
DhIiT FILE COPY -a)

cV)

NAVAL POSTGRADUATE SCHOOL(0

CD Monterey, California
NN

DTIC
SEP 24 190

THESIS

THE CLASSIFICATION AND EVALUATION
OF

COMPUTER-AIDED SOFTWARE ENGINEERING
TOOLS

by

GARY WAYNE MANLEY

September, 1990

Thesis Advisor: Luqi
Co-Advisor: Bernd J. Krimer

Approved for public rclease, distl'ib ion is t unlimited.

90 09 20 026

UNCIASSIFIEl)
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

la REPORT SECURITY CLASSIFICATION l b RESTRICTIVE MARKINGS
U NCLASSIFIED

2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTIONIAVAILABILITY OF REPORT

Approved for public release;disLribution is unlimited.
2b DECLASSIFICATION/DOWNGRADING SCHEDULE

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION
Naval Postgraduate School (If applicable) Naval Postgraduate School

1 37

6c ADDRESS (City. State, andZIP Code) 7b ADDRESS (City, State, andZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

8a NAME OF FUNDING/SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (1f applicable)

National Science Foundation NSF CCR-8710737

8c ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
Proqrtm tiement No Project NO I d' NO Work Unlt Accelaon

Washington, D).C. 20550 Number

11 TITLE (Include Security Classification)

The Classification and Evaluatin of (oomputer-Aided Software Engineering Tools

12 PERSONAL AUTHOR(S) Manley, Gary Wayne

13a TYPE OF REPORT 13b TIML COVERED 14 DATE OF REPORT (year, month, day) 15 PAGE COUNT
N;astor's Thesis From To 1990, September 197

16 SUPPLEMENTARY NOTATION
The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of l)efense or the U.S.
Government.
17 COSATI CODES 18 SUBJECT TERMS (continue on reverse if necessary and identify by block number)

FIELD GROUP SUBGROUP Computer-Aided Software Engineering; Systems Development Lifecycle; Dol) STD-2167A;
CASE Environment; Framework; Repository; Tool Taxonomy; Tool Evaluation Process

19 ABSTRACT (continue on reverse if necessary and identify by block number)

-)The use ofComputer Aided Software Engineering (CASE) IAols has been viewed as a remedy for the software development crisis by achieving
improved productivity and system quality via the automation of all or part of the software engineering process. The proliferatinn and tremendous
variety of tUras available have stretched the understanding of experienced practicioners and has had a profound impact on the software
engineering process itself. To understand what a tool does and compare it to similar tools is a formidable task given the existing diversity of
functionality. This thesis investigates what tools are available, proposes a general classification scheme to assist those investigating tools to
decide where a tool falls within the software engineering process and identifies a tool's capabilities and limitations. This thesis also provides
guidance for the evaluation ofa LAol and evaluates three commercially available tools. / .

(L-77A

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

l NCI AW,%II ItIJNI MI 13 Q) 1,ii- t1% Hi'i S U NCI.ASSI FlEl)

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area code) 22c OFFICE SYMBOL
Professor 1.u(14081) 646 2735 Code 521q
DD FORM 1473,84 MAR 83 A PR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete U NC LASSIFIE)

i

Approved for public release; distribution is unlimited.

The Classification and Evaluation of

Computer-Aided Software Engineering Tools

by

Gary W. Manley

Captain, United States Marine Corps

B.B.A., Texas A&M University, 1981

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN INFORMATION SYSTEMS

from the

NAVAL POSTGRADUATE SCHOOL

September 1990

Author: __ _ _ __ _ _ __ _ _ _ __ _ _ __ _ _ __ _ _ _

Gary Wayne Manley

Approved by: (,A-

Luqi, Thes's Advisor

Bernd J. Kramer, Co-Advisor

Tarek Abdel-Hamid, S ader

David R. Whipple, ChamanDepartment of Administrati e Sciences

ABSTRACT

The use of Computer-Aided Software Engineering (CASE) tools

has been viewed as a remedy for the software development

crisis by achieving improved productivity and system quality

via the automation of all or part of the software engineering

process. The proliferation and tremendous variety oZ tools

available have stretched the understanding of experienced

practitioners and has had a profound impact on the software

engineering process itself. To understand what a tool does

and compare it to similar tools is a formidable task given the

existing diversity of functionality. This thesis investigates

what tools are available, proposes a general classification

scheme to assist those investigating tools to decide where a

tool falls within the software engineering process and

identifies a tool's capabilities and limitations. This thesis

also provides guidance' for the evaluation of a tool and

evaluates three commercially available tools.

CD 7..-

WT

, ,i ----.-.

iii s ! .

Thesis Disclaimer

The following trademarks are used throughout this thesis:

3COM+ is a Registered Trademark of 3COM Corporation

Ada is a Registered Trademark of the U.S.
Government (Ada Joint Program Office)

AD/Cycle is a Registered Trademark of International

Busines Machines Corporation

Analysis/Design Workbench is a Registered Trademark of KnowledgeWare, Inc

Apollo is a Registered Trademark of Apollo Computer
Incorporated

AT&T 6300/AT&T StarLAN are Registered Trademarks of AT&T Bell
Laboratories

AutoCAD is a Registered Trademark of Autodesk
Incorporated

BAT is a Registered Trademark of McCabe &
Associates, Inc

CCC is a Registered Trademark of Softool
Corporation

Compaq III/Compaq Plus/ are Registered Trademarks of Compaq Computer
Compaq Portable 286 Corporation

Cross Systems Product is a Registered Trademark of International
Business Machines Corporation

Customizer is a Registered Trademark of Index Technology
Corporation

Data Analyst is a Registered Trademark of Bachman
Information Systems, Inc

Developmate is a Registered Trademark of International
Business Machines Corporation

DSEE is a Registered Trademark of Hewlett-Packard
Company

EPOS is a Registered Trademark of Software Product
& Services Incorporated

Epson/FXI00/LQI500 are Registered Trademarks of Epson America
Incorporated

Expert Systems Environment is a Registeredi Trademark of Internationial
Business Machines Corporation

Excelerator/IS is a Registered Trademark of Index Technology
Corporation

iv

FrameMaker is a Registered Trademark of Frame Technology
Corp

HP 9000/Laserjet/ are Registered Trademarks of Hewlett-Packard
HP/Vectra/HP7475A Company

HP SoftBench/ is a Registered Trademark of Hewlett-Packard
HP Encapsulator Company

IBM is a Registered Trademark of International
Business Machines Corporation

IBM PC-DOS/Proprinters are Registered Trademarks of International
Business Machines Corporation

IBM PC LAN is a Registered Trademark of International
Business Machines Corporation

IBM Token Ring is a Registered Trademark of International
Business Machines Corporation

IBM XT/AT/PS/2 are Registered Trademarks of International
Business Machines Corporation

IEF/TI 855 are Registered Trademarks of Texas Instruments
Inc

InterLeaf is a Registered Trademark of InterLeaf, Inc

KEE is a Registered Trademark of International
Business Machines Corporation

KeyOne is a Registered Trademark of LPS s.r.l.

Knowledge Tool is a Registered Trademark of International
Business Machines Corporation

MicroSTEP is a Registered Trademark of SysCorp
International

MS-DOS is a Registered Trademark of Microsoft
Corporation

Novell Advanced Netware is a Registered Trademark of Novell Inc

Novell ELS Netware 286 is a Registered Trademark of Novell Inc

PC Prism is a Registered Trademark of Index Technology
Corporation

Planning Workbench is a Registered Trademark of KnowledgeWare, Inc

RCS is a Registered Trademark of Hewlett-Packard
Company

Refine is a Registered Trademark of Reasoning Systems,
Inc.

Repository Manager is a Registered Trademark of International
Business Machines Corporation

Saber-C is a Registered Trademark of Saber Software,
Inc

V

SES/workbench is a Registered Trademark of Scientific &
Engineering Software, Inc

Software BackPlane is a Registered Trademark of Atherton
Technology

START is a Registered Trademark of McCabe &
Associates, Inc

StP is a Registered Trademark of Interactive
Development Environments

StP/INGRES Interface is a Registered Trademark of Softool
Corporation

StP/TESTBED Interface is a Registered Trademark of IGL Technology

SYBASE SQL Server is a Registered Trademark of Sybase
Incorporated

Sun/Sparcstation are Registered Trademarks of Sun Microsystems
Incorporated

TIRS is a Registered Trademark of International
Business Machines Corporation

Toshiba P1350/PI351/P351 are Registered Trademarks of Toshiba America

Inc

UNIFACE is a Registered Trademark of Uniface B. V.

Unix is a Registered Trademark of AT&T
Bellaboratories

VADS is a Registered Trademark of Verdix Corporation

VAX/MicroVAX/VAXstation/ are Registered Trademarks of Digital Equipment
VAXset/DECstation Corporation

XL/Doc is a Registered Trademark of Index Technology
Corporation

XL/Interface is a Registered Trademark of Index Technology
Corporation

XL/Programmer Interface is a Registered Trademark of Index Technology
Corporation

vi

GLOSSARY

Data Item Descriptions (DID's): DID's describe the set of
documents for recording information required by the DoD STD-
2167A.

Encyclopedia: A database that stores information created by
an integrated set of CASE tools.

Framework: An architecture for the integration of a
collection of CASE tools designed to form a single
integrated environment with a consistent user interface.

Product Baseline: The software as designed, tested, and
implemented prior to installation.

Project Management: All the tasks associated with the role of
the project manager including planning, estimating and
monitoring the progress of a software development project.
Support for project management includes a set of well-known
tools and procedures such as cost and size modeling, critical
path methods, schedule charts, (Gantt charts or timelines),
resource loading, spreadsheets, work breakdown structure,
status reporting, electronic mail, milestone definition,
budgeting, expense tracking, capital allocation, problem
tracking and change authorization.

Rapid Prototyping: Quick and inexpensive construction of high
fidelity simulation of an interactive system for whatever
purpose (i.e., requirements definition). Used to convey the
look and feel of a system. Depends heavily on automated tool
support like data dictionaries, screen formatters and
painters, report generators and very high level languages like
fourth generation languages and functional languages.

Repository: The database management facility of the CASE
environment which provides data integration services among all
the tools in the environment. It saves design information in
an abstract form like an Encyclopedia, but also captures
project and enterprise information.

Software Development Plan (SDP): A single document outlining
the steps for conducting the activities required by the
standard.

vii

TABLE OF CONTENTS

I. INTRODUCTION 1

A. BACKGROUND 2

1. Rising Software Costs 2

2. Software Development Crisis 2

B. WHY CASE 4

C. CASE OBJECTIVES 4

D. TOOL EXPLOSION 5

E. RESEARCH FOCUS 5

F. THESIS ORGANIZATION 6

II. THE FULL .ASE ENVIRONMENT 7

A. WHAT IS CASE 7

B. EVOLUTION OF CASE 8

1. Origin of Case 8

2. CASE Arrives 9

3. The CASE Environment 9

C. ENVIRONMENTAL ELEMENTS 10

1. Toolset 10

2. Integration Architecture 11

3. Toolkits (CASE) vs Workbenches (ICASE) 13

a. Toolkits (CASE) 13

b. Workbenches (ICASE) 15

c. CASE vs ICASE 16

viii

4. Repository 16

5. Methodology 19

D. THE FULL CASE ENVIRONMENT 20

E. CASE TRENDS 23

1. Integration Architectures 23

2. Specification Compilers 26

F. SUMARY 27

III. IMPACT OF DoD STD-2167A ON CASE 28

A. BACKGROUND 28

B. APPLICABILITY OF DoD STD-2167A 29

C. SOFTWARE DEVELOPMENT PROCESS 30

D. IMPACT ON CASE 31

1. Documentation Requirements 33

2. Traceability of Requirements 35

3. First Generation Support Tools 36

4. Second Generation Support Tools 36

E. SUMMARY 37

IV. TCOL TAXONOMY 38

A. CLASSIFICATION GOAL 38

B. CLASSIFICATION STRATEGY 39

1. Framework 39

2. Categories 40

a. Lifecycle Coverage 40

b. Integration Level 41

c. Application Areas 43

3. Attributes 45

ix

4. Employment 45

C. SURVEYS 47

D. SUMMARY 48

V. TOOL EVALUATION PROCESS 49

A. PREFACE 50

B. EVALUATION CRITERIA 50

C. ASSESSMENT PROCESS 51

1. Needs Analysis 52

2. Environment Analysis 53

3. Develop Candidate List 53

4. Apply Criteria and Select 56

a. Establish Evaluative Criteria 57

b. Define a Specific Experiment 57

c. Execute the Experiment 58

d. Analyze the Results 58

D. SUMMARY 59

VI. Tool Evaluations 62

A.- EXCELERATOR/IS 1.9 OF INDEX TECHNOLOGY

CORPORATION 63

1. Hardware/Operating System Evaluated On 63

2. Tool Description 63

3. Methodology Supported 64

4. Hardware/Operating Systems Requirements 64

5. Installation 65

6. Documentation 66

7. Interface to Other Products 68

x

8. Multi-user Support...............70

9. Network Support...............70

10. DoD STD-2167A Support............71

11. User-Interface................72

12. Traceability of Requirements.........73

13. Dictionary/Repository............74

14. Prototyping.................77

15. Consistency/Completeness Checking 78

16. Training Support................81

17. Diagramming/Graphic Facilities.........82

B. StP 4.2A (SUN) OF INTERACTIVE DEVELOPMENT

ENVIRONMENTS...................86

1. Hardware/Operating System Evaluated On 86

2. Tool Description................86

3. Methodology Supported............87

4. Hardware/Operating Systems Supported . 89

5. Installation.................90

6. Documentation................90

7. Interface to Other Products.........94

8. Multi-user Support...............96

9. Network Support...............98

10. DoD STD-2167A Support............100

11. User-Interface................102

12. Traceability of Requirements.........104

13. Dictionary/Repository............105

14. Prototyping.................107

xi

15. Consistency/Completeness Checking 109

16. Training Support il

17. Diagramming/Graphic Facilities 112

C. EPOS 4.0 (PC-Vers) OF SOFTWARE PRODUCTS &

SERVICES, INC 115

1. Hardware/Operating System Evaluated On 115

2. Tool Description 116

3. Methodology Supported 116

4. Hardware/Operating Systems Requirements 117

5. Installation 118

6. Documentation 120

7. Interface to Other Products 123

8. Multi-user Support 124

9. Network Support 125

10. DoD STD-2167A Support 125

11. User-Interface 126

12. Traceability of Requirements 128

13. Dictionary/Repository 131

14. Prototyping 134

15. Consistency/Completeness Checking 135

16. Training Support 137

17. Diagramming/Graphic Facilities 138

D. OVERALL EVALUATION 139

E. SUMMARY 140

VII. CONCLUSIONS 142

APPENDIX A - SAMPLE TOOL TAXONOMY FORM 145

xii

APPENDIX B - TOOL TAXONOMY................147

APPENDIX C - BLANK TOOL TAXONOMY FORM...........155

APPENDIX D - TOOL EVALUATION CHECKLIST...........157

LIST OF REFERENCES....................174

INITIAL DISTRIBUTION LIST..................177

xiii

I. INTRODUCTION

Cost overruns, delivery postponements and the production

of ineffective or inadequate systems has characterized the

software development process within the software engineering

industry and the Department of Defense (DoD). Both industry

and DoD have explored many options to address these shortfalls

and reduce both software costs and application backlogs. The

application of software engineering and the use of software

development methodologies helped, but did not provide the

desired impact. Computer Aided Software Engineering (CASE)

tools were then advertised as a remedy for the software

development crisis by automating analysis, design, and coding,

but met with little initial success due to the immature

technology and limited tool availability. However, the recent

revolutions in CASE technology have caused an explosion in

tool capabilities and availability. The assorted features and

capabilities now available have greatly increased the

complexity of their evaluation. This thesis will examine the

tools available and their range of capabilities and evaluate

a discrete sample of tools.

A. BACKGROUND

1. Rising Software Costs

Both the Department of Defense (DoD) and industry are

expending enormous amounts of time and money developing and

maintaining software systems with costs continuing to rise.

Figure 1 reflects the trends of software costs noted by Boehm

[Ref. 1:pp. 32-33].

Software Costs

(Billions)

1985 1990

World 140 250

U.S. 70 125

1985 1995

DoD 11 36

Figure 1-1 Rising Software Costs

The sheer magnitude of these costs and the pending

budget reductions necessitate serious considerations by DoD to

understand and control software costs.

2. Software Development Crisis

DoD and other federal software development efforts

have been plagued by cost overruns, postponements and the

delivery of ineffective or inadequate systems. The extent of

the problem is evidenced by the following statistics:

2

A U.S. Army study of several federal projects found that:
-47 percent were delivered, but not used
-29 percent were paid for, but not delivered
-19 percent abandoned or reworked
-3 percent were used after changes were made
-only 2 percent were used as delivered.

For a U.S. Air Force command and control system:
-the initial estimate was $1.5 million
-the winner's bid was $400,000
-the actual project cost was $3.7 million [Ref. 2: p.51].

In addition to the problems noted above, DoD faces

another pending reality of the software crisis regarding the

backlog of systems needed and the maintenance requirements of

existing software systems: The lack of personnel to perform

such efforts. This issue is best reflected in the following

statemepts:

The backlog for software development in both the DP/MIS
and the Aerospace, Defense, Engineering (ADE) sectors is
large and growing at an accelerating pace, and the supply
of professionals to address this backlog is severely
limited. [Ref. 3: p. viii].

... the national demand for software is rising at least 12
percent per year, while the supply of people who produce
software is increasing about four percent per year; this
leaves a cumulative four percent gap [Ref. 4].

... 25 percent of the draft age population will be required
to maintain DoD software by the year 2000 [Ref. 5].

The quality and productivity issues cited above are

compounded by the increasing complexity of software systems as

well. DoD cannot ignore these issues. Software Engineering

has mitigated some of the impact of these issues, but in order

to achieve the quality and productivity required DoD must rely

on the automation of all aspects of software development.

3

B. WHY CASE

The fundamental purpose of CASE is to allow developers to

produce higher quality software more quickly with less effort

[Ref. 3:p. viii]. CASE focuses on automating the activities

of software developers. Automating these activities increases

quality and productivity at the same time (Ref. 2:p. 49].

C. CASE OBJECTIVES

CASE is not just confined to quality and productivity.

McClure cited the following objectives for CASE based on the

potential it offers:

Improve productivity

Improve software quality and reduce errors

Speed up the software development process

Reduce software costs

Automate software development and maintenance

Automate generation of software documentation

Automate generation of code

Automate error checking

Automate project management

Formalize and standardize software documentation

Promote greater control of the software development process

Integrate tools and methodologies of software engineering

Promote software reusability

Improve software portability [Ref. 6].

4

The potential benefits promised by achieving these

objectives are compelling. They require significant

capabilities in order to achieve them. The lure of and need

for the potential benefits have fueled an intense effort by

CASE vendors. In the past several years, the capabilities of

CASE have increased to a point where CASE has evolved from a

concept to an industry. "Major computer and workstation

companies and many of the 'Big Eight' accounting firms now

have dedicated CASE product or service groups." [Ref. 3:p.

vii]

D. TOOL EXPLOSION

In 1988, there were over 100 CASE vendors, each marketing

one or more CASE products [Ref. 3:p. vii]. By 1989, the

number of CASE vendors had doubled to 200 [Ref. 7:p. 1].

Currently, there are over 350 vendors and in excess of 500

tools on the market [Ref. 8].

Z. RESEARCH FOCUS

This thesis will investigate what tools exist, examine the

2167A impact on tool requirements, identify a general

classification and evaluation scheme and evaluation checklist

for tools. Specifically, this thesis will survey several

vendors and institutions for CASE tools currently available

for developing software systems and evaluate three tools

' The "Big Eight" are now the "Super Six"

5

currently available in the commercial market. The intended

target audience is Project Managers/Planners, Systems

Engineers and Systems Analysts within the DoD.

F. THESIS ORGANIZATION

Chapter II presents an overview of the CASE environment

and its composition. A synopsis of the major CASE toolsets is

provided along with some future trends in CASE development.

Chapter III provides an overview of DoD STD-2167A and the

comprehensive framework it details. It identifies the major

areas suitable for CASE application and the evolution of tools

for supporting the documentation requirements imposed by the

standard.

Chapter IV provides general categories and capabilities of

CASE tools currently avaialble and identifies a general

classification scheme for several commercial tools surveyed

within the framework detailed by DoD STD-2167A.

C1apter V describes the current state of CASE evaluation

efforts and introduces' a tool evaluation process. It also

identifies several governmental organizations available for

supplying information on CASE tools.

Chapter VI contains the personal evaluations of three

commercial tools currently available within the commercial

market.

Chapter VII summarizes the contents of this work.

6

II. THE FULL CASE ENVIRONMENT

CASE is no longer just individual tools targeted for

specific activities within the software development process it

is a vast collection of tools that contribute to a total CASE

environment. This chapter describes the evolution of CASE and

contrasts CASE as toolkits and workbenches. It also

identifies the crucial role of integration and other critical

elements of the full CASE environment. The chapter ends by

providing an overview of future trends in CASE development.

A. WHAT IS CASE

Computer Aided Software Engineering involves the use of

computers to aid the software development process. This

simplistic view has characterized CASE since its development

in the early 1970's. However, CASE has become much more than

automated tool support for the software engineering process.

Today CASE has evolved into a total systems approach to the

design and production of software, as evidenced by the wide

variety of tools available which contribute to the CASE

environment. This changing view is reflected in the following

definitions of the 11 definitions of CASE recently published

by the CASE Studies Consortium:

7

CASE (PROCESS)
CASE (software engineering): "the establishment and use
of sound engineering principles in order to obtain
economically the software that is reliable and works
efficiently on real machines." It encompasses a set of
three key elements -- methods, tools, and procedures --

that the enable the manager to control the process of
software development and provide the practitioner with a
foundation for building high quality software in a
productive manner.

Pressman [Ref. 9:p.277]

CASE METHOD
An interlocking set of formal techniques in which
enterprise models, data models, and process models are
built up in a comprehensive knowledge base and are used to
create and maintain data processing systems. Or, an
enterprise-wide set of automated disciplines for getting
the right information to the right people at the right
time.

James Martin [Ref. 9:p. 276]

CASE (BEHAVIORAL)
CASE is the rigorous implerrentation of well-integrated
methods, procedures and tools optimizing human behavior
and technology to improve the productivity of software
development.

Bartner Group [Ref. 9:p. 279]

B. EVOLUTION OF CASE

1. Origin of Case

The concept of CASE grew out of early efforts of

using computers to assist with systems analysis and design in

the early 1970's. One product called Problem Statement

Language/Problem Analyzer (PSL/PSA) is recognized by some as

the original CASE tool. It was developed by Dr. Daniel

Teichrowe at the University of Michigan and designed to run on

8

large mainframe computers. User requirements were specified

in PSL and analyzed by the PSA. PSL/PSA's goal was to

eventually generate code from the requirements statement. Its

only problem was that it required too much computer resources

to function. Few companies could afford dedicated PSL/PSA

computers nor could they release access time from their own

production machines. This product and others like it were the

early forerunners of CASE. [Ref. 10:p. 4]

2. CASE Arrives

In the late 1970's and early 1980's, graphical

modeling techniques of structured analysis (along with fourth

generation languages [Ref. 7:p. 1]) began to spread throughout

systems development organizations fueling the dependence on

automated resources. But, even these efforts were limited by

the lack of affordable automated support. The advent of

powerful graphic workstations in the mid 1980's, however, gave

rise to the industry known as Computer Aided Software

Engineering. [Ref. ll:pp. 126-128]

3. The CASE Environment

In the past few years, a rapid series of new

approaches have been adopted including: information

engineering, entity-relationship modeling, automatic code

generation, real time design, object-oriented techniques,

rapid prototyping, software simulation, visual programming and

reverse engineering, among others. The distinction between

9

CASE and its support environment has blurred since CASE has

incorporated most of the aspects of software development.

CASE has become a general term encompassing:

Planning and estimating

Requirements analysis

Architectural design

Detailed design

Prototyping

Programming

Maintenance

Documentation

Reverse engineering

Project management

Testing

Configuration management [Ref. 7:p. 1]

Indeed, the CASE environment provides "... support to the

entire engineering team (i.e., managers, analysts, designers,

programmers, maintainers, etc...) for overall product

development" [Ref. 12:p. 20].

C. ZNVIRONbENTAL ELEMENTS

1. Toolset

From a systems view, CASE includes any computerized

tool that automates a portion of the software development

10

lifecycle. This view is shared by many in the industry.

According to one consulting group:

"There is no reason, for example, that the many high-
productivity applications development systems on
microcomputers, such as screen generators, cross-
tabulation systems, fourth-generation languages, and so
on, cannot be included in the range of CASE tools as long
as they can be integrated with the existing CASE tools and
are controlled in this own use in an engineering sense.
[Ref. 2:pp. 24-25]

Therefore, any computerized tool that automates a

portion of the software development lifecycle should be

included:

"Even traditional software tools, such as editors and
compilers, must now be considered part of the CASE toolset
in the sense that they will eventually share data with the
central design database used by all other tools." [Ref.
3:p. vii]

Toolsets that integrate traditional tools for

documentation, design, source code generation, compilation and

testing already exist while new tools which combine "many of

the traditional feature sets with new capabilities such as

graphical program design and reverse engineering, all

operating from a single design database" are emerging [Ref.

3:p. vii].

2. Integration Architecture

The CASE environment requires a tightly-coupled

toolset. The key to a tightly-coupled, consistent CASE

environment is the integration capability provided. There are

11

three distinct aspects of full integration in the CASE

environment: presentation integration, data integration and

control integration.

Presentation integration is concerned with providing

a common user interface (i.e. standard menu interface) for

accessing a toolset and a common look and feel (i.e., similar

menu characteristics, iconic behavior, etc..). Facilities

such as X-Windows along with look and feel guidelines Motif

(the OSF standard) and Open Look (from Unix International)

support presentation efforts. [Ref. 13:p. 11]

"Data integration involves mechanisms enabling CASE

tools to share and manage information" [Ref. 13:p. 11] which

is primarily a function of the database of the CASE toolset.

It relies on a database management facility with typical

capabilities such as data access, security and recovery

capabilities. However, the full CASE environment imposes

special requirements which distinguish the environment

repository from traditional commercial databases. The

environment repository must be able to define both a schematic

and semantic description of the contents of the database to

provide standardized information to support true information

sharing among tools and automated consistency checking.

Moreover, the repository must record and manage the

relationships and dependencies among data elements to support

configuration management and other features. [Ref. 13:p. 11]

12

Communication between individual tools is

accomplished via mechanisms provided by control integration.

Tools must be able to communicate with one another in order to

synchronize activities and perform user defined task

sequences. This function is partly accomplished by the

repository and partly by an additional layer associated with

the repository, but separate from it. Special requirements

such as rule enforcements involving certain changes in the

data which invoke certain actions (i.e., integrity checks) are

generally accomplished by a trigger facility within the

repository. However, a control integration layer is normally

used to provide generalized message passing, tool invocation,

methodology guidance and process control. [Ref. 13:p. 11]

The high degree of functionality required by the CASE

environment and the lack of standardization among tools makes

full integration a challenging effort. As a result, vendors

are approaching it in different ways.

3. Toolkits (CASZ) vs Workbenches (ICASE)

The degree of integration and scope of a toolset has

become a major delineation between CASE products. The two

major toolset distinctions noted by this author are: Toolkits

(CASE) vs Workbenches (ICASE).

a. Toolkits (CASE)

The first distinctive type of toolset noted by

the author are toolkits which Loh and Nelson refer to as:

13

... a set of integrated CASE tools designed to work
together to automate, or partially automate, a particular
development job or a single phase of the systems
development cycle. [Ref. 14:p. 31]

Toolkits can vary because vendors bundle various

tools together to target particular user problems. Examples

include analysis and design toolkits, data design toolkits,

programmer's toolkits, code generator toolkits, maintenance

toolkits and project management toolkits. The toolkits

normally provide a user shell specifically prepared for the

target user. Figure 2-1 contains the basic components

normally found in a toolkit according to Hanner.

1. Window, screen, report, graph and other output
formatting editors

2. Program flow editors including data flow diagrams,
traditional flow charts, and ERD's

3. Schema design and data dictionary managers to build and
maintain the CASE Data Dictionary

4. Code management systems for version control and code
maintenance

5P Program development tools including fourth generation
languages, prototyping tools and application generators

6. Bug reporting and tracking to allow automated program
maintenance

7. Network management tools

Figure 2-1 CASE Toolkit Components

In addition to the components of a toolkit,

Hanner also described "...several characteristics of CASE

14

tools that bridge all user types". He cited the following

common CASE features:

Data Dictionary (Single most vital part of tool) allows easy cross-
referencing and access to all objects known to the tool

Visual/graphic exposition of programs and data (i.e., Dataflow Diagrams,
Entity-Relationship Diagrams)

Automated consistency checking of data and program elements

Multi-user data access (concurrent data access by multiple users)

Prototyping [Ref. 14:p. 40]

b. Workbenches (ICASE)

Workbenches are the second distinctive type of

toolset noted by the author which Loh and Nelson define as:

... integrated CASE tools that assist across all phases of
the systems development cycle--planning, analysis and
design, implementation and maintenance. [Ref. 14:p. 31]

The major differences between these toolsets are

the integration and coverage of the development cycle

provided. Workbenches provide seamless integration between

tools to provide full tboverage and support all activities

within the development cycle. However, individual workbenches

alone may not be sufficient, "since most do not include robust

cross life cycle tools such as project management and

configuration management, and testing and other quality

assurance tools are typically primitive or missing

entirely"[Ref. 15:p. 11]. In addition, they tend to focus on

15

particular application areas (i.e., business or engineering)

and incorporate a single methodology.

c. CASE va ICASE

Martin refers to the major difference between

toolsets as CASE vs ICASE. He considers CASE to be "power

tools" which focus on particular aspects of development and

ICASE (Integrated CASE) as toolkits which contain tools "for

all aspects of software development" that are integrated via

a repository he calls an Encyclopedia. Once again, coverage

of the development process is a distinguishing characteristic

although he also emphasizes the generation of executable

programs as a critical characteristic. (Ref. 16:pp. 5-6]

Consequently, the ideal environment can be

accomplished in two ways: combining various toolkits via a

framework or using a workbench if limited to one particular

application area (provided a workbench supporting the

application exists). A completely integrated full lifecycle

toolkit has not yet been achieved, but is fastly approaching.

[Ref. 15:p. 11]

4. Repository

The critical element of any CASE system is the

repository or centralized database used to accumulate the

information related to an application. It does not just store

the data, but the meaning of the data as well. For example,

it may employ rule processing routines to determine how

16

processes on a dataflow diagram are to be linked or data

elements are to be referred to. These routines can be used to

help achieve "accuracy, integrity and completeness of the

plans, models and designs"[Ref. 16:p. 23] thus becoming a

knowledge base for not only storing information, but

controlling its validity and accuracy.

Storage is not the only function of the repository.

As noted above, CASE tools can only achieve full integration

by sharing a common database allowing multiple tools to share

the same object. Therefore, one tool such as dataflow

diagramming tool can share information with entity-

relationship modeling tool to construct an application,

further enhancing consistency and completeness of an

application. [Ref. 15:p. 39]

Ideally, the repository should:

Enable one tool to use information derived from input to other tools

Provide analysis and consistency checking across all phases

Increase the level and feedback from the detail specification in the
back-end phases to the more abstract front-end specifications

Support project-wide configuration management and requirements tracking
(Ref. 3:p. xvi]

Figure 2-2 illustrates the role of the repository in

the CASE environment [Ref. 3:p. xvi].2 Although mature

repositories are not yet widely available, several are under

2 CASE tools designed to assist in the System Planning,

Analysis and Logical Design phases are referred to as Front-end
tools while tools supporting Physical Design and Construction are
referred to as Back-end tools in trade publications.

17

L5I

Figure 2-2 The CASE Repository

18

development. The most notable is International Business

Machines (IBM' s) recently announced "Repository Manager" [Ref.

17 :p. 3].

5. Methodology

Tools in and of themselves are not enough. For CASE

to be successful, the organization must thoroughly understand

the software development process and how to apply the tools at

the points of greatest leverage which implies an organization

must adopt a systems view of the development cycle for its

particular environment. Experience indicates that unless

tools operate within the constraints of an overall design

discipline (i.e., methodology) they cannot be effective. [Ref.

3:p. x]

However, Wallace points out that many CASE

implementations are unsuccessful because organizations misuse

or abuse the methodologies employed by confusing the

techniques used with the method itself [Ref. 18:p. 17]. This

point is best illuminated by distinguishing between a

technique and a methodology.

A technique describes the rules and notations for

representing the requirements and design of a system in

commonly understood terms. Most tools today rely on graphics-

based techniques, such as dataflow diagrams and system

structure charts, to communicate between the developer and the

end user.

19

A methodology "is a system of methods, rules, and the

set of procedural steps to be followed in order to achieve a

desired end" [Ref. 2:p. 171. It describes the required

process and deliverables at each phase of the development

lifecycle by answering the questions regarding which work

products to produce, when to produce them and who does the

work. Techniques resolve "how" work products are to be

pioduced. [Ref. 18:p. 17]

Tools automate tasks and techniques. Some "impose a

standard technique and methodology, some adapt to user

notations and methods, many can do both" [Ref. 3:p. x].

However, it is essential that a design discipline be fully

understood and accepted by software developers and endorsed by

management for a tool to be truly effective. Hence,

methodology plays a crucial role in the CASE environment by

providing an infrastructure for controlling CASE

techniques.
p

D. THE FULL CASE NVIRONMEzNT

The full CASE environment provides a wide assortment of

tools for specific phases of the software development

lifecycle (vertical tools), as well as tools that span the

entire development process (horizontal tools) . Figure 2-3

depicts the full CASE environment and the various layers of

integration supporting it. Figure 2-4 contains several

definitions of particular tools depicted in the full CASE

20

The Full CASE Environment

LPresentation Layer
Look and feel characteristics of the tools

User Interface Protocol
Wndow management display protoco1

Horizontal planning, Esilatng, Project managpemn

Tools Con figurawin Management, Documentation, Communication

Vett *I T Is

Object Management Layer
Object interface to CASE tools; similar access to all representa don "yvs;
management of meta data

Repository Layer
Common database for aUf designs, data definitions, methodology deffinitons,
and design meta data

Relational Database 1
Figure 2-3 The Full CASE Environment

21

Code Generation: Tool can generate some programming language from analysis and
design representation.

Configuration Management: Tool maintains histories of document versions and
configurations of documents.

Design: Tool depicts the module structure of a program being designed either
in text (structured English, program design language) or graphically in
structure charts or modular block diagrams.

Documentation Support: Tools that provide for the extraction and formatting of
the contents of the project database. Others go further to provide standard
reports, report generators and templates to meet certain standards (i.e., DoD
STD-2167A) with interfaces to technical publishing systems from Interleaf,
Framemaker, etc... .

Performance Analysis: Tools that measure the complexity software, generate
static or dynamic statistics of a program's performance, or analyzes the
structure of a program.

Project Management: Tool provides or reports project management information
including number of processes, allocation of work, completion status and, in
some cases, schedules, budgets and project dependencies.

Prototyping: Tool provides ability to develop screen or report prototypes and
generate appropriate code, or provides capability to rapidly develop algorithms
and test the code.

Real Time: Tool provides design representations for real time systems (i.e.,
control flow diagrams. state transition diagrams, process activation tables,
state event matrices or equivalent.

Requirements: Tools providing either text or graphic capability to generate or
analyze requirements. If graphic, a popular structured analysis technique is
used (i.e., Yourdan/Demarco).

Reverse Engineering: Tool is capable of reading source code or database schema
and creating the documentation and design representations (structure charts,
entity relationship diagrams, module block diagrams, calling trees, etc...)
necessary for enhancing and maintaining the code at the analysis and design
level. Some tools allow for new code to be generated from the modified designs.

Simulation: Same as prototyping except that the ability to simulate the
behavior of the prototype system is also provided.

Strategic Planning: Tool is capable of creating an enterprise model or is used
to generate a strategic systems plan.

Teibting: Tool provides the capability to generate test beds or test suites from
the source code. Also inclddes capability to assist in system integration
testing in the target hardware environment.

Testing & Maintenance: Tool provides the capability to generate test plans and
test data and manage the test data.

Traceability of requirements: Tool can track and report the impact of change
between documents or trace the development of a requirement throughout the
system so compliance and completeness checks are possible.

Figure 2-4 Tool Definitions

environment [Ref. 7:p. 3]. It provides a central repository

which is used to accumulate and maintain all application

information as well as providing communication among the

22

various tools. The environment not only incorporates the

tools, but the methods and procedures utilized by an

organization. T. Capers Jones suggests an ideal CASE

environment might contain up to 110 separate software tools

[Ref. 19: page xiii].

E. CASE TRENDS

1. Integration Architectures

Full CASE integration is required if the ideal CASE

environment is to be achieved. Workbench (ICASE) tools offer

a limited environment since a package deal from one vendor may

not be able to offer the best tools available for certain

activities within the development cycle (i.e., testing).

Therefore, the framework approach appears to be the major

trend for integration architectures.

IBM's recent announcement of AD/Cycle, IBM's proposed

CASE framework architecture for integrating CASE toolkits,

represents a ringing endorsement of the framework solution to

CASE integration. According to a leading CASE industry

publication:

AD/Cycle is an integration architecture or framework for
a full life cycle CASE environment. It comprises several
layers addressing presentation, data, and control
integration. AD/Cycle includes a repository, tool
integration services, vertical tools and a common user
interface. [Ref. 20:p. 54]

Figure 2-5 provides an overview of the AD/Cycle environment.

23

CROSS LIFE CYCLE Process management Documentation
Project management Impact analysis

Reuse

Require- Analysis/ Produce Build/Test Production/
ments Design Maintenance

Enterprise Languages
Modeling Testing

Generators
Analysis/ &

Design

Knowledge Based Maintenance
Systems

RD PLATFORM User interface AD information model
Workstation services Repository manager
Version/config mgmt Tool services

Figure 2-5 AD/Cycle Architecture Chart

AD/Cycle's tool support arsenal includes an

impressive array of third party vendors as well as several

tools of its own. System planning is supported by IBM's

Developmate, Index Technology's PC Prism and KnowledgeWare's

Planning Workbench. System analysis 4nd is tasks are

supported by Bachman's Data Analyst, Index Technology's

Excelerator3 and KnowledgeWare's Analysis/Design Workbench.

IBM also bundles their own knowledge engineering products into

AD/Cycle to provide artificial intelligence (AI) and expert

system capability within AD/Cycle. These tools include KEE,

Knowledge Tool, Expert Systems Environment and TIRS. The

' Excelerator/IS is one of the tools evaluated in chapter VI.

24

tools identified represent several of the leading tools in the

industry which demonstrates the considerable support and

interest generated by AD/Cycle.

The key to AD/Cycle's support strategy is the Cross

Systems Product (CSP) code generator. Under IBM's approach,

all front end CASE tools will target their output to be

compatible with the CSP. Moreover, IBM intends for the CSP

not only to function as a code generator, but as a mechanism

"allowing developers to target application specifications to

any desired platform (theoretically) with no additional

effort" [Ref. 20:p. 52]. IBM seems to imply that if a vendor

can meet CSP specifications AD/Cycle will take care of the

unique target details. Initially, compatibility between the

tools and the CSP is to be accomplished via an External Source

Format (ESF) data transfer interface and will eventually be

provided via the AD/Cycle Repository (Repository Manager).

[Ref. 20:p. 52]

The announcement of IBM's Repository Manager signals

that the complete integration of a toolset is on the near

horizon. However, IBM's AD/Cycle is not the only framework

architecture. There are several other vendors offering

similar products. One example is the Visible Connections open

software architecture adopted by Interactive Development

25

Environment's Software through Pictures 4 which is described

in chapter VI.

2. Specification Compilers

Current code generation tools rely on high-level

language compiler technology developed over 25 years ago. A

relatively new CASE tool named MicroSTEP5 (STEP: Specification

to Executable Programs) developed by Dr. Raymond Yeh,

represents the possible next step for CASE. The tool allows

systems analysts to use personal computers (PC's) and

graphical design tools to develop specifications that are

machine interpretable. The tool contains a specification

compiler which is used to create executable programs directly

from the design specifications. By working from a higher

level of abstraction, developers can ignore the

implementation-specific details of coding and concentrate

their attention on the system and its desired behavior.

In addition, STEP facilitates changes and

documentation during development and throughout maintenance

efforts. Rather than changing the code and then updating the

design, developers simply modify the specification and

regenerate the new program. Moreover, STEP provides 100% code

4 Software through Pictures is one of the tools evaluated in
chapter VI.

5 MicroStep is one of the tools surveyed in chapter IV.

26

generation capability, whereas most traditional code

generators produce 80%-85% of a programs code.

Specification compilers are based on the assumption

that code can be synthesized automatically given a precise

specification which implies high-level language compilers are

no longer needed. Given the tremendous improvement in quality

and productivity resulting when high-level language compilers

were introduced, "advances in 'specification compilers' might

produce another quantum leap in software productivity" [Ref.

21:pp. 30-32]. Therefore, specification compilers may

represent the next step for CASE.

F. SUMHRY

CASE has evolved from a tool or set of tools for software

development to a systems approach to software development.

The systems perspective implies a CASE environment

encompassing the organization as well as all aspects of

software development. The CASE environment is a dynamic

entity constantly changing to obtain an optimum tool mix or

approach depending on the application requirement. A key

feature of the environment in the future will be the linkage

between tools, systems and management controls to yield the

optimum s&t of tools for a particular application design.

Currently, CASE is zi sed on the threshold of the Full CASE

Environment.

27

III. IMPACT OF DoD STD-2167A ON CASE'

This chapter provides an overview of DoD STD-2167A,

Defense System Software Development, the comprehensive

framework it details and describes its applicability to DoD

software projects. The chapter identifies the major areas

suitable for the application of CASE and the evolution of

tools for supporting the documentation requirements imposed by

DoD STD-2167A.

A. BACKGROUND

DoD-STD-2167, the precursor to DoD STD-2167A, was

developed out of the recognition by DoD of the need for a

standard mechanism for developing requirements specifications.

Moreover, the Military contracting community dictated the DoD

have a mechanism for specifying detailed defense system

requireements that encouraged fair and open bidding by all

interested contractors. The need to accurately and completely

specify a contract and its set of deliverables necessitated a

straightforward well-understood requirements standard such as

DoD-STD-2167. [Ref. 23:p. 237]

6 The contents of this chapter, unless otherwise indicated,

were drawn from (Ref. 22].

28

DoD STD-2167A superseded DoD-STD-2167 1 April 1987.

Developed in conjunction with DoD-STD-2168, the Defense System

Software Quality Program, these standards established a well-

defined and easily understood software development and

acquisition process. All existing DoD standards were

superseded which reduced confusion and eliminated conflicts.

[Ref. 24:p. 26]

B. APPLICABILITY OF DoD STD-2167A

DoD STD-2167A is approved for use by all Departments and

Agencies of the Department of Defense. The intent of the

standard is to establish requirements to be applied during the

acquisition, development, or support of software systems. The

standard provides for total system development when used in

conjunction with MIL-STD-499.

The DoD STD-2167A specification format is the standard

methodology required for all military system contractors

building mission critical software systems. Mission critical

projects include:

Intelligence activities

Command and control of military forces

Cryptologic systems relating to national security

Equipment or software forming an integral part or of a
weapons system.

29

Unless specified in the contract, the use of DoD STD-2167A

is not required on other system development projects, but it

is encouraged. [Ref. 24:p. 28]

C. SOFTWARE DEVELOPMENT PROCESS

DoD STD-2167A is not intended to specify or discourage the

use of any particular software development method. The

standard permits developers to practice their own software

development methodology and even allows them to tailor the

standard by eliminating non-applicable requirements. "The

standard is compatible with modern methods of software

development, and it supports rapid prototyping if the Software

Development Plan is tailored and specifies that methodology"

[Ref. 24:p. 27]. As a result, the contractor is charged with

the responsibility for selecting the process that best

supports the achievement of contract requirements. The

process selected must include the following activities, which

may be overlapped or applied iteratively:
P

Systems Requirements Analysis/Design

Software Requirements Analysis

Preliminary design

Detailed Design

Coding and Computer Software Unit Testing

Computer Software Component Integration and Testing

Computer Software Configuration Item Testing

30

System Integration and Testing

Testing and Evaluation

Production and Deployment

Figure 3-1 depicts the standard software development

process as mandated by DoD STD-2167A (For clarity, the

hardware development processes have been omitted). The

standard emphasizes the software development and acquisition

process throughout the life cycle by requiring an explicit set

of reviews, audits, and deliverable documents at the

completion of all milestones.

D. IMPACT ON CASE

The mandate of the DoD STD-2167A format virtually

necessitates the application of CASE technology. In fact, the

foreword of the standard encourages the use of automated

techniques to produce deliverable data. The standard requires

a layered top-down approach to design and development

emphasizing the requirement analysis and design specification

phases of the life cycle. Moreover, DoD STD-2167A requires

the employment of well-documented structured methodologies

during design and implementation and further specifies that

requirements be traceable throughout all layers and phases of

the system. As a result, system requirements documents must

be written to allow the extraction of compliance information.

[Ref. 23:p. 238)

31

0 C:

:3C: 0
o 0.-

E-4 >0
04 64f

A

0 r

.0 4j 4)

4'C: 0N.4
1 0.-W 43

S44

r4 4 -j
4)191
) t7~E-4

U V 0

'N'

W .0 C

00

- 14 ---Q W 0-- .4 ' 4

CO~ ~ >0~ 4 fC~
1%C 0 04*,S-- 4 .

4)0 >-4 > 04- -. 0

C444 N rQ0 4 1"1
~C C; o 0:-0 0. -4NNJ-

0*~ *d4rI4--
4'J.4 .- 44.44 :3 -- 0 44W

COCOC.4 -1 0 C s.H tr C

U 1 0) C O0C M 4 11 44

0 C;tl 4 0-C1. C 0 4

Figure ~ ~ ~ ~~$ H- too AT-7 Sotwr Deeomn4rcs

01 MId 9 E) -32

1. Documentation Requirements

Many vendors believe that 30-50% of a system's cost

is due to the documentation requirements imposed by DOD STD-

2167A [Ref. 25]. The &aLounL of documentation required to

support the development effort is enormous. Over 27 separate

documents are required which does not include source code and

test suites [Ref. 23:p. 240]. Figure 3-2 depicts the main

documents required by DoD-STD-2167A (For clarity, Figure 3-1

has been repeated as Figure 3-2). These documents constitute

specific deliverables required at the conclusion of a

particular development phase. Figure 3-2 also specifies the

points where deliverable documents are due and formal audits

and reviews are to be completed.

From a CASE standpoint, the most important documents

are generated during the requirements analysis, preliminary

design, and the detailed design development phases. The key

documents are:

f

Software Requirements Specification

Interface Requirements Specification

Software Top-Level Design Document

Software Detailed Design Document

These documents are especially suited for CASE since

analysis and design skills are required to write and generate

them [Ref. 23:p. 240]. There are other required documents

33

4.,)

0 A

-1 0o4Q)

0 a

A

0

.3 ,;

E-4 > 0

A ---

-1Ir-

1-4 .. 0,4-.

• 0 .,4 1-i- -@-*40

A H

I-I I-cI I I -

Q44
E-4 91 0

1-40~ 1 -4.

U- V 4 0

(4-

L)) E-

-- -- -
- - - -- -

HI to-4 4~42- - .

NJ. 54w 0-4)4 4

to)4 C)-4 >iO-- .

C4 0)4) 0 0 ~ 0

> r 'Do4 C -4 0 -
- C)---C. 4 4 0~ U 0

rqJ4. .- 4p 0 .4 k 42-

0 -4 r. 0 -1 0 U
Mf~n/ 0. C.) 0. 0.- . ,*-1

Fiur 3- Do SW1267 Douets nd Delver -0oints

34f 4 o:

su'_h.L as the Operational Concept Document and the Software

Development Plan, which are primarily associated with tne

management of the software project. The emergence of project

management tools which interface with analysis and design

tools now make these documents candidates for CASE application

as well.

2. Traceability of Requirements

Traceability of requirements is another important

consideration for CASE application. Section 4.2.8 of DoD STD-

2167A dictates that all specification requirements be

traceable to the software design. Therefore, the contractor

is required to develop traceability matrices to show the

allocation of requirements from the system's specification to

the individual software components and from the individual

software components back to the system's specification. The

traceability matrices are documented in the Software

Requirements Specification, Software Top-Level Design

Document, and the Software Detailed Design Document.

Moreover, tests and test cases built to verify the correct

operation and performance of the individual components must be

traceable to the requirements. Constructing these

traceability matrices is a tremendous task, especially for

large software systems with hundreds or thousands of

individual requirements. As requirements change and evolve

35

throughout the analysis and design process, this task becomes

particularly complex. [Ref. 23:p. 238]

3. First Generation Support Tools

Original efforts to sipport these requirements were

primitive. Word processors were the traditional tools along

with manual efforts to cut and paste various CASE diagrams and

tables to bridge the documentation gap. Some tools began to

employ powerful desktop publishing programs such as Context,

Frame, and Interleaf to handle the structured text mixed with

graphics common to engineering environments. However, brute

force was required to keep the documentation consistent and

up-to-date with the CASE design data. These first generation

documentation tools laid the foundation for the integration of

CASE and automatic documentation. (Ref. 26:pp. 26-271

4. Second Generation Support Tools

Anderson refers to the current model of documentation

tools as "a document synthesis model because it synthesizes or

derivds, via rules, the detailed document sections directly

from CASE data-flow diagrams and structure charts" [Ref.

26:pp. 26-27]. He emphasizes the key to these tools lies in

their ability to dynamically link to the CASE design database.

Whenever a change is made, the original documentation is

dynamically updated via the link instead of destroying the

prior version as the first generation tools did. These links

help preserve the overall product baseline.

36

Anderson foresees even tighter data integration

between CASE and publishing programs characterized by two

environments. One environment is a multi-vendor approach

where the integration is provided by linking publishing

software from one vendor and a CASE tool from a different

vendor. The other is a single-vendor environment where the

vendor provides the CASE tool with publishing software

incorporated in it. [Ref. 26:pp. 26-27]

E. SUMMARY

DoD STD-2167A provides a comprehensive framework for the

software development process. It requires extensive

documentation as a part of the development process and the

deliverables vital to software projects. The vast

documentation required is an area particularly suited for

automation and has received substantial consideration for ('ASE

application. The standard also established the importance of

being able to detect or trace whether a requirement was

identified, but not supported by the system being developed.

There are plenty of opportunities to apply CASE within the DoD

STD-2167A framework. Organizations which are not involved

with defense systems can benefit from the efforts of the

standard as well since the requirements traceability concept

applies to all software systems. Luckily, many CASE tools

today have included mechanisms which establish traceability

links between specification and design.

37

IV. TOOL TAXONOMY

The opening section of this chapter provides an overview

of the purpose of the taxonomy. A proposal of how CASE tools

can be classified is provided along with a sample format for

use by the target audience. The chapter ends by referring to

the responses of several vendors and institutions surveyed by

the author using the proposed taxonomical format.

A. CLASSIFICATION GOAL

A classification scheme is essential when dealing with

diverse, complex items. The tremendous number and variety of

tools available today greatly complicate this task. Moreover,

given the diversity and functionality of the tools available

makes understanding what a tool does and comparing it to other

tools a most difficult task. However, it is precisely this

diversity that drives the need for a taxonomy.

Simply categorizing the tools is not enough. In addition

to the classification framework, description mechanisms are

provided to further define the fit and support provided by the

tool. Several of the mechanisms are based on the critical

areas defined in Chapters II and III. The purpose of this

taxonomy is to help organizations involved in evaluating and

selecting CASE tools to classify tools and aid in the

38

development of candidate tool lists as described in the tool

evaluation process presented in Chapter V. The framework

utilized for the taxonomy is described in the next section.

B. CLASSIFICATION STRATEGY

1. Framework

The Software Development Life Cycle (SDLC) is a

standard engineering practice employed by software development

organizations to encompass all phases of software development.

Yet, even this standard approach can be a cause for user

concern when the user is faced with multiple lifecycle models.

The lack of single standard lifecycle model for software

development can increase the complexity associated with

classifying and defining the various tools and the phases they

support. In addition, various organizations which adopt the

same lifecycle model may name each phase differently. [Ref.

27:p. 114]

Figure 4-1 contains the phases selected by the author
p

for the framework. In the interest of the target audience,

this taxonomy will utilize seven of the phases defined by the

standard DoD SDLC mandated by DoD-STD-2167A as described in

chapter III and two additional phases: Project Management and

Other. The development phases are prefaced by project

management to reflect the emergence of tool support for this

activity. An Other category is provided to accommodate tools

39

Project Management

System Software Requirements Analysis Phase

Software Requirements Analysis Phase

Preliminary Design Phase

Detailed Design Phase

Coding and Unit Testing Phase

Computer Software Component Integration and Testing Phase

Computer Software Configuration Item Testing Phase

System Integration and Testing Phase

Other

Figure 4-1 Taxonomy Development Phases

which do not match the given phases.7

2. Categories

Although CASE is a diverse field given the variety of

tools available, there are a few distinct areas in which they

can be categorized: lifecycle coverage, integration level and

application areas.

a. Lifecycle Coverage

The DoD SDLC framework serves to satisfy

lifecycle coverage. Several terms used in the industry also

serve to indicate lifecycle coverage. Tools which emphasize

upstream activities such as planning, analysis and design are

referred to as "Upper CASE" or "Front-end" CASE products.

DoD STD-2167A does not identify a maintenance phase.
Significant tool capabilities now exist for this phase.
Additionally, some vendors may have their own representation of the
development cycle causing a tool not to fit a particular phase.

40

Tool which emphasize downstream activities such as programming

and maintenance are referred to "Lower CASE" or "back-end

CASE" products. [Ref. 28:p. 425]

b. Integration Level

Chapter II addressed the integration architecture

of the full CASE environment by describing two basic distinct

toolsets: Toolkits and Workbenches. It concluded by

asserting full integration efforts could be accomplished by

combining various toolkits or individual tools via a framework

or by using a workbench (fully integrated lifecycle tool).

Vendors tend to associate the term I-CASE with a

workbench tool although some use it when referring to a

framework. Therefore, it is imperative to establish a common

nomenclature for tools within this category. For purposes of

this taxonomy, the term I-CASE or workbench is used to define

a tool which provides an integrated set of tools for full

lifecycle support. An example of this type of tool is

Information Engineering Facility (IEF) from Texas

Instruments.8 It should be noted that few I-CASE tools today

actually provide complete lifecycle coverage. Thus, the

taxonomy can be used to delineate which areas are not

supported by a workbench.

Tne term framework was used to describe a tool

with an integration architecture enabling users to assemble

8 IEF is one of the tools surveyed by the author.

41

various tools as components of a fully integrated toolset.

Industry publications have adopted the term C-CASE (component

CASE) for describing this category. For taxonomical purposes,

C-CASE or framework is used to describe a tool which provides

an open type architecture for assembling tools to achieve full

lifecycle support. C-CASE is the direction in which the

industry appears to be moving. Some C-CASE tools even provide

heterogeneous support which allows the tool to operate on and

across multiple hardware and software systems from different

manufacturers. (Ref. 13:p. 11]

There are some CASE tools which may integrate

with various toolsets, but focus on providing support for a

particular aspect of the development cycle such as

configuration management or testing. These tools are referred

to as "power tools". Although they integrate with various

toolsets, they do not provide integration for other tools.

They are designed to fit the architecture of the tools they

suppo t . An example of this type of tool is CCC (Change and

Configuration Control) from Softool Corporation. CCC actually

supports a number of the leading tools on the market by

providing complete change control and automated configuration

management for the entire software development lifecycle.

This taxonomy will refer to these tools as power tools or P-

CASE.

There is one final integration category of CASE

tools: Those that don't integrate with other tools. The

42

majority of CASE tools today fall into this category. These

tools are referred to as designated CASE or D-CASE. Stand-

alone CASE tools days are numbered as the trend towards fully

integrated environments accelerates. The taxonomy adopts the

term D-CASE for tools which fall in this category.

c. Application Areas

"CASE tools are designed to support the

development of different types of software" [Ref. 27:p. 425].

Tools can be divided into two major application categories:

those designed for Information Systems and (i.e., MIS/DP

business applications, such as on-line information systems,

order entry transaction systems and traditional data

processing) and those designed for Aerospace, Defense and

Engineering (ADE) Systems (i.e., engineering and scientific

analysis software, process and device control software,

etc..). Figure 4-2 depicts these categories further

subdivided into subcategories. [Ref. 3:p. x]

Information Systems (MIS/DP)
On-Line Systems
Mainframe Systems

Distributed Systems
Batch Data Processing and Reporting Systems

Engineering Systems (ADE)
Analytical/CAD
Real-Time

Non-Hardware Specific
Embedded Systems

Figure 4-2 CASE Application Areas

43

There are important differences between these

groups. On-line information systems on mainframes rely on and

must be compatible with resident database management and

timesharing facilities. Information systems distributed

operating on personal computers require network protocols and

data integrity management. Complex processing logic, robust

report generation and job control capabilities are required to

support batch systems.

Engineering systems involve highly complex

operations. Analytical/CAD systems require complex

mathematical functions and the ability to handle symbolic

logic. Real-time systems typically involve critical, high-

speed timing requirements and tend to have complicated control

and processing requirements [Ref.29:p. 70]. As a result, they

need special constructs to model control behavior, methods to

describe multi-tasking and synchronization and facilities

supporting performance analysis, rapid prototyping and system

simulgtion. Embedded systems not only require these

capabilities, but must also have ways to define close

couplings with the target hardware environment. [Ref. 3:p. xi]

Due to the differences in software applications,

tools are becoming more specialized by trying to match their

design representations and capabilities to the specific

requirements of the application domain. Therefore,

application areas become a distinctive way of categorizing

certain aspects of CASE tools.

44

3. Attributes

Categorizing and assigning a tool to a particular

development phase is not sufficient for classification

efforts. In addition to the lifecycle framework, description

mechanisms are needed to further define the fit and support

provided by the tool. The attributes described in figures 4-3

and 4-4 are provided to help define the full functionality

(and limitations) of a tool.

The list of attributes is by no means comprehensive.

It reflects those attributes the author considered the most

important attributes for initial consideration. The

attributes provided are meant as skeletal elements to be used

and enhanced by organizations to flesh out a tool. The exact

fit of a tool can be determined by applying (or ommitting) the

appropriate attributes and qualifying attributes as needed.

Moreover, organizations can add or delete attributes as

needed.

4.' Employment

The taxonomy is provided to aid in the development of

candidate tool selection lists to augment the tool evaluation

process outlined in chapter V. It is designed so that

organizations can quickly classify a tool and discern its

capabilities and limitations by applying and qualifying the

various attributes associated with the tool. Moreover,

organizations can expand the attributes to include new or

45

Code Generation: Tool can generate some programming language
from analysis and design representation.

Configuration Management: Tool maintains histories of document
versions and configurations of documents.

Design: Tool depicts the module structure of a program being
designed either in text (structured English, program design
language) or graphically in structure charts or modular block
diagrams.

Documentation Support: Tools that provide for the extraction
and formatting of the contents of the project database. Others
go further to provide standard reports, report generators and
templates to meet certain standards (i.e., DoD STD-2167A) with
interfaces to technical publishing systems (i.e., Interleaf,
Framemaker, etc...).

Fourth Generation Language (4GL): Tool contains a high level
language providing database access facilities.

Hardware Systems Supported: Specific hardware systems supported
by the tool (i.e., mainframe (IBM etc..), mini-computer (VAX
etc..), Workstation (Apollo, DEC, HP, Sun, etc..), PC (IBM,
Compaq, etc..), Apple (Macintosh, etc..), other, etc..).

Languages Supported: Specific languages supported by the tool
(i.e., Ada, Atlas, C, C++, CMS, Cobol, Jovial, Fortran, Pascal,
PL1, etc...).

Lifecycle Supported: Specific lifecycles supported by tool, if
any (i.e., Waterfall, Evolutionary, Transform, Spiral, etc..).

Methodology/Diagramming Technique Supported: Specific
methodologies supported by the tool, if any (i.e., Bachman,
Chen, Curtice/Jones, Customizable, Gane-Sarson, Hatley/Boeing,
Hatley/Pirbhai, Information Engineering (Martin), Information
Engineering (Finklestein), Jackson, McCabe, Merise, Page/Jones,
Petrinets, Proprietary, SADT, Schlaer/Mellor, Ward/Mellor,
Wa'rnier-Orr, Yourdan-Demarco, etc..).

Multi-user: Multi-user data access (concurrent data access by
multiple users).

Networkable: Tool can operate in a network environment.

Performance Analysis: Tools that measure the complexity
software, generate static or dynamic statistics of a program's
performance, or analyzes the structure of a program.

Figure 4-3 Taxonomy Attributes

specific capabilities required to satisfy their individual

needs. Appendix A contains a sample form prepared by the

author to demonstrate the application of the proposed taxonomy

46

Project Management: Tool provides or reports project management
information including number of processes, allocation of work,
completion status and, in some cases, schedules, budgets and
project dependencies.

Prototyping: Tool provides ability to develop screen or report
prototypes and generate appropriate code, or provides capability
to rapidly develop algorithms and test the code.

Requirements: Tools providing either text or graphic capability
to generate or analyze requirements. If graphic, a popular
structured analysis technique is used (i.e., Yourdan/Demarco).

Reverse Engineering: Tool is capable of reading source code or
database schema and creating the documentation and design
representations (structure charts, entity relationship diagrams,
module block diagrams, calling trees, etc...) necessary for
enhancing and maintaining the code at the analysis and design
level. Some tools allow for new code to be generated from the
modified designs.

Simulation: Same as prototyping except that the ability to
simulate the behavior of the prototype system is also provided.

Software Systems Supported: Specific operating systems
aupported by the tool [i.e., mainframe (VM/CMS, etc..), PC (MS-
DOS 3.1, 3.2, 4.0, OS-2, etc..), Workstation (Sun 3.5, 4.0
etc..)].

Strategic Planning: Tool is capable of creating an enterprise
model or is used to generate a strategic systems plan.

Testing: Tool provides the capability to generate test beds or
test suites from the source code. Also includes capability to
assist in system integration testing in the target hardware
environment.

Testing & Maintenance: Tool provides the capability to generate
test plans and test data and manage the test data.

Traceability of Requiretments: Tool can track and report the
impact of change between documents or trace the development of
a requirement throughout the system so compliance and
completeness checks are possible.

Figure 4-4 Taxonomy Attributes

along with additional comments and suggestions.

C. SURVEYS

Appendix B contains the taxonomy sheets for several tools

surveyed by the author. The tool information is based on

47

responses from questionnaires sent to the vendors and numerous

follow-ups between the author and technical support personnel.

The tools selected provide an overall representative sample of

CASE tools available today.

D. SUMMARY

This chapter identified a general taxonomy for CASE tools.

The taxonomy is provided to help organizations quickly and

conveniently develop candidate tool lists for supporting the

evaluation process identified in the next chapter. It is

designed so that organizations can tailor the description

mechanisms (attributes) to fit their own organizational needs.

Appendix C contains a blank taxonomy form for use by

individual organizations. The evaluation process identified

in the following chapter will demonstrate the role of the

taxonomy within the tool evaluation process.

48

V. TOOL EVALUATION PROCESS

There are no formal standards established for the

evaluation of CASE tools. In fact, "there are no easy or

prescriptive solutions for the evaluation and selection of

CASE tools" [Ref. 30:p. 8]. Little if any comprehensive

guidelines have been published regarding the evaluation of

CASE tools. The most notable comprehensive effort in this

area, "A Guide to the Classification and Assessment of

Software Engineering Tools", was published by the Software

Engineering Institute at Carnegie-Mellon University in August

1987 [Ref. 31]. Another comprehensive effort is currently

under development by the Software Technology Support Center

(STSC) at Hill Air Force Base in Ogden, Utah. The STSC is a

recently established organization in the Air Force whose

charter is to "act as central focal point for proactive
p

management of MCCR [Mission Critical Computer Resources]

support tools and environments" [Ref. 32:p. 1]. The STSC has

proposed the development and adoption of a Software Tool

Evaluation Model (STEM) to act as a yardstick to serve as an

unbiased model to which software tools, especially CASE, can

be compared. The guidelines provided in this chapter are

based on the SEI guide. The sectional discussions for both

49

the Evaluation and Assessments sections have been paraphrased

from the guide.

A. PREFACE

As noted in chapter II CASE is no longer just a tool or a

group of tools providing analysis, design and programming

support for developing software. CASE has evolved into a

support environment spanning the entire software engineering

lifecycle providing support to the entire engineering team

(i.e., managers, analysts, designers, maintainers, etc...) for

overall product development [Ref. 12:p. 20]. As such, there

is no particular set of requirements which will apply to all

organizations, nor can an organization look only at general

criteria to evaluate CASE tools. Case succinctly points out:

It is necessary to define the specific requirements for
your organization, the processes and information flows
that currently exist, and then finally to identify the
feature set that will optimize the fit of a specific CASE
tool to your environment. [Ref. 30:p. 8]

B. EVALUATION CRITERIA

Classifying a tool does not appraise it. As noted in the

previous chapter, a classification scheme provides an

indication of what a tool might do and where it could be used,

whereas an evaluation attempts to assess how well the tool

does it's job from the evaluator's perspective. As such, the

evaluation process is inherently subjective since users have

50

different requirements, work in different environments, and

have different perceptions of how tools ought to work.

Nonetheless, many questions a user might ask can be

standardized, with the understanding that different users will

interpret the answers in different ways and affix their own

measures of importance to them. Appendix D contains a list a

standardized questions provided by SEI to form the basis for

the tool assessment process.

C. ASSESSMENT PROCESS

The establishment of formal criteria for evaluation is not

enough. Criteria in and of itself is similar to a tool in

this respect. It has no inherent value. It derives its value

through it's application by a particular individual or

organization. Since users are varied, what is appropriate to

one user, whether an individual or an organization, may be

inappropriate to another user. Therefore, the process of

evaluating or assessing a tool must be accomplished by the

organization that intends to acquire the tool. The SEI effort

identified a four step assessment process:

Perform a needs analysis.

Perform an analysis of the existing environment.

Develop a list of candidate tools and acquire descriptions
of these tools.

Apply assessment criteria and select a tool for use.

51

1. Needs Analysis

The initial step in the assessment of a tool is to

decide the purpose for which the tool will be used. Tools

derive their value from their ability to do something such as

perform a function, save time, save labor, save money, or make

something possible that is otherwise difficult or not

possible. Their capabilities must be relevant to the

acquiring organization and must bring utility to that

organization. A tool may require specific features to be

appropriate for an organization: generate ADA code; generate

2167A documentation; reuse code; reverse engineering. It must

contribute to a process controlled by a method. The following

points should be considered:

What is the relevant model of software development?

What major tasks does that process require?

Which tasks should be performed or assisted by automated
tools?

Which of those tasks currently lack adequate tool support?

What is the estimated benefit to be obtained from specific
new tools?

"The organization must clearly understand its

software development process, methods and management, and the

needs they imply before deciding to acquire tools." [Ref.

31:p. 31].

52

2. Environment Analysis

The next step in the assessment process is to conduct

an analysis of the environment in which the tool will be used.

It can normally be performed while the needs analysis is

conducted. Tools do not operate in a pristine environment.

The success of a tool is determined by how well it fits the

environment of a specific organization. Since each

organization is different, the decision makers within an

organization cope with their own environmental constraints.

Constraints take many forms but, can normally be

classified in several distinct areas: economics, time,

personnel, vendor relations, etc.... Understanding the

environment and the impact of the constraints within it is

crucial to the environmental analysis. Equally crucial is to

understand there are two ways to deal with constraints:

...live with them or change them."[Ref. 31:p. 32]

Identifying constraints is not enough. The

environmental analysis must also identify those constraints

which can be eliminated or modified as well as the tradeoffs

between them. Figure 5-1 contains the questions which

organizations should consider when performing the

environmental analysis according to the SEI guide.

3. Develop Candidate List

After it's needs have been identified, an

organization should develop a list of candidate tools that

53

1. Is the organization open to change? Have changes occurred in
the past? Have there been successes or failures?

2. Have there been lessons learned from past successes or
failures? Do the lessons support introduction of the tool?

3. Can the organization afford to buy the tool easily, or will
the purchase price place extreme pressure on learners for
instant success?

4. Is the investment in the tool so large that it will be
difficult to dislodge in the future?

5. Is there a plan to introduce the tool? Does everyone
understand the plan? Are goals, objectives, benefits, risks
and milestones clear to all?

6. Is there an agreed upon way to determine progress in use of
the tool?

7. Is management planning to reinforce progress and initially
hold back negative judgement?

8. Is the tool sponsored by a champion -- someone able and
willing to serve as sponsor and focal point, and to monitor
and encourage progress?

9. Is training scheduled to allow real use of the tool shortly
after completion of training?

10. Will those who need to learn the tool be able to do so in a
low-pressure environment?

11. Will learners have adequate access to the tool during the
learning period?

12. Will learners have pilot projects on which to practice the use

of the tool?

13.' Will learners have time to experiment?

14. Has a case been made for increasing benefit over time as users
become acquainted with the tool and increasingly exploit its
power?

Figure 5-1 Organizational Environmental Analysis
Questions

might satisfy those needs. Recognition of the value of CASE

has risen sharply in recent years. As a result, many new

vendors have entered the expanding market with a variety of

tools. Information on available tools can be obtained from

54

trade publications, trade shows, and technical journals. One

such publication is CASE Outlook by the CASE Consulting Group

which was instrumental in supplying key information for this

thesis. There are also several governmental organizations

available for supplying key information on CASE tools. The

STSC which was mentioned previously and the Federal Software

Management Support Center (FSMFC) of the General Services

Administration.

The FSMSC has an established database of CASE tools

and the federal employees who use them. The FSMSC contains

information such as the tool, its vendor, a functional

description and its cost. More importantly, it can provide

the user information so that callers can contact the users

themselves to discuss their experiences with a tool.

The list of potential tools should be developed as close

to the date of selection as possible. New vendors, new tools,

and major product upgrades occur on a regular basis. Hence,

product information is quickly outdated. Timely product

information is critical when deciding on the most appropriate,

available tool.

Obviously, the list should only contain tools that

appear appropriate to the discerned need and the

organizational environment. Tools that clearly do not meet

the need or cannot function within the existing environment

should be excluded. The classification scheme outlined in

Chapter IV provides the means to quickly discern between

55

various tools. The user can quickly capture and organize data

on existing tools and target those tools deemed most

appropriate. Appendix C contains a blank classification form

for such use.

The candidate list should not just focus on

individual tools. One tool may not be able to satisfy all

requirements whereas a set of related, compatible tools might

jointly suffice. It is up to the organizati.,n to determine

the importance of having all or most tools produced by the

same vendor or with the same characteristics. "There are

great advantages in acquiring a tool set with a consistent

philosophy - the burden of acquisition, training, support, and

use is substantially less". [Ref. 31:p. 33]

4. Apply Criteria and Select

Once the candidate tools have been identified, each

tool must be analyzed to determine it's fit to the

organization. The application of a set of evaluation criteria

to each tool is the final step in the assessment process. The

SEI approach suggested the following four phases:

Establish evaluative criteria

Define a specific experiment

Execute the experiment

Analyze the results

56

a. Establish Evaluative Criteria

The criteria listed in the previous sections

identify attributes that should generally apply across a wide

range of tools. The criteria are straightforward and

unweighted. Each user or organization must review the

checklist and make it's own estimate of their relative

importance. For instance, some organizations may prefer tools

that are easy to learn if they cannot afford the time and cost

of expensive training while others might be willing to incur

significant training costs to acquire much more powerful

tools.

The resulting checklist must be augmented with

the results of both the organization's needs analysis and

environmental analysis before a final selection is made. The

criteria identified must be listed and ranked in the order of

importance. This list serves as the basis for the next phase.

b. Define a Specific Experiment

The prioritized list identified in the previous

phase must be translated into tests to be performed on each of

the potential (candidate) tools. Each question or criteria on

the list must be supported by one or more specific tests

tailored to the individual tool being evaluated. Each test

must identify exactly what is to be performed and under what

set of initial conditions. Each test should also detail

57

exactly what data is to be collected and the quantities that

should be measured to answer the underlying questions.

c. Execute the Experiment

It is vital that the tests identified be

conducted through hands-on use of the tool. Personnel should

not rely solely on product literature or documentation. Even

though many questions can be answered by reviewing the

literature, it can occasionally be misleading or

misinterpreted. The tests identified should be sequenced

according to the prioritized list of criteria documented in

the first phase. Unacceptable results on early tests indicate

the tool will not satisfy the organization's critical needs.

Poor or unacceptable early test results can be used as a basis

for shortening the testing process. By eliminating poor

performing tools early on, organization's can focus their

efforts on the most promising tools.

The end product of this phase should be a

transcript of the execution of the experiment and the

measurements and answers to the criteria that were detailed in

the previous phase.

d. Analyze the Results

The final phase consists of analyzing the data

collected from the experiments. Each tool should be analyzed

to determine how well it satisfies each of the criteria.

Criteria ranked the highest should receive special attention.

58

After the criteria have been applied, the

decision process begins. The results usually indicate that no

tool is a perfect fit for the particular organization. "The

final decision must be based on the judgement of those in the

organization who will receive the most benefit (or harm) from

the tool selection." [Ref. 31:p. 34] The impact of introducing

a particular tool must also be considered since it's use can

and should alter the software engineering environment.

The assessment criteria will not provide a recipe

for absolute success in selecting the most appropriate, useful

tool. It is intended as an aid to the selection process. The

assessment must be a careful, meticulous process culminated by

the planned, monitored introduction and use of the tool

selected to enhance its chances of acceptance and use.

D. SUMMARY

There are few guides available for evaluating CASE tools.

The SF$I guide provides a complete tool evaluation process. It

provides a generic checklist which can be used across a wide

variety of tools and can be tailored to accommodate specific

organizational needs. In addition to the checklist, the SEI

guide identifies an assessment process for conducting the

evaluation. The guide emphasizes that simply using a tool is

not enough. The tool must not only fit the application and

needs, but fit the organization as well. It is also vital

that organizations consider the impact that introducing the

59

tool will have on the organization. The benefits from tools

do not come without costs. It takes a considerable commitment

to introduce a tool successfully in an organization. "All the

activities from selection to training to tool set evolution

will affect an organization's ability to effectively use the

tool and reap the maximum benefit possible from it." -4Ref.

31:p. 36]

The tool evaluatio, checklist identified along with the

DoD Std-2167A impact areas identified in chapter III and the

critical areas defined in chapter IV serve as the basis for

the evaluations contained in the following chapter. Time and

scope limitations prevent a complete in-depth analysis of each

tool, therefore, the author must select specific emphasis

areas. Figure 5-2 depicts the specific areas selected by the

author for emphasis. The areas selected reflect those the

author considered most appropriate for the target audience.

60

Methodology Supported

Hardware/Operating System Requirements

Installation

Documentation

Interface to Other Products

Multi-user Access

Network Support

DoD-STD-2167A Support

User-Interface

Traceability of Requirements

Dictionary/Repository

Prototyping

Consistency/Completeness Checking

Training Support

Diagramming/Graphic Facilities

Figure 5-2 Tool Evaluation Areas

61

VI. Tool Evaluations

This chapter contains the personal evaluations conducted

on three commercially available tools: Excelerator/IS 1.9,

Software through Pictures (StP) 4.2A, and Engineering and

Project-management Oriented Support System (EPOS) 4.0. The

tools selected provide a representative sample of CASE: 2 PC,

1 workstation; 1 P-CASE, 1 C-CASE, 1 I-CASE. Time and scope

limitations prevent a complete in-depth analysis of each tool.

Figure 6-1 contains the specific areas emphasized (as

identified in the previous chapter) by the author. The goal

of these evaluations is not to develop a software product, but

to attempt to identify the major capabilities and limitations

of each tool for the target audience. Each evaluation

follows the same general approach. A sample textbook software

project served as a common model to support each evaluation.

Some information, such as the interface to other products, is

based solely on the documentation provided and will be

identified accordingly. No endorsement of any tool is

intended.

62

Methodology Supported

Hardware/Operating System Requirements

Installation

Documentation

Interface to Other Products

Multi-user Access

Network Support

DoD-STD-2167A Support

User-Interface

Traceability of Requirements

Dictionary/Repository

Prototyping

Consistency/Completeness ChecKing

Training Support

Diagramming/Graphic Facilities

Figure 6-1 Tool Evaluation Areas

A. EXCELERATOR/IS 1.9 OF INDEX TECHNOLOGY CORPORATION

1. Hardware/Operating System Evaluated On

The tool was evaluated on a 38C clone (20 Megahertz)

with an 80 megabyte hard drive and a VGA monitor using MS-DOS

3.3 operating system. A Logitech 3 button mouse was used to

provide mouse support. No compatibility problems with any of

the hardware nor the operating system were observed.
p

2. Tool Description

Excelerator/IS is an Analysis and Design tool

oriented towards business applications. It contains an

integrated set of analysis and design tools focusing on

automating the early phases of system development. It

concentrates on analyzing and defining the application problem

and creating the system specification. Excelerator/IS 1.9

also includes project management capabilities.

63

3. Methodology Supported

Excelerator/IS is designed to support structured

methodologies. To take advantage of it's full capabilities,

users need to use a structured methodology or approach.

Excelerator supports a wide range of methodologies. It can

even be tailored via Customizer to support an organization's

own "home-grown" approach or to link with other development

tools. Customizer is identified in the section: Interface to

Other Products.

Excelerator combines the Yourdan/Demarco Structured

Analysis methodology with data modeling and structured design

methodologies. It supports both Yourdan and Gane/Sarson

notation for data-flow diagrams. It also supports Ward &

Mellor notation for state, control, and event modeling.

Entity-relationship diagrams are available for data modeling

using both Chen and Merise notation. Constantine structure

charts and Jackson structure diagrams are provided to help

analyze process logic.

4. Hardware/Operating Systems Requirements

The hardware support for Excelerator/IS 1.9 is

standard MS-DOS personal computers. Figure 6-2 contains the

specific hardware and operating systems requirements for

Excelerator/IS 1.9. The tool also supports the following

workstation (32-bit environments): VAXstation 2000 family and

Apollo DN3000.

64

PC Hardware Requirements

Disk Space

8 MB for Excelerator Program
1 MB for temporary files created during execution
3.2 MB for data storage (per average 1.9 project)
Recommended Amount: 20 MB -- 30 MB for large prolects

Memory

Minimum of 459K of conventional memory
Recommended Amount: 640K

Graphics board (must be 100% compatible)

IBM EGA, IBM VGA, Hercules Graphics Card

Mouse

Driver must be compatible with MS MOUSE.COM or MOUSE.SYS
Version 6.1 or above

Printer Support

Epson FXl00, LQ1500
Hewlett-Packard HP7475A, PH7470A, LaserJet+, LaserJet II
IBM 80 CPS Graphics, Proprinter, Proprinter 24 Family
Toshiba P1350, P1351, P351
Texas Instruments TI 855

Operating System Requirements

PC-DOS or MS-DOS Version 3.1 or higher; OS2 in DOS session
BIOS must be IBM XT, AT, or PS/2 compatible

Specific PC Systems Supported:

AT&T 6300 IBM Personal System/2
COMPAQ III IBM PC/AT, PC/XT
COMPAQ Plus IBM 3270 PC/AT
COMPAQ Portable 286 HP VECTRA

Figure 6-2 Hardware and Operating System Requirements
for Excelerator/IS 1.9

5. Installation

The installation process was straightforward and

relatively easy. Tool and documentation was delivered as a

complete package. The package included a Release Notes guide

which especially helpful regarding product changes not

incorporated in the original documentation especially

installation sensitive information. The installation was

effected by loading the installation disk, executing a batch

65

file, and then following the prompts. The procedure

automatically modified the autoexec.bat and config.sys files

to enable DOS to run the software. The use of an automated

installation program greatly simplified the entire process.

The only negative incident encountered pertained to

the installation of the block security device used to copy

protect the software. Neither the installation manual nor the

installation program indicated when or exactly where to

install the device. The Release Notes guide did mention the

device was a new enhancement which replaced the key-diskette

approach previously used and could be attached to either a

parallel or serial port.

The initial execution attempt failed with the block

device attached to the LPT-2 port of the evaluation computer.

The matter was easily and quickly resolved by communicating

with company representatives via the hotline support number

provided in the installation manual. They recommended

attacing the device to LPT-1 and attaching the printer cable

to the rear of the device which immediately resolved the

problem.

6. Documentation

The documentation provided is extensive. The

documentation set consisted of a Tutorial, an Application

Guide, a two-volume Reference Guide (Facilities & Functions,

Data & Reports), a Quick Reference Card and a function key

66

template. The set also included a Release Notes and

Enhancements document describing new features incorporated

along with a Services booklet delineating the training

services available to support the introduction and application

of the tool.

The tutorial lived up to its billing. It was very

general and easy to follow. It concentrated on exploring the

basic features and learning the mechanics of the tool. Goals

and tasks provided within each section were helpful as well.

Hints on how best to utilize certain features were also

offered and did prove to help in several areas.

The application guide is an overview of the analysis

and design process using a case study. It provides details

for creating and retrieving data along with suggestions for

organizing the project emphasizing structured techniques. The

guide follows a structured approach for the analysis (logical)

portion, but only offers suggestions on how best to use the

tool to support the design phase. The appendix within the

guide indicated all the documentation was available, but it

lacked the data flow diagrams (DFD) for DFD 3.0, DFD 4.0 and

DFD 5.0 and the primitive process specifications (PPS) for PPS

3.0 and PPS 4.0 as specified in the Document Graph for the

specification. As a novice user, a complete approach would be

preferable. A finely detailed very precise cookbook or

exercise approach would greatly benefit the first-time CASE

user.

67

The combination of the tutorial and the application

guide did mitigate the initial barrage of features and helped

to focus on application techniques. However, the

documentation seems to be geared towards the experienced user.

The first-time or novice user is easily overwhelmed by the

variety and extensiveness of the features available.

The only serious shortfall regarding documentation

involves the tool itself. The on-line help provided is very

limited. All on-line help is limited to one line. The Quick

Reference Card and function key template provided help to a

degree, but the user is often forced to refer to the hard copy

documentation whenever a question arises.

7. Interface to Other Products

Documentation provided with the tool indicates

Excelerator can interface with a variety of other products to

provide an integrated development environment. Specific

products include:

Customizer: An add on product from Index Technology

with utilities that allow users to modify the System

Dictionary and System Forms Library files. Users can add

entity types and attributes, change menu structure, include

new graphs and new graph objects and more. It includes

XL/Programmer Interface which allows C language programs to

use it's function library to access Excelerator's project

dictionary and graph files.

68

PC Prism: A planning tool from Index Technology

which is used for strategic information systems planning and

enterprise modeling. Components of the planning model

developed within PC/Prism can be exported into Excelerator to

aid analysis efforts. Excelerator can also export data to

PC/Prism to help planners model a future system by using an

existing one.

XL/Interface for MICRO Focus Workbench product: A

customized version of Excelerator/IS that provides ability to

design and code a complete COBOL source program.

XL/Interface for ABT's Project Workbench: A

customized version of Excelerator/IS that provides ability to

integrate Excelerator/IS's tools for system analysis and

design with the Project Workbench system's tools for project

management.

Excelerator for IBM's CSP/AD: An enhanced version of

Excelerator/IS that provides modeling and analy: 1 tools

specifically tailored to support IBM's CSP/AD development

environment. This version will eventually provide support to

IBM's new AD/Cycle.

Excelerator for IBM's DB2: An enhanced version of

Excelerator/IS that supports physical database design in DB2.

This version includes a capability to link between Exceleratnr

and DB2, a mainframe relational database from IBM, to

facilitate physical database design and implementation.

69

8. Multi-user Support

Excelerator can support multiple projects and

mu2tiple users on a single workstation. A Project Manager

feature creates projects, assigns users to project tasks, arta

assigns access levels. When a user logs on to Excelerator,

he/she must specify which project to work on. Once logged on,

the user works only with the data associated with that

particular product and only that data for which access is

authorized. It doee not support simultaneous access by

multiple users. This aspect will be fully discussed in the

next section.

9. Network Support

Excelerator operates in a network environment and

supports various network products. Figure 6-3 depicts the

network software systems supported by the tool. However, as

noted above, the tool only allows one user access at a time.

To support multiple users, multiple copies of the tool must
p

be loaded and configured for each user on the file server.

Users working on the same project can read the central project

dictionary, if granted access, but must have their own copy of

the project data to work with in order to update the contents.

With access, users can download current project data and

upload data to the central dictionary. The project manager is

tasked with the responsibility to ensure users maintain the

integrity of all shared data.

70

Network Support

IBM PC LAN IBM Token Ring

3COM3+ 3COM 3C501

Novel! Advanced Netware 3COM 3C501, IBM Token Ring

Novell ELS Netware 286 3COM 3C501, IBM Token Ring

AT&T Starlan AT&T Starlan

Note: Requires individual mystm files to be loaded on file server for
ecOh user

Figure 6-3 Network Systems Supported by Excelerator/IS
1.9

The installation guide recommends installing a copy

of Excelerator on each individual node to optimize the tool's

performance. The advantage of operating a tool in a network

environment lies in the ability to share output devices,

facilitate the sharing of project data by transferring data

via the network to the central dictionary, and the ability to

back up all project files from a central location. However,

this advantage is diminished by having to manage multiple

copies of the program in various locations and needing a block

securfty device for each copy of the tool.

10. DoD STD-2167A Support

Excelerator 1.9 does not directly support 2167A

requirements. However, it does provide support via an add-on

product, XL/Doc. XL/Doc allows Excelerator to conform to

government standards by automatically generating in prescribed

formats or scripts. Conversations with marketing

representatives indicated scripts, although not which ones,

71

currently available adhere to DoD STD-2167A standards with

additional scripts scheduled to be available in new releases

of XL/Doc.

11. User-Interface

Excelerator/IS utilizes a menu-driven interface.

Navigation through the menu hierarchy was relatively easy.

The use of a mouse greatly simplified the navigation process.

Most notable feature the author appreciated was not being

buried at lower levels. Most menu operations were limited to

three levels.

Another important aspect of the interface, is that

the menu formats are consistent throughout. All menu

selection screens, data entry screens, or diagrammatic screens

follow the same general pattern. Familiarity is enhanced by

using one section of the tool and finding similar operations

available within other sections which apply the same logic.

For example, graphing knowledge and techniques learned in a

particular section, such as Data Flow Diagrams in Graphics, is

easily transferrable to Entity Relationships Diagrams.

Excelerator/IS incorporates the use of colors to

enhance the interface as well. The tool used color most

effectively in the diagrammatic section when employing

graphics. Once an entity, such as a dataflow or a process on

a dataflow diagram, is described to the dictionary or a

process is exploded to a lower level, it changes to another

72

color indicating such action has been accomplished. The

change in color provides a visual reference to remind the user

that certain operations have or have not been accomplished.

The tool provides a variety of colors to select from.

Excelerator incorporates the use of a mouse as well.

With the aid of the mouse, navigation between menus and

selections is quick and easy. The Graphics portion of the

tool relies exclusively on the use of the mouse to accomplish

diagramming efforts.

12. Traceability of Requirements

Version 1.9 includes a new enhancement which now

allows the tool to track requirements. It accomplishes

tracking by using two new entity types -- User Requirement

(URQ) and Engineering Requirement (ERQ) -- which allow a user

to construct a requirements database for each project or

proposed system. URQ's specify "what" a system must do while

ERQ's are used to specify "how" the system implements URQ's.

A user can take a written requirements specification

and assign each unique requirement to a particular URQ. These

individual requirements can be incorporated within the

description of the various dataflows, stores, data entities,

data elements, modules or processes via a "Satisfies

Requirement" field. If used in conjunction with ERQ's, users

can specify technical details associated with the particular

requirement to facilitate tracking in the design phase as

73

well. As a result, a particular requirement can be traced

throughout the entire requirements and design specifications.

The guide even recommends using descriptive names instead of

riumbers for the URQ's. Then, if a source document is modified

and renumbered, there is no need to rename (renumber) URQ's

wherever they were used.

URQ's/ERQ's can be used with additional entities

provided within the dictionary to facilitate tracking as well.

Issues and Notes are entities which can be used by analysts to

record concerns that might affect the deadline schedule or

document the non-support of a requirement. Issues and Notes

can be referenced from the description screen of each entity

it affects. Figure 6-4 illustrates a User Requirement for a

process along with associated Issues and Notes. Users can

also generate Issue reports to maintain an current progress

status or current status of project requirement support.

13. Dictionary/Repository

The dictionary, XLDictionary, organizes information

by projects. Th= project data is organized in sets of items

with the same characteristics known as enity types (i.e.

dataflow, process). Each entity is supported by a description

screen which lists the attributes that belong to it. Figure

6-5 depicts the format for a dataflow. Associations between

entities are another important characteristic maintained by

the dictionary.

74

I

User Requirement PROCESS ORDERS

iiiii A i e r a t e ~ m e i ii ! ii iiii i i~ ii i i i
Alternate Name

Short Description
;THE SUBSCRIPTION SYSTEM MUST BE ABLE TO MANAGE BOTH MAIL-iN
.::,iAND TELEPHONE SUBSCRIPTIONS AND MAINTAIN INVENTORY OF EACH ;iiii;:

Priority

Contains: .' Has Associated:::
.Type Name .i; Type Name

; ::;REF:!REQR'S SPEC PARA 3.0
::;::KISS:::INSUFFICIENT DETAIL; NEED DATA
1;. .iNTE;:;CONTACT SUBSCRIPTION DEPT MGR

PgDn

::,::: ,;-........ ,.... . .

: t: , * ! : : ! . . " . . : . : : : : . : : ! ! : ! : , : : : .: : . : : : . : : . ! ! ! ::::! : ; :.....! ..: i ii il

Figure 6-4 Excelerator/IS 1.9 Sample User Requirement

The dictionary treats an association between two

entities, such as a dataflow to a particular record or

element, as a logical relationship. It tracks and cross-

references the relationship of every entity defined to other

entities within the project. Relationships are established in

two ways: by adding graphic components to a graph or via the

description screen of another entity. Relationships are an

important. component of t:.he tool's consistency and completeness

checking ability.

75

Graphic relationships are automatically created by

linking objects on the diagram. Relationships entered via

description screens are established via an "explodes to" field

within the entity description screen. Exploding allows an

entity to be described in greater detail by linking it to

another entity. The dictionary enforces logical relationships

by only allowing the entity to explode to other appropriate

entities. The dictionary supports over 50 different entity

types and can track over 1000 relationships.

Input to the dictionary can be accomplished in

several ways: by defining components as they are added to a

graph, by entering records and elements directly into the

dictionary or by describing elements to the dictionary via the

Screen Design facility. Thus, the dictionary can be populated

or modified without entering the graphics facility.

The multiple input capability is accomplished by

using a function available within the dictionary called

"browde." Browsing allows navigation between related entities

with a single keystroke without having to go through any

menus. For example, while inputting or updating a record, a

user can enter its elements directly into the dictionary by

selecting browse and defining each element as it is input in

the record. Another important use of browse is to track

requirements. It is very easy to pop from a process to a URQ

and from URQ to an Issue or Note associated with it to verify

a requirement was addressed or check pending issues.

76

Data Flow PROCD APPL

S Label PROCESSED APPLICATION

Explodes To: (REC-DID-ERA-ELE-STD]
Type REC Name PROCESSED APPLICATION

u r t o V a e..
Duration Value
Duration Type
Access Type

Satisfies Requirement: Associated Entities:
.:..:Type Name -!::Type Name

ORQiAPPLICATION PROCESSING

PgDn

Figure 6-5 Excelerator/IS 1.9 Sample Dataflow

14. Prototyping

Excelerator's '"Screens and Reports" facilities

provide capability to prototype data entry screens and report

output formats up to 132 columns wide. Both facilities offer

full screen editing and utilize the mouse to navigate about.

Both facilities include a field command feature which is

particularly useful in verifying the information on the layout

is consistent with the data stored in the dictionary. When

specifying a field location on the screen, the tool queries

77

for the name of the data element it is associated with. If in

the dictionary, the specific information is retrieved and

automatically formats the screen entry. If not, the element

can be described into the dictionary directly (by browsing

from the screen to the actual data entry) thus ensuring the

items are consistent. Multiple input screens can even be

chained together to indicate their sequence.

The screen design facility includes an inspect option

to test the screen design. After saving the screen and

selecting inspect, data can be input to check the layout,

verify field lengths, demo help messages and verify the

chaining. This is a very useful feature for communicating

with the actual user of the system.

Once verified, the screens and reports can be

converted into a compilable data structure. Excelerator can

generate the screen and report designs into a data map which

is a programming language description of the components and

their structure. The tool can generate BASIC, C, COBOL or

PL/i. The outputs can be converted into ASCII and transferred

to the target system as well via an Interface File option.

15. Consistency/Completeness Checking

Several techniques for ensuring consistency and

completeness have already been described in earlier sections.

Relationships such as those created via the "explodes to"

field within entity description screens and by defining

78

entities within entities using the "browse" function within

the dictionary or from the screen design facility are prime

examples. The explosion option is particlarly useful when

constructing DFD's. If a Process is exploded to another

level, the tool will automatically brina dcwn the dataflows

associated with the Process to remind the user what flows are

associated with the Process.

One of the more important consistency aspects of the

"explodes to" involves the transition from the logical

representation (DFD's, STD's, etc..) of the project to the

physical representations: Structure Charts and Structure

Diagrams. Entities such as Processes or PPS on a DFD can be

exploded to either of the structured representations used to

represent the the phsyical designs used to implement the

activity. The explosion path aids monitoring and analyzing

the relationships between logical and physical reviews of the

system. Thus, consistency between the logical specification

and the phsical specification can be maintained.

In addition to the various interactive techniques

mentioned, there are formal checking mechanisms provided by

the tool. Screen-based relationships can be verified via a

"missing entities" function based in the dictionary. Missing

entities examines entities that are related to each other via

a description screen link. For example, a record might be

described, but the elements contained in it were not. Running

missing entities on the relationship type "REC contains ELE"

79

generates a report on the entity record and any undefined

elements.

Graphic diagrams have formal checking mechanisms as

well. The "Analysis" facility within the tool contains

several graph verifi af.ion options, two cf which were

particularly useful. The first, "Undescribed Graph Entities"

provides a quick check for any entities which might have been

identified on a graph, but were not described to the

dictionary. The second, "Level Balancing", is a much more

powerful option.

"Level Balancing" assesses the consistency of a DFD.

Level balancing ensures information, such as a dataflow to or

from a process, is not mentioned on one level and ignored on

another by comparing two levels at a time. The top level

entities are referred to as "parent entities" while the next

lower level entities are referred to as "child entities". The

tool begins with the DFD specified and examines each process

one by one attempting to to balance the parent process's

input/output dataflows, signals and prompts with the

appropriate explcsion entity. A process can explode to

another DFD (going to a lower level of detail), a State

Transition Diagram or a Primitive Process Specification (PPS).

Figure 6-6 contains a level balance report from the sample

project. Balancing continues until all levels within a DFD

have been checked.

80

LEVEL NUMBER: 1
PARENT GRAPH NAME: RECORD CLUB SYSTEM OVERVIEW

Graph Object Su-ary

CHILD CHILD
OBJECT NOT TYPE NOT IN
TYPE I/L ID OR LABEL DESCRIBED N/A FOUND BALANCE

PROCESS ILI RECORD CLUB SYSTEM I X I I I
PROCESS ILI SUBSCRIPTION SUBSYSTEM X
[PROCESS ILI PROMOTION SUBSYSTEM x
[PROCESS ILl ORDER PROCESSING SUBSYSTEM x
[PROCESS ILI 3.1 X I
IPROCESS ILl 3.2 x I
PROCESS ILl 3.3 X

Press ESC to exit. Use arrow keys, PgUp, PgDn, to scroll output.

Figure 6-6 Excelerator/IS 1.9 Sample Project
Consistency Report

These are not all the features offered, but are some

of the most useful. The formal mechanisms are easy to use and

produce reports which can be sent to either the screen for

quick viewing or to a printer for greater review. Although

easy to use, the tool takes considerable amount of time to

generate some information. Some reports such as a level

balance report of the project took up to two or three minutes

to process before being output.

16. Training Support

Excelerator has an extensive training support

program. Educational and consulting services are available as

well es support services.

Public and private training courses are offerred for

both new and experienced users. Instruction includes theory,

techniques and application via hands-on operation using real

world exercises based on actual systems. Public courses are

81

offered at a variety of locations around the country. Private

courses can be provided at on-site.

Consulting setvices also available for Excelerator

users. Services range from expert advice and independent

analysis to additional manpower support. Strategic planning

and evaluation of hardware/software technologies are offerred

as well.

Support services provided include: 90 day warranty,

unlimited hotline support, quarterly newsletter, user

conferences and X/L Group Inc., an Excelerator user support

group. Extended updates and maintenance plan are offerred at

extra cost.

Extensive support is available, but most is at user's

expense. Organizations can tailor training needs to minimize

financial impact. Users can monitor training schedule to

attend closest training sites and take advantage of multi-user

discount options offerred. Bottom line is that extensive

support is available, but it can be expensive.

17. Diagramming/Graphic Facilities

Excelerator supports a variety of diagrams and

different notations as noted in the Methodology Supported

section. Diagramming within the tool does require some effort

and experimentation for familiarization which was covered to

some degree within the tutorial.

82

The tool is quite flexible. For instance, users can

construct a Context Diagram and then explode to the top level

DFD and so on all the way to the Primitive Process

Specification (PPS) or users can generate individual DFD's and

connect them to the corresponding DFD or PPS. Moreover, the

tool does not require the diagram desired to be named. It

will list the diagrams available and allow user to select the

appropriate one. When updating, users can select an

individual DFD to modify without having to traverse the

various levels. Therefore, a user can jump in and out of a

project almost anywhere in the system.

Other options offer significant flexibility as well.

Users can select from three different connecting lines: pipes,

straight lines and now curved lines depending on their

preference. Mixing different lines on a graph or diagram

permits manipulating the layout in a variety of ways. The

tool also offers a choice of either "system" or "user" ports

for cdnnecting the lines to individual objects. This option

allows a user to specify the location of the connection on the

object or let the system do it it automatically. Much

practice is needed with the "user" selection to fine tune the

connection on the object which can be frustrating at times.

Another frustrating aspect with line drawing involves the

movement of objects. If a Process is moved, all connections

are moved as well, but the tool tends to maintain the original

83

connection location which can generate a maze of lines on the

diagram forcing the user to reconnect the lines manually.

The layout itself offers a high degree of

flexibility. The layout can display up to six pages for a

diagrams which exceed one normal page. Individual page size

is determined by the printer selected. A "Preview" option

allows user to experiment with individual fonts and display

their true size for printing options. Unfortunately, the user

is only provided a view of the object itself. The user is

forced to select and then leave and return to the layout to

examine the reseults. Moreover, the actual page size is not

reflected on the screen itself until "Print" is actually

selected. Only then can the user see if his format and font

selections will fit a particular page. Figure 6-7 depicts the

top or system level DFD of the sample project. The The figure

illustrates the main sub-processes of the sample system being

modeled: processing subscriptions for membership, generating

monthly promotions for the membership, responding to orders

generated from the promotions and issuing orders to the

warehouse to satisfy the requisitions.

The tool does provide suggestions which offset the

preview limitation to a degree. Such as selecting print and

after the page lines appear use "line draw" to mark off the

page lines. Thereafter, user can copy the diagram to another

name and use it as a format to construct other similar type

diagrams.

84

XI

POTENTIAL
NEWER VAIL. X3

TMeSCIIII

OgI OMOER
IMI|IT I01Isw ulP- To i t

lT|IlONt - FILLED

RED awgn OOSE CURN
FILE MIEE

RECORD OF ESN
NEMEN AND0 pUNCA PTE

PREFERENCE

~AUTOMTIC
2.0 GINNH FILL ORDER

DATE FOR

SONSYSM111

RECORS Of ATED ORGE
i

Oil1 OMERI FILE
CASIINET

~MONOTHLYf 01
SPECIAL

Figure 6-7 Excelerator/IS 1.9 Sample Project Diagram

Excelerator/IS includes a unique Presentation Graph

option to help users visualize the proposed system. It

provides different objects and icons that can model subjects

in a variety of pre-defined notations such as a person object

which can be used to rep-iesent a cust er. This option can be

used to adhere to a well-defined set of rules. For example,

85

it can be used to create a flow chart depicting the procedural

logic of a particular activity.

The best use of this option involves the creation of

a decomposition diagram representing a pictorial outline of

the entire system specificiation. Objects on a decomposition

diagram represent graphs and other components of the

specification. The objects presented can be exploded to any

XLDictionary entity, such as a Screen Design or DFD. Thus, a

user can the outline graph to navigate through a complex

design moving from one entity to another.

The diagramming facilities within Excelerator/IS

provide a variety of diagrams with a high degree of

flexibility. The facilities provide the information in a

variety of formats depending on the user preference. For a

personal computer based system, the facilities offerred by

Excelerator/IS are significant.

B. StP 4.2A (SUN) OF INTERACTIVE DEVELOPMENT ENVIRONMENTS
P

1. Hardware/Operating System Evaluated On

The tool was evaluated on a Sun Model 3180 using Sun

Version 3.5 operating system. No compatibility problems with

any of the hardware nor the operating system were observed.

2. Tool Description

StP is a full lifecycle support tool which is

oriented towards both business and real time applications.

The tool contains an integrated set of graphical editors which

86

focus on the analysis and design phases of system development.

Figure 6-8 contains the set of graphical editors supplied with

the tool. Full lifecycle coverage is provided via an

automatic code generatio' capability contained within several

of the editor facilities. The tool also provides "rapid

prototyping" capabilities and a limited reverse engineering

capability.

3. Methodology Supported

StP 4.2A supports several methodologies via the

graphical editors supplied with the tool. The DFE supports a

structured analysis approach using either Yourdan/Demarco or

Gane/Sarson notation to provide a "functional perspective" of

the system.

A "data perspective" of the system is provided by

both the DSE and ERE. The DSE is used to construct data

structures which can generate declarations for C, Ada and

Pascal. The DSE is designed to be used in conjunction with

the DtE to support structured analysis activities and the SCE

to support structured design activities. The ERE is used to

define entities and their relationships using the CHEN style

to support structured analysis efforts and can be used to

generate database schemas within StP.

Design support is provided by the SCE. The manual

suggests following Yourdan/Constantine structured guidelines.

8-/

Graphical Editors

Dataflow Diagram Editor (DFE)

Data Structure Editor (DSE)

Entity Relationship Editor (ERE)

Structure Chart Editor (SCE)

State Transition Editor (STE)

Transition Diagram Editor (TDE)

PICture Editor (PCT)

Control Specification Editor (CSE)

Document Preparation System (DPS)

Figure 6-8 STP 4.2A Graphical Editors

The SCE also contains the capability to generate program

design language or code templates.

Real time support is provided by the STE which is an

graphical tool for drawing state transition diagrams. The STE

can be used in conjunction with the CFE and the CSE to provide

complete real-time ektension (control information) to

Structured Analysis. The CSE is based on the Real-Time

Requirements Specification Methodology.9

The RAPID/USE facility within the tool provides

capability to prototype the user/program dialogue to model the

user interface and build a working version of the system. The

9 Hatley, Derek J., and Pirbhai, Imtiaz A., Strategies for
Real-Time System Specification, New York, NY: Dorsett House
Publishing, 1987.

88

RAPID/USE facility is based on the User Software Engineering

Methodology.10

4. Hardware/Operating Systems Supported

Figure 6-9 contains the workstations and operating

systems supported by StP 4.2A (Sun Version) along with the

disk space storage requirements for each model. Additional

Hardware/Software Systems Supported

Workstation Model Oper/Svs

Sun 3 All Models 3.5, 4.0

Sun 386i All Models 4.0

Sun 4 All Models 4.0

Sparcstation All Models 4.0

Hardware/Software System Requirements

Workstation Oper/Svs Storage Required

Sun 3 3.5 26 Megabytes

Sun 3 4.0 19 Megabytes

Sun 386i 4.0 19 Megabytes

Sun 4 4.0 19 Megabytes

SPARCstation 4.0 19 Megabytes

Note: The storage requirements reflected above do
not include the sample documents provided in the
desktop and SampleDocs directories. If installed,
add 11 megabytes to support these files.

Figure 6-9 StP 4.2A Sun Version Hardware/Software
Systems Support/Requirements

10 Wasserman, A.I., "The User Software Engineering

Methodology: An Overview," in Information System Design
Methodologies, ed. T.W. Olle, H.G. Sol, and A.A. Verrijn-
Stuart. Amsterdam: North Holland, 1982.

89

workstations supported by StP 4.2A include: Apollo, HP 9000

Series 300, VAXstation and DECstation.

5. Installation

The installation process was performed with the

system's administrator. The tool and the documentation was

delivered as a complete package. The program consisted of a

single 1/4" streamer tape (tape cartridge). The installation

was performed by loading the installation cartridge, executing

a batch file, and then following the prompts.

Installation was straightforward and uneventful. The

administration manual contained step-by-step instructions for

the entire process. The Administration manual also included

a sample installation process with detailed explanations of

each option which was particularly helpful. The process was

very easy to follow and understand.

The documentation package included a Release Notes

guide which especially helpful regarding product changes not

incorporated in the original documentation especially

installation sensitive information.

6. Documentation

Ample documentation is provided. The documentation

set is unique to each hardware system supported. The Sun

Version set consists of three manuals: StP User Manual, StP

Reference Manual and StP Administration Manual. The User

Manual contains the tutorials and all documentation support

90

for the editor facilities. The Reference Manual is primarily

devoted to the programming facilities of the tool, while the

Administration Manual contains the installation instructions

and other material directed towards the System Administrator.

The set also included a Release Notes document describing new

features incorporated, compatibility information with previous

releases, repaired problems and known limitations of the

current version. Each manual contains both a table of

contents and an index with all major sections tabbed and

separated. Each major section includes an individual index

and an overview which enhances reading and searching efforts.

The User's Manual tutorial provided a Basic Tutorial

and an Advanced Tutorial. The Basic Tutorial provided a

general overview of the StP environment by demonstrating the

basic operations associated with a graphical editor (DFE) used

by the tool. Operations were mainly oriented towards the use

of the graphic facility, but did provide a brief section on

descrfbing data to the, dictionary. Overall, the tutorial

provided a friendly initial view of one aspect of the tool.

The Advanced Tutorial walks through the analysis and

design of a small system by describing the use of four

different editors: DFE, ERE, SCE, and OAE. The tutorial

concentrates on diagram locking, version control,

completeness/consistency checking, the use of the data

dictionary, process specification generation, printing

diagrams, and supposedly report generation.

91

The tutorial ends by referring the user to the documentation

associated with each editor for the use of their more powerful

features and an additional five chapters associated with

customizing and extending the StP environment.

The Advanced Tutorial's approach could best be

described as one of "tunnel-vision". The user is thrust into

a project with a brief overview and then immediately launched

into constructing various aspects of the sample system. Most

of the uses of the editors involved are very limited. For

example, the use of the DSE and the OAE are limited to one

example format for entering data structure information with

the DSE and data type information with the OAE. The ERE

section was more of an overview as well. The SCE section did

provide more depth of use than the other sections which helped

to tie some significant concepts together. The sections' main

value is that they do provide key points of interest regarding

the editors such as the distinction between the set of "Note

Types" available within the ERE and the DSE. The set of note

types available within the ERE is different from those

available for elements in the DSE, since the objects are of

different type.

Overall the Advanced Tutorial lacked sufficient depth

of use for the majority of the editors presented. The limited

mental model presented by the sample system and the lack of

system requirements and any linkage to such severely limits

the user's view of the overall purpose of the system.

92

Moreover, it ignores several of the powerful features of the

tool preferring to have the user confront these features

within the individual editor sections.

The tutorials associated with individual sections of

the tool due provide an overview of what is expected of the

user. They specifically describe which sections of the

documentation must be completed before attempting a particular

section. For example, the RAPID/USE section requires the

completion of the following sections prior to use: Troll/USE

Relational Management System, Appendix C: RAPID/USE Commands

and Appendix D: Troll/Use Commands. The only negative aspect

regarding these tutorials are that they are not a continuation

of the system described in the Advanced Tutorial. As a

result, the user has to develop a new mental model for the

sectional tutorial applications.

Besides the referrals to the customization chapters,

the user is left to his own conviction as to what path is best

to pursue for continued instruction. As a novice user, a more

detailed consistent approach would be preferable. A finely

detailed very precise cookbook approach would greatly benefit

the first-time CASE user, especially with the variety of

features offered by this tool.

One outstanding aspect of the documentation of the

tool lies in its extensive on-line help. The help facility

within the tool is quite informative. Although some areas are

not covered (most of these are intuitive) , those that are tend

93

to provide much more than superficial hints. In most

instances, the on-line help is bufficient for the task at hand

which prevents the user from having to revert to hardcopy

documentation.

7. Interface to Other Products

Documentation provided with the tool indicates the

standard version of the tool can be modified and extended by

the user. The flexibility is provided via an open software

architecture called Visible Connections. The architecture

makes all interfaces to the tools within StP visible. These

visible interfaces can be modified within the StP environment

without having to access any individual tool source code. As

a result, users can modify messages, database schemas,

editors, fonts, startup menus and other aspects of the

environment. The architecture supports the customization of

the various templates used within StP as well.

StP contains a Tool Information System (TIS) which

acts As the central point for customizing and extending the

StP's environment. The TIS works in conjunction with the StP

Tools Library and one or more tool information files to assign

values to various variables of the environment. The tool

information file is typically named "toolinfu".

The TIS along with the Tools Library allow users to

customize tools they build within StP. These customized tools

can be linked to other tools within StP or operate completely

94

independent of them. Individual users or entire projects can

be customized via the toolinfo file to provide their own tool

environment.

The Tools Library contains various routines which

facilitate customizing the tool interface via a programming

language interface to components within in the suite of StP

tools. The routines in the StP Library are logically divided

into three groups: 1) Troll/USE group for interfacing with

the database management system 2) Toolinfo Group for

manipulating information within the Toolinfo file 3)

RAPID/USE group which provides runtime support for the

RAPID/USE applications development and rapid prototyping

system. The tool provides a C language interface for all

three groups. It also provides a Fortran 77 interface for the

Troll/USE and RAPID/USE groups which is only available for Sun

systems.

The interface routines are not intended for the

averade user. The tutorial within the Library does not

provide examples of every routine it contains. It provides a

few short programs which demonstrate a sample usage of the

most complex routines. By understanding the short programs

provided, the user is not expected to have any difficulty

using the other routines in the library. The tutorial further

assumes the user is familiar with the C programming language.

These assumptions dictate the average user must rely on

95

systems support personnel within their own organization to

extend the capabilities of the tool.

StP Visible Connections provides an interface to a

wide variety of other products which enable the tool to

provide complete lifecycle coverage. Figure 6-10 identifies

the third party products supported by StP by application area.

The tool does provide specific support for several desktop

publishing systems. Documents can be output to files in a

particular format and then edited in the desired desktop

publishing systems. StP 4.2A generates compatible output

files for FrameMaker 2.0 and Interleaf 4.0.

8. Multi-user Support

The StP environment provides multiple-user concurrent

access to the tool. Concurrent access allows groups of users

to work on the same project at the same time (possibly even

the same diagram), but it requires a sophisticated locking

scheme to prevent possible problems such as simultaneous

editing. StP provides locking features designed to control

concurrent access to diagrams.

The tool provides "automatic locks" and "user-defined

locks" for all the editors. Once a diagram is loaded, the

editor sets an automatic lock which prevents a diagram from

being overwritten by another user while the file is in use.

Other users can read a diagram that is in use and are notified

by the system upon access that the diagram is locked (the

96

Configuration Management:

Product: CCC Company: Softool Corporation
Product: DSEE Company: Hewlett-Packard Company

Database Managmnt System:

Product: StP/INGRES Interface Company: Softool Corporation
Product: SYBASE SQL Server Company: Sybase Incorporated

Detailed Design:

Produot: KeyOne Company: LPS s.r.l.

Fourth Generation Language:

Product: UNIFACE Company: Uniface B. V.

Integration Platform:

Product: HP SoftBench/HP Encapaulator Company: Uniface B. V.
Product: Software BackPlane Company: Atherton Technology

Programing Environment:

Product: Saber-C Company: Saber Software, Inc
Product: VADS Company: Verdix Corporation
Product: VAxset Company: Digital Equipment

Corporation

Reverse Engineering:

Product: BAT Company: McCabe & Associates, Inc

Systems Simulation

Product: SES/workbench Company: Scientific & Engineering
Software, Inc

Technical Publishing System:

Product: FrameMaker Company: Frame Technology Corp
Product: Interleaf TPS Company: Interleaf, Inc

Testing:

Product: StP/TESTBED Interface Company: IGL Technology
Product: START Company: McCabe & Associates, Inc

Version Control:

Product: RCS Company: Hewlett-Packard Company

X Windows Support:

Product: StP Xll-Based Software Development Company: Interactive Development
Center Environment s

Figure 6-10 StP Third Party Product Support

97

"store" is replaced by a "locked" button). Users can edit a

diagram that is locked by changing the name of the diagram to

an unused name or change the name of the project directory.

Users can also set locks. User locks are necessary

since automatic locks are only set when a diagram is loaded.

Once unloaded, it can be edited by another user. For example,

if a user works on a diagram and then works on a decomposition

of the original diagram another user can edit the parent

diagram. To prevent this, the user must lock the diagram

prior to working on the decomposition. User locks are

permanent. Therefore, a user lock can also prevent another

user from editing the finished diagram when a user desires to

work on the diagram for more than one session.

Both automatic and user locks can be controlled

(enabled/disabled) by the system administrator, a project

manager or any user defined as a lock administrator. The

system provides a User-Interface facility for utilizing

locking functions which is quite easy to use. Although it is

easy to use, this feature requires some forethought and

oversight to ensure it is set up and administered properly.

9. Network Support

StP 4.2A (Sun Version) provides network support via

protocols bundled with the operating system supplied with the

workstation. The specific protocols provided with the Sun

workstations are TCP/IP. Many Sun workstation network

98

implementations tend to use Baseband Ethernet as the

communication medium." Documentation provided with the tool

was not very detailed regarding network technology.

StP does offer a unique tool network feature in 4.2A

called "heterogeneous database support". This feature allows

the tool to read project databases located on machines with

completely different machine architectures. For example, the

tool running on a machine with an Intel 80386 CPU can read a

database produced by a machine with a Motorola 680x0 series

CPU and vice-versa.

The tool accomplishes the architecture independence

by providing a heterogeneous version of troll: htroll.

Troll/USE is the relational database management system

utilized by the tool. All database definition and

manipulation is handled through Troll/USE. StP 4.2A actually

provides two versions of troll for each architecture: htroll

and otroll. Otroll is the original (native) version of troll

provided for each specific platform supported (i.e., troll for

Sun 3 or troll for Sun 4). Unless there is a need to access

databases on a variety of machine architectures, the manual

recommends using the native version of troll since htroll

imposes a minor database performance penalty.

Htroll provides a great degree of flexibility. Users

are not locked into a specific machine architecture to ensure

n Telephone conversation between Dennis Freeman, Sun
Microsystems, Inc., and the author, 14 June 1990.

99

StP compatibility throughout the organization. The troll

version is specified by the user during the installation

process. If different machine architectures are acquired

after the tool has been installed, users can quickly and

easily convert from otroll to htroll.

10. DoD STD-2167A Support

StP 4.2A directly supports the following DoD-STD-

2167A Data Item Descriptions (DID's):

Software Requirements Specification

Interface Requirements Specification

Software Design Document

Interface Design Document

2167A support is primarily provided by the DPS and

OAE. Both of these tools include a system of templates that

define the information the tool requires as input and produces

as output. Both of these tools "must be equipped" with their

2167A templates in order to generate the 2167A reports. There

is a 2167A template for each DID supported. The 2167A support

is focused on key areas within the analysis and design phases

of development.

The DPS templates are used to control the content and

format of the document via each different DID template. The

template files are made up of code written in the DPS template

language. The code is used to perform the various functions to

100

produce the 2167A reports. The DPS templates can even be

modified to customize the document.

The DPS and OAE templates are used to generate the

reports required above by extracting the information needed

from the data dictionary. The extracted information includes

the annotations written with the OAE and diagrams drawn with

the graphical editors. The OAE information is derived from

the annotation fields that appear when OAE is invoked for a

particular objezt. These fields, called Note Types, are used

to specify the general characteristics of an object. Within

the Note Types, a user can edit additional fields called Note

Items corresponding to the Note Types which allow the entry of

more specific information that describes the object being

annotated (i.e., integer, constraints, additional text

descriptions, etc..). This item will be explained in greater

detail in the traceability section.

The DPS formats the extracted information into

tableg, diagrams and standard text to produce the desired

2167A documents. The DPS contains "user input" fields which

prompt the user for additional information required to

complete a report which is not provided in the model developed

during the analysis and design phases. For example,

information such as the name of the contractor and the

contract number are requested by the user input fields.

This is an extremely powerful feature. The templates

provided obviate the need to compile and format the required

101

information once the system is complete. Although it saves a

substantial amount of documentation effort, it requires

meticulous effort throughout development to ensure the

information is entered in the appropriate fields within the

Note Types.

11. User-Interface

StP provides an easy to use window based interface

combined with graphic menus and icons. The interface

exemplifies the power of this tool. It provides a great

degree of flexibility and control.

The Main Menu window of the tool allows a user to

call any tool (i.e., editor) directly by selecting the icon

representing the particular tool desired. Once selected, a

separate window and menu for the tool selected is provided.

Various pop-up menus and submenus supporting additional

operations can be accessed from within each window as well.

Navigation between and selection within the windows and menus

are ehhanced by the use of a mouse.

The tool relies on the use of a three button mouse

with each button providing a specific capability. The left

mouse button is the "Select Button". It is used to make

selections from the Main Menu window, the editor windows and

to select text fields for text entry. The middle mouse button

is the "Undo Button". It supports drawing operations by

providing the capability to undo the most recent drawing

102

operation attempted. The right most mouse button is the "Menu

Button". This button is used to make selections from the

various pop-up menus and submenus available within each window

application.

The window and menu formats are consistent throughout

the entire tool. All menu screens and diagrammatic screens

follow the same general pattern. This similarity enhances

familiarity with the use of the tool. Both the Basic and

Advanced Tutorials emphasized this aspect of the interface to

reinforce the users efforts.

StP also offers the capability to modify the user-

interface by customizing the Main Menu. The documentation

indicates can the menu can modified and extended to define

local preferences. After modification, users can not only

access StP tools, but also non StP tools and programs. The

manual emphasizes that this capability is not meant to be

accomplished by the average user. It stresses System

Adminfstration personnel perform all necessary actions. The

manual does provide all pertinent information necessary to

accomplish desired changes.

StP offers a powerful easy to use interface, but it's

capabilities require the user to practice some discipline.

For example, users can open as many windows as they want and

enter multiple editors and quickly lose control or get

confused. The tutorials are designed to ensure the users get

a great amount of practice with window control and

103

manipulation. Therefore, it is vital that users concentrate

on the tutorials for the basic operation of the system.

12. Traceability of Requirements

Version 4.2A provides a ReqTrace template family

containing three templates for tracing requirements: 1)

TraceModToProc 2) TraceModToMod 3) ReqDoc. The

TraceModToProc template traces structure chart modules back to

dataflow processes. The TraceModToMod traces dataflow

processes back to structure chart modules. The ReqDoc

template produces a Requirements Document summary report that

itemizes how each requirement is satisfied by objects in the

project database.

The ReqTrace templates require special Note Type

annotations which can only be done with the OAE. The OAE

provides a specific Note Type called Requirement to support

traceability efforts. Once this note type is added to an

object, the user must select Edit Note Item at which point the

system provides the following data fields:

Requirement Name:

Requirement Document:

Requirement Paragraph Name:

Requirement Paragraph Number:

Once these fields are completed, the information can

be extracted by the ReqTrace templates. The Requirement

104

Document summary report is generated by tracing all objects

associated with a specific Requirement Document. The

templates search for specific requirement paragraph

information for each object associated with the requirement

document identified. Once the dictionary search is completed,

the templates format and produce a traceability report

containing the extracted information.

The ReqDoc template is very useful, but it was not

very clearly detailed. There was only one page in the entire

manual which identifies this feature and it instructs the user

to use the "Help" button in the Document Definition Area for

pertinent information. The help facility provides the right

information, but did not detail exactly how to enter the name

of the document to trace. Generating a report required

several trial and error attempts to figure out how to enter

the dozument name.

13. Dictionary/Repository

The StP Data Dictionary is a set of programs that

connect the various StP editors with a relational database.

As such, it serves as a medium for connecting the editors to

each other which enables the tools to share the same project

database for a system. Therefore, a user can enter

information with one tool and view it with another.

Information within the dictionary is organized by projects.

105

The main purpose of the data dictionary is to store

"data" information and ensure that names are used

consistently. Only one rule is uniformly enforced within the

data dictionary: all names used must be unique, with only one

exception. For example, a name chosen for dataflow may only

be used for a data item, and not also as a process name. The

only exception to this rule is the name of a process defined

in a dataflow diagram may be the same as the name of a module

defined in a structure chart.

Input to the dictionary can be accomplished in

several ways: by defining data structures as they are added

to a diagram in the DFE (data stores and dataflows) by using

the DSE or by defining data types and attributes within the

ERE. The documentation recommends the use of both approaches

to gain the maximum power from the dictionary.

The DSE uses hierarchical data structure diagrams to

decompose "dataflows" and "data stores". The dataflows and

data stores are defined via dataflow diagrams and structured

charts. It supports simple, complex and hierarchically

structured data objects. Data types, constraints and values

are added as notations to support the generation of dat .

declarations for the various programming languages supported

by the tool and as input to the data dictionary.

The ERE uses entity-relationship diagrams to model

system data by defining entities and their relationships. It

is especially suited for "data intensive" applications. The

106

ERE uses the data dictionary for the storage and retrieval of

all of it's data. One important aspect of the ERE is it's

generation capability. It not only generates input to the

data dictionary, but database schemas as well. For example,

the ERE can generate the Backus-Naur Form an ER diagram which

is very similar to the notation used in structured analysis.

It also includes checking programs to aid in checking and

verifying the decomposition and definition of a data

structure, and the consistent use of names in the data

dictionary.

The data dictionary also provides its own interface

for viewing stored data called the StP Data Dictionary Browser

(StP/DD Browser). The StP/DD Browser allows users to browse

the dictionary contents to perform checks for individual items

as well as listing objects and their definitions. Its primary

use is for short sessions or spot checks which would be much

slower if accessed through the Main Menu.

i. Prototyping

StP 4.2A provides a facility called RAPID/USE which

can quickly generate user-program interfaces and construct

complete interactive systems. It is based on the User

Software Engineering (USE) methodology which provides a

support environment for the development of interactive

systems. RAPID/USE is intended to rapidly prototype a system

by successively refining models to construct a specification.

107

It has the capability to construct complete systems which may

be used as production systems.

USE utilizes a unique set of state transition

diagrams (USE STD's) to model the flow of the interactive

dialogue. The USE STD's are used to model the entire

interactive session, which it calls a "conversation". The

conversation consists of one or more subconversations modeled

by USE STD's. In reality, the set of subconversations is

simply the set of messages displayed by the system.

According to the RAPID/USE documentation, the goal of

RAPID/USE and the USE approach is to provide the developer

low-level control over the placement of characters on a

display and over the user's input. The tool contrasts its

approach to other systems where the approach is "hard-wired"

via fixed formats, fixed screen layouts and fixed concepts of

user interaction. However, in order to achieve this fine

detail, the facility requires a lot of user effort. In

essence, a user of this facility must become a programmer. As

a result, time and scope limitations prevent an in depth

attempt by the author to exercise this facility.

The RAPID/USE documentation also specifies that a

user must know -ral other sections of the manual prior to

attempting to use it. Unfortunately, one of the other

sections specified, RAPID/USE Commands, requires the user to

complete the RAPID/USE section before using it. Therefore,

108

the user is left to his own judgement how best to proceed to

learn the facility.

RAPID/USE actually consists of two parts: a

Transition Diagram Interpreter (TDI) and an Action Linker.

The TDI is used to create an executable version of the

user/program dialogue by executing the USE STD's. The TDI

also provides direct linkage to the Troll/USE database system.

The linkage allows transitions to call sequences of statements

written in the Troll/USE data manipulation language and pass

any needed parameters. The TDI alone is enough to construct

an entire system if the dialogue is comprised only of human

interaction that causes database manipulations.

For more complex systems, which include actions

programmed in a high level language, the Action Linker is also

needed. The Action Linker allows code to be associated with

the actions specified in the USE STD's. As a result, the

actions can be performed in conjunction with transitions. The

code used with the linker can be written in several different

languages (not specified).

This a powerful capability, but it carries a cost: it

not only requires the user to learn a specific methodology,

the user must also be willing to program it.

15. Consistency/Completeness Checking

StP provides several techniques for ensuring

consistency and completeness. One such technique was

109

previously described in the dictionary section. The

dictionary contains one rule which is uniformly enforced. All

names used for the various objects must be unique except for

the names of processes in dataflow diagrams and processes in

a structure chart. This rule prevents the same name from

being used in various places for different items, thus

ensuring no duplication of a name and possible confusion is

introduced into the dictionary.

There are several formal mechanisms provided by the

tool. The DFE contains a check decomp command in the "data

dict" submenu which ensures a process is decomposed into two

or more low level processes and that all inputs and outputs to

the "parent" process are matched in the diagram. The main

thrust of the decomposition process is balancing the dataflows

from one level to the next. For example, a composite dataflow

on an upper level which has not been structurally defined will

generate a decomposition error. The tool generates an error

since it has not been told that the component dataflows on the

lower level belong to it. The check facility will continue to

return error messages until the component items have been

defined via the DSE to indicate they belong to the composite

dataflow.

The check StP/DD command within the "data dict"

submenu provides another important check for the correctness

of the system. The check Stp/DD command ensures that all data

items are completely defined and that there are no undefined

113

elements contained in the data dictionary. The check returns

all information available for the data within the diagram

regardless of the editor used to input it. If a data item had

an entity definition associated with it, the entity definition

as well as any other information would be returned.

The check commands identified above are not limited

to the graphical facilities. These commands can be originated

from the Main Menu without having to access an editor. The

information provided can be displayed to the Execute Window

for quick viewing or to a file if accessed via the Options

Area within the Main Menu. These reports are easy to use, but

can generate a tremendous amount of information.

16. Training Support

IDE offers educational and consulting services as

well as training support services. Training courses are

offered for both new and experienced users. Instruction

includes methods training in both structured analysis and
p

design techniques and object oriented structured design. The

object oriented design can be customized for users of ADA,

C++, Objective C and other object oriented languages. Tool

training classes are available for all languages and can be

customized for current or new StP users.

IDE provides consulting services for CASE application

and development. Support is provided for both newly and well

established software development organizations. Services

iii

range from assisting in the definition of a formal software

development process for a newly established organization to

providing an assessment of the current level of software

engineering maturity of a well established organization.

Support services provided include: hotline support,

quarterly newsletter, user conferences and numerous Regional

User Groups covering the entire country specifically dedicated

to StP. IDE provides ample support not only for StP, but the

entire CASE implementation process. The training provided can

be tailored to meet individual user needs. The focus on

entire CASE organizational support emphasizes the commitment

required to support the introduction of the tool and the

proper application of it. It also emphasizes the financial

requirements for training and implementation can be

significant.

17. Diagramming/Graphic Facilities

The graphics facilities within this tool are quite

impressive. The various graphical editors within the tool all

provide similar diagrammatic facilities which facilitate

learning. New users are well introduced to the tools's

diagrammatic capabilities by the Basic Tutorial, hence little

effort is required to get started with diagramming efforts.

The most striking aspect of the diagrammatic

facilities is their extraordinary "ease of use" despite the

tremendous array of features available. The commands

112

available within each editor are easily accessed by clicking

the Menu mouse button (left button of a three) while in the

drawing area. Figure 6-11 depicts the pop-up Command Menu

available within the DFE. Utilizing the Command Menu and the

insert
replace
delete
copy
scale
proo index
annotation ->
data dict ->
spoc gen ->
print ->
options ->

Figure 6-11 StP DFE pop-up
Command Menu

mouse, a user can quickly and easily insert, move, scale and

replace various objects. The middle button of the mouse

functions as an "undo" button which can be used to cancel

previously issued commands/operations within the drawing area.

This feature is particularly useful for manipulating

lines/arcs (connections) between objects.
0

The Command Menu also offers a variety of options to

support diagrammatic efforts. For example, the Options

submenu within the Command Menu include the commands "put" and

"get". The put/get commands offer a much more powerful form

of copying than the simple copy command available at the

Command Menu. The put command places selected material in a

buffer which can later be placed in any location specified by

the user with the get command. Figure 6-12 depicts the DFE

Command Menu displaying the Options submenu.

113

insert
replace
delete
copy
scale
proc index
annotation ->
data dict ->
spec gen ->
print ->

Moptionam
help
find
linkavc
put
get
grid
repair mode
alternate
next
clear

Figure 6-12 DFE pop-up Command Menu with
Options Menu

The most useful aspect of the put/get command feature

is transferring information between diagrams. A user can

select a single node (process) or an entire diagram and open

another DFE window and transfer the information to another

system. As a result, a user can reuse all or part of a model

as needed. The put/get commands can operate for multiple

windows within the same editor (i.e., DFE, ERE), but cannot

transfer information from one editor to another.

The most impressive feature noticed by the author is

the printing capabilities available for diagrams. The drawing

area within each editor acts as one big page for each diagram.

A user can enter objects at w~'l. As the diagram grows, the

user can select the "Zoom" command to display more of the

diagram by reducing it's size. When using the zoom command,

a user is not only able to see the entire diagram, but can see

114

the diagram as it will be printed. This what you see is what

you get is a very useful feature. The user doesn't actually

have to print the diagram to know what it will look like.

The tool also offers a high degree of flexibility to

the user. Depending on a user's preference, diagrams can be

printed from within any editor or from the Main Menu. The

tool also offers the ability to print one, all or even

selected diagrams. Diagrams can be sent to a variety of

desktop publishing systems for enhanced graphics.

The diagrammatic capabilities are indicative of most

of the capabilities provided by StP 4.2A. They are powerful,

quick and easy to use, but do require some use to master due

to the variety of features offered. StP 4.2A takes full

advantage of the workstation environment to provide the user

with a complete graphics arsenal to attack diagramming

efforts.

C. EROS 4.0 (PC-Vero) OF SOFTWARZ PRODUCTS & SERVICES, INC.

1. Hardware/Operating System Evaluated On

The tool was evaluated on a 386 clone (20 Megahertz)

with an 80 megabyte hard drive and a VGA monitor using MS-DOS

3.3 operating system. No compatibility problems with any of

the hardware nor the operating system were observed.

115

2. Tool Description

EPOS 4.0 is a fully integrated lifecycle tool which

is primarily oriented towards large real time applications,

but supports business applications as well.1 2 Total

lifecycle support is provided via three specification

languages and six tool systems. Figure 6-13 identifies the

specification languages and tools systems provided. The tool

also provides graphical support along with code generation and

extensive project management capabilities.

3. Methodology Supported

EPOS 4.0 provides systematic, structured

methodologies via the various specification languages and tool

systems provided. The tool supports data modeling via

dataflow and data structure diagrams and the EPOS-R

specification language.

Six different design methodologies are supported by

EPOS 4.0: function-oriented, event-oriented, module-oriented,

dataflow-oriented, data structure-oriented and device-

oriented. Specific modeling tools include: Hierarchy

Diagrams, Nassi-Schneiderman Diagrams, Data Structure Diagrams

(Jackson), Petri Net Diagrams, Hardware Block Diagrams and the

12 Lauber, Rudolph, and Lempp, Peter, "What Productivity
Increases to Expect from a CASE Environment: Results of a User
Survey," IEEE Software Development: Computer-Aided Software
Engineering (CASE), 1989, p. 106

116

EPOS-R: Specification Language for Requirements Definition

EPOS-S: Specification Language for System Architecture and
Design (Hardware & Software)

EPOS-P: Specification Language for Process Management and
Production Control

EPOS-A: Analysis Tools

EPOS-C: Communication Tool System

EPOS-D: Documentation Tools

EPOS-M: Management Tools

EPOS: Method Support Tools

EPOS: Code Generation Tools

Figure 6-13 EPOS 4.0 Specification Languages and Tool

Systems

EPOS-S specification language. EPOS-S with formal syntax and

defined semantics can be used for describing systems design.

Project/product management input (i.e., configuration

management info, quality assurance info) is accomplished via

EPOS-P specification language which is used to generate Work

Breakdown Structures, Progress Charts, PERT charts, Gantt

Charts, Network Diagrams and Responsibility Matrices.

4. Hardware/Operating Systems Requirements

EPOS 4.0 supports a wide variety of hardware and

operating systems. Figure 6-14 identifies the various systems

supported by the tool. Figure 6-15 contains the specific

hardware and operating systems requirements for AT-compatible

systems.

117

PC Hardware Requirements

Disk Space

7 MByte for EPOS programs
10 - 12 for data storage
Recommended Minimum: 20 MB

MAmory

Recommended Amount: 640K

Graphics Board

IBM EGA, Std IBM CGA, IBM Monochrome, CGA, Hercules, Toshiba, VGA

Mouse (Required if tool is used with a graphics package (i.e., AutoCAD)

Printer Support

Requires Laser printer; no models specified

Plotter Support

Graphtec (Watanabe) WX 4731
Hewlett Packard HP7475A
Gould Colorwriter 6210

Operating System Requirements

IBM-PC AT MS-DOS 3.3
IBM-PC AT Compatibles MS-DOS 3.3
HP Vectra MS-DOS 3.1
Intel 8086 iRMX
Intel 80286 iRMX

Figure 6-14 AT-compatible Hardware and Operating System
Requirements for EPOS 4.0

5. Installation

The installation process was cumbersome and
F

confusing. The tool and the documentation were delivered as a

complete package. The package included an installation manual

and a two page PC/AT Installation procedure. The package nor

the documents specified which document had precedence which

greatly hindered the installation process.

The program consisted of 14 1.2 Megabyte high density

diskettes (5.25"). The diskettes were delivered in a DOS

Backup Format (standard company practice). To effect the

118

Standard EPOS 4.0 Iplementations

DEC Micro VAX II, VAXstation VMS 3.5 and up
DEC VAX 11/700 series VMS 3.5 and up
DEC VAX 8000 series VMS 3.5 and up

IBM 370 VM/CMS
IBM 370 MVS/TSO
IBM 4381 MVS
IBM-PC AT MS-DOS 3.3
IBM-PC AT Compatibles MS-DOS 3.3

HP Vectra MS-DOS 3.1

Intel 8086 IRMX
Intel 80286 IRMX
Intel Workstation 86/330 IRMX 86 Release 6 and up
Intel Workstation 286/330 IRMX 86 Release 6 and up

Siemens 7000 BS2000

Data General MV series AOS/VS

PCS Cadmus MUNIX

Motorola 68000/10/20 UNIX BSD 4.2/UNIX System V

Apollo Workstation Aegis/UNIX

Sun Workstation UNIX

HP 9000 Workstation UNIX

Figure 6-15 Systems Supported by EPOS 4.0

installation, the diskettes had to be restored to the hard

drive via the DOS restore command. The process was very

trickj' because some of the disks were mislabeled. A

tremendous amount of trial and error was required to solve the

error since DOS does not identify the error explicitly.

The process was further complicated by the lack of

specific directions for setting up the disk storage area. The

two page procedure did not specify the exact subdirectories

needed prior to restoring the disks to the drive. The manual

identified the subdirectories needed, but contained a couple

119

of errors (i.e., EXAMPLES vice EXA) which only added to the

confusion.

The final portion of the installation process

consisted of updating the autoexec.bat and config.sys files to

enable DOS to run the software. Both the autoexec.bat and

config.sys files had to be modified manually. The two page

procedure and the manual conflicted on several settings in

both files. The manual actually specified an incorrect

setting in the config.sys file.

The installation process was laborious and confusing.

Upon communicating with company representatives, they

indicated the manual was to be ignored and the two page

procedure should be used in it's place. This fact should have

been specified in the documentation. The process itself would

be greatly simplified if it were automated (i.e., batch files)

and the guide/manual was written to provide step-by-step

instructions.

6 Documentation

Substantial documentation is provided. The

documentation set consists of an Installation Manual, a User

Manual/Interactive Tutorial, a Pocket Guide, a Graphic Editor

Manual and two-volume set of User Manuals for the various

specification languages and tool systems.

The installation documentation provided is not

precise enough for the process required. Much more detail is

120

needed to ensure the installation is performed correctly and

efficiently. A Pocket Guide is bundled with the

Installation Manual. The guide is very informative. It

provides a compact description of the syntax of the

specification languages and a comprehensive overview of EPOS's

user interface, analysis and documtnatation features. The user

interface section provided an excellent explanation of the

dialogue mode between the user and the system and system

macros available which greatly simplified the initial

interaction with the tool. Unfortunately, the guide contained

some errors for command functions regarding the use of the

tool in the mask mode (menu driven mode). It specified to use

the Ctrl-key of the keyboard to invoke certain commands which

actually must be invoked by the Alt-key. This problem was

easily resolved by using the on-line help which provided the

correct information.

The User Manual/Interactive Tutorial was intended to

provide the user with an overall feel for the tool. It was

able to accomplish the task, but more detail would aid the

orientation of the user to the tool. The manual refers to an

overview of the tool which was not provided and provides a

statement for the introduction indicating the introduction is

being revised. Moreover, it refers to a sample project

(Heating Control System) which did not appear to be provided

(never specified location: the tutorial used a Traffic Control

121

System). The Heating Control System example was provided in

the two-volume User Manual set.

The tutorial was simple, easy and straightforward.

It provided step-by-step instructions accompanied by partial

expected responses while in the command mode and full screen

responses in the mask mode to ensure the user is in the

correct facility and performed the desired action. It was a

good learning aid.

The only negative aspect of the tutorial involved the

dialogue mode. The tutorial begins in the command mode, but

does not specifically identify it as such. The tool as

installed came up in the mask mode which caused some initial

confusion. After progressing through the tutorial (to page

31), it addresses the dialogue mode used as the command mode

and introduces the mask mode portion. Learnability,

especially for new users, would be enhanced if the dialogue

mode was specifically identified at the beginning and the mask

mode *as introduced prior to the command mode.

The two-volume User Manual set provide the exact

syntax definition and detailed discussions of the EPOS

semantics. Volume I pro-rided an excellent overview of EPOS.

They are thorough and well written and contain descriptive,

easy to use indices which greatly facilitated information

research.

Overall the documentation provided is good except for

a few rough spots. The vendor indicated the documentation is

122

currently being revised and will be updated shortly. There is

one surprising aspect regarding the documentation: the lack of

specific information in major areas such as network support,

multi-user capabilities, training support and particular

interface capabilities to other products.

7. Interface to Other Products

The documentation does not elaborate much detail

regarding the interface capabilities of EPOS with exception of

the Graphic Editor's dependence on an outside vendor's

product. It does indicate that the user can define data

within the EPOS environment for extraction to other tools and

define user commands within EPOS which will read in data from

other tools.

The EPOS Graphic Editor is a graphical interface

facility within the EPOS environment which relies on an

outside product to provide graphical input to the tool. The

outside product required to provide graphical input is

"AvtodAD" by Autodesk AG. By using AutoCAD, users can draw

diagrams on the screen which is saved to a file and then

converted to a text specification thereby obviating the need

for text specification entry.

Conversations wit company representatives indicated

a reverse engineering tool called RE-SPEC is available from

EPOS. This tool transforms source code written in C, Pascal

arid Fortran R77 into an EPOS-S design specification. Once

123

transformed, users can manipulate the design specification as

though it had been entered via the EPOS-S language. There are

no requirements to support the specification as the tool only

generates the design specification, but other tools such as

EPOS-A (the analysis tools) can be used to identify objects

and build requirements if needed.

8. Multi-user Support

The tool does not appear to provide any specific

multi-user support. It does indicate accounts can be

"initialized" for different users, but each account must have

it's own individual database, system files, backup files and

set-ups. It further recommends loading the delivered EPOS

system in a separate "delivery account" so it can be tailored

and kept for easy set-up of user accounts.

Conversations with technical representatives

confirmed the tool does not support multi-user access. Files

or individual objects and diagrams can be transferred between

individual databases via a "conservation" feature. This

feature converts the stored binary form of the database to

ASCII file which can then be input into the other database.

One notable drawback of the tool is that it has no

formal locking mechanisms to prevent different users from

accessing different user databases. All control/management

must be accomplished by the project manager (his/her own

technique) or the users themselves.

124

9. Network Support

EPOS 4.0 does not identify any specific network

communication system supported. The manuals indicate that in

a decentralized workstation environment a suitable

communications system is required to connect the local

databases with the central EPOS project database, but does not

mention any network communication details.

10. DoD STD-2167A Support

EPOS 4.0 does not provide 2167A support. However,

conversations with technical representatives indicated an

upcoming release (Version 5.0) will include the same 2167A

support provided on the mainframe and workstation versions of

EPOS. Detailed documentation is not available. The following

information is based on conversations with technical

representatives and sample 2167A literature provided.

Significant 2167A support is provided by the Flexible

Document Generator (not available in version 4.0). The

generator is designed to produce documentation according to

templates supplied with the tool or the overall documentation

specification, which can then be tailored to specific

applications. Cover sheets, footers, headers and the

appropriate outline (i.e., DID's) are automatically provided.

EPOS can be delivered with documentation templates defining

which graphics and tables to include.

125

No specific desktop publishing tool is required. A

laserprinter is required when diagrams are requested within

the text. Special drives for common laserprinters are

available and interfacez to others are available through

Postscript. Technical representatives stated 13 DID's are

supported, but could not identify which ones.

11. User-Interface

EPOS 4.0 provides a simple, but very flexible

interactive interface via the EPOS-C component. It's

interactive dialogue provides friendly user-sensitive access

for both novice and experienced users by providing two

different dialogue modes: direct dialogue mode ("command" line

mode) and using masks mode ("mask" or menu mode). Users can

easily toggle back and forth between modes by invoking simple

predefined system macros. For example, to enter the mask mode

from the command dialogue mode, users simply type: $masks

<return>. To enter the command line mode, users press Alt-X

and ehter: $command <return>.

Another user-sensitive feature provided allows the

user to select one of three different familiarity modes:

"short mode", "medium mode" and "long mode". In the short

mode, the man-machine dialogue includes only the essentials to

accommodate experienced users. In the medium mode, the

dialogue presents a user with a list of possible inputs which

is intended to satisfy the occasional user. The final mode,

126

long mode, not only provides the user with a list of

alternatives, but gives a detailed description of each input

and is oriented towards users who are not familiar with the

system.

The dialogue mode provides further flexibility by

offering two methods of entering information: alphanumeric and

function keys. Whenever a specific section is highlighted,

the appropriate selections for that section are displayed in

a lower window along with a corresponding function key. Users

can select the appropriate function key available and is

identified at the lower portion of the screen (i.e., Fl for

Requirements-Engineering in the EPOS-R section main screen))

or users can simply key in the alphanumeric information.

The mask mode of the tool offers a unique "memory"

feature by providing the capability to store the previous

selection. The masks have a memory which stores the

information entered. If a user presses the wrong key or

changes his mind he can quickly backup to the previous entry.

The information can even be maintained between sessions which

was especially useful in the tutorial. The vendor provided

default values for several of the entries which greatly aided

the initial interaction.

The tool does not support color operations, but does

make extensive use of "reverse video and "heightened

contrast". Data entry areas are displayed in reverse video

mode while selection items are displayed in displayed in a

127

heightened contrast form. Although not as effective as color

could be, the tool does try to maximize the mode offered.

The tool requires the use of a mouse if it is used in

conjunction with the AutoCAD program to support the

diagrammatic capabilities provided by the AutoCAD system. The

documentation indicates the vendor is currently developing a

mouse-driven interface for EPOS itself to be delivered in the

near future.

The limitation of the interface is that it is a tree-

oriented dialogue which restricts navigation efforts and

sometimes buries the user at a fairly deep level. The tool

does provide a backup (reverse command) along with an exit

capability to minimize this impact and is in the process of

developing a mouse-driven interface.

12. Traceability of Requirements

EPOS supports traceability requirements via special

formats within the specification languages. Requirements and

constraints are entered and specified via the EPOS-R

specification language. EPOS-R is used to describe the

problem statement (customer needs and system requirements

documents) and to describe the problem solving concept and the

functional requirements. It also contains a special lexicon

(dictionary) feature which allows terms to defined in both the

problem statement and the problem concept. The lexicon's job

is to store standardized definitions of the concepts and terms

128

to be used by the designers throughout the EPOS

specifications.

EPOS-R is a semi-formal language. It is designed to

accommodate a variety of personnel (i.e., business people,

project managers, ..etc). It contains only such formal

language elements (basic syntax rules) that can be easily

understood without special EPOS training. Requirement and

constraint are keywords in EPOS-R used for defining

identifiable requirement components. When entering the

problem statement, users can identify specific requirements

and constraints via these keywords. Figure 6-16 shows two

examples of a requirement and an example constraint specified

in EPOS-R.

RZQUIREMZNT 2(0) <switch,substation>

"The switching of the switch is only allowed when the
substation contains no packages."

CONSTRAINT 1(0)

"A signal light at an entry and exit of each substation tracks
the passage of a package,"

RZQUIREMENT 3(0) <wrong-station>

"A package sent to the wrong substation must be recognized."

Figure 6-16 Example Requirement and Constraint Specified
in EPOS-R

EPOS-S is much more formal syntax than EPOS-R. It is

designed for hardware and software developers who usually have

extensive training in dealing with formal notations. Figure

6-17 depicts the information provided by an edit mask

129

(template) for the type "action" used to declare design

elements in EPOS-S. Since a requirement represents an

identifiable component, a logical connection can be made

between EPOS-R and the EPOS-S component that satisfies

(fulfills) it. The requirement components are used as formal

proof of the completeness of the system design, based upon the

EPOS-R description of the problem statement and the solution

concept.

#NEW
ACTION
DESCRIPTION:
PURPOSE:"
FULFILS: REQUIREMENT
DESCRIPTIONEND:
DECOMPOSITION:
CODE:"
INPUT:
OUTPUT:
ACTIONEND
[EOB]

Figure 6-17 Edit Mask for Action Type in EPOS-S

Various analysis checks conducted by EPOS-A exist for

EPOS-R, but one check is particularly crucial for traceability

efforts: Reference Analysis. When a reference analysis is

conducted, EPOS-A yields a general survey of the current state

of development of a project.

The survey identifies which requirements/constraints

have already been specified in EPOS-R, and which of those have

not yet been fulfilled, or only partially fulfilled. It also

identifies which dictionary terms with the attribute

130

'REFERENCE' have alreadv been realized by design objects, and

which ones have not yet been fulfilled. The attribute

'REFERENCE', assigned to a term in the dictionary, means that

a design object with the same name must be generated during

system design.

Once completed, the survey is generated as a report

in a prescribed format which is used as a requirements

traceability document. Users can even input deadline dates

via the DATE keyword within EPOS-S to monitor design

completion dates and track performance. Surveys can be

conducted throughout the project to verify and check for

missing specification parts and specification errors. Thus,

requirements can be tracked throughout the development

process.

13. Dictionary/Repository

The EPOS repository is a home grown link list

database. A overview of the database was provided in the

Multiluser section which emphasized that the PC version is

limited. Each database is unique. To support multiple

projects, users must construct (initialize) a database for

each project. A user can establish a completely different

system in several sub-directories along with each database or

load the database desired each time he/she logs in.

The EPOS-C component controls the user-interface

which provides access to the EPOS environment and thus to the

131

dictionary. Figure 6-18 provides an overview of the EPOS

environment which shows the user control over the environment

and the structure of the support system for the database. The

information within the database is organized by the three

specification languages used: EPOS-R, EPOS-S and EPOS-P. In

addition to generating the original database, users must

initialize the individual EPOS sections as well. The tool

does allow the user to accomplish the initialization in one

operation.

After initialization, the tool prompts the user for

a design method selection to be enforced by the database. As

noted in the Methodology section, user have a variety of

methods to choose from. Selection of a particular method

enforces the use of certain types of design objects except in

the method-neutral selection mode.

EPOS offers a variety of data input methods to the

database. Input can be input or modified either textually or

graphically. EPOS supplies it's own text editor to provide

for textual input to the system. It does not provide

graphical input capability. This point is covered in detail

in the Diagrammatic/Graphics Facility section. The tool also

supports textual input via a file containing EPOS specific

input generated by some other process (i.e., a different

edi.or).

The repository (database) provided by EPOS supports

a variety of input options and has the ability to enforce

132

User

uso onolb

- tm d*P~

EPOS.R EPOu*G

INPUT AND SYNTAX ANALYSIS

EPOS
DATABASE

DATABASE INTERFACE

dynamic nar domintwIc do~n xx6 ngqamant

wing ~sis arl* a , oW o b
1001 sysu Sa sm tol tl

sysWe forAD2A,

Figure 6-18 Overview of the CASE Environment for EPOS

133

methodological constraints, but does require a great deal of

user manipulation to setup, control and transfer project data.

14. Prototyping

EPOS does not offer any prototyping capability. As

a primarily real time application oriented system, EPOS

focuses great concern on timing constraint issues. EPOS has

a well established track record for the design approach

utilized and, therefore, chooses to ignore prototyping

efforts.

Although it ignores prototyping efforts, EPOS

provides code generation capabilities which greatly accelerate

the design to implementation process. The tool includes

automatic code generation facilities for Ada, Pascal and

Fortran with support for C in development.

It should be noted these facilities do not provide

100% code generation capability. The Ada generator normally

generates 75% to 85% of an project's Ada code with the

remaiAder of the code left to manual methods.

EPOS does offer a unique "code feedback" feature for

both Ada and Pascal to help maintain consistency between the

source file (code) generated and the design specification.

For instance, any changes made to the source code during

testing result in inconsistencies and differences between the

source code and the design specification it was generated

from. Code feedback attempts to maintain a link between the

134

source code and the design specification by allowing the

design specification to be changed as well as the source code.

The feedback system provides for partially automatic

reconciliation of discrepancies between code changes and the

original design specifications. A completely automatic

actualization of the system design is not possible since all

parts of the design may not necessarily be present in the

feedback of the modified code. The manual notes that changes

in the source code can reach such a degree of complexity that

feedback is virtually impossible. Hence, some specification

updates must be done by the user.

Code feedback helps to ensure consistency between

design specifications, documentation and source programs.

This feature can be a very powerful tool in the arsenal of the

user.

15. Consistency/Completeness Checking

Several techniques for ensuring consistency and

completeness have already been described in earlier sections.

The lexicon feature which is used to standardize terms used

throughout the specifications, the REFERENCE attribute used to

target a term in the dictionary which must be matched with a

design object of the same name, the edit mask (template) in

EPOS-S used to declare design elements and the Reference

Analysis are prime examples.

135

In addition to the techniques previously cited, there

are other formal mechanisms supplied by the tool. The EPOS-A

component includes syntax checks conducted automatically upon

entry of EPOS-R and EPOS-S specifications and contains various

analyses which can be performed via the EPOS-C component. For

example, the EPOS-A provides the following analyses for EPOS-R

descriptions:

Syntax check
The word and sentence structure of a description is formally
analyzed

Format check
The formatting commands are checked for correct construction

Consistency check
Identifiers (identifiable requirement components, section
numbers, etc...) are checked for consistent specification

Decision process analysis
Decision processes are checked for redundancy, unambiguity,
consistency and completeness

Reference analysis
References to terms in the dictionary (lexicon) and to
identifiable requirement components are analyzed

The checks are automatically performed when the

description is entered in the database. The tool notifies the

user if an error is present along with specific remarks and

prompts for a correction. It will not release the entry to

the database until all errors are resolved. The analyses are

user initiated. They generate detailed reports such as the

requirements traceability document produced by the Reference

Analysis.

136

These are not all the checks and analyses provided by

the tool. Similar capabilities exist for the EPOS-S

specification as well. These mechanisms are powerful and

useful. Analysis reports can be sent to either the screen for

quick viewing or the printer for a more in-depth review.

16. Training Support

The documentation and literature provided does not

identify specific training support available. Conversations

with company representatives indicated training and consulting

support is available. Training offered ranges from how to use

the system to actual construction of projects via exercises.

Training can be provided in-house at SPS or on-site depending

on user preference. Representatives pointed out that training

can be expensive.

The documentation does identify EPOS as a well

established product with a considerable user base noting EPOS

has been applied in a variety of applications worldwide. It

also identified several support services provided. Support

services include: technical hotline support, quarterly

publication and user conferences and the EPOS User Group.

The EPOS User Group meets annually to facilitate the

exchange of experiences between the various EPOS users. EPOS-

Info, the quarterly publication, provides current reports on

new EPOS applications, implementation details and the status

of further enhancements. The technical hotline is available

137

and does provide support, but the number provided is not toll

free.

Although the training support is not well documented,

the tool does appear to be well established with a

considerable user base. Hotline support is available, but at

user expense.

17. Diagramming/Graphic Facilities

The graphical capability provided by the PC version

of this tool itself is very limited. It does not provide any

graphical input capability, but it can support it via EPOS's

Graphic Editor. The editor relies on an outside product

called AutoCAD to provide graphical input capability (See

Interface to Other Product section).

EPOS primarily relies on textual based input to enter

objects into the specification languages. The tool can

generate graphical designs based on text input and display

them in color. As noted in the User-Interface section, the

rgraphics mode is the only time the tool supports color

operation, but only two colors are provided: red and green.

The tool does not provide any edit capability though. User

operations are primarily limited to shifting and scaling the

diagrams for review purposes.

The Graphic Editor supplied with the tool can support

graphical input and provide edit capability if a graphics

package is provided. The manual indicates the editor will

138

work with the basic AutoCAD package (Version 2.5 and up). No

special knowledge is required to use the Graphic Editor

itself. The Graphic Editor manual supplies all information

needed for use. Users will require special knowledge to

utilize AutoCAD and must rely on AutoCAD's user manual for

support. The editor is provided to allow users to enter and

edit input via designs instead of the tool's text

specification entry mode.

D. OVERALL EVALUATION

The assorted features and capabilities offered by these

tools greatly increased the complexity of their evaluation.

The tools evaluated have demonstrated a wide range of

significant capabilities for a variety of hardware platforms.

Moreover, they offer interfaces to numerous other products

which serve to enhance their overall support and enable full

lifecycle coverage.

Athough these tools provide significant advantages to

software development efforts, they impose constraints as well.

The learning curve on these tools is formidable. Users must

be willing to invest a significant of time in order to be able

to fully employ the capabilities provided by a tool.

Documentation alone is not enough. Users cannot rely solely

on the documentation provided to learn the tool. Some

operations may not be covered to the depth required by the

user or the manuals may contain errors. Moreover, the tools

139

themselves are software which implies that no tool can

guarantee perfect performance. In fact, tool vendors try to

identify known anomalies as they are discovered. Therefore,

training and vendor support are vital to tool introduction

efforts and become crucial considerations for evaluation.

This reliance on the vendor emphasizes the need to

evaluate the vendor's history as well as the tool's.

The evaluations provided here are not intended to endorse

nor denounce a particular product. They are an attempt to

identify the major capabilities and limitations of each tool

for the target audience.

E. SUMMARY

Each tool evaluated offers it's own particular advantages

to the user. Excelerator/IS focuses on automating the early

phases of system development concentrating on analyzing and

defining the application problem and the system specification.

It aJso offers several interface utilities to specific

products for increased coverage. StP 4.2A offers full

lifecycle support emphasizing the analysis and design phases

of system development supported by powerful graphical

facilities. StP possesses a very useful open architecture

which allows users to write (customize) interfaces to other

products to provide extensive lifecycle coverage. EPOS 4.0

provides fully integrated lifecycle coverage incorporating

extensive project management capabilities. EPOS contains

140

routines which facilitates the exchange of data with other

products.

The tools presented offer a variety of application

support. Excelerator/IS can be used to support both large and

small business applications. StP 4.2A offers support for a

wide range of application domains ranging from information

systems to real time embedded systems. EPOS 4.0 supports both

software and hardware design across a broad range of

application domains, but is primarily oriented towards medium

to large real time applications.

All tools are well established products. Excelerator is

the leading PC based tool used throughout industry with a very

well established user group. StP is a leading workstation

tool with an extensive array of third party vendor support in

addition to a well established user group. EPOS has been used

extensively throughout the world and has been successfully

applied in a wide range of medium and large-scale industrial

and defense projects.

Multi-user support tended to be the major weakness of the

tools. Both PC products, Excelerator/IS 1.9 and EPOS 4.0, do

not support multi-user access. Although they can operate in

a network environment, the PC products require multiple copies

of the tool to be created to support each individual user vice

one copy of the tool supporting various users. The

workstation product, StP 4.2A, provides extensive multi-user

support.

141

VII. CONCLUSIONS

The objective of this thesis was to identify an evaluation

process and provide a general taxonomy of CASE tools from the

point of view of potential DoD u-ers. Chapter II describes

the evolution of CASE from individual tools to a complete

environment of tools. Chapter III examined the extensive

impact of DoD's standard for the development of software and

the evolution of tools supporting it. Chapter IV proposed a

general classification scheme for CASE tools for use with the

tool evaluation process identified in Chapter V. In addition,

several vendor and institution tools were surveyed and three

well established commercial tools were evaluated in Chapter

VI.

CASE has evolved from an individual tool or set of tools

for software development to a systems approach to software

development. The implication of a systems approach

necessitates a CASE environment encompassing the organization

as well as all aspects of software development. Thus,

methodology and management control play crucial roles in the

successful introduction and application of CASE. The key

feature of the total or full CASE environment in the future

will be the linkage between tools, systems and management

controls. Therefore, integration is an essential element in

142

the ability of the full CASE environment to obtain an optimum

tool mix or approach for a particular application requirement.

DoD STD-2167A provides a comprehensive framework for the

software development process. It imposes stringent

documentation and traceability requirements throughout the

entire process. These and other requirements within the

standard are particularly suited for automation and are

beginning to receive considerable support by many current CASE

tools.

The tremendous variety and proliferation of tools

available today necessitate an orderly, structured approach to

their evaluation. To understand what a tool does and compare

it to similar tools is a formidable task given the existing

diversity of functionality. The evaluation process and its

associated checklist along with the proposed taxonomy provide

a basis for an organization to assess the true fit of a tool.

They are designed so that organizations can tailor them to fit

their own individual needs. The proposed taxonomy allows

organizations to quickly discern the capabilities and

limitations of a tool while the evaluation process assesses

how well the tool does its job from the organization's

perspective which is the most important perspective to

consider.

The tools evaluated offer significant advantages to

software development efforts, but they impose constraints as

well. The learning curve of these tools is formidable. A

143

significant investment of time and resources is required if an

organization intends to employ the full capabilities offered

by a tool. Organizations cannot rely solely on the

documentation provided with a tool to be able to fully learn

it. Thus, training and vendor support are vital to tool

introduction efforts and represent crucial considerations for

evaluation. This reliance on the vendor emphasizes the need

to evaluate the vendor as well as the tool itself.

Two basic approaches were identified for accomplishing the

full CASE environment: combining various toolkits via a

framework (C-CASE) or using a workbench (I-CASE) if the

environment is limited to one application. Regardless of the

approach adopted, the decision to implement CASE within an

organization requires a careful, deliberate evaluation process

and a total commitment to its use by the entire organization,

especially management, if CASE is to be introduced and applied

successfully. Thus, the decision for CASE does not just

involve evaluating tools, but the organization itself as well.

144

APPENDIX A

Sample Tool Taxonomy Form

Tool Name: AutoFace

Version/Release: 3.0 a I I I I

vendor/Supplier: Tool I >I1I I '
ISI-41 ~

AutoMaters, Transform, CA I 1Ic_ _ _ _II

Integration Level: C-CASE

Application Areas: Real Time I "I I E I I

Description: User-interface i I $4 I ' I U I $4 I '

manacqement system used in '

the development of software " ni. ieijj o I UI l

systems with complex user I I IIII I
I I I I I I I
I I I I & I I I

I ,k I 1t I 1 4 1 0 1 I

I I I I I I I

ATTRIBUTES :

Methodiology/Diagrannning Technique Supported: None

Hardware Systems Supported: DEC VAX, Workstation : Sun 3.0/4.2,
HP-9000, Apollo DN3000.
Operating Systems Required: VMS 3.5 and up, Sun 0/S 3.5/4.2,
Unix BSD 4.2

Price Range: Low (up to 10k); Medium (10-30k); High (over 30k)

for different configurations

Languages: Ada, C, etc..

Other tool interfaces: AutoPlan, AutoManage, AutoAnalyze,
AutoDesign, AutoGenerate, AutoMaintenance

145

COIBENS:

This section should include amplifying information or other
information not reflected by the taxonomy.

* Special features that are especially noteworthy

* Comments or notes on user interfaces (i.e. is interface
consistent throughout all tool efforts)

* Constraints on the tool (i.e. works only for the Ada
programming language)

* Other required hardware

* Other required software

* Basis for classification: vendor supplied, tool user,
review of brochures or product documentation.

* Tool history

* Other

146

APPENDIX B

Tool Taxonomy

Tool Name: Information

Engineering Facility (IEF) a I I I I I I
-AI.1 I I I I I I
aW S I I I I

Version/Release: 4.0 1I I I

I ruI I I 1 1 41 I
Vendor/Supplier: Texas I iI a II

1 oI I I A IE4 I IInstruments Plano, Texas I I1 1 4j 1 i 1

Integration Level: I-CASE I " I I I

Application Areas: Business I

(Supports Real-Time Aspects) 0 1 I l Q 1 I A 1 - I
__ _ _ _ _ __ _ _ _ _ _ I I 101 1 1 O l 4j 1

1rn M 6 3 1 0 I4 1to WI
Description: Designed to 431 _ I .1a 14 1 1
automate the complete systems "I6 I rl 01 10 1 E I

lifecycle. Consists of I I

I I I I I I I I
I I I k 1 Q I I I I

mainframe Encyclopedia and I I I I I I I II I I I I l l I

PC-based graphical toolset.

ATTRIBUTES:

Methodology/Diagramming Technique Supported: Information
Engineering (James Martin) Techniques: Entity Relationship
Diagram, Entity Hierarchy Diagram, Process Hierarchy Diagram,
Process Dependency Diagram, Process Action Diagram, Structure
Charts, Dialog Flow Diagram

Hardware Systems Supported: All IBM mainframe & plug
compatibles. Typical PC workstation {IBM PC/AT or PS/2 (model
50 or above) with at least 640k RAM}.
Operating Systems Required: PC-DOS or MS-DOS version 3.0 or up

Price Range: High => $340,000

Other tool interfaces: Provides import/export capability, but
no specific tool support was identified.

147

Lifecycle Supported: Waterfall

Code Generation: Automatically generates 100% complete VS
COBOL II programs, DB2 databases, 3270 or MFS interface
screens and JCL for batch applications. Generates direct from
specification (no source code needed).

Documentation Support: Provides documentation support, but
does not specifically support 2167A requirements.

Prototyping: Provides screen design and template facilities;
screens can be chained together to simulate system action.

Languages Supported: COBOL

Design:

Multi-user

Networkable

Project Management: Capabilities include: machine-readable
task lists, estimating guidelines, function point counting and
interfaces to specific products (not identified).

Testing: Accomplished at specification level prior to code

generation. (No specific code testing supported)

COMENTS:

* All applications developed are intended for mainframe use.

* Fr9 nt-end or early project development (i.e., planning,
analysis and design tools) is designed to be accomplished by
using PC's while the BaCk-end (i.e., construction and testing
tools) development is designed to be accomplished via the
mainframe.

* Company is developing an OS-2 version which will allow
users to develop the entire application in a PC environment
and then port the application to the mainframe.

* Maintenance efforts are accomplished by maintaining or
modifying the design specification. (No source code management
required)

* Interface does not provide windowing capabilities.

148

Tool Name: MicroSTEP

Version/Release: 1.4 ., i

I >. 1 ,I I 1 0% 1~ 1
Vendor/Supplier: Syscorp I 1 V-4 I I I 1 9 1 1

-4 ~ 1 4 1'4 1

International Austin, Texas I A I
1I1 I1 A IE-4 I 6I I

I 1 I 1 4j1 I IIntegration Level: I-CASE V 1 1
I I *4 I ' I

Application Areas: Business II I II
(Database & Data Processing) a 1 4 I 1 A I I

S1 1 00 1 4)I1t ~I
15 1 I ai~ 1 I I

Description: PC-based tool 5o ~ I I 011 V I
1 0-. 4I V0 1 0 16a1deiJe 1o deeo1n and 1 0 1 1 1 0

with graphical user interface U I 1 1 - 1E4
0 1'I I)1"4 1 I H $

designed for developing and 01 144I 1 1 JII UI UI A
64 1 > 1 0 1 $4 164 1 0 1 W 1)1

prototyping transaction-based
I I I I I I I I
I I I I I I I I

end user systems. (payroll, I i R i • I K I K i I iI I I I I I I I

accounting, inventory, etc..)

ATTRIBUTES:

Methodology/Diagramming Technique Supported: Syscorp
Technique: Flow Diagram

Hardware Systems Supported: PC with at least 564K of memory;
requires a mouse and minimum of EGA monitor support. Can use
extended memory, if available.
Software Systems Supported:

Price Range: Low => 5k

Other tool interfaces: None

Languages Supported: C (generates C code)

Lifecycle Supported: Evolutionary, RIP (Proprietary)

Code generation: Generates 100% of application code direct
from design specification. (No source code required)

Documentation Support: Provides documentation support, but
does not specifically support 2167A requirements.

149

Design:

Prototyping: Accomplished via the graphical interface.
Contains a screen format builder which can be used to
construct data entry screens and reports.

Testing: Accomplished at specification level prior to code
generation. (No specific code testing supported)

COMMENTS:

* Can support a variety of data processing and management
information applications (i.e., point of sale, etc..). An
application consists of specifications, which correspond to
program modules.

* Maintenance efforts are accomplished by maintaining or
modifying the design specification. (No source code management
required)

* Produces and compiles C code and links object files.
Produces a PC program and Dbase compatible files.

* Provides automatic specification analysis.

* Utilizes a graphical specification user interface. Tool
has a uniform menu Pystem.

* Interface provides windowing capability.

* Version 1.5 is currently under development. 1.5 will be
able to use up to 16 megabytes of expanded memory and also
intenos to support Novell and IBM Token Ring network
application development. PC's running MicroSTEP network
applications will require more than 640k and record locking
will be limited by the dBASE file structure.

150

Tool Name: Refine

Version/Release: 3.0 I u I I i

I 1 I ~ i
Vendor/Supplier: Reasoning I-4 1 I 1 I 9 I I

l>1 #dI I 1 I1-4 1 1
I - 1 1 4 I

Systems Inc. Palo Alto, CA I M II I I S I I
I to I . I 4 1 I I

Integration Level I-CASE I0 I I I UI M i
I01 I I I

Application Areas: Business, *I t'i 1 .4 I 1 I 1 I

D r I I a I I & I V4 I

II I aI 1. I I
Lntedne-aed 0ora n 1 1 I I r 1 I I I4 .

*1 16 0 I *1I 1 a I C:
1i14 1 1 0 1 kII HAIS

evpiromn. PntriaiyveW~I i 01 V UI.

1 I I I I I I Ioriented towards software

reengineering efforts. 1~ 1~ 1~ 1~ 1 1 1

ATTRIBUTES:

Methodology/Diagramming Technique Supported: None

Hardware Systems Supported: Sun 3/4/Sparcstation; Symbolics;
Macintosh II; Texas Instruments Explorer
Softwpre Systems Supported: Sun 3.5, 4.0

Price Range: Medium => 10k - 15k

Other tool interfaces: The Project Management Assistant
(Provides project management capabilities [i.e. Gantt charts,
etc..] and 2167A documentation support). This tool is a
product of Kestrel Institute in Palo Alto, CA.

Languages Supported: Refine (Proprietary), C, Ada, LISP.
Generates fully execuuable Refine and LISP code. Commercial
compilers for both C and Ada are currently under development.

Lifecycle Supported: Transform

Multi-user

151

Networkable

Reengineering: Supports the transformation of Ada, C, COBOL,
Fortran and PLI. Tool can analyze source code and transform
into new optimized source code.

Simulation: Supported via the construction of high level
specifications (generate structure i.e., object class, etc..)
which are fully executable.

Code Generator: Supports both batch and on-line code
generation; can generate a production program. (See language
supported section).

Testing: Accomplished at specification level prior to code
generation.

COMMENTS:

* Applications are developed using a very high level
specification language (Refine). The language integrates
advanced specification techniques, including first-order
logic, set theory, trnasformation rules and pattern matching.

* System c3n be customized to ceate knowledge-based

environments in which Refine tools are tailored and extended
for use in specific application areas. (Tool is written in
Refine and can be modified via Refine).

* Supports the re-use of general purpose and domain specific
knowledge in the form of rules, object-oriented programming
and logic formulas.

p

" Interface does provide windowing capability.

* Contains tool for building graphical interfaces.

152

Tool Name: Serpent

Version/Release: Rel .8 i I I

Vendor/Supplier: SEI 9 *

_ _ _ _ _ _ _ __ i I Ii I 1 0 1 aI ICarnegie-Mellon University A I 1 1 1 I I
a I I A I E I IIntegration Level: P-CASE f" 1 1 I I a I V 1 1

431- I61 91 1 9 I
i I E4I I I I

pplication Areas: Real-Time I I I

and Business 0 1 1 1 0 1 ID 1 4j1 t I
I I 1 I Ig I a I

Description: User Interface I I I I01 I 11_____ _1___ _1__9_ 1I V I 1~ 0I *"04I Im W I 1 0 1 1 1.1 01
Management System. Used for U 101 rI ol931E-

developing software systems 01C 41014

I I I I I I I Iwith complex user interfaces

that often change. C14

ATTRIBUTES:

Methodology/Diagramming Technique Supported: None

Hardware Systems Supported: Sun Systems (Work/Sparcstations),
VAX Systems (Variety), DEC Systems and HP-9000
Software Systems Supported:

Price'Range: Available free to all DoD activities.

Other tool interfaces: None (See comments)

Languages Supported: Ada, C (Applications can be written in
Ada or C) ; Slang (special language used for Serpent user
interface specification).

Lifecycle Supported: Evolutionary, Spiral

Prototyping: Reasonably sophisticated interface prototypes
can be generated.

153

COMMENTS:

* Makes user interfaces easier to specify, thereby aiding
requirements identification.

* Supports incremental development of user interfaces via
prototyping capability.

* Provides a "bridge" between prototype and production
versions of system.

* Designed to simplify the integration of I/O media.

Supports multiple I/O media for user interaction and the
insertion new I/O media. Supports X-windows facilities and
both Open Look and Motif look and feel guidelines.

* Applications view Serpent as similar to a database
management system. Serpent can be used to develop the user
interface portion of an application written in C or Ada.
Serpent uses Slang (user interface specification language) to
compile and generate an executable program. Serpent provides
interfaces to C and Ada which allow the application to
communicate with the Serpent executable program via a dialogue
layer. It functions similar to a runtime version of a database
program.

* Tool provides Serpent Editor supporting both textual and

graphical entry. Layouts of user interface can be specified
or examined graphically. Logic, dependencies and calculations
can be specified textually.

154

APPENDIX C

Blank Tool Taxonomy Form

Tool Name:_________ _______________

Version/Release:______ I0IIIIII
Vedo /Spp ie : I- 1 >1 I I I I Oil I

a iI r4 I I C

1Is'I, I I oilI I
1 3 1.4 1 1

1I r I I I I I E4I I

Integration Level:_____ I 41 1J I I1 1i I 1
1 Q I I I I I I I

Application Areas:_________ E4 II
__ _ __ _ ___ ,0I u 1 I& 4 1C;I I

__ _ _ _ _ _ __ _ _ r 1 1 I.941 8 1 A I I
I i* 1 O41 10 tA j I

Description: 0 1 1 1 k 1 -4~ 1

01 1 1~ I I I Oi I0 14
*i 1i 1 43 1r I . I0 1k

U I I I r4 I o il C I E1 I

0 I I2 I 1 I I A
$4 1 >1 1 0I 4 0 10 1t I to I

ATTRIBUTES:

Methojology/Diagra-ming Technique Supported:

H a r d w a r e S y s t e m s Supported:- -- -- --- --- -- --- --
Software Systems Supported:

Price Range:

Other tool interfaces:

155

COMMIENTS:

15

APPENDIX D

Tool Evaluation Checklist

A taxonomy is not an evaluation. The former assigns a
tool a place in a classification matrix to give an indication
of what the tool does and where it is used. The latter
attempts to assess how well the tool does its job relative to
the needs of the evaluator.

Such evaluations are inevitably somewhat subjective since
everyone has different requirements. works in a different
environment, and has different ideas about how tools ought to
work However, many questions that a potential user asks about
a tool can be standardized. while accepting that different
users will interpret the answers in different ways and attach
different degrees of importance to them.

The following sections discuss these questions. grouped
according to the aspect of a tools acquisition, support, and
performance they address. These aspects are:

1. Ease of Use

2. Power

3. Robustness

4. Functionality

5. Ease of Insertion

6. Quality of Commercial Support

The first four sections are mainly of concern to the
actual user of the tool; the last two are of concern to the
management of the project that contemplates acquiring the
tool. Each question is phrased such that a positive response
indicates a positive tool attribute.

1. Ease of Use

One measure of a tool's effectiveness is the ease with
which the user can interact with it. Clearly, no matter how
functional or complete a tool is, if the user spends most time
thinking about how to use the tool or making the tool work,
then the tool is hindering and not helping with the task. To
justify using a tool, the tool's benefits must offset its cost
and the time spent using it.

157

1.1. Tailoring

Tailoring is an important aspect of a tool. A tool can be
used by a wide variety of organizations and users. If a tool
can be tailored to user needs or to a particular user style,
the tool has the potential to be used with more dexterity and
at a faster rate than would be otherwise. While tailoring can
provide positive benefits, it is important to recognize that
indiscriminate tailoring can disrupt team efforts when each
user tailors the tool to an individual style.

1. Can various aspects of the interface be tailored to
suit user needs, including application and ability
level?

2. Can the user define new commands or macros for
commonly used command sequences or chain macros
together?

3. Can the user "turn off" unwanted functions that might
be obtrusive?

4. Can the tool's input and output formats be redefined
by the user?

5. Can tailoring operations be controlled to maintain
consistency within the using project/organization?

6. Can the tool be configured by the user for different
resource tradeoffs to optimize such things as
response speed, disk storage space, and memory
utilization?

7, Does the vendor support and assist tailoring the tool

to the specific users needs?

1.2. Intelligence/Helpfulness

A tool helps the user by performing particular functions.
The more intelligent a tool, the more functions it will
perform without the user having to directly specify their
initiation. In addition, the tool should anticipate user
interaction and provide simple and efficient means for
executing functions the user requires.

1. Is the tool interactive, for example. does it prompt
for command parameters, complete command strings, or
check for command errors?

2. Is action initiation and control left with the user?

158

3. Is quick, meaningful feedback on system status and
progress of interaction and execution given to the
user?

4. Is the interface simplified by the use of sound or
graphics (icons, color coding, shape, texture,
etc..)?

5. Can the user access and retrieve stored information
quickly and with little effort while using the
system?

1.3. Predictability

Unpredicted responses from the tool usually result in
unhappy users and unwanted output. Command names should
suggest function, and users should rarely be surprised by a
tool's response. If an unpredicted response does occur, the
user should have a means to "undo" the command. If the result
of a particular command has drastic results. the user should
be warned before the command is actually executed.

1. Are the responses from the tool expected in most
cases?

2. Is it possible to predict the response of the tool to

different types of error conditions?

1.4. Error Handling

Not only should the tool be tolerant of user errors, it
should check for and correct these errors whenever possible.

1. Does the tool recover from errors easily?
p

2. Does the tool protect the user from costly errors?

3. Does the tool periodically save intermediate objects
to ensure that all work is not in vain if a failure
occurs during a long session of tool use?

4. Does the tool protect against damage to its database

caused by inadvertent execution of the tool?

5. Does the tool help the user correct errors?

6. Will the tool check for application-specific errors,
such as checking if parentheses match?

159

1.5. System Interface

Not only is it useful for a tool to interact with one
user, but it may be appropriate for a tool to accommodate
interaction with many users or other tools.

1. Is the tool designed to be used by more than one
person at a time?

2. Does the tool provide for management, including
access control, of work products for single and
multiple users?

3. Is the interface compatible with other tools in a
tool set or other commercially available tools?

4. Does the tool provide for output devices such as
printers?

5. Does the tool require a particular output device?

2. Power

What does one mean by the power of a tool? Here are some
examples concerning a tool that nearly everyone uses, a text
editor. A powerful editor can, for instance:

o globally replace 'HAL" with 'DEC"

o recognize 'love' and 'love?' as two instances of the
same word, but correctly recognize "glove' as another
word

0 warn that "necessary" looks wrong

o automatically indent paragraphs, inserting new lines
between words at the appropriate points

o automatically number paragraphs or sections,
renumbering after insertion or deletion.

The power of a tool seems to arise from two main sources:

o the extent to which the tool "understands" the
objects it is manipulating

0 the extent to which simple commands can cause major
effects.

In addition, a tool can give the impression of greater
power by keeping more knowledge about its internal state such

160

as a command history. Power is also demonstrated by
reasonable performance achieved through efficient use of the
computing resource.

2.1. Tool Understanding

The objects that a tool manipulates have an inner
structure. Structured objects tend to be comprehended in
terms of two things: the framework and the particular content.
For example, I := J is read as an assignment statement
(framework) that assigns J to I (content). This text is being
read as the introduction (framework) to a section that
explains tool understanding (content).

Hence, questions can be asked about the extent to which a
tool understands the structure and its content, and also about
the ability of the tool to handle more detailed or more
general aspects of that structure.

1. Does the tool operate on objects at different levels
of abstraction or at different levels of detail?

2. Can one zoom in or zoom out from one level to
another?

3. Can the tool modify collections of objects so as to
preserve relationships between them?

4. Can the tool remove objects and repair the structure,
and insert objects with proper changes to the new
structure?

5. Does the tool perform any validation of objects or
structures?

6 Can the tool automatically create structural
templates?

7. Can the tool expand objects into templates of the
next level of detail, with consistency checking
between levels?

2.2. Tool Leverage

Leverage is the extent to which small actions by the user
create large effects. The leverage of any interactive tool is
a function of its command set. The usual way to increase this
leverage is to allow a user to define macros - short commands
that stand for longer command sequences. Another way, more in
keeping with an object-oriented view of the world, is to
define a command as an action to be applied to a specific
object. Commands can then be "overloaded," i.e., the same

161

command name can have a different implementation for different
objects. Commands can also be inherited, composed, and so on.

To illustrate this, consider a command print applied to a
fragment of a parse tree. One print style can be defined for
expressions and another for comments (overloading). If an
attempt is then made to print a commented expression, the
right thing (composition) should be obtained automatically.

If this facility is missing, a tool can he made to do more
only by multiplying the number of commands. e.g., having a
printcomment command and a printtree command. Most people
would agree that this doesn't make a tool more powerful; the
increase in the number of things it can do is matched by a
corresponding increase in the effort the user has to expend to
learn, remember, and select the commands. Indeed, since such
extensions to the command set typically address more and more
marginal areas of the requirement, "creeping featurism"
dilutes the power of the tool.

1. Can commands be bound to specific object types or
structure templates?

2. Can commands be applied systematically to entire
collections of similar objects?

3. Can polymorphic commands be applied to entire
structures that contain diverse objects?

4. Can commands be executed indefinitely until a
predicate is satisfied?

2.3. Tool State

T1is is an inductive approach to increasing the power of
a tool. If a tool remembers how it has been used in a current
session or in previous sessions, it can provide the user with
simpler ways of invoking effects by saying, "Do to this what
you just did to that."

1. Does the tool keep a command history?

2. Can commands be reinvoked from the history?

3. Can the command history be saved to be replayed by a
new run of the tool?

4. Can the reinvoked commands be modified when they are
replayed?

162

5. Can one save the current state of the tool and the
objects it is manipulating, and subsequently restore
it?

6. Does the tool learn, i.e., does it keep state across
invocations?

7. Does the tool keep and/or employ statistics of

command frequency and operand frequency?

2.4. Performance

The performance of a tool can greatly affect the ease with
which It is used and can ultimately determine the success of
a tool within an organization. A tool must be able to
function efficiently and be responsive to the user. Poor tool
performance can create costs that negate many of the benefits
realized from tool use; a tool that performs inefficiently may
result in missed schedules or frustrated users who are
skeptical that the tool really helps them.

1. Is the tool's response to commands acceptable
relative to the complexity of the operations
performed by the command? For example, is the user
waiting for unreasonable amounts of time, or is there
any response lag on simple or frequently used
commands?

2. If the tool supports multiple users, is response and
command execution time acceptable with the maximum
load of users?

3. Can the tool, running on the user's hardware, handle
a development task of the size required by the user?

4. Does the tool provide a mechanism to dispose of any

useless byproducts it generates?

3. Robustness

This section is concerned with the robustness of the tools
operating on a system. The robustness of a tool is a
combination of such factors as: the reliability of the tool,
the performance of the tool under failure conditions, the
criticality of the consequences of tool failures, the
consistency of the tool operations, and the way in which a
tool is integrated into the environment.

While the robustness of individual tools is important, it
is secondary to the robustness of the environment in which the
tools operate. Although the tool and the tool set of which it

163

is part can be robust and consistent, many characteristics of
robust operation are best done on a more global environment
where the tool writer has to worry about correct interfaces to
the environment, but does not have to be concerned with a
great many services that are proved by the environment to
maintain system integrity. For example, most tools should not
be concerned with security issues, access authorization,
archiving, device interfaces, etc.. These should be handled by
the environment in which they are embedded. The tool should
be concerned with having the correct interfaces to be inserted
in the environment and to operate properly within the
environment. The issues described in the following sections
are tool-related robustness issues.

3.1. Consistency

These issues are concerned with the consistency of
operation of the tool.

1. Does the tool have well-defined syntax and semantics?

2. Can the output of the tool be archived and
selectively retrieved and accessed?

3. Can the tool operate in a system with a unique
identification for each object?

4. Can the tool re-derive a deleted unique object or
does the re-derivation create a new unique object?

5. Does the tool have a strategy for dealing with re-
derivation of existing objects, such that it finds
the objects rather than re-deriving them? (This has
important consequences on the performance
characteristics of the system.)

3.2. Evolution

In all but the most unusual cases, tools evolve over time
to accommodate changing requirements, changes to the
environment, correcting detected flaws, and performance
enhancements. The questions below are related to the
evolution of the tool.

1. Is the tool built in such a way that it can evolve
and retain compatibility between versions?

2. Can the tool smoothly accommodate changes to the
environment in which it operates?

164

3. Can new versions of the tool interface with old
versions of other related tools?

4. Can new versions of the tool operate correctly on old
versions of target objects?

5. Can old versions of the tool operate correctly on new
versions of the target objects?

6. Can separate versions of the tool coexist
operationally on the system?

7. Has the tool been implemented on/ported to various
hosts?

8. Can the tool's output be interchanged between hosts?

3.3. Fault Tolerance

There are many ways of defining fault tolerance. This
work is not concerned with the general problem, but with fault
tolerance that specifically is related to individual tools.

1. Does the tool have a well-defined atomicity of
action? (Note: This does not necessarily mean that
each invocation of the tool must have an atomic
effect on the system. It simply means that no
intermediate states should be registered, and that
any environmental failures during execution of the
tool do not cause irreparable damage once the failur
has been repaired and the system restarted.)

2. If the tool is found to be incorrect, can the system
be rolled back to remove the effects of its incorrect
actions?

3.4. Self-Instrumented

A tool is a piece of software performing a function and,
like all other software, may have various types of bugs or
flaws associated with it at any point in its life cycle. Most
bugs are detected during testing and deployment, but there are
often latent bugs remaining after deployment, and maintenance
activities are well known to introduce bugs. For these
reasons, a tool must self-instrumented to assist in
determining the cause of a problem once the symptom has been
detected

1. Does the tool contain any instrumentation to allow
for ease of debugging?

165

2. Are there tools for analyzing the results collected
by the instrumentation?

3. Does the tool contain self-test mechanisms to ensure
that it is working properly?

4. Does the tool record, maintain, or employ failure
records?

4. Functionality

The functionality of a tool is not only driven by the task
that the tool is designed to perform but also by the methods
used to accomplish that task. Many tools support
methodologies. The accuracy and efficiency with which the
tool does this can directly affect the understandability, and
performance of the tool, as well as determine the quality and
usefulness of tool outputs. In addition, a tool that
generates incorrect outputs can lead to frustrated users and
extra expenditures needed to "fix" tool outputs. These
additional costs may weigh heavily against tool benefits.

4.1. Methodology Support

A methodology is a systematic approach to solving a
problem. It prescribes a set of steps and work products as
well as rules to guide the production and analysis of the work

rroducts. Automated support for a methodology can aid its use
and effectiveness. However, it must be made clear that the
following ouestions do not deal with assessing a particular
methodology. Methodology assessment should occur separately
from and prior to the assessment of tools that support the
methodology. The questions presented here deal with how well
a tool automates and supports a methodology, not with the
methodology itself.

1. Does the tool support one or more methodologies that
meet the users' needs?

2. Does the tool provide a means to integrate other

methodologies?

3. Does the tool support all aspects of the methodology?

4. If some aspects are excluded, are the important parts
or concepts of the methodology (parts that are either
important to the methodology itself or important to
the development project) supported?

166

5. Does the tool support the communication mechanisms of
the methodology (such as a textual or graphical
language) without alteration?

6. Does the tool build in any functionality, in addition
to direct support of the methodology, that is useful?

7. Is the tool free of functionality that is useless or
a hinderance?

8. Does the tool flexibly support the methodology, for
example can the user initially skip or exclude some
parts of the methodology and return to it later?

9. Does the tool provide an adequate scheme to store,
organize, and manipulate the products of the
application of the methodology?

10. Does the tool provide guidance to ensure that the
concepts of the methodology are followed when using
the tool?

4.2. Correctness

To be useful, a tool must operate correctly and produce
correct outputs. A tool evaluation must pay special attention
to this critical area.

1. Does the tool generate output that is consistent with
what is dictated by the methodology?

2. Does the tool check to see if the methodology is
being executed correctly?

3: Is there no case where data items entered by the user
are unintentionally or unexpectedly altered by the
tool?

4. Are executable outputs generated by the tool "bug
free"?

5. Are outputs generated by the tool correct by all
standards?

6. Do transformations executed by the tool always

generate correct results?

5. Ease of Insertion

An important aspect of tool use that is often overlooked
is the ease with which a tool can be incorporated into the

167

target organization or environment. Management and users need
to be aware of how well the tool fits within the existing
environment and accept changes that the tool may inflict upon
the environment in which they work. Questions on ease of
insertion fall into the categories ;sted below.

5.1. Learnability

Depending upon how complex It is, learning how to use a
tool can result in considerable expense time, and frustration.
Not only should the tool's command set be consistent and
understandable, the tool should interact with the user to help
learn to use the tool property.

1. Is the complexity of the tool proportional to the
complexity application; i.e., does the tool simplify
a problem rather than complicate It?

2. Do prospective tool users have the background
necessary to successfully use the tool?

3. Can the users use the tool without memorizing an
inordinate number of commands?

4. Do the interactive elements imply function in the
problem domain. i.e.. do command names suggest
function or graphical symbols representative of
function?

5. Are the commands and command sequences consistent
throughout the system?

6. Can the user quickly do something to see what happens
and evaluate results without a long set-up process?

7. Can the results, i.e., the work products produced, of
learning exercises be disposed of easily? For
example, can they be removed from a database without
action by a database administrator?

8. Is the tool based on a small number of easy to
understand/learn concepts that are clearly explained?

9. Does the tool provide a small number of functions
(comands, directives) that allow the user to do the
work the tool is intended to do?

10 Carn the us(r learn a small number of simple commands
init-illy -1d gradually add more advanced commands
as Lofir >ncy is developed?

168

11. Does the tool provide the user with templates or
other aids to guide interaction?

12. Is there a method of using a help facility that aids
the novice user by providing a step-by-step
description of what to do?

13. Is the time required to understand and become
proficient in using the tool acceptable:

o for the average user?

o for the average project manager?

o for the project team?

5.2. Software Engineering Environment

Successful use of a tool requires a fit between the tool
and the environment in which it will be used.

1. Is the tool in some ways similar to what the
organization currently does and knows, for example,
is there some commonality in the underlying method,
process, vocabulary, notation, etc?

2. Is the command set free of conflict with the command
set of other tools the organization uses. i.e., same
or similar commands with different actions?

3. Does the tool run on the hardware/operating system
(O/S) the organization currently uses?

4, Is installing the tool a simple, straightforward
process?

5. Does the tool use file structures/databases similar
to those currently in use?

6. Can data be interchanged between the tool and other
tools currently employed by the organization?

7. Can the tool be cost-effectively supported by those
responsible for maintaining the environment?

6. Quality of Support

Without adequate commercial supporta tool may become
useless before it is used. The quality of commercial support
connotes many things: it ranges from the cost of maintenance
agreements to the level of training required and provided.

169

When evaluating a tool, one should also consider its "track
record." The evaluator should be aware of the past
performance and uses of the tool as well as the past support
the vendor has or has not provided.

6.1. Tool History

What is the tool's track record?

1. Does the tool have a history that indicates it is
sound and mature?

2. Has the tool been applied in a relevant application
domain?

3. Is a complete list of all users that have purchased
the tool available?

4. Is it possible to obtain evaluations of the tools
from a group of users?

6.2. Vendor History

Often one can infer the quality of the tool and the
quality of support for the tool by looking into the track
record and reputation of the vendor selling the tool.

1. Is there a staff dedicated to user support?

2. From talking to others who have had experience with
the vendor, does the vendor live up to commitments,
promises?

3, Are the projections for the future of the company
positive, for example, does the company's future
appear stable? '

6.3. Purchase, Licensing, or Rental Agreement

1. Is the contract or agreement explicit enough so that
the customer knows what is or is not being acquired?

2. Is there a cost reduction for the purchase of
multiple copies?

3. Is there a corporate site license available?

4. If the user wishes, can the tool be leased?

170

5. Does the user have the ability to return the tool for
full refund during some well-defined reasonable
period of time?

6. Is the customer given full rights and access to
source code (in the event the vendor goes out of
business, no longer supports the tool, and is unable
to sell off rights to the product)?

7. Is the user free of all obligations to the vendor
regarding use or sale of the objects generated by the
tool?

6.4. Maintenance Agreement

1. Does a warranty (written guarantee of the integrity
of the product and of the vendors responsibility for
the repair or replacement of detective parts) exist
for the tool?

2. Can the user purchase a maintenance agreement?

3. Can the vendor be held liable for the malfunctioning
of the tool?

4. Will maintenance agreements be honored to the
customer's satisfaction in the case that the vendors
sell out?

5. Is the frequency of releases and/or updates to the
tool reasonable (e.g., fast enough to respond to
problems, slow enough not to overburden the user with
change)?

6. Does the maintenance agreement include copies of
releases/updates?

7. Is the turn-around time for problem or bug reports

acceptable?

6.5. User's Group/User Feedback

1. Does a user's group (or similar group that addresses
problems, enhancements, etc.., with the tool) exist?

2. Does the vendor provide a responsive, helpful hot-
line service?

171

6.6. Installation

1. Is the tool delivered promptly as a complete package
(object code, documentation, installation procedure,
etc..)?

2. Does the vendor provide installation support and
consultation?

6.7. Training

1. Is training available?

2. Has prerequisite knowledge for learning and use of
the tool been defined?

3. Is training customized for the acquiring organization
and individuals with attention paid to the needs of
different types of users (engineers, project
managers, etc..)?

4. Do the training materials or vehicles allow the user
to work independently as permits?

5. Is the User provided with examples and exercises?

6. Are vendor representatives (marketing, sales,
service, training) product knowledgeable and trained?

6.8. Documentation

1. Is the tool supported with ample documentation (e.g.,
installation manuals, user's manuals, maintenance
manuals, interface manuals, etc..)?

2. Is on-line help'available?

3. Is a tutorial provided?

4. Does the documentation provide a description of what
the tool does ("big picture view") before throwing
the user into the details of how to use it?

5. Is the documentation:

o readable

o understandable

o complete

172

o accurate

o affordable?

6. Does the documentation have an indexing scheme to aid
the user in finding answers to specific questions?

7. Is the documentation promptly and conveniently
updated to reflect changes in the implementation of
the tool?

173

LIST OF REFERENCES

1. Barry W. Boehm, "Understanding and Controlling Software
Costs," in Journal of Parametrics, Vol VIII, No. 1,
International Society of Parametric Analysts, 1988.

2. QED Information Sciences, Inc, CASE : The Potential and
the Pitfalls, p. 51, Chantico Publishing Company, 1989.

3. CASE Consulting Group, AN INTRODUCTION TO CASE, CASE
OUTLOOK, Inc., 1988.

4. Boehm, Barry and Standish, Thomas, "Software Technology in
the 19901s: Using an Evolutionary Paradigm," IEEE
Computer, Vol. 16, No. 11, November 1983.

5. Martin, James, "The Future of CASE Technology," ShowCASE
Conference III, The Center for Study of Data Processing
and The School of Technology and Information Management,
Washington University in St. Louis, Missouri, St. Louis,
Missouri, 19-21 September 1988.

6. Carma McClure, "Proceedings of the Computer-Aided Software
Engineering Symposium," in AN INTRODUCTION TO CASE, CASE
OUTLOOK, Inc., 1988.

7. Case Consulting Group, "Quick Reference to Computer-Aided
Software Engineering," The CASE OUTLOOK, Inc., 1989.

8. Telephone conversation between Tanya Coy, Case Consulting
Group and the author, 3 July 1990.

9. CASE Studies Consortium, "From Initial Excitement to
Adoption: Pathways to CASE Success," CASExpo-Spring'90
Sheraton Washington,' Washington D.C. 2-6 April 1990.

10. Bentley, L.D., and Whitten J.L., Using Excelerator for
Systems Analysis @ Design, 1st Ed., Times/Mirror/Mosby
College Publishing, 1987.

11. Yourdan, Edward, Modern Structured Analysis, Prentice-
Hall, Fnglewood Cliffs, New Jersey, pp. 126-128.

12. Frey, Wayne K., Computer Aided Software Engineering
Issues, Master's Thesis, Naval Postgraduate School!
Monterey, California, June 1987.

13. The Repository's Role in CASE Integration, CASE OUTLOOK,
Vol. 89, No. 4, December 1989.

174

14. Loh, Marcus and Nelson, Ryan, "Reaping Case Harvests,"
DATAMATION, Vol. 35, No. 13, July 1, 1989.

15. Hanner, Mark, "CASE TOOLS Productivity for the Masses,"
DCE Professional, Vol. 7, No. 12, December 1988.

16. Martin, James, "CASE & ICASE," High Productivity Software,
ITc., Marblehead, Massachusetts, 1988,

17. Forte, Gene, A Mecca for CASE: All Roads Lead to the
Repository, CASE OUTLOOK, Vol. 89, No. 4, December 1989.

18. Wallace, Steve, Methodology: CASE's Critical Cornerstone,
Business Software Review, Vol. 7, No. 4, April 1988.

19. T. Capers Jones, The Cost and Value of CASE, CASE OUTLOOK,
Portland, OR, Vol. 1, No. 4, October 1987 in An
Introduction to CASE, CASE Consulting Group, 1988.

20. Forte, Gene, AD/Cycle (Part 1), CASE OUTLOOK, Vol. 89,
No. 4, December 1989.

21. Yeh, Raymond, Specification Compilers: A step towards next
generation CASE systems, SYSTEM BUILDER, April/May 1990.

22. Department of Defense Military Standard DoD STD-2167A,
DEFENSE SYSTEM SOFTWARE DEVELOPMENT, 4 June 1985.

23. Fisher, Alan, CASE, Using Software Development Tools, John
Wiley & Sons, Inc., New York, New York, 1988.

24. Batt, Gary, CASE Technology and the Systems Development
Life Cycle: A Proposed Integration of CASE Tools with DoD
STD-2167A, Master's Thesis, Naval Postgraduate School,
Monterey, California, March 1989.

25. Sherwood, Don, "Analysis and Design Tools," CASExpo-
Spring'90, Sheraton Washington, Washington D.C. 2-6 April
1990.

26. Anderson, Leigh, "Supporting Traceability Requirements
with CASE," Defense Computing, Vol. 2, No. 4, July-
August 1989.

27. Galal, G. and Hall, A., "Computer-aided software
engineering," Computer Aided Engineering Journal, Vol. 6,
No. 4, August 1989.

175

28. Chen, Mender, Nunamaker, J.F., and Weber, E.S., Computer-
Aided Software Engineering: Present Status and Future
Directions, CASExpo-Spring'90, Sheraton Washington,
Washington D.C. 2-6 April 1990.

29. Hatley, Derek, CASE tools still not ready to meet the
real-time challenge, COMPUTERWORLD, Vol. XXIII, No. 13, 27
March 1989.

30. Case, Albert F. Jr., "Evaluating and Selecting CASE
Tools," CASE Outlook, Vol. 1, No. 1, July 1987.

31. Firth, Robert, Mosely, Vicki, Pethia, Richard, Roberts,
Lauren, and Wood William, "A Guide to the Classification
and Assessment of Software Engineering Tools," Technical
Report, CMU/SEI-87-TR-10, August 1987.

32. Alder, Rudy, "THIS IS THE STSC," CROSSTALK, Software
Technology Report, Headquarters Ogden Air Logistics
Center, 1 December 1989.

176

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 52 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Computer Technology Curricular Office, Code 37 1
Naval Postgraduate School
Monterey, California 93943-5000

4. Commandant of the Marine Corps 1
Code TE 06
Headquarters, U.S. Marine Corps
Washington, D.C. 20380-0001

5. System Integration 1
Code C20S
Attn: Captain James E. Minnema
Marine Corps Research Development and
Acquisition Command
Quantico, Virginia 22134-5080

6. Marine Corps Tactical Systems Support Activity 1
Attn: Mr. Vivian Pacus
Camp Pendleton, California 92055-5080

7. Center for Naval Analysis 1
4401 Ford Avenue
Alexandria, Virginia 22302-0268

8. Director of Research Administration 1
Attn: Professor Howard, Code 012
Naval Postgraduate School
Monterey, California 93943-5000

9. Department of Computer Sciences 30
Professor Luqi, 52Lq
Naval Postgraduate School
Monterey, California 93943-5000

10. Department of Administrative Sciences I
Professor Tarek Abdel-Hamid, 54Ah
Naval Postgraduate School
Monterey, California 93943-5000

177

11. GMD-F2G2
Potsfach 1240
Attn: Dr. Bernd J. Krdmer
5205 Sankt Augustin 1
West Germany

12. Department of Administrative Sciences
Professor Tung Bui, 54Bd
Naval Postgraduate School
Monterey, California 93943-5000

13. Software Engineering Institute
Attn: Mr. Robert Seacord
Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213-3890

14. Index Technology Corporation
Attn: Ms. Pamela Meyer
One Main Street
Cambridge, Massachusetts 02142

15. Interactive Development Environments
Attn: Mr. Ramana Gogula
595 Market Street, 12th Floor
San Francisco, CA 94105

16. Reasoning Systems Inc.
Attn: Mr. Cordell Green
3260 Hillview Avenue
Palo Alto, CA 94304

17. SPS Software Products & Services, Inc.
Attn: Ms. Claudia Gamlien
14 East 38th Street, 14th Floor
New York, NY 10016

18. Syscorp International
Attn: Mr. Raymond T. Yeh
9420 Research Blvd., Suite 200
Austin, Texas 78759

19. Texas Instruments Incorporated
Information Engineering Facility
Attn: Mr. Bob Barker
P.O. Box 869305, MS 8474
6550 Chase Oaks Blvd.
Plano, Tx 75806

178

20. Chairman, Code 52
Computer Science Department
Naval Postgraduate School
Monterey, California 93943-5000

21. Chief of Naval Research
800 N. Quincy Street
Arlington, Virginia 22217

22. Ada Joint Program Office
OUSDRE (R&AT)
Attn: Dr. John Selicman
The Pentagon
Washington, D.C. 20301

23. Defense Advanced Research Projects Agency (DARPA)
Integrated Strategic Technology Office (ITSO)
Attn: Dr. B. Boehm
1400 Wilson Boulevard
Arlington, Virginia 22209-2308

24. Defense Advanced Research Projects Agency (DARPA)
Dircetor Naval Technology Office
1400 Wilson Boulevard
Arlington, Virginia 22209-2308

25. Defense Advanced Research Projects Agency (DARPA)
Director, Prototype Projects Office
1400 Wilson Boulevard
Arlington, Virginia 22209-2308

26. Defense Advanced Research Projects Agency (DARPA)
Director, Tactical Technology Office
1400 Wilson Boulevard

0

Arlington, Virginia 22209-2308

27. Code K54, NSWC
Attn: Mr. William McCoy
Dahlgren, VA 22448

28. Chief of Naval Operations
Attn: Dr. R.M. Carroll (OP-01B2)
Washington D.C. 20350

29. USC-Information Sciences Institute
4676 Admiralty Way
Suite 1001
Marina del Ray, California 90292-6695

179

30. Computer Science Department
Attn: Dr. Ted Lewis
Oregon State University
Corvallis, Oregon 97331

31. IBM T.J. Watson Research Center
Attn: Dr. A. Stoyenko
P.O. Box 704
Yorktown Heights, New York 10598

32. Kestrel Institute
Attn: Dr. C. Green
1801 Page Mill Road
Palo Alto, California 94304

33. Department of Computer Sciences
Attn: Professor D. Berry
University of California
Los Angeles, California 90024

34. National Science Foundation
Division of Computer and Computation Research
Attn: K.C. Tai
Washington, D.C. 20550

35. National Science Foundation
Division of Computer and Computation Research
Attn- Tom Keenan
Washington, D.C. 20550

36. Naval Ocean Systems Center
Attn: Linwood Sutton, Code 423
San Diego, California 92152-5000

37. N~val Sea Systems Command
Attn: CAPT A. Thompson
National Center #2, Suite 7N06
Washington, D.C. 22202

38. NAVSEA, PMS4123H
Attn: William Wilder
Arlington, Virginia 22202-5101

39. New Jersey Institute of Technology
Computer Science Department
Attn: Dr. Peter Ng
Newark, New Jersey

40. Fleet Combat Directional Systems Support Activity
Attn: Dr. Mike Reiley
San Diego, California 92147-5081

180

41. Office of Naval Research
Computer Science Division, Code 1133
Attn: Dr. Van Tilborg
800 N. Quincy Street
Arlington, Virginia 22217-5000

42. Office of Naval Research
Computer Science Division, Code 1133
Attn: Dr. R. Wachter
800 N. Quincy Street
Arlington, Virginia 22217-5000

43. Office of Naval Research
Applied Mathematics and Computer Science
Attn: Mr. J. Smith, Code 1211
800 N. Quincy Street
Arlington, Virginia 22217-5000

44. Software Group, MCC
9430 Research Boulevard
Attn: Dr. L. Belady
Austin, Texas 78759

45. Computer Science Deprtment
Southern Methodist University

Attn: Dr. Murat Tanik
Dallas, Texas 75275

46. Department of Computer and Information Science
The Ohio State University
Attn: Dr. Ming Liu
2036 Neil Ave Mall
Columbus, Ohio 43210-1277

47. U'S. Air Force Systems Command
Rome Air Development Center
RADC/COE
Attn: Mr. William E. Rzepka
Griffis Air Force Base, New York 13441-5700

48. Department of Electrical Engineering and Computer
Science
Computer Science Division
Attn: Dr. C.V. Ramamoorthy
University of California at Berkeley
Berkeley, California 90024

49. Department of Computer and Information Science
Attn: Dr. Nancy Levenson
University of California at Irvine
Irvine, California 92717

181

50. Department of Computer Science
Attn: Dr. William Howden
University of California at San Diego
La Jolla, California 92903

51. Chief of Naval Operations
Attn: Dr. Earl Chavis (0P-162)
Washington, DC 20350

52. College of Business Management
Tydings Hall, Room 0137
Attn: Dr. Alan Hevner
University of Maryland
College Park, Maryland 20742

53. DepaLtment of Computer and Information Science
Attn: Dr. John A. Stankovic
University of Massachusetts
Amherst, Massachusetts 01003

54. Department of Computer Science
Attn: Dr. Alfs Bertziss
University of Pittsburgh
Pittsburgh, Pennsylvania 15260

55. Computer Science Department
Attn: Dr. Al Mok
University of Texas at Austin
Austin, Texas 78712

56. Honeywell Systems & Research Center
Attn: Mr. Steve Huseth
Minneappolis, Minnesota 55418

5 .
57. U.S. Army Headquarters CECOM

AMSEL-RD-SE-AST-SE
Attn: Mr. George Sumiall
Fort Monmouth, N.J. 07703-5000

58. United States Laboratory Command
Army Research Office
Attn: Dr. David Hislop
P.O. Box 12211
Research Triangle Park, NC 27709-2211

59. Computer Science and Artificial Intelligence
Department of the Air Force
Attn: Dr. Abraham Waksman
Bolling Air Force Base, D.C. 20332-6448

182

60. NSWC, U-33
Attn: Dr. Phil Hwang
Silver Spoon, Maryland 20903-5000

61. NOSC, Code 805
Attn: Mr. Jack Stawiski
San Diego, California 92152-5000

62. Office of Naval Research
Applied Mathematics and Computer Science
Attn: Mr. J. Smith, Code 1211
800 N. Quincy Street
Arlington, Virginia 22217-5000

63. Chief of Naval Operations
Code OP-940C
Attn: Mr. Al Lezerns
Washington D.C. 20350-2000

64. Navy Center for Applied Research in AI
Navy Research Lab
Attn: Ms. Laura Davis, Code 5510
Washington D.C. 20375-5000

65. Lockheed Software Technology Center
09610/3307
Attn: Dr. Herb Krasner/ Dr. Wright
2100 East Street
Austin, Texas 78744

66. Gary W. Manley 2
391 B Ricketts Rd
Monterey, California 93940

P

183

