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1. INTRODUCTION

Spike-nosed configuratons arc uscd for projectile applications against armored targets where
the spike is used as a stand-off distance causing microseconds of advance time between the time that
the tp of the spike touches the armor and the time that the warhead (usually a shaped charge)
detonates. Spike nose configuratiors are also used for a different purpose, namely reducing the drag

for blunt reentry vehicles at hypersonic speeds when drag and heating are of major concem.

After World War 1II, a new generation of spike-nosed high explosive, anti-tank (HEAT)
projectiles was developed in the U.S. and abroad. In the very carly stage of devclopment, during the
late 1940s and early 1950s, spinning HEAT projectiles were examined; but it was quickly found that
spin reduces the depth of penetration in the ammor. Therefore, most spike-nosed projectiles, in the
laic 1950s and thercaficr, were fin-stabilized and were provided with a tail boom and fins behind the
shaped-charge warhead.

Many experimental studics were made for finned, spike-noscd projectiles. Some wind tunncl
tests can be found, for example, in References 1 through S. Some firing-range (ests are reported in
References 6 threugh 9. The U.S. Air Force, during the 1960-70s, cxtensively studied the unsteady
front-shock flow phenomenon (the buzzing) for spike-nosed reentry vehicles at high speeds.'®'?  Also,

the Air Force successfully computed the unsteady buzzing flow for these rcentry configurations of
: 1315
interest.

At present, for sharp-edged, spikc-nosed projectiles of interest o the Amy, there is no analytic
or formal computational procedure that can be systematically used to predict the acrodynamics of such
configuraions. The Amy has relied so far on direct wind tunnel tests followed by live firing of
projectiles in the firing ranges. The present study was made 1o establish such a systematic, numerical,
predictive technique. Therefore, validation of the predictive technique against range or wind tunncl data
is of vital importance for assessing thc numerical capability. Although the final objective is the
application to finncd, spikc-noscd projectiles, this study, being a finst step toward that goal, limited
tsclf to unfinned, spike-nosed configurations in an attempt to focus on the spike-nosed flow with its
complex features. These features include dual flow modes, large separation regions, and unsteadiness.
By establishing that such flows can be systematically and successfully computed, the doors will be
opencd for future work to tack'e similar configurations with added booms and fins.

The advances in the zonal gridding and overlapping techniques made this study possible for




the present sharp-edged configurations. This represents the first known application of computational
fluid dynamics to Armmy spike-noscd projectile shapes.

2. ABOUT THE TEST CASES

Very few experimental results are available for unfinned, spike-nosed projectiles in contrast to
those of finned ones for the reason stated earlier. For the sharp-edged configuration, only the wind
tunnel tests of Platou'® are applicable. Also, some firing range data arc available, but for configurations
with a tripping fng."” Very recent wind tunnel tests were made by Koenig, ct al..'* while this work
was being completed. for very similar configurations with different spike lengths at Mach nuirlbers
between 0.8 to 1.5 and zcro angle of incidence.  Results of Reterence 18 could be used for further
validations in the future.

Three cases from Reference 16 were chosen. They are shown in Figures 1-3. The wind tunncl
tests were made in 1950 at the Ballistic Rescarch Laboratory supersonic wind tunncls at M=1.72 for
angles -10° < & < +10°. The Reynolds number was 4.86x10° per foot, T,=100 F°, and P,=1.26
aimospheres. The model diameter is 2.5 inch for ali three configurations. The first two configurations
were reported not 10 have dual flow modes at this Mach number and range of a. The flow fcaturcs
of both modes are depicted in Figure 4. The third configuration was reportcd to have had the dual
flow modes (the high-drag, open-flow mode and the low-drag, closed flow mode). However, the low-
drag mode bnefly occurred while increasing o and was captured on a schiicren photograph, but the
drag force itself was not measured. The high-drag modc then persisted, while the lower drag mode
could ncver be recovered again during the tests.'

3. GOVERNING EQUATIONS

The compressible, turbulent Navier-Stokes equations for axisymmetric and two-dimensional flow
can be expressed' in the following strong conservation form, in which the dependent variables p, u,
v, and ¢ are mass averaged, with ¢ being the specific total energy, T being the temperature, p and p

being mean density and pressure, respectively, and 1 denoting time:
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where p is molecular viscosity, € is the turbulent cddy viscosity, and B = 1 or 0 for axisymmeiric

and «wo-dimcnsional cases, respectively.




The air is assumed to be a perfect gas, satisfying the equation of state p = pRT, where R is
the gas constant (1,716 fi’/sec’ - °R for air). For the dependence ¢. - .minar viscosity on lemperature,
Sutherland's law was uscd:

T? s 1b - sec
T . 2
T+ 1986~ 10 i 2)

p= 2270
The laminar and turbulent Prandtl numbers, Pr and Pr,, were assumed constant with vaiues of

0.72 and 0.9, respectively.  The ratio of specific heats, ¥y, was also assumed constant and equal to 1.4,

C. and C, arc specific heat capacitics at constant volume and constant pressurc, respectively:
C. = 4290 fi'/sec’ - °R,
and
C, = 6006 fi/sec’ - °R for air.
The 1otal encrgy per unit mass, e, is given by:

c=CT + (1/2) (u2+ vz).

In the § - N computational plane, Equations 1a and b are transformed to the conservation law
form, and the equations can te found, for example, in Reference 19.

3.1 Turbulence Model. Turbulence is modeled through the algebraic eddy-viscosity model
of Baldwin and Lomax.** This model cmploys the two-layer concept (inner and outer). The inner

layer is ncar the walls and is modcled as:

g, = pllot , (3a)
= ki -y
l-ky(l-exp[r] . (3b)
The magnitude of the vorticity lw! is:
lol = |du . dy] 3
Iay % (3c)




where

. [pudog V*
yo=| =y (3d)

The distance nomal to the surface is y; A" = 26; k = 040 is the von Karman constant; and the
subscript w denotes values at the surface,

The model switches from the inner to the outer region at the smallest value of y for which the

inner and outer values of the cddy-viscosity are equal (i.c., € = €). The € for the outer layer is given

by
€° = pKCrmexymnFKlEB . (30)
where
o = ymulwl( I - cxp (1_\ ] . (3D
L)

The value of y at which F ., oCCUIs is Y,

Feues = [1 + 5.5(Ckusy/ Yol ()

K = 0.0168, Ceop = L6, Cyxues = 03 . (3h)
Duc to the perpendicular surfaces of the spike surfaces at the nose tip and at the facing shouldc:, the
nomal distance to the wall, y, in Equation 3 is difficult to assign.?' This problem was solved in

Reference 21 by measuring the y along a 45° ray emanating from the point of intcrsection of the two
perpendicular walls,

4. ABOUT THE CODE, GRID, AND COMPUTATIONS

4.1 The Code. The code was developed by Patcl and Sturck'. It utilizes the familiar and

robust, cxplicit, time-dependent method of McComack. The code was vectorized and is run on a

_



Cray-XMF/48 Machine. The present computations were all run in serial arithmetic mode. The zonal
grid and overlap provided in the code are represented by eight d.ifcrent available zones (which can be
increased if so desired). The user prescribes the overlap between regions along one line of adjacent
zones (interface). A global, uniform, time step was used herein against grid-varying time steps to
simulate time-accurate solutions. The time step is determined from the Courant-Fredrick-Levy (CFL)
condition, with a factor of about 0.6 being used as the Courant number.

4.2 Boundary Conditions. No-slip conditions are specified on all wall surfaccs. The incoming
flow conditions are assumned t~ be of uniform profiles with free-stream temperature of T_ = 520 R°®,
p. = 14.7 psi, M_ = 1.72,

The outgoing conditions at the end of the projectilc were imposed as zero gradients parallel to
the body axis direction.

The outer boundary conditions were imposed as nonreflective conditions, i.c., zero-gradicnt
conditions along characteristic lines for all variables, The characteristic dircction is determined from
the local velocity and temperature. This approach allows sctting the "outer” field close o the body

without the penalty of any unneccssary approximations regarding shock reflection, or zero-gradient
conditions.

Al the symmctry linc, ahcad of the spike tip, a two-point, zero-gradicnt, boundary condition
is imposed on the solved variables.

4.3 Initial Conditions. Computations were started using free-stream values everywhere in the
domain. These values are for free stream velocity, pressure, and temperature. The density and specific

total energy arc computed accordingly, using the equation of statc and the definition of the specific
total encrgy.

4.4 The Grd. Three different grid zoncs were used in the computation. Those zones and the
cxtent of the computational domain are depicted in Figure 5.

For the first configuration, the grids used for the three zones are (15x48), (26x39), and (21x25).
respectively. The first and second arguments in the parentheses refer to the axial and radial directions,
respectively. This grid has 2,259 total points and is equivalent to a (48x48) grid.




One restriction in the present grid overlapping technique is the requirement that no interpolaticn
is allowed at the interface line between zones, Thus, each point on either side of any two zones must
have exactly the same coordinates. This restriction represents some constraint in the flexibility of the
grid distribution and may be alleviated in future development of the code. Meanwhile, to accommodate
this restriction, one has to accept unnccessary clustering of points in some locations. Figure 6 shows
the clustered points along lines parallel to the top body surface, where clustering is nceded near the
body to resolve the turbulent boundary laycr. Figure 6 shows the overall grid disiribution for the first
projectile configuration.

The sharp cone spike configuration was also modcled using three zoncs, but with grid sizes
of (15x39), (26x39). and (21x25). respectively. This grid totals 2,124 points, or the equivalent of a
(46x46 mesh), and is depicted in Figure 7.

The third conliguration was computed using zones of sizes (15x44), (21x35), and (31x35).
This grid totals 2,480 points or (50x50), approximately. This grid for configuration 3 is given in
Figure 8. The grids were gencrated using a simple algebraic (exponential) formula in cach zoae in
both the axial and radial dircctions.

5. RESULTS

5.1 Configuralion 1. The low-drag mode was obtaincd by straightforward computation,
assuming the flow to be fully turbulent everywhere. Unsteadiness occurred in the computation, but,
when the turbulence level was reduced to 0.2 of its value at each point, the flow became sicady.
The Mach contours arc provided in Figure 9. Comparison with the schlicren photograph of Reference
16 indicated good agrcement of flow fcatures. The bow shock stand-off distance was 0.5 d, as
theoretically predicled, and the bow shock angle away from the body nose tip was abou. 40°, the same
as can be dctermined from the schlicren. The computation converged satisfactorily after 4,000 time
steps, although the code was latcr run to 12,000 steps to assure the stability of computations, The
computer CPU timc was 40 minutcs on the Cray-XMP/48 for the 4,000 steps.

Scveral numerical experiments were made to obtain the high-drag mode, cven though that
mode was not confired during the tests of Reference 16, The high-drag mode was casily obtained
by freezing (i.c., not updating) the turbulence level after 1,000 steps and by simultancously rclaxing
the time step at cach point to 0.6 of its local Courant time step value. The solution also converged
satisfuctorily after 6,000 time steps, using 60 minutes on the same computer. Figure 10 depicts the
flow ficld as presented by the Mach contours for this high-drag mode.

7
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Comparison between the local flow fields of the two modes near the spike tip is given in
Figures 11 and 12, respectively. For the high-drag mode, there is an expansion fan near the tip, which
is followed immediately by coalescence of compression waves facing the scparation region. These
compression waves coalesce into a shock which faces the facing shoulder of the projectile, thus raising
the pressure behind it and also that on the facing wall. Thus higher pressure results in the higher drag
of the projectile. Surprisingly, the cormresponding flow detail near the facing shoulder differs very
slighty for the two modes. It was expected that larger diffcrences would be observed there. Figures
13 and 14 provide the details for those modes near the facing shoulder.

The forebody drag coefficient for the computed geometry (low-drag) was 0.337. The drag duc
to the rotating band, which is shown in Figures 1-3 but was not modcled in the computation, was
estimatcd® 10 be 2% of the total drag at M = 1.72. The compuicd drag is, therefore, provided as
0.344, while the wind wnnel measurement given in Refcrence 16 is 0.351 for the forcbody drag.
Reference 16 provides the nei forcbody drag without any reference 1o base drag corrections. The
computation, thus, undcrpredicts the measurement by 2%. Considering the tunnel measurcment
accuracy, one can conclude that these flow results are very assuring and uscful. This result is shown
in Figure 15. For the high-drag modc, the computed drag coefficient was 0.402 and is provided as
0.410 when including the 2% rotating band effect. The high-drag mode, therciore, resulted in a
19% increase in drag over the low-drag mode.

5.2 Configuration 2. The high-drag mode was obtained first when the computation of
Configuration 1 was rcpeated, assuming fully turbulent flow everywhere and no reduction in the
turbulence level. The computation was slower in converging, requiring 7,000 time steps for satisfactory
convergence.

To obtain the low-drag mode, which is the mode reported'® 1o occur, laminar flow and
transition shouid be allowed to occur on the cone. Therefore, laminar flow was allowed on the cone,
and transition was allowed to occur only along the middle third of the wholc spike length. This was
bascd on estimates of location of transition (local Reynolds number), which were cvaluated using
References 23 and 24, The low-drag mode was immediately obtained, but with slower convergence

ratc. Convergence rcquired about 12,000 time steps, requiring 120 minutes on the Cray-XMP/48
Machine.

The two flow modes are depicted in Figures 16 and 17. In Figure 16, the flow seems 10 slide
over the scparated region of the spike, while in Figure 17, for the high-drag mode, there is a

compression wave appearing at the beginning of the separated region, thus signifying flow path luming.




The forebody drag coefficient for the low-drag case was 0.314 (including the 2% rotating
band drag), compared to 0.321 for the wind tunnel measurement. Again, computation is within 2%
of the measurement. Figure 18 depicts the comparison in the drag value. The high-drag mode drag
coefficient was computed as 0.397 (including the 2%) and, thus, is 26% higher than that of the low-
drag mode. The high drag mode was not observed during the tests of Reference 16.

5.3 Configuration 3. The high-drag mode was obtained readily when the computation, similar
to that for Configuration 1, was applied here. Fully turbulent flow everywhere with no reduction in
turbulence leve) was applied. Computations required only 4,000 steps for satisfactory convergence.

Several numerical attempts were made (o obtain the low-drag mode. It was found that, by
imposing a 3.5% cross flow (i.e., v = 0.035 V) in the free stream in zonc 1, the flow mode was
réadily obtained. This 3.5% cross flow falsely simulated a pscudo 2° angle of attack. Although this
is not truly an angle-of-attack effect, the cross velocity is an influence that can be related to an angle
of attack.

These flow fields arc depicicd in Figures 19 and 20 for low-drag and high-urag modcs,
respectively.  An excellent agreement for the high-drag mode was obtaincd with the schlicren
photograph of Reference 16. Oic feature is the existence of a "kink” in the compression wave, which
emanates from the impact of the flow with the separation region. This kink was questioned at first,
but, when the schlieren photo had been examined carefully, the kink was found easily. Also, all the
shock and expansion wave angles (away from the body) were found to be within 4° of the valucs
mcasured from the schlicren photograph of Reference 16.

The forcbody drag coefficient for the high-drag mode was computed as 0.478 (including the
2% increase due to the rotating band) compared to 0.306 for the low-drag case. This represents a
56% increase in drag. The wind tunnel measurement for the high-drag mode was :‘c:poru:d’6 1o be
0.555. This large discrepancy between the computed and measurcd values is still unresolved.
However, when examining this paricular case in Reference 16, the value of 0.555 seems (0 be
particularly high in comparison with the remaining cases tested. The data of Reference 16 for this case
were presented with only one point on one figure in the report. There are no cross-checked values or
any tabulated results for positive verification of this value. Table 1 provides a summary of all obtained
results and a comparison with test data.

5.4 Gnd Sizc Effcct. To examine the result obtained for the high-drag mode 1. Jiguration

3, the computations were performed again using a larger number of points 10 asscss whether that




discrepancy was due to inadequate grid size. Configuration 3 was computed first using zones with
(15x44), (21x35), and (31x35) points. This grid totals 2,480 points, with a (50x50) mesh equivalence.
The grid was then incrcased to (15x54), (31x45), and (41x45), thus totalling 4,050 points, which is
equivalent to a (63x63) mesh. The drag coefficient changed from 0.4621 to 0.4690, a change of only
1.5%. Therefore, it was assumed that the grid size is appropriate for most purposes.

6. SUMMARY AND CONCLUSIONS

Three different spike-nosed projectile configurations were computed at Mach = 1.72, and the
results are compared to wind wnnel measurements. The computed drag coefficients are in very good
agreement with the measured values. Computed values are within 2% of the measurements, which is
within the drag-measurement accuracy itself. The high-drag mode computed for the third configuration
provided a considerably lower drag than the measured value, although the detailed flow features
compared rather accurateiy with the schiicren photograph of the test. Because confidence was gained
from the two previous computed cases, it is believed that the drag measurement for this particular casc
is quite high and may also be in error. This belief is supported by observing the results of 20 similar

spike-nosed configurations tested during the same test period. Thesc drag data are also reported in
Reference 16.

Two interesting obstacles are faced in this study which cannot be resolved decisively. First,
the possibility of two flow modes always exists. ‘ihersfore, one cannot determine, a priori, which
mode the numerical procedure will favor.  Also, it is not known, a priori, which one will physically
occur at particular wind tunnel conditions or under free-flight, firing-range conditions. The sccond
obstacle faced was the strong role of the turbulence eddy viscosity valuc level and model on
influencing the compulation (possibly due to the large separation region) toward one particular flow
mode. It was not determined whether this influence is purcly a numerical problem or it has a parallcl

in nature where flow turbulence in the tnnel or in free flight may trigger a particular flow mode.

Finally, this study provided a straightforward and sysicmatic capability for computing such
difficult configurations. The present work represents an advance in the application of CFD techniques.
The computations, in addition, have provided dual flow modes where the wind tunnel expenmcnt had
only revealed onc mode under centain tunnel conditions. It is not known if some of these computcd
dual modes are superficial or whether real-life tests had favored only onc mode which is more
dominant. Thns, these corhpulalions may spur the need for extensive and delicate variations in tesi

conditions to verify the existence of these modes at these flow conditions.
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TABLE 1. Comparison of Results at Mach = 1.72 .

)
Low-Drag Mode High-Drg Mode
Wind Present wind Present
Configuration Tunnel Computations* Tunnel Coiaputations*
1 0.351 0.344 P 0410
2 0.321 0.314 _ 0.395
3 - 0.306 0.555 0.469

*These valucs include an added 2% due to rotating band pressure drag,? at

M= 172 .

®This {low mode was not reported in the wind tunnel experment.'

“This modc was obscrved and reported only in a schlicren photograph but
quickly disappcared and could not be recovercd'® in the wind tunnel for actual

measurement.
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LIST OF SYMBOLS

Nomenclature

A, = rcference area, (nd¥/4)

Cp = drag cocfficient, drag force/(.S p_ V2. An)

Cp = specific heat undcer constant pressure

Cv = specific heat under constant volume

d = rcference diameter

d, = spike diameter

e = specific wotal cnergy

M = Mach number

p = slatic pressure

Re = Reynolds number

u,v = velocity components in the x,y directions

V. = frce strcam velocity

x,y = Canesian coordinates for 2-D case, axial and radial coordinatcs for axisymmetric
I :mbol

a = angle of attack

Y = ratio of specific hcats for air

p = density

i = laminar (molecular) viscosity coefficient

e = turbulent eddy viscosity cocfficient

E.n = transformed coordinates in the computational planc for the coordinates x,y
ubscrpts

0 = dcnotcs stagnation (total) condition

oo = free stream condition
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