above 200 K), and the 19-12 transition
(2.101 mm) has the lowest figure of merit at low temperatures (fig. 3a). This
corresponds well to what we know from experiment: at 77 K the 2.098-mm
line of YAG lases, and at 300 K the 2.12-mm line lases. The crossover point
at 200 K has not been verified experimentally. For our theoretical results, the
crossover point will change if we choose other values for R., RL, 1, and the
holmium concentration. The default values we picked for all our calculations
were 90-percent reflectivities, a rod length of 0.05 m, and a 0.3-percent
concentration of the holmium.

No other lines were considered to significantly contribute to the 18-17
transition, but the 21-12 line had three other lines contributing: the 23-16,
24-16, and 24-17. The 19-12 also had lines contributing. That is, the 18-12,
20-13, and 22-17 transitions had their energy differences within 5 cm- of the
energy difference for the 19-12 transition, and had large branching ratios.
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A brief discussion of the other hosts follows. For branching ratios, we looked
for anything that might be unusual and for the one which was the highest. For
the figure of merit, we considered which was the lowest, any crossovers that
may have occurred, and any multiple lines that contributed.

LaLuGG

The highest branching ratio, at all temperatures, was the 18-17 transition
(2.089 mm) (fig. Ib). In this case it was true that the highest branching ratio
was also the lowest figure of merit (fig. 3b). No crossover occurred on the
figure of merit. No other lines contributed to the 18-17 transition. The 21-12
line (2.067 mm) had only one other contribution, the 24-17 line. The 25-10
line (2.025 mm) had no significant contributions. One unusual discovery
about this host was the large manifold lifetime. It had a value of 7023 ms,
which is over 1.5 times that of YAG (3979 ms for YAG). The range of
manifold lifetimes for the other hosts all fell between 3937 ms for YScAG(2)
and 4750 ms for GdScGG.

GdScAG

At temperatures below 200 K, the 18-17 transition (2.113 mm) had the
highest branching ratio (fig. Ic). Above this crossover point, the 21-12 line
(2.078 mm) had the largest branching ratio. The 18-17 line had the lowest
figure of merit at all temperatures (fig. 3c). The one exception was at 125 K,
where the 23-14 line (2.082 mm) was almost as low. The 21-12 transition had
only one line contributing significantly to it, the 24-15. No other lines
contributed to the 18-17 transition, while three lines contributed to the 23-14
transition, namely, 20-13, 23-15, and 24-17.

YScAG(1)

The 18-17 transition had the largest branching ratio for all temperatures (fig.
ld). A double crossover occurred in the figure of merit plot (fig. 3d). Below
75 K and above 150 K, the 18-17 line (2.118 mm) was lowest. But between
about 75 and 150 K, the 21-12 transition (2.087 mm) was lowest. Contribut-
ing lines were as follows: to the 18-17 line, none contributed; to the 21-12
line, 23-15, 23-16, 24-16, and 24-17 contributed; and to the 20-11 line
(2.026 mm), 18-10 contributed.

YScAG(2)

The 19-17 transition had the largest branching ratio at all temperatures (fig.
le). The 19-17 transition (2.123 mm) has the lowest figure of merit at all
temperatures (fig. 3e). Contributing lines for the figure of merit calculations
were as follows: for the 19-17 line, 18-17 and 19-16 contributed; for the
20-17 line (2.119 m), again only 19-16 was close enough to contribute; for
the 25-10 line (2.047 mm), 22-9 and 23-9 contributed.
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GdGG

The 19-17 line (2.102 mm) had the highest branching ratio, and it was
significantly higher than the next closest ones (fig. If). This line had by far the
lowest figure of merit for this host (fig. 3f). In determining the figure of merit,
we found that the 19-17 had three lines contributing: 18-17, 19-16, and
20-17. The 21-14 transition (2.085 mm) had 22-17 close enough to contrib-
ute; and the 20-11 transition (2.076 mm) had a contribution from the 18-11.

GdScGG

As in GdGG, the 19-17 (2.098 mm) transition in GdScGG also had the 19-17
(2.098 mm) transition much higher than the next closest branching ratios at
all temperatures (fig. 2a). It also had the 19-17 to have the lowest figure of
merit (fig. 4a). In this case, however, the 19-17 line had no contributing lines
to it; the 21-12 (2.007 mm) had the 22-17 contributing; and the 21-15 (2.085
mm) had the 18-12, 19-12, and 21-16 contributing.

YGG

Above 250 K the 21-16 transition (2.103 mm) has the highest branching ratio
(fig. 2b), while below this the 20-17 transition (2.703 mm) is the highest,
down to 100 K. Below 100 K the 19-17 (2.114 mm) is highest. Unlike the
previous two gallium garnets, the yttrium gallium garnet does not have a clear
candidate for the largest branching ratio. The top several lines are close
together. However, the 20-17 line does seem to have a consistent lowest
figure of merit at all temperatures (fig. 4b). This may be because some strong
lines such as the 19-17, 18-17 (as well as the weaker 18-16), and 20-16 are
close enough to contribute to the 20-17. The 21-16 transition has only the
20-15 contributing, and the 21-14 transition (2.089 mm) has only the 22-17
contributing. Out of all the hosts, YGG had the lowest figure of merit at 75 K.

LuGG

For this host, the 21-16 (2.117 mm) had the highest branching ratio above 125
K (fig. 2c). The 19-17 (2.132 m) was highest at lower temperatures. The line
with the lowest figure of merit at all temperatures was the 19-17 (fig. 4c). The
21-16 had multiple lines (19-15 contributed), and the 19-17 had multiple
lines (18-16 and 18-17 contributed), but the 20-15 (2.112 mm) did not.
Compared to all other hosts, LuGG had the lowest figure of merit at 300 K.

GdAG

The highest branching ratio above about 115 K was the 21-12 transition
(2.084 mm), but below this the 18-17 (2.112 gm) was higher (fig. 2d).
Between 50 and 175 K the 21-12 had the lowest figure of merit; above the
crossover temperature the 18-17 was lowest (fig. 4d). Multiple lines were as
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follows: for the 21-42 line, the 22-13, 23-16, 24-15, 24-16, and 24-17
transitions contributed; the 18-17 had no other contributions; and the 20-11
line (2.073 mam) also had no additional contributions.

LuAG

The 18-16 (2.127 mm) was clearly the highest branching ratio, and it was
much higher than the next closest (fig. 2e). This line also had the lowest figure
of merit at all temperatures (fig. 4e). Multiple lines for the figure of merit were
as follows: the 18-16 had no contributions; the 21-12 line (2.103 mm) had
contributions from the 22-14 and the 22-16 transitions; and the 19-12 (2.114
mm) had contributions from the 18-12 line only. Out of all the other hosts,
LuAG had the highest branching ratio at 75 and at 300 K, as well as the lowest
thermal occupation factor for the lower laser level.

If all the hosts are compared one to another, at 300 K, LuAG had the highest
branching ratio, followed by YAG, GdAG, and GdScGG. At 75 K, LuAG
again had the highest branching ratio, followed by YScAG(2), GdScGG, and
YAG. Additionally, LuAG had the highest energy level splitting of the lowest
manifold, and was therefore found to have the lowest thermal occupation
factor for the lower laser level. LuGG, YScAG(2), and YAG followed. We
found that at 75 K the material with the lowest figure of merit was YGG. This
was followed by GdGG, LuGG, and LuAG. But at room temperature, LuGG
was found to have the best figure of merit, followed very closely by LuAG,
and then by YScAG(2), and a different line of LuAG.

6. Conclusion

We evaluated 10 laser hosts by determining temperature-dependent branch-
ing ratios and figures of merit. A crystal-field model was used to predict
energy levels and transition probabilities of holmium in garnet hosts. We
determined a complete set of theoretical crystal-field parameters for these
garnets from a set of radial factors based on experimental data available for
YAG. A real need exists for more experimental energy levels for holmium in
garnets. Besides YAG, YGG was the only other material that had energy
levels available in the literature. Energy levels for Ho:YGG were predicted
based on the theoretical crystal-field parameters, and good agreement to
experiment was found. This led us to believe that our set of theoretical crystal-
field parameters would give good estimates of the energy levels for the other
hosts for which we had no experimental optical data. With x-ray and index of
refraction data, we have evaluated the performance of 10 lasers by using a
quantum mechanical model to predict the position of the energy levels and the
temperature-dependent branching ratios of the 51to 11, levels of holmium. The
fractional population inversion required for threshold, a factor based on the
branching ratios and thermal occupation factors, was also evaluated.
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