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ABSTRACT i

i
I REAN

An investigation into the material and 1 mteh%:al characterizations of braided
composites for pressure vessel design is conducted™The materialsinclude S-2 Glass,
Carbon, and Afamid (Kevlar) fiber reinforced epoxy composites (glass/epoxy,
carbon/epoxy, and Kevlar/epoxy, respectively). Twelve material configurations are
evaluated. Width-effects determination is conducted to examine the cffect of cutting
braided specimens trom larger panels. Tensile strength and tensile modulus are
measured on each material at room temperature and humidity, and on materials
conditioned via exposure to a 560°F environment for one second but tested at room
temperature and humidity. Resistance to slow and fast heat application (slow and

fast cook-off, respectively) is examined to qualitatively determine material response. -~
Additionally, a literature review of hygrothermomechanical effects is conducted.

Width effects determination testing show . that as specimen width is increased,

average tensile strength increases sharply and levels off to a relatively constant value

“above a specimen width of 2 inches. Thus, the specimen width is set at 2 inches in
the tensile test portion of the research.

Mechanical property data are presented for the various material configurations.
Braid angle is shown to have a strong influence on tensile properties in single-ply
braided composites. Single-ply and dual-ply S-2 glass/epoxy composites have higher
tensile strength and tensile modulus than their Kevlar/epoxy counterparts of similar
configuration. Combining Kevlar/epoxy and carbon/epoxy materials into a com-
posite sandwich significantly improves the tensile properties of Kevlar/epoxy
single-ply and dual-ply materials. ——

Material properties are examined with respect to resistance to heat application.
All specimens subjected to slow cook-off testing for one hour at 237.50°F, 356.25°F
or 475.00°F show visible signs of discoloration. Fast cook-off testing investigates
a material’s response to intense heat. Fast cook-off testing, using an oxyacetylene
torch, lasted for fifteen minutes or until structural integrity was lost. AOnly one
configuration, a Kevlar/epoxy-carbon/epoxy-Kevlar/epoxy-steel foil sandwich
retained structural integrity for the full fifteen minutes. 4Single-ply materials, and
especially Kevlar/epoxy materials, demonstrate the leasggesistance to intense heat.
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1 INTRODUCTION

Composite materials employing fiber reinforcement of a resin matrix are
becoming more common as candidates for improving the qualities of mechanical
structures. The single greatest advantage of using fiber reinforced composites (fi-
_ ber/matrix materials) from a design standpoint is the ability to match material
characteristics with structural function. Given a known function, composite
materials can be fabricated to optimize the positive qualities of a structure. The
designer, armed with this foresight, is no longer constrained by fixed material
properties. Variations of fiber types, fiber lay-up, stacking sequence, matrix material

and structural geometry provide a nearly infinite array of material properties.

The combinatorial nature of composite structural design can become over-
whelming. This is especially true for structures that must be efficiently engineered
for weight, cost, strength, or any other limiting attribute, whether considered alone
or in any combination. It is relatively easy to design too conservatively with any
material. The challenge posed to designers using advanced materials, such as

fiber/matrix composites, is to optimize a multidimensional design method.

The lack of a standard, universally accepted method for incorporating advanced
composites in design leads to the method of test and evaluation. Candidate materials
for a structural design are chosen based on previous operational observations or
because the fiber/matrix combination exhibits (or is likely to exhibit) traits that are

deemed desirable in the final structure.

The use of composite materials in the marine, aerospace, and related fields has
been of increasing interest todesigners and operators in those areas. Weight, strength,

and robustness are measures of effectiveness that are usually the driving factors in
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optimizing final products. Advanced composite advantages include relatively high
strength-to-weight ratios, high resistance to corrosive attack, ease of production, and

low-maintenance.

One area of interest expressed by designers and operators is in composite
pressure vessels. Because of their cylindrical shape, filament winding of composite
pressure vessels is common [1 - 4]. Braided composites are increasingly becoming

candidate materials for several reasons. A few of these reasons are as follows:

1.  Braids have strength and elastic properties approximating those of
corresponding angle-plied laminates with greatly enhanced impact

damage resistance [5].

o

Braided structures do not have to rely on interlaminar shear strength
of the matrix to prevent certain failure modes as in angle-plied

laminates [6].

3. Hybrid yarn braids are easily manufactured by using different yarns

on different spools [6].

4.  Unsupported braids up to eight inches in diameter are possible, and

with mandrel overbraiding, six foot diameters are achievable [7].

5. Complex shapes such as bends, cross-sectional area changes, and

tapers can be braided with relative ease [8].

Braided materials consist of fibers intertwined with each other in a specified
sequence. In order to be consistent with the literature researched for this project,
braided composites are defined by their dimensional characteristics. A two-
dimensional braid is constructed with two intertwined fiber bundles. The intro-

duction of a third, unidirectional fiber or fiber bundle results in a triaxially braided
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material; however, the bruid is still categorized as two-dimensional. A
three-dimensional braid is constructed with three or more fiber bundles intertwined
into the structure. In three-dimensional braids, a percentage of fibers is woven into
the fabric in the orthogonal direction, resulting in improved through-thickness

properties unattainable by single-ply composite laminates.

The over/under operation within a single braided layer produces symmetry that
is only achievable using two layers of traditional unidirectional composite laminae.
Braid angle, denoted by 6, is the acute angle formed by the off-axis (wrap (bias)
direction) fibers with the longitudinal axis (braid direction). See Fig. 1. Braid angles
are typically in the range of 10° to 85°. Radial hoop strength of cylindrical structures
1s improved by increasing the braid angle. Likewise, longitudinal stiffness is
enhanced by decreasing the braid angle [7]. Axial strength can be improved further
by introducing triaxial braiding where the third fiber is incorporated in the 0°

direction.

The purpose of thusresearch is to examine a variety of fiber reinforced polymeric
composite materials proposed for use in an overbraided composite pressure vessel.
The applications of such a design include self-contained breathing tanks for use by

underwater divers or fire fighters, submersibles, and rocket motor cases.

Material and mechanical characterizations are important in examining candi-
date materials. Material properties of interest are primarily heat-related. Resistance
of material specimens to both slowly increasing temperatures and intense, rapidly
rising temperatures indicates performance aspects in abnormal environments.
Mechanical characterizations include tensile strength and tensile modulus mea-
surements for specimens :aintained and tested at room temperature and humidity,

and samples environmentally conditioned at a higher temperature but tested at room

12




temperature and humidity. The effect of test specimen width on the reported results
is also important to ensure that the tests reliably predict mechanical properties of the

fabricated structures.

The proposed pressure vessel could potentially be exposed to environmental
effects as well as structural loads. The potential for environmental impact on a
structural design can be significant. A major survey and review of temperature and
moisture effects are undertaken to aid in the assessment of proposed materials to
withstand their intended environment. These hygrothermomechanical effects are

documented for various composite configurations.
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2 LITERATURE REVIEW

2.1 Braided Composites: Mechanical Characterizations

According to Croon [9], the mechanical characteristics of braided materials are
strongly dependent on their geometry. Given the large number of possible geometries
of braided materials and the numbers of materials which can be braided, a restricted
set of materials is chosen for examination. The materials which will be considered
are carbon, glass, and Kevlar fibers in polymeric matrices. The only types of braiding
considered are those which are two-dimensional or thin three-dimensional where

the depth dimension is much smaller than the length and width dimensions.

There is the potential for braided materials to exhibit increased through-
thickness strength and impact damage tolerance without a major negative effect on
tensile properties. Ko [10] conducted experiments comparing tensile strengths and
moduli of three-dimensional braided carbon/epoxy composites to their corre-
sponding laminates. He found that, as expected, the tensile strengths and moduli of
three-dimensional braided composites were lower than those of unidirectional
laminates. However, the three-dimensional braided composites showed far superior

tensile strength and modulus properties compared with angle-ply laminates.

The findings that three-dimensional braided composites display improved
tensile properties over angle-plied composite laminates were echoed by Simonds,
Stinchcomb, and Jones {14]. They also concluded from their experiments that
three-dimensional braided composite materials offered benefits in improved damage

tolerance compared with laminated composites.
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Gause and Alper [5] concluded that three-dimensional braided composite
elastic properties were merely similar to crossplied laminates having comparable
fiber angies. Their findings contradict Ko [10] and Simonds, Stinchcomb, and Jones

[14].

The findings of Gause and Alper [5] led to the conclusion that by using laminate
analysis, good approximations to braided in-plane elastic properties can be expected.
Comparisons of their experimental and analytical results support this statement. In
theirresearch, the basic three-dimensional braid pattern (similar to three-part braided
hair and denoted by [1 x 1 x 1]) is modelled as [#6], and [1 x 1] 1/2 fixed (in which
half of the yarns are held straight and the remainder are braided about the fixed yarns)

is modelled as containing 50 percent 0° plies, as in [+6/0,]..

Crane and Camponeschi [12] examined through-thickness fiber reinforced
braided materials, generically termed multidimensional braiding. Their objectives
were to investigate the effect of edge condition and braid pattern. Three types of
braids were examined. The findings revealed that the tensile strength of braided
materials cut to one inch widths was approximately 35 percent of that for uncut
specimens woven to the one inch specimen width. Tensile moduli of cut-edge
specimens were 55 percent of those for uncut specimens. Of all specimens with
cut-edges that were tested, the material configured as [1 x 1} 1/2 fixed displayed the

best retention of tensile properties.

In general, the results indicated that the tensile properties exhibited by braided
composites appeared to be no worse than comparable angle-ply composite laminates.

Important factorsin deciding if braids represent a truly advantageous product include
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geometric considerations (for example, what type of loads are likely to be incurred
by the finished product) and fabrication considerations such as cut-edge require-

ments.

Mechanical properties other than tensile strength and modulus also improve
with braiding. One of the primary reasons two-dimensional, triaxially braided
structures have been developed is to overcome the bidirectional orthogonal primary

loading limitation exhibited in woven fabrics [11].

The mechanical properties of two-dimensional triaxially braided graphite/e-
poxy cylinders in tension and compression were examined by Tsiang, Brookstein,
and Dent [15]. They stated that yarn overlacing, as found in triaxially braided
structures, may enhance the interlaminar shear strength. This is a potential advantage
over ordinary angle-ply laminae, especially in laminates requiring a high degree of

flexural strength as well as tensile strength.

Two-dimensional triaxially braided composites are not without drawbacks.
Elastic properties of the structure may be adversely affected by highly crimped yarns
brought about by the braiding process [15]. Lugar [11] expanded this to say that not
only can fiber crimp be a potential problem, but braids characteristically contain a
large interior void volume as well. This increased void volume may have a decidedly

deleterious effect on mechanical properties of the composite.

2.2 Hygrothermomechanical Effects on Mechanical Properties

Advanced composite materials may be subjected to a variety of environmental
conditions. Practical designs must be somewhat impervious to variations in oper-
atingclimate and storage conditions. Ideal temperatures and relative humidity values

are rarely realized outside the laboratory.
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A review of the effects of temperature and moisture on mechanical properties
is undertaken to understand the hygrothermomechanical effects on composite
materials. In order to bound the review, only references discussing carbon, glass,

and Kevlar materials are reviewed.

Komorowski [16] reviewed 328 sources of information on hygrothermal effects
in continuous fiber reinforced composites. He found that tests in tension, com-
pression, torsion, shear and flexure were used to determine mechanical properties.
Properties most often reported in the literature were strength, modulus,
notch-damage and impact-damage sensitivity. The properties of interest for this
study are tensile strength and tensile modulus. Other properties are introduced to

aid in the understanding of temperature and moisture effects as required.

The method of approach for this section of the literature review is to briefly
mention broad environmental effects on resins, and then examine hygrothermal
effects on carbon, glass, and Kevlar fibers and the composites they reinforce.

Emphasis is maintained on composite laminates.

A good discussion on the effects of water absorption into epoxy resins was

conducted by Wright [17]. His research provided many valuable points:

1. Water absorption (as measured by percent weight change after 180
hours immersion in boiling water) differed by up to a factor of ten

between different resin types.

2. Innearly every case, drying and subsequent reimmersion of spec-
imens resulted in an additional 10 percent increase in amount of

water absorbed.
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3. Water absorption was a positive function of humidity and tem-

perature.
4. Water absorption caused resins to swell.

5. Moisture acted as a plasticizing agent in the resin, and hence,

lowered the glass transition temperature (T,).

6. Coatings can noticeably reduce moisture content in laminae, even

if the coating is itself permeable to water.

Most temperature and moisture conditions induced degradations related to
matrix-dominated properties. This point is well documented in literature concerning

carbon and glass reinforced epoxy composites [18 - 22].

Daniel, Yaniv, and Peimanidis [18] tested a set of unidirectional carbon/epoxy
specimens at different temperatures, moisture contents, and strain rates. They found
that all longitudinal properties remain unchanged, with the exception of longitudinal
modulus, which increased slightly with increased strain rate. These findings are
expected since longitudinal properties are fiber-dominated. All matrix-dominated
properties (for example, transverse tensile and shear strength) showed degradation

with increasing temperature and moisture for a given strain rate.

The finding that the carbon/epoxy properties most affected by temperature and
moisture are matrix-dominated is in concordance with the studies of Hahn [19]. He
concluded that damage mechanisms present in hot and wet states include matrix
plasticization, debonding between fiber and matrix, microcracking, and microvoid

formation.
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Lifshitz [20] also agreed with the premise that hygrothermal conditions effect
matrix-dominated properties. He stated that matrix-controlled mechanical properties
of carbon/epoxy laminates may be significantly altered by differencesin temperature,
humidity and strain rate. Conversely, his data showed that for fiber-dominated
longitudinal properties on [0°]; specimens, tensile modulus was not affected by the
same conditions. Axial tensile strength, interestingly, increased withacorresponding
increase in temperature and moisture content. This was thought to be due to the
brittle nature of the matrix at lower temperatures. Hence, the matrix was more
sensitive to stress concentrations in the regions near broken fibers. This condition

diminished at higher temperatures as the matrix became more ductile.

Thermal aging of carbon/epoxy composites was conducted by Kerrand Haskins
[21]. Specimens were aged at elevated temperatures of 250°F and 350°F for times
of 100 to 50,000 hours (5.7 years). Tensile tests were conducted on the conditioned
samples. Reduction in strength was significant at higher temperatures and longer
aging periods. They concluded that the primary cause of mechanical property loss
during thermal aging was matrix degradation. To a lesser extent, fiber degradation

played a role in reducing tensile properties.

Carbon fibers are not susceptible to water absorption and thus, they do not
radically change properties in a moist environment. This explains why temperature
and moisture affect matrix-dominated properties more than fiber-dominated prop-

erties in carbon/epoxy composites.

Glass fibers are also impermeable to water absorption. However, thermoset
glass reinforced plastics are still prone to degradation in wet conditions. Weather
exposure tests showed that, in general, mechanical properties of glass/epoxy com-

posites decreased 20 to 30 percent after 60 days of water saturated conditions [23].
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Zhou [23] found that, based on the research of glass/epoxy materials water
saturated longer than twenty years, there were three distinct stages of mechanical

property change in the composites:

1. The early stage was characterized by quick degradation of
mechanical properties. These properties gradually became constant

as the specimen became water saturated.

2. The middle stage was reached when the composite settled to its wet
strength. The mechanical properties of the specimen remained

constant at least twenty years in this condition.

3. Thelast water-saturated stage was reached as structural integrity of

the specimen was lost and failure of the specimen occurred.

The wet strength phenomenon observed in glass/epoxy was also documented
for carbon/epoxy systems [24]. It was found that the moisture content reached a
steady state and varied only slightly thereafter. In the case of a composite 0.5 inches

thick, this steady-state condition was reached in ten years.

Wet specimens that have been desorbed will recover a percentage of their
pre-wetstrength [25, 16,22, 23]. The amountof recovery isdependent on the wetting

conditions and drying time.

Fukuda [22] found that flexural modulus recovered with drying, after being
water saturated for up to 90 days at 176°F, for carbon/epoxy, glass/epoxy, and
carbon/glass/epoxy hybrids. Flexural strength and interlaminar shear strength
recovery was small. Zhou [23], on the other hand, found that glass/epoxy recovered

96 percent of its original flexural strength after being water saturated for seven years.
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It is interesting to note that Fukuda [22] found that the moisture contents of
glass/epoxy and carbon/glass/epoxy hybrids reached a maximum and then decreased
gradually. The mechanism for this decrease was not stated. He pointed out that
Kasturiarachchi and Pritchard [26] also reported a moisture content reduction for

water saturated glass/epoxy.

The introduction of Kevlar as a reinforcing fiber in a polymeric matrix adds a
new factor to hygrothermal effects on mechanical properties. Kevlar is an organic
fiber, and as such, it is prone to water absorption on its own accord. Therefore,
degradation mechanisms are manifested through moisture absorption of both the
matrix and the Kevlar fiber [27]. Water absorption may result in moist.re-induced
physical and chemical changes in Kevlar 49 fibers [28]. Because of the hygroscopic
nature of Kevlar, fiber absorption must be considered in studying environmental

effects [29].

Sampathkumar and Schwartz [30] examined the effects of water immersion on
loosely-braided bare Kevlar fibers. Tensile tests on specimens immersed for 30 days
at 70°F revealed that the only fibers showing strength reduction were those immersed
in salt water and tested dry. Samples tested in distilled water showed no strength
degradation when tested dry or wet. The salt water samples tested wet also showed
no reduction in tensile strength. Limited reversibility of property degradation was
observed; when dried braids were subsequently reimmersed and tested wet, they

displayed results comparable to other samples tested wet.

The results given in [30] should be used cautiously. As the authors pointed

out, these results were for loosely-braided small-diameter Kevlar fibers. Extrapo-

lation of data to larger structures may prove to be inaccurate. They concluded that




the attack of salt crystals on the Kevlar fibers probably represented a worst-case
scenario, since the fibers were completely exposed to the harsh environment and not

protected by a matrix or other fibers.

Gopalan, Somashekan, and Dattaguru [27] showed in their experiments that
Kevlar/epoxy ultimate tensile strength degraded 12 percent and Young’s modulus
was reduced 32.5 percent after immersion in water at 158°F for 20 days. Graph-
ite/Kevlar/epoxy hybrid showed slightly less, yet significant degradations of the
same properties. They concluded from their findings that fiber absorption in the

case of Kevlar played a significant role in property degradation.

The flexural response of Kevlar/epoxy laminates was studied by Allred [25].
He found that strength reduction was significant for specimens at 302°F and near
moisture saturation. Flexural strength actually increased wher. measured at -67°F.
Khan [31] found reductions in flexural strength of Kevlar/epoxy at temperatures in

the range of 77°F to 203°F.

Extreme environmental conditions similar to those found in the tests described
above may be rarely seen by composite structures in service. The effects of service
environment aging was one of the topics of investigation of Morgan, er. al. [32].
They found that under ambient aging conditions, ultraviolet exposure produced fiber
strength degradation. (Ambient conditions were not explicitly defined in [32].
Beckwith and Wallace [33] defined ambient conditions as 40°F to 100°F and less
than 75 percent relative humidity.) The data showed that stress exposure produced
larger degradations. Most interesting, however, was the fact that the burst pressure
of a Kevlar/epoxy vessel actually increased with aging. This was due to moisture
sorption resulting in increased resin flexibility. (Recall Lifshitz [20].) The results

do not guarantee similar results in more extreme environments for long periods of
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time. However, the authors felt that in typical service environments,
hydrolytically-induced fiber degradation and ultraviolet-induced fiber aging were

not a serious concern.

In another studv, significant performance deterioration was attributed to
residual stresses caused by the expansional mismatch between fiber and matrix [34].
The stresses increased as service temperatures further deviated from composite
fabrication temperature. Structural geometry may be of little help in solving this
problem. In carbon/epoxy composites the linear expansivity is only a weak function

of shape [35].

Itis obvious after conducting this research that work presented in the literature
is very limited in the area of braided fiber reinforced composite materials. In most
cases, the data were presented for tests on specific material configurations of interest.
As Lifshitz [20] pointed out, results can often be too specific to be valuable in the

design of other structures.

2.3 Predictions of Hygrothermal Behavior of Braided
Composites
Predictions of the mechanical response of braided composites have not enjoyed
the same plethora of attention given to other laminated composites. Ko [36] asserted
that, in general, "the properties of braided composites are not as well characterized
as those for unidirectional tape or woven ply laid-up laminated composites." The
myriad of braiding options has resulted in large areas of unknown mechanical

properties.

The attention being focused on attempts to optimize braided composite char-

acteristics has caused a lack of development in understanding temperature and
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moisture effects. The introduction of braided composites to greater structural use
should begin to reverse this trend. As the demand for braids increases, more

information regarding environmental performance characteristics will be required.

In the absence of substantial amounts of specific data for braided composite
hygrothermomechanical behavior, broad conclusions developed from other studies
may provide some insightful information. The confirmation of these hypothetical
deductions must be conducted through controlled tests. Mechanics of moisture
absorption and causes of failure due to wet and hot environments are examined.

Predictions for the performance of Kevlar/epoxy braided composites are attempted.

Moisture absorption in composites has been analyzed and found to be a function
of matrix properties [17, 33], specimen construction {17, 22, 27, 29, 32], and envi-
ronmental conditions [17, 25, 27, 32, 34]. Different combinations of properties,

constructions, and conditions produced various degrees of hydrolytic states.

Matrix properties are controllable from the outset of specimen construction by
the designer and fabricator. Itis axiomatic to state that not all epoxy systems behave
the same, and that no single resin may contain all the desired properties in a composite
structure. However, it is prudent that some attention be paid to the matrix hygro-

thermal properties when operation in a hot or moist environment is expected.

Braided composite structures are not exempt from moisture absorption through
the matrix. Therefore, they are equally susceptible to degradation of the resin
physical properties, such as swelling and reduction in glass transition temperature,

as are comparable angle-plied composite laminates.

Specimen construction is important from the viewpoint of fiber orientation and

processing methods. Gopalan, Somashekar, and Dattaguru [27] compared the
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degradation in strength and stiffness of unidirectional, bidirectional, and
randomly-oriented E-glass reinforced composites after hygrothermal conditioning.
Unidirectional orientation displayed the best strength retention, and randomly-

oriented fibers showed the most severe degradation.

Although it was not specifically mentioned in [27], the reduction of strength
inrandomly-oriented fiber composites may be a strong function of the void content.
The necessarily high number of fiber cross-overs creates the opportunity of "dry”
fiber contact. The lack of resin in such areas could produce "water pockets" that
trap and hold moisture. Braided composites are at a greater risk to this void problem
than angle-plied composite laminates. (Recall Lugar [11].) The large interior void
volume of braided composites may continue to be a problem until improved specimen

fabrication is developed.

Environmental conditions also affect the moisture response of composites and
their resin systems. At higher temperatures, water absorption is accelerated due to
the expansion of voids and microgaps at the fiber-matrix interface. Swelling of the
composite also takes place allowing even more moisture to be absorbed [27]. Wright
[17] pointed out the relationship between moisture absorption in resins and relative
humidity and temperature. As relative humidity increased, equilibrium moisture
contentrose. Likewise, an increase in diffusion coefficient was witnessed for higher

temperatures.

Braided composites may be equally prone to moisture degradation due to
environmental conditions as other composite configurations. The unique properties
of braids do not prohibit these types of moisture responses. There is equally little
evidence that braids may be worse than angle-plied composite laminates for the same

conditions.
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The failure mechanisms of hygrothermally conditioned composites has been
discussed by several authors {37, 17, 20, 25, 27, 28, 29]. Most research concluded
that accelerated failure was brought about by the combined effects of moisture and
temperature. It was documented that moisture effects were enhanced as temperature
increased [17], and that composite property temperature sensitivity was magnified
by increases in moisture [25]. This leads to the conclusion that the effects of heat
and moisture are mutually degenerative to the mechanical properties of composite

structures.

Rothchilds, ez. al. [37], asserted that matrix cracking can affect both matrix-
and fiber-dominated properties. Hygrothermal effects strongly influence matrix
crack formation on both a micro and macro scale. The differences in temperature
and moisture expansion properties between the fiber and matrix result in residual
stresses in the laminate. They have found that Kevlar/epoxy was more susceptible
to environmental conditions than carbon/epoxy and glass/epoxy laminates. This
was due to the large mismatch of thermal coefficients for the Kevlar/epoxy com-
posite. However, Kevlar/epoxy had reasonably good resistance to matrix cracking

due to its low transverse modulus.

The combined effects of temperature and moisture may also aid in the formation
of larger voids during hyerothermal conditioning. As temperature increases, the
thermal expansion misma - between fiber and matrix allows voids and microgaps
to grow. Moisture is able to settle in these areas causing swelling of the matrix and
further stress damage. This process allows diffusion of moisture into the composite
atafasterrate [27]. The presence of voids in composite materials result in diminution

of mechanical properties.




It appears that the presence of braided fibers in a resin matrix may promote the
hygrothermal failure mechanisms discussed above. Once again, the characteristi-
cally high amount of interior voids present in a braided structure may adversely
affect its performance in hygrothermal environments. Kevlar fibers are burdened

with the additional onus of having particularly poor bonding characteristics [38].

Saunders [8] conducted mechanical tests of braided +45° E-glass/epoxy and
braided £90° glass, Kevlar, and carbon/epoxy composites at room temperature and
350°F. Degradation in tension, corﬁpression and shear strength was apparent for all
materials tested at the higher temperature. No specific reason was given for this
adverse affect of temperature. He found, however, that braided glass and Kevlar
composites had roughly the same strength values as most comparable woven
specimens. Braided carbon, on the other hand, displayed a marked decrease in

mechanical properties over woven carbon products.

The environmental effects on woven Kevlar/epoxy and Kevlar/thermoplastic
composites were examined by Khan [31]. All specimens were aged at 180°F in 80
percent relative humidity for 21 days. He found that hot and humid aging had a
detrimental effect on flexural properties of thermoset (epoxy) composites. Ther-
moplastic composites displayed better flexural properties, both in terms of absolute

and percent retention after conditioning, than comparable thermoset composites.

The effect of hot and wet aging of braided fiber reinforced epoxy composites
appears to be substantial. In some cases, due to large void volumes, degradation
may be worse than that in comparable angle-plied composite laminates. Braided

composite properties do not seem to escape hygrothermal detrimental effects.




The prediction of hygrothermal effects on braided composites is difficult. In
this review, no attempt is made to establish quantitative predictions. Only broad

conclusions are reached and qualitatively discussed.

2.4 Summary

Major test results and conclusions pertaining to braided composites are sum-
marized in Table 1. Tensile strength and tensile modulus data on hygrothermally
affected composites (including some data from Table 1), are shown in Table 2. It
is important to note that values are only indications of behavior. Direct comparisons
are generally not advisable due to variations in fiber volume fraction, void content

and resin systems.




3 EXPERIMENTAL EQUIPMENT AND PROCEDURES
3.1 Composite Specimens

The composite materials considered in this study are S-2 glass fiber reinforced
epoxy, Kevlar fiber reinforced epoxy, carbon fiber reinforced epoxy, and sandwich
composites consisting of both Kevlar and carbon fibers. Additionally, certain
composites have stainless steel foil and rubber inhibitor adhered to one side. For
ease of reference, all candidate materials, lettered A through L, are listed in Table

3. Appendix A describes specimen properties and fabrication procedures.

3.2 Testing Procedures

Mechanical and material characteristics are conducted on candidate composite
specimens. The test matrix for this research is summarized in Table 4. As indicated,
tensile strength and tensile modulus are determined for both unconditioned speci-
mens and specimens conditioned via exposure to a 560°F environment for one second
at ambient humidity. A schematic of a typical tensile specimen is shown in Fig. 2.
Material characteristics are observed after exposure to slow and fast heating rates
(slow and fast cook-off, respectively). In addition to controlling the rate of heating,
cook-off tests control the maximum temperature reached and the time of exposure.

Detailed testing procedures and equipment are described in Appendix B.

3.2.1 Width Effects Determination

Test specimen width is important in determining reliable tensile properties.

This is especially true in light of Crane and Camponeschi’s findings that braided
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specimens cut from larger panels are susceptible to significant reductions in ultimate
tensile strength over specimens braided to exact test widths [12]. Therefore, width

effect testing precedes tensile testing.

Representative samples of +65° triaxially braided Kevlar fiber reinforced epoxy
(Material C) are used to determine the minimum width required for tensile testing.
Storage and testing are conducted at room temperature and humidity. Widths that
are too small result in unreliably low test results. This is a function of edge effects
and load-carrying capability of angled fibers in the br2id. Above a given width, the
measured tensile strength of the specimens is constant. Hence, this minimum width

is used for all braided material tensile tests.

3.2.2 Tensile Tests

Specimens are tested to failure. Use of an extensometer and plotter provides
modulus data. Ultimate load data are read directly from the Materials Testing System
(MTS) tensile tester in volts and then converted to pounds force. Ultimate tensile
strength is determined by dividing the maximum force by the specimen cross-

sectional area prior to the test.

3.2.2.1 Room Temperature Tests

Measurement of tensile strength at room temperature duplicates those condi-
tions most likely to be encountered during storage of pressure vessels. Information
regarding the strength of the specimens at room temperature gives useful data about
the materials to be used in the final vessel design. Additionally, these data are used
to form a baseline. Comparison of elevated-temperature conditioned tests to the

baseline allows conclusions to be derived regarding temperature effects on strength.

30




Specimens are stored and tested at room temperature and humidity, typically
70°F and 50 percent relative humidity. No special conditioning is undertaken prior

to testing.

3.2.2.2 Elevated Temperature Conditioning

Elevated-temperature conditioning tests yield a measurement of tensile strength
after exposure to environments more severe than ambient conditions. Comparison
of environmentally-conditioned test results with room temperature results may
generate a multiplicative factor allowing the prediction of post-conditioning per-

formance.

Elevated-temperature conditioning is conducted through the use of an envi-
ronmental chamber. A photograph of the chamber is included as Fig. 3. The
specimens are placed in a constant 560°F environment for one second and are then
cooled at the specified rate given in Fig. 4. Temperature in the environmental

chamber is monitored with a thermocouple.

3.2.3 Cook-Off Testing

Slow and fast cook-off tests are performed to analyze the characteristics of the
material when subjected to relatively low-temperature prolonged heat, and relatively

high-temperature intense heat of short duration.

3.2.3.1 Slow Cook-Off

Slow cook-off tests approximate the effects of exposure to slowly increasing
temperatures on the material being tested. Visible char suggests loss of strength. In
pressure vessels, it may be desirable that case materials lose their ability to hold

pressure before temperatures causing an explosion of the contents are reached. Slow
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cook-off data are an indication of the resistance of the specimen to slowly increasing
temperatures. These types of temperatures may be found in storage areas under

abnormally hot operational conditions.

Slow cook-off tests are conducted in a 2192°F Lindberg Model 51442 Muffle
Furnace at temperatures of 237.50°F, 356.25°F and 475.00°F. The specimens are
exposed to the elevated temperatures for a period of one hour. After the specified
time, the samples are removed and are qualitatively examined. It is not within the
scope of this research to determine residual elastic properties of materials subjected

to slow cook-off environments.

3.2.3.2 Fast Cook-Off

Determination of the response of case materials to rapidly rising temperatures
is accomplished through fast cook-off testing. These types of environments are
likely to be encountered in only the most extreme conditions. Service use and
contents of the pressure vessel dictate the desired properties of the material. Graceful
degradation may be preferred to properties allowing the structure to withstand

extreme environments.

Fast cook-off tests are conducted using an oxyacetylene torch and a 1999°F
K-type Chromel-Alumel thermocouple. Fig. 5 is a schematic of the testing set-up.
The samples are subjected to the flame in a ventilated hood approved for toxic

substances.

Surface temperature of the composite samples reach 1000°™ within the first 30
seconds, and average 1500°F for the remainder of the test. A sacrificial sample of

Material J is used to calibrate the required flame distance from the specimen.




The test is undertaken for a period of no more than 15 minutes. If a sample
has obviously lost its ability to support any load prior to the end of 15 minutes, the
test is stopped and the time is noted. All samples are qualitatively examined at

one-minute intervals throughout the testing.
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4 RESULTS AND DISCUSSION

Results for width effect determination, tensile testing, and cook-off testing were
obtained using the test matrix outlined in Table 4. Data for width effect and tensile

tests are presented in Appendix C.

4.1 Width Effects Determination

Three specimens of Material C were tested at four widths: 1inch, 1.25 inches,
2 inches, and 3 inches. Material C was chosen because its braid angle of £65° was
midway between the minimum (+55°) and maximum (+75°) braid angles to be tested
in the tensile test portion of this research. The desire to conserve test material and
the limitation of 4 inch maximum widths for the MTS wedge grips precluded testing
specimens of larger widths. The test widths were chosen to optimize material usage

and to obtain a broad range of widths for comparative purposes.

Table 5 summarizes tensile strength data of material C for width effects
determination. Fig. 6 is a graphical representation of these data. The testing showed
that as specimen widths increased, ultimate tensile strength (UTS) increased sharply
and then leveled off to a relatively constant value. The minimum width at which
UTS began to show consistency was chosen as the tensile test specimen width. Thus,

tensile test specimens were standardized at a width of 2 inches.

4.2 Tensile Tests

Tensile testing was conducted on materials A through K to obtain UTS and
tensile modulus data. Specimen failure was marked by a distinctive decrease of
load-carrying capacity in all tests. Figs. 7 through 11 show representative samples

of the tested materials after failure. Elevated temperature exposure at S60°F for one
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second had no visual effect of specimen failure. Therefore, the samples shown in
Figs. 7 through 11 are typical tensile ruptured specimens (room temperature or
elevated temperature conditioned at 560°F). All tensile tests were conducted sat-
isfactorily with the exception of Material K. The rubberinhibitor attached to Material
K delaminated prior to tensile failure of the specimen. Because of this delamination,
UTS could not be obtained. Tensile modulus, however, was calculated from the

initial slope of the load versus strain curve.

Examination of data presented in this section should be undertaken with the
appreciation that each material possesses different values of fiber volume fraction.
Emphasis for this research was placed on testing material systems "as-received”
from the manufacturer. Advantages and disadvantages of materials are therefore
compared between actual alternatives, rather than theoretical specimens. Although
the calculations were not conducted for this research, itis possible to normalize UTS

and tensile modulus values to a common fiber volume fraction.

The number of material configurations, braid angles, and laminate plies
incorporated in this research results in a large array of comparative possibilities
between material systems. Three areas of interest were chosen to simplify the
comparative process: braid angle effects, dual-ply effects, and multi-ply effects.
Summaries of comparisons made between material systems are included in Tables
6and 7. The vertical axis of Table 7 represents the baseline material for comparative
purposes. The format shown in Table 7 is used for room temperature and elevated

temperature conditioned specimens.
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4.2.1 Room Temperature Tests

Room temperature tensile testing yielded UTS and tensile modulus data as
summarized in Table 8. A summary of percent differences of UTS between baseline
materials and material systems of interest is included in Table 9. Tensile modulus

data are compared in Table 10.

4.2.1.1 Braid Angle Effects

In single-ply triaxially braided composites of the same fiber and matrix con-
stituents, UTS and tensile modulus decreased as braid angle increased. This result
was expected since at higher braid angles, radial hoop strength and stiffness are
enhanced by the reinforcing fibers at a cost to longitudinal strength and stiffness.
The fabrication process involved in manufacturing the triaxially braided specimens
isalsoafactorindetermining UTS and tensile modulus. Asthe braid angle increases,

the number of 0° fibers decreases for a fixed specimen width.

The change in tensile strength as a function of braid angle for single-ply
specimens differed for Kevlar/epoxy and glass/epoxy materials. However, both
material E and material F (with braid angles of #75°%) showed the same 59 percent
reduction in tensile strength compared to materials A and B (with braid angles of

+55%), respectively.

The rate of decrease of tensile modulus was greater for single-ply Kevlar/epoxy
materials than for single-ply glass/epoxy materials. As Table 10 shows, material E
(single-ply Kevlar/epoxy braided to £75°% degraded nearly twice as much as material
F (single-ply glass/epoxy braided to+75°) when compared to their respective baseline

materials A and B, respectively.
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In most cases, failure of the specimens was characterized by cracking of the
composite along the braid angle. Braided fiber crossover points are susceptible to
localized strength reduction. As fibers cross over each other in the braid, small radii
of curvature may result, inducing a significant bending stress in the fiber. Kevlar
fibers are especially prone to strength degradation in bending. Hull [45] showed
that for Kevlar 49 fibers subjected to bending, permanent yielding occurred on the
compressive side of the fiber long before the curvature was sufficient to cause tensile

failure of the fiber.

The probability of matrix void formation is higher at fiber crossover points.
The extremely close proximity of fibers at areas of fiber crossover may preclude
total coverage of the fibers by the resin. Since loads are not transferred through a
void, stress concentrations develop around the void, resulting in a locally weaker

structure.

Tensile failure of specimens is also affected by the £0 (wrap) fibers within a
braid which tend to rotate under applied tensile loads so they become more aligned
with the axis of loading. The shear developed within the lamina by fiber rotation
results in an intralaminar shear effect that may weaken the composite. Within a
braided composite containing interwoven 39 fibers, the intralaminar shear effect is
magnified because the direction of +6 fiber rotation directly opposes the tendency

of -6 fiber rotation.

Tensile strength and tensile modulus for single-ply glass/epoxy materials were

greater than those for single-ply Kevlar/epoxy materials at all braid angles.

As the "rule of mixtures” for unidirectional composite laminae shows, UTS is
a function of constituent fiber properties. The underlying theory of the "rule of
mixtures” can be extended to the braided materials of this study. Table 11 shows
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that S-2 glass fibers are 27 percent stronger in tension than Kevlar 49 fibers and 33
percent stronger in tension than Kevlar 149 fibers. The higher tensile strength of
the glass fibers is reflected in the greater UTS of glass/epoxy materials compared to

their Kevlar/epoxy counterparts.

The reported tensile modulus of the fibers, however, is in disagreement with
experimental values obtained for composite specimens. Experimentally determined
values of tensile modulus for Kevlar/epoxy materials were, in general, lower than
tensile modulus values for glass/epoxy materials. Determination of tensile modulus
for the composite specimens was based on the initial slope of the load versus strain
curve. Itis possible that in the initial region of the curve, strain measurements were
artificially high, as slack in the braid was being removed by progressive loading.
This explanation for imprecise tensile modulus measurements would have had more
effecton the Kevlar specimens than the glass specimens due to decreased fiber-epoxy
bonding inherent in Kevlar/epoxy composites. Therefore, the true Kevlar/epoxy
tensile modulus which could be achieved in a cylinder may be greater than reported
in Table 10, thus reflecting the higher modulus of the individual Kevlar fibers over

that of S-2 glass fibers.

Important to the discussion of tensile test results is the fact that, in general,
glass/epoxy single-ply specimens were resin rich and Kevlar/epoxy single-ply
materials were resin starved. Lack of resin coverage in the Kevlar/epoxy samples

may have played a significant role in the outcome of reported results.

A certain degree of "waviness" of the braid was observed in all test specimens.
Ideally, the third, triaxially braided (warp) fiber should have been aligned in the 0°
direction for the entire length of the test specimen. In reality, deviations of up to

several degrees were noticed on several specimens. Glass/epoxy materials were
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more prone to this "waviness" than Kevlar/epoxy materials. Since the "waviness"
was more pronounced in the glass/epoxy materials and these materials possessed
better tensile properties than the Kevlar/epoxy materials, it might be assumed that,
in general, glass/epoxy is even more superior to Kevlar/epoxy than reported here.
In any event, the extent to which this "waviness" degraded the material properties

is unclear; however, it is not believed to be significant.

4.2.1.2 Dual-Ply Effects

Increased thickness of two-dimensional braided composites is accomplished
by incorporating additional plies into the material. Thus, a dual-ply braided com-

posite consists of two laminae of single-ply lamina.

Material G (dual-ply Kevlar/epoxy) displayed modest increases in tensile
strength and tensile modulus compared to the corresponding single-ply braided
Kevlar/epoxy material C. On average, tensile strength and tensile modulus of
material G increased 8 percent over material C. The modest increase in tensile
properties of material G is thought to be due to the addition of the 90’ stainless steel
foil strips to the composite. (Theoretically, the 1.25 inch wide strips which were

orthogonal to the tensile axis should have no effect on tensile properties.)

The dual-ply glass/epoxy materials showed much greater improvement in
tensile properties than the dual-ply Kevlar/epoxy specimens. The UTS of material
H (dual-ply glass/epoxy) increased 103 percent and the tensile modulus increased
26 percent over its corresponding single-ply system, material D. These increases in
tensile properties are not due solely to the 90° stainless steel foil strips adhered to

one side of the composite.
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Tensile properties of the dual-ply glass/epoxy (material H) were not expected
to increase so significantly over those of single-ply glass/epoxy (material D). The
increase is due possibly to better interlaminar adhesion properties of the laminae in
the glass/epoxy system compaied to the Kevlar/epoxy system. Thus, load-sharing
capabilities could be enhanced within the entire structure, resulting in increased

tensile properties.

Failure mechanisms leading to increased UTS values for material H may also
offer a plausible explanation. During testing, Kevlar/spoxy materials had the ten-
dency to exhibit audible cracking sounds under progressive loading. This was
thouzht to be due to cracking along the fiber-matrix interface as slack was being
removed from the braid. The crack formation in the Kevlar/epoxy material cov'u
have caused premature failure of the samples, since load sharing may have been
reduced at an early stage of testing. Glass/epoxy materials did not, in general, exhibit
as much audible cracking noise during tensile testing as the Kevlar/epoxy specimens.
Hence, fiber/matrix loading may have been more nearly ideal in material H compared

to material G.

Void content of the single-ply glass/epoxy materials may have been higher than
the corresponding dual-ply specimens. This interpretation would imply that the
tensile properties of the single-ply materials were degraded, resulting in an apparent

improvement of dual-ply UTS and tensile modulus.

Itis most likely that the differences in tensile properties between the single-ply
and dual-ply composites are the result of a combination of effects described in the

previous explanations. Regardless, it can be stated that in general, dual-ply materials
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displayed improved tensile strength and tensile modulus over their single-ply
counterparts. In particular, glass/epoxy dual-ply material H showed marked

improvements compared to Kevlar/epoxy dual-ply material G.

4.2.1.3 Multi-Ply Effects

Tensile strength of the composite sandwich material J is computed to be 81,155
psi via the "rule of mixtures" (using materials G and I as constituent materials). The
actual UTS of material J was experimentally determined to be 55,394 psi. The
difference between the computed value and the actual value of UTS is 32 percent.
This disparity in UTS is partially explained by the lack of foil and film in material

J.

Due to delamination of the rubber inhibitor prior to failure on material K, UTS
data are not available. The tensile modulus, however, was calculated from the initial
slope of the load versus strain curve. The data showed that tensile modulus of
material K (Kevlar/epoxy-carbon/epoxy-Kevlar/epoxy-steel foil-rubber inhibitor
sandwich) was greater than materia: G (dual-ply Kevlar/epoxy) by 183 percent. By
comparison, the tensile modulus of material J (Kevlar/epoxy-carbon/epoxy-
Kevlar/epoxy-steel foil sandwich) was larger than the tensile modulus of material
G by 261 percent. The smaller increase exhibited by material K is possibly due to
the incorporation of the rubber inhibitor (in material K) to which the tabs were

attached.

4.2.2 Elevated Temperature Conditioning

Materials conditioned via exposure to a 560°F environment for one second at

ambient humidity were tensile tested to determine UTS and tensile modulus. UTS
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data for material K were unattainable because of inhibitor delamination as in the
room temperature tests. Table 12 summarizes data for UTS and tensile modulus of
materials A through K. A summary of percent differences of U'l'S between baseline
materials and other materials is shown in Table 13. Tensile modulus differences are
compared in Table 14. Table 15 compares UTS and tensile modulus for room

temperature and elevated temperature conditioned specimens.

4.2.2.1 Braid Angle Effects

Single-ply braided composites of both glass/epoxy and Kevlar/epoxy showed
decreases in UTS and tensile modulus for corresponding increases in braid angles.
The change in UTS as a function of braid angle differed for Kevlar/epoxy and
glass/epoxy materials. Tensile strength degradation of material E (single-ply
Kevlar/epoxy braided to +75°% was 64 percent compared to its £55° braided coun-
terpart, material A. Material F (single-ply glass/epoxy braided to +75%), degraded

only 55 percent compared to the +55° braided single-ply glass/epoxy material B.

Graphical comparison of UTS as a function of braid angle for all single-ply
systems is presented in Fig. 12. Exposure to a 560°F environment for one second
resulted in mixed effects on the UTS of single-ply materials. At a braid angle of
155°, the 560°F exposure degraded glass/epoxy, but increased Kevlar/epoxy UTS.
The reverse trend was seen at a braid angle of £65° glass/epoxy UTS improved after
560°F exposure, while Kevlar/epoxy strength was reduced. These increases and
decreases may not be statistically significant. At a braid angle of £75°, virtually no

difference was seen in UTS of any materials as a result of S60°F exposure.

Tensile modulus data are graphically compared in Fig. 13. The data show that,

in general, Kevlar/epoxy single-ply materials degrade faster than glass/epoxy
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single-ply materials for increasing braid angles. The rate of degradation of
Kevlar/epoxy and glass/epoxy materials was not altered greatly after exposure to a

560°F environment for one second.

4.2.2.2 Dual-Ply Effects

Compared to single-ply glass/epoxy materials exposed to a 560°F environment
for one second, UTS of the corresponding dual-ply material H exposed to the same
elevated temperature condition more than doubled. The same mechanism respon-
sible for the 2 to 1 increase observed in room temperature tests is believed to cause
the similar results for specimens exposed to the S60°F environment. As in the room
tempcrature tensile tests, the glass/epoxy dual-ply composite, material H, had over

twice the UTS measured for its Kevlar/epoxy counterpart, material G.

UTS and tensile modulus data of the dual-ply composites are presented in Figs.
14 and 15. Fig. 14 shows that after exposure to 560°F for one second, UTS for the
glass/epoxy dual-ply material H increased slightly. The UTS of the Kevlar/epoxy

dual-ply material G also improved slightly after exposure to 560°F for one second.

4.2.2.3 Multi-Ply Effects

Use of the "rule of mixtures" gives a tensile strength of the composite material
J, after exposure to a 560°F environment for one second, of 81,775 psi. The
experimentally determined tensile strength for the sanie material was 53,341 psi.
The difference between the estimated UTS and the actual UTS is 35 percent. These
results are similar to those found for room temperature tests. Exposure to the 560°F
environment had little effect on UTS and tensile modulus properties of the multi-ply

composites as seen in Figs. 16 and 17. The lack of response could be due to the
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thickness of the specimens. Since exposure to the 560°F environment was limited
to one second, the heating may have had negligible effect on the material properties

reported here.

4.3 Cook-Off Testing

Cook-off tests were conducted in accordance with Table 4. Single-ply speci-
mens were represented by materials C and D since braid angle was not expected to
play arole in either slow or fast cook-off tests. Material L was chosen over material
K for testing because it was felt that the rubber inhibitor of material K was unnec-

essary for obtaining accurate results.

4.3.1 Slow Cook-Off

Fig. 18 is a photograph showing the effects of slow cook-off testing on the
materials examined in this portion of the research. Table 16 qualitatively summarizes

the effects of slow cook-off testing.

Exposure at 237.50°F for one hour had little effect on the test specimens. In
most materials, this elevated temperature produced no visible effects. Single-ply
glass/epoxy material D, on the other hand, displayed increased stiffness when flexed
by hand compared to virgin material D. Sandwich materials J and L were observed
to display better heat retention properties after exposure to 237.50°F for one hour

than the other materials tested.
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Mild to moderate discoloration of all specimens occurred after slow cook-off
testing at 356.25°F for one hour. A visible change in the epoxy was evident in
Material I (unidirectional carbon/epoxy). Because T, of the resin used in the materials
is 270°F, the one hour testing time produced changes in the material characteristics

of the tested specimens.

All specimens tested at 475.00°F for one hour showed marked signs of dis-
coloration and material changes. Material C (single-ply Kevlar/epoxy) displayed
signs of becoming more ductile in flexure than virgin material C, while material D
(single-ply glass/epoxy) became stiffer than virgin material D. Discoloration was
visible on all samples, indicating that material properties were being affected by the
elevated temperature. Carbon/epoxy material I became weaker in flexure compared
to both virgin material I samples and material I specimens tested at lower temper-

atures.

In all cases, the effects of increasing temperature for the same time period
resulted in more severe changes to material appearance. In materials that showed
signs of becoming flexurally weaker or stronger after heating at lower temperatures,

the effects were intensified after higher temperature exposure.

4.3.2 Fast Cook-Off

Fast cook-off testing on material systems of interest resulted in dramatic
changes in material characteristics. Table 17 summarizes fast cook-off effects for
each material at one minute intervals. Fig. 19 is a photograph comparing virgin

specimens with materials subjected to fast cook-off testing.
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Single-ply specimens were least effective at retaining their structural integrity
under intense heating conditions. Material C (single-ply Kevlar/epoxy) lasted less
than 15 seconds before the epoxy was burned away and all fibers in the flame path
were consumed. Material D (single-ply glass/epoxy) was able to withstand testing
for approximately three minutes. Unlike the Kevlar/epoxy material, the glass/epoxy
specimen fibers were not consumed by the flame. Loss of structural integrity in

material D occurred by burning away of the epoxy.

Dual-ply specimens were more resistant than single-ply materials subjected to
fast cook-off testing. Materials G and H both maintained structural integrity twice
as long as their single-ply counterparts. Otherwise, the failure characteristics were
similar.

Multi-ply specimens displayed the most resistance during heat application.
Material L lasted the entire test period without totally losing structural integrity. The
resistance of material L to intense heat is due to the many layers present in the
composite. Further, the carbon/epoxy constituent provided the strongest barrier to

thermal degradation.

Material L outlasted material J by five minutes during fast cook-off testing.
The only difference between the two materials was the presence of foil and film on
material L. The adhesion of this foil and film caused a reinforcement of the composite

structure not experienced by material J.

4.4 Summary

A summary of relative performance characteristics of all materials tested is

presented in Table 18. The descriptions, "Excellent”, "Good", "Moderate", and
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"Poor" used in Table 18 are relative qualitative assessments which are intended for
comparisons between materials considered in this research, and should not be

regarded as descriptions for comparisons with other materials.

Materials regarded as "Excellent” exhibited properties far superior to all other
materials tested under the same conditions. The vastly improved tensile properties
of carbon/epoxy and the resistance to intense heat of the Kevlar/epoxy-
carbon/epoxy-Kevlar/epoxy-steel foil sandwich material L are examples of materials

with "Excellent" ratings.

The "Good" description refers to materials that were marginally better than
most materials subjected to the same testing conditions. These materials showed
potential for improved performance under different configurations and testing

conditions.

Those materials designated "Moderate" showed properties that were marginally
worse than most materials subjected to the same testing conditions. These materials
showed little potential for improved performance under different configurations and

testing conditions.

The "Poor” rating was reserved for specimens that displayed unsatisfactory
performance compared to the other materials under similar testing conditions. These

materials showed no potential for improvement in their current configuration.
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S CONCLUSIONS

Twelve different material systems, designated materials A through L (Table
3), were examined in this research. Tensile strength and tensile modulus of the
composite specimens were experimentally determined. Cook-off tests were con-

ducted on selected specimens to qualitatively assess their resistance to heat.

Based on the tests conducted on materials A through L, the following con-

clusions can be made:

1. Results obtained during the width effects determination testing showed
that as the nominal cut width of specimens increased, average ultimate
tensile strength (UTS) increased and then leveled off to a relatively
constant value. Two (2) inches represents an acceptable width for tensile
specimens of braided fiber reinforced epoxy materials when the braid

angle is in the range of 55° to 75°.

2. For all single-ply braided composite materials tested, UTS and tensile
modulus were functions of braid angle. As braid angle increased, UTS

and tensile modulus decreased.

3. Tensile testing showed that for the same braid angle, glass/epoxy braided
single-ply composites retained constituent tensile properties better than

their Kevlar/epoxy counterparts.

4. Dual-ply braided glass/epoxy material H displayed a 103 percent
improvement in UTS comgared to its single-ply counterpart, material D.
Dual-ply braided Kevlar/epoxy material G displayed an 8 percent

improvement in UTS compared to its single-ply counterpart, material C.
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Manufacturing procedures, void content and inherent wetting character-
istic differences between glass/epoxy and Kevlar/epoxy may have caused
the large disparity in tensile strength improvement of dual-ply glass/epoxy

over dual-ply Kevlar/epoxy.

Use of the "rule of mixtures" provides an estimate of theoretical values
for tensile strength and tensile modulus of materials in a composite

sandwich configuration.

Exposure for one second to a 560°F temperature prior to tensile testing
produced minor improvements of tensile properties in some material

configurations and minor degradation in others.

One-hour exposures to temperatures of 237.50°F, 356.25°F and 475.00°F
produced varying degrees of discoloration of the specimens. Discolor-
ation implies changes in material properties and degradation of

mechanical properties.

Single-ply and dual-ply Kevlar/epoxy materials exhibited the poorest
resistance to fast cook-off testing, while multi-ply Kevlar/epoxy-
carbon/epoxy-Kevlar/epoxy materials displayed the greatest resistance to

intense heat.

The addition of stainless steel foil strips adhered by bonding film to
multi-ply materials produces a supporting structure, thus increasing the

composite’s ability to retain structural integrity during intense heat.
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6 RECOMMENDATIONS

This research examined material and mechanical characteristics of selected
advanced composite materials. The recommendations presented below focus on
potential extensions, improvements and verifications of the experimental results

obtained in this study.

6.1 Width Effect Determination

Little work has been undertaken to understand the effects of cutting braided
composite materials to specimen dimensions versus braiding the structure to exact
dimensions. As fabrication procedures are improved, designers will have the option
of choosing "braided-to-width" materials over "cut-edge" materials. Increased
understanding of width effects is highly desirable for ensuring the proper test pro-

cedures to obtain accurate constitutive data.

6.2 Tensile Testing

The mechanical tests in this research were limited to tensile strength and tensile
modulus of selected composite materials. Based on the tests conducted, the following

investigations are recommended:

1. Hygrothermomechanical effects on transverse tensile strength, tensile
modulus, interlaminar shear strength and flexural properties should be

assessed to more fully understand temperature and moisture effects.

2. The finding that the dual-ply braided glass/epoxy displayed greatly
improved tensile properties compared to the single-ply braided glass/e-
poxy material should be investigated to determine the underlying mech-

anisms.
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3. To fully appreciate the effects of elevated temperature conditioning on
tensile properties, composite specimens should be tested at elevated

temperatures using an environmental chamber.

4. Tests on full-scale cylindrical pressure vessels should be performed to

verify results developed from testing flat specimens.

6.3 Slow Cook-Off Tests

Based on the slow cook-off tests conducted, the following recommendations

are made:

1.  Slow cook-off tests should be conducted for longer periods of time to

replicate harsh environments and determine trends of degradation.

2. Slow cook-off tests should be conducted over a larger array of tempera-

tures and times to investigate the effect of time at a given temperature.

3. Quantitative slow cook-off observations should be made by conducting

mechanical testing of post-conditioned specimens.

6.4 Fast Cook-Off Tests

The fast cook-off experiments were conducted to gain qualitative insight into
the mechanisms of high-temperature composite degradation. These tests can be

improved in the following ways:

1. Tests should be conducted with an improved method of surface temper-
ature control. Variations in flame distance from the test specimen as small

as one inch can change surface temperatures by several hundred degrees.
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2.

Fast cook-off tests should be performed on multiple samples of the same

materials to improve predicted times of structural integrity retention.
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TABLE 5 Summary of Ultimate Tensile Strengths of Material C for Width Effects

Determination.
Tensile Strength
Nominal Standard
Width Average Deviation,s | Coefficient of
(in) (psi) (psi)® Variation, v°
1.00 11,026 (3)° 3469 31.5
1.25 13,395 (3) 538 4.0
2.00 14,460 (3) 908 6.3
3.00 13,826 (3) 329 2.4

a  Numbers in parentheses indicate number of specimens tested.

i
(numberof samples — 1)

b  Standard deviation is defined s = ‘\/ where X; is the value obtained

for individual specimens and X is the average tensile strength.

c Coefficient of variation is defined v=100<s/(average tensile strength).
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TABLE 6 Summary of Comparisons Made Between Material Systems.

Braid Angle Effects
Comparison Materials
Number Comparisons Made Involved
1 Kevlar/epoxy single-ply 155 vs £65° AvsC
$55° vs £75° AvsE
+65° vs £75° CvsE
2 Glass/epoxy single-ply +55° vs +65° BvsD

+55% ys £75° BvsF
+65° vs +75° DvsF

3 Kevlar/epoxy single-ply vs | £55° vs £55° AvsB
Glass/epoxy single-ply

4 Kevlar/epoxy single-ply vs | £65°vs £65° CvsD
Glass/epoxy single-ply

5 Kevlar/epoxy single-ply vs | +75°vs £75° EvsF
Glass/epoxy single-ply

Dual-Ply Effects

Comparison Materials
Number Comparisons Made Involved
6 Kevlar/epoxy single-ply vs | £65° vs £65° CvsG
Kevlar/epoxy dual-ply
7 Glass/epoxy single-ply vs +65° vs £65° DvsH
Glass/epoxy dual-ply
8 Kevlar/epoxy dual-ply vs +65° vs £65° GvsH

Glass/epoxy dual-ply

Multi-Ply Effects

Comparison Materials
Number Comparisons Made Involved
9 Unidirectional carbon and - G,landJ

Kevlar/epoxy dual-ply vs
Kevlar-carbon-Kevlar/epoxy
sandwich

10 Unidirectional carbon and - G,Iand K
Kevlar/epoxy dual-ply vs
Kevlar-carbon-Kevlar/epoxy
sandwich with Foil, Film and
Inhibitor
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TABLE 11 Properties of S-2 Glass and Kevlar Fibers.

Tensile Tensile
Fiber Strength | Modulus Density
Material (ksi) (Msi) (Ib/in®) | Ref.
S-2 Glass 665 12.4 0.090 [46]
Kevlar 49 525 18 0.052 [47]
Kevlar 149 500 25 0.053 [47]
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TABLE 15 Comparison of Ultimate Tensile Strength and Tensile Modulus for Room
Temperature and Elevated Temperature Conditioned Materials.

Ultimate Tensile Strength Tensile Modulus
(psi) (ksi)
Percent Percent

Material| R.T.* | E.T.® |Change’| R.T. | E.T. |Change

A 15,674 | 18,055 | +15 7748 | 8373 +8

B 28,289 | 25,931 -8 882.8 | 803.6 -9

C 13,029 { 11,653 -11 5914 | 5223 -12

D 13,998 | 14,845 +6 836.3 | 765.5 -8

E 6,374 | 6,529 +2 349.1 | 2845 -19

F 11,737 | 11,745 | +0.1 633.6 | 723.7 +14

G 14,041 | 14,623 +4 637.1 | 596.0 -6

H 28,425 | 30,707 +8 1,053 | 1,067 +1

I 215,3821216,080] +0.3 8,720 | 8,700 -0.2

J 55,394 | 53,341 -4 2,300 | 2,310 +0.4

K - - - 1,800 | 1,680 -7

a  R.T. denotes specimens tested at room temperature and humidity.

b  E.T. denotes specimens exposed to a 560°F environment for one second and
tested at room temperature and humidity.

c Percent change = (E.T. - R.T.)/R.T.
- Indicates data not obtained.
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TABLE 17 Summary of Fast Cook-Off Testing Observations.

Material

Time from
Start of Test
(min)

Sequential Qualitative Observations
at Indicated Time

C

<15 seconds

- Kevlar braid separating.

- Specimen being consumed by flame very
quickly.

- Epoxy disintegrating.

- Structural integrity lost.

- END OF TEST.

- Fiberglass braid separating.
- Epoxy disintegrating.

- Flame pushing specimen over.
- Folding of specimen evident.

- Epoxy burning away.

- Structure becoming "orange™ hot.
- Structural integrity lost.

- END OF TEST.

<30 seconds

- Kevlar fibers on fire.

- Braided fiber separating.

- Foil bending back from specimen.
- Kevlar delaminating from foil.

- Structure folding away from flame.
- Foil falling off back of specimen.

- Structural integrity lost.

- END OF TEST.

- Specimen deflecting flame.

- Epoxy "bubbling” on surface of material.
- Material burning at point of flame impingement.

- Specimen swelling.

- Material starting to shrink at sides, similar to
necking.

- Structure starting to melt.

- Flame starting to push specimen over.

- Specimen folding onto itself.
- Structural integrity lost.
- END OF TEST.

(Continued on next page)
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TABLE 17 (Continued) Summary of Fast Cook-Off Testing Observations.

Material

Time from
Start qf Test
(min)

Sequential Qualitative Observations
at Indicated Time

1

- Carbon/epoxy beginning to warp.
- Epoxy being consumed by flame.
- Carbon fiber near edges starting to show.

- Flame glowing through specimen.
- Fibers being exposed in flame area.
- Exposed fibers being consumed by flame.

- Epoxy burning away, exposing carbon fibers.
- Exposed fibers continuing to be consumed.
- Cracking on backside of specimen observed.

- No change in observations.

- Specimen missing large pockets of epoxy.

- Backside of specimen bulging outward.

- Flame starting to push areas at flame impinge-
ment.

- Flame penetrating through specimen.

- Consumption of epoxy nearly complete.
- Structural integrity lost.

- END OF TEST.

- Localized swelling apparent.

- Upper layer of epoxy disintegrating.

- Flame making a hole in the epoxy.

- Outer layer of Kevlar/epoxy delaminating and
separating from structure.

- Kevlar fibers delaminating on both sides of the
specimen.

- Carbon/epoxy maintaining its shape.

- Carbon/epoxy warping about 0° fiber direction.

- Flame glowing through specimen.
- Kevlar completely consumed.
- Carbon/epoxy beginning to "ripple”.

(Continued on next page)
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TABLE 17 (Continued) Summary of Fast Cook-Off Testing Observations.

Time from
Start of Test Sequential Qualitative Observations
Material (min) at Indicated Time
J 4 - No change in observations.

5 - Epoxy starting to burn away.
- Carbon fibers becoming exposed.

6 - Carbon fibers being exposed and comsumed by
flame.
- Specimen thinning is apparent at point of flame
impingement.

7 - Tufts of carbon fibers showing.
- Bulging on backside of specimen.

8 - No change in observations.

9 - Carbon fibers cracking away from surface.

10 - Flame completely through the carbon.
- Structural integrity lost.
- END OF TEST.

L i - Resin starting to disintegrate.

- Kevlar layer bulging toward flame.
- First layer starting to delaminate and separate
from structure.

2 - Kevlar and epoxy burning.
- Carbon/epoxy becoming visible.

3 - Kevlar and foil delaminating on backside of
carbon material.
- Foil bending back from carbon.
- Kevlar fibers falling back after total delamina-
tion from structure.

4 - Epoxy burning away.

5 - Kevlar holding up better in this material than in
Maternial J.

6 - No change in observations.

(Continued on next page)
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TABLE 17 (Continued) Summary of Fast Cook-Off Testing Observations.

Time from
Start of Test Sequential Qualitative Observations
Material (min) at Indicated Time
L 7 - Flame cutting through upper layer of Kevlar.
8 - Foil on back not contributing to structural integ-
rity.
- Carbon starting to warp around 0° fiber
direction.
9 - Foil falling off back of material.
10 - Outermost layer of Kevlar/epoxy falling off.
- Flame impinging directly on carbon/epoxy.
11 - Carbon/epoxy bulging slightly away from flame.
12 - No change in observations.
13 - Tufts of fiber being exposed and consumed by
flame.
14 - More carbon fibers being exposed and con-
sumed.
15 - Time limit reached.

- Structural integrity reduced but intact.
- END OF TEST.
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Fig. 3 Photograph of environmental chamber used for elevated temperature con-
ditioning, showing relative position of spotlights, conditioning area with
sample in place, thermocouple wire, and digital thermometer readout.
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B D F H H
fiber/ foil and
EPOXY film

Fig. 7 Photograph of typical tensile ruptured specimens (room temperature or
elevated temperature conditioned at 560°F for onc second) of materials 3.
D, F, H (fiber/epoxy side), H (foil and film side), showing displaced foil
strips from the foil and film side of material 1.

N



A C = G G
fiber/  foil and

epoxy film

Fig. 8 Photograph of typical tensile ruptured specimens (room temperature or
elevated temperature conditioned at S60°F for one second) of materials A.
C, E, G (fiber/epoxy side), G (foil and film side), showing displaced foil
strips from the foil and film side of material G.
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H G H G
(fiber/epoxy)

(foil and tilm)

Fig. 9 Photograph of typical tensile ruptured specimens (room temperature or
elevated temperature conditioned at 560"F for one second) of materials H
and G, (fiber/epoxy side), and H and G (foil and film side), showing dis-
placed foil strips from the foil and film side of materials H and G.




Fig. 10 Photograph of typical tensile ruptured specimens (room temperature or
o - Al - - .
elevated temperature conditioned at 360°F tor one sccondy of maerials )
and K. showing delamination of the rubber inhibitor on material K.
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Fig. 11 Photograph of typical tensile ruptured specimen (room temperature or
elevated temperature conditioned at 560°F for one second) of material I.
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Fig. 14 Ultimate tensile strength versus specimen type for dual-ply laminates at room temperature and after elevated
temperature conditioning at 560
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Fig. 18 Photograph showing virgin specimens and slow cook-off test specimens.
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Fig. 19 Photograph showing virgin specimens and fast cook-off test specimens.
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APPENDIX A: TEST SPECIMEN PROPERTIES AND
FABRICATION PROCEDURE

Physical Properties

All candidate specimens are manufactured by U.S. Composites Corporation,
Troy, New York. Physical property information is supplied by the manufacturer
and is shown in Table Al. Theoretical values for fiber volume fraction are supplied
by U.S. Composites [Al], and are summarized in Table A2. Void content infor-

mation is not available.

Specimen Design

The width effect determination and tensile test specimens are 14 inches long,
with various thicknesses dependent on the material system. Width effect determi-
nation tensile test snecimens vary from one inch to 3.25 inches wide. All other
tensile test specimens are 2.0 inches wide. The tabbing material is 3/16-inch thick
3M Scotchply Type 1002 crossply E-glass continuous filament composite. Dexter
HYSOL EA 934 is used to adhere the tabs to the specimens. The adhesive is a
two-component epoxy that cures at room temperature to a shear strength of 3100

psi [A2].

Cook-off test specimens measure approximately 3 square inches. Actual
dimensions of the specimens range from approximately 1 inch by 3 inches to
approximately 1.5 inches by 2 inches. They are cut from panels as delivered by the

manufacturer. No further conditioning or preparation is necessary prior to testing.
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Tensile Test Specimen Fabrication Procedure

Panels are received from U.S. Composites in nominal widths of 4 to 12.5 inches
and lengths of 28 to 31 inches. Using a diamond-blade table saw for glass/epoxy
and carbon/epoxy panels, and a reversed band saw for Kevlar materials, the speci-

mens are cut to lengths of 14 inches.

Scotchply Type 1002 crossply E-glass continuous filament composite tabs are
used to protect the specimens from damage in the testing grips. Tabs are cuton a
diamond-blade table saw to dimensions of 3 inches x W inches (where W is the
width of individual panels). A 30 degree taper is cut onto the leading edge of the

tab to reduce stress concentrations in the adhesive during testing.

The tabs are roughened with a file on the side that is to face the composite.
Several scratches in both the normal and parallel directions are made in the tabs.
The ends of the composite specimens are similarly roughened to increase contact
area with the tabs. Methylene chloride (MeCl,) is used to clean the tabs and spec-

imens, thus removing any moisture and residue.

The adhesive, HYSOL EA 934, is prepared using 100 parts by weight of Part
A and 33 parts by weight of Part B. The adhesive is then spread thinly onto the
scratched side of the tabs. The tabs are then placed into position on the specimen
and clamped into place. Enough pressure is applied such that excess adhesive is
squeezed out. Curing of the adhesive takes place at room temperature (70°F) for at

least 24 hours.

The 14 inch panels, with tabs affixed, are cut to test widths on the same
equipment used to make preliminary cuts. The outside 0.5 inch of each panel is cut

away and discarded to eliminate irregularities in the specimens.
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TABLE A1l Physical Property Information for Candidate Materials.

Item

Description

Braid

All braided specimens are two-dimensional, triaxially confi-
gured.

Kevlar Fiber

Wrap Fiber: 1420 denier Kevlar 49, +6°
Warp Fiber: 1140 denier Kevlar 149, 0°

Glass Fiber Wrap Fiber: 1250 Y (1250 vards per pound) S-2 Glass, 6"
Warp Fiber: 1250 Y S-2 Glass, 0°

Carbon Fortafil Carbon/epoxy pre-preg, 0°

Epoxy Dow Tactix 138

Catalyst 70/30 Blend of Dow H31/H41

Cure Cycle 60 minute ramp to 180°F

60 minute soak at 180°F
60 minute ramp to 300°F
60 minute soak at 300°F

Bonding Film

2-Plies of 3M Brand 583 Bonding Film

Foil

1-Ply, 0.002 inches thick stainless steel

Inhibitor

1-Ply, 0.050 inches thick EPDM rubber
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TABLE A2 Theoretical Values of Total Fiber Volume Fraction for Candidate

Materials.”
Fiber Volume Fiber Volume
Fraction Fraction
Material (percent) Material (percent)
A 59.0 G 56.3
B 48.0 H 47.0
C 57.0 I 65.0
C 47.0 J 59.2
E 60.4 K 59.2
F 51.0 ! L 59.2

*  The theoretical fiber volume fraction of dual-ply and multi-ply materials
reported is the total fiber volume fraction for the composite.
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APPENDIX B: TEST PROCEDURES AND EQUIPMENT
Width Effects and Tensile Testing

All width effect determination and tensile test specimens are tested on a
Materials Testing System (MTS) Model 810. The MTS is rated to 100 Metric Tons,
and calibrated to 100,000 pounds. MTS Series 641 non-aligning hydraulic grips
hold the specimens in place. The grips are rated to 35 metric tons for a static tensile
load, and 25 metric tons for fatigue loads. Maximum gripping pressure is 3000 psi.
The jaw insert faces are hardened tool steel and are serrated for increased gripping

effectiveness.

All tensile tests are conducted under manual control and dual ramp input,
controlling the crosshead motion. The tests on the glass/epoxy and carbon/epoxy
specimens are conducted at a crosshead speed of 0.00143 inches/second. Crosshead
speed is increased to 0.00286 inches/second for the Kevlar/epoxy and sandwich
composites. The load calibration of all glass/epoxy specimens is 10,000 pounds,
corresponding to 10 volts. The calibration is increased to 20,000 pounds per 10 volts
for carbon/epoxy and Kevlar/epoxy. The exception to this is that for sandwich
materials J and K, where the calibration is set to 50,000 pounds per 10 volts to

accommodate the higher loads expected during the tests.

Gripping pressure for all tests with the exception of the sandwich materials is

1000 psi. Sandwich materials J and K are tested at a gripping pressure of 400 psi.

Measurements to determine initial-slope tension modulus are obtained using

the MTS Model 632.11B-20 axial extensometer with a gage length of 1 inch and a
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maximum strain range of *15 percent. Extensometer output is fed to an integral
X-Y pen and paper plotter. Calibration of the plotter is set to 4,000 micro-strain per

1 volt (0.004 in/in = 1 volt).

Elevated temperature conditioning is conducted in an environmental chamber.
The chamber consists of three 1000-watt Lowel DP lights suspended from a sup-
porting framework approximately 10 inches from a refractory material platform.
The spots from the lights converge at this platform, where the composite specimens
are placed for conditioning one at a time. Temperature is monitored bv an Omega
2176A Digital Thermometer and a T-type Copper-Constantan thermocouple with a

range of -99.8°F to 752.0°F.

The environmental conditioning process commences with all three lights being
placed in the "on" position. When the temperature at the platform reaches S60°F,
as determined by the thermocouple reading, the composite specimen is inserted into
the chamber and placed on the platform. After one second, the lights are turned off
simultaneously. The test material is allowed to cool naturally and is removed from

the chamber.

Slow Cook-Off

Slow Cook-off testing is conducted in a Lindberg Model 51442 muffle fumace.
The furnace is capable of reaching and maintaining a temperature of 2192°F. The
heating elements consist of a composite of helically-coiled iron, chrome and alu-
minum alloy wire and Moldatherm. (Moldatherm is a Lindberg trade name for
ceramic fiber insulation.) Chamber dimensions of the furnace are 7.5 inches x 5.25

inches x 14 inches.
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The furnace is controlled by a Lindberg Type 59344 control console. Tem-
perature is monitored by a Type PL2, Platinell II thermocouple. The thermocouple

range extends from 32°F to 2192°F.

Slow cook-off test specimens are cut from panels into dimensions of approx-
imately three square inches. Actual specimen dimensions range from approximately
1 inch by 3 inches to approximately 1.5 inches by 2 inches. The furnace is pre-heated
to the required temperature. The samples are arranged on refractory material, and
are inserted into the test chamber. After one hour, the specimens are removed and
are qualitatively examined. Charring, discoloration, and any other noticeable

changes to the materials are noted and reported.

The slow cook-off test is conducted on various samples at temperatures of
237.50°F, 356.25°F and 475.00°F. These temperatures represent varying levels of

thermal environments.

Fast Cook-Off

An oxyacetylene hand-held torch is used to generate the heat source for fast
cook-off testing. Testing is conducted in a toxic-gas-approved ventilating hood to
prevent noxious fumes from spreading outside the test area. Heat-protective gloves,

shaded eye protection, and a set of tongs are required to ensure adequate safety.

Calibration of the surface temperature of the composite during flame
impingement is necessary to determine proper temperatures are being attained. To
conduct this calibration, a sacrificial piece of material J is used. A 1/32 inch hole
is drilled through the specimen, and the beaded end of a K-type Chromel-Alumel
thermocouple (accurate to 1999°F) is inserted into the hole. The thermocouple is

inserted until the end is flush with the surface of the composite to be exposed to the
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flame. Holding the material with tongs, the flame distance to the specimen is varied
until it is possible to achieve a 1000°F surface temperature on the specimen within
the first 30 seconds of exposure to the flame, and a steady-state average temperature

of 1500°F.

Once calibration is complete, each specimen is conditioned individually in the
flame. The exposure lasts for 15 minutes or until the specimen has lost all structural
integrity, whichever occurs first. Loss of structural integrity is apparent when the
epoxy has been burned away, leaving nothing but exposed fibers in the path of the
flame, or when the sample burns away under flame impingement and cannot support
its own weight. Qualitative observations are made during testing at one minute

intervals.




APPENDIX C: DATA

This appendix contains the experimental results for width effects determination

and tensile testing.
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Width Effects Determination

TABLE C1 Ultimate Tensile Strength Data of Material C for Width Effects
Determination Testing.

Specimen | Cross-Sectional | Tensile Strength
Width (in) Area (in%) (psi)
1 0.026 7,692
1 0.026 14,615
1 0.026 10,769
1.25 0.031 12,800
1.25 0.033 13,846
1.25 0.033 13,538
2 0.052 15,385
2 0.056 13,571
2 0.052 14,423
3 0.081 14,074
3 0.084 13,452
3 0.081 13,951
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Tensile Tests

TABLE C2 Ultimate Tensile Strength and Tensile Modulus Data for Materials A
Through K Tested at Room Temperature and Humidity.

Cross-Sectional Tensile Tensile
Specimen Area (in%) Strength (psi) | Modulus (psi) | Notes
R-A1* 0.068 - 772060 b

R-A2 0.059 15593 815680

R-A3 0.056 14286 736610 c
R-A4 0.056 17143 -

Avg. 0.060 15674 774780

R-B1 0.076 26710 877200 b
R-B2 0.091 24725 792500

R-B3 0.077 29351 930736 c
R-B4 0.076 32368 930736

Avg. 0.080 28289 882793

R-C1 0.066 10910 587121

R-C2 0.055 15636 636364 d
R-C3 0.059 12542 550847

Avg. 0.060 13029 591444 e
R-D1 0.084 14881 -

R-D2 0.085 14921 793651

R-D3 0.073 12192 879000

Avg. 0.081 13998 836325

R-El 0.066 6364 340909

R-E2 0.069 6377 353261 d
R-E3 0.069 6087 353261

R-E4 0.066 6667 -

Avg. 0.068 6374 349144

(Continued on next page)

- Indicates data not obtained.

a  The "R" in each specimen designation indicates "Room Temperature," and
the letter after the hyphen represents material designation.

Specimens numbered 1 and 2 came from the same panel.
Specimens numbered 3 and 4 came from the same panel
Failed near the tab.

o o o o

All specimens of this designation were noticeably resin-rich.
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TABLE C2 (Continued) Ultimate Tensile Strength and Tensile Modulus Data for
Materials A Through K Tested at Room Temperature

and Humidity.
Cross-Sectional Tensile Tensile
Specimen Area (in?) Strength (psi) | Modulus (psi) | Notes

R-F1 0.089 9775 618000

R-F2 0.077 13247 600650

R-F3 0.077 11429 682000

R-F4 0.079 12025 - d
R-F5 0.077 12208 -

Avg. 0.080 11737 633550

R-Gl1 0.119 14790 609244

R-G2 0.114 13333 625000

R-G3 0.120 14000 677083

Avg. 0.118 14041 637109

R-H1 0.137 30511 1.124 E6

R-H2 0.149 24899 0.982 E6

R-H3 0.149 29866 -

Avg. 0.145 28425 1.053 E6

R-I1 0.051 220000 8.80 E6

R-12 0.0575 209222 8.70 E6

R-I3 0.052 216923 8.66 E6

Avg. 0.0535 215382 8.72 E6

R-J1 0.303 57360 -

R-J2 0.310 52742 2.2E6 d
R-J3 0.296 56081 2.4E6 d
Avg. 0.303 55394 2.3 E6

R-K1 0410 - 1.8 E6

R-K2 0.419 - 1.9 E6
R-K3 0.390 - 1.8 E6

Avg. 0.406 ] 1.8 E6

- Indicates data not obtained.

d  Failed near the tab.
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TABLE C3 Ultimate Tensile Strength and Tensile Modulus Data for Materials A

Through K Exposed to a 560°F Environment for One Second and
Tested at Room Temperature and Humidity.

Cross-Sectional Tensile Tensile
Specimen Area (in?) Strength (psi) | Modulus (psi) | Notes
E-Al 0.055 18182 840910 b

E-A2 0.057 19649 789470

E-A3 0.059 16610 881360 c
E-A4 0.054 17778 -

Avg. 0.056 18055 837250

E-B1 0.081 25556 791390 b
E-B2 0.087 25172 718390

E-B3 0.076 26973 940000 c
E-B4 0.088 26023 738640 d
Avg. 0.083 25931 803588

E-C1 0.073 10137 438360

E-C2 0.061 12459 522540

E-C3 0.055 12364 606060

Avg. 0.063 11653 522320 e
E-D1 0.074 17432 710230

E-D2 0.071 11972 862680

E-D3 0.076 15132 723680

Avg. 0.074 14845 765530

E-El 0.065 7077 326920

E-E2 0.078 5641 256410 d
E-E3 0.074 5946 270270 d
E-E4 0.060 7667 - d
E-ES 0.057 6316 -

Avg. 0.067 6529 284530

(Continued on next page)

o QA o g

Indicates data not obtained.

The "E" in each specimen designation indicates "Elevated Temperature,” and
the letter after the hyphen represents material designation.

Specimens numbered 1 and 2 came from the same panel.
Specimens numbered 3 and 4 came from the same panel
Failed near the tab.

All specimens of this designation were noticeably resin-rich.
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TABLE C3 (Continued) Ultimate Tensile Strength and Tensile Modulus Data for
Materials A Through K Exposed to a 560°F Environ-
ment for One Second and Tested at Room Temperature

and Humidity.
Cross-Sectional Tensile Tensile
Specimen Area (in?) Strength (psi) | Modulus (psi) | Notes

E-F1 0.080 12375 723680
E-F2 0.079 10127 723680
E-F3 0.085 10588 -
E-F4 0.082 13902 -
E-F5 0.079 - -
Avg. 0.082 11748 723680
E-G1 0.114 14386 581140
E-G2 0.114 13793 625000
E-G3 0.116 15690 581900
Avg. 0.115 14623 596010
E-H1 0.138 32174 1.087 E6
E-H2 0.144 29375 1.042 E6
E-H3 0.140 30571 1.071 E6
Avg. 0.141 30707 1.067 E6
E-I1 0.061 217049 8.40 E6
E-I2 0.060 219667 8.60 E6
E-I3 0.059 211525 9.10 E6
Avg. 0.060 216080 8.70 E6
E-J1 0.307 52932 2.24 EA
E-J2 0.314 52866 2.24E6
E-J3 0.282 54225 2.44 E6 d
Avg. 0.301 53341 231 E6
E-K1 0.410 - 1.71 E6
E-K2 0.419 - 1.66 E6
E-K3 0.390 - 1.68 E6
Avg. 0.406 - 1.68 E6

- Indicates data not obtained.

d  Failed near the tab.
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